
Noninterference via symbolic execution ?

Dimiter Milushev, Wim Beck, Dave Clarke

IBBT-DistriNet, KU Leuven, 3001 Leuven, Belgium

Abstract. Noninterference is a high-level security property that guar-
antees the absence of illicit information flow at runtime. Noninterference
can be enforced statically using information flow type systems; however,
these are criticized for being overly conservative and rejecting secure pro-
grams. More precision can be achieved by using program logics, but such
an approach lacks its own verification tools. In this work we propose a
novel, alternative approach: utilizing symbolic execution in combination
with ideas from program logics in an attempt to increase the precision
of analyses and automate noninterference testing. Dealing with policies
incorporating declassification is also explored. The feasibility of the pro-
posal is illustrated using a prototype tool based on the KLEE symbolic
execution engine.

Keywords: Noninterference, declassification, symbolic execution, test-
ing

1 Introduction

Noninterference is a high-level security property, prohibiting information leaks
through the executions of a program. The typical program model for expressing
noninterference assumes the following: public and secret inputs are given to a
program; public and secret outputs are observable as a result of the program
runs. In this context, noninterference is a policy stipulating that public outputs
of a program should be functionally dependent on public inputs only, and not on
secret inputs. The policy has been substantially studied in the language-based
security community [16] and typically relies on information flow type systems [15,
21, 22]; however, these are criticized for being conservative and rejecting many
secure programs.

An alternative approach proposes the use of program logics for express-
ing noninterference. Such an approach was introduced by Darvas, Hähnle and
Sands [8], who used dynamic logic to verify noninterference for sequential Java
programs. One key observation they made is that noninterference (which is not a
property and hence not directly expressible in program logics) on some program
P is reducible to a property on the sequential composition P ;P ′ of the program
with itself. More precisely, noninterference can be characterized as the following

? This research is partly funded by the EU project FP7-231620 HATS: Highly Adapt-
able and Trustworthy Software using Formal Models (http://www.hats-project.
eu)

2 Noninterference via symbolic execution

quadruple: {l = l′}P ;P ′{l = l′}. Here, P ′ is the same program as P with all
variables renamed, l are the low variables of P and l′ are the low variables of
P ′. Barthe, Argenio and Rezk [4] based their characterization of noninterfer-
ence in Hoare and temporal logics on similar ideas; they also coined the term
self-composition for the construct P ;P ′. The program logics approaches provide
more precision in specifications, but do not have their own verification tools; in
addition, it is not clear how to reuse existing tools and techniques.

Terauchi and Aiken [20] note that self-composition is impractical. They point
out that for the purpose of verification of noninterference, some nontrivial,
partial-correctness condition that holds between P and P ′ has to be found; and
finding it is impractical. They also argue that in order to be useful for practical
verification, self-composition needs to take into account the structure of a self-
composed program and the resulting symmetry and redundancy. They propose
a type-directed transformation for a simple imperative language to deal with the
problems they identify.

Symbolic execution has already been used for verification of secure infor-
mation flow [8]. The approach offers high precision but unfortunately requires
considerable user interaction and verification expertise, needed for adding loop
invariants, establishing induction hypotheses, instantiating and unwinding loops
etc. Due to this fact, similar approaches are often criticized as being of limited
practical significance for developers. In this work we attempt to remedy such
limitations and propose the use of symbolic execution as a basis for a nonin-
terference testing tool. This is advantageous because it is automatic and gives
developers an efficient, practical way of testing for noninterference bugs. The
proposed approach is essentially an under-approximation of the problem and
this has two important consequences: on the positive side, it is automatic and
precise; on the other hand, it usually cannot discover all bugs. Nevertheless,
combined with the observation that typically most bugs are shallow, the ap-
proach gives developers a powerful tool, without requiring them to understand
and write complex specifications.

More concretely, the advocated approach is based on utilizing symbolic exe-
cution in combination with a form of self-composition in an attempt to automate
noninterference testing. We start off with Terauchi and Aiken’s transformation
and accommodate additional language features, such as dealing with procedures
and dynamically allocated data structures. The approach essentially interleaves
two copies of a program and then uses dynamic symbolic execution to try to
extract all possible paths in the program. Conditions on two disjoint program
stores are generated in order to express the desired security policy via assert
statements. The resultant program is analyzed by the symbolic execution en-
gine: if a bug is found, the program is not secure and the developer is informed
about it; the proposed approach typically cannot guarantee that a program is
secure. On secure programs, a tool based on this approach will often run in-
definitely without producing any error message. On insecure programs it will
typically run indefinitely but still discover security bugs and thus would indeed

Noninterference via symbolic execution 3

be useful. On concrete programs, our prototype tool has been able to discover
instances of all the known patterns of insecurity we have found in the literature.

