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Bayesian reaction optimization as a tool for 
chemical synthesis

Benjamin J. Shields1, Jason Stevens2, Jun Li2, Marvin Parasram1, Farhan Damani3,  
Jesus I. Martinez Alvarado1, Jacob M. Janey2, Ryan P. Adams3 ✉ & Abigail G. Doyle1 ✉

Reaction optimization is fundamental to synthetic chemistry, from optimizing the 
yield of industrial processes to selecting conditions for the preparation of medicinal 
candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, 
from tuning virtual personal assistants to training social media and product 
recommendation systems2. Owing to the high cost associated with carrying out 
experiments, scientists in both areas set numerous (hyper)parameter values by 
evaluating only a small subset of the possible configurations. Bayesian optimization, 
an iterative response surface-based global optimization algorithm, has demonstrated 
exceptional performance in the tuning of machine learning models3. Bayesian 
optimization has also been recently applied in chemistry4–9; however, its application 
and assessment for reaction optimization in synthetic chemistry has not been 
investigated. Here we report the development of a framework for Bayesian reaction 
optimization and an open-source software tool that allows chemists to easily 
integrate state-of-the-art optimization algorithms into their everyday laboratory 
practices. We collect a large benchmark dataset for a palladium-catalysed direct 
arylation reaction, perform a systematic study of Bayesian optimization compared to 
human decision-making in reaction optimization, and apply Bayesian optimization to 
two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). 
Benchmarking is accomplished via an online game that links the decisions made by 
expert chemists and engineers to real experiments run in the laboratory. Our findings 
demonstrate that Bayesian optimization outperforms human decisionmaking in both 
average optimization efficiency (number of experiments) and consistency (variance 
of outcome against initially available data). Overall, our studies suggest that adopting 
Bayesian optimization methods into everyday laboratory practices could facilitate 
more efficient synthesis of functional chemicals by enabling better-informed, 
data-driven decisions about which experiments to run.

Optimization of a chemical reaction is a complex, multidimensional 
challenge that requires experts to evaluate various reaction parameters, 
such as substrate, catalyst, reagent, additive, solvent, concentration, 
temperature and reactor type (Fig. 1a). Yet in a typical laboratory, 
bench chemists can evaluate only a small subset of these conditions 
during a standard optimization campaign owing to time and material 
limitations. Modern advances in high-throughput experimentation 
(HTE) have extended experimental capabilities to the collection of a 
few thousand data points under a limited set of conditions10. Thus, the 
chemist’s art is to differentiate between millions of plausible configu-
rations using a laboratory equipped to run only a tiny fraction of the 
possibilities. To do so, chemists typically carry out their experiments by 
scouring the chemical literature for similar reactions and intuiting the 
most influential dimensions (that is, reaction parameters) for reaction 

success on the basis of experience, mechanistic understanding, empiri-
cal data and simple heuristics (Fig. 1b).

Chemists also commonly utilize systematic, model-driven 
approaches to reaction optimization11–13. For example, design of experi-
ments (DOE) seeks to sample experimental conditions that facilitate 
modelling of reaction parameters and deconvolution of interactions 
(Fig. 1b)1,14,15. In conjunction with a response surface model, DOE enables 
the exploitation of knowledge gained from previous evaluations to 
guide the selection of future experiments. However, the exploration 
of reaction space is typically left in the hands of pre-defined optimal 
designs, sensitivity analysis, literature precedence and the opera-
tor’s intuition1. In addition, although a typical reaction requires the 
fine-tuning of numerous discrete parameters, screening requirements 
grow exponentially with the number of categorical components using 

https://doi.org/10.1038/s41586-021-03213-y

Received: 24 June 2020

Accepted: 11 December 2020

Published online: 3 February 2021

 Check for updates

1Department of Chemistry, Princeton University, Princeton, NJ, USA. 2Chemical Process Development, Bristol-Myers Squibb, New Brunswick, NJ, USA. 3Department of Computer Science, 
Princeton University, Princeton, NJ, USA. ✉e-mail: rpa@princeton.edu; agdoyle@princeton.edu

https://doi.org/10.1038/s41586-021-03213-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-03213-y&domain=pdf
mailto:rpa@princeton.edu
mailto:agdoyle@princeton.edu


90  |  Nature  |  Vol 590  |  4 February 2021

Article

optimal designs. Thus, in practice some variables may be held constant 
to enable optimization on a fixed experimental budget16,17.

The fundamental challenge associated with reaction optimization is 
not unique to chemistry. In machine learning, the development and study 
of computer algorithms that learn from data, practitioners are often 
tasked with finding the model hyperparameters that optimize perfor-
mance2. This meta-challenge has driven the development of automated 
approaches to algorithm optimization2,18. Bayesian optimization, an 
uncertainty-guided response surface method used for the optimization 
of computationally expensive objective functions, has shown excellent 
performance, in many instances outperforming expert practitioners 
and other state-of-the-art global optimization algorithms (Fig. 1c)3,19. 
Bayesian optimization is designed to balance the exploration of areas 
of uncertainty and the exploitation of available information, leading to 
high-quality configurations in fewer evaluations. Importantly, Bayes-
ian optimization algorithms can be applied to diverse search spaces 
that include arbitrary parameterized reaction domains and enables the 
selection of multiple experiments in parallel. Accordingly, this approach 
is well suited to the optimization of chemical processes4,20–23. However, 
Bayesian optimization has only recently become of interest to the chemi-
cal community. Select applications include automatic chemical design5, 
high-throughput virtual screening24 and programmed flow chemistry6,25. 
Although researchers have begun to explore the application of machine 
learning methods to reaction optimization4,6–8,25–27, these efforts have 
targeted a limited subset of synthetic chemistry that includes only con-
tinuous process parameters. That is, to the best of our knowledge, there 
are (1) no applications to typical batch chemistry, (2) no general-purpose 

software platforms that are easily accessible to non-experts and (3) no 
systematic comparisons to the performance of expert chemists28.

