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Abstract

Optimizing the parameters of partial differential
equations (PDEs), i.e., PDE-constrained optimiza-
tion (PDE-CO), allows us to model natural sys-
tems from observations or perform rational de-
sign of structures with complicated mechanical,
thermal, or electromagnetic properties. However,
PDE-CO is often computationally prohibitive due
to the need to solve the PDE—typically via finite
element analysis (FEA)—at each step of the op-
timization procedure. In this paper we propose
amortized finite element analysis (AmorFEA), in
which a neural network learns to produce accu-
rate PDE solutions, while preserving many of the
advantages of traditional finite element methods.
This network is trained to directly minimize the
potential energy from which the PDE and finite
element method are derived, avoiding the need to
generate costly supervised training data by solv-
ing PDEs with traditional FEA. As FEA is a vari-
ational procedure, AmorFEA is a direct analogue
to popular amortized inference approaches in la-
tent variable models, with the finite element basis
acting as the variational family. AmorFEA can
perform PDE-CO without the need to repeatedly
solve the associated PDE, accelerating optimiza-
tion when compared to a traditional workflow
using FEA and the adjoint method.

1. Introduction

Partial differential equations (PDEs) are widely used to de-
scribe the properties of physical systems, including heat
transfer, electromagnetics, and elasticity. PDE-constrained
optimization (PDE-CQ) addresses the situation in which an
objective function must be minimized or maximized, sub-
ject to the constraints of real-world physics as expressed
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by PDEs. Common examples include optimal design, op-
timal control, and the identification of parameters to relate
a simulation to observed data (Rees et al., 2010; Ulbrich
& van Bloemen Waanders, 2018). PDE-CO can be compu-
tationally challenging, however, for even moderately sized
problems, as it is usually necessary to solve the associated
PDE at every iteration of the outer-loop optimization.

As a motivating example, consider a heat conduction prob-
lem on a unit disk. The physical system is governed by a
Poisson’s equation:

—Au=X 1in Q,
u=u, onT, (1)
where A = % + 68722 is the Laplace differential opera-
1 2

tor, u(z) is the temperature field and \(x) is the heat source
field (see Fig. 1). Finite element analysis (FEA) is ar-
guably the most powerful method known for computing
numerical solutions to this kind of PDE problems. With
a given source field A(z), FEA identifies the best approxi-
mate solution field u(z) in a piece-wise polynomial function
space (Hughes, 2012).

PDE-CO poses a higher level problem, seeking to optimize
an objective functional jointly over u(x) and A(z), under
the constraint imposed by the governing PDE. In the ex-
ample problem above, one may reasonably ask: how can
we design a source field A(z) so that a desired temperature
field uq () is fulfilled while the cost of A(z) is minimized?
Such PDE-CO problems are typically high-dimensional
(e.g., # of input parameters = 811 in the model problem)

FEA mesh

source (control parameter) solution (state variable)

Figure 1. The heat equation on a disk of unit radius. Left: the finite
element mesh. Middle: an example source field A(z) = 27 + 3.
Right: the solution field u(z) associated with the source field
solved by FEA. z = (1, z2) € R? denote the spatial coordinates.
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and often require iterative procedures that must solve the
governing PDE repeatedly using FEA.

We propose a two-stage optimization framework to effi-
ciently tackle sequences of related PDE-constrained opti-
mization problems. At the first stage, we introduce amor-
tized finite element analysis (AmorFEA) to efficiently learn
the physics governed by the PDE without requiring super-
vised data provided by expensive PDE solvers. We borrow
the idea of amortized optimization, widely used in amortized
variational inference (Kingma & Welling, 2013; Gershman
& Goodman, 2014; Ravi & Beatson, 2018; Choi et al., 2019).
By learning to jump directly to the FEA solution with a neu-
ral network, we obtain a surrogate model that is able to
predict the solutions directly from the control parameters.
At the second stage, we perform gradient-based PDE-CO
using the AmorFEA-enabled neural surrogate model. Dur-
ing each optimization iteration, the gradient is efficiently
computed via one forward and one backward pass through
the neural network, instead of querying an expensive PDE
solver as in the traditional adjoint method requires (Cao
et al., 2003).