The contributions of the work are: first, a proposal to use symbolic execution
in order to automatically specify and check a notion of plain noninterference and
one incorporating declassification; second, an illustration of what is needed to
transfer the ideas to a programming language having procedures and dynamic
memory allocation (heap); finally, a prototype tool based on the KLEE symbolic
execution tool [6] illustrating the feasibility of the approach. The rest of the work
is structured as follows. Section 2 provides some background. Sections 3 presents
the proposed approach. Section 4 presents our prototypical tool and experimental
results. Finally, Sections 5 and 6 are left for the related work and conclusion.

2 Background

2.1 Noninterference

Intuitively, noninterference stipulates that public outputs of a program should
be functionally dependent on public inputs only, and not on secret inputs. Define
a store m to be a mapping from program variables from some set Var to values
from set V. The notation m|X is a restriction of the store to variables from
domain X; (m, P) denotes the final store after execution of program P with initial
store m and (m, P) = ⊥ signifies that the program diverges (does not terminate
or terminates in an (unobservable) exceptional state). Finally, ≈p signifies the
pointwise extension of equality to stores. The definition of termination insensitive
information flow can be formulated as follows:

Definition 1. (Secure information flow [20]) A program P with high security
variables H = {h1, . . . , hi} and low security variables L = {l1, . . . , lj} is secure
iff for all possible stores m1 and m2 such that m1|L ≈p m2|L, we have that

((m1, P) 6= ⊥ ∧ (m2, P) 6= ⊥) =⇒ (m1, P)|L ≈p (m2, P)|L.

There is an obvious way to show that a program P is not secure by Definition 1,
namely by finding two stores mi and mj such that mi|L ≈p mj |L, (mi, P) 6= ⊥ ∧
(mj , P) 6= ⊥, and (mi, P)|L 6≈p (mj , P)|L.

Program 1.1, also referred to as P1, illustrates implicit information flow. Let
H = {i, j}, L = {l}. Observing the value of variable l discloses whether the
average of the two secret values is greater than 1000.

1 int average(int h1, int h2) {
2 return (h1+h2)/2; }
3 int main() {
4 int l, i, j;
5 if (average(i, j) > 1000) l = 1; else l = 0; }

Program 1.1. Implicit information flow

The implicit flow can be detected using Definition 1. Let m1 and m2 be such that
m1(i) = 1000, m1(j) = 900, m1(l) = 0, m2(i) = 800 m2(j) = 1400 and m2(l) = 0. We

4 Noninterference via symbolic execution

have that m1|L ≈p m2|L, (m1, P1) 6= ⊥∧ (m2, P1) 6= ⊥, but at the end of execution
(m1, P1)(l) = 0 and (m2, P2)(l) = 1; thus (m1, P1)|L 6≈p (m2, P1)|L implies that P1

is insecure.

2.2 Declassification

Most useful computing systems have to release sensitive information as a part of
their functionality (e.g. password checking, shopping for digital content, online
games). Thus noninterference is often too strict for realistic systems; the usual
solution is weakening the policy with declassification, a mechanism for releasing
sensitive information. An important problem of declassification is to guarantee
precisely what is being leaked and to ensure that the mechanism cannot be
abused into leaking more [18].

More formally, consider program P on stores m1 and m2. Recall that ≈p
signifies the pointwise extension of equality to stores and m|L is a restriction of the
store to variables from domain L. Let ψ be the predicate defined as m1|L ≈p m2|L.
Noninterference can be given as the following quadruple {ψ}(m1, P); (m2, P){ψ}.
If ψdecl is a predicate on high variables, specifying what is to be declassified
by P , then noninterference with declassification can be expressed as follows:
{ψ ∧ ψdecl}(m1, P); (m2, P){ψ} [3].

For instance, in Program 1.1 the policy might be that it is admissible to reveal
some fact about the average (i.e. whether (average(i, j) > 1000) holds) but not
more than that. Then, in addition to the usual noninterference condition, ψdecl
will be instantiated with ((average(i1, j1) > 1000) ⇔ (average(i2, j2) > 1000))
(note that ik is shortcut for mk(i) for k ∈ {1, 2}).

Other dimensions of declassification are about who controls information re-
lease, where in the system does declassification occur and finally when can in-
formation be declassified [18]. In this work, we focus on the what dimension.

2.3 Symbolic execution

Symbolic execution [13] is a program analysis technique used to investigate the
possible execution traces of a program. The idea is to replace program inputs
with input symbols and thus instead of executing the program with concrete
values, to execute it with symbolic expressions over the input symbols. When the
program encounters a conditional branch statement, execution is forked because
there are no concrete values to evaluate the condition: whether any or both of
these branches are reachable is checked by a constraint solver. Loops can be
seen as conditional statements encountered multiple times and they are lazily
unrolled, possibly an infinite number of times. The conjunction of all conditions
encountered on the branches of a single path is called a path condition.

Symbolic execution is a general approach that can be used to check or prove
a range of properties of programs. Properties can be expressed using assert state-
ments.