Herein we report the development of a modular framework for Bayes-
ian reaction optimization and accompanying open-source software 
that is compatible with automated systems (for example, computer 
experiments) and human-in-the-loop experimentation (for example, 
bench-scale screening). Our approach is designed to integrate with 
existing synthetic-chemistry practices, is applicable to arbitrary search 
spaces that include continuous and categorically encoded reactions, 
and enables the inclusion of physics and domain expertise. Moreover, 
this method is arbitrarily parallelizable (that is, any number of experi-
ments can be selected per batch of iterative experiments) and thus can 
facilitate both rapid screening and direct translation to large-scale 
process conditions. First, we describe the development of our Bayes-
ian optimization platform using experimental reaction data mined 
from the literature. Next, to test our approach, we undertake a sys-
tematic investigation of Bayesian optimization compared to human 
decision-making in the optimization of a new reaction—inspired by 
a key Pd-catalysed direct arylation from the synthesis of BMS-911543 
(Fig. 1a). Finally, we demonstrate the general applicability of Bayesian 
optimization to the optimization of additional distinct chemical reac-
tions relevant to medicinal chemistry.

Optimizer development
For a given search space, Bayesian reaction optimization begins by 
collecting initial reaction outcome data via an experimental design 

Step 1: reaction space 

Ligand
Base

Solvent
Temperature

Reaction time 
...

BMS-911543 (JAK2 inhibitor) 

Pd catalyst

Conditions

>105 con�gurations Synthesis step 1: direct  

a

Carboxylate 
base

Phosphine 
ligand

Mechanistic studies 

T (°C) 

t (h)

C (M)

Common approaches to reaction optimization

High-throughput experimentation Response surface modelling

Design of experiments

b

Prototypical chemical process optimization problem

Reaction parameter

Unknown objective

Experimental data

Model mean

Model variance

Expected utility curve

Next
experiment

Bayesian optimization: one-dimensional visualizationc

N NO2

Br

Me

O

EtO
N

Me

N
NC

H

N NO2

Me

O

EtO

NMe N

CN
O

N

Me

N N
H

Me
N N

Me
N

N
Me

N

O

R

O

HPd

N

N
MeNC

L

Ar

Fig. 1 | Bayesian reaction optimization. a, Example of chemical process 
optimization in pharmaceutical development: synthesis of BMS-911543.  
b, Typical approaches to reaction optimization. Mechanistic studies establish 
important reaction pathways, design of experiments enables systematic 
identification of important parameters (typically continuous variables such as 
time, t, temperature, T and concentration, C), high-throughput 
experimentation facilitates more rapid screening of reaction conditions, and 

response surface models predict high-yielding conditions from available data 
(the example surface is colour-coded according to objective values).  
c, Graphical overview of Bayesian optimization. One-dimensional example 
depicting a Gaussian process surrogate model fitted to data collected from an 
unknown objective and the corresponding expected utility surface, which is 
maximized to select the next experiment. The surrogate model is plotted as the 
posterior mean, with the shaded region showing 2σ units.
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(for example, DOE or at random) or by drawing from existing results 
(Fig. 1c). These data are used to train a probabilistic surrogate model, 
which is constructed by combining previous observations with a prior 
over functions that captures our assumptions about the reaction’s 
response surface (such as smoothness and experimental noise), making 
it possible to reason about the position of the global optimum. After 
training the surrogate model, new experiments in the reaction space 
are sequentially chosen by optimizing an acquisition function that 
maximizes the expected utility of candidate experiments for the next 
evaluation (Fig. 1c). Finally, the proposed experiments are carried out, 
the results are appended to the record and the surrogate model pos-
terior is updated. This process continues iteratively until the reaction 
yield is maximized, the resources are depleted or the space is explored 
to a degree that finding improved conditions is improbable.

We began our studies by developing a flexible python package for 
Bayesian reaction optimization named Experimental Design via Bayes-
ian Optimization (EDBO). In the development of EDBO, we empha-
sized a simple but modular interface, the use of arbitrary user-defined 
reaction spaces and applicability to human-in-the-loop or automated 
optimization. We provide the source code and examples as an open 
resource for the chemical community (see ‘Data availability’ and ‘Code 
availability’ sections).

With the software architecture in hand, our next objective was to 
optimize its performance by tuning algorithm components critical to 
maximizing yield in reaction optimization. In particular, we sought an 
optimizer configuration that offered both good average performance 
and outcomes with low variance with respect to the initial data avail-
able to the optimizer. Accordingly, we elected to carry out reaction 
optimizations with different random initial starting data and to select 
the optimizer configuration that gave low average loss, low variance 
in outcome and low worst-case loss. With these metrics in mind, we 
found that good optimization performance could be achieved with 
the available reaction data using a reaction space encoded with density 
functional theory (DFT; auto-qchem—see ‘Data availability’ and ‘Code 
availability’ sections), a Gaussian process surrogate model29 and paral-
lel expected improvement30 as an acquisition function (see below).