1.1. Related Work

Deep Learning for Solving PDEs The idea of approxi-
mating the solution to the PDE by a neural network instead
of a piece-wise polynomial function (as in FEA) goes back
decades (Lagaris et al., 1998) and has been continuously
explored since then (Lopez et al., 2008; Weinan & Yu, 2018;
Lu et al., 2019). However, neural networks have only gener-
ally shown advantages on high-dimensional PDEs when the
finite element mesh is infeasible, as shown by Sirignano &
Spiliopoulos (2018). Recently, Zhu et al. (2019) proposed
to predict PDE solutions directly from parameter fields by
training neural networks with a physically-constrained loss.
Since their method essentially integrates with the finite dif-
ference method (LeVeque, 2007), it only handles structured
data in regular domains. Our proposed method, AmorFEA,
integrates with the more powerful finite element method and
benefits from many of the advantages of FEA, such as native
support of irregular domains and approximation guarantees
(Hughes, 2012).

PDE-constrained Optimization The two main
workhorses for PDE-constrained optimization prob-
lems are the all-at-once approach and the reduced
approach (Herzog & Kunisch, 2010). The all-at-once
approach simultaneously optimizes over both the control
parameters and the state variables with a strategy such as
sequential quadratic programming (Dennis et al., 1998).
Though attractive from an optimization perspective, they
are infeasible for large-scale problems with a huge number
of state variables to store (van Leeuwen & Herrmann, 2015).
The reduced approaches treat the state variables as implicit

functions of the control parameters and optimize only
over the control parameters. When the control parameters
significantly outnumber the objectives (which is often the
case), adjoint sensitivity analysis becomes the dominant
method under the reduced approaches (Errico, 1997; Cao
et al., 2003). In spite of its relative success, the adjoint
method requires solutions to the original PDE and the
adjoint PDE during each optimization iteration, which is
still expensive.

Optimization Using Surrogate Models AmorFEA-
based PDE-CO is a surrogate model optimization approach.
In optimization problems where the objective function is
expensive to evaluate, it is popular to build a surrogate
model and perform optimization on the surrogate model
instead (Kochenderfer & Wheeler, 2019). There are various
approaches for building the surrogate model such as random
forests (Criminisi et al., 2011), Gaussian processes (Shahri-
ari et al., 2015) and Student-¢ processes (Shah et al., 2014).
AmorFEA builds a neural network surrogate model for op-
timization. Although some previous work has used neural
network surrogates (e.g., Snoek et al. (2015)), AmorFEA
takes a further step to integrate tightly with finite element
analysis.

1.2. Contributions

This paper proposes AmorFEA, a framework for training
surrogate PDE solvers for finite element analysis, with-
out supervised training data. As AmorFEA is based on
an amortized approach to FEA, it inherits the benefits of nat-
urally handling irregular domains and unstructured meshes.
As FEA is a variational formalism, we are able to draw
useful connections to variational inference tools developed
for probabilistic reasoning—AmorFEA inherits FEA’s ex-
pressive basis, analagous to performing amortized infer-
ence with a rich variational family. The speed and differ-
entiability of AmorFEA make it particularly well-suited
to PDE-constrained optimization problems and we show
that it can outperform the traditional adjoint method in
terms of computation time, while still providing solutions
of comparable quality. We share and publish our code at
https://github.com/tianjuxue/AmorFEA.

2. Amortized Finite Element Analysis

Many physical systems governed by PDEs obey variational
principles. For a given control field A (e.g., heat source),
the true solution field u (e.g., temperature) is the one that
minimizes the total potential energy of the system. Finite
element analysis is an approach in which the domain is dis-
cretized into a finite set of elements, and the solution w is
approximated by a piece-wise polynomial function. This ap-
proximation allows us to use a vector u € R" to represent
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the FEA solution, since the piece-wise polynomial func-
tion space is finite-dimensional and forms an isomorphism
with R™. For a full description of FEA, see Appendix A.

In a FEA problem, given a fixed control vector A € R™,
we find the solution vector (or the state vector) u € R™ by
solving an optimization problem:

min L(u, ), )

u€ER”

where £(u, \) denotes the total potential energy.