Dynamic symbolic execution, also called concolic execution [19] or DART [11],
is a variant of the technique interleaving concrete and symbolic execution. The

Noninterference via symbolic execution 5

idea is simple: first, gather the constraints for some path by monitoring program
execution with some arbitrary, concrete inputs; then, systematically explore new
execution paths by negating parts of the initial path condition. In this work we
are going to use KLEE [6], an automatic symbolic execution tool built on top of
the LLVM compiler infrastructure; the tool is used for both illustrations of the
purposed approach and as a basis of our prototype tool.

3 Approach

3.1 Overview

The approach proposed in this paper starts with partitioning the program input
variables into public and secret, and respectively annotating them. This is the
only obligation on behalf of the developer, the rest is automatic. Then the vari-
ables are made symbolic and a type-directed transformation adopted from the
work of Terauchi and Aiken [20] is applied to the program. The transformation
is a variant of the self-compositional approach. It (the transformation) provides
the method used for interleaving the candidate program with itself, which is
needed to express noninterference as a property. We develop certain extensions
of the transformation in order to deal with aspects of procedures and dynami-
cally allocated data structures; the latter require reasoning about the heap and
a modified definition of noninterference. After the transformation is complete
assertions specifying the noninterference policy are placed. Then the symbolic
execution tool is used as a program analysis tool for noninterference. If it is able
to fully analyze all possible paths in the transformed program (paths have to be
finite), a tool based on the approach can decide whether the program is secure
or not. Otherwise the tool may either eventually return an error(s) or simply
keep running without returning any error. In the latter cases the proposed ap-
proach is useful even if it cannot cover the whole state space, as it will still
discover bugs in the covered part; moreover, the approach offers precision, i.e.
lack of false-positives. Because of the nature of typical bugs (being shallow), this
strategy often turns out to be very helpful.

3.2 Transformation of a basic language

We start off by illustrating how to transform a program for a minimal language
including variable declarations and assignments, while loops and if statements.
To illustrate we work with a basic subset of C and also use KLEE notation.
Nevertheless, it should be noted that the proposed approach is generic and can
be applied to many other language and symbolic execution tool combinations.
Some annotations necessary to direct the transformation are identified using
special comments “//#”and given next:

high The subsequent line has one or many secret variables.
assume The possible variables’ values are limited by adding invariants.

6 Noninterference via symbolic execution

The first step is to partition the variables and make them symbolic. Only
high variables are denoted. The step is illustrated in Program 1.2.

1 int l;
2 klee make symbolic(&l, sizeof(int), ”int l”);
3 //# high
4 int h;
5 klee make symbolic(&h, sizeof(int), ”int h”);
6 l = h + 5;

Program 1.2. Trivial noninterference example - labeled

The second step is to determine security types of expressions statically in the
usual way: in essence, if an expression depends directly or indirectly on a high
variable, it must be high.

The third step is to perform the necessary program transformations given in
Figure 1. The rules used here are essentially Terauchi and Aiken’s transforma-
tion [20] ported to a basic subset of C. The transformation is needed and used
in the process of interleaving two copies of the candidate program. Note that
the concrete rule applied for an if or while statement depends on whether the
guard has high or low security type. If the guard is high the whole statements are
composed sequentially, otherwise the bodies of the statements are interleaved.

c atomic

c → c; c′
c1 → c†1 c2 → c†2

c1 ; c2 → c†1 ; c†2

b has low security type c1 → c†1 c2 → c†2

if b then c1 else c2 → if b then c†1 else c†2
b has low security type c→ c†

while b do c → while b do c†
b has high security type

while b do c → while b do c;while b′ do c′

b has high security type

if b then c1 else c2 → if b then c1 else c2 ; if b′ then c′1 else c′2

Fig. 1. Type-directed transformation [20]

The fourth and final stage of the transformation is to specify noninterference
conditions. These are pre and post conditions derived from the program logic
approach and guaranteeing that the program is secure. They assume that the low
variables of the two copies are the same (and possibly some extra declassification
conditions) and have to assert that the same holds at the end of the run. To
illustrate the transformation approach, consider the annotated Program 1.3:

1 int k; int l;
2 //# high
3 int h;
4 while (k < l) {l = k; k = k+1;}
5 if (l > h) l = 1; else l = 0;

Program 1.3. Annotated program illustration

It is transformed into Program 1.4.