To meet our experimental design, we curated reaction data from 
the literature for optimizer development and evaluation (Fig. 2). We 
selected palladium-catalysed cross-coupling data for Suzuki–Miyaura 
(1)31 and Buchwald–Hartwig reactions (2a–2e)32, in which the objective 
is to optimize the yield of the desired product with respect to a combi-
natorial set of hundreds or thousands of possible reaction conditions.

Although chemists have a superb capacity to understand reac-
tions described graphically, Bayesian optimization requires a struc-
tured representation. We explored the use of chemical-descriptor 
fingerprint-based reaction encodings based on the quantum chemical 
properties of reaction components computed via DFT32, cheminfor-
matics descriptors generated using open-source libraries33 and binary 
one-hot-encoded (OHE) representations. After tuning the optimizer 
for each data type independently, we found that the average loss for 
parallel reaction optimization using each encoding was largely indis-
tinguishable (p > 0.05, where p refers to the p-value associated with the 
Welch t-test for unequal variance—see Methods; Extended Data Table 1). 
However, DFT-encoded descriptors gave the most consistent results in 
terms of worst-case loss (≤5% yield for all reactions, versus ≤15% and ≤8% 
for Mordred and OHE, respectively). Thus, we elected to carry out the 
remainder of our experiments using DFT descriptors. Importantly, our 
findings suggest that acceptable performance can be achieved in the 
wild with a number of reaction encodings.

Next, we investigated the performance of various surrogate models. 
The most basic requirements of an effective surrogate model are the 
ability to make predictions and to estimate variance. Thus, in principle 
Bayesian optimization can be implemented with many different models, 
depending on the problem. For example, for optimizations over discrete 
or mixed domains, the response surface may be better characterized by 

a random forest model34. For continuous domains, it is typical to assume 
that the unknown function is sampled from a Gaussian process35. What-
ever the case, building an efficient optimizer is itself an optimization 
problem. That is, to achieve good performance, the surrogate model 
must be optimized. Here, we selected surrogate model parameters based 
on regression performance for reactions 1 and 2a–e. Thus, we elected 
to take ourselves out of the loop and turn the optimizer on itself. Over 
the course of our studies we found that a Gaussian process model29 with 
the Matérn52 kernel offered superior optimization performance over 
a random forest model36 in terms of mean loss, outcome variance and 
worst-case loss (Extended Data Table 1).

After training the surrogate model, new experiments in the reaction 
space are sequentially chosen by optimizing an acquisition function 
(Fig. 1c). The central tenet of Bayesian optimization (and active learn-
ing methods37 in general) is the utilization of both information and 
uncertainty to drive optimization. Thus, it is instructive to consider 
the limiting cases. As interpolation methods, constant mean Gauss-
ian processes tend to predict the highest yield in the neighbourhood 
around the current best observed value. Accordingly, for a non-concave 
reaction surface (containing local maxima) we anticipate that pure 
exploitation, exemplified by an acquisition function that selects the 
point of highest predicted yield for evaluation, could become trapped 
in local maxima. By contrast, a pioneering acquisition function (pure 
exploration), exemplified by selecting the point of greatest predictive 
uncertainty for evaluation, will tend to investigate the entire response 
surface more thoroughly. Although the explorer will not necessarily 
find a global maximum without evaluating the entire search space, 
we expect it to achieve the best global understanding of the reaction 
surface. To demonstrate this dichotomy, we tracked the exploiter’s 
and explorers’ decisions25, after initialization at the same point, in a 
two-dimensional representation of reaction 1 (Fig. 3a). Indeed, over the 
first ten evaluations, the exploiter remained in a single cluster while 
the explorer traversed the entire space, visiting all five larger groups 
identified via k-means clustering. Next, we tracked the understanding 
of the surrogate model associated with each acquisition function by 
measuring its fit to the overall space (Fig. 3b). Over the course of 50 
experiments the scores of the explorer and exploiter diverge, with the 
explorer offering a better fit to the reaction surface. Finally, we con-
sidered the yield of each reaction investigated by the two algorithms 
(Fig. 3b), finding that most points selected by the explorer and exploiter 
gave low and high yields, respectively.

In practice, acquisition functions derived from a utility that balances 
exploration and exploitation often give improved performance in 
non-concave optimization. Importantly, this utility can be a written 
function of the model posterior distribution, which makes it inexpen-
sive to evaluate and enables information gathering to be explicitly 
incorporated in candidate selections. For example, expected improve-
ment30, one of several frequently employed analytic acquisition func-
tions, can be maximized to select a candidate reaction that, on average, 
is expected to improve upon the current best result to the greatest 
extent38. Alternatively, as a Gaussian process represents a distribution 
over functions, one can draw and maximize candidate models that fit 
the data where information is available and vary according to function 
shape and estimated variance in areas where little is known—a process 
called Thompson sampling39,40. Maximizing the expected improve-
ment or sampling from the distribution over optima implied by the 
Gaussian process posterior naturally balances the exploitation of areas 
of high predicted mean response and the exploration of areas with 
high marginal variance. Indeed, in comparison to pure exploitation 
and exploration, the path of the expected improvement in optimiz-
ing reaction 1 visits three of the five clusters, and the corresponding 
surrogate model achieves an intermediate fit to the reaction response 
surface (Fig. 3a, b).

