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Abstract

Personnel rostering is the practice of assigning daily working units, called shifts, to
employees with respect to a variety of constraints, such as workforce requirements,
labour legislation, union demands and individual employee preferences. The
shortage of qualified personnel in the developed countries makes the personnel
rostering problem one of the fundamental problems to be addressed in the private
and public sector. Personnel rostering is a dynamic problem that evolves in time
with the changes in the organisational structures, labour legislations and union
demands. The objective of this dissertation is to present a complete solution, ready
to be implemented, addressing the real world personnel rostering problem.

The contribution of the present dissertation can be summarised as follows. An
extended problem model is introduced to represent the complexity and the diversity
of the real world problem instances. An in-depth analysis of the differences between
the constraint evaluation methods of the academic literature and the real world
practice is reported. The constraint evaluation methods of the real world practice
are presented formally and discussed in great detail, referring to examples from
the real world. An algorithmic toolbox is developed that consists of the elements
from the academic literature as well as new modules that are designed to take
into account the extensions made to the problem model. Three quantitative
measures are proposed for assessing the properties of a problem instance. Problem
instances gathered from real world sources are published as a benchmark data
set. An extensive set of experiments and statistical analysis are performed on the
benchmark data set and on the problem instances from academic sources. The
experimental results are processed to conclude on the most suitable configuration
of the algorithmic toolbox on a given problem instance. The resulting body of
PhD work benefits both academia and industry, by extending the scope of the
personnel rostering theory to cover the complexity and the diversity of the real
world practice.






Nederlandse Samenvatting

Personeelsplanning kan worden omschreven als de praktijk van het toewijzen van
de dagelijkse arbeidstijd-eenheden (de zogenaamde shifts), waarbij rekening wordt
gehouden met een verscheidenheid aan beperkingen zoals werkkrachtbehoeften
en de voorkeuren van de individuele werknemer. Het tekort aan gekwalificeerd
personeel in de post-industriéle samenleving maakt van de personeelsplanning een
van de meest fundamentele problemen zowel in de private als in de publieke sector.

Personeelsplanning is een dynamisch gegeven dat mee-evolueert in de tijd, gestuwd
door veranderingen in de organisatiestructuren, de arbeidswetgeving en dat rekening
houdt met de eisen van het sociale overleg. Het doel van de hiervoor liggende thesis
is om meteen een complete oplossing te presenteren, direct implementeerbaar en in
staat om de personeelsplanning aan te pakken in de dagelijkse werkelijkheid.

Daartoe wordt in de eerste plaats een uitgebreid model geintroduceerd om
de complexiteit en de diversiteit van het reéle probleem weer te geven. Een
diepgaande analyse legt de verschillen bloot tussen de evaluatiemethodes uit de
wetenschappelijke literatuur en die uit de praktijk.

Vervolgens worden de beperkingen in de evaluatiemethoden van de reéle wereld
formeel gepresenteerd en in detail besproken met voorbeelden. Een algoritmische
toolbox, die deels gebaseerd is op elementen uit de wetenschappelijke literatuur,
omvat ook nieuwe modules ontworpen om rekening te houden met de uitbreidingen
van het model. Drie kwantitatieve maten worden voorgesteld voor de beoordeling
van de eigenschappen van een probleeminstantie.  Verschillende instanties
verzameld in reéle planningssituaties worden gepubliceerd als een verzameling
benchmarkdata. Een uitgebreide reeks experimenten en een statistische analyse
worden nadien uitgevoerd op de benchmarkgegevens en op de probleeminstanties
van academische bronnen. Op basis van de experimentele resultaten wordt de
meest geschikte onfiguratie van de algoritmische toolbox bepaald voor een bepaalde
probleeminstantie. De hieruit resulterende doctoraatsverhandeling is dan ook een
bijdrage zowel voor de academische wereld als voor de industrie.
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Chapter 1

Introduction

The low birth rates and longer life expectancies have deteriorated the age structure
in developed countries [59]. The increasing ratio of senior citizens to working
people has several direct and indirect impacts. Firstly, the demand for a qualified
workforce cannot always be met with the personnel supply at hand. Secondly, the
imbalance in the ratio of senior citizens to working people results in higher social
security contributions by working people. These facts eventually result in higher
employment costs by private and public institutions, which have to compete for
qualified personnel and pay the increasing social security contributions for their
personnel. As a result, a qualified workforce is one of the scarce and expensive
resources that need to be utilised carefully in order to execute economically feasible
operations.

Offering higher wages is one method that the institutions use to compete with each
other for qualified personnel. An alternative is offering them flexible working hours,
an effective recuperation regime and honouring their preferences. Institutions have
to balance the preferences of their personnel with the requirements of their own
operations. They are bound by legal restrictions to maintain a safe and ergonomic
working environment. Consequently, the personnel rostering problem is one of
the most challenging, complicated and critical decision problems that is faced by
institutions depending on qualified workforce.

Healthcare is one of the sectors that suffer from a shortage of qualified personnel.
The workforce demand spans over seven days a week and 24 hours a day and it
has to be met by a limited supply of qualified personnel. The working regime of
the personnel is governed by an abundance of strict labour legislations, workforce
requirements, union demands and personal requests of individual employees. For
example, an employee should not work more than six days in a row. He or she is
not allowed to work an early shift after a late shift. A series of five late shifts must
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be followed by at least two free days. Such rules not only increase the quality of
life of the personnel, they also ensure sufficient recuperation and reduce the risk of
critical mistakes.

Personnel rostering, a critical and hard task in the healthcare sector, is the
responsibility of the head nurses of the respective wards. It has to be carried
out among many important tasks, sometimes extending beyond their working
hours. Interviews from the first hand have revealed that the preparation of a
four week plan by a head nurse exceeds three weeks. This task is perceived as
hard, time-consuming and unrewarding. A decision support system that automates
personnel rostering is highly appreciated by the real world practitioners.

The personnel rostering problem has been a subject of academic research for more
than 40 years. Two comprehensive literature studies have been published recently:
The state of the art of nurse rostering by Burke et al. [26] and Staff scheduling and
rostering: A review of applications, methods and models by Ernst et al. [30]. A
diverse set of sectors and countries have been the subject of the personnel rostering
literature. Transportation, call centres, healthcare, protection, emergency, civic
services and utilities, venue management, financial services, hospitality, tourism,
retail and manufacturing sectors have been indicated as the main application areas
of personnel planning solutions by Ernst et al. [30]. The nurse rostering problems
from Belgium [14], the Netherlands [17, 18], the United Kingdom [1, 23], the
United States [4], Norway [31] and Italy [5] have been introduced in the scientific
literature. The literature studies have scrutinised the problem models, methods
and scheduling process types reported in the literature and concluded with the
fact that there is a significant gap between the academia and real world practice
in nurse rostering. The main reason for this gap has been pointed out to be the
academic problem models that are too simple to address the requirements of the
real practice. Addressing the needs and requirements of the real world fully has
been indicated as a crucial scientific goal by Burke et al. [26].

The objective of this dissertation is to present a complete personnel rostering
solution that answers the requirements of the real world practice. In the real world,
the problem instances vary over different countries, sectors and institutions. Even
different wards in the same institution have distinct personnel rostering problems.
Furthermore, the problem definitions evolve over time with changes in the labour
legislation, union demands and organisational structure. Therefore, the solution
methods have to be able to deal with a diverse set of problem instances. The
personnel rostering approach has been developed in close collaboration with two
Belgian companies!. The resulting solution has been implemented in the personnel
management software of these industrial partners and utilised in the field by their
customers, which are mostly in the healthcare sector.

The author of the present dissertation has experienced the personnel rostering

ISAGA Consulting, GPS NV Belgium
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process in the field at first hand and worked with the real world practitioners. If
done manually, the personnel rostering process of some wards takes more than three
weeks. The utilisation of the solution methods reported in the present dissertation
has reduced this process to less than an hour in the automated case. The latter
duration includes the analysis of the result by the planner, few manual adaptations
to incorporate the planner’s personal view and the re-execution of the algorithm if
necessary. The net execution time of the algorithm does not exceed ten minutes in
most of the cases. The time savings and higher quality of the personnel rosters
obtained by the solution methods are recognised by the end users and can be
observed in the experimental results presented in Chapter 8, where the quality of
the manually and automatically generated rosters are compared.

General purpose approaches are beneficial for both academia and industry, but
generic models are required to express a great variety of problem instances. Ernst
et al. [30] have pointed to the generalisation of models and methods as a research
direction worthy of investigation. Burke et al. [26] have drawn the conclusion
that most of the rostering models in the scientific literature are too limited to
address the needs and requirements of real world problems. The personnel rostering
literature is mostly focused on solution methods instead of on developing generic
problem models that are able to express a broad range of problem instances. The
development of models that can cover the complexity of the real world problems
have been indicated as one of the most relevant research directions in nurse rostering
[26].

Throughout the collaboration with industry, personnel rostering problems have
been encountered that cannot be expressed with the models presented in the
scientific literature. Therefore, a new model with various extensions to the generic
model in [14] has been developed (Chapter 3). The new model was inspired by the
nurse rostering problem in the Belgian healthcare sector, where a diverse set of
problem instances have to be dealt with. It can be categorised as ASBI|[RVN|PL
according to the notation introduced in [46]. This description reflects the fact
that the extended model can express a variety of real world requirements, such
as indiwidual skill types, variable number of shift types, personnel and coverage
constraints as objectives. The resulting problem model is flexible and numerous
constraints can be defined and configured with parameters and weights. The model
can be further extended with new constraints should it be impossible to express
these with the current model. For instance, the problem model is not limited to
three distinct shift types but allows the user to define as many shift types as needed
that are configured to address the requirements of the problem at hand.

Accurate evaluation of constraints is essential for the personnel rostering practice.
A correct and detailed evaluation function is a first step towards automated decision
support of the planners. Such a function has been carefully developed by the author
in close collaboration with the industry professionals, planning software developers
and end-users. It is not only an essential component of the rostering algorithm, but
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it is also helpful to the planners while they are updating the rosters. Ideally, the
quality measure used during automated rostering matches the perceived quality
measures of the practitioners. Most of the time, this objective cannot be satisfied
completely, because the real world practitioners do not use mathematical formulas
when evaluating rosters. The real world practitioners use their personal perceptions,
which tend to be subjective and vary over time. Consequently, they are inclined to
carry out manual adaptations in the generated roster, even if these adaptations
result in a worse roster according to the objective function based on the criteria
they have expressed at first hand. It has been observed that the representation
of the violations in the graphical user interface (GUI) plays an important role in
this phenomenon. If a violation with a low importance is represented in a more
intense way, then the end users tend to fix it, even if it induces a violation with a
higher importance. It is also possible that the vast amount of constraints involved
in personnel rostering is beyond the capacity of humans to take into account
simultaneously. That means that an end user can fail to recognise a violation
induced to a constraint while trying to fix another one. Another reason for the need
of manual adaptations may be the impulse to assert a personal control over the
situation. However, the assessment of this theory is beyond the scope of the present
dissertation. On the other hand, the judgement of the end users are consistent and
objective when it comes to the most important constraints. Real world practitioners
will not accept any roster that does not satisfy the most important constraints.

The mismatch between academia and real world is one of the fundamental
explanations of the fact that the academic solution methods are not commonly
utilised in the real world practice. The divergence between the constraint evaluation
methods of the academia and the real world practice have been scrutinised in depth
on examples from the scientific literature in the present dissertation (Chapter 4).
In addition to that, constraint evaluation methods that satisfy the demands of the
real world practice have been described formally in the same chapter. The formal
descriptions of the constraint evaluation methods incorporate elements that are
new to the scientific literature, because they are based on the extended problem
model presented in Chapter 3. The utilisation of the constraint evaluation methods
presented in Chapter 4 will align the solution methods with the expectations of the
real world practitioners. Quantitative measures of problem properties have been
introduced in Chapter 5.

Although complexity indicators are not new to the scientific literature [52, 55, 65, 68],
the measures introduced in Chapter 5 incorporate elements that address the
extensions in the problem model presented in Chapter 3, which makes them unique
and relevant to the real world practice.

Burke et al. [26] have advised to evaluate the performance of the solution methods
on real world benchmark problems. The idea behind the maintenance of a public
benchmark library is to allow researchers to test their solution methods on problems
with different properties and compare their results to the state of the art [16].
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The test data should ideally stem from the real world practice and exhibit the
diversity of the instances encountered in the real world. A nurse rostering data set
derived from real world instances is maintained online by the ASAP group at the
University of Nottingham (the Nottingham benchmarks for short)?. The problem
instances in the benchmark data set have been subject of the nurse rostering
literature and they have been gathered from different countries. A second real
world benchmark set, the KAHO benchmarks, has been gathered from Belgian
hospitals throughout collaboration with software developers active in the Belgian
human resources planning sector. The KAHO benchmarks have been published
online? and their properties have been discussed in Chapter 6. The quantitative
measures of the Nottingham and KAHO benchmarks, presented in Chapter 6,
indicate the complexity and diversity of both benchmark sets.

The scope of the present dissertation has been limited to the real world personnel
rostering problems. To increase the probability of finding good enough solutions
on a diverse set of real world problem instances, various algorithm configurations
have been applied to the problem model presented in Chapter 3. The algorithm
configurations reported in Chapter 7 form an algorithmic toolbox. The composition
of an integrated, complete algorithmic toolbox is one of the contributions of the
present dissertation. The algorithmic toolbox consists of variable neighbourhood
search (VNS), adaptive large neighbourhood search (ALNS), hyperheuristics and
a set of neighbourhoods and low level heuristics. A subset of the low level
neighbourhoods and heuristics of the toolbox have been developed by the author
to utilise the new elements of the extended problem model presented in Chapter 3.

An extensive set of experiments has been carried out and a statistical analysis
on the experimental results has been reported in Chapter 8. The objective of
the experiments has been to determine the most promising configuration of the
algorithmic toolbox on a given real world problem instance whose quantitative
measure values are within a particular range. The KAHO benchmarks have been
used as test data and the Nottingham benchmarks have been used to verify the
derived relations. The quantitative measures have been used to divide the KAHO
benchmarks into four groups. In total, 54 algorithm configurations have been
experimented with and a thorough statistical analysis has been carried out on
the experimental results (Chapter 8). The result of the statistical analysis points
out the most promising configuration of the algorithmic toolbox on each problem
instance group. This relationship has been utilised in the automated personnel
rostering software of the industrial partners directly benefiting from the research
project. That way, their software has been enabled to autonomously decide on
the most promising configuration of the algorithmic toolbox for a given problem
instance.

Although the relation derived from the experimental results is of significant value to

2http://www.cs.nott.ac.uk/~tec/NRP/
Shttp://ingenieur.kahosl.be/vakgroep/it /nurse/archive.htm
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the real world practitioners, it cannot be generalised to all the personnel rostering
problems in its current form. Such a comprehensive study is beyond the scope of
the present dissertation and pointed out as future work.

The problem model, evaluation method, quantitative measures and solution
methods reported in the present dissertation have been implemented in the personnel
management software of the industrial partners of the research project. The planner,
for example a head nurse in a hospital ward, can use the graphical user interface
(GUI) to enter the input data, such as workforce demand and individual constraints,
into the system. Several GUI forms and dialogs enable the planner to enter the
input data into the system efficiently, save it in a database and then use this data
in planning tasks.

When the planner calls the automated personnel rostering functionality, the system
collects the necessary data from the database and converts it to the problem
model (Chapter 3), selects the most promising configuration of the algorithmic
toolbox using the quantitative measures (Chapter 5) and experimental results
(Chapter 8) and calls the solution method (Chapter 7), which utilises the real world
constraint evaluation methods (Chapter 4). That way several tasks that require a
human expert is automated by the personnel management software. These tasks
include analysing the problem instance, experimenting with several algorithms and
determining the most promising one. The elimination of a human expert in the
personnel rostering procedure results in time and cost savings. Another advantage
is that a software product can be duplicated and deployed on multiple sites, where
a human expert can be involved only in a single site at a time. The economic value
produced as a result is significant.

The research reported in the present dissertation has the potential to serve both
academia and industry. The results can be directly implemented in personnel
management software and deployed in practice. This path is already being explored
by two Belgian software companies. At the time of writing, the automated personnel
rostering solution documented in the present dissertation was deployed in more
than 20 institutions in Belgium, mostly hospitals and rest homes, but also including
a retail store and a municipality including its fire department. The conclusions of
the present dissertation serve various future research directions for the academic
community.



Chapter 2

Academic context

The personnel planning process has been analysed in three phases by Ernst et al.
[30]: to determine the size of the staff needed (staffing), to allocate the individual
employees to shifts (rostering) and to assign the tasks to individuals for each shift.
In practice, the different phases of the personnel planning process are dealt with
in different planning horizons (Burke et al. [26]). The staffing phase involves the
recruitment of staff and is therefore conceived in longer planning horizons such as
a period of one year. Seasonal variations are usually taken into account during the
staffing phase. The rostering phase, allocating the individual employees to shifts,
is handled in schedule periods of several weeks, typically four. Assigning the tasks
to individuals is handled in schedule periods of several days [26].

The problem model and solution methods in this dissertation have been developed
in order to solve the second phase of the personnel planning problem, i.e., rostering.
The objective of personnel rostering is constructing a schedule by assigning shifts to
employees [14]. Tt is a challenging problem, because it is constrained by workload
requirements, legal restrictions and contractual agreements, some of which can be
conflicting. For example, while workload requirements might induce busier rosters
for the personnel, legal restrictions might forbid overloaded rosters. The personnel
rostering models and solution methods in this dissertation are primarily based on
the nurse rostering problem because of its challenges, such as complex constraints
and its relevance to real world practices.

The problem model takes the result of the staffing phase, namely the coverage
constraints, as input. Several factors are bound to influence the coverage constraints.
The contractual and preferential constraints of the employees have an impact on
which types of shifts they work on. Mostly, the full time and half time employees
work on different shift types. The number of employees that can work on a certain
shift type needs to be considered while calculating the coverage constraints, because



8 ACADEMIC CONTEXT

the coverage constraints are defined on a date, a set of shift types and a set of skill
types. The organisational structure of an institution has an impact on its capacity;
for example, on the number of patients that can be served in a hospital. The
capacity has a direct impact on the workload, which needs to be taken into account
when calculating the coverage constraints [26]. The third phase however, assigning
the tasks to individuals for each shift, is not tackled by the solution method.

Burke et al. [26] have provided a thorough review of the nurse rostering literature,
up to 2004. The review paper has presented a terminology set related to nurse
rostering problems. The literature has been scrutinised considering problem
models, scheduling process types and solution methods. The literature survey has
concluded by pointing out nine key areas of the nurse rostering practice for future
research. These are multi-criteria reasoning, flexibility and dynamic reasoning,
robustness, ease of use, human computer interaction, problem decomposition,
exploitation of problem specific information, hybridisation and interdisciplinarity.
The academic context of the present dissertation complements Burke et al’s survey
by concentrating on the articles published since that time. Its uniqueness lies in
pointing out the challenges that arise from real world applications of personnel
rostering approaches.

2.1 Nurse rostering problems

Different working schemes and demands throughout the world lead to a diverse set of
problem properties. Even within the same country, each institution and each ward
in the institution has its own requirements and organisational structure. As a result,
the personnel rostering problem presents a high degree of diversity in addition to
its complexity. De Causmaecker and Vanden Berghe [48] have proposed a reference
model to categorise the personnel rostering problems according to their properties
such as the personnel environment, work characteristics and optimisation objective.
The categorisation of the problems will help researchers to study the complexity
and hardness of the problem instances and the efficiency of the corresponding
algorithms. The categorisation is presented in Table 2.1 with the permission of the
authors [48].

Nurse rostering problems are known to be NP-hard [60]. They have been treated
mostly as combinatorial optimisation problems (COP) in the scientific literature
because of their overconstrained nature. The term solution space refers to all
possible solutions of a COP. Two types of constraints can be modelled in COPs:
hard and soft constraints. Hard constraints must be satisfied and soft constraints
are preferred to be satisfied. The solutions that satisfy all the hard constraints of
a COP are called the feasible solutions. The soft constraints are addressed with
an objective function (Formula 2.1), which is a linear combination of the weight
(w.) and the number of violations (n.) of each soft constraint (¢ € C'). The weight
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Personnel constraints Skill interactions
A | Availability 2,3,... | Fixed number
« Personnel S | Sequences N Variable number
environment B | Balance I Individual skill definitions
C | Chaperoning
Coverage constraints Shift type
B Work R | Range 2,3,... | Fixed number
characteristics | T | Time Intervals N Variable number
V | Fluctuating O Overlapping
Objective Mode
P | Personnel constraints M Multi objective
~ Optimisation | L | Coverage constraints
objective X | Number of personnel
R | Robustness
G | General

Table 2.1: Classification of nurse rostering problems by De Causmaecker and
Vanden Berghe [48]

of a soft constraint indicates the priority of that soft constraint in a COP. The
objective of a COP is to find the feasible solution(s) in the solution space that has
the lowest possible value for the objective function (Formula 2.1).

> wene (2.1)

ceC

Vanhoucke and Maenhout [68] have developed ten complexity indicators in four
groups for the nurse rostering problem. The indicators are based on problem
properties such as problem size, preferences of the nurses, coverage constraints and
time related constraints, which restrict the individual schedules of the nurses. The
indicators can be used to predict the performance of exact and heuristic methods
on a given problem instance. Secondly, they can help to select the most promising
algorithm from a set of algorithms to solve a given problem instance. Furthermore,
the indicators allow for generating artificial test data under a controlled design.
NSPGen is a tool for generating test data using the indicators under controlled
design. NSPLib, a data set generated with NSPGen, has been proposed as a
benchmark data set to the research community [68]. In order to address the
real world challenges faced when developing the solution methods in the present
dissertation, the standard academic problem models are extended with several
elements. For an accurate assessment of the problem properties, the extensions
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to the standard models need to be considered as well. A new set of quantitative
measures have been introduced in Chapter 3 to take into account the extensions to
the standard models.

Messelis et al. [52] have utilised structural and formal features of the nurse rostering
problem to predict algorithm behaviour on a particular problem instance. The
studies have been carried out on two data sets, one consisting of small size problem
instances and another set consisting of full size problem instances. The structural
problem features were size dependent features, coverage constraint structure,
workforce structure, contract and request related features. The formal features
were structure, balance and Horn proximity based features of the SAT model of
the nurse rostering problem under study. The structural and formal features have
successfully predicted the quality of the solution in form of an objective value
found by a metaheuristic, which was a variable neighbourhood implementation.
The resulting approach can be utilised in a system where the solution quality of a
problem instance needs to be calculated quickly without finding the actual solution,
such as agent negotiation systems between hospital wards [52].

Silvestro and Silvestro [65] have identified four hardness measures: “ward size,
demand variability, demand predictability and complexity of skill mix.” They have
suggested the use of these measures to decide on the operation mode based on
a survey they have carried out in hospitals in the United Kingdom. They have
recommended self-rostering, team-rostering and departmental rostering for low,
mid and high hardness problem instances, respectively. Although operation modes
are not the same as algorithms, the proposed measures can be used for determining
the most promising algorithms for a given problem instance as well.

Several solution methods have been proposed for tackling the nurse rostering
problem in Belgian hospitals, which is also the application field of this dissertation.
In Belgian hospitals, the schedule periods are flexible, problem elements like shift
types and skill types are user defined, legal restrictions and contractual agreements
impose complex constraints and cyclic assignments are not the standard practice
[14, 25, 47]. Furthermore, the problem has a dynamic nature due to the ever
changing labour legislation, contractual agreements and nurse preferences. New
aspects and constraint types are introduced in the course of time. The models and
solution methods of the automation tools have to comply with the latest state of
the problem with the least amount of intervention possible.

2.2 Nurse rostering benchmarks

Benchmarks are a set of problem instances from a particular domain. They are
used to test the relative performance of solution methods for that problem domain.
Researchers that are new to a problem domain utilise the benchmark problems as
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an entry point. Benchmark problems set standards in problem model structure
and constraint evaluation methods. The success of the research activities on a
particular domain is closely related to how accurately the benchmark problems
sample the problem domain. Ideally, the benchmark problems should be an
accurate representation of the complexity and diversity of the problem domain.
The requirements of the problem domain should be reflected in the benchmark
problems. Benchmark problems based on simplified problem models will lead to
solution methods that provide unsatisfactory results when applied to the real world
problems with higher complexity. Similarly, if benchmark problems do not cover
the diversity of a problem domain, the resulting solution methods will be fine-tuned
to a limited subset of the problem domain. In this section, the existing nurse
rostering benchmarks will be discussed thoroughly.

The Nottingham benchmarks are nurse rostering problem instances collected from
Belgium, Canada, France, Greece, Hong Kong, Italy, Japan, the Netherlands,
Norway, Saudi Arabia, Spain, the United Kingdom and the United States [20].
The Nottingham benchmarks are maintained in a dedicated website'. An XML
Scheme Definition (XSD) of the problem, the benchmark instances, their problem
descriptions and best known solutions are provided. Furthermore, the source
code of the objective function and a visualisation tool are provided publicly so
that researchers can verify the solutions they have found. The publication of
the problem instances, the source code of the objective function and best known
solutions make the research process transparent. This practice allows the verification
and reproduction of the results obtained. In addition to that, the visualisation tool
and the objective function help the researchers to validate their solutions and see
how their approaches compare to the state of the art.

The Nottingham benchmarks share the following hard constraints.

o Coverage constraints
o Single assignment of a certain shift type to a nurse on a given day

e Honouring the skill types of assignments by nurses

The last hard constraint imposes that a nurse needs to have the skill type that is
required by the assignments allocated to him or her. For example, if an assignment
requires the skill type head nurse, then the assigned nurse must have the skill
type head nurse as one of his or her skill types. The only hard constraint that is
not shared by all of the instances is the single shift assignment per day per nurse
constraint.

In addition to the hard constraints, the Nottingham benchmark instances have a
diverse set of soft constraints. Since the origins of the instances vary over different

Thttp://www.cs.nott.ac.uk/~tec/NRP/
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countries, the sets of soft constraints that apply to each instance vary as well. A
discussion about the soft constraint sets of each benchmark instance is beyond
the scope of this dissertation. Some real world examples of soft constraints are
no night shifts before a free weekend, mazximum six consecutive working days and
maximum two consecutive working weekends. The details of the soft constraints of
each instance can be found in the website. However, the way the soft constraints
are evaluated are the same among all the benchmark instances. The set of soft
constraints and the weights of each soft constraint is a part of the input data. The
aim of the Nottingham benchmarks is to find feasible solutions, thus satisfying all
the hard constraints, with the minimum objective function value.

The objective values of the best known solutions and the origins of the instances are
given in Tables 2.2 and 2.3. The objective values in bold are the proven optimals
with respect to the problem definition of the Nottingham benchmarks. If the
solution method of a best known solution is published in the scientific literature, a
reference to the publication is also provided.

2.3 Approaches to the Nottingham benchmarks

Burke et al. [20] have stated that some of the smaller instances have been solved
to optimality using CPLEX10. The solutions of some of the larger instances have
been proven to be optimal via lower bounds using relaxations and decompositions.

Burke et al. [19] have found the best known solution for BCV-6.13.1 using variable
depth search. Variable depth search involves the application of a chain of moves to
a candidate solution. The moves in this case were swapping blocks of days between
nurses. Applying the swaps concurrently, as chains, helps the algorithm to escape
from local optima. Various heuristics have been applied to select the next move to
include in the chain. The best results have been achieved with the combination
of three heuristics. Two of these are inspired from the manual planners: try to
repair a day that has a violation as a result of the last swap and try to improve the
schedule of the nurses involved in the current swap. The third heuristic restricts
the execution time spent on every chain.

Burke et al. [20] have applied a scatter search algorithm to the Nottingham
benchmarks. The scatter search algorithm maintains a population of diverse
candidate solutions throughout the execution. Existing candidates are combined
to generate new candidate solutions. New candidate solutions are accepted to the
population according to their quality and their contribution to the diversity of
the population. Similar to the memetic algorithms, newly generated candidate
solutions are improved using a local search algorithm. The local search algorithm in
this case was the variable depth search introduced in [19]. The resulting solution
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I Best known | Reference(s) for | Origin of
nstance . . .

solution | best solutions instance
BCV-1.8.1 252 | [20] Belgium
BCV-1.8.2 853 | - Belgium
BCV-1.8.3 232 | - Belgium
BCV-1.84 291 | - Belgium
BCV-2.46.1 1572 | [20] Belgium
BCV-3.46.1 3280 | - Belgium
BCV-3.46.2 894 | [20] Belgium
BCV-4.13.1 10 | [20] Belgium
BCV-4.13.2 10 | - Belgium
BCV-5.4.1 48 | [20, 57] Belgium
BCV-6.13.1 768 | [19] Belgium
BCV-6.13.2 392 | - Belgium
BCV-7.10.1 381 | [20] Belgium
BCV-8.13.1 148 | [16, 20] Belgium
BCV-8.13.2 148 | - Belgium
BCV-A.12.1 1294 | - Belgium
BCV-A.12.2 1953 | - Belgium
ORTECO01 270 | [33] The Netherlands
ORTEC02 270 | [33] The Netherlands
GPost 5 | [33] The Netherlands
GPost-B 3 | [33] The Netherlands
QMC-1 13 | - UK
QMC-2 29 | - UK
Tkegami-2Shift-DATA1 0 | [38] Japan
Tkegami-3Shift-DATA1 2| - Japan
Tkegami-3Shift-DATA1.1 3| - Japan
Ikegami-3Shift-DATA1.2 3| - Japan
Millar-2Shift-DATA1 0 | [20, 38, 57] Canada
Millar-2Shift-DATA1.1 0 | [20] Canada
Valouxis-1 20 | - Greece
WHPP 5| - France
LLR 301 | [20] Hong Kong
Musa 175 | [57] USA
Ozkarahan 0 | [57] USA
Azaiez 0 | [2,57] Saudi Arabia

Table 2.2: Best known solutions and the origins of the Nottingham benchmarks.
Values in bold characters refer to optimal solutions. (part 1)
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I Best known | Reference(s) for | Origin of
nstance . . .
solution | best solutions instance
SINTEF 0| - Norway
MER 7081 | - Canada
CHILD 149 | - Canada
ERRVH 2001 | - Canada
ERMGH 779 | - Canada
CHILD-A2 1111 | - Canada
ERMGH-A 795 | - Canada
ERMGH-B 1459 | - Canada
ERRVH-A 2197 | - Canada
ERRVH-B 6859 | - Canada
MER-A 9915 | - Canada
HEDO1 136 | - Spain
BCDT-Sep 100 | - Italy

Table 2.3: Best known solutions and the origins of the Nottingham benchmarks.
Values in bold characters refer to optimal solutions. (part 2)

method has achieved eight optimal and two best known solutions in the Nottingham
benchmarks (see Table 2.2). The execution times were under 15 minutes.

Métivier et al. [57] have solved five instances from the Nottingham benchmarks
to optimality (see Table 2.2). The solution method was a variable neighbourhood
search which involves a limited discrepancy search to create new solutions and a
constraint programming approach to filter the solutions using soft global constraints.
The constraint optimisation problem is transformed into a constraint satisfaction
problem (CSP) by associating a violation measure and a cost variable to each soft
global constraint. In the resulting CSP, all constraints are hard and the sum of all
the cost variables are to be minimised.

Limited discrepancy search is a backtracking tree search strategy that uses a given
heuristic to choose a path at each decision point [37]. If completely traversing the
tree does not yield a solution, the backtracking mechanism is executed and the
suggestion of the heuristic is ignored at a limited number of decision points, which
are called discrepancies. After each failing iteration, the number of discrepancies is
increased. The search is executed until a termination criterion is met.

Tkegami and Niwa [38] have solved the Tkegami-2Shift-DATA1 and Millar-2Shift-
DATA1 instances to optimality. The basis of the solution method was to construct
overall rosters by fixing the schedules of the individual nurses. Two variations of
the solution method have been presented: a tabu search and a branch-and-bound
variant. The solution methods have been developed to tackle problems with two
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and three shift types.

Brucker et al. [16] have found the optimal solution for BCV-8.13.1 using a two
stage constructive method similar to the approach in [38]. In the first stage, the
algorithm constructs high quality shift sequences. The shift sequences from the first
stage are used as building blocks in the second stage, where the algorithm generates
the overall roster iteratively by constructing schedules for each nurse. The nurse
schedules and overall rosters are improved with greedy local search during and after
the roster construction.

Azaiez and Al Sharif [2] have solved the instance Azaiez to optimality using a 0-1
goal programming approach. The model of the instance was decomposed into three
groups of five, four and four nurses each and solved independently using LINGO, a
linear programming optimisation software?.