Noninterference via symbolic execution 7

1 int k0; int k1;
2 klee make symbolic(&k0, sizeof(int), ”int k0”);
3 klee make symbolic(&k1, sizeof(int), ”int k1”);
4 int l0; int l1;
5 klee make symbolic(&l0, sizeof(int), ”int l0”);
6 klee make symbolic(&l1, sizeof(int), ”int l1”);
7 klee assume(k0 == k1); klee assume(l0 == l1);
8 int h0; int h1;
9 klee make symbolic(&h0, sizeof(int), ”int h0”);

10 klee make symbolic(&h1, sizeof(int), ”int h1”);
11 while (k0 < l0) {l0 = k0; l1 = k1; k0 = k0+1; k1 = k1+1;}
12 if (l0 > h0) l0 = 1; else l0 = 0;
13 if (l1 > h1) l1 = 1; else l1 = 0;
14 klee assert(k0 == k1); klee assert(l0 == l1);

Program 1.4. Transformed program illustration

3.3 Procedures

Whereas Terauchi and Aiken develop their transformation for a very basic lan-
guage, we need to deal with extra language features. One of these features is
procedures: the rationale for transforming them is the same as for simple imper-
ative programs. The transformation results in a new procedure with two copies
of the parameters; if the original procedure has a non-void return type then two
potentially different results of the same type are returned and thus have to be
placed in a fresh struct.

In different cases variant(s) of the if and while rules from Fig. 1 have to be
used. This depends on whether the procedure is called with arguments having
high or low security types (or both) and is based on a respective data flow
analysis. Consider Program 1.5 as an instance of a procedure to be transformed:

1 int checkPass(int input, int secret){
2 int access;
3 if (input == secret){access = 1; return access;}
4 else {access = 0; return access;} }

Program 1.5. Procedure with non-void return type

The transformed procedure should return a struct of two integers, but that means
the original return statements have to be replaced with appropriate goto state-
ments; these are used to make a transition to the second “copy” and ensure that
a properly populated data structure is returned. The resulting transformation,
assuming secret is passed a high value (thus second version of if rule used), is:

1 struct intRet∗ checkPass2(int input0, int secret0, int input1, int secret1){
2 int access0; int access1;
3 struct intRet∗ intR = malloc(sizeof(struct intRet));
4 if (input0 == secret0) {access0 = 1; goto second;}
5 else {access0 = 0; goto second;}
6 second: if (input1 == secret1) {access1 = 1; goto done;}
7 else { access1 = 0; goto done;}
8 done: intR−>ret0 = access0; intR−>ret1 = access1;
9 return intR; }

Program 1.6. Transformed procedure with non-void return type

8 Noninterference via symbolic execution

Next, we illustrate how to transform the int result = checkPass(guess, pass) pro-
cedure call (assuming the program consists of the call and variable assignments):

1 int result0; int result1; klee assume(result0 == result1);
2 int pass0; int pass1;
3 int guess0; int guess1; klee assume(guess0 == guess1);
4 struct intRet∗ r = checkPass2(guess0, pass0, guess1, pass1);
5 result0 = r−>ret0; result1 = r−>ret1;
6 klee assert(result0 == result1);
7 klee assert(guess0 == guess1);

Note that r is a “return” struct with two integer fields and variables have to be
symbolic.

3.4 Dynamically allocated data structures and noninterference

It has already been suggested that different parts of a struct can be high or low.
In order to model this and use symbolic execution to check programs allocating
memory on the heap, we need to model the heap and change the noninterference
definition respectively.

Let F be a set of fields, L a set of locations and V = Z ∪ L ∪ {null} be a
set of values. A heap h will be modeled, following prior work [5], as a partial
function h : L ⇀ S; here S = F ⇀ V is another partial function that models
structs; the set of all heaps is Heap. Now (m, h, P) denotes the final state after
executing program P with store m and heap h. We write (m, h, P) = (mf , hf)
to mean that the state evaluates to store mf and heap hf . Let β be a partial
bijection on memory locations, used to model the low observer’s uncertainty [2].
Let v, v′ ∈ V, L and H be the low and high elements respectively of a typical
security lattice. Value indistinguishability [5] can be defined as follows:

v ∼β,H v′ null ∼β,L null
v ∈ Z

v ∼β,L v
l, l′ ∈ L β(l) = l′

l ∼β,L l′
.

Intuitively, two heaps h1 and h2 are indistinguishable if there is a bijection that
relates each struct s1 in heap h1 to its counterpart s2 in heap h2; the structs have
the same fields (because they are of the same type) and moreover the values of
corresponding fields are indistinguishable. This is formally defined as follows: two
heaps h1, h2 are indistinguishable w.r.t. bijection β denoted h1 ∼β h2 whenever:
(1) dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2); (2) for all s ∈ dom(β) we have
that dom(h1(s)) = dom(h2(β(s))) (for every struct in h1 its corresponding by
β struct in h2 has the same fields) and (3) for all fields f ∈ dom(h1(s)) with
security level L we have that h1(s)(f) ∼β,L h2(β(s))(f), i.e. all field values of
β-corresponding structs are L-indistinguishable. Similarly all fields with security
level H in corresponding structs have field values that are H-indistinguishable.

Definition 2. (Secure information flow [5]) A program P is secure iff for all
possible stores m, m′ ∈ Var → V and heaps h, h′, hf , h

′
f ∈ Heap, and partial

bijection β such that (m, h, P) 6= ⊥ and (m′, h′, P) 6= ⊥, and (m, h, P) = (mf , hf)
and (m′, h′, P) = (m′f , h

′
f), and m ∼β m′ and h ∼β h′ imply mf ∼β′ m′f and hf ∼β′,L

h′f for some partial bijection β′ ⊇ β.