Bayesian optimization is typically formulated as a sequential prob-
lem19,41,42. However, for many reaction optimization problems, running 
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experiments in parallel is critical because time presents a substantial 
cost (many reactions take hours or days to run to completion). Thus, 
we next sought to investigate methods for the selection of arbitrary 
batches of experiments to run in parallel. Thompson sampling naturally 
lends itself to selecting batches of experiments via the sampling of N 
candidate response surfaces from the posterior predictive distribu-
tion of a Gaussian process surrogate model (Supplementary Fig. 29). 
However, to achieve parallel decision-making for analytic acquisition 
functions, we iteratively predict the experiments that maximize the 
acquisition function, at each step taking the surrogate model of the pre-
vious iterations on faith, and factoring its prediction of the most likely 
outcome into the next selected experiment (Supplementary Fig. 30). 
This approach, sometimes called the Kriging believer algorithm41, can 
be thought of as a chess player thinking ahead multiple moves, at each 
step inferring the probable consequences of their actions. We found 
that these basic algorithms offer promising performance in the paral-
lel setting (Fig. 3, Supplementary Figs. 38, 39). Notably, for reactions 
1 and 2a–e it was observed that parallel optimization (batch size, 5) 
performed equally well on average (p > 0.05) to sequential optimization 
(batch size, 1) with a 50-experiment budget (Extended Data Table 1).

Having established effective acquisition and batching strategies, we 
evaluated parallel optimization performance of various acquisition 
functions designed to balance exploration and exploitation (Fig. 3; 
see Supplementary Information for additional acquisition functions). 
Overall, we found that both parallel expected improvement and Thomp-
son sampling offered excellent performance, and that their average 
outcomes were statistically indistinguishable (p > 0.05 for all six reac-
tions). However, the variance in outcome across simulation runs and the 
worst-case loss were greater with Thompson sampling. Importantly, 
the performance of expected improvement was remarkably consistent; 
over 30 random initializations, it converged within a narrow margin of 
the optimal solution (worst-case loss ≤5% yield).

Performance benchmarking
We next sought to statistically evaluate the performance of DOE 
methods compared to Bayesian optimization (Extended Data Table 1; 

see Supplementary Information for details). Although DOE is most 
frequently used for the optimization of continuous parameters, we 
identified two designs that have been employed effectively for the opti-
mization of chemical processes with categorical variables: generalized 
subset designs (GSD) and D-optimal designs16,43. For each of the reac-
tions in the development set, these DOE-based optimizations deviated 
from Bayesian optimization in both mean outcome (p < 0.05), standard 
deviation (Bayesian optimization, ≤1.9; GSD, ≤6.9; D-optimal, ≤3.3) and 
worst-case loss (Bayesian optimization, ≤5; GSD, ≤16; D-optimal, ≤15). 
Thus, we conclude that, other things equal, Bayesian optimization is 
both more straightforward to apply and provides superior performance 
in reaction optimization with categorical variables.

With our Bayesian optimization framework tuned for reaction 
optimization, we next sought to statistically test its performance in 
a new reaction space. Palladium-catalysed C–H functionalization 
has garnered increasing interest in pharmaceutical development 
for its ability to generate molecular complexity without the need for 
pre-functionalized starting material44–46. The direct functionalization 
of heterocycles represents a particularly attractive reaction owing to 
their prevalence in bioactive compounds47. However, the functionali-
zation of a given heteroarene substrate often requires refinement of 
the reaction conditions to achieve optimal reactivity and selectivity. 
Here we investigate the direct arylation of imidazoles, exemplified 
by reaction 3 (Fig. 4), which is related to a key step in the commercial 
synthesis of the JAK2 inhibitor BMS-911543 (Fig. 1a)48,49.

Reaction optimization truly begins by defining the search space. 
To facilitate the exhaustive evaluation of experimental conditions for 
statistical validation, we first considered a larger set of plausible experi-
ments, then quantified similarities between potential reaction condi-
tions via unsupervised learning and selected those that we expected 
would give a satisfactory distribution across the larger search space 
(see Supplementary Information for details)50. We anticipated that 
choosing an appropriate ligand, base, solvent, temperature and concen-
tration would be critical to achieving an optimal reaction yield based on 
variable importance for historical Bristol–Myers–Squibb (BMS) direct 
arylation studies. In this study, we chose 12 ligands from a larger set 
of 70 potential phosphines (Fig. 4). Importantly, the final selection of 
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reaction components was based on valuable expert knowledge rather 
than machine learning. Overall, we selected a subspace consisting of 
1,728 reactions including 12 ligands, four bases, four solvents, three 
temperatures and three concentrations (Fig. 4) as a tractable set of 
experiments to be used as ground truth.

Next, we collected experimental results for the entire search space 
via HTE (Fig. 4). Then, to benchmark the performance of Bayesian 
optimization to that of human experts, we developed a game25,51 that 
would track the decisions made by chemists of different backgrounds 
and levels of experience when optimizing reaction 3 (see Supplemen-
tary Information). Although the game was intended to simulate reac-
tion optimization on a fixed experimental budget, the data were real. 
Each experiment ‘run’ returned the actual result of the corresponding 
experiment in the laboratory. In the game, the participants had ‘one 
month’ to find optimal conditions for reaction 3 with the capacity to 
run one batch of five experiments ‘per workday’. Participants ‘ran’ their 

experiments via a web application that returned results and tracked 
their decisions.

