
Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Electrical Engineering (ESAT)

Automated Techniques for Hash Function and

Block Cipher Cryptanalysis

Nicky MOUHA

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering

June 2012

Automated Techniques for Hash Function and

Block Cipher Cryptanalysis

Nicky MOUHA

Jury:
Prof. em. dr. ir. Yves D. Willems, chair
Prof. dr. ir. Bart Preneel, supervisor
Prof. dr. ir. Vincent Rĳmen, secretary
Prof. dr. ir. Frank Piessens
Dr. Svetla Petkova-Nikova
Dr. Matt Robshaw

(Applied Cryptography Group,
Orange Labs, France)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering

June 2012

Our greatest glory is not in never falling, but in rising every
time we fall.

Confucius

c© 2012 Nicky Mouha

D/2012/7515/71
ISBN 978-94-6018-535-9

Acknowledgments

If I have seen further it is only by standing on the shoulders of
giants.

Isaac Newton

Every research paper is a puzzle piece, linking other pieces together to reveal a
bigger picture. As such, research can’t be done in isolation. In the past few years,
I’ve been extremely fortunate to meet the world’s best and brightest in the field of
symmetric-key cryptography. Many times, I’ve found myself to be the stupidest
and most ignorant person in the room. To me, such experiences have been exciting
and humbling, but most of all a great opportunity to learn.

Therefore, I would like to personally thank everyone who contributed in one
way or another to this thesis. Unfortunately, this will not be possible. I have been
inspired by far too many brilliant people at conferences, workshops and seminars
throughout the world. Thanks to everyone who is not explicitly mentioned in these
acknowledgments. Often, your simple insights completely changed my view of the
world.

Most of all, I would like to thank my supervisor, prof. dr. ir. Bart Preneel. He
has given me the freedom to work independently, yet was always there for me when
I needed his advice. I’ve been assigned a low workload in teaching, supervising
and administration. To compensate for this, I’ve frequently volunteered to organize
conferences, guide newcomers and perform computer-related tasks. I’ve been very
fortunate to travel the world many times over. This has been a lot of fun for me,
but also a great cultural enrichment. For all of these reasons and more, I consider
myself to be one of the luckiest Ph.D. students. I can’t thank my supervisor
enough for this.

Special thanks go to the the members of the jury: prof. em. dr. ir. Yves D.
Willems, prof. dr. ir. Bart Preneel, prof. dr. ir. Vincent Rĳmen, prof. dr. ir. Frank
Piessens, dr. Svetla Petkova-Nikova and dr. Matt Robshaw. Their detailed com-
ments and suggestions have greatly improved the text of this Ph.D. thesis.

I faced a setback before I even started working on my Ph.D., when my appli-
cation for an FWO-Vlaanderen scholarship was rejected. However, my supervisor
continued to encourage me, and helped me through a successful application for an
IWT-Vlaanderen scholarship. I would like to thank the jury composed by IWT,
and diligent jury member Joan Daemen in particular, for their positive evaluation.
Thanks to IWT for the financial support, and to scholarship coordinators Marc
Pollet and Michèle Oleo for the administrative support.

The invaluable input of my co-authors should be acknowledged: Jean-Philippe
Aumasson, Tor E. Bjørstad, Andrey Bogdanov, Christophe De Cannière, Dawu Gu,

I

II ACKNOWLEDGMENTS

Sebastiaan Indesteege, Özgül Küçük, Gaëtan Leurent, Willi Meier, Florian Mendel,
Thomas Peyrin, Raphael C.-W. Phan, Bart Preneel, Vincent Rĳmen, Yu Sasaki,
Gautham Sekar, Yue Sun, Petr Susil, Søren S. Thomsen, Elmar Tischhauser, Deniz
Toz, Meltem Sönmez Turan, Markus Ullrich, Kerem Varıcı, Vesselin Velichkov,
Meiqin Wang and Qingju Wang. I’ve always tried to involve other people as early
as possible in the scientific process of writing a paper. I know that this slows down
the research, but I do believe that the resulting papers have a much higher quality
than I could achieve on my own.

I would also like to thank all the other members of the symmetric-key crypto-
graphy subgroup at COSIC, for providing a very pleasant working environment:
Mohamed Ahmed Abdelraheem, Elena Andreeva, Begül Bilgin, Jiazhe Chen, Yoni
De Mulder, Orr Dunkelman, Barış Ege, Emilia Käsper, Kota Ideguchi, Bart Men-
nink, Svetla Nikova, Christian Rechberger, Kyoji Shibutani, Fatih Sulak, Vasin
Suttichaya, Gauthier Van Damme and Hirotaka Yoshida. Special thanks go to
prof. dr. ir. Vincent Rĳmen for leading our subgroup, and advising us along the
way.

I’d especially like to thank secretary Péla Noë, European projects coordina-
tor Saartje Verheyen and accountants Elvira Wouters, Elsy Vermoesen and Wim
Devroye. Without their help, it would be impossible to get anything done at all.
Thanks to Sebastiaan Indesteege, who saved me countless hours by providing me
with a template to write this thesis. Unfortunately, COSIC has grown too large
to thank all other members individually.

In 2011, I’ve enjoyed a brief stay at Tsinghua University under the supervision
of prof. dr. Xiaoyun Wang. I am extremely grateful for this opportunity. Thanks
to secretary Qi Shi for sorting out all the administrative and technical issues. I’d
like to say xièxie to all my colleagues: Jingguo Bi, Kuan Cheng, Jiazhe Chen, Dan
Ding, Lianzhi Fu, Lidong Han, Changhui Hu, Keting Jia, Jianwei Li, Leibo Li,
Mingjie Liu, Xichen Mu, Yongchuan Niu, Yue Sun, Chengliang Tian, An Wang,
Maoning Wang, Zhongyue Wang, Wei Wei, Hongbo Yu, Yanyan Yu, Jingyuan
Zhao, Xuexin Zheng and Guizhen Zhu. Non-Chinese readers may struggle to read
the list of names, but they are very familiar names to me. I can talk for hours
about the exciting time I’ve spent with each and every one of them. Thanks for
providing me with a home away from home.

During the last two years of my Ph.D., I volunteered as a resident assistant
at Studentenwĳk Arenberg, the largest group of KU Leuven-owned buildings for
student housing. I’d to thank Els Bruyninckx and Steven Timmermans for their
continuous support, as well as for selecting me in the first place. Thanks to all the
other resident assistants of the Heverlee Area Residences: Alexander, Andreas,
Bram, Charlotte, Gladys, Harm, Lies, Liesbeth, Lode, Lotte, Michiel, Olivier,
Pascale, Rebecca, Romina, Stefaan, Stefanie, Stein, Vincent and Wim. I’ve learned
a lot from you. Teaming up with you to organize parties, quizzes, barbecues and
much more made my job an amazing experience. Thanks as well to all the 110
inhabitants, in particular those who didn’t make too much noise, kept the kitchens
clean and didn’t forget their keys too often.

ACKNOWLEDGMENTS III

Last but not least, I would like to thank my parents and grandparents, as well
as my brothers Yannick and Dylan. They never knew exactly what I was doing —
which is understandable: most of the time, I didn’t even know it myself. I know
that I’ve caused many sleepless nights after saying things such as “Hey mom, dad,
I’m going to China for a few months.” Still, my family always loved and supported
me. For that, I’ll be forever grateful.

Nicky Mouha
Heverlee, June 2012

IV ACKNOWLEDGMENTS

Abstract

The main purpose of science is simplicity, and as we under-
stand more things, everything is becoming simpler.

Edward Teller

Cryptography is the study of mathematical techniques that ensure the confi-
dentiality and integrity of information. This relatively new field started out as
classified military technology, but has now become commonplace in our daily lives.
Cryptography is not only used in banking cards, secure websites and electronic
signatures, but also in public transport cards, car keys and garage door openers.

Two building blocks in the domain of cryptography are block ciphers and (cryp-
tographic) hash functions. Block ciphers use a secret key to transform a plaintext
into a ciphertext, in such a way that this secret key is needed to recover the
original plaintext. Hash functions transform an arbitrary-length message into a
fixed-length hash value. These hash values can serve as “fingerprints” for the ori-
ginal messages: it should be infeasible to find two distinct messages with the same
hash value (a collision).

Yet, Wang et al. recently showed that finding collisions is feasible for MD5 and
SHA-1, two of the most commonly used hash functions today. Although the SHA-2
family currently remains unbroken, its design is very similar. For this reason, the
United States National Institute of Standards and Technology (NIST) launched
an international competition for a new hash function standard: SHA-3.

The research performed in this Ph.D. thesis closely follows the evaluation peri-
od of the SHA-3 competition. Results were obtained for hash functions ARIRANG,
BLAKE, ESSENCE, Hamsi, Khichidi-1, LUX, Sarmal, Skein and TIB3. Outside
of the competition, results were also obtained for a simplified version of the hash
function HAS-V. In the area of cryptographic theory, observations were made on
the resistance of regular hash functions against the birthday attack.

The most commonly used hash functions: MD5, SHA-1 and SHA-2, as well two
out of the five SHA-3 finalists (BLAKE and Skein) use operations such as addition
modulo 2n, exclusive OR, bitwise Boolean functions, bit shifts and bit rotations.
Dissatisfied with commonly used ad hoc techniques to analyze such constructions,
we introduced the framework of S-functions to allow for a simple and automated
analysis.