In the practical application of their approach in the Riyadh Al-Kharj hospital
in Saudi Arabia, Azaiez and Al Sharif [2] came across some continuity problems
between two schedule periods. The twelve hour shifts in the Azaiez instance result
in 24 hour continuous working time, if a schedule ends with a night shift and the
following schedule starts with a day shift. Another similar issue is caused by the no
more than four consecutive working days constraint. Suppose that three consecutive
days are assigned to a nurse at the end of a schedule and three consecutive days
are assigned at the start of the following schedule. Both sequences do not pose a
constraint violation in their respective schedule periods, but they cause violations
if the schedule periods are considered continuously. In order to overcome this
pitfall, Azaiez and Al Sharif [2] have introduced additional constraints based on
the schedules of the nurses in the previous schedule period in their real world
implementation.

Glass and Knight [33] have solved the ORTEC and GPost instances to optimality
within half an hour using a mixed integer linear program approach. This was
accomplished by deriving rules from presumptions such as the structure of the
schedule period and the structure of the coverage constraints throughout the week,
which are satisfied by the problem instances under study. This fact restricts the
application of the solution method to a limited group of problem instances that
satisfy these presumptions.

Furthermore, Glass and Knight [33] have pointed out that the Nottingham
benchmarks are defined for a single isolated schedule period. The problem definition
implies that the constraints are evaluated in the current schedule period and the
impact of the schedule elements such as assignments and holidays from the previous
and upcoming schedule periods are not taken into account. This approach does not
reflect the real world practice, because there are constraints that apply to more
than one schedule period. Glass and Knight [33] have proposed a methodology for

2http://www.lindo.com/
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handling such constraints between multiple schedule periods.

The KAHO benchmarks, presented in Chapter 6, are a set of nurse rostering
problem instances collected from Belgian hospitals. The real world requirements of
the nurse rostering problem are reflected in the KAHO benchmarks. Their problem
definition incorporates continuous evaluation of the constraints over multiple
schedule periods. The KAHO benchmarks include actual assignment data from
the previous schedule period to allow the continuous evaluation. The complexity
of the real world problems are reflected in the KAHO benchmarks by including
composite constraints and constraint parameters. Problem instances with different
sizes and difficulty levels ensure the diversity of the KAHO benchmarks. These
properties distinguish the KAHO benchmarks from other benchmarks in the nurse
rostering literature.

2.4 Problems from various sources

Bard and Purnomo [4] have modelled a nurse rostering problem from a U.S. hospital
as an integer program and solved it with Lagrangian relazation. Two approaches
have been experimented with: the relaxation of the coverage constraints and the
relaxation of the nurse requests. The first approach has performed better than the
second. The test instances could be solved to near-optimality within 20 minutes.
The test data consisted of 15 problem instances based on the nurse rostering
problem in a 400 bed U.S. hospital. The number of nurses varied between 20
and 100, and the number of contracts between five and 20 among the problem
instances. The set of hard and soft constraints, the schedule period and the shift
type structure were the same among all the instances. The schedule period was two
weeks, because the counter constraints, such as the hours worked counter and the
number of weekends worked counters were all defined on periods of two weeks. The
continuity between the schedule periods were addressed using the assumption that
the schedules were cyclic. That means that the schedule repeats itself after the last
day of the schedule period. Although the test data is not a part of the Nottingham
benchmarks, it is published on the website of the Nottingham benchmarks?.

Burke et al. [18] have developed a three phase iterative solution method. Variable
neighbourhood search is carried out on the schedule in the first phase. The resulting
schedule is mutated by removing assignments from a set of nurses and the schedule
is repaired using a heuristic ordering method. The solution method outperforms
the genetic algorithm that was deployed in a commercial package? for instances
with less than 20 nurses. For instances with larger sizes, the genetic algorithm

Shttp://www.cs.nott.ac.uk/~tec/NRP/
4Harmony
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appeared to be more successful on average. The resulting solution method has
been deployed in the commercial package mentioned.

The test data used in [18] has been provided by the industrial partner of the
project® as a representation of their client’s needs. The test data consists of 16
instances. The number of nurses varies between 12 and 30 among the instances.
Consequently, the threshold values of the coverage constraints also vary. There is
some variety in the working hours and individual preferences of the nurses. Other
properties are the same among all the instances. The number of shifts types is
fixed to four and the schedule period to one month. The same set of hard and soft
constraints and the same objective function apply to all of the instances. Fixed
shift type structure, schedule period and the application of the same objective
function to all instances might restrict the application of the resulting solution
method to the problem instances with the same properties. The schedule periods
of the KAHO benchmarks vary between four and thirteen weeks (Table 6.1). The
numbers of their shift types vary between nine and 27 (Table 6.2). The objective
function of the KAHO benchmarks is specific to each hospital ward and presented
in the respective XML files®.

Burke et al. [24] have developed a two stage hybrid solution method for the nurse
rostering problem. The hard constraints and a subset of the soft constraints are
modelled as an integer programming model and solved using ILOG CPLEX 10.0 in
the first stage. The resulting solution is improved with a variable neighbourhood
search approach that takes into account all hard and soft constraints in the problem.
The test data is derived from the situation in the intensive care unit in a Dutch
hospital. The test data consists of twelve instances which are the variations of
the same instance over twelve months. It involves four shift types and one skill
type. The uniformity of the test data has resulted in a problem specific integer
programming model, which needs modification in order to be executable on a
different problem. Furthermore, the integer programming model does not take into
account the assignments in the previous schedule period, which might be relevant
to the constraints such as no stand-alone night shift and maximum number of
consecutive working days.

The experimental results in [24] have indicated that the integer programming
- variable neighbourhood search hybrid performs better than the hybrid genetic
algorithm in [63] and the hybrid variable neighbourhood search algorithm in [18]
both of which are implemented in a commercial rostering software”.

Aickelin et al. [1] have developed a memetic estimation of distribution algorithm
for the nurse rostering problem. The local search method used in the memetic
algorithm was an ant-miner algorithm. The solution method has been tested on

SORTEC
Shttp://ingenieur.kahosl.be/vakgroep/it /nurse/archive.htm
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data that originates from a major UK hospital. The original problem involves three
shift types and the solution method has been executed on two shift types, treating
the early and late shifts as day shifts. The schedule period used in the hospital
is five weeks. However, the problem has been decomposed into instances with
schedule periods of one week. This raises the question of the relation between the
solutions of consecutive weeks. It has been stated in [1] that historic information
is taken into account when calculating the penalties for each weekly assignment.
However, the penalties of the weekly assignments within a schedule period of five
weeks might vary according to the assignments in the previous and subsequent
weeks. A mechanism that handles the penalty of each week dynamically according
to the previous and subsequent weeks might be needed.

Maenhout and Vanhoucke [44] have applied an electromagnetic metaheuristics
to NSPLib, a synthetic benchmark data set introduced in [68]. The basic idea
of the electromagnetic metaheuristic is similar to particle swarm optimisation,
which is a solution method based on social intelligence [42]. Both approaches
utilise a population where high quality particles attract others and low quality
particles repel others on their trajectory throughout the solution space. Similar
to the practice in the memetic algorithms, the particles have been improved with
a local search algorithm at each iteration. Variable neighbourhood search (VNS)
has been used as the local search algorithm. Three strategies have been used as
neighbourhoods in the VNS: optimise the shift-patterns of a given nurse, optimise
the shifts assignments on a given day and optimise the global roster.

2.5 Real world implementation

Kellogg and Walczak [40] have scrutinised 50 academic nurse rostering models
reported in the scientific literature between 1985 and 2005. They have reported
that only 15 out of the 50 models were implemented in real world settings, and only
7 out of the 15 are known to be still in use at the date of the publication. Several
reasons have been given for the low ratio of implemented academic models. One of
the reasons is the little focus on the real world requirements such as individuality
of the nurses, their collaborations with each other and their preferences, which
might be too complex for mathematical programming alone [40].

Burke et al. [26] have mentioned three different administrative modes of rostering
operation. All the nurses in a hospital are scheduled in one administrative
department in the centralised scheduling mode. In the unit scheduling mode,
the head nurses or unit managers are responsible for the scheduling of the nurses
in their ward. Some hospitals allow for self-scheduling or interactive scheduling
meaning that staff can schedule themselves.

Variances in the administrative modes of operation [26] continue to exist in the
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recent nurse rostering literature. Nurse rostering is a global practice with local
applications. Each country, sometimes each hospital, has its own culture of working
practices. Although popular with nurses, self-scheduling is a difficult operation
mode to apply in real world settings [3]. Wang and Wang [69] and Roénnberg
and Larsson [64] have proposed automated solutions to overcome the reported
difficulties of self-scheduling in practice. Preference scheduling grants nurses control
over their schedules, albeit not as much as in self-scheduling. De Grano et al. [50]
have proposed a two stage preference scheduling approach, where the preferences
of the nurses are balanced with the hospital constraints.

Isken [39] has pointed out tour scheduling, also known as cyclic scheduling, as
a solution to the well known challenges of the nurse rostering problems, such
as multiple contract types. The solution methods in this dissertation generate
acyclic rosters. Cyclic rosters do not apply to the problems considered in this
dissertation, because the problems involve employees with individual qualifications,
contractual and preferential constraints. The same roster does not satisfy the
individual constraints of all the employees. The problem model allows variations in
coverage constraints and various absence and assignment requests by employees.

2.6 Solution methods

Artificial intelligence approaches, constraint programming, metaheuristics and
mathematical programming approaches have been the most common solution
methods in the scientific literature on personnel planning [30]. The size and
complexity of nurse rostering problems make it difficult to tackle them with exact
optimisation methods [26]. Metaheuristics are able to find good quality solutions for
real world problems in acceptable execution times while they do not need explicit
mathematical models. The solution methods presented in this dissertation have
been based on metaheuristics and hyperheuristics. The variants of metaheuristics
and hyperheuristics used in the solution methods will be reviewed in this section.

Metaheuristics are two level search strategies. They deploy local improvement
procedures on the low level and they guide the local improvement procedures
towards the promising regions of the solution space using high level strategies [34].

A neighbourhood is the set of all solutions that can be derived from a given solution
using a rule. For example, the set of all schedules that can be derived from an
input schedule by assigning a single shift constitutes the neighbourhood of that
schedule with respect to the assign shift rule.
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2.6.1 Tabu search

Tabu search is a metaheuristic that involves short term memory to guide the search
process [35]. The search is carried out on a single candidate solution using a given
rule to define a neighbourhood. An initial solution has to be fed into the algorithm
as an input. Tabu search keeps the executed moves in a tabu list for a limited
time in order to avoid repeating them. At each iteration, the best solution in the
neighbourhood of the candidate solution that is not in the tabu list is nominated as
the candidate solution. The iterative step is repeated until a termination criterion
is reached. A move that results in an overall best solution is accepted even if it is in
the tabu list. This practice is called the aspiration criterion. The length of the tabu
list is modified throughout the execution. It is shortened in order to intensify the
search in the promising areas of the solution space, which is indicated by improving
moves. It is lengthened in order to diversify the search in the non-promising areas,
where no improving moves can be found.

2.6.2 Variable neighbourhood search

Variable neighbourhood search (VNS) is a metaheuristic that involves “systematic
change of neighbourhood within a local search” [36]. In contrast to the tabu search,
VNS involves more than one neighbourhood. Several variations, extensions and
hybrids of VNS have been presented in [36]. One of the hybrid solution methods is
the combination of VNS and tabu search. In a variation of this hybrid, the tabu
search algorithm is executed on multiple neighbourhoods which share the same tabu
list. Token-ring search is a VNS variant, where the neighbourhoods are held in a
circular queue that determines their application sequence [32].

2.6.3 Adaptive large neighbourhood search

Similar to VNS, adaptive large neighbourhood search (ALNS) utilises a set of
neighbourhoods and explores one neighbourhood at each iteration [62]. The
neighbourhood is selected in a stochastic way using the roulette wheel method, where
a probability of selection is assigned to each neighbourhood. The probabilities of
the neighbourhoods are increased in three cases: an overall best solution is found, a
solution is found that is better than the current solution, or the solution found is
feasible and not tabu. The probabilities of the neighbourhoods are updated regularly
by putting more emphasis on the performance in recent iterations [62].
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2.6.4 Hyperheuristics

Cowling et al. [28] have defined the term hyperheuristics as “heuristics to
choose heuristics” to describe a class of combinatorial optimisation methods.
Hyperheuristics are heuristic search methods that consist of three layers. The
problem model and the objective function are defined on the lowest level. Heuristics
that operate directly on the problem model and objective function are positioned
on the middle level. These are also called low level heuristics. A heuristic that
coordinates the low level heuristics operates on the highest level of the architecture.
An imaginary problem domain barrier is assumed between the high level heuristic
and the low level heuristics. Problem specific information is not allowed to pass
this barrier. In other words, the heuristic at the top level only uses problem-
independent information such as statistics about the execution time, objective
function improvement and the number of calls to a heuristic [22].

The three level architecture allows the developers to apply a hyperheuristic
implementation to different combinatorial optimisation problems quickly. Once the
problem model, objective function and a set of low level heuristics are implemented,
they can be deployed in a hyperheuristic to tackle the problem under study. This
development process is expected to be quicker than the implementation of some
tailor-made metaheuristic applications. The ease of implementation, however, is
expected to come with a slight decrease in the quality of the end results, which is
mostly a preferred compromise in the real world practice. This expectation has
been expressed as “good enough, soon enough, cheap enough” in the scientific
literature.

While collaborating with industrial partners, the author of the present dissertation
has witnessed the benefits of the hyperheuristic approach in the real world at first
hand. A so-called agile software development process is widely expected in the
software industry of today. Software companies expect their development teams to
quickly implement extra features without compromising the rest of the software.
The compartmentalised methodology of the hyperheuristics helps the development
teams to fulfill that expectation. For example, an additional feature in the problem
model requires little or no modification in the low or high level heuristics. A new
low level heuristic can be implemented and integrated in a hyperheuristic system
without any modification in the remainder of the system. The utilisation of the
hyperheuristics has allowed the author of the present dissertation to quickly address
the requests of the industrial partners. This has been achieved by concentrating
on the module addressing the request without having to modify the remainder of
the system.

The hyperheuristic research has evolved in two main branches. Hyperheuristics
that select heuristics and hyperheuristics that generate heuristics [21]. The solution
methods reported in the present dissertation fall into the category of the selection
hyperheuristics. The selection hyperheuristics are composed of two components:
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a selection method and an acceptance criterion. At each iteration, a heuristic
is selected by the selection method and applied to the candidate solution. The
modified candidate solution is accepted or rejected according to an acceptance
criterion. Algorithm 1 presents the pseudocode of the selection hyperheuristic [21].

Algorithm 1 Pseudocode of the selection hyperheuristic [21]
F(C) := Objective Function
Cop := Initial Candidate
C «+ Co
BC + CO
while Termination criterion not met do
H <« Select a heuristic
C*«+ H(C)
if Accept(C*) then
C+C*
if F(C) < F(BC) then
BC + C
end if
end if
end while
return BC

Simple random and choice function have been introduced as selection methods in
[28]. Simple random selects a heuristic from the set of low level heuristics in a
random fashion with equal probabilities for all heuristics.

A choice function maintains a value for each heuristic and selects the heuristic with
the highest value at each iteration [28]. The equation of choice function is given in
Formula 2.2. The value for heuristic H; is the weighted sum of three functions. F;
keeps track of the heuristic performance and it is updated using Formula 2.3 after
the execution of heuristic H;. F5 keeps track of the performance of a sequence of
two heuristics and it is updated after the execution of heuristic sequence H,,, H;
using Formula 2.4. F3 keeps track of the time passed since heuristic H; is last
called (Formula 2.5). T'(H;) in Formula 2.4 and T'(Hp, H;) in Formula 2.5 refer
to the execution times of the heuristic H; and the heuristic sequence (H,, H;),
respectively.

The first two variables help to intensify the search by putting more emphasis on
the performance of the heuristics. The last variable helps to diversify the search by
putting emphasis on heuristics that have not been called recently. «, 8 and § vary
in the interval of [0.01, 0.99]. They are increased or decreased at each iteration by
the magnitude of the change of the variables they are related to. These coeflicients
serve two purposes. The first purpose is to reduce the effects of events in the earlier
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phases of the search process. The second purpose is to help the intensification or
diversification of the search process.

CF(H;) = a- Fy(H;) + 8- Fo(Hy)(H;) + 0 - F5(H;) (2.2)

Objective Value Improvement(H;)

Fi(H;) =« Fi(H; - — 2.3

1(H) = o Fi(H) + Previous Objective Value - T(H;) (23)
Objective Value Improvement(H,, H;)

Fy(Hyp)(H;) = B-Fo(Hp)(H; - — 24

2(Hy)(Hy) = 8- Fo(Hy) (Hy) + Previous Objective Value - T(H,, H;) (24)

F3(H;) = Total execution time since H; is last called (2.5)

Simulated annealing and great deluge can be used as acceptance criteria in
hyperheuristics. All improving and equal quality moves are accepted by simulated
annealing [29]. The worsening moves are accepted with a probability that is
decreased throughout the execution. The probability of acceptance of worsening
moves at iteration ¢ + 1 is given in equation 2.6. In this formula, f; denotes the
objective value of the candidate solution at iteration i, ¢, the remaining execution
time and t. the total execution time. n is an integer value that determines the
cooling scheme. In this study, three cooling schemes are used: linear (n = 1),
quadratic (n = 2) and quartic (n = 4).

fix1—fi
p=exp | — ( f'l)n (2.6)

ty

te

Great deluge accepts all improving and equal quality moves [41]. The worsening
moves are accepted only if their objective value is smaller than the deluge value.
The deluge value decreases throughout the execution. In equation 2.7, fy refers
to the objective value of the candidate solution at iteration 0, ¢, to the remaining
execution time and ¢, to the total execution time. Similar to simulated annealing, n
is an integer value that determines the cooling scheme. The same cooling schemes
are applied with great deluge. The fundamental difference between simulated
annealing and great deluge is that simulated annealing is stochastic and great deluge



24 ACADEMIC CONTEXT

deterministic. In addition to simulated annealing and great deluge, improving and
equal moves accepted is used for performance comparison.

d= fo* (i)n 2.7)

€

2.7 Conclusions

The problem models and solution methods in the scientific literature have mostly
been based on a single problem instance in a ward or in a hospital [1, 2, 4, 18, 24,
33, 38]. They have been tested on data that consists of similar instances of the
respective problems under study. This might restrict their utilisation to a limited
application field. It is economically not feasible for most of the institutions to
dedicate resources to a team of researchers to solve their problems to optimality. In
addition to that, the personnel rostering problem of each institution, department or
ward changes every month because of the changes in the workload, bank holidays,
vacation requests and several other factors. Therefore, developing solution methods
specific to a single problem instance is not a sustainable approach to the personnel
rostering problems in the real world. The alternative is to have a generic problem
model that can be used to express a broad range of personnel rostering problems
and a generic solution method that is able to tackle the problem instances expressed
with the generic model.

The problem model to be presented in Chapter 3 is not based on a single problem
instance. It is developed to be as generic as possible, so that the problem instances
from different hospitals, sectors and countries can be expressed using the proposed
model.

Besides the articles reporting results on the Nottingham benchmarks, the test data
used in the experiments have been published in few of the articles published in
the nurse rostering literature [4, 44]. Ignoring this practice makes it impossible for
other researchers to comprehend the problem under study, verify and reproduce
the solution methods, and compare them with other solution methods.

The maintenance of a public benchmark set solves many problems encountered in
the nurse rostering research. Researchers can test their solution methods on the
problem instances from various sources, so that the resulting solution methods will
not be limited to a single problem instance. Researchers can publish their own
problem instances in the benchmark set, so that other researchers can understand
the problem under study and verify the results. Solution methods from various
sources can be compared on a common set of data. The Nottingham benchmarks
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[20] fill that gap as a collection of problem instances, best known solutions and
references to the corresponding articles®.

On the other hand, there are significant differences in the problem definitions of
the Nottingham benchmarks and the real world nurse rostering practice. In the
real world practice, constraints are evaluated over multiple schedule periods to
ensure the continuity between the schedule periods. In Nottingham benchmarks,
the constraints are evaluated in isolated schedule periods, discarding the actual
assignments in the previous schedule period. Such a practice is likely to result in
serious constraint violations that will make the real world practitioners reject the
proposed solution altogether.

The continuity between schedule periods is a crucial aspect of the real world
personnel rostering practice. Any solution that ignores this aspect will be rejected
by the real world practitioners. Few of the researchers in the field have recognised
this fact and addressed it in their solution methods [2, 4, 33]. Glass and Knight
[33] have emphasised the importance of the continuity between schedule periods
and have proposed a formal method to address it. The critical conclusions of Glass
and Knight [33] on the benchmarks have pointed to a new research direction in
the nurse rostering research.

Discarding the previous schedule period and focusing on a single isolated schedule
period entails assumptions about the previous schedule period. In the real world, the
assumptions about the previous schedule period will not match the real assignments
all the time. However, making assumptions about the previous schedule period can
be acceptable in an academic context given that the assumptions are consistent.

Some instances in the Nottingham benchmarks contain inconsistent assumptions
about the previous schedule period. Some inconsistencies in the problem instances
Valouxis 1, SINTEF, BCV-3.46.2, Millar-2Shift-DATA1, MUSA, Ikegami-2Shift-
DATA1, GPost, ORTECO01, Azaiez and WHPP from the Nottingham benchmarks
are discovered. They will be discussed in detail in Chapter 4. Furthermore, the
evaluation of the constraints that expand over two schedule periods will be discussed
in greater detail and a set of consistent rules to evaluate these constraints will
be introduced in Chapter 4. In this way, we try to offer the research community
realistic evaluation methods.

The KAHO benchmarks will be introduced in Chapter 6. The problem structure
and constraint evaluation methods of the KAHO benchmarks differ significantly
from the Nottingham benchmarks. The differences arise from the objective of the
KAHO benchmarks to reflect the real world requirements such as the continuity
between schedule periods. The main objective of the KAHO benchmarks is to
facilitate the research community to develop accurate problem models, constraint
evaluation methods and solution methods that are able to cope with those problem

8http://www.cs.nott.ac.uk/~tec/NRP/
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models. That way the developed personnel rostering approaches will be able to
address real world problems. The Nottingham benchmarks, on the other hand,
represent another important research direction, namely to facilitate the research,
development and comparison of algorithms in academia.

According to the no free lunch theorem [71], a single algorithm configuration
cannot be expected to outperform other algorithm configurations on all kinds of
optimisation problems. The focus of the present dissertation is limited to the real
world personnel rostering problems. However, the real world personnel rostering
problems are still a diverse subset of all the personnel rostering problems. Hence,
the proposed solution methods must be tested on a diverse set of data. Collecting
problem instances from various sources does not guarantee the diversity of the test
data. The diversity of test data can be assessed by evaluating the quantitative
measures of each instance. Furthermore, a solution method is introduced as an
algorithmic toolbox, where each algorithmic configuration is empirically shown
to perform well on problem instances that have quantitative measures within a
given range. Vanhoucke and Maenhout [68] have proposed a set of complezity
indicators based on a variation of the nurse rostering problem to address these
challenges. Additional elements such as the schedule locks and individual skill types
that arise from the real world requirements induce significant differences between
the requirements that are dealt with in the present dissertation (Chapter 3) and
the problem variation in [68]. Consequently, a new set of quantitative measures
specific to the problem model in Chapter 3 will be introduced in Chapter 5 to
address these challenges.

The exact methods applied to the nurse rostering problem have been developed
and fine tuned with a single problem instance in mind [2, 4, 33]. In some cases
[33], the structure of the problem instance at hand has been hard coded into the
integer programming model. Although the state-of-the-art results obtained by these
methods provide insight from an academic point of view, the utilisation of the
resulting solution methods is limited to the problem instances under study. The
solution methods presented in Chapter 7 are aimed to cope with a broad range of
real world personnel rostering problems that can be expressed using the problem
model introduced in Chapter 3. The objective is not to prove the optimality but
to offer high quality solutions within limited execution times, which is aligned
with the real world personnel rostering practice. Therefore, metaheuristics and
hyperheuristics are chosen as the basis of the solution methods.

Following the suggestions of Ernst et al. [30] and Burke et al. [26], the solution
methods in this dissertation involve neighbourhoods and low level heuristics that
take advantage of the constraint information next to more general neighbourhoods
and low level heuristics (Section 7.6). The neighbourhoods and low level heuristics
presented in this dissertation are utilised in metaheuristics and hyperheuristics
(Sections 7.2 and 7.4). The proposed solution methods have the computation time
as a termination criterion, which is practical for the real world practitioners [26].
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The performance of solution methods in the scientific literature have been assessed
through experiments on test data. Some of these solution methods, such as genetic
algorithms, involve stochastic procedures. A statistical analysis is needed to draw
conclusions from the results of experiments carried out on such solution methods.
A sound statistical analysis requires a multiple number of executions to satisfy a
minimum sample size. Several articles in the scientific literature have based their
conclusions on the results of experiments that involve single runs of stochastic
methods. In the present dissertation, sound conclusions are ensured by producing
experimental results that involve multiple runs and statistical analysis (Chapter 8).

The ratio of nurse rostering approaches implemented in the real world to the
approaches reported in the nurse rostering literature has remained relatively low [40].
Mostly, the nurse rostering literature has been focused on algorithms and solution
methods. The study of problem models has been given less attention. However,
solution methods cannot provide a satisfactory solution to the practitioners in the
field, if the underlying problem models do not represent the real world problem
accurately. Again solution methods cannot find satisfactory solutions for a problem,
if the quality of solutions is not evaluated accurately. Therefore, in addition to
algorithms and solution methods, significant emphasis is placed on the problem
model and constraint evaluation methods in the present dissertation.






Chapter 3

The personnel rostering model

Literature surveys on personnel rostering have revealed that only a small fraction of
the academic solution methods have been implemented in the real world (Chapter
2). The academic research on personnel rostering have mostly been focused on the
performance of the solution methods. Many real world requirements concerning the
problem definitions have not been addressed in their entirety and that is exactly
what the present dissertation is focusing on. A significant number of solution
methods reported in the scientific literature have been developed with a single
problem instance in mind.

The performance of a solution method is only one of the factors that determines its
success in the real world. Another factor is the problem model, which needs to be
an accurate and complete representation of the problem at hand. Furthermore, the
model needs to be generic enough to address a broad range of problem instances
from various sources. The problem instances vary among countries, sectors and
institutions, sometimes even within the same institution, for example among the
departments of a hospital. In addition to that, the problem of the same unit might
exhibit seasonal variations and evolve with changes in the legal and contractual
requirements over time. As a result, developing a problem model and a solution
method for a single problem instance is not a feasible approach in the real world.

The problem model introduced in this chapter has been developed to be as generic
as possible and to represent the real world requirements accurately and completely.
Several extensions have been made to the standard academic models to accomplish
that objective. The extended personnel rostering model is the main contribution
presented in this chapter. The purpose of the generic model is to be utilised in the
real world personnel rostering applications. That purpose has been accomplished
by deploying it as the core of the KAHO personnel rostering kernel, which is
utilised as the rostering engine in the commercial personnel planning software of
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our industrial partners'. Researchers and software developers who have to address
rostering problems with real world complexity can represent their problems using
the present model with few or no adjustments. The present chapter contains the
information, examples and illustrations that will guide this task.

The problem model is a structure to express the problem data. A complete problem
description also includes the constraint evaluation methods in addition to the
problem model. The constraint evaluation methods reported in the scientific
literature have not always matched the real world practice [33]. The slightest
change in the evaluation of the constraints can result in completely different rosters
being generated by an algorithm. Therefore, a complete chapter, Chapter 4, has
been dedicated to the evaluation of constraints. Chapter 4 will help the researchers
and software developers to align their constraint evaluation methods with the
practices in the industry.

In practice, it is mostly impossible to satisfy all the constraints of personnel
rostering problems. They have been mostly treated as combinatorial optimisation
problems (COP). The constraints in a COP are handled in two categories, hard
and soft constraints. A solution needs to satisfy all hard constraints in order to be
considered feasible. The soft constraints are preferred to be satisfied as much as
possible. This is accomplished by minimising an objective function (Formula 3.1),
which is a linear combination of the weight (w.) and the number of violations (n.)
of each soft constraint (¢ € C'), where each violation is multiplied by the weight (w.)
corresponding to the constraint. The quality of a roster is inversely proportional
to its objective function value: the lower the objective function value, the higher
the quality of the roster.

> wene (3.1)

ceC

According to the categorisation proposed by De Causmaecker and Vanden Berghe
[48], rostering problems with personnel (P) and coverage (C) constraints as
optimisation objective () can be modelled using the present data model. Threshold
values are foreseen for quantitative constraints like counters, series, successive
series and coverage constraints. A threshold value can be either a minimum, a
mazximum, or an interval defined by a minimum and a mazimum value.

The constraint sets and the weights of the constraints show differences among
sectors, countries and organisations, and even among different employees in the
same unit. Therefore, the model does not provide a predefined constraint set
with fixed weights that apply to all of the problem instances, but it provides a

ISAGA Consulting, GPS NV Belgium
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manner for the planner to construct constraints and constraint sets that can be
specific to each employee and problem instance. Consequently, the model does not
foresee a predefined objective function, but an objective function that is constructed
according to the constraint sets that are defined by the planner using the model.

The problem model is defined with an XML Schema Description (XSD), which
has been developed entirely by the author of the present dissertation and provided
online?. The XSD file enables defining the data model precisely and prevents

ambiguities. It also simplifies the input output operation and prevents errors given
that the XML files adhere to the XSD file.

Object oriented programming languages like C# and Java provide tools to convert
XSD files to source code automatically. The resulting source code, C# or Java
classes, are used as the data structures of the problem model. C# and Java provide
built-in libraries to serialise the current state of the data structures in an XML
file. The input data is loaded from an XML file to C# or Java objects using the
deserialisation methods of the corresponding programming languages.

3.1 The differences between the standard academic
models and the extended generic model

Most of the rostering problems in the scientific literature involve a limited number
of shift types, for example early, late and night shifts. In the real world however,
a greater number of shift types are involved in rostering problems. In Belgian
hospitals and rest homes for example, variations in shift type structures based on
the working hours and skill types are common. For example, there can be different
early shift type definitions for full time and half time employees as well as for nurses
and caregivers. Therefore, a constraint defined on a shift type is mostly defined for
a set of shift types. For example, a counter on the late shift types can be defined
on the set of all the late shift types.

Although not as common as on shift types, some constraints are defined on a set of
skill types. For example, some constraints that apply to the nurses and caregivers
do not apply to the head nurses. Those constraints involve a set of skill types that
consists of the nurses and caregivers.

Another common parameter of constraints in the real world are dates and day types.
Bank holidays and weekends are important dates and day types in the rostering
problems. Furthermore, it is common in the real world that a specific weekday is
more important than others. For example, Wednesdays are important for employees
that have school children in Belgium, because the schools are closed on Wednesday

2http://ingenieur.kahosl.be/vakgroep/it/nurse/archive.htm
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afternoons. A set of specific dates become the parameter of a constraint, if the
employee requests a vacation on those days.

A set of skill types, a set of shift types, or a set of dates or day types can be the
parameter of a constraint. These cases have to be addressed in a problem model
that is claimed to be generic. Therefore, the standard academic models have been
extended with three elements that are abstractions of these parameters, namely
the skill type set, the shift type set and the day set. Furthermore, a constraint can
involve a combination of these three parameters. For example, a constraint can be
defined on late and night shift types, for nurses and caregivers, on Wednesdays.
To address such cases, the standard academic models have been further extended
with a fourth element, called domain, which is the combination of a skill type set,
shift type set and a day set.

The standard academic models have been extended to address two issues with
respect to the skill types of the employees. It is not uncommon in the real world
that some employees have more than one skill type. This has been modelled to
some extent in some academic articles, where the skill types have been modelled
in a hierarchy and the nurses of a higher skill type can substitute the nurses of
a lower skill type. For example, a head nurse can substitute a caregiver. That is
rarely acceptable in the real world because of two reasons. First, employees are not
willing to carry out tasks that are below their main skill type. Second, employees
with higher skill types are paid higher wages. Allocating them for jobs below their
main skill types is not economical for the employing institution. Despite these
arguments, an employee has to work in a skill type below his or her main skill type
in extreme cases. In the extended model, a weight has been foreseen for each skill
type of the employees to address this fact. The weight is inversely proportional to
the relevance of a skill type to an employee. The weight for the main skill type of
an employee will be zero and the weights for the skill types that are less relevant
to him or her will be proportionally higher. In some cases, the employee will be
assigned to the less relevant skill type with a penalty in the objective function
proportional to that weight.