Our amortized finite element analysis (AmorFEA) approach
reframes the per-control-vector optimization process into a
shared regression problem. We use a neural network to build
a deterministic mapping g, : R™ — R", whose weights )
are learned by minimizing the expected potential energy:

min By ) [£(90(A). AL, ©)

where p() is the distribution of typical control parame-
ters associated with specific problems and we hope that
u ~ U = gy(A). Traditional FEA forces the trial solution
to be correct by committing to a class of test functions. In a
similar sense, AmorFEA forces the correctness of the model
by considering a distribution over control parameters.

Since FEA is an approximate variational procedure (in the
general sense of minimizing a functional), it resembles vari-
ational inference in latent variable models in that the finite
element basis functions are analogous to the variational fam-
ily of distributions and the FEA solution vector mirrors the
variational parameters. It can therefore be helpful to think
of AmorFEA as a direct analogue to popular amortized
variational inference approaches (Kingma & Welling, 2013;
Rezende et al., 2014) in which the solution to the variational
problem is produced via function approximation rather than
per-example optimization.

2.1. Amortization Suboptimality

For amortized variational inference, Cremer et al. (2018)
introduced the notions of approximation, amortization, and
inference gap. The approximation gap arises in variational
inference due to the inadequacy of the variational family
to approximate the true posterior distribution. The amorti-
zation gap reflects the difference between the approximate
posterior produced by function approximation and the op-
timal one within the variational family. The inference gap
is the sum of the approximation and amortization gaps, re-
flecting the total error in the amortized variational inference
scheme.

Similar to gaps for amortized inference, we propose the
approximation, amortization and “inference” (total error)

gaps for AmorFEA:
Aup = Eyn) {c(u;, A) — L(uf, A)} )
Bum = By [£gur (N A) = L@z, N)] )
Ainf = Aap + Aama (6)

where 1)* is the optimal solution to Eq. 3, u} is the optimal
solution to Eq. 2 for a given A, and u°® is the exact solu-
tion to the governing PDE which is generally impossible to
obtain. Note that we are abusing notation somewhat here
in allowing L(-,-) to take inputs of either functions (e.g.,
normal font u) or FEA vectors (e.g., bold font u).

2.2. Computational Complexity

Solving a PDE for u € R" by a numerical method such as
FEA usually involves solving a large system of equations.
A crude estimate of the cost can be described as O(dn"),
where d = 1 if the system is linear and d > 1 if it is non-
linear. For the nonlinear system, d can be viewed as the
number of iterations required for a nonlinear solver such as
Newton-Raphson to converge. The exponent r depends on
the sparsity structure of the linear system (or the linearized
system for a nonlinear problem) and the algorithm used by
the solver. A naive solver yields » = 3, while more effi-
cient solvers usually require case-by-case analysis to take
advantage of problem structure.

By amortizing the FEA solving process, we obtain a neural
network surrogate function that predicts the state vector ©
directly from the control vector A. Excluding the cost of
training time, for a standard multilayer perceptron (MLP)
with [ equally wide layers of n hidden units, the compu-
tational cost is simply the forward pass, which is O(In?).
However, AmorFEA requires an up-front training time that
we informally think of as O(ksin?) where s is the number
of training examples and k is the number of training epochs,
which tends to be fixed. AmorFEA is able to produce a
relatively efficient feed-forward solver, which could be used
to save computational resources when an expensive PDE
must be solved many times, or when many PDEs must be
solved which lie within a given class. In the next subsection,
we introduce PDE-CO as such a scenario where AmorFEA
can be advantageous.

2.3. PDE-Constrained Optimization

The discretized PDE-constrained optimization is formulated
as

min  J(u,A)
u€R™ A€R™
st. c(u,A) =0, @)
where J(-,-) : R” x R™ — R is the objective function
and ¢(+,-) : R™ x R™ — R" is the constraint function im-
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posed by the governing PDE. A reduced formulation is often
used to embed the PDE constraint as

in J(A 8

Jmin J(A), ®)
where 7(A) := J(w(X), A) and w() is the implicit func-
tion arising from the solution to Eq. 2. Gradient-based
optimization algorithms require the evaluation of the deriva-

tive of the objective function with respect to the control
vector:

df _0Jdu 07 ©)
dx  OJudx = O\’