Recently, meet-in-the-middle attacks became a very popular way to analyze
block ciphers and hash functions. We constructed a novel variant of this technique,
and applied it in an automated way to the block ciphers XTEA and GOST. Our
attacks require very few known plaintext-ciphertext pairs.

V

VI ABSTRACT

Automated “black box” techniques, such as SAT solvers or Gröbner basis com-
putations, have become increasingly sophisticated and powerful. In the domain of
algebraic cryptanalysis, they are used to attack cryptosystems. What are the limits
of these techniques? We revisited the differential-algebraic attacks of Albrecht and
Cid, and showed that their attacks do not perform better than differential crypt-
analysis. As a result, it seems that there is currently no efficient symmetric-key
cipher that can be broken faster using algebraic techniques than using conventional
techniques.

But not all hope in automatic solvers is lost. We showed how MILP (Mixed-
Integer Linear Programming) solvers can be used to prove the security of ciphers
against linear and differential cryptanalysis. Our technique involves writing out
only simple linear inequality constraints, and therefore significantly reduces the
workload of cryptanalysts and the probability of making of errors. We applied
our technique to the Enocoro-128v2 stream cipher and to the block cipher AES,
and illustrated how we can prove the security of these ciphers against linear and
differential cryptanalysis in less than five minutes using an off-the-shelf solver.

Samenvatting

Het belangrĳkste doel van de wetenschap is eenvoud, en naar
gelang we meer dingen begrĳpen, wordt alles eenvoudiger.

Edward Teller

Cryptografie is de studie van wiskundige technieken die de geheimhouding en
integriteit van informatie waarborgen. Dit relatief nieuw studiegebied begon als
geheime militaire technologie, maar is nu een alledaags iets geworden. Cryptografie
wordt niet alleen gebruikt in bankkaarten, beveiligde websites en elektronische
handtekeningen, maar ook in chipkaarten voor openbaar vervoer, autosleutels en
de garagedeuropeners.

Twee bouwstenen in de cryptografie zĳn blokcĳfers en (cryptografische) hash-
functies. Blokcĳfers gebruiken een geheime sleutel om een klaartekst om te zetten
in een cĳfertekst, zodanig dat deze geheime sleutel nodig is om de oorspronkelĳke
klaartekst te achterhalen. Hashfuncties transformeren een bericht van een willekeu-
rige lengte naar een hashwaarde van een vaste lengte. Deze hashwaarden kunnen
dienen als “vingerafdrukken” voor de oorspronkelĳke berichten: het moet onhaal-
baar zĳn om twee verschillende berichten te vinden met dezelfde hashwaarde (een
botsing).

Toch toonden Wang e.a. recent aan dat het haalbaar is om botsingen te vinden
voor MD5 en SHA-1, twee van de meest gebruikte hashfuncties op dit moment.
Hoewel de SHA-2 familie momenteel niet gekraakt is, is deze op een zeer gelĳk-
aardige manier ontworpen. Om deze reden organiseerde het National Institute of
Standards and Technology (NIST) van de VS een internationale wedstrĳd voor
een nieuwe hashfunctiestandaard: SHA-3.

Het onderzoek dat voor deze doctoraatsthesis uitgevoerd werd, volgt van dicht-
bĳ de evaluatiefase van de SHA-3-wedstrĳd. Resultaten werden behaald voor
hashfuncties ARIRANG, BLAKE, ESSENCE, Hamsi, Khichidi-1, LUX, Sarmal,
Skein en TIB3. Buiten deze wedstrĳd werden ook resultaten behaald voor ver-
eenvoudigde versie van de hashfunctie HAS-V. Op het gebied van de theorie van
cryptografie werden opmerkingen gemaakt bĳ de bestandheid van reguliere hash-
functies tegen de verjaardagsaanval.

De meest gebruikte hashfuncties: MD5, SHA-1 en SHA-2, evenals twee van
de vĳf SHA-3 finalisten (BLAKE en Skein) gebruiken bewerkingen zoals optelling
modulo 2n, exclusieve OR, bitsgewĳze Booleaanse functies, bitverschuivingen en
bitrotaties. Ontevreden over de veelgebruikte ad hoc technieken om dergelĳke
constructies te analyseren, introduceerden we het raamwerk van S-functies, die
een eenvoudige en geautomatiseerde analyse mogelĳk maken.

Recent werden ontmoeting-in-het-midden-aanvallen een zeer populaire manier

VII

VIII SAMENVATTING

om blokcĳfers en hashfuncties te analyseren. We construeerden een nieuwe variant
van deze techniek, en pasten deze toe op een geautomatiseerde manier op de blok-
cĳfers XTEA en GOST. Onze aanvallen vereisen slechts een zeer beperkt aantal
gekende klaartekst-cĳfertekstparen.

Geautomatiseerde “zwarte doos”-technieken, zoals algoritmen voor het oplos-
sen van het vervulbaarheidsprobleem of het berekenen van een Gröbnerbasis, wor-
den steeds gesofistikeerder en krachtiger. In het gebied van de algebraïsche crypt-
analyse worden ze gebruikt om cryptosystemen aan te vallen. Wat zĳn de grenzen
van deze technieken? We herbekeken de differentieel-algebraïsche aanvallen van
Albrecht en Cid, en toonden aan dat hun aanvallen het niet beter doen dan dif-
ferentiële cryptanalyse. Hierdoor lĳkt er momenteel geen efficiënt symmetrische-
sleutel cryptosysteem te bestaan dat sneller gebroken kan worden met behulp van
algebraïsche technieken dan met conventionele technieken.

Maar niet alle hoop in automatische solvers is verloren. We hebben aangetoond
hoe algoritmen die het MILP (gemengd geheeltallig programmeringsprobleem) op-
lossen, gebruikt kunnen worden om de veiligheid van cĳfers tegen lineaire en dif-
ferentiële cryptanalyse bewĳzen. Onze techniek vereist enkel het uitschrĳven van
eenvoudige lineaire beperkingen, en vermindert dus de werklast van cryptanalis-
ten en de kans dat een fout gemaakt wordt. We pasten onze techniek toe op het
stroomcĳfer Enocoro-128v2 en op het blokcĳfer AES, en toonden hiermee aan hoe
we de veiligheid van deze algoritmen tegen lineaire en differentiële cryptanalyse in
minder dan vĳf minuten kunnen bewĳzen met een standaard softwarepakket.

Contents

Acknowledgments I

Abstract V

Samenvatting VII

Contents IX

List of Figures XV

List of Tables XVII

List of Symbols XXI

List of Abbreviations XXIII

I Automated Techniques for Hash Function and Block Ci-
pher Cryptanalysis 1

1 Introduction 3
1.1 Motivation . 3
1.2 Challenges . 4
1.3 Thesis Outline . 6

2 Hash Functions 7
2.1 Introduction . 7
2.2 Definition . 7

2.2.1 Preimage Resistance . 8
2.2.2 Second Preimage Resistance 8
2.2.3 Collision Resistance . 9

2.3 Other Security Requirements . 9
2.4 Theory of Hash Functions . 10

IX

X CONTENTS

2.5 Iterated Hash Functions . 11
2.5.1 Merkle-Damgård construction 12

2.6 Analysis of Hash Functions . 13
2.6.1 Introduction . 13
2.6.2 ESSENCE . 14
2.6.3 Khichidi-1 . 14
2.6.4 LUX . 15
2.6.5 Sarmal . 17
2.6.6 Skein and BLAKE . 17
2.6.7 Other SHA-3 Results . 17
2.6.8 HAS-V . 18

2.7 Conclusion . 19

3 Block Ciphers 21

3.1 Introduction . 21
3.2 Definition . 22

3.2.1 Attack Models . 23
3.2.2 Related-Key Attacks . 24

3.3 Meet-in-the-Middle Attacks . 24
3.3.1 XTEA . 25
3.3.2 GOST . 26

3.4 Conclusion . 26

4 Automated Techniques 29

4.1 Introduction . 29
4.2 Differential and Linear Cryptanalysis 30
4.3 S-functions . 32

4.3.1 Introduction . 32
4.3.2 Background . 32
4.3.3 Our Results . 33

4.4 Differential-Algebraic Attacks . 34
4.4.1 Our Results . 34

4.5 Mixed Integer-Linear Programming 35
4.5.1 Our Results . 35

4.6 Conclusion . 36

5 Conclusion 39

5.1 Directions for Future Research . 40

Bibliography 43

CONTENTS XI

II Publications 61

List of Publications 63

Finding Collisions for a 45-Step Simplified HAS-V 69
1 Introduction . 71
2 A Simplified HAS-V . 73

2.1 Description . 73
2.2 Cyclic Description . 75

3 NL-characteristics . 76
3.1 Representation of Conditions on One Bit ∇Qt+1[i] 76
3.2 Propagation of Conditions for Every Word ∇Qt+1 77
3.3 Double Conditions . 79
3.4 Work Factor . 80

4 Finding NL-characteristics for 45 Steps 82
5 Conclusion and Future Work . 83
6 Acknowledgments . 84
References . 84
A NL-characteristics . 86
B A Two-bit Example . 86