In total, 50 expert chemists and engineers from academia and indus-
try played the reaction optimization game (Fig. 4c). Accordingly, the 
Bayesian reaction optimizer also played the game 50 times (Fig. 4b), 
each time starting with a different random initialization. The first point 
of comparison between human participants and the machine learning 
optimizer was their raw maximum observed yield at each step during 
the optimization. Humans made significantly (p < 0.05) better initial 
choices than random selection, on average discovering conditions that 
had 15% higher yield in their first batch of experiments. However, even 
with random initialization, within three batches of five experiments the 
average performance of the optimizer surpassed that of the humans. 
Notably, in contrast to human participants, Bayesian optimization 
achieved >99% yield 100% of the time within the experimental budget. 
Moreover, Bayesian optimization tended to discover globally optimal 
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conditions (CgMe-PPh, CsOPiv or CsOAc, DMAc, 0.153 M, 105 °C) within 
the first 50 experiments (Fig. 4b). Importantly, to the best of our knowl-
edge, CgMe-PPh has not been used as a ligand for direct arylation of 
imidazoles. Thus, experienced chemists tended to not investigate this 
ligand initially.

Each player had up to 20 batches of reactions for a total of 100 
experiments to find the best experimental conditions (around 6% 
of the experimental space). However, in practice most participants 
played fewer than 20 rounds of experiments, for example, because they 
believed that they had achieved a globally optimal solution (Fig. 4c). 
Thus, in addition to comparing the raw optimization paths, we sought 
to impute best- and worst-case bounds for average human performance 
in the dataset. If we assume that players who stopped early would not 
have achieved higher-yielding conditions had they continued playing, 
we get the lower bound shown in Fig. 4d. This bound is close to the raw 
average up until batch 11. Conversely, if we assume that had players 
continued, they would have achieved 100% yield in their next batch of 
experiments, we get the upper bound shown in Fig. 4d. This unrealistic 
upper bound closely follows the average path of the optimizer.

With the raw data and hard bounds in hand, we sought to statistically 
test whether human or machine made the best decisions on average. To 
do this, at each step in the optimization we conducted a Welch t-test, 
with the null hypothesis being that average human and Bayesian opti-
mization performances are identical. In Fig. 4e we plot the p-values 
for each case. p < 0.05 indicates that we can reject the null hypothesis. 
That is, the performance of humans and Bayesian optimization are 

statistically different. For the raw data and lower bound, we then infer 
that on average after the fifth batch of experiments the performance of 
the optimizer is better than that of humans. By contrast, for the upper 
bound we found that there is no statistically significant difference 
between the two central tendencies. Thus, we conclude that in the 
optimization of reaction 3, Bayesian reaction optimization on average 
outperformed human experts, tracing the unrealistic imputed upper 
bound of the recorded data from the games.

Applications
Having validated our approach statistically, we next sought to carry out 
real-world test cases of Bayesian optimization for the optimization of 
reactions relevant to pharmaceutical development. Importantly, we 
chose to apply Bayesian optimization over larger reaction spaces in 
which exhaustive collection of experimental data via HTE is not pos-
sible.

The prevalence of aliphatic alcohols makes them ideal building 
blocks for the synthesis of complex molecules. Accordingly, heter-
oatom substitution reactions that directly utilize alcohols play an 
essential role in medicinal chemistry52. The Mitsunobu reaction53 in 
particular is frequently used owing to the diverse set of nucleophiles 
that can undergo stereospecific coupling with aliphatic alcohols54. 
However, the standard conditions typically afford only modest yields. 
Thus, the well defined yet expansive array of potential reagents make 
the Mitsunobu reaction an ideal test case for Bayesian optimization. 
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We selected the coupling of methyl 3-bromo-1H-indole-6-carboxylate 
and benzyl alcohol with a reaction space defined by a combinatorial 
set of six azadicarboxylates, 12 phosphines and five solvents (reac-
tion 4; Fig. 5). In addition, we identified a grid of substrate concen-
trations, azadicarboxylate equivalents, phosphine equivalents and 
temperatures as continuous process parameters to give a reaction 
space consisting of 180,000 possible configurations (see Supplemen-
tary Information for a list of reaction parameters).

With the search space in hand, we next carried out controls using 
reaction conditions most frequently employed at BMS: 1.1 equiv. DIAD, 
1.1 equiv. PPh3, THF 0.1 M, and 25 °C. These standard reaction param-
eters gave an average of 60% yield over two replicate experiments (59% 
and 60%). We next carried out Bayesian reaction optimization using DFT 
encoding, a Gaussian process surrogate model and expected improve-
ment as an acquisition function, running ten experiments in parallel per 
batch, with initial experiments chosen at random. Notably, we found 
that the optimizer quickly surpassed the benchmark result, identifying 
three distinct sets of reaction conditions that produced the desired 
product in 99% yield in only four rounds of ten experiments (Fig. 5). The 
top-yielding experiments used unconventional conditions, including 
P(Ph)2Me, high concentrations and elevated temperatures. Thus, the 
optimizer identified quantitative conditions in areas of reaction space 
that would not typically be searched.