A common way to compute this gradient is to use the adjoint
method (Cao et al., 2003). Taking the derivative of Eq. 7
with respect to X yields chains of Jacobian matrices:

de Ocdu Oc

ﬁ—a—uaﬁ-azo. (10)
Hence,
du de\ —10c
(o) (1)
Substitute Eq. 11 to Eq. 9, we obtain
adjoint PDE
47 0T ;de\-lde 0T
c\ 1 de
— == — . 12
5= ou (5a) 9xton 12)

tangent linear PDE

Resembling the two different modes of automatic differen-
tiation, we could choose to either solve the adjoint PDE
first (reverse-mode) or the tangent linear PDE first (forward-
mode). When the size of the control vector is larger than
that of the objective (e.g., m > 1 in our case), it is more
efficient to solve the adjoint PDE first, giving the name ad-
joint method. The adjoint PDE is a linear PDE to solve,
but it also relies on the Jacobian matrix chu which requires
the solution vector u. As shown, the cost for solving the
governing PDE is O(dn"), which dominates the total cost
of using the adjoint method in one iteration of PDE-CO.

We propose accelerating PDE-CO with AmorFEA. Amor-
FEA yields a differentiable map from the control vector A
to the state vector u, which does not require solving the
governing PDE via traditional FEA, and which can be used
to approximate the costly term g—’; in Eq. 9. With the dif-
ferentiable neural surrogate model, we can formulate the
PDE-constrained optimization problem as

min J(A), (13)

Figure 2. Computation graph for AmorFEA based PDE-CO. Red
arrows denote automatic differentiation. Left: AmorFEA training
for the surrogate model. Right: PDE-CO with the learned model.

where J(A) = J(gy=(A),A) and y* are the learned
weights of the neural network. The derivative is given by

AT _ 0T dgv- 0T
X’

= 14

dX  Ou dA 14)
We employ reverse-mode automatic differentiation,
since m > 1. By using a standard MLP, the total cost
within each iteration of the PDE-CO is O(in?), and so
guaranteed to be relatively efficient.

A summary for the procedures of AmorFEA along with
AmorFEA based PDE-CO can be found in Fig. 2 by visual-
izing the computation graph.

3. Linear Models

An important and general class of PDE-CO problems im-
pose a linear relationship between the control parameter and
the state variable. These linear problems provide a useful
testbed for examining the AmorFEA approach. We focus
on the model problem in Section 1, where the source vec-
tor A is linearly related to the solution vector u. We show
that by employing a linear regression model and perform-
ing AmorFEA, we are able to fully recover the underlying
physics and achieve an amortization gap of zero; this result
is unsurprising due to the assumption of a linear relationship
between v and A. Though simple to analyze, the linear case
gives intuition about the proposed scheme. We also compare
AmorFEA with supervised learning, where we run FEA sim-
ulations to obtain labeled data and train the linear model in
a traditional fashion. FEA simulations are carried out using
an open source Python package FEniCS (Logg et al., 2012).
Neural network training is performed in PyTorch (Paszke
et al., 2019). We show that both AmorFEA and supervised
training have the same global optimality condition.

We use AmorFEA to train a single-layer network that pre-
dicts u € R" from A € R™, where m = 811 and n = 721
in this case. We assume the distribution over source terms A
is a uniform distribution on the hypercube [—1, 1]™. 10, 000
samples were drawn from this distribution to form the train-
ing data. FEA converts the minimization problem in Eq. 2
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into a linear system to solve:
Au = B, (15)

where A € R"*™ and B € R™*™ arise from the assembly
procedure of the weak form in FEA (see details in Appendix
A). Let us denote f = BA. The linear model we employ
has a weight matrix W € R™*" and no bias vector so that
u = W f. The potential energy in this case is therefore
equivalent to the least-squares loss for the solution to the
linear system, preconditioned by the stiffness matrix A:

LW f) = J(WHTAWS) — FT (W), (6

As an instantiation of Eq. 3 using the Monte Carlo esti-
mate of the expectation, AmorFEA leads to the following
optimization problem:

La(W), a7

min
WGR"’L Xn

where

K
L) = = 3 (SWR)TAW £ — 5T (W),

k=1

Next, we study supervised learning in the same envi-
ronment. We expand the empirical data set D = {A()}
to D' = {(A,u)®} by running FEA simulations. The su-
pervised loss function for each data point is defined as

1. 1 -
L,(W:f) = Slla—uly=SIWf - AT 5 08)

Supervised training solves the following minimization prob-
lem:

min  L,(W), (19)
W eRnxn

where

Ly(W) = %Z (%(Wfk—A‘lfk)T(Wfk—A‘lfk)).
k=1

We show that both £,(W) and L;(W) are convex (see
proofs in Appendix B).