In the scientific literature, the members of a certain skill type have been treated
equally. In the real world however, people having a certain skill type can have
different levels of experience for that skill type. Although not binding for all the
rostering problems, common levels of experience are senior, junior and trainee. For
example, a healthcare practitioner can have three skill types: head nurse, nurse
and caregiver. He or she can have a different level of experience for each of his or
her skill types. He or she can be a senior caregiver, junior nurse and a trainee as a
head nurse. Level of experience is considered to be hierarchical. A senior is higher
in the hierarchy than a junior, which in turn is higher than a trainee.

Several constraints take into account the level of experience. For example, coverage
constraints, the number of employees required on a given date for a given shift and
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skill type, are defined with a minimum level of experience. Most of the time, the
minimum level of experience is junior and the trainees are not counted towards
the coverage constraints. For example, a coverage constraint can be stated as the
following: two caregivers with at least junior as the level of experience are needed
for the early shift type on Mondays. In this case, only junior and senior caregivers
will satisfy this coverage constraint. The assignments made to the trainee caregivers
will not be counted towards this coverage constraint.

The relevance of a skill type to an employee and the level of experience have been
modelled in a new element, called employee skill type, in the extended model. Each
skill type of an employee has been modelled as an employee skill type that consists
of the actual skill type, a weight and a level of experience.

The coverage constraints are not the only constraints that make use of the level of
experience. The planners prefer to maintain a ratio between the staff of different
levels of experience at certain moments. For example, a senior employee is preferred
to work with five trainees to supervise and train them. On the other hand, a senior
truck driver cannot supervise and train more than one trainee at a time, due to the
limitations of the duty they carry out. The standard models have been extended
with the training constraint to address such requirements.

The chaperoning constraint, expressed as (C) in the personnel environment « in
[49], has various variations in the real world. A set of employees can be preferred
to work together. For example, employees who share the same car to commute to
work would request to work in the same working hours. In some cases, a set of
employees would prefer to work at different times. For example, parents of small
children working in the same hospital might prefer to work in distinct working
hours, so that at least one them is able to take care of their children. In other
cases, a certain number of members from a set of employees are required to work
together. The latter case is unique in the nurse rostering literature. An extension
to the standard models, called collaboration, can be used to model all of these and
similar cases.

The structures, definitions and examples of the extensions and their relations to
the standard models will be presented in greater detail in Section 3.2. Some of the
extensions have also been subject of two journal papers [14, 66], publications at
conferences [8, 9, 10, 11, 12, 13] and a technical report [15].

3.2 The problem model

The problem model is expressed as a tree structure. The figures between the
brackets refer to the multiplicities of the elements. (0..1) refers to an optional
element, (1..*) to at least one element. If no multiplicity information is given,
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then the multiplicity is exactly one. The elements in boldface characters refer
to the extensions to the standard academic rostering models and constitute the
contribution of the present chapter. The bullet ¢ refers to a choice among multiple
items.

The root element of the tree is the scheduling session, which has four children:
schedule period, schedule, schedule constraints and schedule definitions.

e Scheduling Session

— Schedule Period

— Schedule Definitions
— Schedule Constraints
— Schedule (0..1)

3.2.1 Schedule period

The schedule periods of personnel rostering problems vary among different
institutions, sectors, countries and time of the year. In Belgian hospitals and
rest homes, the most common schedule periods are four weeks and one month.
Some periods, such as the Christmas and summer holidays, require more attention
than the rest of the year due to lower numbers of available personnel. Consequently,
the schedule periods are set to two weeks in some hospital wards during the holiday
periods.

The schedule period element of a personnel rostering model needs to be flexible in
order to address the variations in the schedule periods of different problem instances.
Therefore, the schedule period element is defined with a start and an end date in
the data model.

¢ Schedule Period

— Start Date
— End Date

3.2.2 Schedule definitions

The essential components of the personnel rostering problem are collected under
the schedule definitions element. The members of the schedule definitions element,
such as the skill types, shift types and employees, are the basic building blocks of
the personnel rostering problem. They are referred by each other and by the rest
of the components of the personnel rostering problem.
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¢ Schedule Definitions

— Holidays (0..1)

— Skill Types

— Shift Types

— Day Sets

— Shift Type Sets
— Skill Type Sets
— Domains

— Constraint Sets
— Employees

— Weights

Skill types

The skill types that are referred to in a problem instance are defined under this
element with their ids. Different job descriptions, qualifications and responsibilities
are modelled using the skill types. For example, head nurse, regular nurse and
caregiver refer to different skill types in the healthcare sector. Different classes
of driver’s licences constitute different skill types in the transportation sector.
Moreover, the knowledge of particular routes and geographical areas is also
categorised as skill types in the transportation sector. The ability to utilise a
certain machinery or equipment are examples of skill types. For example, the
ability to ride a horse or command a dog are considered as distinct skill types in
the security sector. These are just a few examples of the usage of skill types in the
personnel rostering problem. In the real world practice, each industry has its own
standards and definitions of skill types.

o Skill Types

— Skill Type (1..%)
- Id

Shift types

Shift types refer to daily assignment units. The number and structure of the shift
types are not predefined in order to allow the end user to define any kind of shift
type he or she has to work with. Each shift type is defined by a specific start and
end time. Some working environments such as hospitals require rest periods before
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and after each shift type. Healthcare institutions typically foresee eleven hours of
recuperation before and after each assignment. That means the rest times between
two assignments is not allowed to be less than eleven hours. The net job time is
not always equal to the duration of the shift type due to the breaks. Most of the
time, the breaks when the employee is allowed to leave the work place for a period
of longer than half an hour, for example lunch breaks, are not included in the net
job times. The net job time is a part of the shift type element and it is used by the
hours worked counters.

Common examples of shift types in the real world practice are early, late, day and
night. Typically, several variations of the shift types are defined to be assigned to
the employees with different contract and skill types. For example, the starting
times of the early and late shift types may deviate for the members of the regular
nurses and caregivers. The caregivers may require to start earlier in order to prepare
the patients for treatment by the nurses. Similarly, shift types with different net job
times will be assigned to the full time and half time employees. Consequently, the
total number of the shift types in most of the personnel rostering problems exceeds
three, which is the common number of shift types in the scientific literature.

The generic model covers problems that correspond to the shift type categories
variable (N) and overlapping (O) in the work characteristics () of the categorisation
in [48].

o Shift Types

— Shift Type (1..%)
- Id
- Start Time
- End Time
- Rest Period Before
- Rest Period After
- Net Job Time

Day sets

In the problem model, some constraints are defined on a set of days. A day set can
be expressed as either a date set or a combination of day types. A day type element
can be either a week or weekend day (Monday, Tuesday, ..., Sunday), or a holiday,
or all days in the schedule period (any). For example, Monday, Wednesday and
Friday form a day set as a combination of three day types. If a day set is expressed
as a day type with the value any, then the day set is considered to be composed of
all the dates in the schedule period. Similarly, if a day set is expressed as a day type
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with the value holiday, then the day set consists of all the holidays listed under the
Holidays element of the Schedule Definitions element.

A date set is a collection of calendar dates and how they are handled. The calendar
dates in a date set do not need to be adjacent. For example, a date set can consist
of the calendar dates 2011 January 2, 3 and 4 as well as the calendar dates 2011
January 1, 2011 May 1 and 2011 November 11. The handling mode can be either
individual or a block. For example, an employee can request a vacation on the dates
2011 January 2, 3 and 4 as a block or as individual days. In case of block handling,
the request is considered to be granted, only if all the requested vacation dates are
granted. This is usually the case when the employee plans a vacation in a distant
location. Alternatively, the employee can request a vacation as individual days. In
that case, each individual day granted will be counted towards the request of the
employee. This is common when the employee plans to stay at home to pursue some
kind of private objective, such as redecorating his or her home. Elaborate examples
of the handling mode will be introduced in the section on employee requests, where
they will be discussed in context.

e Day Sets

— Day Set (1..%)
- Id
o Date Set
o Day Types

¢ Date Set

— Handling
— Date (1..%)

o Day Types

— Day Type (1..%)
o Any

<o Holiday
o Weekday (1..7)

Shift type sets

In the real world practice, different versions of a shift type, for example the early
shift, are defined to be assigned to the employees with different contract types, such
as full time and half time. Similarly, the members of particular skill types, such as
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nurses and caregivers, are assigned different versions of a shift type, for example the
late shift. This practice has been addressed in the extended model by providing
a generic structure to define a shift type and allowing the end-user to define as
much shift types as he or she needs (Section 3.2.2). Same practice also results in
constraint definitions that involve a set of shift types instead of a single shift type
[14].

Suppose that there are three variances of the early shift with different net job
times defined for nurses with different contract types and five nurses are needed in
the early shift on a particular day. In this case, an assignment with any of these
three early shift types should be counted towards this constraint. This is not an
uncommon scenario in the real world practice and requires referencing more than
a single shift type in a constraint. This requirement is addressed in the model by
considering a set of shift types as a constraint parameter.

Shift types sets are defined under the schedule definitions element and addressed
by the corresponding constraints with their ids. For example, a constraint can
restrict the number of night shifts assigned to a nurse, e.g., maximum five night
shifts during the schedule period. Some wards have more than one type of night
shifts, which can vary according to their duration. In that case, the night shifts
with different durations can be combined in a shift type set. If a nurse should not
work more than five night shifts during the schedule period, this means that the
sum of all the night shifts of any sort should not exceed five.

o Shift Type Sets

— Shift Type Set (1..%)
- Id
- Shift Type Id (1..%)

Skill type sets

Similar to shift type sets, some constraints involve skill type sets. For example, a
regular nurse or caregiver may be suitable for a particular task, but a head nurse
might be overqualified for the same task. A constraint to address that case needs
to reference the skill types, regular nurse and caregiver, at the same time. This can
be accomplished by defining a skill type set with the elements, regular nurse and
caregiver, and referencing this set in the corresponding constraint.

o Skill Type Sets

— Skill Type Set (1..*)
- Id
- Skill Type Id (1..%)
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Domains

As it has been explained in the previous sections, day sets, shift type sets and skill
type sets can be parameters of various constraints. Furthermore, a constraint can
also reference a certain combination of a day set, shift type set and a skill type
set. As a matter of fact, it is common in the real world practice that the same
combination is referenced in several constraints. A domain element is introduced
to address such cases. It is the combination of a day set, shift type set and a skill
type set.

The domain element benefits the end user by allowing him or her to define a day set,
shift type set and a skill type set combination once and then refer to it in different
constraints. Sharing a common data structure, i.e., the domain element, among
different constraints also results in a better source code structure and improved
software performance.

The domain elements are used by the domain counter, absence request, collaboration
and training constraints. For example, different versions of late shift types, regular
nurses and caregivers as skill types and Fridays as day types can be combined
in a single domain element and then be referenced in several constraints. More
examples of domains will be discussed in the following sections about employee
requests and constraints.

¢ Domains

— Domain (1..*)
- Id
- Day Set Id
- Shift Type Set Id
- Skill Type Set Id

Constraint sets

The constraints that restrict the schedule of an employee directly are called time
related constraints in [27]. The schedule of an employee can be constrained in
various ways. The total number or successions of schedule items such as working
days, idle days, assignments of particular shift types, working weekends or idle
weekends can be limited. For example, the total number of days worked by an
employee can be set to a certain value. Another example is the prohibition of the
assignment of more than three late shifts in a row. A constraint set is composed
of an id and a set of time related constraints. It contains all the time related
constraints of a contract.
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¢ Constraint Sets

— Constraint Set (1..%)
- Id
- Constraint (1..%)

The time related constraints are modelled around three general constraint types:
counters, series and successive series. Counters restrict the total number of an
item in the schedule of an employee. For example, an employee should work exactly
two weekends in a particular period of four weeks. The successive occurrences of an
item is constrained by Series. For example, an employee should work at least three
and at most six days in a row. Successions of two series can also be constrained.
For example, an employee should have at least two idle days after a series of five
night shifts.

Time related constraints are usually considered as soft constraints in real world
problems. Therefore, a weight is foreseen for each time related constraint defined in
the constraint sets. The rostering problems with personnel requlation constraints as
optimisation objective () can be modelled using this definition. Each of the three
time related constraint types allows a variety of specific subjects and parameters
to cover a wide range of employment constraints. For example, working hours,
days and weekends or idle days and weekends can be restricted. These subjects
can be limited in several ways using minimum, maximum or interval thresholds.
Time related constraints can involve different sets of days, shift types and skill types.
Only one of the elements, counter, series or successive series can be the constraint
detail of a given constraint element.

o Constraint

—1Id
— Constraint Detail

o Counter
o Series
o Successive Series

— Weight

Quantitative constraints restrict the number or sequence length of schedule items
using threshold values. Consider the following constraint: at least three and at
most five caregivers are needed in the early shift on weekdays. In this example,
the numbers three and five are examples of threshold values. A threshold value
is defined as one of the following three options: a minimum, a maximum or an
interval defined by a minimum and a mazimum value. Any value that does not
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satisfy the threshold is considered to be a constraint violation. Imagine only two
caregivers are assigned in the early shift on a particular Monday, whereas at least
three and at most five caregivers are needed for that shift and day. The value two
does not satisfy the threshold interval, three and five. Therefore, this situation
is considered to be a constraint violation. Threshold elements are referred from
various positions in the problem model.

Worked days, idle days, worked weekends, idle weekends, assignments of certain
shift types and hours worked are examples of roster items in this context. The
following constraints demonstrate how they can be restricted. If an employee has
to work at least 38 hours a week, the value 38 refers to the minimum threshold
value. If an employee should not be assigned more than two worked weekends in
four weeks, the value two is the maximum threshold in this constraint. If there
must be at least three and at most five caregivers present on the week days in the
early shift, then the threshold value is defined as an interval, with three as the
minimum and five as the maximum value.

e Threshold

— Minimum
— Maximum
— Interval
- Minimum

- Maximum

Counters The counter constraints restrict the number of specific roster items over
the counter period. The counter period is modelled by a start and end date and
does not need to match the schedule period. Imagine a situation where the schedule
period is the month of April and there is a counter restricting the number of bank
holidays worked by an employee throughout the year. In this case, the counter
period is a calendar year, expanding from January 1 to December 31. However, the
schedule period is the month April. In this example, the schedule period is a subset
of the counter period. The other way around is also possible. For example, the
counter period of the number of hours worked in a week by an employee is a single
week, which is a subset of any schedule period longer than one week. It is also not
rare in the real world practice that the counter period matches the schedule period.
Therefore, the counter period is treated independently from the schedule period to
allow the practitioners to represent their counters accurately.

A counter has a counter type, which is a choice among seven elements: hours
worked, shift types worked, days worked, days idle, weekends worked, weekends idle
and domain. Hours worked counters are widely utilised in the real world practice.
The contracts of the employees are mostly based on the weekly working hours.
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Typically, a full time employee is expected to work 38 hours a week. This is an
example of a hours worked counter. In working environments that operate on 24
hours a day and seven days a week basis, shift types worked, weekends worked
and weekends idle counters become critical. For example, the number of night
shift type assignments to an employee can be restricted using a shift types worked
counter. Similarly, employees are expected to work a certain number of weekends
and to have rest on the remaining weekends. Weekends worked and weekends idle
counters are used to enforce this working regime. These counters ensure that the
employees are not overloaded with assignments that interfere with their private
lives. They also balance the rosters of the employees and provide a sense of fairness
by assigning similar numbers of unpleasant shifts to each of the employees.

In cases where there are shift types with different working hours, days worked and
days idle counters can be used to complement the hours worked counters. Suppose
that there are shift types for full timers and half timers in a working environment.
Assigning the shift types for half timers to a full timer will result in him or her
working on more days than he or she actually should in order to fulfill his or her
hours worked counter. This can be overcome by using a days worked counter to
restrict the number of days worked by him or her. It is common in the real world
practice to restrict the number of assignments of a certain set of shift types with a
particular set of skill types on a particular set of days. This is represented with a
domain counter. For example, the number of night shift assignments to nurses and
caregivers on Fridays should be less than two in a schedule period of four weeks.
Here, the night shifts refer to the shift type set, nurses and caregivers to the skill
type set and Fridays to the days set. The combination of the shift type set, skill
type set and day set constitute a domain, which is one of the options for a counter

type.

Shift types worked counters have a shift types set as a parameter. Any shift type
in the shift types set is counted in the shift types worked counter. In working
environments with various contract types, there are distinct shift types to be
assigned to the employees with different contract types. For example, if there are
full time, half time and 75% contracts, then there will be variants of shift types
specific to each of those contract types. Moreover, in some cases, the shift types also
vary among the members of different skill types. For example, the night shift types
can be different for the employees with full time, half time and 75% contracts. In
addition to that, the night shift types can also be different for nurses and caregivers.
However, if a counter has to be defined on night shifts, it has to count all occurences
of different night shifts. Therefore, a shift types set parameter is used in the shift
types worked counters instead of defining these counters on a single shift type.

Except domain, weekends worked and weekends idle, all counters have the day
types parameter, which can have the value of either any, holidays or a set of week
and weekend days. For example, the application of a counter can be limited to
certain week days. Late and night shift types are usually unwanted on Fridays,
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Saturdays and Sundays. To address this preference, a shift types worked counter
can be defined with a shift types set that consists of the late and night shifts. The
day types parameter of that counter will be Fridays, Saturday and Sundays.

« Counter

— Period
- Start Date
- End Date
— Counter Type
¢ Hours Worked Counter
Day Types
Days Worked Counter
Day Types
Days Idle Counter

<

<

Day Types
Shift Types Worked Counter
Shift Types Set
Day Types
Weekends Worked Counter
Weekends Idle Counter
Domain Counter

<

S 00

Domain

— Threshold
The following constraints taken from Burke et al. [20] are examples of counters:
e “Maximum and minimum number of hours worked during the scheduling
period or per week”

— hours worked counter

e “Maximum number of a specific shift type worked”
— shift types worked counter

e “Maximum number of weekends worked”
— weekends worked counter

e “Maximum total number of assignments for all Mondays, Tuesday, Wednes-
days, ..

— days worked counter with Mondays, Tuesdays, Wednesdays, ... as day
types parameter
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Series The series constraints restrict consecutive occurrences of specific roster
items. For example, an employee should not work more than two weekends in a
row. They can be defined with five subjects: shift types worked, days worked, days
idle, weekends worked and weekends idle. Similar to counters, shift types worked
series are also defined on a shift types set.

o Series

— Series Type

o Days Worked Series

¢ Days Idle Series

o Shift Types Worked Series
Shift Types Set

o Weekends Worked Series

o Weekends Idle Series

— Threshold
The following constraints presented by Burke et al. [20] are examples of series:

e “Maximum and minimum number of consecutive working days”
— days worked series

e “Maximum and minimum number of consecutive non-working days”
— days idle series

e “Maximum number of consecutive weekends worked”
— weekends worked series

e “Valid numbers of consecutive shift types”

— shift types worked series

Successive series Discussions with practitioners have revealed that the succession
of two series can be restricted. A common example in the real world is the following:
the assignment of at least five night shifts in a row should be followed immediately
by at least two idle days. If the first series appears in a roster, it needs to be
succeeded immediately by the second series. The first series in this formulation
is the conditional part and the second is the restricting part. The conditional
part is not evaluated and its violations are not penalised. In the example above,
the assignment of four night shifts in a row does not satisfy the conditional part
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and it will not result in any violation of the constraint in question. However, the
conditional part triggers the evaluation of the restricting part. If the conditional
part is true, then the restricting part is evaluated, and the violations of the
restricting part are penalised. That means, only assignments of five and more night
shifts in a row will trigger the evaluation of the restricting part. In that case, if
the night shift series is not followed immediately by at least two idle days in a
row, then this constraint is considered to be violated. Such constraints ensure the
sufficient recuperation of the employees. That in turn increases the productivity
and job satisfaction of the employees and minimises the risks of job accidents and
other critical mistakes.

e Successive Series

— Series 1

— Series 2

The constraint minimum two idle days after a series of at least five night shifts
can be translated into a successive series as following.

e Successive Series

— Series 1
- Shift Types Worked Series
Shift Type Set: Night Shifts
- Threshold
Minimum: 5

— Series 2

- Days Idle Series
- Threshold
Minimum 2

In this example, the shift types worked series is the conditional part, and the
days idle series the restricting part. Violations of the conditional part, i.e., the
shift types worked series, are not going to be penalised. If that is desired, then a
seperate constraint, a shift types worked series, needs to be defined in addition to
the successive series constraint. In the example above, if the number of night shift
assignments in a row is desired to be restricted to exactly five, then an additional
shift types worked series with night shifts as the shift type set and five as the
manimum and mazimum threshold needs to be defined.

Valid successions of shift types can also be modelled using the successive series
constraint. For example, the constraint, no early shifts after night shifts, can be
modelled as the following.
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¢ Successive Series

— Series 1

- Shift Types Worked Series

Shift Type Set: Night Shifts
- Threshold

Minimum: 1

— Series 2
- Shift Types Worked Series
Shift Type Set: Early Shifts
- Threshold

Maximum 0

Five series successions have been identified that are relevant in real world problems:
days worked - days idle, days idle - days worked, shift types worked - days idle,
days idle - shift types worked and shift types worked - shift types worked. Further
examples of successive series that are requested in many situations include:

o Two idle days should be assigned after six days worked in a row. (Days
worked - days idle)

o After two idle days, four days should be worked. (Days idle - days worked)

o An early shift type should be assigned after two idle days. (Days idle - shift
types worked)

o At least two late shift types should be assigned after two early shift types.
(Shift types worked - shift types worked)

Employees

The individuality of employees varies among different working environments. The
term individuality is used here to refer to the diversity between the skill type sets,
contracts, constraints and requests of each employee. The nurse rostering problem
in Belgian hospitals involves a high degree of individuality. The model enables
that by allowing each employee to be defined with a skill type set, a number of
employment contracts and requests.
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o Employees

— Employee (1..%)
- Id
- Employee Skill Types
- Contracts
- Requests (0..1)
- Counter Start Values (0..1)
- Counter Remainder Values (0..1)

Employee skill types Imagine a healthcare practitioner starting her career as a
caregiver. Throughout her career, this practitioner gains enough experience as
a caregiver and becomes a regular nurse by receiving additional education. The
practitioner continues her work as a regular nurse and carries on with the education
to become a head nurse. In order to be qualified as a head nurse, she has to apply
this education as a head nurse for a certain number of shift assignments. However,
these shift assignments are not counted towards the workforce requirements of
her ward, because she has to be supervised by a qualified head nurse. This is a
common scenario in the healthcare sector.

Several properties of the skill types can be recognised in this scenario. First, the
actual skill types, i.e., caregiver, regular nurse and head nurse, stand out. Second,
the level of experience for each skill type can be differentiated. The hypothetical
healthcare practitioner has a high level of experience as a caregiver and a normal
level of experience as a regular nurse. However, her level of experience as a head
nurse is so low that she has to be supervised by an actual head nurse. In addition to
that, her work as a head nurse is not counted towards the workforce requirements
of her ward. The different levels of experience of the healthcare practitioner can
be stated as senior as a caregiver, junior as a regular nurse and trainee as a head
nurse.

A third aspect in this scenario will be noticed if the scenario is studied carefully.
The common practice in the healthcare sector is to pay the nurses a fixed wage
based on their qualifications. In this case, the hypothetical healthcare practitioner
will be paid as a regular nurse, even if she works as a caregiver or a head nurse
occasionally. Therefore, the employing institution would desire to minimise her
shift assignments as a caregiver or a head nurse. Similarly, the hypothetical nurse
would prefer not to work as a caregiver, because she would be overqualified for
the tasks of a caregiver. Consequently, a third element is needed to represent the
suitability of a skill type for an employee.

The attributes of the skill types of an employee are expressed under the employee
skill type element. The employee skill type element consists of three items, the skill
type id, level of experience and weight. The skill type id refers to the id of the skill
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type as it is defined under the skill types element of the schedule definitions element.
Examples of the skill type id values are caregiver, regular nurse and head nurse.

The level of experience element states how experienced the employee is on the
corresponding skill type. There are three levels of experience in most of the cases.
They are represented as integers in the model. As a result, more than three levels of
experience can be defined if necessary. The levels of experience are considered to be
hierarchical in the real world practice. Such a hierarchy can easily be represented
using integers by considering the greater values to be higher in the hierarchy. For
example, the values 3, 2 and 1 can refer to senior, junior and trainee, respectively.

The suitability of a skill type to an employee is addressed as a weight in the
extended model. The weight of an employee skill type is inversely proportional to
the suitability of the corresponding skill type for the employee and considered as a
penalty for every assignment made with that skill type. In the example above, the
weight of the employee skill type regular nurse should be minimum, i.e., 0. The
weights of the employee skill types head nurse and caregiver should be higher than
0, indicating a penalty in case they are used in the assignments of this practitioner.

As it can be seen from the example, employees can have more than one skill
type. Therefore, the extended model allows for multiple employee skill types for an
employee.

The modelling of the employee skill types as presented in this dissertation is novel
to the scientific literature. In the scientific literature, the level of experience element
has not been considered. Also penalising less suitable skill types with a weight is
new to the personnel rostering literature. Another unique feature of the employee
skill type element presented in this dissertation is that it allows an employee to have
an arbitrary non-empty subset of the skill types in the problem as her employee
skill type set.

Organising the skill types hierarchically is a common practice in the scientific
literature. That approach entails that a head nurse has all the skill types, for
example regular nurse and caregiver in her employee skill type set. However, this is
rarely true in the real world practice. Employees that are higher in the hierarchy
are rarely planned for the tasks that have to be carried out by employees that are
lower in the hierarchy. For example, the common practice in the scientific literature
may result in planning a retail store manager as a cashier. This is not acceptable
in the real world practice.

o Employee Skill Types
— Employee Skill Type (1..*)
- Skill Type Id

- Level Of Experience
- Weight
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Contracts A contract element includes a start date, an end date and a constraint
set that applies to the schedule of the employee. Each employee has at least one
contract. In practice, an employee can have more than one contract with one
institution. This happens when a new contract starts and an old contract ends
within the same schedule period. For example, when an employee switches from a
half time contract to a full time contract in the same schedule period, he or she will
have two contracts in that schedule period. Each employee can have an exclusive
contract, which allows a high degree of individualisation among the employees.

« Contracts

— Contract (1..%)
- Period
Start Date
End Date
- Constraint Set Id

Requests Employees can express their absence and assignment requests prior to
the planning process. For example, an employee can request to have free afternoons
on Fridays or free mornings on Mondays. Employees have rights to paid vacations.
They can request certain dates to be counted towards their paid vacations. As a
result, if these requests are granted, then a certain amount of working time will
be added to their hours worked counters for the granted absence requests. As an
example, consider a full time employee that has to work 38 hours a week. That
job time corresponds to seven hours and 36 minutes for every working day. If she
requests a paid vacation on a particular date and her request is granted, than seven
hours and 36 minutes must be added to all of her hours worked counters that cover
the granted day.

Similarly, employees may prefer to work on certain dates, in certain shift types and
using a certain subset of their skill types. For example, a healthcare practitioner
might prefer to work as a regular nurse, in late shift types, on weekends, so that
she is entitled to receive extra compensation from her institution. As it can be
seen from the examples, the requests of the employees can be diverse. A generic
structure is needed to represent all types of requests that employees might come
up with.

Two types of requests can be differentiated, absence requests and assignment requests.
The assignment requests are represented via the domain counters, because domain
counters cover all the requirements of the assignment requests. However, domain
counters do not meet all the requirements of the absence requests, because an extra
element, the job time, is needed in case of absence requests. Therefore, the problem
model is extended with an absence request element that consists of a domain, job
time and weight.
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The domain element indicates on which days, for which shift and skill types, the
absence request is submitted. For example, an employee may prefer not to be
assigned on Wednesdays for the late shift types as a caregiver, because the workload
may be especially high for that combination. The absence request element does not
have a threshold, because in absence requests, the threshold is by default maximum
0, since no assignment is desired at all.

The job time value is added to the hours worked counter values of the employee, if
the absence request is granted. The job time element is used to model the paid
vacations of the employee. Since the requests are considered as soft constraints, the
absence requests have a weight element. A multiple of the weight is added to the
objective value if the absence request is not granted.

¢ Requests

— Absence Request (1..%)

- Domain Id
- Job Time
- Weight

In order to demonstrate the modelling power of domains, absence and assignment
requests, five complex request examples from the real world practice and their
representations in the extended model will be presented in the following paragraphs.
These examples are absence requests on individual holidays, absence request as a
block, absence request on Wednesday afternoons, assignment request for a specific
skill type and individual bank holidays. These and countless others provide challenges
to the planners every time a roster is prepared. The satisfaction of these requests
plays a critical role in the job satisfaction of the employees by balancing work and
private life. It also results in higher employee loyalty and performance, which are
crucial factors in the sectors where the qualified workforce is a scarce resource.

Absence request on individual holidays Suppose that an employee submits a
five day absence request for home redecoration. This request does not need to
be granted in its entirety, but the more days granted, the better it is for the
employee. For example, there is no problem for the employee if only four days
between Monday and Friday are granted. Even if a day in the middle of the period
is not granted, the situation is still acceptable. In that case, the date set consists of
the five days that the employee requests, but these dates are handled individually.
The penalty of this request is calculated using equation (3.2). Another parameter
of the absence request constraint is the job duration for each granted day. This
job duration will be added to the total working time of the requesting employee
for each day the absence request is granted. Suppose that the employee in this
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example has a full time contract that requires him or her to work 38 hours per
week, which corresponds to seven hours and 36 minutes a day. If this absence
request is preferred to be a part of the paid vacation of the employee, then for each
granted day, seven hours and 36 minutes will be added to his or her hours worked
counters that cover this absence request. If the employee is granted four free days
for this absence request, that will add an extra 30 hours and 24 minutes to the
related hours worked counters.

Penalty = Number of Days Not Granted = Weight (3.2)

An assignment in any shift type, with any skill type, on the requested dates will
result in a violation of this request. Therefore, the skill type set and the shift type
set of the domain used in this absence request consist of all the skill types and shift
types in the problem. Instead of enlisting all the shift types and skill types in the
problem, these skill and shift type sets are expressed with the value any.

¢ Domain

— Day Set
- Date Set: requested dates
- Handling: individual

— Shift Type Set: any

— Skill Type Set: any

Absence request as a block Suppose that an employee requests a five day absence
request for a ski vacation. The absence request is considered to be granted, if and
only if all the five days in the request are granted. In contrast to the absence request
on individual days, the penalty of this constraint is not scaled by the number of
days not granted. The penalty, the weight of the constraint, is a fixed value and it
is added to the objective value in case the request is not granted. For this absence
request as a block, the date set consists of the five days that the employee requests
and these dates are handled as a block. Similar to the absence request on individual
days, the shift and skill type set consists of all the shift and skill types defined
in the problem instance. Despite being encountered frequently in the real world
practice, handling absence requests as a block is a completely new concept in the
personnel rostering literature.
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e Domain

— Day Set

- Date Set: requested dates
- Handling: block

— Shift Type Set: any
— Skill Type Set: any

Absence request on Wednesday afternoons Primary and secondary schools in
Belgium, as well as in many other countries, have free Wednesday afternoons.
Therefore, many employees with school children prefer to stay at home on
Wednesday afternoons. This absence request emphasises the domain element’s
shift type set, which, in this case, consists of the shift types that overlap with
the afternoon. The date set consists of Wednesdays and the dates are handled
individually. The reader is cautioned that any arbitrary set of day types or dates
can be represented using the domain element and Wednesday is selected as a
relevant example in this case to demonstrate how a real world example can be
converted to a domain element. Since the skill types do not play any role in this
constraint, the skill type set consists of all the skill types in the problem definition.