Fluorination of organic compounds has an important role in drug 
discovery owing to the unique properties of carbon–fluorine bonds55,56. 
In this context, deoxyfluorination of alcohols is one of the most widely 
employed methods for the synthesis of aliphatic fluorides57. In a pre-
vious study, the Doyle group reported that the tuning of reagent 
structure can enable the efficient fluorination of numerous complex 
alcohols using sulfonyl fluorides58. Thus, this reaction presented an 
ideal test case for Bayesian optimization. We selected the fluorination 
of 1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethan-1-ol with a reaction space 
defined by a combinatorial set of ten sulfonyl fluorides, ten organic 
bases, five solvents and a grid of continuous parameters (substrate 
concentrations, sulfonyl fluoride equivalents, base equivalents and 
temperatures) to give a reaction space consisting of 312,500 possible 
configurations (see Supplementary Information for a list of reaction 
parameters).

We next carried out controls using reaction conditions typically used 
for the commercial reagent PyFluor (1.1 equiv. PyFluor, 1.1 equiv. DBU, 
THF 0.5 M and 20 °C)59. These standard conditions gave an average of 
36% yield over two replicate experiments (35% and 36%). We next carried 
out Bayesian reaction optimization using DFT encoding, a Gaussian 
process surrogate model and expected improvement as an acquisition 
function, running five experiments in parallel per batch, with initial 
experiments chosen at random. We found that within three rounds 
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of five experiments the optimizer surpassed the benchmark result, 
ultimately identifying reaction conditions that produced the desired 
product in 69% yield in ten rounds of experiments (Fig. 5).

Importantly, in both test reactions, Bayesian optimization identified 
sets of experimental conditions with largely distinct parameter settings 
from the standard conditions. In addition, the optimizer delivered 
multiple configurations, which varied in most dimensions but delivered 
equivalent good results.
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Methods

Reaction encodings
For each reaction, a numerical encoding was generated by concatenat-
ing descriptor vectors for each chemical component and continuous 
variable. For example, for experiment i in reaction 3 the corresponding  
descriptors are d̂ d̂ d̂ d̂ T C= ⊕ ⊕ + +i ligand base solvent  (where ⊕ denotes 
concatenation). Then the encoded representation of the N-experiment 
reaction space is the matrix of descriptors, with each row correspond-
ing to an experiment: R = , , …, N1 2d̂ d̂ d̂ . The descriptor matrix  
was then preprocessed by removing highly correlated features  
(Pearson correlation coefficient >0.95) and normalizing each feature 
on the unit hypercube. The numbers of descriptors before and  
after preprocessing for each reaction are displayed in Extended Data 
Table 2.

For chemical reagents, the open-source molecular descriptor calcula-
tion software Mordred was used to calculate two- and three-dimensional 
chemical informatics-based descriptors33. OHE descriptors were com-
puted by representing the presence or absence of a given reaction 
component with 1 or 0, respectively.

To generate DFT encodings, initial molecular geometry optimiza-
tion and conformational analysis were carried out using Open Babel 
2.4.160. Quantum mechanical modelling was then carried out using 
Gaussian 16 A.0361. For all DFT calculations, the B3LYP hybrid 
exchange-correlation functional was used. Gas-phase geometry opti-
mization, frequency- and time-dependent DFT calculations were car-
ried out using the 6-31G* basis set and the LANL2DZ basis set for heavy 
atoms not supported by 6-31G*. Electronic and steric descriptors for 
the global structure (for example, dipole moment and molar volume), 
atomic properties (for example, charge and buried volume) of over-
lapping substructures and atoms of minimum/maximum charge were 
then extracted or computed from the computational output. When 
conformational analysis was carried out (reactions 1 and 3, free ligands; 
4, phosphines, azadicarboxylates; 5, sulfonyl fluorides, bases), descrip-
tors corresponding to the minimum energy conformer, maximum 
energy conformer and standard deviation of the conformers were 
computed. Then for a given descriptor d, the weighted average (d ) of 
the conformer descriptors was computed according to Maxwell–
Boltzmann statistics:

∑d
s

d=
e (1)

i

M
Gi

k T

i
=1

−

B

where M is the number of conformers, Gi is the Gibbs free energy asso-
ciated with conformer i, kB is Boltzmann’s constant, T is the absolute 

temperature and s = ∑ ej
N

Gj
k T=1

−

B .

Surrogate model design
A Gaussian process surrogate model35, implemented in python using 
GPyTorch29, was employed for Bayesian optimization. GP(μ, kθ) repre-
sents a distribution over functions characterized by a prior mean and 
kernel kθ(x1, x2). We model chemical reaction outcomes, standardized 
to zero mean and unit variance, using a constant mean Gaussian process 
and the Matérn52 kernel:
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where α is an output scale parameter, x xr = ∑ ( − )i
n

i i=1 1 2
2 is the distance 

between points x1 and x2, and l is a length scale parameter. When con-
ditioned on experimental observations, the Gaussian process posterior 
distribution mean μ at point x is given by:

x x yµ k K σ I( ) = ( ) ( + ) (3)nθ
T

θ
2 −1

where kθ(x) is the vector of covariances between x and the training 
points, Kθ is the matrix of covariances between all training points, σn