B.1 Introduction . 86
B.2 Visualizing xdp+(11, 01→ 10) in a Graph 87
B.3 Calculating xdp+(11, 01→ 10) Using Matrix Multiplications 88
B.4 Extending the Graph Method 89

Cryptanalysis of the ESSENCE Family of Hash Functions 95
1 Introduction . 98
2 Description of the Compression Function of ESSENCE 99
3 Branching Number of the L Function 100
4 A 31-Round Semi-Free-Start Collision Attack For ESSENCE-512 . 100
5 Finding Message Pairs for the First Nine Rounds 102
6 Distinguishing Attacks . 104

6.1 Weakness in the Feedback Function of ESSENCE 104
6.2 Distinguishers on 14-Round ESSENCE 105
6.3 The Distinguisher . 105
6.4 Distinguishers using Biases in Other Bits 106
6.5 Distinguishers for the Compression Function 106
6.6 Key-Recovery Attacks . 107

7 Slide Attack . 107
7.1 Slid Pairs with Identical Chaining Values 108

8 Fixed Points for the ESSENCE Block Cipher 108
9 Measures to Improve the Security of ESSENCE 109
10 Conclusions and Open Problems 110
11 Acknowledgments . 110

XII CONTENTS

References . 111
A Finding the Lowest Weight Difference A 112
B Making F Behave as a Linear Transformation 113
C A Message Pair for the First Nine Rounds 114
D The Feedback Function F . 114
E Distinguishing Attacks on the Full 32-Round ESSENCE-256 115
F Key-Recovery Attacks on 32-Round ESSENCE 117

The Differential Analysis of S-Functions 119
1 Introduction . 121
2 S-Functions . 123
3 Computation of xdp+ . 125

3.1 Introduction . 125
3.2 Defining the Probability xdp+ 125
3.3 Constructing the S-Function for xdp+ 126
3.4 Computing the Probability xdp+ 126
3.5 Minimizing the Size of the Matrices for xdp+. 128
3.6 Extensions of xdp+ . 129

4 Computation of adp⊕ . 130
4.1 Introduction . 130
4.2 Defining the Probability adp⊕ 130
4.3 Constructing the S-function for adp⊕ 131
4.4 Computing the Probability adp⊕ 131

5 Counting Possible Output Differences 132
5.1 Introduction . 132
5.2 Algorithm with a Exponential Time in n 132
5.3 Algorithm with a Linear Time in n 133
5.4 Computing the Number of Output Differences xdc+ 134
5.5 Calculation of adc⊕ . 135

6 Conclusion . 136
References . 136
A Matrices for xdp+ . 139
B All Possible Subgraphs for xdp+ 140
C Computation of xdp+ with Multiple Inputs. 140
D Computation of xdp×3 . 141
Correction . 145

Meet-in-the-Middle Attacks on Reduced-Round XTEA 147
1 Introduction . 149
2 Notation and Convention . 152
3 Description of XTEA . 152
4 Motivational Observation . 154
5 Attacks on 15 Rounds of XTEA . 156
6 Attacks on 23 Rounds of XTEA . 158

CONTENTS XIII

7 Conclusions and Open Problems 161
References . 163
A Countermeasures . 165
B Illustration of the Attack on Rounds 16–38 165
C Randomness of the Inner-Round Subkeys in the 15-Round Attacks 166

Meet-in-the-Middle Attacks on Reduced-Round GOST 169

1 Introduction . 171
2 Description of GOST . 173
3 Attacking up to 14 Rounds of GOST 174
4 Attack on 16-Round GOST . 176
5 Attack on 22-Round GOST . 177
6 Conclusions and Open Problems 177
References . 178

Challenging the Increased Resistance of Regular Hash Functions Against
Birthday Attacks 181

1 Introduction . 184
2 The Birthday Problem . 186
3 Balance and Regularity in Existing Literature 186
4 Fraction of Regular Functions . 187
5 Subset Regularity . 189
6 Linear Subset Regularity . 191
7 Impact on the Birthday Attack . 194
8 Related Work . 195
9 Random Functions . 196
10 Conclusions . 196
References . 197
A Linear Subset Regularity for 3-to-1 Bit Hash Functions 199
B Calculating the Inverses of Matrices Ad 200

Algebraic Techniques in Differential Cryptanalysis Revisited 203

1 Introduction . 206
2 Description of Albrecht’s Differential-Algebraic Attack 208
3 Inapplicability of Albrecht et al.’s Attacks 210

3.1 Inapplicability of Attack C 210
3.2 Inapplicability of Attack B to PRESENT 216

4 New Differential-Algebraic Attacks 218
4.1 Attack 1 for the PRESENT Block Cipher 219
4.2 Attack 2 for the PRESENT Block Cipher 220

5 Conclusion . 221
References . 222

XIV CONTENTS

Differential and Linear Cryptanalysis using Mixed-Integer Linear Program-
ming 229
1 Introduction . 231
2 Constructing an MILP Program to Calculate the Minimum Number

of Active S-boxes . 234
2.1 Differential Cryptanalysis 234
2.2 Linear Cryptanalysis . 236

3 Description of Enocoro-128v2 . 236
4 Differential Cryptanalysis of Enocoro-128v2 238

4.1 Constructing the MILP Program 239
4.2 The Minimum Number of Active S-boxes for Differential

Cryptanalysis . 241
5 Linear Cryptanalysis of Enocoro-128v2 243

5.1 Constructing the MILP Program 243
5.2 The Minimum Number of Active S-boxes for Linear Crypt-

analysis . 245
6 Future Work . 246
7 Conclusion . 247
References . 248
A Number of Active S-boxes for AES 250

Curriculum Vitae 253

List of Figures

I Automated Techniques for Hash Function and Block Ci-
pher Cryptanalysis 1

2.1 Merkle-Damgård construction . 13
2.2 Constructing a second preimage m′ for Khichidi-1 15

4.1 A differential distinguisher . 31

II Publications 61

Finding Collisions for a 45-Step Simplified HAS-V 69
1 The HAS-V step function . 75
2 Calculation of Qt+1[i] from Qt[i−St], Qt−1[i], Qt−1[i+2], Qt−1[i+2]

and Qt−1[i+ 2] . 77
3 Explanation of the edges in the graph 78
4 Removing edges through forward propagation 78
5 Removing edges through backward propagation 79
6 Remaining valid paths for one word ∇Qt+1 79
7 Double conditions for the HAS-V step function 90
8 Calculating z = x+ y and z′ = x′ + y′ 91
9 Graph representation to calculate xdp+(11, 01→ 10) 91

Cryptanalysis of the ESSENCE Family of Hash Functions 95
1 One round of ESSENCE . 99
2 The compression function of ESSENCE 100

The Differential Analysis of S-Functions 119
1 Representation of an S-function . 124
2 An example of a full graph for xdp+ 127
3 All possible subgraphs for xdc+ . 135

XV

XVI LIST OF FIGURES

4 All possible subgraphs for xdp+ . 143

Meet-in-the-Middle Attacks on Reduced-Round XTEA 147
1 The Feistel structure of XTEA showing two rounds 154
2 The function F used in the round function of XTEA 154
3 Attack on rounds 16–38 using Algorithm 1 166
4 23-round attack (rounds 16–38), using 11 inner rounds 168

Meet-in-the-Middle Attacks on Reduced-Round GOST 169

Challenging the Increased Resistance of Regular Hash Functions Against
Birthday Attacks 181
1 Regular function with d = 9 and r = 3 188

Algebraic Techniques in Differential Cryptanalysis Revisited 203
1 It is not possible to detect that (C ′ ⊕ Z,C ′′ ⊕ Z) is a wrong pair

(see Claim 1). 212

Differential and Linear Cryptanalysis using Mixed-Integer Linear Program-
ming 229
1 State Update during the Initialization 238
2 Difference Vectors for Nine Operations in the First Round 240
3 Differential State Update during the Initialization 240
4 Linear Mask Vectors for Nine Operations in the First Round . . . 244
5 Linear Mask Vectors Update during the Initialization 244

List of Tables

I Automated Techniques for Hash Function and Block Ci-
pher Cryptanalysis 1

2.1 Preimage, second preimage and collision attacks against LUX . . . 16

3.1 Overview of meet-in-the-middle preimage attacks on hash functions 25
3.2 Key recovery attacks on XTEA . 27
3.3 Full-key recovery attacks on GOST 28

II Publications 61

Finding Collisions for a 45-Step Simplified HAS-V 69

1 Notation . 74
2 The IV values for the simplified HAS-V 74
3 Calculation of the XOR-words for the simplified HAS-V 74
4 The message expansion for the simplified HAS-V 74
5 Constant Kt for the simplified HAS-V 75
6 Rotation value St for the simplified HAS-V 76
7 All possible conditions for (X[i],X ′[i]) 76
8 Lowest Hamming weights found for L-characteristics, not taking the

weight of ∇Qt+1 for 0 ≤ t < 20 into account 82
9 The work factor Nw after each of the four stages 83
10 The summation for the least significant bits (z0, z′0), where α0 =

x0 ⊕ x′0 = 1 and β0 = y0 ⊕ y′0 = 1 87
11 The summation for the most significant bits (z1, z′1), where α1 =

x1 ⊕ x′1 = 1 and β1 = y1 ⊕ y′1 = 0 88
12 NL-characteristic of 45 steps after Stage 3, work factor Nw = 275.84 92
13 NL-characteristic of 45 steps after Stage 4, work factor Nw = 251.53 93