¢ Domain

— Day Set

- Day Types: Wednesdays
— Shift Type Set: shift types that overlap with the afternoon
— Skill Type Set: any

Assignment request for a specific skill type In working environments with
multiple levels of experience for employee skill types, employees can increase their
level of experience by working for the corresponding skill types as much as possible.
Suppose that a senior caregiver is also a trainee as a regular nurse. She needs to
work a number of shifts as a regular nurse in order to increase his or her level of
experience from trainee to junior. Therefore, he or she prefers as many assignments
as possible as a regular nurse. This example emphasises the role of the skill type
set in the domain element. In this case, the skill type set consists of reqular nurse
only. The dates and shift types do not play any role in this assignment request.
The date set therefore includes all the dates in the schedule period and the shift
type set consists of all the shift types defined in the problem instance. Similar to
the absence request for home redecoration case, the more dates are assigned, the
better it is for the nurse. Therefore, the dates are handled individually and the
penalty for this request is calculated using the formula in equation (3.2).
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e Domain

— Day Set
- Day Types: any
— Shift Type Set: any
— Skill Type Set: regular nurse

Individual bank holidays According to the employment legislation, each employee
is allowed to take a specific number of bank holidays each year. Therefore, the
planners have difficulties in satisfying the coverage constraints on bank holidays. On
the other hand, the official bank holidays are not equally relevant to all employees.
For example, the religious holidays of the most common religion in the country are
not relevant to the members of other religions. In this case, it is beneficial for the
institution as well as for the employees, to define an individual set of bank holidays
related to their own religion or culture.

e Domain

— Day Set
- Date Set: individual bank holidays
- Handling: individual

— Shift Type Set: any

— Skill Type Set: any

In the traditional way of handling the holidays worked constraint, a counter is
defined for each employee. This counter refers to the bank holidays that are defined
globally. On the other hand, the holidays worked counter can be handled using
domains. In this case, each employee has an individual domain that consists of the
bank holidays related to him or her. A counter is defined on this domain to restrict
the number of worked individual bank holidays.

Counter start values In some cases, the counters cover longer periods than the
schedule period itself. For example, a counter can be defined on one year, while the
schedule period is defined on four weeks. In this case, the counter value up until
the current schedule period is given as the counter start value in the problem input.

Suppose that the number of bank holidays worked by an employee in a year should
be exactly five and the schedule period is the month June. In this case, the counter
period is one year and it covers the schedule period, the month June, completely.
The minimum and maximum thresholds have the value 5, but the bank holidays
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worked by the employee before the schedule period, i.e., before June, should be
taken into account as well.

Suppose that the employee has already worked three bank holidays before June.
In this case, the counter start value is 3. Any bank holidays worked in the month
of June should be added on top of the counter start value, i.e., 3, and evaluated
against the threshold value, i.e., 5. In rare cases, the counter value might have
already exceeded the threshold before the schedule period.

Suppose that the employee has already worked 6 bank holidays before June. In
that case, a constraint violation will be reported even if no assignment is made to
any bank holiday in the current schedule period. This is for information purposes
only and will not impact the algorithm, because the violations that are carried
from the previous schedule periods will remain constant, since the algorithm cannot
change the assignments in the previous schedule periods. The formal definition of
how the constraint start values are used in the evaluation of the counters will be
discussed in 4.3.5.

o Counter Start Values

— Counter Start Value (1..*)

- Constraint Id
- Value

Counter remainder values The counter remainder value element is similar to the
counter start value element. If the counter period exceeds the schedule period, then
the number of the corresponding roster elements in the remainder of the counter
period is given as the counter remainder value.

The concept of the counter remainder value can be demonstrated on the same
example as the counter start value. In that example, the employee has to work
exactly five bank holidays in a calendar year and the schedule period is the month
June. Suppose that he or she has not worked on any bank holidays before the
month June and there are only three bank holidays after the month of June. The
three bank holidays after the month of June is the counter remainder value to
be considered for this schedule period. The counter remainder value, i.e., 3, will
be subtracted from the minimum threshold of the counter, i.e., 5. However, the
maximum threshold, i.e., 5, will remain as it is. The rationale behind this is that
the three of the five bank holidays can still be assigned after the schedule period
and it is sufficient to assign at least two bank holidays in this schedule period.
The maximum threshold remains the same, because assignments of up to five
bank holidays will not cause any violation throughout the counter period of this
constraint.
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The counter remainder value is slightly different from the counter start value. The
actual assignments or idle days that are processed by the counter are considered in
the counter start value. However, all the possible assignments or idle days that can
be processed by the counter are taken into account in the counter remainder value.

For example, the counter start value of the bank holidays worked counter takes
into account the actual assigned bank holidays before the schedule period. On the
other hand, the counter remainder value of the same counter takes into account
all the bank holidays after the schedule period to which future assignments are
possible. Suppose that, an employee has to work 5 bank holidays in a year. There
has been 6 bank holidays before the schedule period and the employee has worked
on 3 of these 6 bank holidays. Suppose that there are 4 bank holidays after the
schedule period. In this case, the counter start value is 3, not 6, and the counter
remainder value is 4.

Connecting the schedule period with the previous and upcoming schedule periods
using counter start and remainder values addresses the expectations of the real
world practitioners and it is a novel concept in the personnel rostering literature.

¢ Counter Remainder Values

— Counter Remainder Value (1..*)

- Constraint Id
- Value

Rest time between shift types

Each shift type is given with a rest period before and after. Although eleven hours
of rest time before and after is a common practice in the healthcare sector, the
rest time before and after a shift type might be different in exceptional cases. For
example, a shift type might require fourteen hours of rest time before and eleven
hours of rest time after. Assignments of other shifts that overlap with these rest
periods are considered as soft constraint violations. The weight of the rest time
between shift type violations is given under the weights element of the schedule
definitions.

o Weights

— Rest Time Between Shifts
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3.2.3 Schedule constraints

The constraints that restrict the schedules of more than one employee are expressed
in the Schedule Constraints element. These are coverage constraints, schedule locks,
collaborations and trainings.

o Schedule Constraints

— Coverage Constraints
— Schedule Locks (0..1)
— Collaborations (0..1)
— Training Set (0..1)

Coverage constraints

The primary objective of a rostering system is to fulfill the required number of
assignments for each day, shift type and skill type. The definition of coverage
constraints allows modelling the rostering problems that have coverage constraints
as determined (D), range (R) and fluctuating (V) in work characteristics (8). The
model also allows the definition of a weight for each coverage constraint, so that
rostering problems with the load and coverage constraint objective (L) as a part of
their optimisation objective () can be modelled.

Following the common practice in the healthcare sector, the coverage constraints
in this dissertation are determined per day, skill and shift type in the problem
model. The threshold value restricts the number of employees on each day, for
each shift and skill type. If more than one level of experience is possible for the
skill types of the employees, then the minimum level of experience that satisfies
this coverage constraint needs to be specified. The levels of experience are ordered
hierarchically. Any employee with a level of experience higher than or equal to the
minimum satisfies the coverage constraint in question.

The following example demonstrates how a complex real world coverage constraint
can be expressed using the extended problem model. On July 4, 2011, at least
two and at most four practitioners should be assigned a long early or long late
shifts, either as a caregiver or a regular nurse. The practitioners should be at least
a junior in the assigned skill types. In this case, the date is July 4, 2011. The shift
type set consists of the long early and long late shifts. Long shift types are the
ones that are assigned mostly to the full time employees. The skill type set consists
of the skill types caregiver and regular nurse. The minimum level of experience
is junior in this case. That means the employees who are at least junior in the
required skill types are qualified for this coverage constraint. For example, a senior
caregiver is qualified, but a trainee regular nurse is not. Although it might seem
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complicated, coverage constraints such as this example are common in the real
world practice.

e Coverage Constraints

— Coverage Constraint (1..%)

- Date

- Shift Type Set Id

- Skill Type Set Id

- Minimum Level of Experience
- Threshold

- Weight

Schedule locks

Sometimes, planners construct a partial schedule that contains assignments and
idle days. Modification of these parts of the schedule by the solution method is not
desired. The parts that are not allowed to be modified by the solution method are
identified with the schedule locks in the model.

e Schedule Locks

— Schedule Lock (1..*%)
- Employee Id
- Date

Collaboration

In some working environments, there are situations where specific groups of
employees are required to work together. There are also cases where the opposite is
desired. A specific group of employees request not to work together. For example,
employees with complementary skills can be required to work together. Family
members can request to work in different shifts so that at a given time, at least one
of them can take care of their children. This constraint is expressed as chaperoning
(C) in the personnel environment « in [49].

In the present model, the number of employees to collaborate is not limited to two.
The employees to collaborate are expressed as an employee set. The application
of the collaboration constraint can be restricted using the domain element. The
planner can define collaboration constraints that are required only on specific days,
for specific shift and skill types.
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The threshold element defines the type of the collaboration. If the employees should
not work together, then the maximum threshold needs to be set to zero. If at least
n employees should work together, then the minimum threshold needs to be set to
n.

¢ Collaborations

— Collaboration (1..%)

- Employee Set
Employee Id (2..%)

- Domain Id

- Threshold

- Weight

Training

In a working environment with multiple levels of experience, it is desired that the
experienced employees work together with less experienced employees in order
to train them. A training constraint restricts the ratio between the numbers of
assigned employees with different levels of experience.

The following rule is an example of the training constraint: At least one senior
caregiver should be assigned for every five trainee caregivers assigned. In that case,
the preceding level is trainee and the succeeding level is senior. The threshold
ratio is 0.2. The domain consists of all days and shift types, but it is restricted
to caregivers for the skill type. The training constraint is defined as a one way
relationship.

If a two way relationship is preferred, the complementary training constraint
needs to be defined as well. The following rule is complementary to the example
mentioned above: At least five trainee caregivers should be assigned for each senior
caregiver assigned. In this case, the preceding level is senior and the succeeding level,
trainee. The threshold ratio is 5. The domain is the same as for the complementary
example.

e Training Set

— Training (1..%)
- Preceding Level
- Succeeding Level
- Threshold Ratio
- Domain Id
- Weight
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3.2.4 Schedule

The solution for the personnel rostering problem is a schedule, which is a set
of assignments. An assignment consists of four elements: the employee that is
assigned, the date, shift type and the skill type that is required.

Contrary to many academic resources on nurse rostering, e.g., [45, 61], the skill
type is considered as a part of the assignment. If a nurse has more than one skill
type, the skill type that he or she uses for the assignment would be ambiguous
unless specified. This ambiguity is not a problem if the employee can use all of
his or her skill types in the same assignment and if such an assignment is counted
by the coverage constraints of all of these skill types. For example, a production
supervisor has to be present throughout a shift, and in the meanwhile, he or she
can operate a machine or perform other duties.

However, there are also problem instances where an employee can use only one of
his or her skill types in a shift. For example, if two skill types are associated with
different locations, then the employee can use only one of the skill types in a given
shift. Suppose that a truck driver has a driver’s licence for several types of vehicles,
but that does not mean he or she can drive all those vehicles at the same time. If
each vehicle type is modelled as a skill type, then the skill type, i.e., the vehicle
type, must be specified in the assignment to overcome any ambiguity. Certainly,
an assignment to this truck driver cannot be counted towards all the different
coverage constraints that require the vehicle types he or she is qualified to drive.
The assignment can be counted towards only one of those coverage constraints.

The schedule is the main output of a solution method that addresses personnel
rostering problems. However, the schedule can also be a part of the problem input.
Some of the personnel rostering constraints, such as the series constraints, overlap
with two schedule periods. The assignments in the overlapping part of the previous
schedule period need to be given as input in order to ensure an accurate constraint
evaluation. This subject is studied in greater detail in Chapter 4. In some cases,
planners construct a partial schedule and give it as input to the solution method
in order to receive a complete schedule.

e Schedule

— Assignment (1..%)
- Employee Id
- Date
- Shift Type Id
- Skill Type Id
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3.3 Conclusions

A gap between academia and the real world has been identified in the literature
surveys on personnel rostering (Chapter 2). One of the main reasons of this gap is
the use of problem models that do not address the complexity and the diversity
of the real world problems. The emphasis of the scientific literature has been on
the algorithms and mostly simplified problem models have been used to prove the
usefulness of the proposed algorithms. As a result, the simplified problem models
cannot cope with the complexity of the real world problems. Academic problem
models are mostly defined with a single problem instance in mind. Consequently,
such problem models cannot deal with the diversity of the real world problems.
The standard academic models have been extended by the author of the present
dissertation with new elements to address the complexity and the diversity of the
real world problems. In the present chapter, the extensions and the motivations
behind these extensions have been discussed with their relevance to the standard
academic models. The extensions stem from the real world requirements of the
personnel rostering problem in the Belgian healthcare sector.

The constraints encountered in the real world practice are mostly complex and
diverse. They are defined on a set of shift types, skill types and/or days. Shift type
sets, skill type sets and day sets have been introduced to address this requirement.
Furthermore, some constraints have been defined on a combination of these elements.
Therefore, a domain element has been defined that is the combination of a day set,
a shift type set and a skill type set.

The skill types of the employees constitute another area where the standard
academic models have been extended. In the real world practice, employees can
have more than one skill type. Mostly, not all the skill types of an employee have the
same relevance to that employee. Therefore, a weight has been associated with each
skill type of an employee. In some cases, different employees have different levels
of experience for the same skill type. The skill type element of an employee has
further been extended with a level of experience element to address such cases. The
coverage constraint definition has therefore been extended with a minimum level
of experience element. Furthermore, the variations in the level of experience have
resulted in another constraint, namely the training constraint. Some employees
are expected to work together or not to work together in various settings. A
collaboration element has been introduced to address various requirements of
employees working together or not working together.

The new problem model in this chapter has been presented as a data structure to
express the problem instances accurately. The problem model has been presented
in an XSD file in order to define it unambiguously. In order to facilitate future
research as well as application development, the XSD file has been provided online
for researchers and software developers. The extended problem model presented
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in this chapter is at the core of the KAHO personnel rostering kernel that has
been integrated in the commercial personnel planning software of our industrial
partners3

The problem model is one part of the problem definition and it does not include
formal definitions of constraint evaluations, which is another major part of the
problem definition. The evaluation of constraints is one of the areas where the
academic and real world practices diverge. Therefore, the evaluation of constraints
will be discussed in greater detail in Chapter 4.

3SAGA Consulting, GPS NV Belgium






Chapter 4

Evaluation of constraints

The problem model in Chapter 3 provides a structured model for representing
the problem data. The present chapter adds to it the formal definitions of the
evaluations of constraints expressed in the data model. In real world problems,
it is not always possible to satisfy all the constraints. Therefore, the constraints
are divided into two groups, hard and soft constraints. Hard constraints must be
satisfied in order to accept a solution as feasible. For example, an employee cannot
be assigned to two shifts in different places at the same time. Soft constraints
are preferred to be satisfied, but the violation of them does not make the solution
infeasible. For example, granting the absence request of an employee is usually
considered as a soft constraint. The violations of the soft constraints are to be
minimised.

The relative priorities, often referred to as weights, of the soft constraints are
usually not the same. Some soft constraints are more important than others. An
objective function is constructed to model this fact. The objective function is the
weighted sum of all the soft constraint violations. The relative priority of a soft
constraint is expressed through its weight in the objective function. The higher the
weight of a soft constraint, the more important it is in the problem. In the real
world practice, it is not always clear if a constraint is soft or hard. Some constraints
are treated as hard in some problems and soft in other problems. The constraints
that are not hard but critical are mostly treated as soft constraints with very high
weights in the objective function so that they are violated only in extreme cases.

As explained in Chapter 3, the problem model does not foresee a predefined set of
soft constraints, but a data model to express a set of soft constraints specific to
each problem instance and to each employee in the problem instance. Consequently,
there is no predefined objective function associated with the problem definition.
Rather, the objective function is defined in a generic way as the sum of the penalties

63
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of all the soft constraints in a problem instance.

The evaluation of hard and soft constraints will be presented formally in this
chapter. In addition to that, constraint evaluation over multiple schedule periods
will be discussed in greater detail.

The continuity between two schedule periods, might be perceived as a minor detail
from an academic point of view. However, it plays a major role in the rosters
of actual nurses. Close collaboration with industrial partners and real world
practitioners makes it possible to gather such requirements.

A set of consistent rules dealing with constraint evaluation over different schedule
periods will be presented in this chapter. The importance of the rules is illustrated
with examples. Ignoring these rules makes the comparison of approaches developed
by different researchers impractical. It also excludes possible application in many
real world environments.

4.1 Definitions and variables

e E: the set of all employees

e D: the set of all days in the current schedule period and in the related parts
of the previous and upcoming schedule period

e S: the set of all shift types
e K: the set of all skill types
e W: the set of all weekends in the current schedule period and in the related

parts of the previous and upcoming schedule period

Zed,sk iN equation 4.1 are the decision variables of the problem.

Ve € E,Vd € D,Vs € S,Vk € K :

1 if employee e is assigned on day d, (4.1)
Tedsk = in shift type s and skill type k
0 otherwise

De,q in equation 4.2 is an auxiliary variable that denotes the presence of employee
e€ Fondayde D. pq takes the value 1 if employee e € E is assigned on day
d € D. It takes the value 0 otherwise.
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—|S||K|pe,a + Z Z Zedys e <0

seES keEK

—DPe,d + Z Z Te,d,s,k Z 0

seS keK

De,d,s’ in equation 4.3, another auxiliary variable, denotes the presence of employee
e € E on day d € D, in any of the shift types s € S’ C S. pe a5 takes the value 1
if employee e € E is assigned on day d € D, in any of the shift type s € S C S. Tt
takes the value 0 otherwise.

=S| K |pe,a,s + Z Z Tedsk <0

seS’" ke K

—Pe,d,s" + Z Z Te,d,s,k = 0

seS" keK

De,p’,s', Kk in equation 4.4 denotes the presence of employee e € I/ on any of the
days d € D’ C D, in any of the shift types s € S’ C S and with any of the skill
types k € K' C K. p. pr s i takes the value 1 if employee e € E has at least one
assignment on any of the days d € D’ C D, in any of the shift types s € S’ C S,
with any of the skill types k € K’ C K. It takes the value 0, otherwise.

—|D'|S"| K’ |pe,pr,s7, 1 + Z Z Z Te,dysk <0

deD’ seS’ ke K’

—Pe,D’, 5", K" + Z Z Z Teydsk = 0

deD’ seS' keK’

Similarly, g.., denotes the presence of employee e in weekend w (equation 4.5).
This variable becomes 1 if employee e works at least one shift in weekend w, and 0
otherwise. [ refers to the length of the weekend. d,, ; denotes day i of weekend w.
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Ve € E,Vw e W :

l
-l Ge,w + Zpe,dw’i <0
=1

l
—(Ge,w + Zpe,dw,i Z 0
i=1

4.2 Hard constraints

4.2.1 Single assignment start per day per employee

Single assignment start per day per employee is a hard constraint (Equation 4.6).

Ve€ ENAED:Y > Teasr<1 (4.6)

seES keEK

4.2.2 Schedule locks

In some cases, manual planners can assign a preset value v to an employee e € F,
on a day d € D, for a shift type s € S and a skill type k € K. These preset
assignments are hard constraints and they are not allowed to be changed. These
preset values can be 1 or 0.

Te,d,s,k =V (47)

4.2.3 Honour skill types

Let the skill types of an employee e € E be K, C K. In that case, Equation 4.8
forbids any assignment to e with a skill type k that e does not have. Honouring
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skill types is a hard constraint.

Z Z Z Ted,sk =0 (4.8)

deD seS keK/K.

4.2.4 Defined assighments only

If an assignment on day d € D, with shift type s € S and skill type k € K is not
defined in any of the coverage constraints ccq s,k € CC, then such an assignment
cannot be made to any employee e € E. Assignments that are provided in the
input schedule cannot be modified, deleted or reassigned to another employee if no
coverage constraint is defined for that day, skill and shift type.

The motivation behind this constraint is the fact that the coverage constraints are
considered as soft constraints. For example, an assignment can be made even if the
maximum threshold of the corresponding coverage constraint is equal to zero. This
is necessary in practice when the working hours of an employee does not satisfy his
or her minimum number of required working hours specified in his or her contract.
However, there are situations when the assignment of a particular shift type to an
employee with a particular skill type cannot be considered at all. For example, in
some wards, a head nurse is never assigned in the night shift and therefore such a
coverage constraint is never defined. Hence, the defined assignments only constraint
is treated as a hard constraint.

Vd € D,Vs € S,Vk € K :

-3 (CCd,S',K' S OC‘S S Sl,k S K’) = er,d,s,k =0
ecl

4.2.5 Overlapping shift types

Let T be the set of shift type pairs (s;,s;) such that s; and s; overlap if they are
assigned on consecutive days d and d + 1, respectively. Equation 4.10 ensures that
no overlapping shift type assignments are made to any employee on any day.

¥d € D.Ye € B, ¥(si,5;) €T ) Tedsh+ ) Te(arnspe <1 (410)
keK keK
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4.3 Soft constraints

Let v(z), w(z), m(zx), n(x), p(z) refer to the value, weight, maximum threshold,
minimum threshold and the penalty of a constraint .

The objective value of a candidate solution is the sum of the penalties of all soft
constraints X in the problem instance (Equation 4.11).

Z p(z) (4.11)

reX

4.3.1 Rest times between shift types

Let R be the set of shift type pairs (s;,s;) such that at least one of s; and s;
violates the rest time of the other if they are assigned on consecutive days d and
d + 1, respectively. Let w5 be the weight for the rest time between shift types
constraint. P,..s in Equation 4.12 refers to the total rest time between shift types
penalty, which is the number of violations of the rest time between shift types
constraint multiplied by the corresponding weight.

Prest = Z Z Z Z Wrest " Le,d,s;,k * me,(d+1),s_j,k (412)

ecE deD (s;,s;)ERkEK

4.3.2 Employee skill type penalties

Let the skill types of an employee e € E be K, C K. Each skill type k € K, has a
penalty we j, that is added to the objective value, in case an assignment is made
with that skill type. Pgg in Equation 4.13 refers to the total amount of employee
skill type penalties of a schedule.

Pagin = > D> > Wek* Tedsh (4.13)

e€cE deD seS keK

4.3.3 Coverage constraints

Coverage constraints are considered to be soft constraints. Let S’ C S and K’ C K.
The coverage constraint ccq g/, i+ restricts the number of employees assigned on
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day d € D, for shift type set S’ C S and for skill type set K’ C K. As it can
be understood from its formulation, any assignment with any shift type s in the
shift type set S’ C S and any skill type k in the skill type set K’ C K on day
d € D is counted by the coverage constraint ccq s k. v(ccq s, k1) refers to the
total number of assignments on day d, with any shift type s € S’ C S and any skill
type k € K’ C K. The total penalty p(ccq s/ k) of coverage constraint ccq s/ g is
calculated using Equation 4.15.

v(ceq, s k1) = Z Z Z Te,d,s,k (4.14)

ecE se€S’' keK'

P(Ccd,S/,K/) =
w(ccd,s’,K’) : maX{07’U(CCd’S/’K/) - m(ccd,S',K’)} + (4 15)

w(ceq, s k) - max{0,n(ccq s k') — vicea,s k) }

4.3.4 Collaboration

Let E' C E be the employee set, D’ C D be the day set, S’ C S be the shift type
set, K’ C K be the skill type set and the triple < D', S’, K/ > be the domain of
the collaboration constraint (g pr s/ k7. v(lgr.a,5/ k) refers to the total number of
assignments made to the members of the employee set E' on day d € D' C D, for
shift type set S’ C S and skill type set K/ C K. The total penalty p(lg: pr s/ k')
of collaboration constraint g/ pr sk is calculated using Equation 4.17.

Vd e D' : v(lgr a8 k)= Z Z Z Te,d,sk (4.16)

eck’ s€S' keK'’

p(le pr s i) =

Z w(lp p s k) - max{0,v(lg a5, x') — Mg s, k) } +
dcDr (4.17)

> wllp prs ) - max{0,n(lg prsr k) = v(lpras k)
deD’
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4.3.5 Counters

Let csv(c) be the counter start value and crv(c) the counter remainder value of
counter ¢. The penalty p(c) of counter ¢ is calculated using Equation 4.18.

pe) =
w(c) - max{0,v(c) —m(c)} + (4.18)

w(c) - max{0,n(c) —v(c) — crv(c)}

Days worked counters
Let D’ C D be the day set of the days worked counter dwec, ps of employee e € E.

The counter value v(dwe. p/) of days worked counter dwe, p is calculated using
Equation 4.19.

v(dwee pr) = csv(dwee, pr) Z De,d (4.19)
deD’

Days idle counters
Let D' C D be the day set of the days idle counter dic. ps of employee e € E. The

counter value v(dic. p/) of days idle counter dic. p- is calculated using Equation
4.20.

v(dice,pr) = csv(dice,pr) Z 1 —Ped (4.20)
deD’

Shift types worked counters

Let D’ C D be the day set and S’ C S be the shift types set of the shift types
worked counter swe, p/ s of employee e € E. The counter value v(swce pr,s/) of
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shift types worked counter swc, ps s/ is calculated using Equation 4.21.

v(swee,pr.sr) = csv(swee, prosr) + Z Z Z Te,d,s.k (4.21)

deD’ seS’' keK

Domain counters
Let D' C D be the day set, S’ C S be the shift types set, and K’ C K be the skill

type set of the domain counter dc. ps g/ k' of employee e € E. The counter value
v(dee,pr.s7 k) of domain counter dec. pr sk is calculated using Equation 4.22.

U(dCE,D’,S’,K’) = Csfv(dce,D’,S’,K’> —+ Z Z Z xe,d,s,k,‘ (422)

deD’ s€S’ ke K’

Weekends worked counters

Let W/ C W be the weekends in the counter period of the weekends worked counter
wwee,w of employee e € E. The counter value v(wwe,w) of weekends worked
counter wwe, w- is calculated using Equation 4.23.

v(wwee wr) = esv(wwee,w) + Z e, w (4.23)
weWw’

Weekends idle counters

Let W’ C W be the weekends in the counter period of the weekends idle counter
wice w of employee e € E. The counter value v(wice,w) of the weekends idle
counter wic, - is calculated using Equation 4.24.

v(wice,w) = csv(wice,wr) + Z (1—gew) (4.24)
weWw’

Hours worked counters

Let D' C D be the day set of the hours worked counter hwe, ps of employee e € E.
Let Dy C D, Sy C S, and K, C K be the day set, shift type set and skill type
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set of absence request ar, respectively. Let D/, = D' N D,,. Let AR, be the set of
all absence requests of an employee e € E. Let JobTime(s) be the net job time of
a shift type s € S and JobT'ime(ar) the net job time of an absence request ar.

ARS = {ar € AR.|D}, # 0 A handling of Dq, is complete}
AR! = {ar € AR.|D.,. # 0 A handling of Dq, is individual}

v(hwee,pr) =

csv(hwee,pr) Z Z Z Te,d,s i - JobTime(s)+

deD’ seS keK

Z (1 = Pe.Dy, Sur Kaon) - JODTime(ar)+ (4.25)
ar€ARS

Z Z Z Z (1 —xe,ask) - JobTime(ar)

ar€AR: dED!,, S€Sar k€K ar

4.3.6 Series

Days worked series

The calculation of the total penalty p(dws.) of days worked series dws. with a
maximum threshold m(dws.) of an employee e € E is given in Equation 4.26.

m(dwse)

p(dwse) = w(dws,) Z mazx Z De,d+i | — m(dws.),0 (4.26)
deD

The calculation of the total penalty p(dws.) of days worked series dws, with a
minimum threshold n(dws,) of an employee e € F is given in Equation 4.27.
p(dwse) =

w(dwse) Y (1= pe.d) - Peasr - mazi 5" {(n(dwse) — i) (1 = peariv1)} (4-27)
deD
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Days idle series

The calculation of the total penalty p(dis.) of days idle series dis, with a maximum
threshold m(dis.) of an employee e € E is given in Equation 4.28.

m(dise)
p(dise) = w(dise) Z mazx Z 1 —ped+i | —m(dise),0 (4.28)
deD i=0

The calculation of the total penalty p(dis.) of days idle series dis. with a minimum
threshold n(dis.) of an employee e € E is given in Equation 4.29.

p(dise) =w(dise) > pea- (1= pearr) - mazi 7™ {(n(disc) = ) (pe,aris1)}
deD

(4.29)

Weekends worked series

The calculation of the total penalty p(wws.) of weekends worked series wws,. with
a maximum threshold m(wws,.) of an employee e € E is given in Equation 4.30.

m(wwse)
p(wws.) = w(wws,) Z max Z Qe,wti | —m(wwse),0 (4.30)
wew i=0

The calculation of the total penalty p(wws.) of weekends worked series wws, with
a minimum threshold n(wws,.) of an employee e € E is given in Equation 4.31.

p(wws,) =

w(wws,) Z (1= Gew) * Qe - max?z(lfwse) (n(wwse) — ) (1 = qowris1)} (4:31)
weW
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Weekends idle series

The calculation of the total penalty p(wis.) of weekends idle series wis. with a
maximum threshold m(wis.) of an employee e € F is given in Equation 4.32.

m(wise)
p(wise) = w(wis,) Z mazx Z 1= qewti | — m(wise),0 (4.32)
weWw =0

The calculation of the total penalty p(wis.) of weekends idle series wis. with a
minimum threshold n(wis.) of an employee e € F is given in Equation 4.33.

p(wise) =

w(wise) Y Geaw - (1= Gewrn) - mazi s {(n(wise) = i) (qewyira)} (4:33)
weWw

Shift types worked series

The calculation of the total penalty p(swse, s+) of shift types worked series swse g
defined on S’ C S with a maximum threshold m(swse s/) of an employee e € E is
given in Equation 4.34.

m(sws, gr)
p(swse,s7) = w(swse,sr) Z mazx Z Pe,d+i,s0 | — m(swse g),0
deD =0

(4.34)
The calculation of the total penalty p(sws. s) of shift types worked series swse, s/

defined on S’ C S with a minimum threshold n(sws. /) of an employee e € E is
given in Equation 4.35.
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P(swSse,57) = w(swse,g)

Z (1 = pe,a,s’) - Dedti,s - mal"?z(slwse‘sl) {(n(swse,s7) — 1) (1 = pe,atit1,57)} (4.35)

deD

4.3.7 Successive series

As the name suggests, the successive series constraint restricts the succession of
series that occur in the schedule of an employee. The successive series are evaluated
in two steps. In the first step, the schedule of the employee is divided into series
according to the definition of the successive series. A data structure, successive
series token, is used for this purpose. A successive series token item consists of two
elements: type and length. The type element can take one of three values: series 1,
series 2 or irrelevant. The length element refers to the length of the series that the
token represents.

e Successive series token

— Type
— Length

The first step of the successive series evaluation is creating a list of successive
series tokens corresponding to the schedule of the employee. The algorithm of the
CreateToken(Series Type) procedure is given in Algorithm 2. This procedure is
called from numerous places in the algorithms of the first step.