Proposition 1. The empirical loss function L,(W) of
AmorFEA in the linear model is convex.

Proposition 2. The empirical loss function Li(W) of su-
pervised learning in the linear model is convex.

We also see that the first order condition (FOC) for Amor-
FEA gives
oL 1 &
= (AW - I)( — . ) =0. 20
S = )(K;:lfkfk) (20)

10°
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Figure 3. Normalized error versus training epochs. We define the
_Iw-Aa"tw

normalized error € e
A= oo

Similarly, the FOC for supervised training gives

oL, (W—A‘1>(12Kjf f)=0. @y
oW K & Rk ) =5

By Proposition 1 and Proposition 2 along with Eq. 20 and
Eq. 21, we conclude that both AmorFEA and supervised
learning achieve the global minimum with same condi-
tion W = A~!. The only difference between these prob-
lems is the “physical” preconditioning from A. As a sup-
porting experiment, we show in Fig. 3 that both AmorFEA
and supervised training have similar capabilities to recover
the underlying model.

Since the fully trained linear model is able to pro-
duce u = u, we have a zero amortization gap as computed
by Eq. 5. We do not study PDE-CO in the linear case.

4. Nonlinear Models

We examine two more realistic nonlinear settings and per-
form PDE-CO in this section. Here the solution vector u and
the control vector A have a nonlinear relationship, which nat-
urally motivates the use of a neural network as the predictive

mapping.

4.1. Source Field Finding

We consider a two-dimensional optimal source control prob-
lem simplified from superconductivity theory (De Melo
etal., 1993). Intuitively, we have a known, target field uq(x)
that we want our physical field u(z) to achieve. We accom-
plish this by imposing an appropriate source field A(x). To
save cost, we prefer the magnitude of A(x) to be small. The
solution field u(x) and the source field A(x) are related by
the governing PDE (Eq. 23).

Mathematically, the problem is to minimize the functional

T (u, ) = %/Q(u — ug)idr + % /Q Ndx (22)

subject to a nonlinear Poisson’s equation with Dirichlet
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Method a Optimized objective [10~3] Wall time [ms]
1076 0.338 £ 0.002 728.2+5.5
Adjoint Method 1073 2.599 4+ 0.075 511.6 £+ 223.2
1 2.587 +£0.012 15370.0 £+ 1804.3
106 0.340 £+ 0.003 39.7+5.0
AmorFEA 10-3 2.613 +0.104 71.5 +63.1
1 2.593 + 0.008 838.5 + 208.4

Table 1. PDE-CO results for the adjoint method and AmorFEA. For different regularity coefficient ov, AmorFEA achieves similar optimal

objectives compared with the adjoint method, but with less wall time.

r1.5
50 1.0
o 05
50 00

-0.5

solution (state variable)

FEA mesh

source (control parameter)

Figure 4. Setup of the problem. Left: the finite element mesh for a
irregular domain with a dolphin-shaped hole. Middle: an example
source field A(x) = 100sin(27z ). Right: the solution field u(x)
associated with the source field.

boundary conditions:

~Au+10(u+u) =X inQ,

u=up onl, (23)
where we set a constant boundary condition u, = 1. We
use Fig. 4 to further demonstrate the setup of this prob-
lem. Note that we employ an irregular domain with a
dolphin-shaped hole in the middle. The irregular domain
cannot be discretized using a structured mesh (a lattice).
Many FEA benchmark cases are performed in this domain
with dolfin (Logg & Wells, 2010), the finite element
computing component of FEniCS.

The potential energy £(u, A) from which the governing PDE
(Eq. 23) can be derived is described in Appendix C. We use
AmorFEA to train a neural network that predicts u € R"
from A € R™, where m = n = 759 in this case. The as-
sumed distribution over X is constructed from a zero-mean
Gaussian process given by

p(z) =0

(@) _ ()2
k(z®,20) = UQexp< - H172”2> (24)
where we set the output variance o = 10? and the length-
scale [ = 0.1. To construct the training and testing data from
this distribution, 30, 000 source terms were generated. Com-
pared with supervised data generated by expensive FEA
simulations, our data are almost free to obtain.