XVII

XVIII LIST OF TABLES

Cryptanalysis of the ESSENCE Family of Hash Functions 95
1 A 31-round semi-free-start collision differential characteristic for the

ESSENCE-512 compression function 103
2 All differences A with hw(A) = 17 that satisfy (3); there are no

solutions where hw(A) < 17 and (3) 113
3 Making F linear and imposing the required differential behavior for

position j where A[j] = L(A)[j] = 1 can be done by adding no more
than 10 linear equations; exactly four such solutions exist 114

4 Making F linear and imposing the required differential behavior for
position j where A[j] = 1 and L(A)[j] = 0 can be done by adding
no more than 10 linear equations; exactly one such solution exists 115

5 Making F linear for position j where A[j] = L(A)[j] = 0 can be
done by adding no more than 6 linear equations; at least six such
solutions exist . 116

6 A message pair satisfying the first 9 rounds of the characteristic of
Table 1 . 116

The Differential Analysis of S-Functions 119
1 Notation . 123

Meet-in-the-Middle Attacks on Reduced-Round XTEA 147
1 Key recovery attacks on XTEA . 151
2 Notation . 152
3 Subkeys used in XTEA . 153
4 All 7-round attacks; each attack requires 2 KPs and on average

295.00 computations of the 7 rounds for an average success probabil-
ity of 1− 2−33 . 156

5 All 15-round attacks; each attack requires 3 KPs and on average
295.00 computations of the 15 rounds for an average success proba-
bility of 1− 2−65 . 158

6 All 23-round attacks . 162
7 All reduced-round XTEA block ciphers for which a 29-round attack

consists of 17 inner rounds . 163

Meet-in-the-Middle Attacks on Reduced-Round GOST 169
1 Full-key recovery attacks on GOST 172
2 All r-round reduced block ciphers (8 ≤ r ≤ 14) with unused subkeys 174
3 Time complexities and success probabilities of attacks of Sect. 3 for

several values of s and n . 176

Challenging the Increased Resistance of Regular Hash Functions Against
Birthday Attacks 181
1 Truth table for an m-to-i bit hash function h; αj,ℓ ∈ {0, 1} ∀ j ∈

{0, . . . , 2m − 1} and ℓ ∈ {0, . . . , i− 1} 193

LIST OF TABLES XIX

2 Constructing a 3-to-1 bit linear subset regular hash function h(x),
where x← x2 ‖ x1 ‖ x0 . 200

Algebraic Techniques in Differential Cryptanalysis Revisited 203
1 Attack C’s Filtering Test for Wrong Pairs with MiniSat2 224
2 Difference Values for Wrong Pair and Right Pair in Attack C . . . 225
3 Filter Time for Wrong Pairs Not Satisfying Equations in any Group 225
4 Filter Time for Wrong Pairs Only Satisfying Equations in Group A 226
5 Attack B’s Filtering Test for Wrong Pairs Satisfying Ciphertext

Difference Values with MiniSat2 (Timeout t = 1500 s) 226
6 Difference Values for Wrong Pair and Right Pair in Attack B . . . 226
7 Time to Solve Right Key under Some Fixed Key Bits with MiniSat2 227
8 Time to Solve Right Key using Two Right Pairs with MiniSat2 . . 227
9 Time to Solve Right Key using Three Right Pairs with MiniSat2 . 228

Differential and Linear Cryptanalysis using Mixed-Integer Linear Program-
ming 229
1 Minimum Number of Differentially Active S-boxes min(kN) for N

rounds of Enocoro-128v2 . 243
2 Minimum Number of Linearly Active S-boxes min(mN) forN rounds

of Enocoro-128v2 . 247
3 The Variables in the First Round Update of AES 251
4 Minimum Number of Differentially or Linearly Active S-boxes min(kN)

for N rounds of AES . 251

XX LIST OF TABLES

List of Symbols

n Length of a word in bits
N Length of the hash value in bits, or the block size in bits
B Block length in bits for iterated hash functions
P Plaintext
C Ciphertext
K (Secret) Key
P Plaintext space
C Ciphertext space
K Key space
E(P,K) Encryption of plaintext P under key K
D(C,K) Decryption of ciphertext C under key K
Φ(K) Function that computes a related key Φ(K) from a secret key K
x ‖ y Concatenation of the binary strings x and y
x ∧ y Bitwise AND of x and y
x ∨ y Bitwise OR of x and y
x⊕ y Bitwise XOR of x and y
¬x Bitwise NOT of x
|x| Absolute value of x: |x| =

√
x2

|A| Number of elements of set A
x≪ s Shift of x to the left by s positions
x≫ s Shift of x to the right by s positions
x≪ s Rotation of x to the left by s positions
x≫ s Rotation of x to the right by s positions
x+ y Addition modulo 2n (in text),

if the context clarifies that x and y are n-bit words
x⊞ y Addition modulo 2n (in figures)
x− y Subtraction modulo 2n (in text),

if the context clarifies that x and y are n-bit words
x⊟ y Subtraction modulo 2n (in figures)
x[i] Selection: bit (or element) at position i of word x,

where i = 0 is the least significant bit (element)
x[j . . . i] Select bits k where j ≥ k ≥ i, k = 0 is the LSB
0k Concatenation of k times the string ‘0’

XXI

XXII LIST OF SYMBOLS

List of Abbreviations

AES Advanced Encryption Standard
API Application Programming Interface
ARX Addition modulo 2n, Bit Rotation and XOR
CA Certificate Authority
COPACOBANA Cost-Optimized Parallel Code Breaker
COSIC Computer Security and Industrial Cryptography
CP Chosen Plaintext
CPU Central Processing Unit
DES Data Encryption Standard
ESAT Electronics, Systems, Automation and Technology
FPGA Field-Programmable Gate Array
FSM Finite State Machine
FWO Fonds Wetenschappelĳk Onderzoek – Vlaanderen
GB Gigabyte
GHz Gigahertz
HAS Hash Function Algorithm Standard
HTTPS Hypertext Transfer Protocol Secure
IBM International Business Machines Corporation
IFF Identify Friend or Foe
ILP Integer Linear Programming
IMAP Internet Message Access Protocol
ISO International Organization for Standardization
IV Initial Value
IWT Agentschap voor Innovatie door Wetenschap en Technologie
KCDSA Korean Certificate-Based Digital Signature Algorithm
KP Known Plaintext
L-characteristic Linear Characteristic
LP Linear Programming
LSB Least Significant Bit
ls-regular Linear Subset Regular
MD4 Message Digest Algorithm 4
MD5 Message Digest Algorithm 5

XXIII

XXIV LIST OF ABBREVIATIONS

MDS Maximum Distance Separable
MILP Mixed-Integer Linear Programming
MitM Meet-in-the-Middle Attack
MSB Most Significant Bit
NIST National Institute of Standards and Technology
NL-characteristic Non-Linear Characteristic
PC Personal Computer
Ph.D. Doctor of Philosophy
PIN Personal Identification Number
PolyBoRi Polynomials over Boolean Rings
POP3 Post Office Protocol 3
RACE Research and Development in Advanced Communications

Technologies in Europe
RAM Random access memory
RFID Radio Frequency Identification
RIPEMD RACE Integrity Primitives Evaluation Message Digest
RK In a Related-Key Setting
RSA Algorithm by Rivest, Shamir and Adleman
SAC Strict Avalanche Criterion
SAT Boolean Satisfiability Problem
S-box Substitution Box
S-function State Function
SHA Secure Hash Algorithm
SMS Short Message Service
s-regular Subset Regular
SSL Secure Sockets Layer
TEA Tiny Encryption Algorithm
TLS Transport Layer Security
UNAF Unsigned Non-Adjacent Form
US United States
XOR Exclusive OR

Part I

Automated Techniques for
Hash Function and Block

Cipher Cryptanalysis

1

2

Chapter 1

Introduction

1.1 Motivation

When is a system secure? Although the question may seem easy, the answer turns
out to be very difficult.

Take a mobile phone for example. It’s quite straightforward to test if the device
works correctly. You could try to make and receive phone calls, and do this under
a wide range of conditions: in flat regions and in mountainous areas, standing
still and in high-speed trains, in urban and in rural areas. If a problem occurs, it
can typically be isolated and resolved: maybe the antenna is malfunctioning, the
display is defective, a button is broken,...

But is the phone secure? For example, is it possible for attackers to listen in on
your conversations? Can an attacker make phone calls or send SMS messages and
charge them to your account? When your phone is stolen, can it be used without
knowing the PIN? Such questions are much more difficult to answer, if they can
be answered at all. Of course, experts can perform a security analysis to find and
resolve several vulnerabilities. But in many cases, problems are only revealed after
a successful attack. Or even much later, if it is not immediately apparent that the
security has been breached.

And attacks do happen. Here are just a few examples from 2011:
A SecurID token is a small device that displays numbers that change every

minute. For a user to get access into a system – for example a website for on-line
banking – he or she must enter both a password or PIN and the number on the
SecurID token’s screen. On March 17, 2011, RSA publicly disclosed that attackers
broke into their systems and obtained secret information about the company’s Se-
curID product [43]. This information was subsequently used to break into systems
of US government defense contractors Lockheed Martin and L-3 Communications.
EMC, the parent company of RSA, revealed that they had spent 50 million euros
in the second quarter to deal with the cyber attack [163].