Algorithm 2 CreateToken(SeriesType) procedure

INPUT : SeriesType

sst := new SuccessiveSeriesToken()
sst. Type := SeriesType

sst.Length =1

return sst

Algorithm 3 refers to the first step of the evaluation of the days worked - days idle
successive series. Since a day in the schedule of an employee is either worked or
idle, only two series types will be used for this successive series. Series 1 refers
to the series of worked days and series 2 to the series of idle days. Algorithm 3
returns a list of successive series tokens of types series 1 and series 2.
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Algorithm 3 Days worked - days idle successive series
INPUT : peq
sstl = new SuccessiveSeriesTokenList()
for d=1— |D| do
if DPe,d == 0 then
if sstl.Length == 0 then
sstl. Add (CreateT oken (Series2))
else
if sstl.LastElement. Type == Seriesl then
sstl.Add (CreateT oken (Series2))
else if sstl.LastElement. Type == Series2 then
sstl.LastElement.Length + +
end if
end if
else if p. 4 == 1 then
if sstl.Length == 0 then
sstl.Add (CreateT oken (Seriesl))
else
if sstl.LastElement.Type == Seriesl then
sstl.Last Element.Length + +
else if sstl.LastElement. Type == Series2 then
sstl.Add (CreateT oken (Seriesl))
end if
end if
end if
end for
return sstl

The first step of the evaluation of the days idle - days worked successive series, i.e.,
Algorithm 4, is similar to the days worked - days idle successive series. The only

difference is that series 1 refers to the idle days and series 2 refers to the worked
days in this case.
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7

Algorithm 4 Days idle - days worked successive series

INPUT : peq
sstl = new SuccessiveSeriesTokenList()
for d=1— |D| do
if DPe,d == 0 then
if sstl.Length == 0 then
sstl.Add (CreateT oken (Seriesl))
else
if sstl.LastElement. Type == Seriesl then
sstl.LastElement.Length + +
else if sstl.LastElement. Type == Series2 then
sstl.Add (CreateT oken (Seriesl))
end if
end if
else if p. 4 == 1 then
if sstl.Length == 0 then
sstl.Add (CreateT oken (Series2))
else
if sstl.LastElement.Type == Seriesl then
sstl.Add (CreateT oken (Series2))
else if sstl.LastElement. Type == Series2 then
sstl.LastElement.Length + +
end if
end if
end if
end for
return sstl

The remainder of the successive series involve a third series type, i.e., the irrelevant

series type. The irrelevant series consists of the shift type assignments that do
not belong to a shift type set of any of the series in the successive series. In case
of the shift types worked - shift types worked successive series, idle days are also
considered to be irrelevant. Algorithms 5, 6 and 7 refer to the algorithms of the first

step of the evaluations of the shift types worked - days idle, days idle - shift types

worked and shift types worked - shift types worked successive series, respectively.
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Algorithm 5 Shift types worked - days idle successive series
INPUT : peq
INPUT : pe,q.s
sstl = new SuccessiveSeriesTokenList()
ford=1—|D| do
if DPe,d == 0 then
if sstl.Length == 0 then
sstl. Add (CreateT oken (Series2))
else
if sstl.LastElement.Type == Series2 then
sstl.LastElement.Length + +

else
sstl.Add (CreateT oken (Series2))
end if
end if
else if p. 45 == 1 then

if sstl.Length == 0 then
sstl. Add (CreateT oken (Seriesl))
else
if sstl.LastElement.Type == Seriesl then
sstl.LastElement.Length + +
else
sstl.Add (CreateT oken (Seriesl))
end if
end if
else
if sstl.Length == 0 then
sstl. Add (CreateT oken (Irrelevant))
else
if sstl.LastElement. Type == Irrelevant then
sstl.Last Element.Length + +
else
sstl.Add (CreateT oken (Irrelevant))
end if
end if
end if
end for
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Algorithm 6 Days idle - shift types worked successive series
INPUT : peq
INPUT : pe,q.s
sstl = new SuccessiveSeriesTokenList()
ford=1—|D| do
if DPe,d == 0 then
if sstl.Length == 0 then
sstl. Add (CreateT oken (Seriesl))
else
if sstl.LastElement.Type == Seriesl then
sstl.LastElement.Length + +

else
sstl.Add (CreateT oken (Seriesl))
end if
end if
else if p. 45 == 1 then

if sstl.Length == 0 then
sstl. Add (CreateT oken (Series2))
else
if sstl.LastElement.Type == Series2 then
sstl.LastElement.Length + +
else
sstl.Add (CreateT oken (Series2))
end if
end if
else
if sstl.Length == 0 then
sstl. Add (CreateT oken (Irrelevant))
else
if sstl.LastElement. Type == Irrelevant then
sstl.Last Element.Length + +
else
sstl.Add (CreateT oken (Irrelevant))
end if
end if
end if
end for
return sstl
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Algorithm 7 Shift types worked - shift types worked successive series
INPUT : pea,s;
INPUT : pe,dﬁ’é
sstl = new SuccessiveSeriesTokenList()
ford=1—|D| do
if pe 4,57 ==1 then
if sstl.Length == 0 then
sstl. Add (CreateT oken (Seriesl))
else
if sstl.LastElement. Type == Seriesl then
sstl.LastElement.Length + +

else
sstl.Add (CreateT oken (Seriesl))
end if
end if
else if p. 45, == 1 then

if sstl.Length == 0 then
sstl. Add (CreateT oken (Series2))
else
if sstl.LastElement.Type == Series2 then
sstl.LastElement.Length + +
else
sstl.Add (CreateT oken (Series2))
end if
end if
else
if sstl.Length == 0 then
sstl. Add (CreateToken (Irrelevant))
else
if sstl.LastElement. Type == Irrelevant then
sstl.Last Element.Length + +
else
sstl.Add (CreateT oken (Irrelevant))
end if
end if
end if
end for
return sstl

The first step of the evaluation is specific to each successive series type. The second
step, however, is common among all successive series types. In the second step,

which is presented as Algorithm 8, the penalty is calculated using the list of tokens
constructed in the first step.
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Algorithm 8 Second step of the evaluation of successive series
INPUT : sstl := SuccessiveSeriesTokenList
INPUT : Minl := minimum threshold of series 1
INPUT : Mazl := maximum threshold of series 1
INPUT : Min2 := minimum threshold of series 2
INPUT : Maxl := mazximum threshold of series 2
p(sucseries) =0
for i =1 — sstl.Length — 1 do
if {(sstl[i + 1].Type == Series2) A
(Max2 < sstl]i + 1].Length) A
(sstl]i].Type == Seriesl) A
(
(

Minl < sstl[i + 1].Length) A
sstlli + 1].Length < Max1)} then
p(sucseries)+ = w(sucseries) - (sstl[i + 1].Length — M az2)
end if
if {(sstl[i + 1].Type == Series2) A
(sstl]i + 1].Length < Min2) A
(sstl]i].Type == Seriesl) A
(Minl < sstl[i + 1].Length) A
(sstl]i + 1].Length < Maz1)} then
p(sucseries)+ = w(sucseries) - (Min2 — sstl[i + 1].Length)
end if
end for

4.3.8 Absence request

Let D’ C D be the day set, S’ C S the shift type set and K’ C K be the skill type
set of the domain < D', S", K’ > of the absence request ar. pr s/ i’ of employee
e € E. The handling of the days set in the domain of the absence request determines
how the absence request is evaluated.

If the handling is individual, then the total penalty p(are pr s/ k') of the absence
request is calculated using Equation 4.36.

plare,pr.s k) = w(are,p s x) Z Z Z Te,d,s,k (4.36)

deD’ seS' ke K’

If the handling is complete, then the total penalty p(are p/ s/ k) of the absence
request is calculated using Equation 4.37.

plare, /s, k) = w(are,pr,s', k") * Pe,0’ 8", K’ (4.37)
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4.4 Constraint evaluation over multiple schedule pe-
riods

The common practice in academia has been to deal with problem instances
considering an isolated schedule period only. This is fine provided that the evaluation
of all the constraints is sorted out, which is often not the case. This simplification
does not match the real world practice in hospitals, when constraints apply to
consecutive days. Moreover, it makes the comparison of approaches impossible,
because methods that have been developed for real world purposes include more
complex aspects.

Burke et al. [27] have presented a constraint evaluation method for nurse rostering
problems. The initialisation algorithm of the evaluation method takes into account
the previous schedule period. The motivation behind this practice is to evaluate
the consecutiveness constraints that overlap with the previous schedule period
accurately. In [33], Glass and Knight have studied the nurse rostering practice and
pointed at the importance of the continuity between two schedule periods. The
ideas that have been asserted in that paper are in alignment with the case of this
dissertation.

In real world practice, a solution is evaluated taking into consideration the previous
and to a lesser extent also the upcoming schedule periods. The assignments at the
end of the previous schedule period need to be taken into account to evaluate the
constraints that apply to assignments overlapping with the previous and current
schedule periods. Similarly, the information in the upcoming schedule periods often
needs to be considered when evaluating the constraints that overlap with the
current and upcoming schedule periods.

4.4.1 Example 1

Consider the min three consecutive idle days constraint. The evaluation of this
constraint requires taking into account the previous scheduling period as well. The
idle days block at the end of the previous schedule period in Table 4.1 is not
penalised as a constraint violation in the previous schedule period, because the
constraint violation can be overcome in the current schedule period. However, the
same block needs to be taken into account when evaluating the constraint in the
current scheduling period. A working day assignment on the first day of the current
schedule period will result in a constraint violation. In order to avoid a constraint
violation caused by the idle days block at the end of the previous schedule period,
an idle day needs to be assigned on the first day of the current schedule period.
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Previous | Current
] On \ off \ off ? \

Table 4.1: Continuity Example 1

4.4.2 Example 2

Consider the no isolated assignment constraint and the situation in Table 4.2. This
constraint cannot be evaluated based on the information in the current schedule
period only. Whether there is a constraint violation in the current schedule period
or not, depends on the assignment on the last day of the previous schedule period
(the day marked with ‘?” in Table 4.2).

Previous | Current
| 2 On | OF |

Table 4.2: Continuity Example 2

4.4.3 Example 3

It is common practice not to penalise a constraint violation at the end of a schedule
period if it could be overcome by assignments or idle days in the upcoming schedule
period. Consider the at least three consecutive days worked constraint. The two
assignments at the end of the current schedule period in Table 4.3 do not contribute
to a constraint violation because the problem could be overcome by an assignment
at the start of the upcoming schedule period.

This kind of practice is relevant in the real world only if such violations are handled
in the upcoming schedule period. Table 4.4 pictures the same situation as it is
observed in the upcoming schedule period. The violation of the at least three

Current | Upcoming
’ Off ‘ On ‘ On ? ‘

Table 4.3: Continuity Example 3a
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Previous | Current
’ Off ‘ On ‘ On ? ‘

Table 4.4: Continuity Example 3b

consecutive days worked constraint at the end of the previous schedule period is not
penalised in the previous schedule period because this violation could be overcome
in the current schedule period. This constraint overlaps with the previous schedule
period. In its turn, this means that the constraint violations in the previous schedule
period that can be overcome in the current schedule period need to be handled in
the current schedule period. In this case, either an assignment needs to be made
to the first day of the current schedule period, or the corresponding constraint
violation needs to be penalised in the objective function.

4.4.4 Example 4

The following situation is an example of how the information in the upcoming
schedule period is used in the current schedule period. The schedule in Table 4.5 is
the same as the schedule in Table 4.3 with one exception, namely the nurse is on
vacation on the first day of the upcoming schedule period. That day corresponds
to an idle day. This implies that the violation of the at least three consecutive days
constraint cannot be overcome in the upcoming schedule period. Therefore, this
violation needs to be penalised in the current schedule period, because this is the
only opportunity to address this violation.

Current | Upcoming
’ Off \ On \ On \Y

Table 4.5: Continuity Example 4. V refers to vacation

4.4.5 Example b

The holidays worked counter is considered in Example 5. Sometimes, holidays
worked counters are defined over a period of one year in real world practice. During
a given schedule period in a year, the holidays worked in the previous schedule
periods need to be known. Information on the number of remaining holidays in the
rest of the reference period, which in the present case is one year, is also required.
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Previous Current Upcoming

[ HW [ HW | [ H[H ]| H [ H [ |

Table 4.6: Continuity Example 5. HW refers to a holiday that is worked. H refers
to a bank holiday.

Table 4.6 shows a nurse who has to work on at least five bank holidays in a year.
There are three bank holidays in the current schedule period. He or she has already
worked on two holidays in the previous schedule periods and there is only one
holiday left after the current schedule period in the current year.

If the information from the previous schedule periods is taken into account, he or
she still has to work on three bank holidays in the remainder of the year, because
he or she has already worked two holidays. If the information from the upcoming
schedule periods is taken into account, he or she has to work at least two holidays
in the current schedule period, because there is one more holiday in the remainder
of the year. Any number less than two holidays worked in the current schedule
period will result in a violation of this constraint at the end of the year.

4.4.6 Example 6 (Valouxis 1)

Although the continuity between schedule periods seems to be a minor boundary
issue, it can result in big differences in practice. The schedule in Fig. 4.1 has
been presented as the optimal solution for the problem instance Valouxis 1 in the
Nottingham benchmarks. In Fig. 4.1, each row represents the schedule of a nurse
and each column a day in the schedule period. The filled squares represent the days
with assignments and the empty ones the idle days. The penalty for this solution
has been reported to be 20. However, if the roster in Fig. 4.1 is examined carefully,
three specific assignments can be seen at the beginning of the schedule period.
Depending on the assignments in the previous schedule period, these assignments
may be isolated assignments. Since the no isolated assignment constraint has a
penalty of 1000, it is possible that the penalty of this solution is greater than 3000.
This number exceeds the reported value of 20 by a margin that can make this
solution unacceptable in practice. This anomaly makes academic comparison of
algorithm performance impossible, because other algorithms have been developed
to work with the real world evaluation functions that consider continuity rules.
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Figure 4.1: Optimal Solution for Valouxis 1

4.4.7 Example 7 (SINTEF)

The problem instance SINTEF from the Nottingham benchmarks contains pattern
definitions of the min two consecutive day shifts and min two consecutive early
shifts constraints. These pattern definitions have exceptions for the beginning of the
current schedule period. A {day-on, day-off} sequence at the start of the schedule
period is considered to be a constraint violation. In practice, an assignment of a
relevant shift type at the end of the previous schedule period would make a {day-on,
day-off} sequence at the start of the schedule period perfectly legal.

4.4.8 Example 8 - Maximum consecutive free days (BCV-3.46.2,
Millar-2Shift-DATA1, MUSA, lkegami-2Shift-DATAL1)

The pattern definition of the max seven consecutive free days constraint in the
problem instance BCV-3.46.2 from the Nottingham benchmarks does not take
into account the idle days at the end of the previous schedule period. Even if
there are seven consecutive idle days at the end of the previous schedule period,
up to seven idle days can be assigned at the beginning of the current schedule
period without a penalty according to the pattern definition. This results in 14
consecutive idle days that are not penalised. Similar continuity problems occur in
the Millar-2Shift-Datal, MUSA and Ikegami-2Shift-DATAT1 instances, where the
max X consecutive free days constraints have been defined in exactly the same way.

The maz seven consecutive free days constraint in BCV-3.46.2 has generated the
most severe differences between the benchmark evaluation and the evaluation
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function presented in this dissertation. The previous schedule period is assumed
to be empty, because no assignments are defined in that period. As a result, the
algorithms developed by the author (Chapter 7) corrects the violations at the end
of the previous schedule period by making assignments at the start of the current
schedule period.

4.4.9 Example 9 - Maximum consecutive working days (BCV-
3.46.2)

The pattern definition of the max seven consecutive working days constraint in
contract Waverpleeg has been defined as the following unwanted pattern: {8-days-
on, 1-day-off}. This unwanted pattern definition evaluates any assignment sequence
of eight or more assignments as one constraint violation. There is a fixed amount
of penalty for any sequence of assignments, be it eight or 27. In the real world
however, the amount of penalty is proportional to the size of the violation. Similar
pattern definitions are present for mazrimum consecutive night shift and maximum
consecutive working days constraints in Waverpleeg and other contracts.

4.4.10 Example 10 (GPost, ORTECO01)

The pattern definition of the min 2 consecutive free shifts constraint penalises the
{day-off, day-on} sequence at the beginning of the current schedule period. This
pattern definition assumes that the last day of the previous schedule period is a
working day. This contradicts with most of the consecutiveness constraints in the
same instances, which assume the last day of the previous schedule period to be an
idle day. For example, the no isolated assignment constraint penalises the {day-on,
day-off} sequence at the beginning of the current schedule period, which is based
on the assumption that the last day of the previous schedule period is an idle day.
This contradiction exists in both instances, GPost and ORTECO01.

Furthermore, the assumption that the last day of the previous schedule period
to be an idle day is not completely accurate. Such an assumption implies that
no assignment is made in the last day of the previous schedule period. This
implication contradicts with the coverage constraints, which are hard constraints
in the Nottingham benchmarks.

4.4.11 Example 11 (Azaiez, WHPP)

The unwanted pattern of the no isolated assignment constraint in Contract RKH
in the problem instance Azaiez from the Nottingham benchmarks has been defined
as {day-off, day-on, day-off} sequence. Similar to Valouxis 1 (Example 6), it is not
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clear how an isolated assignment at the beginning of the current schedule period is
going to be evaluated. The same pattern definition occurs in the problem instance
WHPP from the Nottingham benchmarks.

4.5 Conclusions

The problem model of the nurse rostering problem has been introduced in Chapter
3 as a collection of data structures. Complementary to Chapter 3, the formal
definitions of the evaluations of the constraints have been presented in this chapter.
The nurse rostering problem has been treated as a constraint optimisation problem.
First the decision variables and the auxiliary variables based on the decision
variables have been defined. The evaluations of the hard and soft constraints have
formally been defined using the decision and auxiliary variables. This information
is essential to the developer, in order to provide consistent evaluation methods that
comply with the user’s quality perception.

A candidate solution, a schedule in the present case, is feasible if and only if it
satisfies all the hard constraints. The objective value of the candidate solution
is the linear combination of the soft constraint violations. The calculation of the
values and penalties of all the soft constraint types have been presented in this
chapter.

Furthermore, constraint evaluation over multiple schedule periods has been discussed
in greater detail with hypothetic examples as well as with examples from the
literature. Although continuity issues in constraint evaluation seem to be boundary
conditions, they can result in significant deviances from the solutions that are
acceptable and satisfactory in real world practice. The deviances in the objective
values between the real world and academic constraint evaluations impede the
intended purpose of algorithm comparison. The algorithms presented in this
dissertation deploy the constraint evaluation methods developed for the real
world practice. Therefore, the comparison of the objective values achieved by
the algorithms presented in this dissertation and by the academic algorithms do
not provide an accurate performance comparison. Such issues can be overcome by
incorporating the schedule information from the previous and upcoming schedule
periods in the constraint evaluation of the academic algorithms as well. In any
case, we propose modifications to the academic benchmark constraint evaluation
functions so that they are compliant with real world practice.



Chapter 5

Quantitative measures of
problem properties

One of the conclusions of the academic context in Chapter 2 is that, despite
considerable academic efforts, real world applications of the solution methods to
the personnel rostering problem have been very limited. The academia’s approaches
have not been able to address a number of real world requirements for the personnel
rostering problem. One of these requirements is to be able to address a variety
of problem instances. A single algorithm configuration cannot be expected to
perform well on all personnel rostering problems. Wolpert and Macread [71] have
formalised this fact in their work on no free lunch theorems. They have stated
that the performance of algorithms vary over different problems. If algorithm a
outperforms algorithm as on problem pq, then there must be a problem ps on which
the algorithm ay outperforms algorithm a;. Consequently, if a solution method
has to address a broad range of problem instances, it cannot rely solely on a single
algorithm configuration.

In case of personnel rostering, a single algorithm configuration cannot be expected
to perform well on all problem instances from various sources, such as different
countries, sectors, institutions and on problem instances created synthetically in
laboratory conditions. A single algorithm configuration is expected to perform
well on some instances and unsatisfactorily on others. Therefore, first, a range
of problem instances have to be identified as target instances. In the present
dissertation, real world personnel rostering problems have been identified as target
instances. Second, a solution method consisting of several algorithms with a variety
of configurations is needed, in order to increase the probability of finding good
enough solutions on the targeted range of problems.
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The solution method needs to decide somehow which algorithm configuration
to choose to tackle a given problem instance. This practice prevents the
interference of an expert by circumventing his task of analysing the problem instance,
experimenting with several algorithms and determining the most promising one. A
fully automated system eliminating the involvement of an expert leads to time and
cost savings. In addition, such a system provides a vast economic value, because
as a software product, it can be duplicated easily and deployed on multiple sites
simultaneously, compared to the deployment of an expert on a single site.

The relations between the algorithm performance and the problem properties are
required for an automated decision of which algorithm configuration to execute on
a given problem instance. Such a decision process involves measuring the problem
properties and selecting the most promising algorithm configuration for those
properties. This process adds an overhead to the execution time of the algorithm.
Therefore, it should not take longer than an acceptable fraction of the execution
time of the algorithm, in order to satisfy the end users who expect a good enough
solution in a limited amount of execution time.

Relationships between algorithm performance and problem properties have been
investigated for the personnel rostering problem in the scientific literature [52, 55,
65, 68]. These studies give a profound insight in the contribution of the problem
properties to the hardness of a problem instance. Properties such as the size of a
problem and the ratio between the supply and demand of the workforce are the
main factors of the hardness of a personnel rostering problem instance.

The problem model introduced in Chapter 3 involves numerous real world
requirements. Schedule locks, one of the frequently used requirements in the
real world practice, have not been considered in the hardness measures reported in
the scientific literature. If a part of the schedule is locked by the end user, then the
algorithm is not allowed to make any changes on that part. Schedule locks reduce
the size of the problem instance for the algorithm. Depending on the constraints
that apply to the locked parts, schedule locks can increase or decrease the hardness
of a problem instance.

In the scientific literature, the size of a problem instance has been measured either
as the number of employees, days or shift types. All of these measures are factors
of the overall size of a problem instance, but none of them represent the overall
size by itself. Therefore, quantitative measures that take into account the schedule
locks and the overall size of the problem instance are needed. Three measures are
introduced in this chapter to address these requirements. Two of the quantitative
measures are based on the problem size: minimum number of required assignments
and minimum number of required and free assignments. The third quantitative
measure, the tightness ratio, takes into account to which extent the coverage
constraints can be addressed by the employees. In other words, the tightness ratio
indicates the ratio of workforce demand to workforce supply. This value is ideally
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below 1 indicating that there is sufficient workforce supply to cover the demand.
Although rare, the value of the tightness ratio exceeds 1 in the real world practice.
That points to a workforce supply shortage in the corresponding ward.

The quantitative measures of several nurse rostering benchmarks will be presented
in Chapter 6. The analysed benchmarks will be presented in four groups according
to their measures in the same chapter. The solution methods presented in Chapter
7 are applied to the nurse rostering benchmarks and the results of these experiments
will be reported in Chapter 8. As a result, a relation between the quantitative
measures and the performance of the algorithm configurations will be inferred
(Chapter 8). The most promising algorithm variant and parametrisation for each
group will be pointed out in Section 8.2. The inferred relation can then be used in
personnel rostering software that utilise the problem model introduced in Chapter
3 and the solution methods introduced in Chapter 7.

5.1 Minimum number of required assignments

The number of assignments an algorithm has to deal with is a more accurate
estimation of the problem size than the number of days, employees or shift types
alone. This measure can be derived from the number of assignments required by
the coverage constraints. However, the coverage constraints do not always express
an exact number of required assignments. Sometimes they are defined with an
interval: a minimum and a mazimum number of employees needed for a date, shift
and skill type. For this measure, only the minimum number of assignments that
are required by the coverage constraints are used.

There are two cases, in which the value of the minimum number of required
assignments measure can exceed the actual number of assignments that the
algorithm has to deal with. In some rare cases such as personnel shortage, the
minimum number of required assignments can exceed the workforce supply in a
problem instance. In such a case, the actual number of the assignments an algorithm
has to deal with is lower than the minimum number of required assignments. The
second case is when a considerable number of schedule locks prevent the algorithm
from modifying a subset of the assignments required by the coverage constraints.
In both cases, the number of assignments that an algorithm has to deal with is
actually smaller than the value of the minimum number of required assignments.
To address both cases a second measure of problem size, minimum number of
required and free assignments, has been introduced in the following section.
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5.2 Minimum number of required and free assign-
ments

In practice, planners construct some parts of the rosters manually and then lock
these parts before executing the automated rostering tool on the problem instance
(Section 3.2.3). The assignments and idle days in the locked parts of the roster are
not allowed to be modified by the algorithm. The locked parts of the input schedule
can reduce the number of the required assignments that can be processed by the
rostering tool. On the other hand, in some rare cases, the number of minimum
required assignments can exceed the number of the employees whose schedules
are not locked on the day of the required assignment. Such cases also reduce
the number of the required assignments that the rostering algorithm has to deal
with. A second problem size measure, the minimum number of required and free
assignments (MNRFA), has been introduced to take into account both cases.

Let D refer to the set of all days in the schedule period and K to the set of all skill
types in the problem instance. Let CCy4j C C'C' be the set of coverage constraints
defined on day d that contain skill type k in their skill type set. Let n(ccq s/ k)
be the minimum threshold of coverage constraint ccq g . Let S’ C S be the shift
type set of coverage constraint ccq s/ . Let E!, C E be the set of employees whose
schedules are locked on day d. Let E(’i’ « C E be the set of employees who have skill
type k& and whose schedules are not locked on day d. The minimum number of
required and free assignments measure is calculated using the formula in Equation
5.1.

Z Z Z min |E(’1”k|7 n(ceq,s k) — Z Z Te,d,sk (5.1)
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5.3 Tightness ratio

The tightness ratio measures how well the coverage constraints can be matched
by the available workforce for a given problem instance. The tightness ratio of
a problem instance is calculated by taking the average of the tightness ratios for
each date and skill type. The tightness ratio for a date and skill type is the ratio of
the required number of working hours to the available number of working hours by
employees. The required number of working hours are calculated using coverage
constraints. The number of required shift type assignments is multiplied by the
net working duration (working hours or job time) of the shift type. The resulting
value is the required number of working hours. Usually, employees have a maximum
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number of working hours per time reference in their contracts. This information is
used as the available number of working hours by employees. Similar to MNRFA,
only the working hours data of the assignments that are not locked and the available
employees are used. The only exception to this calculation is when a problem
instance does not have hours worked counters for the employees. That is the case
for example in the Valouxis-1 instance from the Nottingham benchmarks. In such
cases, the calculations are based on the number of available working days of the
employees instead of the available working hours by employees.

Let D refer to the set of all days in the schedule period and K to the set of all
skill types in the problem instance. The tightness ratio of the problem instance is
calculated using equation 5.2.

Z Z requiredJobTimeg i
deD £LukeK availableJobTimeg, ),

DI K]

(5.2)

Let CCy4 1 C CC be the set of coverage constraints defined on day d that contain
skill type k in their skill type set. Let n(ccq,s.x) be the minimum threshold of
coverage constraint ccq s . Let S’ C S be the shift type set of the coverage
constraint ccq g . Let E!; C E be the set of employees whose schedules are locked
on day d. Let JobT'ime(s) be the net job duration of shift type s. The required
job time on day d for skill type k is calculated using Equation 5.3.

requiredJobTimeq ), =

(5.3)
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Let Eg  C I be the set of employees who have skill type k and whose schedules
are not locked on day d. Let hwc. p- be the hours worked counter of employee
e, such that d € D’. Let m(hwce,D/) be the mazimum threshold of hours worked
counter hwee, ps. The available job time on day d for skill type k is calculated using
Equation 5.4.

m(hwee pr)

availableJobTimey ), = Z ERDIEE (5.4)

e€E
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At the first sight, the tightness ratio resembles to the total coverage constrainedness
measure by Vanhoucke and Maenhout [68]. However, there are some differences
between the two measures. First, the model proposed in this dissertation does not
require a coverage constraint value for each <day, skill type, shift type> triple.
Therefore only the coverage constraints that are defined explicitly are taken into
account by the tightness ratio measure. Second, the tightness ratio is calculated
using the minimum number of required working hours instead of the number of
required working shifts, because the availability of an employee is mostly given as a
number of working hours per week in his or her contract and because the coverage
constraints are modelled with a threshold instead of an exact value. Another
difference is the exclusion of the locked days of employees from the availabilities,
similar to the practice in MNRFA. These extensions make the current model
applicable to the real world problems whose requirements are different then the
problem instances created in laboratory conditions.

5.4 Conclusions

Being able to cope with a variety of problem instances is one of the real world
requirements that has rarely been addressed in scientific literature on personnel
rostering. According to the no free lunch theorem, a single algorithm configuration
cannot be expected to address a wide range of problem instances. Several algorithm
configurations are necessary in order to increase the probability of obtaining
good enough solutions on the targeted range of problem instances. In addition
to that, an efficient and automated decision mechanism to choose between the
algorithm configurations to solve a given problem instance is needed. Such a
decision mechanism can be realised as a function between problem properties and
the most promising configuration of an algorithmic toolbox.

Various hardness measures have been introduced in the scientific literature. However,
several situations that arise in the real world practice have not been addressed
by these measures. Schedule locks are used frequently in the real world practice.
They reduce the size of the problem instance that an algorithm has to deal with.
Schedule locks have also a direct impact on the hardness of a problem instance by
preventing the algorithm to operate on certain parts of a schedule, which might be
restricted by a number of constraints. The factors of the size of a problem instance,
i.e., the number of employees, days and shift types, have been proposed as measures
of a problem instance in the scientific literature. However, these factors are not an
accurate measure of the overall size of a problem instance by themselves.

A set of fine-grained quantitative measures have been introduced in the present
chapter. They take into account the real world requirements, such as the schedule
locks, that have not been addressed by the hardness measures proposed in the
scientific literature. The quantitative measures introduced in this chapter involve
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compound calculations to determine the overall size of a problem instance, instead
of relying on the number employees, days and shift types. These calculations take
into account the total number of assignments to be made by the algorithm, schedule
locks and situations where the workforce demand exceeds the supply, which occurs
occasionally in the real world practice.

The quantitative measures introduced in the present chapter will be utilised in
Chapter 6 to state the size and tightness of various nurse rostering benchmarks.
The experimental results of the applications of the solution methods (Chapter
7) to the benchmarks (Chapter 6) will be discussed in Chapter 8. As a result,
a relation between the algorithm performance and quantitative measure values
will be derived and reported in Chapter 8. The derived relation is deployed in
the automated personnel rostering software of our industrial partners to choose
the most promising configuration of the algorithmic toolbox for a given problem
instance.






Chapter 6

Nurse rostering benchmarks

Benchmarks are a collection of problem instances from a specific scientific field.
Mainly, they are used to measure and compare the relative performance of the
solution methods. Furthermore, they set standards in the problem model and
constraint evaluation.

In order to serve their intended purposes, benchmarks have to fulfill a number of
requirements. They must be a comprehensive representation of their field. That
entails including instances with a wide range of problem properties. A solution
method that performs well on such a benchmark set can be expected to perform
well on a great variety of instances from the corresponding field.

Benchmarks have two main sources. They are either created in laboratory conditions
under controlled design or they are collected from real world resources. There are
benchmark sets from both sources in the nurse rostering literature. Vanhoucke
and Maenhout [68] have introduced NSPLib, a nurse rostering benchmark set
created in laboratory conditions under controlled design. Burke et al. [20] have
introduced the Nottingham benchmarks, another nurse rostering benchmark set,
derived from real world resources in Belgium, Canada, France, Greece, Hong Kong,
Ttaly, Japan, the Netherlands, Norway, Saudi Arabia, Spain, the United Kingdom
and the United States. The Nottingham benchmarks have been covered in greater
detail in Chapter 2.

The differences between the scientific literature and real world practice have been
discussed in the chapters about the problem model and constraint evaluation,
Chapters 3 and 4, respectively. These differences have led to the extensions of the
problem model and to a modified set of constraint evaluation rules. Consequently,
a new benchmark set to supplement the extended problem model and modified
constraint evaluation methods is necessary. Such a benchmark set, the KAHO
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benchmarks, are presented in this chapter. There are significant differences in the
structure and constraint evaluation methods of the KAHO benchmarks and the
nurse rostering benchmarks in the literature.

The problem model and solution methods presented in this dissertation have been
implemented and utilised in the decision support software provided by our industrial
partners'. That has enabled the end users of these software, i.e., the planners,
to enter their personnel rostering problems into the system using the graphical
user interface components such as forms and dialogs. In turn, one of our industrial
partners? has agreed to offer the problem data to us for academic purposes. This
problem set, collected from six wards in two Belgian hospitals, has been named
as the KAHO benchmarks. The intention of this practice is to test the capability
of the problem models and solution methods to address the real world challenges
that our industrial partners face on a daily basis.

6.1 The KAHO benchmarks

The problem properties and quantitative measures of the KAHO benchmarks
(Tables 6.1 - 6.3) indicate that these problem instances are a diverse set from the
personnel rostering problem domain. The tightness, minimum number of required
and free assignments (MNRFA) and schedule period length values of the KAHO
and Nottingham benchmark instances are presented in Table 6.1. The tightness
value is the ratio of the availability of the employees to the required assignments. If
the tightness value of a problem instance exceeds 1.0, then the availability of the
employees cannot address the required assignments completely. The MNRFA value
is an indicator of the problem size. The greater the MNRFA value, the greater is
the number of shifts that need to be assigned by the algorithm. The tightness and
MNRFA measures have been explained in greater detail in Chapter 5.

The schedule period length of the KAHO benchmarks varies between four and 13
weeks. The same value varies between one week and 29 days in the Nottingham
benchmarks. The KAHO benchmarks can be grouped into three sets according
to their MNRFA value, i.e., small, middle and large size instances. Although the
Nottingham benchmarks have problem instances with small and middle sizes, a
large size problem instance with an MNRFA value higher than 534 is not present
in the Nottingham benchmarks. The KAHO benchmarks have been divided into
two groups according to their tightness values, i.e., normal and high tightness. The
Nottingham benchmarks do not involve any high tightness instances. The ratio
between the workforce demand and supply does not exceed 1 in the Nottingham
benchmarks. However, the data collected from our industrial partner points to

ISAGA Consulting, GPS NV Belgium
2SAGA Consulting
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the fact that it can exceed 1, in the real world practice. In total, the KAHO
benchmarks have been divided into four groups in order to find the most promising
configuration of the algorithmic toolbox for each group.

As can be seen in Table 6.2, high numbers of shift types are common in Belgian
hospitals. In some of the wards, the sum of the number of employees in each skill
category exceeds the total number of employees in the ward (Table 6.2). In this
case, there are employees with multiple skill types in that ward. The skill structure
has a direct impact on the employee, assignment and coverage constraint elements
of the problem model (Chapter 3). The skill structure has also been used as a
hardness measure while deciding on the algorithmic configuration. Neighbourhoods
and low level heuristics that operate on multiple skill types have been used in the
solution method if the problem instance involves employees that have more than
one skill type (Section 7.6.1).