Noninterference via symbolic execution 9

The condition β′ ⊇ β actually models the fact that new data structures may
be dynamically created at runtime and thus the bijection may become larger.
An illustration of the use of the new definition follows. The main function of a
simplistic e-banking program is given in Program 1.7.

1 int main() {
2 struct bank∗ bank = createBank(); struct account∗ account = createAccount(bank);
3 //# high
4 int amount = 100;
5 addToBalance(account, amount); }

Program 1.7. Banking program - main

Each procedure call on line 2 declares and creates a struct. Each transformed
procedure creates a pair of structs “packed” in another struct (see Section 3.3).
The public fields of the struct are assumed equal. The result of the transforma-
tion is Program 1.8. The whole program, including procedure transformations,
is available as Program 1.14 in Appendix A.

1 int main() {
2 struct bankRet∗ bankr = createBank2();
3 klee assume(bankr−>bank0−>count == bankr−>bank1−>count);
4
5 struct accountRet∗ accr = createAccount2(bankr−>bank0, bankr−>bank1);
6 klee assume(accr−>account0−>wealthy == accr−>account1−>wealthy);
7 klee assume(accr−>account0−>id == accr−>account1−>id);
8
9 int amount0; int amount1;

10 klee make symbolic(&amount0, sizeof(int), ”int amount0”);
11 klee make symbolic(&amount1, sizeof(int), ”int amount1”);
12
13 addToBalance2(accr−>account0, amount0, accr−>account1, amount1);
14
15 klee assert(bankr−>bank0−>count == bankr−>bank1−>count);
16 klee assert(accr−>account0−>wealthy == accr−>account1−>wealthy);
17 klee assert(accr−>account0−>id == accr−>account1−>id); }

Program 1.8. Banking program - main transformation

In summary, whenever a new struct is allocated on the heap, the respective trans-
formation allocates two structs and makes the appropriate assumptions about
the low fields of the struct. At the end of execution, the respective assertions
about the low structs have to hold. It should be noted that at this stage and
particularly in the implementation of our tool, the bijection compares only the
scalar values of the heap structure. The more general case, allowing cycles in the
heap, is left for future work.

4 Tool and Experimental Results

This section presents a prototypical tool and some experimental results, demon-
strating the potential of the proposed approach.

10 Noninterference via symbolic execution

4.1 Tool introduction

The proof-of-concept tool that we have built to validate our ideas is written
in Perl and is based on KLEE: an automatic symbolic execution tool for high-
coverage test generation built on top of the LLVM compiler infrastructure [6].
The tool works with a subset of C, including control flow statements and as-
signments to scalar variables, procedures and structs, where the fields have to
be accessed in the standard way and no pointer arithmetic is allowed. Integer
variables with addition and comparison operators are allowed as expressions.

Our tool takes as input a C program with specially annotated high variables,
performs some program transformations, adds assertions as necessary and passes
the resulting program to KLEE. Based on KLEE’s output, the tool can possibly
decide whether the tested program is secure or not and inform the developer or
keep running indefinitely. In the latter case it cannot cover all paths, nevertheless
it might still find a counterexample in the covered part and that would mean
that the program is not secure. An optional parameter specifies when to time-out
and stop searching. Whenever an error (assertion failure implying interference)
is found, the ktest-tool tool (a part of the KLEE suite of tools) can be used
to inspect and analyze the state that caused it. Additional data on the broken
assertions is easily obtainable.

The tool can handle all the sample patterns of explicit and implicit informa-
tion flow we could find in the literature. Furthermore it can handle patterns of
information release. Because the transformations are based on semantic meth-
ods, the approach is more precise than information flow type systems resulting
in the lack of false positives. On the other hand, the approach suffers from tra-
ditional weaknesses of symbolic execution, such as problems with scalability for
large numbers of paths, dependence on the power of the constraint solver and
difficult interaction with the environment. Moreover, the approach will benefit
from further development of test input generation methods for programs with
pointers. Despite the mentioned weaknesses, the tool is a very useful noninter-
ference bug finder, as demonstrated in the rest of this section.

4.2 Implicit flow, explicit flow or no flow

Consider Program 1.9: it would be rejected as insecure by a typical information
flow type system.

1 int l;
2 //# high
3 int h, j;
4 if ((j + h) > 999) {l = −1;}
5 l = h;
6 l = l − h;

Program 1.9. Secure program rejected by flow-sensitive type systems

If we were to consider the program until and including the if statement, there
would be an implicit flow; the program until and including the following state-
ment (l = h) would have both implicit and explicit flows. But Program 1.9 is

Noninterference via symbolic execution 11

secure: closer inspection shows that the leaks “neutralize” each other. The results
are confirmed by our tool:

Program impexno.c secure.

4.3 While-loop insecure program [8]

Consider Program 1.10, taken from prior work.