3

4 INTRODUCTION

On April 19, 2011, Sony discovered that attackers broke into Sony’s PlaySta-
tion Network, and obtained for all 77 million registered accounts (amongst other
information) the names, addresses, date of births, logins and passwords, and pos-
sibly even credit card numbers and expiration dates of their users [72]. Following
the security breach, Sony shut down the PlayStation Network on April 20, result-
ing in a worldwide outage until May 15 [157]. Sony estimated the cost associated
with the unauthorized network access at about 138 million euros [156].

On August 28, 2011, an Iranian citizen reported that when he tried to access
his Gmail account using the Google Chrome browser, an error message indicated
that the certificate was invalid [5]. According to the browser, the certificate was
signed by DigiNotar. But starting from Chrome 13, Google had implemented
public key pinning [97]: certificates from all but a small number of certificate
authorities are rejected for Google websites. For this reason, Chrome rejected
DigiNotar’s certificate. Google subsequently removed DigiNotar from Chrome’s
list of trusted root certificates, other browser manufacturers quickly followed suit.
These events forced DigiNotar into bankruptcy, and caused its parent company
VASCO estimated losses between 2.5 million to 3.7 million euros [167].

These are just a few examples of recent high-profile attacks, and mention noth-
ing about the widespread occurrence of botnets, phishing, viruses, denial-of-service
attacks,... Attacks are becoming increasingly sophisticated, with a goal of either
monetary gain or the collecting of strategic information. Securing the world’s
information is therefore one of the biggest challenges of the 21st century.

1.2 Challenges

Information security is a very broad domain, in which every aspect of protect-
ing information and information systems is studied. The field of cryptography
is concerned with mathematical techniques to secure information. An extended
overview of these techniques can be found in the “Handbook of Applied Cryptog-
raphy” [113].

Interestingly, the high-profile attacks described in the previous section are not
the result of weaknesses in cryptographic building blocks. This does not mean that
weak cryptography never leads to practical attacks. Counterexamples include:

• the attack on the KeeLoq block cipher used to secure the car keys of several
leading automakers [79],

• the attack on the Crypto-1 stream cipher used in many public transportation
systems [63], and

• the attack on the MD5 hash function which lead to the creation of a rogue
CA certificate that could impersonate any website secured by HTTPS [158].

Recent attacks indicate that although good cryptographic algorithms are nec-
essary to secure our digital information, they are not sufficient. We now provide

CHALLENGES 5

a brief and incomplete overview of other considerations that should be taken into
account.

Even when cryptographic algorithms and protocols are secure, they may be
implemented in an insecure way. If this is the case, the secret key may leak through
a side channel attack. Possible side channels include timing information [92], power
consumption [93] and electromagnetic radiation [62].

For example, a cache-timing attack allows a key recovery attack for a common
implementation of the AES block cipher [16]. Another implementation problem
can be found in the domain of RFID tags, which can be used as “electronic bar
codes” to trace products. A variety of protocols exist to provide privacy for RFID
tags, see [71] for a recent overview. However, there is no privacy anymore if every
RFID tag has a unique physical-layer fingerprint [186].

Users are known to choose weak passwords, and use the same few passwords
again for all their accounts [152]. Many people use unpatched software, leaving
the door open for attackers [143]. Users may even be too confused about security
software to make use of it at all [183]. Or what if the attacker can trick the user
in some way, in order to gain access to their accounts? It seems that the user is
often the weakest link in the security chain. This should not be overlooked when
designing a secure system.

But even if cryptography is not always the problem, it can be part of the
solution. The problem of weak user passwords can be mitigated by introducing
two-factor authentication: requiring not only a password, but also a security code
from a cryptographic device (such as the SecurID mentioned earlier). Cryptogra-
phers should also design algorithms and protocols with the possibility of a secure
implementation in mind. Lastly, it is important that cryptographic components
are easy to understand and analyze.

And that’s exactly the research focus of this thesis: how to analyze crypto-
graphic components in an easy way. Our approach is as follows:

• A number of cryptographic algorithms are analyzed. Mostly hash functions
submitted to NIST’s SHA-3 competition [126], but several other ciphers as
well.

• Breaking cryptosystems gives an insight into which design principles are
secure, and which are not. From this, general principles for design and
cryptanalysis can be distilled.

• These insights are then used to build general frameworks that allow hash
functions, block ciphers and stream ciphers to be analyzed.

• A special focus is put on automated techniques. Not only because they are
easier to use and understand, but also because they have a much broader
range of applicability.

• To maximize the impact of the research, the tools that we have developed
are publicly available.

6 INTRODUCTION

1.3 Thesis Outline

This Ph.D. thesis is based on publications, and consists of two parts. The first
part consists of five chapters. In this chapter, we motivated the need for secu-
rity and cryptography, and situated the research performed in this Ph.D. thesis.
Cryptographic hash functions are defined in Chapter 2. We describe which secu-
rity properties they should satisfy, and discuss several ways to construct a hash
function. Our analysis of ten different hash functions is presented in Sect. 2.6.

Block ciphers are described in Chapter 3. After defining the concept of a
block cipher and considering relevant attack models, we present meet-in-the-middle
attacks on the block ciphers XTEA (Sect. 3.3.1) and GOST (Sect. 3.3.2). Our
attacks work in the single-key setting, and require very few known plaintexts.

Chapter 4 investigates automated techniques for the cryptanalysis of block
ciphers and hash functions. The focus is not on particular ciphers, but on methods
that can be applied in general.

We introduce the framework of S-functions in Sect. 4.3, and show how to
efficiently calculate their properties with respect to differential cryptanalysis.

Another way to analyze ciphers in an automated way, is by representing ciphers
using systems of equations, and solving these using algebraic techniques. The
differential-algebraic attacks of Albrecht and Cid are investigated in Sect. 4.4. We
explain why their techniques do not perform better than standard differential
cryptanalysis, using both theoretic insights and numerous computer experiments.

Linear and differential cryptanalysis are two of the most powerful techniques
in symmetric-key cryptanalysis. In Sect. 4.5, we show how to easily prove security
against these attacks, both in single-key and related-key models.

We conclude in Chapter 5, where we also provide directions for future research.
A selection of our publications can be found in the second part of this thesis,

where eight publications are reproduced in their entirety as separate chapters. A
full list of publications can be found on p. 63.

Chapter 2

Hash Functions

2.1 Introduction

Hash functions turn an arbitrary-length message into a short, fixed-length “fin-
gerprint” of this message. Originally, the main objective of hash functions was to
provide data integrity: making sure that data was not modified by unauthorized or
unknown means. Nowadays, hash functions have become the “Swiss army knife of
cryptography”: they are used not only for data integrity but also for commitment
schemes, key derivation, pseudorandom number generation,...

This chapter defines hash functions, and explains the security properties that
they should satisfy. For a more detailed treatment of hash functions, we refer to
Preneel [136]. We have obtained results for no fewer than ten hash functions.

Outline. Section 2.2 explains what hash functions are, and lists the standard
security requirements that they have to fulfill. An overview of some additional
security requirements is given in Sect. 2.3. We explore the theoretic foundation
of cryptographic hash functions in Sect. 2.4, where we also include our own obser-
vations on regular hash functions. After introducing the concept of iterated hash
functions in Sect. 2.5, we explain the Merkle-Damgård construction. Section 2.6
presents an overview of our cryptanalysis results. We discuss our results for the
SHA-3 candidates ARIRANG, BLAKE, ESSENCE, Hamsi, Khichidi-1, LUX, Sar-
mal, Skein and TIB3. Outside of the SHA-3 competition, we analyzed the hash
function HAS-V.

2.2 Definition

Hash functions are functions h that transform an arbitrary-length message m in
a deterministic way into a fixed-length hash value h(m). The algorithm of h
should be efficiently computable. We use N to denote the length of h(m) in bits.
Throughout this thesis, “hash function” will always refer to a “cryptographic hash

7

8 HASH FUNCTIONS

function”. The reader should not confuse cryptographic and non-cryptographic
hash functions. The latter are used for example in hash tables [90].

Cryptographic hash functions should satisfy several security requirements, oth-
erwise we refer to them as “broken”. We will investigate these security requirements
in detail. Every security requirement can be violated by a generic attack, i.e. an at-
tack that applies to every hash function. The complexities of these generic attacks
depend only on N , the length of the hash value. This explains the following sub-
tlety: we do not say that it should be impossible to break the security requirements,
but N should be designed to be large enough so that it becomes (computationally)
infeasible.

Traditionally [113,136], the security requirements are preimage resistance, sec-
ond preimage resistance and collision resistance. We now define these notions in an
informal way. In Sect. 2.4, we will discuss some criticisms [6,141] on the informal
definitions of the following sections.

2.2.1 Preimage Resistance

Hash functions should be one-way functions. This means that given a hash value
Y , it should be infeasible to find a preimage, i.e. a message m for which Y = h(m).