The flexibility of the employment contracts in Belgian hospitals can be seen in
Table 6.3. Nurses can opt for different working hours: full time, half time and
various ratios in between (Table 6.3). Real world benchmarks require the ability to
deal with multiple serial contracts per employee per schedule period. This happens
when an employee switches from one contract type to another within the same
schedule period. Multiple serial contracts are encountered in the meal preparation
and geriatrics wards of the KAHO benchmarks. The sum of the number of nurses
for each contract in the meal preparation and geriatrics wards (Table 6.3) are
greater than the total number of nurses in those wards (Table 6.2), because of the
nurses who have more than one contract.

For each ward in the KAHO benchmarks, there are three different scenarios: normal,
overload and absence. These scenarios stem from situations that arise in the real
world. The normal scenario represents the personnel rostering problem faced by
the wards regularly.

In the real world practice, the workload of a ward is not stable over different schedule
periods and varies depending on the external events such as epidemics and seasonal
diseases. A significant increase in the workload must be matched by a proportional
increase in the workforce demand in the related problem instance. The workforce
demand has been modelled by the coverage constraints element in the problem
model (Section 3.2.3). A higher workforce demand is represented with higher
threshold values in the coverage constraints. Higher coverage constraints result
in larger problems and higher tightness values. The overload scenario instances
represent the cases where the workload demand is higher than usual. The overload
scenario instances have been constructed by incrementing the threshold values of
the coverage constraints of the normal scenario instances, with a single exception.
The threshold values of the coverage constraints for the head nurse has not been
incremented, because no more than one head nurse is needed in any situation.

In the real world practice, it is possible that a scheduled employee cannot work
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her planned shifts due to an unforeseen event such as sickness. In such cases, the
complete roster needs to be rescheduled to take into account the unforeseen absence
of the employee. Several factors need to be taken into account when addressing
this problem. In contrast to the normal and overload scenarios, the input roster is
already published in the ward in this case. That means the employees have already
adjusted their private plans according to it. Therefore the changes to the schedule
must be kept at a minimum level. In order to ensure that, only the changed part,
i.e., the days when the employee is scheduled but cannot be present, should be
rescheduled. The remainder of the schedule needs to be locked using schedule locks.
This practice reduces the size of the problem instance considerably. The absence
scenario instances represent the case, where one week of a complete roster needs to
be rescheduled due to the unforeseen absence of an employee.

The XSD for the model, the input data, a sample output and a penalty report for
each problem instance in the KAHO benchmarks are available online?.

6.2 Conclusions

The extensions to the standard problem models and the modifications to the
constraint evaluation methods have made a new set of benchmark instances
necessary, because the benchmarks in the scientific literature do not cover the
extensions and modifications introduced in Chapters 3 and 4. The problem model,
constraint evaluation methods and solution methods have been developed to satisfy
the real world requirements our industrial partners had to deal with. Consequently,
a real world benchmark set has been provided by one of our industrial partners* to
test the capabilities of the proposed models and methods.

The real world benchmark set, the KAHO benchmarks, represent the challenges
of the personnel rostering problem in the Belgian healthcare sector. An analysis
of the problem properties reveals the complexity and the diversity of the KAHO
benchmarks. It can be observed in Table 6.1 that the size (MNRFA) and
tightness values of the KAHO benchmarks cover a broader range of values than
the Nottingham benchmarks. The KAHO benchmarks include problems with
various sizes. The ratio between the workforce supply and demand varies among
the instances of the KAHO benchmarks. The problem instances expose numerous
challenges encountered in the real world practice. Individual contracts, multiple
skill types, multiple serial contracts in a schedule period and variable workforce
demand are a few of the real world challenges that can be observed in the KAHO
benchmarks. These elements are examples of how the extended problem model in
Chapter 3 can be used to represent real world problems.

3http://ingenieur.kahosl.be/vakgroep/it /nurse/archive.htm
4SACGA Consulting
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Problem size Problem instance Tightness | MNRFA Period
Geriatrics Absence 0.77 40 | 4 weeks

Reception Absence 0.69 45 6 weeks

Small size Psychiatry Absence 0.97 56 | 1 month
Meal Preparation Absence 1.12 63 | 1 month

Palliative Care Absence 1.69 64 | 13 weeks

Emergency Absence 0.71 107 | 4 weeks

Emergency Normal 0.66 429 4 weeks

Emergency Overload 0.72 513 | 4 weeks

Geriatrics Normal 0.75 160 | 4 weeks

Midsize Geriatrics Overload 0.89 200 4 weeks
Psychiatry Normal 0.92 241 | 1 month

Psychiatry Overload 1.00 300 | 1 month

Meal Preparation Normal 1.11 263 | 1 month

Meal Preparation Overload 1.19 305 | 1 month

Midsize- Reception Normal 1.35 234 6 weeks
high tightness | Reception Overload 1.66 327 6 weeks
Large size Palliative Care Normal 0.71 846 | 13 weeks
Palliative Care Overload 0.77 1031 | 13 weeks

Nottingham BCV-3.46.2 0.78 534 26 days
Instances- BCV-4.13.1 0.85 174 29 days
Midsize SINTEF 0.92 198 3 weeks
Valouxis-1 0.78 264 4 weeks

GPost 1 112 | 4 weeks

Nottingham Millarl 1 56 | 2 weeks
Instances- Millarl.1 1 56 2 weeks
Small size LLR 0.79 105 1 week
Ozkarahan 1 47 1 week

Table 6.1: Tightness and MNRFA values for public problem instances

Ward Shift Types|Skill 1|Skill 2|Skill 3|Skill 4| Total Employees
Emergency 27 1 15 26 27
Psychiatry 14 1 17 - 19
Reception 19 1 1 15 19
Meal P. 9 1 31 - 32
Geriatrics 9 4 20 - 21
P. Care 23 1 21 1 27

Table 6.2: Number of shift types and number of nurses with each skill type
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Ward 38 hours|34.2 hours|30.4 hours|28.5 hours|22.8 hours|19 hours
(100%) (90%) (80%) (75%) (60%) (50%)
Emergency 24 - - 3 - -
Psychiatry 13 - - 2 - 4
Reception 5 - - 7 - 7
Meal P. 3 2 - 1 - 28
Geriatrics 9 - - 9 1 3
P. Care 13 - 2 4 1 7

Table 6.3: The weekly job time and the corresponding number of nurses

An input file and a sample output file are provided online for each of the instances
to facilitate further research®. Furthermore, an XML Scheme Description (XSD)
file has been provided online to unambiguously define the model structure. The
KAHO benchmarks have been used in the experiments to determine the most
promising configuration of the algorithmic toolbox for a given problem instance
whose quantitative measure values are within a particular range (Chapter 8). In
addition to the KAHO benchmarks, results of the experiments on ten instances
from the Nottingham benchmarks have also been reported in Chapter 8.

Shttp://ingenieur.kahosl.be/vakgroep/it/nurse/archive.htm



Chapter 7

Solution methods

According to the literature surveys on personnel rostering, the solution methods
presented in the scientific literature have not been broadly utilised in the real world
practice (Chapter 2). Several reasons have been observed for the limited utilisation.
The academic efforts have been focused on providing optimal solutions to a limited
range of often simplified problem instances. The real world practitioners, on the
other hand, demand good enough solutions for a great variety of problem instances
within limited execution times. In addition, the problem instances in the real world
evolve over time with new labour legislations, union demands and organisational
changes. Consequently, the solution methods must be flexible enough to address
the changes in the problem definitions without requiring significantly more human
intervention and computation time. A generic problem model has been introduced
in Chapter 3 to represent a great variety of problem instances. Experience in
collaborating with software companies and discussions with practitioners has
revealed that the presented model is rich enough for today’s problems in Belgian
hospitals and rest homes. The proposed problem model can be easily extended
with new elements in case the problem instances evolve to a point that cannot be
addressed with the current version of the model.

The real world practitioners demand to have a certain control over the solution
method. They do not want a system that decides for them. They want a system
that supports their decision process. Therefore, the solution methods presented in
this dissertation have been developed to be utilised in decision support systems.
They are required to provide satisfying solutions in different settings and time
frames, and to be adaptable to the customer’s ever changing preferences.

The execution time of the algorithm is required to be a parameter set by the end
user. The real world planners expect a result mostly within one to ten minutes.
This allows them to check the solutions, make adjustments based on their personal
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judgement and rerun the algorithm if necessary. The planners need solutions
quickly when a roster has to be rescheduled, for example because an employee
cannot work his or her assignment due to an unexpected absence in case of sickness.
The end users expect a complete solution no matter how long the execution takes.
A solution is considered to be complete if all the required shifts have been assigned
to employees to the extent allowed by the hard constraints. If that is not possible
however, which happens occasionally in the real world practice, then the shortages
are reported after the execution of the solution method.

The success of the algorithm depends to a large extent on the composition of the
objective function. In Chapter 4, the objective function in the present approach has
been defined as a linear combination of soft constraint violations. The weights of
the soft constraints indicate the relative importance of the soft constraints to each
other. Setting these weights in such a way that they reflect the actual importance
of the constraints and at the same time effectively guide the algorithm towards
good quality solutions is a tedious task. The users might need to run the algorithm
several times until they reach a weight configuration that results in a satisfying
roster. This is another motivation for the end users to favour shorter execution
times.

Several factors have discouraged the utilisation of exact methods as solution
methods for the problem at hand. The academic context in Chapter 2 provides a
set of references to the proofs that rostering problems are NP-Hard. Furthermore,
exact methods proposed in the scientific literature require the incorporation of
instance specific information to perform well. This contradicts with the requirement
to perform good enough on a broad range of problem instances, which is what
practical systems require. Even with the problem specific implementations, the
execution times of the exact mathematical optimisation methods are above the
expectations of the real world practitioners. Complementary to that, the real world
practitioners do not demand optimal solutions.

As an alternative to the exact methods, heuristic approaches have been chosen as
the solution method for a number of reasons. In this dissertation, this category of
solution methods have been concentrated on. The main structure of the solution
method consists of two stages, a random initialisation method succeeded by an
iterative improvement method. The random initialisation method assigns the shifts
that are required by the coverage constraints to the employees randomly. This
way, a complete roster is constructed in the shortest execution time possible. The
resulting roster is improved by an iterative improvement method. Hard constraints
are respected throughout the execution of the solution method so that the candidate
solution is always feasible.

An algorithmic toolbox has been composed by the author of the present dissertation
to be deployed as the iterative improvement method. The algorithmic toolbox
consists of variable neighbourhood search (VNS), adaptive large neighbourhood
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search (ALNS), hyperheuristics, six neighbourhoods to be utilised in VNS and
ALNS and the low level heuristic variants of these neighbourhoods to be utilised
in hyperheuristics. VNS, ALNS and hyperheuristics have been adopted from the
scientific literature. These algorithms modify the roster in each iteration in order
to improve its quality for a given execution time. This practice addresses the
requirement of having the execution time as a parameter and providing a good
quality solution relative to the execution time.

In order to explore the search space, VNS and ALNS utilise a set of neighbourhoods.
Hyperheuristics use a set of low level heuristics for the same purpose. Each point
in the search space corresponds to a solution, a roster in the present case, with a
specific quality. The quality of a solution is adversely proportional to its objective
function value. The search algorithms return the best solution they have found
within the execution time they have been given.

Contrary to VNS, ALNS and hyperheuristics, which are independent from the
problem definition, the neighbourhoods and the low level heuristics are based on the
problem model. Most of the time, the neighbourhoods and the low level heuristics
are inspired by typical manual modifications made by the human planners. They
can be as simple as assigning or deleting a shift or more complicated, such as
changing the assignment of an employee so that he has to work using a different
skill type. Six neighbourhoods are utilised in the algorithmic toolbox. Three of
these neighbourhoods have been adopted from the scientific literature: assign
shift, delete shift and single shift day. The other three neighbourhoods have been
developed by the author of the present dissertation: change assignment shift, change
assignment shift based on shift type set and change assignment skill. Although
the neighbourhoods utilised by the automated rostering algorithms are similar to
the modifications implicitly applied by human planners, the automated algorithms
outperform the human planners by leveraging the computation power of modern
PCs and the algorithmic capabilities of VNS, ALNS and hyperheuristics.

Another advantage of using VNS, ALNS and hyperheuristics is their adaptability.
These algorithms are problem independent. In order to apply VNS and ALNS to
a problem, a problem model and several neighbourhoods should be implemented.
The application of the hyperheuristics to a problem requires the implementation
of a problem model and a set of low level heuristics. The interaction between
VNS, ALNS and the neighbourhoods are carried out with a well-defined interface.
A similar well-defined interface provides a structure for the interaction between
the hyperheuristics and the low level heuristics. VNS and ALNS can interact
with any neighbourhood that implements the aforementioned interface properly.
Similarly, the hyperheuristics can interact with low level heuristics that implement
the corresponding interface. This approach simplifies the maintenance of VNS,
ALNS and the hyperheuristics.

As mentioned before, it is possible that the problem instances encountered in the
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real world can evolve to a point, where the current problem model fails. In this case,
the problem model can be modified without adjusting the hyperheuristic, VNS or
ALNS implementation, because their implementations are independent from the
problem model. Complementary to that, the solution methods can also be extended
with new neighbourhoods and low level heuristics, to address the extensions in the
problem model. Such extensions do not require significant changes in the solution
method. The new neighbourhoods and low level heuristics can easily be plugged in
to the system via their implementations of the corresponding interfaces.

According to the well-known no free lunch theorem [71], an algorithm configuration
cannot be expected to perform well on every problem instance encountered. The
solution method introduced in the present dissertation has been developed to tackle
the real world personnel rostering problem. Real world personnel rostering problem
instances, no matter how diverse, are still a subset of all the possible personnel
rostering problem instances. The probability of finding good enough solutions in
a subset of a problem domain can be increased by deploying various algorithm
configurations. This option has been explored in the present dissertation with an
algorithmic toolbox that allows for numerous configurations.

In the real world practice, all configurations of the algorithmic toolbox cannot be
experimented with every time a problem instance has to be solved. Therefore, a
decision method is needed to select the most promising configuration of the toolbox
for a given problem instance. The algorithmic toolbox presented in this dissertation
has been developed in a way that a decision support system can compose a fully
functional solution method out of the toolbox and parametrise it at run time
without any intervention by a human expert. In order to allow that, the set of
quantitative measures proposed in Chapter 5, has been utilised. Based on the
experimental results in Chapter 8, a decision support system can automatically
select the most promising configuration of the algorithmic toolbox for a given
problem instance. This fact broadens the application domain of the algorithmic
toolbox presented in the current chapter.

The problem model introduced in Chapter 3 allows for multiple skill types per
employee. Therefore, the schedules of the employees with different skill types are
connected with each other via the schedules of the employees that have more than
one skill type. This fact is exploited in the neighbourhoods and the low level
heuristics in order to produce better schedules. Therefore, employees with different
skill types are not scheduled separately as in [25].

The neighbourhoods and low level heuristics take into account the hard constraints
and do not make any modifications that result in an infeasible schedule. That way
the execution of the algorithm can be stopped at any given time and a feasible
schedule can be obtained as a result. The termination criterion is the maximum
execution time of the algorithm, without taking the random initialisation step into
account. That means the end users can specify the execution time of the algorithm
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and the algorithm will stop running when the specified execution time passes.

The remainder of the chapter is organised as the following. The random initialisation
method is introduced in Section 7.1. The hyperheuristic approach within the
algorithmic toolbox is discussed in Section 7.2. The utilisation of VNS and ALNS
are presented in Sections 7.4 and 7.5, respectively. The details of the tabu list used
in the VNS and ALNS approaches are discussed in Section 7.3. The neighbourhoods
and the low level heuristics are discussed in Section 7.6. The chapter is concluded
in Section 7.7.

7.1 Initialisation Method

The solution method accepts an input schedule from the user. The input schedule
can be an empty, a partial or a complete schedule. The initialisation method tries
to fulfill the minimum coverage constraints randomly until either all the minimum
coverage constraints are satisfied or no more feasible assignment can be made. A
roster that satisfies the minimum coverage constraints is perceived to be a complete
roster by the planners. Therefore, the term complete roster will refer to a roster
that satisfies the minimum coverage constraints to the extent possible by the hard
constraints. The aim of the initialisation step is to provide a complete roster in
the shortest execution time possible. The roster can be improved iteratively in
the following steps of the search algorithm. This way the planner will receive a
complete roster no matter how short the execution time is. The execution time
will only influence the quality of the roster.

The pseudocode of the RandomInitialisation(C) method is presented in Algorithm
9. In this algorithm, Cy refers to the initial candidate solution received from the
user. The initial candidate solution can be an empty, partial or a complete schedule.
CC refers to the set of all coverage constraints. ccq s/ k' refers to the coverage
constraint that is defined on day d € D, shift type set S’ C S and skill type set
K’ C K. The RandomPermutation(X) method returns a random sequence of the
elements of the set X, so that the elements of X can be processed in a random
order.

7.2 Hyperheuristic approach

A theoretical discussion of the hyperheuristics approach has been presented in the
academic context (Section 2.6.4). Hyperheuristics are three layer combinatorial
optimisation methods. The problem model and objective function reside on the
lowest layer. Low level heuristics that operate directly on the problem model and



108 SOLUTION METHODS

objective function are on the middle layer. A heuristic is positioned on the top
layer and guides the low level heuristics throughout the search.

Algorithm 9 RandomlInitialisation(C)

Co = input candidate solution
C=0Cy
CC =the set of all coverage constraints
CC" = RandomPermutation(CC)
for all ccq 5/ k€ CC’ do
S" = RandomPermutation(S’)
K" = RandomPermutation(K")
E' = RandomPermutation(E)
for all e € E' do
if —(e.IsAssigned(d) V e.IsLocked(d)) then
for all k € K” do
if e.HasSkill(k) then
for all s € " do
if —(ccq, s/, k- IsMinFul filled() V e.IsOverlapping(d, k)) then
C.Assign(e,d, s, k)
end if
end for
end if
end for
end if
end for
end for
return C

The hyperheuristic approach used in this work can be classified as a selection
hyperheuristic according to the terminology in [21]. Several hyperheuristic
approaches have been composed and experimented with for generating the results
of the present dissertation. Simple random and choice function have been used
as selection methods. Three approaches have been utilised as acceptance criteria,
improving and equal moves accepted, simulated annealing and great deluge. The
cooling schemes, linear, quadratic and quartic, have been applied in both simulated
annealing and great deluge. The low level heuristics utilised in the hyperheuristics
are discussed in Section 7.6.
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7.3 Tabu Search

The theoretical background of tabu search has been reviewed in the academic
context (Section 2.6.1). Tabu search is an iterative improvement method to
address combinatorial optimisation problems. It carries out modifications on a
single candidate solution at each iteration in order to improve it. The executed
modifications, called moves, are kept in a short term memory, i.e., the tabu list,
in order to avoid repeating them. Although tabu search is not directly utilised in
the solution methods of the present dissertation, the concept of the tabu list is
utilised within the VNS and ALNS algorithms. A tabu list is a short term memory
that keeps track of the moves that are recently executed during the search. The
moves that are in the tabu list are not repeated as long as they remain in the tabu
list. The only exception of this practice is when a move results in an overall best
solution. This practice is referred to as the aspiration criterion in the scientific
literature. The function of the tabu list is to avoid cycles of the algorithm around
local optima. The parameters of the executed moves are kept in the tabu list in a
hashed way. That way instead of comparing a set of parameters each time a move
is evaluated, only a hash value is compared with other hash values in the tabu list.
This practice increases the efficiency of the tabu list and contributes to the overall
performance of the tabu search.

The parameters of the executed moves in the solution methods presented in this
dissertation are <employee, day, shift type, skill type>. They are hashed using the
perfect hash function in Equation 7.1. D, S and K refer to the set of days, shifts
and skills in the problem instance. The notation | X| refers to the total number of
elements in the set X. Each employee, day, shift and skill is assigned an unique
index starting with 0. The indices e, d, s and k refer to the indices of the employee,
day, shift and skill in the problem.

H(e,d, s, k) = ((¢| D] + d)|S| + s) | K| + k (7.1)

The length of the tabu list, often referred as the tabu tenure in the scientific
literature, varies throughout the execution of the algorithm. Prime numbers are
used as values for the tabu tenures, in order to avoid hash collisions and cycling.
The tabu tenure is increased to the next prime number at each non-improving
iteration and decreased to the previous prime number if there is an improvement.

Decreasing the tabu tenure has an intensifying effect on the search. The search
process is focused in the area close to the candidate solution. Therefore, the tabu
tenure is only decreased if the vicinity of the candidate solution is promising. The
vicinity of the candidate solution is considered to be promising if there are better
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candidate solutions in its immediate neighbourhood. Increasing the tabu tenure
has a diversifying effect on the search. The search process is moved away from the
vicinity of the candidate solution. Therefore, the tabu tenure is increased if the
vicinity of the candidate solution is not promising. The vicinity of the candidate
solution is considered to be not promising if there is not any better candidate
solution in its immediate neighbourhood.

The tabu tenure is varied between a lower and an upper bound. This is to avoid
that the tabu tenure converges to 0 rendering the tabu list useless. It also prevents
that the tabu tenure is increased to a very high value after a series of non-improving
moves. In the latter case, there is a risk that the tabu list will block the execution
of a high number of moves, which will result in decreased performance of the tabu
search. If the tabu tenure converges to the lower bound, then it is not decreased
anymore, even if the algorithm keeps finding improving moves. Similarly, if the
tabu tenure converges to the upper bound, then it is not increased anymore, no
matter how many non-improving moves follow.

The lower bound is equal to 7 and the upper bound is a parameter of the algorithm.
Based on the preliminary experiments, two values, 97 and 199, have been decided
to be experimented with as the upper limit. The aspiration criterion holds so
that tabu moves that result in overall best candidate solutions are allowed to be
executed. Algorithms 10 and 11 present the rules for increasing and decreasing the
tabu tenure, respectively. The application of the tabu list within VNS and ALNS
are presented in Algorithms 12 and 13, respectively.

Algorithm 10 IncreaseTabuTenure(T)

U = upper limit of the tabu tenure
T {tabu tenure}
if T < U then
T = the smallest prime number greater than T
end if

Algorithm 11 DecreaseTabuT enure(T)
T {tabu tenure}
if T'> 7 then

T = the greatest prime number less than T
end if
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7.4 Variable neighbourhood search

The theory of the VNS algorithm has been reviewed in the academic context
(Section 2.6.2). The VNS algorithm used in the solution methods of the present
dissertation involves a tabu list as described in Section 7.3.

The VNS algorithm utilises several neighbourhoods and holds the parameters of
the executed moves in a tabu list. The utilised neighbourhoods share the same
tabu list, so that they do not reverse the recent moves made by each other. At
each iteration of the algorithm, a single neighbourhood is searched.

A move in the neighbourhood is considered for execution only if it satisfies all
the hard constraints. Consequently, the schedule remains feasible throughout the
execution of the algorithm. In addition to that, the move must not be tabu or it
must result in an overall best solution. This practice is referred to as the aspiration
criterion in the scientific literature. The best move in the neighbourhood is executed
given that it satisfies these conditions.

The token-ring approach is used to switch between the neighbourhoods in the VNS
algorithm. In this approach, the neighbourhoods are held in a circular queue that
determines their application sequence [32]. If the applied neighbourhood does not
result in an improving move, the algorithm switches to the next neighbourhood in
the queue. The pseudocode of the VNS variant deployed in the solution method
is given in Algorithm 12. The neighbourhoods utilised in VNS are discussed in
Section 7.6.

The VNS algorithm utilised in the solution methods of the present dissertation is an
adaptation of the existing methods from the scientific literature. The contribution
of the present dissertation lies in the utilisation of the VNS in an algorithmic
toolbox to address the personnel rostering problem and combining it with the
extended problem model and with the existing and novel neighbourhoods that are
introduced to the literature in the present dissertation.

7.5 Adaptive large neighbourhood search

The theoretical background of the ALNS method has been discussed in the academic
context (Section 2.6.3). A set of neighbourhoods are deployed in ALNS [62], similar
to VNS. At each iteration, a neighbourhood is selected stochastically. Each
neighbourhood has a score that is used as its probability of selection. The scores
of the neighbourhoods are updated regularly based on their performance in recent
iterations.
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Algorithm 12 The solution method utilising VNS
Cy = input schedule
T =7 {tabu tenure}
CQ = circular queue of the neighbourhoods
F(C) = objective function
C = RandomInitialisation(Cp)
{Neighbourhood to be explored in the current iteration}
N = first neighbourhood from CQ
BC = C {Variable to hold the best solution throughout the search}
while Termination criterion not met do
C'=N(C)
if F(C") < F(BC) then
DecreaseTabuT enure(T)
BC ="
else
IncreaseT abuTenure(T)
if F(C") > F(C) then
N = next neighbourhood in CQ
end if
end if
c=c
end while
return BC

The ALNS algorithm used in the solution method deploys the same set of
neighbourhoods and the same tabu list approach as the VNS algorithm. The only
difference between both algorithms is the way they select the next neighbourhood
when they switch between neighbourhoods. The VNS algorithm uses a circular
queue to switch between neighbourhoods, a practice referred as token-ring search
in the scientific literature. ALNS uses a roulette-wheel selection variant. In the
roulette-wheel method, each item in a set has a specific probability. The selection
method chooses an item randomly based on these probabilities. The probabilities
of the items are subject to change according to their performance or quality.

The pseudocode of the ALNS algorithm is presented in Algorithm 13. In this
algorithm, SN refers to the set of all neighbourhoods, P(NN) to the roulette wheel
probability of the neighbourhood N, Q(NN) to the temporary number of times N
is called, R(N) to the score of the neighbourhood N, R'(N) to the temporary
score of the neighbourhood N, and F(C') to the objective function of the problem,
respectively.
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Algorithm 13 The solution method utilising ALNS
Cy = input schedule
T =7 {tabu tenure}
p=0.38
a = 10 {best solution found reward}
B = 10 {current solution improvement reward}
~v =1 {solution found reward}
for all N € SN do
P(N)=1/|SN|,Q(N)=0,R(N)=0,R'(N)=0
end for
C = RandomlInitialisation(Cp)
BC = C {variable to hold the best solution throughout the search}
I =0 {temporary iteration counter}
while Termination criterion not met do
{Neighbourhood to be explored in the current iteration}
N = RouletteW heelSelect(SN, P)
QN) = Q(N) +1
C'=N(C)
if IsFeasible(C') then
R'(N)=R'(N)+~
if F(C') < F(BC) then
DecreaseTabuT enure(T)
BC ="
R'(N)=R'(N)+«
else
IncreaseTabuTenure(T)
if F(C") < F(C) then
R'(N)=R(N)+p
end if
end if
c=c
else
IncreaseTabuT enure(T)
end if
I=I+1
if I == 100 then
I=0
UpdateScores(SN, P(N),Q(N), R(N), R'(N))
end if
end while
return BC
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Algorithm 14 UpdateScores(SN, P(N),Q(N), R(N), R'(N))
Z =0
for all N € SN do
R(N) = (1 - p) * R(N)
if Q(N) > 0 then
R(N) = R(N) + p « R'(N)/Q(N)
end if
Z =7Z+4 R(N)
end for
for all N € SN do
P(N)=R(N)/Z
end for

7.6 Neighbourhoods and heuristics

VNS, ALNS and hyperheuristics are problem independent solution methods. They
require neighbourhoods and low level heuristics to work on particular problems.
The problem specific neighbourhoods searched by the VNS and ALNS are assign
shift, delete shift, single shift day, change assignment shift, change assignment shift
based on shift type set and change assignment skill (Section 7.6.1). The assign
shift, delete shift and single shift day neighbourhoods have been adapted from
the scientific literature [25]. The change assignment shift, change assignment shift
based on shift type set and change assignment skill neighbourhoods have been
developed by the author of the present dissertation. The latter three neighbourhoods
have been developed considering the extended problem model (Chapter 3) and
the modifications that the end users do to improve the rosters. The low level
heuristics used by the hyperheuristics are based on the same neighbourhoods using
a tournament strategy (Section 7.6.2).

7.6.1 Neighbourhoods

Only feasible moves, i.e., moves that satisfy all the hard constraints, are considered
when searching the neighbourhoods. The tabu list is shared among all the
neighbourhoods. This way, it is avoided that two neighbourhoods reverse the
moves made by each other, which would result in a cycle. The parameters of
the recently executed moves are kept in the tabu list. These parameters are the
employee, day, shift type and skill type. They are held in the tabu list in a hashed
way. The details of the hash function and the tabu list have been discussed in
Section 7.3.

Several sets and methods are common among the neighbourhoods. D refers to the
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set of all days in the schedule period, S to the set of all shift types, K to the set of
all skill types and E to the set of all employees, respectively.

C.Assign(e, d, s, k) method assigns the shift type s and skill type k on day d
to the employee e in the current state of the candidate solution C. Similarly,
C.Delete(e, d, s, k) removes the assignment with the shift type s and skill type &
on day d from the schedule of the employee e in the current state of the candidate
solution C.

IsTabu(e,d, s, k) method returns true if the move parameters employee e, day
d, shift type s and skill type k are in the tabu list. It returns false otherwise.
IsDefined(d, s, k) method returns true if there is at least one coverage constraint
with the parameters day d, shift type s and skill type k. It returns false otherwise.
e.HasSkill(k) returns true if the employee e has the skill type k, and false otherwise.
e.IsOverlapping(d, s) returns true if the assignment of the shift type s on day d
overlaps with any assignment in the schedule of the employee e. It returns false
otherwise. e.IsAssigned(d) returns true if the employee e is assigned on day d,
and false otherwise. e.I'sLocked(d) returns true if the schedule of the employee e
is locked on day d, and false otherwise.

Assign shift

An assignment is defined as a quadruple of <employee, day, shift type, skill
type> (Section 3.2.4). The assign shift neighbourhood is constructed using these
quadruples. When an assignment is made, not only a shift type is assigned, but
also the associated skill type for that assignment.

The number of shift types in the scientific literature have mostly been limited to
three, early, late and night shifts. Contrary to the scientific literature, Table 6.2 in
Section 6.1 about the KAHO benchmarks shows that the number of shift types are
high in Belgian hospitals. This fact results in a large assign shift neighbourhood.
Evaluating the assign shift neighbourhood of the candidate solution completely in
each iteration consumes long spans of CPU time and results in inefficiencies of the
algorithm. Therefore, the assign shift neighbourhood has been adapted so that it
will perform efficiently on the real world instances. The adaptation is an exception
to the steepest descent approach of exploring the assign shift neighbourhood. Only
one random shift type for each <employee, day, skill type> triple is evaluated when
searching the assign shift neighbourhood. This is the only exception to the steepest
descent manner of searching the assign shift neighbourhood. A move of the assign
shift neighbourhood is encoded as a hash value of the <employee, day, shift type,
skill type> quadruple and inserted into the tabu list.
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Algorithm 15 The assign shift neighbourhood
C := candidate solution
BC' := best candidate solution found so far
F(C) = objective function
BC" := null
BF =00
for all d € D do
for all £k € K do
for all e € E do
if —(e.IsAssigned(d) V e.IsLocked(d)) N e.HasSkill(k) then
S’ = RandomPermutation(S)
b= true
for all s € S’ do
if b then
if IsDefined(d, s, k) A —e.IsOverlapping(d, s) then
C' = C.Assign(e,d, s, k)
if F(C") < F(BC)V —IsTabu(e,d,s, k) then

b= false
if F(C') < BF then
BF =F(C)
BC' =’
end if
end if
end if
end if
end for
end if
end for
end for
end for
return B(C’
Delete shift

The deletion of an assignment is feasible only if two conditions are met. First, the
assignment <day, shift type, skill type> must correspond to a coverage constraint,
i.e., a coverage must be required for the day, shift type and skill type (see Section
4.2.4). In the real world practice, if an employee is assigned a shift type from
another ward of the institution, then this assignment will not correspond to any
coverage constraint of the ward to be planned and the assignment is not allowed
to be altered by the algorithm. Second, the assignment should not have been
locked (see Section 3.2.3). Since the coverage constraints are not defined as hard
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constraints, deletions that violate coverage constraints are considered to be feasible
as well (see Section 3.2.3), in contrast to most papers on academic progress.

A delete shift move not only deletes the assigned shift type, but also the skill type
in the same day, because the skill type is a property of the assignment as well.
Since the delete shift neighbourhood is relatively small, no exception is made to
the steepest descent fashion of searching the neighbourhood. Similar to the assign
shift neighbourhood, a move of the delete shift neighbourhood is encoded as a hash
value of the <employee, day, shift type, skill type> quadruple and inserted into
the tabu list.