MLP-0
Aam 0.1593 £ 0.0032
€ 0.0468 £ 0.0004

MLP-1
0.0227 £ 0.0003
0.0110 £ 0.0002

MLP-2
0.0156 £ 0.0002
0.0086 £ 0.0001

Table 2. Test performance. The amortization gap A, is computed
according Eq. 5. The relative error € is computed as Eq. 25. The
number suffix to “MLP” refers to the number of hidden layers.

For the neural network model, we use a MLP with “scaled
exponential linear units” (SELUs) for the activation func-
tions (Klambauer et al., 2017). We perform a 90/10 train-
test split for our data. For the 10% test data, we run FEA
simulation so that we can report test error by comparing the
AmorFEA solutions with the FEA solutions. Since our data
represent functions, it is more meaningful to define an error
quantification metric for functions than to use simple mean
squared error (MSE). We define the relative error € using
norms on the £2(2) space:

J[w* —ua||£2}
TV E

e (22

€=Ep
where u* is the FEA solution and u® is the AmorFEA so-
Iution. With FEA simulations available in the test set, we
can also compute the amortization gap introduced in Eq. 5.
Since analytical solutions are generally not possible, we can-
not explicitly evaluate the approximation gap or the infer-
ence gap. However, the approximation gap is a well-studied
subject in the literature on finite element analysis (Hughes,
2012).

We run experiments using MLPs with different layers and
report the amortization gap and relative error in Table 2. The
layers in all MLPs have equal widths. As shown in the table,
a single-layer network cannot perfectly solve this nonlinear
problem, in contrast to the linear problem in Section 3.
We observe that both the amortization gap and the relative
error decrease with deeper neural networks. Using bigger
neural networks may give us smaller amortization gaps, but
there is a trade-off between training time and performance.
We show next that a MLP with 2 hidden layers provides
adequate accuracy for the PDE-CO problem while being
trained cheaply.

We solve the aforementioned PDE-constrained optimiza-
tion problem using both the adjoint method (see Eq. 12)
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and the AmorFEA based method (see Eq. 14). We
use dolfin-adjoint (Logg & Wells, 2010), an open
source package written in the Python interface to FEniCS
for implementing the adjoint method. We vary the values of
the regularity coefficient « in Eq. 22 and run PDE-CO ex-
periments using the conjugate gradient method (Shewchuk,
1994) in SciPy (Virtanen et al., 2019). We record the wall-
clock time for different cases and show the results in Table 1.
Note that since AmorFEA-based PDE-CO solves a surro-
gate model optimization problem, the objective function
is defined differently (see Eq.8 and Eq.13). We have con-
sidered this difference and reported the reconstructed true
objective function for AmorFEA based PDE-CO in Table 1.
As shown, AmorFEA based PDE-CO achieves similar opti-
mized objective values compared with the adjoint method,
but with significantly less computation time, excluding time
to train the network. However, it took approximately 5
minutes to train the neural network; thus AmorFEA is most
interesting when such problems need to be solved repeatedly
for, e.g., optimal control of a source.

4.2. Inverse Kinematics of a Soft Robot

In the second nonlinear example, we consider the control
of a snake-like soft robot made of elastic material. Such
robots represent promising solutions to minimally invasive
surgery (Runciman et al., 2019). We control the static posi-
tion of the robot by expanding or contracting “muscles” on
the left and right sides of the robot, quantitatively described
by an actuation field A(z) that controls the stretch ratio on
the two sides. As shown in Fig. 5, the bottom side of the
robot is fixed while the top side is free to deform. While a
forward PDE problem solves for the displacement field u(x)
with given A(x), we here consider the PDE-constrained op-
timization problem of inverse kinematics, i.e., determining
the appropriate actuation field to achieve an end-effector
location. We focus on the middle point x( at the top of
the robot and specify an arbitrary two-dimensional displace-
ment ug that we hope this tip point can achieve by optimiz-
ing the actuation field A(z).