A generic attack to find a preimage goes as follows. Let us assume that the
hash function can be modeled as a random function. Assume that a hash value
Y is chosen uniformly at random from the set of all N -bit strings. As the length
of the hash value is N , after 2N hash function evaluations on a set of distinct
messages R, the probability that a message r ∈ R is found for which h(r) = Y is

1−
(

1− 1

2N

)2N

. (2.1)

As 2N is typically very large, we can obtain a good approximation by using
limx→∞

(
1− 1

x

)x
= e−1. Therefore, the success probability of this generic preim-

age attack for hash functions is about 1− e−1 ≈ 63%.

2.2.2 Second Preimage Resistance

Second preimage resistance can be defined as follows. Given a message m and a
hash value h(m), it should be infeasible to find a second message m′ (m 6= m′) for
which h(m) = h(m′).

The notions of preimage resistance and second preimage resistance are closely
related. A one-way function is both preimage and second preimage resistant, and
the same generic attack applies to both security notions.

Yet, it is possible to construct hash functions that are second preimage resistant,
but not preimage resistant [113, Note 9.20]. Therefore, preimage resistance and
second preimage resistance are considered to be separate security notions.

OTHER SECURITY REQUIREMENTS 9

2.2.3 Collision Resistance

A hash function is collision resistant if it is infeasible to find two distinct messages
m,m′ (m 6= m′) such that h(m) = h(m′). Collisions exist for every hash function
because of the pigeonhole principle: a set of 2N + 1 messages will always contain
a collision, because an N -bit hash function cannot output more than 2N distinct
hash values. However, a much more efficient attack exists. Again, we model the
hash function as a random function.

As the length of the hash value is N , after 2(N+1)/2 hash function evaluations
on a set of messages R, two messages r, r′ ∈ R where r 6= r′ are found for which
h(r) = h(r′) with a success probability of about 1 − e−1 ≈ 63%.1 This generic
collision attack against hash functions is referred to as the birthday attack. Its
name refers to the birthday paradox, which states that in a room with 23 people,
there is a probability of more than 50% that two people share the same birthday.

It is not necessary to store all messages and hash values. Quisquater and
Delescaille [138] showed that collisions for meaningful messages can also be found
with negligible memory requirements. An efficient parallel implementation of their
algorithm was proposed by Van Oorschot and Wiener [164].

Collision resistance implies second-preimage resistance, but does not imply
preimage resistance. The same counterexample given in [113, Note 9.20] illustrates
this.

2.3 Other Security Requirements

The security requirements of a hash function strongly depend on the application.
In some applications, collision resistance is not required. Feldhofer and Rechberger
surveyed nine hash-function based RFID protocols, and found that only one pro-
tocol required collision resistance [59].

For applications where collision resistance is required, N is by design chosen
to be large enough to thwart collision attacks: performing about 2(N+1)/2 hash
function evaluations should be computationally infeasible. In this case, it does
not make sense to require a hash function to have a preimage resistance with a
complexity of more than 2(N+1)/2.

This observation lead to an efficiency improvement of the Lesamnta-LW hash
function [73]. For the SHA-3 competition, NIST made 2N preimage resistance
a design requirement [126]. If this were not the case, the SHA-3 finalist hash
function Keccak [21] would also have been designed more efficiently [44].

In other applications, hash functions require more than preimage, second preim-
age and collision resistance. An application may truncate an N -bit hash value to

1We choose a set of 2(N+1)/2 messages, so that the success probability of the collision attack
is the same as that of the preimage and second preimage attacks described in this section. For
a set of 2N/2 messages, the success probability would be about 1− e−1/2 ≈ 39%. These success
probabilities are calculated using Eq. (B.4) of [136, § B.3].

10 HASH FUNCTIONS

M bits, where M < N . In this case, there should be no attacks better than the
generic attacks for M -bit hash functions.

Another additional requirement is resistance against length extension attacks
(also known as message expansion attacks). In a length extension attack, the
attacker knows h(m) and the length of m, but not m itself. The attacker chooses
a value x in a specific way, and can efficiently calculate the hash value h(m ‖ x).
This length extension attack is applicable to all commonly used hash functions:
MD5, SHA-1, SHA-2.

Not all implementers are aware of this attack, as evidenced by a recent security
vulnerability in an API released by Flickr [57], one of the most popular photo shar-
ing websites. Resistance against length extension attacks is a design requirement
for SHA-3 candidates [126], and according to Kelsey of NIST [84], this may be the
most important reason to recommend implementers to switch to SHA-3.

2.4 Theory of Hash Functions

In the field of provable security, the security of cryptographic protocols and appli-
cations is proven based on the security of the underlying cryptographic primitives.
For this, a more rigorous mathematical foundation of hash functions is required.

From a theoretic point of view, the ideal hash function against all attacks is a
random oracle [15]. For every message, a random oracle chooses the corresponding
hash value independently and uniformly at random. This is done in such a way,
that consistent hash values are given if an earlier message is encountered.

In [14, 37], Bellare and Kohno argue that “regular functions fare better than
random functions [against the birthday attack].” A hash function is regular if
every hash value has the same number of preimages in the domain. In [122] (see
p. 181), we counter their arguments by showing that the success probability of the
birthday attack against a regular hash function can be made arbitrarily close to
that of a random hash function (for the same number of trials).

One issue with Bellare and Kohno’s result is the following. Consider an N -bit
hash function that simply outputs the first N bits of the message as the hash value.
This hash function is a regular hash function by construction. Assume that the
domain D consists of all messages of a certain fixed length. Clearly, performing
the birthday attack as defined by Bellare and Kohno (Fig. 1 of [14]) will have
a complexity of 2(N+1)/2 for a success probability of about 63%. The reason is
that messages in their birthday attack are chosen uniformly at random from the
domain D.

However, Bellare and Kohno also note in the same paper that “there are several
variants of [the birthday attack] which differ in the way the [messages] x1, . . . , xq
are chosen.” Our example hash function will clearly be very weak against a variant
of the birthday attack, where messages are chosen such that the first N bits are
the same. Therefore, we also point out in [122] (see p. 181) that contrary to the
birthday problem, the distribution of the hash values in the birthday attack do

ITERATED HASH FUNCTIONS 11

not only depend on the hash function, but also on how the attacker chooses the
domain points.

A random oracle is a very useful tool to construct theoretic security proofs,
but cannot be implemented as an efficient function [38]. When Rogaway and
Shrimpton attempted to formalize the concept of real-world hash functions (i.e.
functions that can be efficiently evaluated), two main problems arose [141].2

Firstly, for certain hash functions it may be easy to find preimages for some
hash values, but difficult for other hash values. To address this issue, Rogaway
and Shrimpton consider both preimage security against random hash values, as
well as against fixed hash values. If finding (second) preimages is difficult for every
hash value, the hash function is said to be “everywhere” secure.

Secondly, we want to state more formally that it should be infeasible to find
a collision. But we cannot do this by saying that no efficient algorithm exists.
These exist for every hash function: for example, programs exist that simply
contain a hard coded collision, although it may be very difficult to find such
programs. Rogaway made an attempt to sidestep this issue by claiming that
“human ignorance” prevents finding these programs [140]. However, a security
proof based on human limitations is obviously less rigid than a proof based on
information theory or complexity theory.

A related issue is that it is very easy to distinguish an efficient hash function
(for example, SHA-1) from a random oracle. An attacker could take a random
message r and query the hash value. If the hash value is SHA-1(r), the attacker
concludes that the hash function is not a random oracle. The algorithm to test for
non-random behavior is referred to as a distinguisher. For the distinguisher that
we just described, the error probability is 2−160.

Rogaway and Shrimpton used keyed hash functions to address some of the
problems mentioned earlier. Confusingly, the term “key” is not used in this context
for something secret and unknown to the attacker, but as an index of one particular
hash function out of a family of hash functions. This key can either be fixed by
the attacker or chosen at random. If a keyed hash function is (second) preimage
secure for all keys (i.e. every hash function in the hash function family is (second)
preimage secure), then the keyed hash function is referred to as “always” secure.

Yet, the most commonly used hash functions (MD5, SHA-1 and SHA-2) are
not designed with the concept of keys in mind, and most protocols using hash
functions do not make use of keys. This is where this theoretical framework falls
short.

2.5 Iterated Hash Functions

Hash functions transform a variable-length message into a fixed-length hash value.
This is commonly done by padding the message and chopping it into fixed-length

2Note that the claim by Rogaway and Shrimpton in [141] that “ePre→ Pre” was later shown
to be incorrect by Andreeva and Stam [6].

12 HASH FUNCTIONS

message blocks. Most hash functions are iterated hash functions. They use a
chaining value, and update the chaining value by iteratively processing every mes-
sage block. This has the advantage that the message does not have to be stored
into memory.

A disadvantage is that iterated hash functions can have state collisions, i.e.
collisions in the chaining value. This has several interesting consequences.

• If padded messages m and m′ (m 6= m′) result in a state collision for a
given hash function h, then this results not only in h(m) = h(m′), but also
h(m ‖ x) = h(m′ ‖ x) for any suffix x. This observation allows a hash
function to be distinguished from a random oracle.

• Given two hash functions h and g, a message m may be transformed in to
the concatenated hash value h(m) ‖ g(m). If f and g are iterated hash
functions, the concatenated hash value is not much more secure than either
f or g used separately. This statement applies to preimage, second preimage
and collision resistance [82].

• For long messages, iterated hash functions allow second preimages to be
found in much less than 2N hash function evaluations [85].