2 
is the estimated noise variance, I is the identity matrix and y is a vector 
of responses corresponding to the training data. Then, the variance in 
the Gaussian process posterior distribution at x is given by:

x x x x xσ k k K σ I k( ) = ( , ) − ( ) ( + ) ( ), (4)n
2

θ θ
T

θ
2 −1

θ

which only depends on the estimated noise and covariance.
In Gaussian process regression, the identity of the kernel determines 

the general shape of its function distribution. Then, learned param-
eters for the length scale set the relative variation per dimension, the 
amplitude calibrates the magnitude of the changes, and the noise cap-
tures the variation in measurements. From the placement of l in the 
denominators of (2), it follows that the length scale acts to marginalize 
the distance between points. That is, small and large values of l tend 
to imply larger and smaller variations on a given interval, respectively. 
Accordingly, we found that learning the length scale per dimension via 
automatic relevance determination35 improved model performance. 
However, in the absence of sufficient data, the inclusion of a parameter 
per dimension can lead to overfitting. Thus, we assume that most of the 
dimensions are irrelevant, impose this belief via a gamma prior centred 
on longer length scales, and estimate parameters by maximizing the 
marginal likelihood:

y y yp θ K σ I K σ I
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1
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T

θ
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with respect to the kernel parameters and noise amplitude using sto-
chastic gradient descent62 as implemented in PyTorch63. Hyperparam-
eter priors were included in the estimation by adding the logarithmic 
probability for the hyperparameter value specified by the prior distribu-
tion to (5). This procedure affords models that capture general trends 
in the low-data regime and reaction nuances when more evidence is 
available. The Matérn kernel shape parameter (5/2) and priors were 
selected via Bayesian optimization using EDBO.

Acquisition function
Acquisition functions are derived from a utility function that maps a 
candidate experiment x, the corresponding outcome y and the model 
hyperparameters to a measurement of the value of the experiment. By 
using available data from experiments, we marginalize out the unknown 
result y and obtain the expected utility of evaluating to corresponding 
experiment x. We identified the expected improvement30 as a good 
acquisition function for reaction optimization based on simulations 
with reactions 1 and 2a–e. The expected improvement is derived from 
the improvement utility:

I




f f f f

f f
( ) = ( ) −

0

( ) >

( ) ≤
, (6)

+ +

+x x x

x

which is the increase in the objective function value f(x) over the cur-
rent best observed reaction outcome f +. Then, the expectation value 
of I for a given experiment x has the form:
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where I(x) = μ(x) – f + − δ is the improvement of the surrogate mean 
prediction μ(x) diminished by δ, an empirical exploration parameter, 
σ(x) is the surrogate standard deviation, and Φ and φ are the cumulative 
distribution function and probability density function of the standard 
normal distribution, respectively. The parameter δ was set to a value of 
0.01 on the basis of simulations with reactions 1 and 2a–e.



Article
Selecting the next experiment for evaluation is done by optimiz-

ing EI(x). Because the experiments are carried out on a finite grid, the 
resulting reaction space X is finite, and optimization is carried out 
by explicitly computing argmaxx∈XEI(x). Parallel acquisition is car-
ried out using the Kriging believer algorithm by iteratively computing 
xi ← argmaxx∈XEI(x), appending the Gaussian process posterior mean 
μ(xi) to the known data and updating the Gaussian process posterior.

Summary statistics
The reported p-values correspond to the null hypothesis H y y: =0 1 2 
that the central tendencies yj

 of two optimization outcome populations 
are identical. Specifically, p corresponds to the Welch t-test for unequal 
variance:

t
y y
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−

+
,

σ
n

σ
n

1 2

1 2

1
2

2
2

where the degrees of freedom associated with sample variance σ j
2 is 

computed with the Welch–Satterthwaite equation and nj is the sample 
size for sample j. The average loss during optimization:

( )∑µ
n

y y=
1

−
i

n

iloss
=1

+

is the mean difference between the global maximum in yield y+ and 
the highest yielding experiment sampled by the optimizer yi for each 
of the n simulations. The reported standard deviation:

∑σ
n

y y=
1

( − )
i

n

i
=1

2

is a measure of the variation in optimization outcome over n simula-
tions. The reported worst-case loss:

ξ y= max( − )+ Y

is the maximum difference between the global maximum in yield and 
the best configuration sampled by the optimizer in each simulation, 
here written as a vector of simulation results, Y.

Materials and synthetic procedures
Standard glovebox techniques were employed for handling air-sensitive 
reagents. All reagents and materials were acquired from commercial 
suppliers or prepared using published procedures. Data for reaction 3 
were collected via HTE using 96-well plates for screening. Experiments 
were carried out in a glovebox in which bases were automatically dis-
pensed to each 96-well plate using Unchained Labs Powder Protégé, 
and the remainder of the reagents were dispensed by hand using stock 
solutions. The reaction yield was determined via UHPLC-MS using 
4,4′-di-tert-butylbiphenyl as an internal standard. Data for reaction 
4 were collected in batches of ten via standard screening practices. 
Experiments were set up in the glovebox and then transferred to the 
benchtop, where they were heated and stirred. Data for reaction 5 were 

collected in batches of five via standard benchtop screening practices. 
Experiments were set up on the benchtop without the exclusion of air. 
The reaction yield was determined via 19F nuclear magnetic resonance 
using 1-fluoronapthalene as an external standard.