1 int l;
2 //# high
3 int h, j;
4 while (h>0) {h−−;l = h;}

Program 1.10. While-loop insecure program

In order to prove the insecurity of this program, the theorem proving approach
using the tool KeY takes 164 steps [8]; user interaction is needed for a number of
steps, such as: establishing the induction hypothesis, instantiation and unwind-
ing of the loop etc. Our tool detects the problem as expected and within 0.2s
(see Table 1 for detailed statistics):

Program while.c insecure. Flow in low variable l detected.

The tool is configured to stop after finding an error, but this is optional. More
importantly, the developer has to only mark the high variable, which shields away
the typical complexity imposed by alternative approaches (e.g. verification ones).
The developer does not need to be a verification expert or to think about loop-
invariants, unwinding, assertions, etc. but nevertheless has a powerful testing
tool at her disposal.

4.4 e-Banking example

The e-banking program of Section 3.4 is presented next. The interesting, security-
related code is in procedure addToBalance2 :

1 if (amount >= 10000) account−>wealthy = true; else account−>wealthy = false;

Program 1.11. Security-related part of e-Banking example

Whenever the balance gets higher than 10000, flag wealthy is set. The field
wealthy of the struct account is public and leaks information about the balance.
The latter is confirmed by our tool, producing the following output:

Program ebank.c insecure. Flow in low field account->wealthy.

12 Noninterference via symbolic execution

4.5 Average example

Recall that Program 1.1 computes the average of two high variables. Precondi-
tions on the values of variables, such as //#assume (i > 0 & j > 0), can be
specified. As already discussed, the program is not secure and the tool terminates
with the appropriate error:

Program avg.c insecure. Flow in low variable l.

It should be noted that our tool is precise in the sense that the errors are re-
producible. The values that broke the assertions can be inspected using KLEE’s
ktest-tool in order to analyze the problem. The values generated by the ktest-tool
are: l0 = 0, l1 = 0, i0 = 506, i1 = 1609415267, j0 = 507, j1 = 485081005.

4.6 Password examples

Next consider the simple password check in Program 1.12.

1 int access, input;
2 //# high
3 int pass;
4 //# declassify (input == pass)
5 if (input == pass) access = 1; else access = 0;

Program 1.12. Password check

Password checking programs leak information as a part of their functionality.
This can be seen if we consider the program without line 4; even when a given
guess is wrong, guessing reveals that the password is or is not equal to the guess.
This trivial leak is detected as expected:

Program passw.c insecure. Flow in low variable access.

As a result of the declassify statement though, the extra condition ((input0 ==
pass0) == (input1 == pass1)) is added to the the assumptions; this is of
course transparent to developers. In this case, our tool verifies that Program 4.6
is secure:

Program passwDecl.c secure.

Finally, we consider the following program, illustrating the use of procedures:

1 int checkPass(int input, int secret){
2 int access;
3 if (input == secret){ access = 1; return access;}
4 else { access = 0; return access;} }
5 int main(){
6 int pass; int guess; int result;
7 //# declassify (guess == pass)
8 result = checkPass (guess, pass);}

Program 1.13. Password example with procedures

The program is secure, as expected.

Noninterference via symbolic execution 13

4.7 Statistics

Statistics of the discussed examples are presented in Table 1. Each of the con-
sidered programs is characterized by the respective number of instructions, ex-
plored paths and generated test cases (given by KLEE). Finally the output of
the time program is given; real time is the elapsed time between start and finish,
whereas user gives the CPU time spent in user mode and sys gives the CPU
time in kernel mode. Typically user and sys time tell us how much CPU time
the process used. The highest time by this criterion is below 0.25s. It should be
noted that the presented examples include ones whose verification would require
a considerable effort if a special purpose type system would have to be devel-
oped (for each slightly different definition of security) or a theorem prover would
have to be used. Because instruction cycles are cheap nowadays, a tool based
on the proposed approach has a high potential of being very useful in everyday
development work.

The considered examples are not particularly large, but we have tried embed-
ding them deeper in realistic programs and the results appear to be promising.
It should be noted that the definitions considered here (and in the larger part
of the security literature) are of termination insensitive notions of security.

Table 1. Statistics for presented programs

Program Instructions Paths Generated Tests Time
real user sys

1.9 118 4 4 0.199s 0.062s 0.023s

1.10 57 5 5 0.134s 0.050s 0.024s

1.7 430 4 3 0.095s 0.046s 0.024s

1.1 156 4 3 0.268s 0.212s 0.030s

1.12 (insecure) 76 4 3 0.099s 0.053s 0.024s

1.12 (secure) 76 2 2 0.089s 0.051s 0.021s

1.13 153 2 2 0.108s 0.055s 0.025s

5 Related work

To the best of our knowledge, we are the first to propose the use of symbolic ex-
ecution for testing noninterference, boasting the advantages of precision and full
automation not available in typical verification approaches. Nevertheless, many
of the ideas presented here appear in the substantial literature on verification of
noninterference. Proposed solutions traditionally rely on information flow type
systems [16], a syntactic approach which offers an overapproximation and thus
tends to be too conservative in practice; moreover, a new type system has to
be developed every time a slight modification of the needed notion of security
is needed (e.g. to allow a specific notion of declassification). On the other hand,
many attempts to address noninterference have a semantic flavor [9, 12]; such