Mathematically, the problem is to minimize the functional
T (u, ) = ||u(wo) — uo)l3 (26)

subject to an equilibrium equation for hyperelastic material
with appropriate boundary conditions:

Div P(u) =0 in ,
r(u,A\) =0 onT, 27

where “Div” is the divergence operator, P is the a second-
order stress tensor and r is the boundary constraint. For
more precise definitions of these terms, refer to Appendix C.
Since the boundary constraint in Eq. 27 is unusual, there is
no direct implementation in FEniCS. We implement both

0.0

contraction

expansion

FEA m;sh fixed bottom

Figure 5. Setup of the problem. Left: the finite element mesh for
the soft robot in an undeformed configuration. Right: with the
actuation field A\(z) set to be half-and-half for contraction and
expansion, but upside down for the two sides, the robot can de-
form to a specific configuration. Colors indicate the displacement
magnitude ||ul|2.
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Figure 6. Objective function versus gradient descent steps for both
AmorFEA and the adjoint method. The four cases correspond to
the same scenarios in Fig. 7.

the FEA algorithms and the adjoint method with our custom
code for this problem.

The potential energy £(u, A) from which the governing PDE
(Eq. 27) can be derived is known as the strain energy, fully
described in Appendix C. We use AmorFEA to train a neural
network to predict u € R™ from A € R™, where m = 40
and n = 206 in this case. The assumed distribution over
actuation fields is constructed from a uniform distribution
over the hypercube [—a, a]™ with a > 0. 30,000 training
data were generated from this distribution. Training is sim-
ilar to the source-finding case in Section 4.1. However,
the potential energy £(u, \) in this case is sensitive to the
displacement u. For a displacement field that causes any
overlap of the deformed robot, the energy will be infinite.
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Figure 7. Wall time measurement for both the adjoint method and AmorFEA. There are four target displacements for the tip point
displacement u(zo) to achieve. In these plots, one blue dot indicate one gradient descent step of the adjoint method, while one red dot
indicate multiple gradient steps for AmorFEA. Following the row-first order, the numbers of steps per red dot are (40, 40,400, 600). The
gradient descent step size is set to be consistent within each case, but different across the four cases: (1072,1072,2 x 1073,2 x 1073).

We take a warm-start strategy to train the network by vary-
ing a from 0.1, 0.2, 0.4 until 0.8, and train the network
successively. Training took 5 — 10 minutes.

To demonstrate the ability of the resulting neural network
to enable solutions to the inverse kinematics problem via
PDE-CO of the actuation field, we pick four equally-spaced
target points on a circle centered at the robot tip and perform
PDE-CO to find actuations. As shown in Fig. 7, we use
gradient descent for both the adjoint method and AmorFEA.
AmorFEA consumes significantly less time than the adjoint
method. However, since AmorFEA-based PDE-CO uses an
approximate surrogate model, we may expect the objective
to plateau before reaching the true minimum. One may view
this as an asymptotic bias, which can be remedied by “fine
tuning” the AmorFEA result with the adjoint method. From
this perspective, AmorFEA provides a fast and accurate
initial guess for the non-convex PDE-CO problem.

We additionally demonstrate that AmorFEA follows a simi-
lar optimization path to the adjoint method, by showing the
objective function versus the number of gradient descent
steps in Fig. 6 for each of the four cases. Wall time mea-
surements in [s] of these four cases are (119, 218,133,113)
for the adjoint method and (0.215,0.210, 0.226, 0.249) for
AmorFEA. For completeness, we also explored gradient-
free techniques such as the Nelder—Mead method (Lagarias

et al., 1998), but they typically converged to an unsatisfac-
tory local minimum.

5. Limitations and future work

Compared to traditional FEA, AmorFEA consumes addi-
tional computational resources up front for training the
model. To accommodate the training time, AmorFEA only
starts to show its edge when a sequence of related problems
need to be solved. Additionally, we note that the current
formulation requires the governing PDE to be derived from
minimization of a potential energy, but this is not applicable
for all PDEs, which limits the scope of this work.

Promising directions for future work include a more sys-
tematic study of the amortization gap in nonlinear prob-
lems, using higher order finite element basis functions for
AmorFEA, and parameterization of the domain for topology
optimization in PDE-CO.

6. Conclusions

In this work, we proposed a novel formulation (AmorFEA)
that amortizes the solving process of classic finite element
analysis. AmorFEA enables fast, differentiable prediction
of PDE solutions, which accelerates PDE-constrained opti-
mization. We quantitatively studied the amortization gap for
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both linear problems and nonlinear problems. Numerical ex-
periments show that our method outperforms the traditional
adjoint method on a per-iteration basis.
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