Data availability
Quantum mechanical computation data and Gaussian output files 
used to parameterize reactions 1–5 are available at https://github.
com/b-shields/auto-QChem. Processed reaction outcome data for 
reactions 1–5 are available at https://github.com/b-shields/edbo and 
in our published Code Ocean capsule at https://doi.org/10.24433/
CO.3864629.v1. Tabulated player data for the reaction optimization 
game are available at https://github.com/b-shields/EvML.

Code availability
Two software packages and one web application were written to 
support this work. The first, auto-qchem, was written to facilitate 
high-throughput computational chemistry and reaction featuriza-
tion. This package is freely available at https://github.com/b-shields/
auto-QChem. The second, EDBO, was written as a user-friendly imple-
mentation of Bayesian optimization. This package is freely available at 
https://github.com/b-shields/edbo and in our published Code Ocean 
capsule at https://doi.org/10.24433/CO.3864629.v1. The web applica-
tion, EvML, was written to collect user data for comparison of Bayesian 
optimization with human expert performance. This package is freely 
available at https://github.com/b-shields/EvML.
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Extended Data Table 1 | Simulation outcome summary for reactions 1 and 2a–e

Reaction Encodings 

Reaction DFT Mordred OHE 
p µloss σ ξ p µloss σ ξ p µloss σ ξ 

1 1.000 1 0.9 4 0.425 1 1.2 4 0.413 1 0.7 3 
2a 1.000 0 0.5 1 0.241 0 0.7 2 0.044 1 0.7 2 
2b 1.000 0 0.1 0 0.006 3 4.6 12 0.174 0 0.4 1 
2c 1.000 1 1.1 3 0.899 1 1.1 4 0.269 1 0.9 3 
2d 1.000 0 0.5 2 0.124 0 0.5 2 0.409 0 0.8 5 
2e 1.000 2 1.9 5 0.881 2 3.0 15 0.089 1 1.8 8 

Sequential Optimization and Surrogate Models 

Reaction Batch Size = 1 Random Forest Bayesian Linear 
p µloss σ ξ p µloss σ ξ p µloss σ ξ 

1 0.259 2 1.3 6 0.053 2 1.2 5 0.000 4 2.7 10 
2a 0.046 0 0.1 0 0.197 0 0.7 2 0.002 2 2.4 9 
2b 0.346 0 1.9 11 0.059 1 2.3 11 0.001 5 6.8 19 
2c 0.112 2 2.0 11 0.409 1 1.3 3 0.000 4 4.1 17 
2d 0.445 0 0.4 1 0.025 0 0.3 1 0.000 2 2.5 10 
2e 0.805 2 1.9 5 0.740 2 1.8 4 0.000 5 3.4 17 

Design of Experiments 

Reaction Random Generalized Subset D-Optimal 
p µloss σ ξ p µloss σ ξ p µloss σ ξ 

1 0.004 3 2.4 9 0.000 4 1.8 8 0.003 4 3.3 15 
2a 0.003 2 1.7 5 0.001 2 2.2 9 0.000 2 1.8 7 
2b 0.004 3 4.2 14 0.000 8 6.9 16 0.066 1 2.8 10 
2c 0.006 3 2.5 12 0.002 4 3.0 12 0.012 2 1.8 6 
2d 0.004 2 2.0 8 0.001 2 2.0 8 0.004 2 1.5 6 
2e 0.004 5 4.1 17 0.000 5 3.4 16 0.000 4 1.8 6 

 
Distribution (N = 30) of cumulative maximum observed yields for optimizations using 50 experiments. Reaction encoding simulations were carried out using a Gaussian process surrogate 
model, expected improvement as an acquisition function, initial experiments chosen at random and five experiments selected per round (batch size, 5). Sequential optimization simulations 
were carried out with DFT encoding, a Gaussian process surrogate model, expected improvement, the initial experiment chosen at random and batch size 1. Surrogate model simulations were 
carried out using expected improvement, initial experiments chosen at random and batch size 5. DOE experiments were carried out N = 20 times by shuffling the ordering of categorical 
variables, using OHE descriptors and a polynomial response surface model, with initial experiments selected according to the experimental design and the remainder of the experiments 
selected by evaluating the top predicted yields. Statistics: Welch’s t-test p-values (p) for the null hypothesis of equal average performance to Bayesian optimization, with DFT encoding, a 
Gaussian process surrogate model, expected improvement, the initial experiment chosen at random, and batch size 5; mean loss (ground truth—best achieved yield) at the end of the 
optimization (μloss); standard deviation in maximum achieved yield (σ); and worst-case loss (ξ).
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Extended Data Table 2 | Summary of reaction encodings

Reaction Dimensions Search Space Size DFT Mordred OHE 

1 5 3696 1325 (180) 4008 (381) 30 (30) 
2a 4 790 1170 (158) 3768 (399) 33 (33) 
2b 4 792 1166 (158) 3788 (396) 33 (33) 
2c 4 790 1165 (159) 3788 (397) 33 (33) 
2d 4 792 1161 (158) 3746 (397) 33 (33) 
2e 4 791 1152 (158) 3746 (396) 33 (33) 
3 5 1728 1759 (291) - - 
4 7 180000 1081 (278) - - 
5 7 312500 876 (259) - - 

Dimensions denotes the number of optimization dimensions; search space size is the number of experiments in the reaction space; and DFT, Mordred and OHE show the number of descriptors 
in each encoding before (after) preprocessing.
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