Algorithm 16 The delete shift neighbourhood

C := candidate solution
BC' := best candidate solution found so far
F(C) := objective function
BC' = null
BF := o0
for all e € E do
for alld € D do
if e.IsAssigned(d) A —e.IsLocked(d) then
s = e.scheduleld].shift
k = e.schedule[d).skill
if IsDefined(d, s, k) then
C' = C.Delete(e, d, s, k)
if F(C') < F(BC)V —IsTabu(e,d, s, k) then
if F(C') < BF then

BF = F(C")
BC' =’
end if
end if
end if
end if
end for
end for
return B(C’

Single shift day

A single shift day move involves deleting an assignment from the schedule of an
employee and adding the same assignment, i.e., the same shift type and skill type,
at the same date to another employee who is not assigned on that date. Suppose
that, an employee is assigned an early shift as a caregiver on a particular date and
another employee that has the skill type caregiver is idle on the same date. In
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this case, a single shift day move deletes the early shift assignment from the first
employee and assigns it to the second employee on the same date. This way, the
coverage constraints are not affected, but there is a probability that the schedules of
the related employees are improved. A move of the single shift day neighbourhood
consists of two moves: a delete and an assign move. Therefore, the parameters
of both the delete and assign moves, are separately encoded as hash values and
inserted into the tabu list. The single shift day neighbourhood is searched in a
steepest descent fashion without any exceptions.

Algorithm 17 The single shift day neighbourhood
C := candidate solution
BC' := best candidate solution found so far
F(C) := objective function
BC" := null
BF =00
for all d € D do
for all e € £ do
if e.IsAssigned(d) N —e.IsLocked(d) then
s = e.scheduleld].shift
k = e.schedule|d).skill
if IsDefined(d, s, k) then
for alle’ € E | e# € do
if —e’.IsAssigned(d) A —e’.IsLocked(d) A —e' . IsOverlapping(d, s) A
e .HasSkill(k) then
C' = C.Delete(e,d, s, k)
C" = (' Assign(e,d, s, k)
if F(C") < F(BC)V ~(IsTabu(e,d, s, k) VvV IsTabu(e',d,s,k))

then
if F(C") < BF then
BF =F(C")
BC'=C"
end if
end if
end if
end for
end if
end if
end for
end for

return BC’
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Change assignment shift

Change assignment shift refers to a move where the assigned shift type is replaced
with another shift type while the skill type remains the same. Suppose that a head
nurse is assigned to a late shift on Monday. The effect of a change assignment
shift move can be that instead of a late shift, she is scheduled in the early shift.
Depending on her assignments during the preceding weekend and the days from
Tuesday onwards, the new shift assignment can result in a better, worse or equally
good schedule. Similar to the assign shift neighbourhood, a subset of the complete
neighbourhood is considered. The subset consists of a single alternative random
shift type for each assignment. This is an exception to the steepest descent fashion
of searching the change assignment shift neighbourhood. Similar to the single shift
day, the change assignment shift is also composed of two moves, a delete and an
assign move. Consequently, its parameters are encoded and inserted into the tabu
list in the same way as single shift day.

Change assignment shift based on shift type set

Change assignment shift based on shift type set is a variation of the change
assignment shift neighbourhood. In the change assignment shift neighbourhood,
the assigned shift s is replaced with a shift s’ selected from the set of all the shift
types in the problem instance, i.e., S. In the change assignment shift based on shift
type set neighbourhood, the new shift s’ is selected from the shift type set S’ of
the coverage constraint ccq s/ i+ that covers the actual assignment, x¢ g1 = 1.
That means the day of the coverage constraint and the actual assignment are the
same, and the skill type k and shift type s of the actual assignment are elements
of the skill type set K’ and shift type set S’ of the coverage constraint ccq s k-,
respectively. Another small difference is that in the change assignment shift based
on shift type set neighbourhood, the new shift type s’ does not need to be checked
whether it is defined in a coverage constraint or not, because it is already extracted
from a coverage constraint, namely ccq s/ k.
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Algorithm 18 The change assignment shift neighbourhood

C := candidate solution
BC' := best candidate solution found so far
F(C) = objective function
BC" := null
BF =00
for all d € D do
for all e € E do
if e.IsAssigned(d) A —e.IsLocked(d) then
s = e.scheduleld].shift
= e.schedule[d).skill
if IsDefined(d,s,k) then
S’ = RandomPermutation(S)
b= true
for all s’ € S do
if b then
if s # s’ AN IsDefined(d, s, k) A —e.IsOverlapping(d, s’) then
C'" = C.Delete(e, d, s, k)
C" = (' Assign(e,d, s', k)
if F(C") < F(BC)V —~(IsTabu(e,d,s, k) V IsTabu(e,d,s', k))

then
b= false
if F(C") < BF then
BF = F(C")
BC' ="
end if
end if
end if
end if
end for
end if
end if
end for
end for

return BC’
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Algorithm 19 The change assignment shift based on shift type set neighbourhood

C := candidate solution
BC' := best candidate solution found so far
F(C) = objective function
BC' := null
BF =00
for alld € D do
for all e € £ do
if e.IsAssigned(d) A —e.IsLocked(d) then
s = e.scheduleld].shift
= e.schedule[d).skill
if IsDefined(d,s,k) then
S" = RandomPermutation(S’)|cca. s k€ CCls € S" Nk € K’
b= true
for all s’ € S” do
if b then
if s # s’ A —e.IsOverlapping(d,s’) then
C'" = C.Delete(e, d, s, k)
C" = (' Assign(e,d, s', k)
if F(C") < F(BC)V —~(IsTabu(e,d,s, k) V IsTabu(e,d,s', k))

then
b= false
if F(C") < BF then
BF =F(C")
BC' ="
end if
end if
end if
end if
end for
end if
end if
end for
end for
return B(C’

Change assignment skill

The change assignment skill neighbourhood is defined for the schedules of employees
that have at least two different skill types. A move in this neighbourhood involves
deleting an assignment and adding another assignment to the same employee, on
the same day, but with another one of the employee’s skill types and a corresponding
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shift type. Suppose that an employee has the skill types caregiver and regular nurse
and she is assigned to a late shift as a caregiver on a particular date. A change
assignment skill move can result in her being assigned as a regular nurse, in the
early shift, on the same date. Such a move can improve, worsen or have no effect on
the schedule. The change assignment skill neigbourhood is searched in a steepest
descent fashion without any exceptions.

Algorithm 20 The change assignment skill neighbourhood

C := candidate solution
BC := best candidate solution found so far
F(C) := objective function
BC' := null
BF (=00
for alld € D do
for all e with multiple skills € E do
if e.IsAssigned(d) A —e.IsLocked(d) then
s = e.schedule[d].shift
k = e.schedule[d)].skill
if IsDefined(d, s, k) then
C' = C.Delete(e,d, s, k)
for all ¥’ € K | k' # k do
if e.HasSkill(k") then
for all s € S do
if IsDefined(d, s, k') A —e.IsOverlapping(d,s’) then
C" = (' Assign(e,d, s', k')
if F(C") < F(BC)V—(IsTabu(e,d, s, k)VIsTabu(e,d,s  k'))

then
if F(C") < BF then
BF =F(C")
BC' ="
end if
end if
end if
end for
end if
end for
end if
end if
end for
end for

return BC’
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7.6.2 Heuristics

The heuristics that are deployed by the hyperheuristics are constructed according
to a tournament strategy (Algorithm 21). The motivation behind the tournament
strategy is to increase the efficiency of the algorithms. This is accomplished by
searching a limited random sample of a given neighbourhood instead of searching
the complete neighbourhood in a steepest descent fashion.

In this study, three tournament factors have been experimented with: 128, 256
and 512. The tournament factors have been determined based on preliminary
experimentation. A tournament heuristic has been implemented on each of the
neighbourhoods introduced in the previous section: assign shift, delete shift, single
shift-day, change assignment shift, change assignment shift based on shift type set
and change assignment skill.

The tournament heuristics do not maintain a tabu list. The hyperheuristics deployed
in the solution methods do not utilise a tabu list. The tabu list is utilised to avoid
cycling during the optimisation process. Cycling happens when two complementary
moves such as assign shift and delete shift with the same parameters are executed
back and forth in the vicinity of a local optimum. The risk of cycling is miniscule
when using the tournament heuristics, because they explore only a sample of a
given neighbourhood. Therefore, the tournament heuristics are not expected to
use the steepest descending path to the local optimum and they are not expected
to remain around that local optimum.

Algorithm 21 The pseudocode of the tournament heuristics

Parameters

TF = Tournament Factor

N = Neighbourhood

Algorithm

Select TF random solutions in neighbourhood N of the candidate solution
return the solution with the best objective value

7.7 Conclusions

The common approach in the scientific literature has been to target the optimal
solution of a single problem instance. The solution methods presented in this
chapter however, have been developed to provide good enough solutions to a broad
range of real world personnel rostering problem instances. The motivation behind
this approach is the real world requirement for the solution methods to be capable
of coping with a great variety of problem instances. The solution methods can
be further extended to deal with the extensions in the underlying problem model.
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The underlying problem model, as explained in Chapter 3, can be extended if the
problem description changes, which happens frequently in the real world practice.
Another demand by the real world practitioners is the construction of a complete
solution as soon as possible and the quality of the end result to be a function of
the execution time. This way, the practitioners can receive a complete solution
no matter how short the execution time is. On the other hand, they can receive
higher quality solutions in case their situation allows for longer execution times.

A random initialisation method has been developed to provide the users with a
complete solution as quick as possible (Section 7.1). A complete solution refers
to a schedule where the minimum of the coverage constraints are satisfied to the
extent allowed by the hard constraints. The result of the initialisation method is
also used as the starting point in the iterational improvement methods that follow
the initialisation.

An algorithmic toolbox that consists of a variety of iterational improvement methods
have been developed to work within the framework of the solution method. The
common property of these methods is the termination criterion, which is the
execution time. They have been developed to improve the schedule incrementally
so that the quality of the schedule increases relative to the execution time. Variable
neighbourhood search (VNS), adaptive large neighbourhood search (ALNS) and
hyperheuristics have been used as iterational improvement methods. VNS, ALNS
and hyperheuristics can be customised with different parameters, components,
neighbourhood and low level heuristic sets.

ALNS and VNS have common parameters, the set of neighbourhoods utilised and the
upper limit for the tabu tenure. The hyperheuristics deployed as solution methods
are composed of two parts, a selection method and an acceptance criterion. Simple
random and choice function are used as selection methods. Improving or equal moves
accepted, simulated annealing and great deluge are used as acceptance criterion.
Linear, quadratic and quartic are used as cooling schemes in both simulated
annealing and great deluge. The utilisation of various algorithmic elements allows
for a great range of algorithm configurations. That in turn allows for more specific
customisation of the algorithmic toolbox for a given problem instance.

Six neighbourhoods are utilised in VNS and ALNS. These are assign shift, delete
shift, single shift day, change assignment shift, change assignment shift based on
shift type set and change assignment skill. They are all based on different properties
of the extended problem model and explore the solution space in different ways.
This way the solution space will be traversed more efficiently in order to find better
solutions in less execution time. Tournament heuristics have been developed to
explore these neighbourhoods within a hyperheuristic framework. At each iteration,
a tournament heuristic searches a sample of a neighbourhood instead of searching
the neighbourhood completely. That way the CPU time spent at each iteration is
reduced and more iterations are made throughout the execution of the algorithm.
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An algorithmic toolbox and three novel low level neighbourhoods to address the
personnel rostering problem is the main contribution of the present chapter. The
algorithmic toolbox has been designed to be configured automatically during the
execution time by the deploying system without the intervention by a human
expert. The algorithmic toolbox has been composed with components adopted
from the scientific literature except three novel low level neighbourhoods. The
low level neighbourhoods introduced by the author of the present dissertation are
change assignment shift, change assignment shift based on shift type set and change
assignment skill.

The customisation of the algorithmic toolbox plays an important role when
addressing a broad range of problem instances. Quantitative measures have
been introduced in Chapter 5 to measure the properties of the problem instances.
Experiments have been conducted to find out the relations between the performance
of the solution method settings and the quantifiable problem properties (Chapter
8). Consequently, with the set of algorithmic tools that has been presented in this
chapter, a decision support system can select the most promising configuration of
the algorithmic toolbox based on the quantitative measures of the problem instance
and the experimental results. This practice is expected to increase the probability
of finding good enough solutions accross a great variety of real world personnel
rostering problem instances.






Chapter 8

Experiments

The objective of the present dissertation is to introduce a solution method to address
a wide range of real world personnel rostering problems. According to the “no
free lunch” theorems discussed by Wolpert and Macread in [71], a single algorithm
configuration cannot be expected to outperform other algorithm configurations
on all problem instances. Therefore, instead of targeting all personnel rostering
problem instances, the research in the present dissertation has been limited to
the real world personnel rostering problems. Furthermore, an algorithmic toolbox
that can be configured in numerous ways has been utilised in the solution method
(Chapter 7), in order to increase the probability of finding good enough solutions
on a broad range of real world personnel rostering problems. However, in a real
world environment, where a satisfactory solution is expected in a limited amount
of execution time, it is not practical to experiment with each configuration of the
algorithmic toolbox every time a new problem instance is encountered. Therefore,
a decision method to select the most promising configuration of the algorithmic
toolbox for a given problem instance is needed for practical purposes.

A comprehensive hardness analysis of the personnel rostering problems as proposed
by Leyton-Brown et al. in [43] is beyond the scope of this dissertation. In such an
analysis, a problem instance distribution is determined and the performance of the
algorithm configurations at hand is measured among this distribution. Based on a
statistical analysis of the experimental results, a performance prediction function is
derived on problem instance - algorithm configuration pairs. Instead of departing
from a problem instance distribution, the experiments in the present chapter are
executed on the KAHO benchmarks introduced in Chapter 6. Consequently, the
experimental results in the present chapter do not provide sufficient statistical
evidence to generalise the derived relation between the problem instances and the
algorithm configurations to all the personnel rostering problem instances. However,
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the experimental results provide sufficient statistical evidence to derive a relation
between the real world problem instances whose quantitative measure values are
within a particular range and the most promising configuration of the algorithmic
toolbox among the configurations experimented with. Such a relation, although
cannot be generalised to all the personnel rostering problems and algorithms in
its current form, provides a significant value to the developers who implement
automated personnel rostering decision support systems and to the planners who
use those systems. An extended empirical and statistical study of the relation
between all the personnel rostering problems and the most promising configurations
of the algorithmic toolbox is pointed out as future work.

In this dissertation, a two step decision method is proposed to select the most
promising configuration of the algorithmic toolbox for a given problem instance. The
first step is to determine the properties of the problem instance. The quantitative
measures introduced in Chapter 5 have been developed to measure the size and
hardness of a problem instance in a short amount of time that is negligible compared
to the execution time of the solution method. The second step is to use a relation
between the problem properties and the most promising configuration of the
algorithmic toolbox. The purpose of the experiments presented in this chapter is
to find such a relation. The discovered relation will then be used as the second
step of the decision method to select the most promising configuration for a given
problem instance.

Several decisions need to be made to configure the algorithmic toolbox introduced
in Chapter 7. First, one of the variable neighbourhood search (VNS), adaptive
large neighbourhood search (ALNS) or hyperheuristics needs to be chosen. Each
of these algorithms involve a number of configuration decisions. The maximum
tabu tenure must be decided when using VNS and ALNS. The selection method,
acceptance criterion and the tournament factor needs to be determined when using
the hyperheuristics. Furthermore, the set of neighbourhoods or low level heuristics
must also be decided upon. To determine the most promising set of neighbourhoods,
experiments have been carried out on five different neighbourhood sets deployed in
several VNS variants.

The experimental results have been analysed in two steps. First the most promising
VNS and ALNS configurations have been determined. Then, the best performing
hyperheuristic variants have been compared with the most promising VNS and
ALNS configurations. As a result, the most promising algorithm configuration for
each problem group has been determined. Three problem properties have been
used to divide the problem instances into specific groups. These properties are
presented in the following list.

o Existence of employees with multiple skill types

o Minimum number of required and free assignments (MNRFA)
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o Tightness ratio

The combination of the MNRFA and tightness ratio have been used to divide
the problem instances into four groups to determine the most promising overall
configuration of the algorithmic toolbox for each group. The KAHO benchmarks,
introduced in Chapter 6, have been used as test data. The Nottingham benchmarks,
surveyed in Chapter 2, have been used to verify the findings of the experiments.

The decision variables of the algorithm configurations, such as the tournament factor
and the maximum tabu tenure, are discrete. Therefore a set of candidate values
have been used to find out the most promising one. Preliminary experimentation
has been used to decide upon the sets of these candidate values.

8.1 Experimental settings

There are two decisions to be made for setting the VNS algorithm: the composition
of the neighbourhood set and the maximum tabu tenure. The neighbourhood sets
that are applied in the experiments are presented in Table 8.1. As mentioned in
Chapter 7, the basic neighbourhood set, i.e., assign shift, delete shift and single shift
day, has been adopted from the scientific literature. The other three neighbourhoods,
change assignment shift based on shift type set, change assignment shift and change
assignment skill, have been developed by the author of the present dissertation.
Different neighbourhood sets have been experimented with in order to measure
the contribution of the neighbourhoods developed by the author. The assign
shift and delete shift neighbourhoods are complementary. They have been utilised
consecutively in the VNS algorithm. The remaining neighbourhoods are special
compositions of delete shift and assign shift neighbourhoods, each with a specific
rule to restrict the delete shift-assign shift sequence. In the VNS algorithm, the
search starts with the assign shift and delete shift neighbourhoods, and continues
with the single shift-day neighbourhood. The additional neighbourhoods follow
the basic set in the order of appearance in Table 8.1.

The rationale behind the ALNS algorithm is based on the dynamic selection of the
neighbourhood at each iteration. Therefore, a specific order of the neighbourhoods
is not needed. The most comprehensive neighbourhood set, Set 5, has been utilised
in the ALNS algorithm, because ALNS is expected to select relevant neighbourhoods
with higher probability.

One of the parameters of the VNS and ALNS is the upper bound for the tabu
tenure. The upper bound for the tabu tenure must be a positive integer value,
and consequently, it can take an unlimited number of values. Therefore, a limited
number of values, 97 and 199, have been determined as the upper bounds for the
tabu tenure using preliminary experimentation. The upper bounds for the tabu
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Set 1 | assign shift, delete shift, single shift day

Set 2 | Set 1 + change assignment based on shift type set
Set 3 | Set 1 + change assignment skill

Set 4 | Set 1 4+ change assignment shift

Set 5 | Set 1 + change assignment shift

+ change assignment skill

Table 8.1: Neighbourhood sets

Problem property No employee At least one employee
with multiple skill types | with multiple skill types
Assign shift Assign shift
Most suitable Delete shift Delete shift
heuristic set Single shift day Single shift day
Change assignment shift | Change assignment shift
Change assignment skill

Table 8.2: Heuristic sets

tenure, 97 and 199, have been experimented with in both, VNS and ALNS. As a
result, 10 different VNS and 2 different ALNS variants have been experimented
with for comparison purposes.

Two selection methods have been experimented with in hyperheuristics: simple
random and choice function. Three acceptance criteria have been utilised: improving
and equal moves accepted, simulated annealing and great deluge. Three different
cooling schedules have been used in simulated annealing and great deluge: linear
where n = 1 in Equations 2.6 and 2.7, quadratic where n = 2, and quartic where
n = 4. Although greater values for n are possible, that will only result in the
behaviour of simulated annealing and great deluge approaching asymptotically to
the behaviour of improving and equal moves accepted, and it is not expected to
add any algorithmic diversity to the experiments.

Similar to the upper bound for the tabu tenure, the tournament factors can take
any positive integer value, resulting in infinite number of candidate parameters.
Therefore, a limited number of tournament factors have been determined as a
result of preliminary experiments. Three tournament factors have been used in the
tournament heuristics: 128, 256 and 512. As a result, the experiments have involved
42 hyperheuristic variants. The heuristic sets have been constructed using the two
most successful neighbourhood sets in the experiments on the VNS algorithms
(Table 8.2).
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The problem model and solution methods have been implemented in C#. The
operating system of the experimentation platform was MS Windows Server 2003
Enterprise Edition SP 2. The hardware was Intel Pentium 4 CPU with 2.40 GHz
and 2.00 GB of RAM. For the KAHO benchmarks, the termination criterion was
ten minutes of execution time for each run for normal and overload scenarios,
and one minute of execution time for the absence scenario. For the Nottingham
benchmarks, the termination criterion was ten minutes of execution time, except
for Millarl.1 and Ozkarahan, where the execution time was one minute. The
termination criterion has been selected to reflect the expectations of the end users.

8.2 Experimental results

Each algorithm variant has been executed ten times on each problem instance
to allow statistical analysis. The results of experiments have been processed
in two groups, first the results on VNS and ALNS and then the results on the
hyperheuristics. In each group and for each problem instance, the best performing
algorithm according to the average objective value over ten runs has been selected.
The Wilcoxon test with 95% confidence level has been used to assess the statistical
significance of the difference between the results of the best performing algorithm
and the remaining algorithms. If there is no significant performance variance
between an algorithm and the best performing one, this algorithm has also been
considered in the best performing group.

8.2.1 Results on VNS and ALNS variants

The experimental results for each VNS, ALNS variant-problem instance couple are
presented in Tables 8.3 - 8.8. The values in these tables are the average objective
values of the best solutions found and their standard deviations. In these tables, the
algorithm settings that performed significantly better than the rest are highlighted
with bold characters. Tables 8.3 - 8.8 also depict the best results of the normal
scenarios of the KAHO benchmarks achieved manually by the human planners.
Table 8.9 presents the results by VNS variants with 97 as the mazimum tabu tenure
to give an overall view.

The experimental results for VNS and ALNS indicate that the solution methods
with 97 as the mazimum tabu tenure have performed better than the ones with 199
on the KAHO benchmarks. The VNS, ALNS variants with 97 as the maximum
tabu tenure have been among the best performers for 17 problem instances, while
the ones with 199 have been among the best performers only for seven of the KAHO
benchmarks. The only exception to this observation is the emergency overload
scenario. The VNS, ALNS variants with neighbourhood sets 3, 4 and 5 and the
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maximum tabu tenure 199 have been the best performing solution methods for the
emergency overload scenario (Table 8.3).

Among the VNS, ALNS variants with 97 as the mazimum tabu tenure, VNS
with neighbourhood set 4 has been among the best performers for 13 instances,
and neighbourhood set 5 for 12 instances. The remaining VNS, ALNS variants
could not compete with this performance. The exceptions to this observation are
the experiments for the normal scenarios of the psychiatry, meal preparation and
geriatrics wards. ALNS has performed better than VNS on the psychiatry normal
scenario. The best performing VNS, ALNS variants for geriatrics normal scenario
have been VNS with neighbourhood set 1 and 2, and for meal preparation normal
scenario VNS with neighbourhood set 1, 2 and 3.

VNS with neighbourhood set 5 has outperformed VNS with neighbourhood set
4 only on the emergency absence scenario. This result can be explained by the
fact that the nurse rostering problem in the emergency ward involves numerous
nurses with secondary skill types and neighbourhood set 5 involves the change
assignment skill neighbourhood. As a conclusion, VNS with neighbourhood set 4
and mazimum tabu tenure 97 has been the most promising one among the VNS
and ALNS settings tested on the KAHO benchmarks.

The basic neighbourhood set, Set 1, has been among the best performing
neighbourhood sets on eight out of 18 problem instances. For these instances,
the basic neighbourhood set has not been the unique best performer. The
contribution of the problem specific neighbourhoods that take advantage of the
problem properties like secondary skill types and compatible shift types has been
emphasised by this result.

8.2.2 Results on hyperheuristics variants

In Table 6.1, the minimum number of required and free assignments (MNRFA),
tightness and period values of each problem instance are given. Further details on
how these values have been calculated can be found in Chapter 5. The problem
instances from the KAHO benchmarks have been divided into four groups according
to their MNRFA and tightness values (Table 6.1). The performance of the algorithm
variants on each group has been analysed.

The experimental results of a selected subset of the hyperheuristic variants and
the results of the best performing VNS variant have been reported in Tables 8.10
to 8.12. In Tables 8.10 to 8.12, CF refers to choice function, SR to simple random,
SA to simulated annealing, L to linear, Q4 to quartic, while the numbers denote
the tournament factors. In the same tables, the first number after VNS is the
maximum tabu tenure and the second one the neighbourhood set; the number after
ALNS denotes the mazimum tabu tenure. The values in Tables 8.10 to 8.12 refer to
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the best objective values obtained by the algorithms. The results of the algorithm
variants that are in the best performing group are indicated in boldface characters.

The small size problem instances, i.e., the instances with absence scenarios, have an
MNRFA between 40 and 107 (Table 6.1). The hyperheuristic variant with choice
function, simulated annealing with linear cooling, and 128 as tournament factor has
been the best performing algorithm variant for this group, among the algorithm
configurations experimented with. This algorithm variant has been among the best
performing group on all of the small size problem instances. On three out of six
small size problem instances, this variant has found the best objective value found
by the algorithms experimented with, in all of the ten executions (Table 8.10).

The midsize problem instances with normal tightness ratio have an MNRFA
between 200 and 513, and their tightness ratios vary between 0.66 and 1.19
(Table 6.1). For this group, the hyperheuristic configuration with choice function,
stmulated annealing with linear cooling, and 256 as tournament factor has been
the best performing algorithm configuration among the algorithm configurations
experimented with. This algorithm variant has been in the best performing group
on all of the midsize problem instances with normal tightness. On two out of eight
problem instances in this group, this variant has generated the best overall objective
value found by the algorithms experimented with, in all of the ten experiments
(Tables 8.11 and 8.12).

Although reception normal and reception overload belong to the group of midsize
problems, they are distinguished from this group by their high tightness ratios
(Table 6.1). This fact is also reflected by the algorithm performance, because the
best performing algorithms for the midsize-normal tightness instances have not
been among the best performing group for midsize-high tightness instances. On
midsize-high tightness instances, there are seven algorithm variants that have been
in the best performing group among the algorithm variants experimented with.
Among these seven variants, the following hyperheuristic configurations stand out:
the hyperheuristic composed of simple random, simulated annealing with quartic
cooling scheme, and 256 as tournament factor, and the hyperheuristic composed
of choice function, simulated annealing with quartic cooling scheme, and 128 as
tournament factor. The first variant has returned the best average objective value
on reception normal, and the second the best average objective value on reception
overload (Tables 8.11 and 8.12).

The palliative care normal and overload instances form the group of large size
problem instances with an MNRFA of 846 and 1031, respectively (Table 6.1). VNS
methods with the mazimum tabu tenure of 97 have been in the best performing
group for these problem instances among the algorithms experimented with (Tables
8.11 and 8.12). The only problem group where VNS has outperformed the
hyperheuristics is the group of large size problem instances.

An overall view on the experimental results is given in Table 8.13. The problems
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are grouped according to their MNRFA and tightness values. The values in Table
8.13 denote how well the algorithms have performed on the given problem instance.
Only the algorithm settings that are considered as the most suitable ones for at
least one of the problem instance groups have been reported on this table.

In addition to the KAHO benchmarks, ten instances from the Nottingham
benchmarks! have been used in the experiments. The algorithms in the best
performing group on the KAHO benchmarks have been applied to the Nottingham
benchmarks. These are the hyperheuristic algorithms with choice function and
stmulated annealing with linear cooling scheme. In this setting, the tournament
factors 128 and 256 have been the most suitable for the small and midsize-normal
tightness instances, respectively.

As it has been explained in detail in Chapter 4, the results of the experiments on the
Nottingham benchmarks have been severely influenced by handling the continuity
between two schedule periods. The experimental results on the Nottingham
benchmarks need to be interpreted considering the fact that the model presented
here has a different problem definition, namely one that does not conflict with the
continuous nature of the problem.

8.3 Conclusions

The objective of the present chapter is to find a relation between the real world
problem instances whose quantitative measures are within a particular range and
the most promising configuration of the algorithmic toolbox introduced in Chapter
7. The discovered relation can be used in automated personnel rostering software to
select the most promising algorithm configuration of the solution method in Chapter
7 for a given problem instance. A series of experiments have been carried out and
the results of the experiments have been analysed using statistical methods to find
out the desired relation. Three problem properties have been taken into account,
the existence of employees with multiple skill types, the minimum number of
required and free assignments (MNRFA) and the tightness ratio. The experiments
have been carried out on the KAHO benchmarks. The Nottingham benchmarks
have been used to verify the results of the experiments.

The instances of the KAHO benchmarks have been divided into two groups
according to the existence of employees with multiple skill types. A specific
low level heuristic set has been suggested for each group (Table 8.2). Another
division is based on the instances’ MNRFA and tightness ratio values so that the
most promising algorithm configuration for each group can be investigated. Ten
variants of the variable neighbourhood search (VNS), two variants of the adaptive

Thttp://www.cs.nott.ac.uk/~tec/NRP/
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large neighbourhood search (ALNS) and 42 hyperheuristic variants have been
experimented with.

Among the configurations experimented with, the hyperheuristic configuration with
choice function as the selection method, simulated annealing with linear cooling
schedule as the acceptance criterion, and 128 as the tournament factor has been
found to be the most promising algorithm configuration for small size problem
instances. The same hyperheuristic configuration but with 256 as tournament
factor has been found to be the most promising configuration for midsize problem
instances with normal tightness ratios. Two hyperheuristic configurations, first,
stmple random as selection method and 256 as tournament factor, and second,
choice function as selection method and 128 as tournament factor have been found
to be the most promising configuration for midsize problem instances with high
level tightness ratios. The acceptance criterion in both configurations is simulated
annealing with quartic cooling scheme. For large size problem instances, variable
neighbourhood search with 97 as the maximum tabu tenure and neighbourhood
set 4 has been determined to be the most promising algorithm configuration. An
overview of these results can be found in Table 8.13. The contribution of the
problem specific neighbourhoods introduced in Chapter 7 has been emphasised
through the better performance of the algorithm configurations that deploy these
neighbourhoods.

The results of the experiments with the best performing algorithm variations on ten
instances from the Nottingham benchmarks have also been reported. However, these
results have been distorted by the fact that the constraint evaluation methods of the
Nottingham benchmarks and the solution methods presented in this dissertation
do not match.

The experimental results in the present chapter do not represent a comprehensive
hardness analysis of the personnel rostering problems as proposed by Leyton-
Brown et al. in [43]. Instead of constructing an experimental design on a problem
instance distribution to represent all personnel rostering problems, the focus of
the experiments has been the real world personnel rostering problems whose
quantitative measures vary in a particular range. The experimental results in the
present chapter cannot be generalised to all the personnel rostering problems, which
was not the objective of the present chapter. Nevertheless, the derived relation
is of substantial value in the real world practice for the developers who have to
provide automated personnel rostering solutions and for the planners who utilise
the provided solutions. A generalisation of the experimental results in the present
chapter using the methodology in [43] is pointed out as future work.
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A. Setting Normal Overload Absence
N. Set | T. L. Average | St. Dev. Average | St. Dev. Average | St. Dev.
VNS -1 97 | 11410.50 386.46 27441.33 332.37 21849.67 88.86
VNS -1 199 14020.66 1566.69 27052.50 138.65 21864.67 45.72
VNS -2 97 11817.33 655.30 29231.67 2461.29 21862.17 38.55
VNS - 2 199 13310.66 714.66 27055.33 203.29 21882.17 91.24
VNS -3 97 | 11295.83 275.42 27813.66 733.73 21412.67 246.77
VNS -3 199 11801.66 376.20 | 26836.17 227.36 21843.67 38.09
VNS -4 97 | 11201.17 308.12 27130.00 314.70 21532.67 186.01
VNS -4 199 12014.00 561.92 | 26699.67 161.17 21711.17 268.75
VNS -5 97 | 11361.17 239.20 27483.17 370.90 | 21175.17 20.82
VNS -5 199 | 11285.50 201.21 | 26731.84 185.23 21753.84 213.04
ALNS - 5 97 11753.33 191.95 27679.17 216.29 21327.67 137.90
ALNS - 5 199 11858.83 163.41 27325.17 123.33 24121.33 1598.55
Human Planner 49236.00

Table 8.3: Hospital 1 Emergency Results. A. Setting, N. Set, T. L., St. Dev.
denote algorithm setting, neighbourhood set, upper bound for the tabu list length
and standard deviation, respectively.