In the next section, we will focus on the construction of iterated hash functions
using the Merkle-Damgård construction. Note that alternatives exist, such as for
example the sponge construction [20].

2.5.1 Merkle-Damgård construction

The Merkle-Damgård construction uses a fixed-length compression function f :
{0, 1}B+N → {0, 1}N to construct an arbitrary-length hash function h : {0, 1}∗ →
{0, 1}N .

First, the message m is padded to a multiple of the block length B, by adding
the bit ‘1’ followed by zero or more times the bit ‘0’:

m1 ‖ . . . ‖ mL ← m ‖ 10 . . . 0 , (2.2)

where ∀1 ≤ i ≤ L : |mi| = B.
The initial value IV is fixed by design and independent of the message m. The

hash value h(m) is then obtained as follows (see also Fig. 2.1):

H0 ← IV, (2.3)

Hi ← f(mi ‖ Hi−1), i = 1, 2, . . . , L, (2.4)

h(m)← f(|m| ‖ HL). (2.5)

The name of this construction refers to the work of Merkle [114] and Damgård [49].
Lai and Massey introduced the term “Merkle-Damgård strengthening” [96] for

ANALYSIS OF HASH FUNCTIONS 13

f
IV

m1

f

m2

f

mL

f

|m|

h(m)

Figure 2.1 – Merkle-Damgård construction

the process of adding the message length in this construction. By adding the
message length, it is possible to prove for the Merkle-Damgård construction that
if a collision is found for the hash function h, a collision for the compression
function f can be found as well. It is therefore possible to prove the collision
resistance of h, based on the collision resistance of f [49, 114].

Most commonly used hash functions use the Merkle-Damgård construction, in-
cluding the hash functions MD4, MD5, SHA-1 and SHA-2. From the description
of the construction, it now becomes evident why the length extension attack de-
scribed in Sect. 2.3 applies to all of these hash functions. Length extension attacks
can be prevented in several ways, for example by processing the last message block
in a special way [22].

2.6 Analysis of Hash Functions

2.6.1 Introduction

In the early 2000s, there was a good understanding in the field of cryptography
of the design and cryptanalysis of block ciphers. The US National Institute of
Standards and Technology (NIST) had selected Rĳndael as the winner of the
Advanced Encryption Standard (AES) competition [47]. This block cipher has a
simple mathematical structure, and its wide-trail design results in provable security
against both linear and differential cryptanalysis.

Yet not much was known about the secure construction of hash functions.
In 2005, attacks by Wang et al. on the hash functions MD4 [175], MD5 [177],
RIPEMD [175] and SHA-1 [176] gave a new impulse to the research of hash func-
tions. For the widely used MD5, only a few milliseconds on a PC are sufficient to
find collisions [160]. Finding collisions is feasible for SHA-1 as well, although a lot
more computing power is required [51]. At this time of writing, SHA-2 remains
unbroken, but it is based on the same design principles.

NIST acknowledged the attacks by Wang et al. and decided to take action. In
2007, they launched a competition for a new hash function standard: the SHA-3
competition [126]. Cryptographers from all over the world were asked to submit
their hash function proposals. A total of 64 submissions were made, of which
56 were made publicly available. On December 10, 2008, NIST announced the

14 HASH FUNCTIONS

51 submissions that advanced to the first round. This was the starting shot of a
four-year public evaluation period. Fourteen submissions advanced to the second
round, and five candidates reached the final round. The winner will be selected in
2012.

The research in this Ph.D. thesis was performed in parallel to the SHA-3 com-
petition. The next sections give a list of hash functions for which contributions
were made. Some of these hash functions were broken as a result of our efforts,
and therefore did not advance further into the competition. For the other hash
functions, a better understanding of the inner workings can be gained from our
analysis.

2.6.2 ESSENCE

ESSENCE [107], a family of cryptographic hash functions designed by Martin,
was accepted into the first round of the SHA-3 competition. ESSENCE includes a
security proof against linear and differential cryptanalysis. Until our analysis [121]
(see p. 95), this security proof remained unchallenged. Our results presented the
first known attacks on ESSENCE.

In [96], Lai and Massey introduced the concept of a semi-free-start collision
for a hash function. For a semi-free-start collision, the IV is under control of the
attacker, but the same IV must be used for messages m and m′.

For 31 out of 32 rounds of ESSENCE-512, we present a semi-free-start colli-
sion attack. This attack invalidates the design claim that at least 24 rounds of
ESSENCE are secure against differential cryptanalysis. To satisfy the first nine
rounds of the differential characteristic, we developed a novel technique.

We also constructed several distinguishers on a 14-round ESSENCE block ci-
pher and the corresponding compression function, by exploiting non-randomness
in the outputs of the feedback function F . Each distinguisher requires only 217

output bits. This observation was extended to key-recovery attacks on the corre-
sponding ESSENCE block cipher.

Furthermore, we explained that the omission of round constants allows slid
pairs and fixed points to be found, independent of the number of rounds. As
a result of our attack, ESSENCE did not advance to the second round of the
SHA-3 competition [108]. Independent results on ESSENCE were later obtained
by Naya-Plasencia et al. [128]

2.6.3 Khichidi-1

Also included in the first round of the NIST SHA-3 competition, was the hash
function Khichidi-1 [170], designed by Tata Consultancy Services. This company
is the largest IT services firm in Asia, with a revenue of 6.35 billion euros for the
2011 fiscal year [161]. Only 3 hours and 44 minutes after the algorithm was made
public, a collision for the Khichidi-1 hash function was sent to NIST as an official
comment [117]. This collision was the result of a second preimage attack. For

ANALYSIS OF HASH FUNCTIONS 15

MP

m′1 6= m1

MP

m3

. . . MP

mL

P h(m′)

= h(m)

MP

m′2 =m2⊕
MP(m1)⊕
MP(m′1)

MP

m1

MP

m3

. . . MP

mL

P h(m)MP

m2

Figure 2.2 – Constructing a second preimage m′ for Khichidi-1 (m:
an arbitrary message, MP: “Message Preprocessing” function, P: post-
processing function)

Khichidi-1, a correcting block attack applies [136, § 2.5.2.4]. To construct message
m′, all blocks of message m can be substituted without any restrictions, except for
some block mj . To construct m′j , the XOR operation is inverted to ensure that
h(m) = h(m′). This process is illustrated in Fig. 2.2. As a result of this attack,
the designers withdrew their submission from the SHA-3 competition.

2.6.4 LUX

Another first-round SHA-3 candidate was LUX, a design by Nikolić et al. [130].
LUX has a byte-oriented design. It is inspired by the RadioGatún hash func-
tion [19], but reuses components of AES. Let LUX-N denote the LUX hash func-
tion with an N -bit output, where N ∈ {224, 256, 384, 512}.

Wu et al. discovered that all LUX-256 hash values contain redundancy [185].
An algorithm can therefore be constructed that distinguishes a LUX hash value
from random with a high success probability, regardless of the message. Wu et
al.’s results turned out to be incorrect, presumably because of calculation mistakes.
We corrected the results, extended them to 224-, 384- and 512-bit hash value
lengths and publicly released a software program to verify the results [118]. The

16 HASH FUNCTIONS

Table 2.1 – Preimage, second preimage and collision attacks against
LUX; every attack has a success probability of about 63%

Attack Complexity LUX-224 LUX-256 LUX-384 LUX-512

Preimage 2176 2200 2344 2456

Second Preimage 2176 2200 2344 2456

Collision 288.5 2100.5 2172.5 2228.5

observation can be described as follows. We split the N -bit hash value into K =
N/8 bytes:

h(m) = h1 ‖ h2 ‖ . . . ‖ hK . (2.6)

For LUX-224 and LUX-256, the following equation holds for 0 ≤ i ≤ (N/32)− 2:

4f · S(h4i+4) = h4i+5 + 26 · h4i+6 + 9f · h4i+7 + f7 · h4i+8 . (2.7)

As for AES, the multiplication and addition operations are performed in the fi-
nite field GF(28). The elements of GF(28) are considered to be polynomials
with coefficients in GF(2), multiplication is done using the irreducible polynomial
m(x) = x8 + x4 + x3 + x+ 1. In the formulas, the hexadecimal representation of
the elements is used. For more details on the mathematical operations, we refer
to [47, § 2.1].

Similarly, for LUX-384 and LUX-512, the following equation holds for 0 ≤ i ≤
(N/64)− 2:

53 · S(h8i+8) = h8i+9 + c1 · h8i+10 + db · h8i+11 + 60 · h8i+12

+ 17 · h8i+13 + af · h8i+14 + 5d · h8i+15 + 78 · h8i+16 . (2.8)

For LUX-256, (2.7) provides seven equations, each involving eight bits. There-
fore, only one out of 27·8 = 256 hash values are possible for LUX-256. This allows
us to distinguish the output of LUX based only on the hash value, with a very
high success probability of 1 − 256. Using (2.7), it is straightforward to obtain a
similar result for LUX-224. Results for LUX-384 and LUX-512 can be obtained
using (2.8).

As observed by Watanabe [48] and Ferguson [60], this effectively reduces the
strength of LUX-256 to 256 − 56 = 200 bits. An overview of the complexity
of preimage, second-preimage and collision attacks for all versions of LUX can
be found in Table 2.1. The success probability of each of the attacks is about
1−e−1 ≈ 63%. The mechanisms of the generic attacks of Table 2.1 were explained
in Sect. 2.2.1–2.2.3.