14 Noninterference via symbolic execution

approaches are attractive because they suggest methods to transform the prob-
lem so as to benefit from state-of-the-art verification techniques and tools. These
approaches gave rise to further work on program-logics based characterizations
of noninterference [8, 4]: both these rely on the idea of reducing noninterference
of a program to a property of the sequential composition of the program with
itself. Reasoning about such constructs is facilitated by Terauchi and Aiken’s
type-directed transformation [20], which takes advantage of the structure of a
self-composed program and the resulting symmetry and redundancy.

In the most relevant related work Backes et al. [1] use techniques similar to
ours to compute all information leaks in a program and to quantify the leaks
using information-theoretic means. Information leaks in their work are charac-
terized by an equivalence relation on secrets and can be expressed as a logical
assertion on program variables; this is similar to our approach. They start with
a relation expressing noninterference and gradually refine it, when counterexam-
ples are found. Their quantitative analysis is based on computing the number
and sizes of equivalence classes. The proposed approach computes an overap-
proximation of the information leaked by a program (and then checks if such a
relation is reachable from the start state) unlike our approach, based on a finer
relation (we rely on an underapproximation, only reachable states are consid-
ered). Another related and important difference is that our approach does not
require a set of experiments to start with, due to the nature of symbolic execu-
tion. This is an advantage because it makes the approach more automatic. There
are also differences between the approaches on other levels. First, we address a
slightly different problem: testing a program for conformance with a base-line
information flow policy, possibly augmented with a notion of information release,
giving direct feedback to developers and being fully automatic; second, we use
symbolic execution, whereas their approach uses off-the-shelf model checkers;
finally, we explore qualitative policies only.

Declassification is also a well-studied topic (see [18] for an overview). The
idea to use equivalence relations to characterize partial information flow was
originally proposed by Cohen [7] and further developed in the literature [23, 10].
A number of related articles explore the use of equivalence relations to character-
ize information release using flow-sensitive type systems [14, 17]. Declassification
is similarly handled in work using the KeY tool [8], but again the difference is
that symbolic execution there is used for verification.

6 Conclusion

We have presented a novel, automatic approach to testing noninterference: the
only responsibility of the developer is to identify the secrets in a candidate
program and appropriately annotate them. The program is then automatically
transformed and assertions are added as needed. Next, dynamic symbolic execu-
tion is used to try to break the assertions. Because typically bugs are shallow, the
approach has a high potential to be very useful for testing; a major advantage of
the approach is precision: any assert violation indicates a concrete, reproducible

Noninterference via symbolic execution 15

security bug. Moreover, there is no need to write complex invariants or be an
expert in verification to assist the tool in any way and this can be seen as a
major advantage for developers.

To illustrate the usefulness of the proposed approach, we have built a pro-
totypical tool based on the symbolic execution tool KLEE. Our tool takes as
input an annotated program from a “well-behaved” subset of C, performs the
necessary program transformations and passes the resulting program to KLEE.
Then, based on KLEE’s output the tool informs whether a bug could be found.
We have successfully tested the tool on a number of programs known from the
literature and exhibiting patterns of insecurity.

Acknowledgements. We would like to thank Dries Vanoverberghe for very
insightful and valuable comments on a late draft of the paper and Tatyana
Doktorova for many helpful suggestions on the presentation. We also thank the
reviewers for their constructive feedback.

References

1. Michael Backes, Boris Kopf, and Andrey Rybalchenko. Automatic discovery and
quantification of information leaks. In Proceedings of the 2009 30th IEEE Sympo-
sium on Security and Privacy, pages 141–153, Washington, DC, USA, 2009. IEEE
Computer Society.

2. Anindya Banerjee and David A. Naumann. Stack-based access control and secure
information flow. Journal of Functional Programming, 15:131–177, March 2005.

3. Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Towards a logical
account of declassification. In Proceedings of the 2007 workshop on Programming
languages and analysis for security, PLAS ’07, pages 61–66, New York, NY, USA,
2007. ACM.

4. Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by
self-composition. In Proceedings of the 17th IEEE workshop on Computer Secu-
rity Foundations, pages 100–114, Washington, DC, USA, 2004. IEEE Computer
Society.

5. Gilles Barthe and Tamara Rezk. Non-interference for a JVM-like language. TLDI
’05, pages 103–112, New York, NY, USA, 2005. ACM.

6. Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs. OSDI’08,
pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

7. E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo,
D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure Com-
putation, pages 297–335. Academic Press, 1978.

8. Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach to
analysis of secure information flow. Technical Report S-412 96, Chalmers University
of Technology and Göteborg University, 2004.

9. Riccardo Focardi and Roberto Gorrieri. A taxonomy of security properties for
process algebras. Journal of Computer Security, 3(1):5–34, 1995.

10. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing
non-interference by abstract interpretation. In Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’04), pages 186–197. ACM-Press, NY, 2004.

16 Noninterference via symbolic execution

11. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’05, pages 213–223, New
York, NY, USA, 2005. ACM.

12. Rajeev Joshi and K. Rustan M. Leino. A semantic approach to secure information
flow. Science of Computer Programming, 37:113–138, May 2000.

13. James C. King. Symbolic execution and program testing. Communications of the
ACM, 19:385–394, July 1976.

14. Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declas-
sification and qualified robustness. Journal of Computer Security, 14(2):157–196,
2006.

15. François Pottier and Vincent Simonet. Information flow inference for ML. SIG-
PLAN Not., 37:319–330, January 2002.

16. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

17. Andrei Sabelfeld and Andrew C. Myers. A model for delimited information release.
In In Proc. International Symp. on Software Security (ISSS03), volume 3233 of
LNCS, pages 174–191. Springer-Verlag, 2004.

18. Andrei Sabelfeld and David Sands. Dimensions and principles of declassification. In
Proceedings of the 18th IEEE workshop on Computer Security Foundations, pages
255–269, Washington, DC, USA, 2005. IEEE Computer Society.

19. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine
for C. SIGSOFT Software Engineering Notes, 30:263–272, September 2005.

20. Tachio Terauchi and Alexander Aiken. Secure information flow as a safety problem.
In Static Analysis Symposium/Workshop on Static Analysis, pages 352–367, 2005.

21. Dennis M. Volpano and Geoffrey Smith. A type-based approach to program secu-
rity. TAPSOFT ’97, pages 607–621, London, UK, 1997. Springer-Verlag.

22. S. Zdancewic and A.C. Myers. Observational determinism for concurrent program
security. In Computer Security Foundations Workshop, 2003. Proceedings. 16th
IEEE, pages 29 – 43, July 2003.

23. Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceedings
of the 14th IEEE workshop on Computer Security Foundations, CSFW ’01, pages
15–23, Washington, DC, USA, 2001. IEEE Computer Society.

Noninterference via symbolic execution 17

A Sample Transformation

1 struct account {
2 struct account∗ next; int balance;
3 int wealthy; int id;};
4
5 struct bank {
6 struct account∗ head;
7 int count;};
8
9 struct bankRet {

10 struct bank∗ bank0;
11 struct bank∗ bank1;};
12
13 struct bankRet∗ createBank2(){
14 struct bank∗ bank0 = malloc(sizeof(struct bank));
15 struct bank∗ bank1 = malloc(sizeof(struct bank));
16 bank0−>head = 0; bank1−>head = 0;
17 bank0−>count = 0; bank1−>count = 0;
18 struct bankRet∗ bankr = malloc(sizeof(struct bankRet));
19 bankr−>bank0 = bank0; bankr−>bank1 = bank1;
20 return bankr; };
21
22 struct accountRet {
23 struct account∗ account0; struct account∗ account1; };
24
25 struct accountRet∗ createAccount2(struct bank∗ bank0,struct bank∗ bank1) {
26 bank0−>count++; bank1−>count++;
27 struct account∗ account0 = malloc(sizeof(struct account));
28 struct account∗ account1 = malloc(sizeof(struct account));
29 account0−>next = bank0−>head; account1−>next = bank1−>head;
30 account0−>id = bank0−>count; account1−>id = bank1−>count;
31 account0−>balance = 0; account1−>balance = 0;
32 account0−>wealthy = false; account1−>wealthy = false;
33 bank0−>head = account0; bank1−>head = account1;
34 struct accountRet∗ accr = malloc(sizeof(struct accountRet));
35 accr−>account0 = account0; accr−>account1 = account1;
36 return accr; }
37
38 int getBal(struct account∗ acct)
39 { return acct−>balance;}
40
41 struct intRet{
42 int r1; int r2; };
43
44 struct intRet∗ getBal2(struct account∗ acct1,struct account∗ acct2)
45 {
46 struct intRet∗ intR = malloc(sizeof(struct intRet));
47 intR−>r1=acct1−>balance; intR−>r2=acct2−>balance;
48 return intR;}
49
50 void addToBalance2 (struct account∗ account0, int amount0,
51 struct account∗ account1, int amount1) {
52 if (amount0 >= 10000) account0−>wealthy = true;
53 else account0−>wealthy = false;
54 if (amount1 >= 10000) account1−>wealthy = true;
55 else
56 account1−>wealthy = false;
57 account0−>balance += amount0;
58 account1−>balance += amount1;}
59 int main() {
60 //Body of Program 1.8 goes here
61 }

Program 1.14. Transformation and noninterference specification of Program 1.7