A. Setting Normal Overload Absence
N. Set | T. L. Average | St. Dev. Average | St. Dev. Average | St. Dev.
VNS -1 97 9079.00 191.51 12339.00 311.11 13109.00 210.42
VNS -1 199 | 10236.00 255.13 14687.00 557.77 | 12906.00 203.26
VNS - 2 97 9074.00 223.67 12429.00 234.92 12993.00 99.34
VNS - 2 199 | 10160.00 430.86 14492.00 656.94 | 12874.00 235.33
VNS - 3 97 9041.00 173.36 12207.00 205.32 | 12946.00 206.30
VNS -3 199 | 10363.00 218.84 14930.00 570.28 13022.00 124.26
VNS - 4 97 8751.00 127.93 | 10914.00 115.59 | 13001.00 201.19
VNS -4 199 9184.00 256.31 12166.00 393.62 | 12888.00 337.96
VNS -5 97 8774.00 146.98 | 10966.00 215.83 | 12850.00 172.43
VNS -5 199 9292.00 208.74 12196.00 240.15 | 13019.00 263.67
ALNS -5 97 | 8649.00 136.42 | 10916.00 238.15 13790.00 473.15
ALNS - 5 199 9210.00 219.95 11929.00 297.97 14247.00 1653.78
Human Planner 35480.00 -

Table 8.4: Hospital 1 Psychiatry Results. A. Setting, N. Set, T. L., St. Dev.
denote algorithm setting, neighbourhood set, upper bound for the tabu list length
and standard deviation, respectively.
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A. Setting Normal Overload Absence
N. Set | T. L. Average | St. Dev. Average | St. Dev. Average | St. Dev.
VNS -1 97 22582.17 219.75 56302.17 606.76 | 28730.67 223.07
VNS -1 199 23786.67 238.13 56348.17 387.77 | 28821.17 120.93
VNS -2 97 | 21720.67 173.39 54122.67 378.08 | 28699.67 233.65
VNS - 2 199 22555.67 183.41 53873.67 133.67 | 28778.17 105.38
VNS - 3 97 22525.67 242.67 56336.67 382.11 | 28838.17 192.46
VNS -3 199 23884.67 289.83 56274.17 179.97 | 28850.67 205.76
VNS - 4 97 | 21739.67 139.77 | 53036.17 120.17 | 28673.67 187.00
VNS -4 199 22698.17 238.81 53605.17 189.69 | 28768.17 137.22
VNS -5 97 | 21812.17 136.88 53122.67 145.43 | 28729.17 128.80
VNS -5 199 22624.67 215.23 53563.17 226.91 | 28786.17 117.70
ALNS - 5 97 | 21774.17 199.63 | 52975.17 120.72 | 28786.17 364.21
ALNS - 5 199 22534.67 264.43 53536.67 199.51 | 28658.67 372.63
Human Planner 48358.00

Table 8.5: Hospital 1 Reception Results. A. Setting, N. Set, T. L., St. Dev.
denote algorithm setting, neighbourhood set, upper bound for the tabu list length
and standard deviation, respectively.

A. Setting Normal Overload Absence
N. Set | T. L. Average | St. Dev. Average | St. Dev. Average | St. Dev.
VNS -1 97 | 2904.10 25.40 10949.10 22.49 | 5342.83 185.31
VNS -1 199 3048.80 31.76 11238.20 72.98 | 5408.50 157.95
VNS - 2 97 | 2894.67 21.82 10942.30 36.74 | 5348.67 157.48
VNS - 2 199 3064.63 53.68 11245.60 68.49 | 5401.33 177.21
VNS -3 97 | 2896.33 14.08 10944.80 37.97 | 5346.33 186.36
VNS -3 199 3049.70 40.02 11230.90 64.73 | 5425.00 157.11
VNS - 4 97 3162.60 37.78 | 10867.90 29.75 | 5326.33 99.71
VNS -4 199 3121.50 51.75 10978.30 68.29 5516.17 133.61
VNS -5 97 3133.33 19.07 | 10881.60 25.54 | 5350.17 82.24
VNS -5 199 3104.83 59.53 10987.00 46.31 | 5405.00 155.49
ALNS -5 97 3107.87 28.20 11058.00 49.10 | 5338.33 52.90
ALNS - 5 199 3124.27 39.96 11120.60 42.98 7193.17 460.98
Human Planner 22100.00 -

Table 8.6: Hospital 1 Meal Preparation Results. A. Setting, N. Set, T. L.,
St. Dev. denote algorithm setting, neighbourhood set, upper bound for the tabu
list length and standard deviation, respectively.
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A. Setting Normal Overload Absence
N. Set | T. L. Average | St. Dev. Average | St. Dev. Average | St. Dev.
VNS -1 97 | 4301.00 134.88 10898.50 303.58 | 9194.83 260.34
VNS -1 199 5295.33 633.63 12659.67 935.36 | 9035.67 447.74
VNS -2 97 | 4208.67 117.93 10914.33 285.87 | 9138.83 204.83
VNS - 2 199 5170.67 364.91 13539.67 643.76 | 9286.83 299.59
VNS -3 97 4612.67 175.90 11417.00 414.39 9451.33 247.29
VNS -3 199 6177.50 1212.17 15225.50 1202.69 | 9425.67 395.41
VNS -4 97 4343.67 110.91 | 10705.50 146.81 | 9180.17 358.61
VNS -4 199 5647.67 381.44 12192.83 510.15 | 9153.17 410.28
VNS -5 97 4788.33 209.88 11131.17 257.38 | 9400.17 390.50
VNS -5 199 6038.00 642.87 13302.67 889.10 | 9300.17 320.23
ALNS - 5 97 4657.67 199.62 | 10897.00 330.73 9984.33 554.00
ALNS - 5 199 6945.50 805.99 13685.83 871.46 | 10282.00 706.24
Human Planner 28594.00 -

Table 8.7: Hospital 1 Geriatrics Results. A. Setting, N. Set, T. L., St. Dev.
denote algorithm setting, neighbourhood set, upper bound for the tabu list length
and standard deviation, respectively.

A. Setting Normal Overload Absence
N. Set | T. L. Average | St. Dev. Average | St. Dev. Average | St. Dev.
VNS -1 97 | 44392.50 | 1090.53 55675.00 1169.25 | 56388.00 363.93
VNS -1 199 46348.25 1053.51 54399.00 1632.47 | 56481.50 438.73
VNS - 2 97 | 44515.75 973.50 55553.25 965.17 56957.50 351.71
VNS - 2 199 46539.25 721.09 55346.75 1711.53 57139.00 444.82
VNS -3 97 | 44555.75 967.81 55916.25 1828.05 | 56659.50 642.87
VNS -3 199 46662.25 856.09 54812.50 1198.47 | 56355.00 323.37
VNS - 4 97 | 44951.50 791.85 | 50632.25 647.25 | 56356.50 445.51
VNS -4 199 46325.50 1004.18 51638.75 858.53 | 56676.00 420.49
VNS -5 97 | 44952.75 725.61 | 50177.75 528.20 | 56655.50 443.67
VNS -5 199 46145.25 917.36 51736.75 816.13 | 56658.50 420.48
ALNS -5 97 | 44155.25 840.44 51612.25 829.23 57713.75 721.77
ALNS - 5 199 45646.75 607.29 52746.00 1032.53 61334.25 2523.93
Human Planner 183859.00 -

Table 8.8: Hospital 2 Palliative Care. A. Setting, N. Set, T. L., St. Dev.
denote algorithm setting, neighbourhood set, upper bound for the tabu list length
and standard deviation, respectively.
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VNS-1-97 | VNS-2-97 | VNS-3-97 | VNS-4-97 | VNS-5-97 | ALNS-5-97

N 11410.50 11817.33 | 11295.83 | 11201.17 | 11361.17 11753.33

? ’ 386.46 655.30 275.42 308.12 239.20 191.95
& o 27441.33 29231.67 27813.66 27130.00 27483.17 27679.17
g 332.37 2461.29 733.73 314.70 370.90 216.29
mE A 21849.67 21862.17 21412.67 21532.67 | 21175.17 21327.67
’ 88.86 38.55 246.77 186.01 20.82 137.90

N 9079.00 9074.00 9041.00 8751.00 8774.00 8649.00

E‘ ’ 191.51 223.67 173.36 127.93 146.98 136.42
E o 12339.00 12429.00 12207.00 | 10914.00 | 10966.00 10916.00
S 311.11 234.92 205.32 115.59 215.83 238.15
oo A 13109.00 12993.00 | 12946.00 | 13001.00 | 12850.00 13790.00
’ 210.42 99.34 206.30 201.19 172.43 473.15

N 22582.17 | 21720.67 22525.67 | 21739.67 | 21812.17 21774.17

5 ’ 219.75 173.39 242.67 139.77 136.88 199.63
i o 56302.17 54122.67 56336.67 | 53036.17 53122.67 52975.17
§ 606.76 378.08 382.11 120.17 145.43 120.72
e A 28730.67 28699.67 28838.17 28673.67 28729.17 28786.17
’ 223.07 233.65 192.46 187.00 128.80 364.21

N 2904.10 2894.67 2896.33 3162.60 3133.33 3107.87

Q ’ 25.40 21.82 14.08 37.78 19.07 28.20
=zl o0 10949.10 10942.30 10944.80 | 10867.90 | 10881.60 11058.00
2"’ ’ 22.49 36.74 37.97 29.75 25.54 49.10
A 5342.83 5348.67 5346.33 5326.33 5350.17 5338.33

’ 185.31 157.48 186.36 99.71 82.24 52.90

N 4301.00 4208.67 4612.67 4343.67 4788.33 4657.67

8 ’ 134.88 117.93 175.90 110.91 209.88 199.62
% o 10898.50 10914.33 11417.00 | 10705.50 11131.17 10897.00
5 303.58 285.87 414.39 146.81 257.38 330.73
@) A 9194.83 9138.83 9451.33 9180.17 9400.17 9984.33
’ 260.34 204.83 247.29 358.61 390.50 554.00

N 44392.50 | 44515.75 | 44555.75 | 44951.50 | 44952.75 44155.25

o ’ 1090.53 973.50 967.81 791.85 725.61 840.44

S o 55675.00 55553.25 55916.25 | 50632.25 | 50177.75 51612.25
A 1169.25 965.17 1828.05 647.25 528.20 829.23
A 56388.00 56957.50 | 56659.50 | 56356.50 | 56655.50 57713.75

’ 363.93 351.71 642.87 445.51 443.67 721.77

Table 8.9: Overall Results on the KAHO benchmarks. The first row for
each problem instance setting is the average objective value of the solutions, the
second row the standard deviation. N., O. and A. refer to the normal, overload
and absence scenarios, respectively.
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Geriatrics- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA-| VNS-
Absence 1-128 1L-256 Q4-256 Q4-128 Q4-256 199-1
Average 8140.00 8140.00 8140.00 8140.00 8140.00| 9035.67
St. Dev. 0.00 0.00 0.00 0.00 0.00| 447.74
Min. 8140.00 8140.00 8140.00 8140.00 8140.00| 8140.00
Max. 8140.00 8140.00 8140.00 8140.00 8140.00| 9695.00
Psychiatry- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA-| VNS-
Absence L-128 1-256 Q4-256 Q4-128 Q4-256 97-5
Average 11868.00 | 11724.00 | 11764.00 | 11848.00 | 11810.00 [12850.00
St. Dev. 150.39 180.63 166.81 160.13 201.11 172.43
Min. 11590.00 | 11590.00 | 11590.00 | 11590.00 | 11590.00 |12470.00
Max. 11970.00 | 11970.00 | 11970.00 | 11970.00 | 12070.00 [13090.00
Meal P.- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA-|  VNS-
Absence L-128 L-256 Q4-256 Q4-128 Q4-256| 974
Average 4828.33 4829.33 4897.17 4842.83 4835.83| 5326.33
St. Dev. 9.33 11.09 41.24 9.13 10.22 99.71
Min. 4820.00 | 4820.00 4841.67 4825.00 4820.00| 5163.33
Max. 4841.67 4843.33 4945.00 4863.33 4843.33| 5455.00
Emergency- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA-| VNS-
Absence L-128 L-256 Q4-256 Q4-128 Q4-256 97-5
Average 21146.67 | 21147.67 | 21147.67 | 21147.67 21200.17|21175.17
St. Dev. 0.00 2.11 2.11 2.11 157.08 20.82
Min. 21146.67 | 21146.67 | 21146.67 | 21146.67 21146.67({21151.67
Max. 21146.67 | 21151.67 | 21151.67 | 21151.67 21646.67(21221.67
Reception- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA-| ALNS-
Absence L-128 L-256 Q4-256 Q4-128 Q4-256 199
Average 28126.67 | 28126.67 | 28126.67 | 28126.67 | 28126.67 |28658.67
St. Dev. 0.00 0.00 0.00 0.00 0.00 | 372.63
Min. 28126.67 | 28126.67 | 28126.67 | 28126.67 | 28126.67 |28206.67
Max. 28126.67 | 28126.67 | 28126.67 | 28126.67 | 28126.67 [29296.67
Palliative C.- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA-|  VNS-
Absence L-128 1-256 Q4-256 Q4-128 Q4-256 199-3
Average 55061.00 | 55037.00 | 55042.50 55169.00f 55050.00 |56355.00
St. Dev. 151.57 183.26 171.22 218.54 186.94 323.37
Min. 54872.50 | 54727.50 | 54847.50 54872.50| 54842.50 |55937.50
Max. 55317.50 | 55327.50 | 55402.50 55637.50| 55382.50 |56767.50

Table 8.10: Experimental Results of the Absence Scenarios
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Geriatrics- CF-SA- CF-SA- SR-SA- CF-SA-| CF-SA- VNS-
Normal L-128 L-256]  Q4-256]  Q4-128]  Q4-256 97-2
Average 3660.00 3660.00 3779.33| 3660.00 | 3660.00 4208.67
St. Dev. 0.00 0.00 102.73 0.00 0.00 117.93
Min. 3660.00 3660.00 3660.00| 3660.00 | 3660.00 4060.00
Max. 3660.00 3660.00 3860.00 3660.00 | 3660.00 4426.67
Psychiatry- CF-SA- CF-SA- SR-SA- CF-SA-| CF-SA-| ALNS-
Normal L-128 L-256 Q4-256 Q4-128 Q4-256 97
Average 8120.00 8068.00 8159.00 8170.00 | 8145.00 8649.00
St. Dev. 91.89 147.56 81.30 115.95 189.93 136.42
Min. 8000.00 7900.00 8000.00 8000.00 | 7900.00 8490.00
Max. 8200.00 8390.00 8200.00 8400.00 | 8580.00 8880.00
Meal P.- CF-SA- CF-SA- SR-SA- CF-SA-| CF-SA- VNS-
Normal L-128 L-256]  Q4-256]  Q4-128| Q4-256 97-2
Average 2893.90f 2796.90 2962.60 2909.10| 2806.37| 2894.67
St. Dev. 25.08 26.62 40.69 23.94 21.80 21.82
Min. 2848.50| 2760.17 2879.17 2874.17| 2771.83| 2849.17
Max. 2923.50| 2835.17 3018.50 2941.83 2842.50| 2925.83
Emergency- CF-SA- CF-SA- SR-SA- CF-SA-| CF-SA- VNS-
Normal L-128 L-256]  Q4-256]  Q4-128] Q4-256 97-4
Average 11370.67| 10753.33 11077.83 11151.33| 11074.50| 11201.17
St. Dev. 142.29 175.40 176.63 255.35 205.66 308.12
Min. 11173.33| 10543.33 10811.67 10798.33| 10833.33| 10736.67
Max. 11571.67| 11138.33 11403.33 11583.33| 11488.33| 11818.33
Reception CF-SA- CF-SA- SR-SA- CF-SA-| CF-SA- VNS-
Normal L-128 L-256]  Q4-256]  Q4-128| Q4-256 97-2
Average 21783.67 21890.17| 21562.67 | 21598.67 | 22126.17|21720.67
St. Dev. 143.45 322.84 202.37 190.85 442.38| 173.39
Min. 21616.67 21431.67| 21321.67 | 21336.67 | 21336.67{21416.67
Max. 22126.67 22406.67| 21921.67 | 21916.67 | 22726.67|21931.67
Palliative C.-| CF-SA- CF-SA- SR-SA- CF-SA-| CF-SA-| ALNS-
Normal L-128 L-256]  Q4-256]  Q4-128| Q4-256 97
Average 50021.25 48773.75 50067.00 48340.00| 48139.25|44155.25
St. Dev. 1236.05 459.81 811.59 696.94 744.77) 840.44
Min. 47365.00 47875.00 49220.00 47350.00| 46785.00{42965.00
Max. 51675.00 49380.00 51360.00 49430.00| 49385.00{45450.00

Table 8.11: Experimental Results of the Normal Scenarios
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Geriatrics- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA- VNS-
Overload L-128 L-256 Q4-256 Q4-128 Q4-256 97-4
Average 9718.50| 9591.67 9647.67 9623.67| 9591.67 | 10705.50
St. Dev. 60.56 0.00 54.00 41.31 0.00 146.81
Min. 9671.67| 9591.67 9591.67 9591.67| 9591.67 | 10380.00
Max. 9791.67| 9591.67 9751.67 9671.67| 9591.67 | 10860.00
Psychiatry- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA- VNS-
Overload L-128 L-256 Q4-256 Q4-128 Q4-256 97-4
Average 9978.00 | 10112.00 10069.00| 10080.00| 10218.00| 10914.00
St. Dev. 102.94 300.03 168.75 175.12 260.80 115.59
Min. 9890.00 | 9700.00 9700.00 9900.00 9900.00| 10680.00
Max. 10100.00 | 10570.00 10280.00| 10500.00f  10680.00| 11080.00
Meal P.- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA- VNS-
Overload L-128 L-256 Q4-256 Q4-128 Q4-256 97-4
Average 10937.90| 10811.00 10931.90| 10927.30/ 10818.30| 10867.90
St. Dev. 23.98 29.91 26.13 37.85 23.46 29.75
Min. 10876.00| 10746.00 10896.00 10856.00 10775.00| 10821.00
Max. 10961.00| 10856.00 10976.00| 10961.00f 10851.00| 10906.00
Emergency- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA- VNS-
Overload L-128 L-256 Q4-256 Q4-128 Q4-256 199-4
Average 26636.17| 26906.33 26577.33 26622.50 26988.67| 26699.67
St. Dev. 181.01 561.09 101.85 193.92 689.24 161.17
Min. 26186.67| 26331.67 26386.67| 26351.67| 26086.67| 26496.67
Max. 26866.67| 27716.67 26716.67 26963.33 28301.67| 27013.33
Reception CF-SA- CF-SA- SR-SA- CF-SA- CF-SA-| ALNS-
Overload L-128 L-256 Q4-256 Q4-128 Q4-256 97
Average 52888.17 53270.17| 52953.17 | 52806.17 53381.17| 52975.17
St. Dev. 186.38 237.63 186.10 132.15 339.40 120.72
Min. 52571.67 52971.67| 52651.67 | 52586.67 52931.67| 52826.67
Max. 53081.67 53696.67| 53291.67 | 52971.67 54031.67| 53156.67
Palliative C.- CF-SA- CF-SA- SR-SA- CF-SA- CF-SA- VNS-
Overload L-128 L-256 Q4-256 Q4-128 Q4-256 97-5
Average 53063.00| 51386.75| 50836.00 50797.25| 50610.00 [50177.75
St. Dev. 841.53 597.54 818.57 612.15 384.20 528.20
Min. 51172.50 50535.00| 49810.00 49985.00 50075.00 |49475.00
Max. 53775.00| 52475.00| 52295.00 51865.00| 51460.00 [50930.00

Table 8.12: Experimental Results of the Overload Scenarios
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CF-SA- | CF-SA- | SR-SA- | CF-SA- | VNS-
L-128 L-256 Q4-256 | Q4-128 | 974
Geriatrics Absence 2 2 2 2
Reception Absence 2 2 2 2
Psychiatry Absence 1 1 1 1
Meal Absence 1 1
Palliative Absence 1 1 1
Emergency Absence 2 1 1 1
Geriatrics Normal 2 2 2
Geriatrics Overload 2
Psychiatry Normal 1 1 1 1
Psychiatry Overload 1 1
Meal Normal 1
Meal Overload 1
Emergency Normal 1
Emergency Overload 1
Reception Normal 1 1 1
Reception Overload 1 1 1
Palliative Normal 1 1 1
Palliative Overload 1 1 1

Table 8.13: Overall Results: 2 denotes that the algorithm has found the best
objective value found by all the algorithms experimented with, in all of ten
executions. 1 denotes that the algorithm has been in the best performing group
for that instance. If no value is given, the algorithm has not been in the best
performing group. The values of the most suitable algorithm variants for each
group are indicated with boldface characters.

BCV-3.46.2 BCV-4.13.1 Valouxis SINTEF

(N) (K) (N) (K) (N) (K) | (N&K)
Average | 943.00 | 942.20 | 156.30 | 156.20 | 284.00 | 562.00 26.10
St. Dev. 29.75 29.93 80.64 80.16 41.95 38.24 3.75
Min. | 901.00 | 899.00 39.00 38.00 | 220.00 | 500.00 22.00
Max. | 998.00 | 997.00 | 280.00 | 279.00 | 340.00 | 600.00 33.00
Literature | 894.00 10.00 20.00 0.00

Table 8.14: Results on the Nottingham Benchmarks 1: N and K denote the results
obtained from the evaluation methods of the Nottingham and KAHO benchmarks,
respectively.
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LLR Millarl | Millarl.1 | Ozkarahan GPost | Gpost-B

(N) (K) (N&K) (N&K) (N&K) (N&K) (N&K)
Average | 343.40 | 349.80 | 200.00 0.00 0.00 | 250.40 246.40
St. Dev. 17.20 15.25 210.82 0.00 0.00 42.51 104.60
Min. | 322.00 | 334.00 0.00 0.00 0.00 | 138.00 82.00
Max. | 381.00 | 378.00 | 400.00 0.00 0.00 | 292.00 453.00
Literature | 301.00 0.00 0.00 0.00 5.00 3.00

Table 8.15: Results on the Nottingham Benchmarks 2: N and K denote the results
obtained from the evaluation methods of the Nottingham and KAHO benchmarks,
respectively.
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Conclusions

The objective of this dissertation was to present a complete solution ready to be
implemented to address the real world personnel rostering problem. The presented
solution involves an extended problem model, quantitative measures of problem
properties, a solution method that can be configured in numerous ways and a
decision method to select the most promising configuration of the solution method
for a given real world problem instance.

Literature surveys on personnel rostering have revealed that only a small percentage
of the academic methods have been used in practice. There are several reasons for
the low impact of personnel rostering research on the real world. The focus within
the research domain has been on the algorithms and little specific effort has been
reported on the problem models. Simplified models have been utilised to prove
the usefulness of certain algorithms. The real world personnel rostering problems
cannot be represented accurately with simplified problem models. Solutions based
on incomplete representations will not be satisfactory in the real world practice,
even if they are optimal with respect to their own problem definitions. An accurate
problem definition and an extended problem model was needed to capture the
complexity of the real world problems.

A common approach reported on the personnel rostering literature has been to
develop and finetune solution methods for a single problem instance under study.
The real world problem instances, however, vary significantly over countries, sectors
and institutions. Even the problem instances of different departments in the same
institution have significant distinctions. For example, the meal preparation and the
emergency wards in a hospital do not have the same working regimes. Furthermore,
the personnel rostering problem of the same institution varies over time. In the
short term, the workload of institutions like hospitals have seasonal variances.
In the long term, structural changes in the organisation, evolution of the labour
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legislation and union demands result in modified personnel rostering problems.
All these factors contribute to the diversity of the personnel rostering instances
encountered in the real world practice. As a result, a solution method developed
and finetuned to address a single problem instance does not answer the needs of
the real world practice.

In order to be applicable in practice, a solution method must be able to cope
with the complexity and diversity of the problem instances encountered. Such a
method may not be able to come up with an optimal solution for every problem
instance encountered. On the other hand, optimality is not the main concern of
the real world practitioners. What they expect from a method is to find good
enough solutions with minimum human effort in a limited amount of execution
time. It is economically not sustainable for real world institutions to hire a group
of specialists for several months to work on their problem in order to solve it to
optimality.

This dissertation contributes by presenting a problem model and corresponding
solution methods to solve a broad range of real world personnel rostering problems.
The research has been carried out with two industrial partners to ensure the real
world relevance'. The first step of the present research has been an extensive
study of the problem model. The real world problem instances that our industrial
partners encounter have been analysed in-depth and the standard academic models
have been extended with various elements. The resulting problem model, reported
in Chapter 3, has a higher potential to deal with the complexity and diversity of
the real world problem instances. The extended model has been presented with
thorough explanations and examples to guide developers wanting to implement a
personnel rostering solution for real world problems. The model has been presented
stressing its relations with standard academic models so that researchers with an
academic background can easily understand and deploy it.

The problem model is a structured way of representing the problem data. In
addition to the problem model, the rules of constraint evaluation are also needed
for a complete problem description. The constraint evaluation mechanism utilised
in the solution methods of this dissertation has been presented in Chapter 4. In
order to be useful in practice, the constraint evaluation mechanism of a solution
method must be accurate and consistent with the expectations of the end users.
Even the smallest deviation or inconsistency in constraint evaluation can render
the resulting solution method unacceptable in the real world.

The inconsistencies between the constraint evaluation of the real world practice
and scientific literature have been studied in depth in Chapter 4. Most of these
inconsistencies stem from ignoring the previous and upcoming schedule periods and
trying to solve the problem in an isolated schedule period. Ignoring the enclosing
schedule periods results in implicit assumptions about the situation in those periods.

1SAGA Consulting, GPS NV Belgium
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Such assumptions cannot reflect the actual schedules accurately all the time. More
important than that, these implicit assumptions are not consistent with each other
in several cases. As a result, even the solutions claimed to be optimal based on
assumptions may be unacceptable in practice according to the actual schedules in
the previous and upcoming schedule periods.

It can be derived from the no free lunch theorem [71], that a single algorithm
configuration cannot be expected to cope with all personnel rostering problems.
In order to increase the probability of finding good enough solutions, the solution
method in the present dissertation has been developed to deal with the real world
personnel rostering problems and it can be configured in numerous ways. That
entails the need for a decision mechanism to select the most promising configuration
of the solution method on a given problem instance. Such a decision mechanism
has been constructed as the combination of two steps, measuring the properties of
the problem instance and using a mapping between the problem properties and
the most promising configuration of the solution method.

Complexity indicators to measure problem properties have been introduced to
academia [68]. However, the extended problem model requires more specific
measures than the ones reported in the literature. Three quantitative measures
have been developed (Chapter 5) to ensure an accurate measure of the size and
constrainedness of a problem instance expressed in the extended problem model.

In the personnel rostering domain, researchers have mostly resorted to experiments
on a set of problem instances to demonstrate the usefulness of the solution methods
they propose. The test data utilised in the experiments have not always been
published, which prevents the comprehension, verification and the reproduction of
the results reported. The benchmark data sets have proven to be a useful tool as
an entry point to a research field. They allow the verification and reproduction
of the experimental results and the comparison of the solution methods reported.
Moreover, they enforce a set of standards regarding the problem definition and
structure.

The Nottingham benchmarks [20] are a collection of personnel rostering instances
gathered from various resources and published online?. The diversity of its resources
makes the Nottingham benchmarks a valuable sample of international personnel
rostering problems. The researchers are also invited to add their own test data to
the existing body of the Nottingham benchmarks.

A real world benchmark data set, the KAHO benchmarks, has been introduced
in Chapter 6 and published online®. The KAHO benchmarks consist of test data
provided by one of our industrial partners?. They originate from the Belgian

2http://www.cs.nott.ac.uk/~tec/NRP/
3http://ingenieur.kahosl.be/vakgroep/it/nurse/archive.htm
4SAGA Consulting
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healthcare sector. Although their origin can be perceived as focused, the measures
of their problem properties (Table 6.1) indicate their complexity and diversity.

The solution methods reported in the present dissertation utilise heuristic methods.
The NP-hard nature of the personnel rostering problems, the limited execution
times allowed in the real world practice, and the complexity and the diversity of
the real world problems have been the main motivations behind this choice. As
it is pointed out earlier in the chapter, a single algorithm configuration cannot
be expected to deal with all personnel rostering problems. However, limiting the
targeted problem instances to the real world instances and utilising a variety of
algorithms can increase the probability of finding good enough solutions. The
solution method presented in Chapter 7 has been designed to utilise an algorithmic
toolbox that can be configured in numerous ways. The algorithmic toolbox consists
of variable neighbourhood search (VNS), adaptive large neighbourhood search
(ALNS), hyperheuristics, and a set of neighbourhoods and low level heuristics.
Basic neighbourhoods and low level heuristics have been utilised among the new
ones that explore the structure of the extended problem model in various ways.

An extensive set of experiments have been carried out to find a significant
relationship between the problem properties and the performance of various
configurations of the algorithmic toolbox. The KAHO benchmarks have been
used as test data for the experiments. In total 42 hyperheuristic, ten VNS and
two ALNS configurations have been experimented with. The experimental results
have shown that the algorithm settings deploying problem specific neighbourhoods
in addition to the basic neighbourhood set perform significantly better than the
algorithm settings with the basic neighbourhood set only. The most promising
configuration of the algorithmic toolbox for a particular range of problem sizes and
levels of constrainedness have been reported in Chapter 8. Except on the problem
instances with large sizes, the hyperheuristic variations presented in this study
have outperformed the VNS and ALNS variants. The resulting relations can be
utilised in a decision support software to select the most promising configuration
of the algorithmic toolbox to solve a given problem instance. The experimental
results have been verified on the Nottingham benchmarks.

The problem model, evaluation method, quantitative measures and solution
methods documented in the presented dissertation have been implemented in the
personnel management software of the industrial partners of the research project.
At the time of writing, these personnel management systems were deployed in
more than 20 institutions in Belgium, mostly hospitals and rest homes, but also a
retail store and a municipality including its fire department. The utilisation of the
automated personnel rostering system in these institutions result in time and cost
savings, because they do not need a human expert planner who has to analyse the
problem instances, experiment with several algorithm configurations and utilise
the most promising one. All of these tasks are automated in the solution proposed
in the present dissertation. The resulting software provides a significant economic
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value, because it can be duplicated and deployed easily in multiple sites, whereas
this is not the case with a human planning expert.

The content of the present dissertation has been the subject of two journal papers
[14, 66], a conference full paper [13], five extended conference abstracts [7, 9, 10,
56, 67], nine conference abstracts [6, 8, 11, 12, 51, 53, 54, 58, 70].

9.1 Future research

The personnel rostering problem is only one phase of the personnel planning
problem, staffing and task planning being the other phases. Staffing refers to
determining the size of the staff needed. It can be perceived as a forecasting
practice. The solution methods presented in this dissertation can be used as a
simulation tool in a staffing solution. Different workload scenarios can be tested
against the actual workforce composition using the personnel rostering solution
methods. Possible shortcomings or excesses of the workforce composition can
be detected in different scenarios. Based on the staffing analysis, the size of the
staff can be adjusted for a robust workforce composition. The third phase of
the personnel planning problem, i.e., task planning, can be integrated with the
personnel rostering approach reported. A set of task requirements can be included
in the problem instance to be assigned to the employees. Upon calculation of the
rosters of the employees, an automated task planning solution can assign these
tasks to the schedules of the employees.

Although the experimental results of various algorithm configurations have been
reported in the present dissertation, numerous algorithms can be applied to the
personnel rostering problem. The KAHO benchmarks have been published online
for encouraging other researchers to apply new or existing solution methods to the
problem model introduced in the present dissertation®. Similar to the algorithm
configurations, the quantitative measures of problem properties is also open to the
contributions of the researchers in the field. Countless measures and algorithm
configurations can be experimented with, in order to search for more accurate
relations between the problem properties and algorithm performance. The test data
for the experiments in the present dissertation has been the KAHO benchmarks.
In order to generalise the experimental results to all personnel rostering problems,
experiments based on a problem instance distribution can be executed. Such an
experimental methodology to reach more general conclusions has been provided by
Leyton-Brown et al. [43].

Personnel rostering is a dynamic research domain. The evolutions in the
organisational structures, labour legislations and union demands will pose new
challenges to personnel rostering. Future challenges can exceed the potential of the

Shttp://ingenieur.kahosl.be/vakgroep/it/nurse/archive.htm
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research results reported in the present dissertation or in the scientific literature.
As a consequence, modified problem models and solution methods will be necessary
to address the new versions of the personnel rostering problems encountered. The
author hopes that the present dissertation will be a valuable resource for the
research and development activities on the future challenges of the personnel
rostering domain.
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