LUX was not selected for the second round of the SHA-3 competition.

ANALYSIS OF HASH FUNCTIONS 17

2.6.5 Sarmal

Sarmal is a hash function submitted to the SHA-3 competition by Varıcı et al. [165].
The design and structure of Sarmal is quite similar to that of SHA-3 candidate
ARIRANG [39]. Both are inspired by the hash function FORK-256 [75]. We
analyzed the impact of recent attacks by Guo et al. on ARIRANG [70] with respect
to Sarmal [119].

It appears that Sarmal is less vulnerable against these attacks. More specifi-
cally, we could not obtain pseudo-collisions for Sarmal faster than using a generic
attack. However, we found that compression function of Sarmal can be distin-
guished from a pseudorandom function by using only two compression function
calls. The result holds only for the compression function, and it seems not possi-
ble to extended it to the full hash function.

2.6.6 Skein and BLAKE

Five hash functions were selected as finalists for the SHA-3 competition: the hash
functions BLAKE [10], Grøstl [64], JH [184], Keccak [21] and Skein [61].

Two of the finalists (BLAKE and Skein) have a core that consists of only three
operations: addition modulo 2n, bit rotation and exclusive-or (ARX). Although
they are very fast in software, the security of ARX-based constructions is not well
understood.

For the original Skein, the most successful attacks are based on rotational
cryptanalysis. In [87], the concept of rotational cryptanalysis is formally explained,
and applied to reduced rounds of the Threefish block cipher, the core of the Skein
hash function. These results were further improved in [88], where cryptanalytical
results were obtained for an estimated 53 rounds of Skein-256, and 57 rounds of
Skein-512. In response to these rotational attacks, the designers changed the value
of the key schedule constant.

To analyze the patched versions of BLAKE and Skein, we introduced a new
type of cryptanalysis called tuple cryptanalysis [11]. Our technique is inspired
by square [45], saturation [106], internal collision [65] and multiset cryptanaly-
sis [28]. Multiset cryptanalysis, proposed by Biryukov and Shamir on the SASAS
construction, is similar to tuple cryptanalysis: a tuple is an ordered list of (possibly
repeating) elements, whereas a multiset is unordered.

Using tuple cryptanalysis, we obtained preliminary results for up to 9 rounds
of Threefish-256, and up to 12 rounds of Threefish-512. Threefish is the block
cipher core of the Skein hash function. We also obtained results for 4 rounds of
the BLAKE hash function.

2.6.7 Other SHA-3 Results

Many other SHA-3 candidate algorithms were analyzed as well. For the hash
functions TIB3 [115] and ARIRANG [39], our overlapping results were scooped

18 HASH FUNCTIONS

by Mendel et al. [112] and Guo et al. [70] respectively. This illustrates the strong
interest and fierce international competition among cryptanalysts during the com-
petition. In this section, we provide a brief overview of other notable results.

The 512-bit version of the hash function Sarmal [165] is vulnerable to the
standard length extension attack described in Sect. 2.3, in violation of NIST’s
security requirements. The designers were notified of this problem, but did not
update their implementation. Sarmal did not reach the second round of the SHA-3
competition.

Both the 384-bit and 512-bit versions of the second-round SHA-3 candidate
Hamsi [94] had a very serious implementation problem in all submitted implemen-
tations, which was fixed after we notified the designer. Because of this bug, only
half of the message bits were processed. The seriousness of this bug is illustrated
by the following colliding message pair:

m = “I will pay $1.00 to Nicky Mouha.”

m′ = “I will pay $1000 to Nicky Mouha.’

Some help was provided during the design phase of the hash functions LANE [78]
and Hamsi [94]. A reference implementation was provided for LANE, and several
corrections were made to the Hamsi design document.

2.6.8 HAS-V

The hash function HAS-V [133] was designed by Park et al. to meet the require-
ments of the KCDSA [100], a digital signature algorithm standardized by ISO.

The hash function HAS-V is not part of the SHA-3 competition. However, its
structure is similar to that of recently broken hash functions MD4 [175], MD5 [177],
RIPEMD [175] and SHA-1 [176]. The goal of the analysis of HAS-V was to get
a better understanding of the underlying cryptanalytical techniques. Other pub-
lished results on HAS-V [111, 150, 151] are all based on the observation that the
HAS-V step function is non-injective.

In [51], De Cannière and Rechberger introduced a technique to cryptanalyze
the SHA-1 hash function. We explained their method in further detail, generalized
it, and applied it to a simplified version of HAS-V [120] (see p. 69). The reason
for the simplification was because HAS-V processes two parallel streams: in order
for the techniques to apply, one stream was left out.

We extended the technique of De Cannière and Rechberger by introducing dou-
ble conditions, which are conditions involving not one, but two pairs of bits. These
not only make it possible to calculate probabilities more accurately, but also help
to find inconsistencies in the characteristics. Another extension is the inclusion of
a fourth stage, not present in the analysis by De Cannière and Rechberger. Using
our improvements, we constructed a collision attack on 45 out of 60 steps with a
complexity of 246 compression function evaluations.

CONCLUSION 19

2.7 Conclusion

Hash functions are often referred to as the “Swiss army knives” of cryptography
because of their wide range of applications. It is not so straightforward to define the
security requirements of a hash function: they strongly depend on the application
and hash functions are sometimes used in unexpected ways.

For the purpose of data integrity, we defined the concepts of preimage, second
preimage and collision resistance in Sect. 2.2. If we model the N -bit hash function
as a random function, the complexities of these attacks are 2N , 2N and 2(N+1)/2

hash function evaluations respectively, where each attack has a success probability
of about 63%.

Often, a hash function must meet additional security requirements. We gave a
a brief overview of these in Sect. 2.3.

In Sect. 2.4, we described the concept of a random oracle as a theoretically
ideal hash function. We also provide more insight into regular and random hash
functions with respect to the birthday attack.

As explained in Sect. 2.5, most practical hash functions are iterated hash func-
tions. This allows messages to be hashed “on the fly” instead of storing the entire
message into memory.

Several hash functions were analyzed. Section 2.6 gives an overview. We
obtained results for the SHA-3 candidates ARIRANG, BLAKE, ESSENCE, Hamsi,
Khichidi-1, LUX, Sarmal, Skein and TIB3. As a result of our analysis, several
hash functions did not advance in the SHA-3 competition. Outside of the SHA-3
competition, we also obtained cryptanalysis results for the hash function HAS-V.

20 HASH FUNCTIONS

Chapter 3

Block Ciphers

3.1 Introduction

Another building block in the domain of cryptography are block ciphers. Using a
secret key, a block cipher transforms a plaintext into a ciphertext. This process is
referred to as encryption. To recover the original plaintext (decryption), the secret
key is needed. As the same secret key is used for both encryption and decryption,
block ciphers fall into the field of symmetric-key cryptography. This is different
from public-key encryption, where one key is used for encryption and another for
decryption.

Block ciphers process blocks of a fixed length. To process plaintexts of an
arbitrary length, a mode of operation is required. Most modes of operation can-
not detect if the ciphertext has been modified by unauthorized means. If such
functionality is required, an authenticated encryption mode can be used. We will
not discuss such modes in this thesis. For a detailed overview of modes that are
standardized by NIST, we refer to [127].

The first block cipher that became widely used, was the Data Encryption
Standard (DES) [125]. DES was standardized by the US National Bureau of
Standards, now known as NIST. It has a key length of 56 bits, and processes
64-bit blocks.

Today, DES should be considered completely insecure for most purposes be-
cause of its short key length. Kumar et al. showed in 2006 that for a cost of less
than $10,000, an exhaustive key search for DES can be performed in less than nine
days on average [95]. Their platform was named COPACOBANA, and consisted
of an array of FPGAs. If a similar device were to be built today, the time and/or
cost would be significantly lower because improved hardware is now available. Re-
producing their results is easy: COPACOBANA is for sale, and renting computing
time on the device is possible as well.

To overcome the shortcomings of DES, NIST launched a worldwide competi-

21

22 BLOCK CIPHERS

tion in search for a block cipher, resulting in the AES standard [47]. AES pro-
cesses blocks of 128 bits, and supports key lengths of 128, 192 and 256 bits. In
legacy applications where DES is difficult to replace, it is advisable to instead use
3DES [125].

Outline. Section 3.2 formally defines the concept of a block cipher. Our
explanation is based on [113, Chap. 7]; we refer to this work for more details. We
provide a classification of attacks, based on how the attacker can obtain plaintexts
and corresponding ciphertexts. The concept of related-key attacks is defined as
well, which will be relevant for Sect. 4.5 where we show how to prove security
against related-key linear and differential attacks in an automated way.

Recently, meet-in-the-middle attacks became a very popular way to analyze
block ciphers and hash functions. We constructed a novel variant of this technique,
and applied it in an automated way to the block ciphers XTEA and GOST in
Sect. 3.3. Our attacks require very few known plaintext-ciphertext pairs.

3.2 Definition

We use the symbols P, C and K to denote the plaintext space, the ciphertext space
and the key space respectively. Let |P| = |C| = 2N and |K| = 2k. We refer to
P ∈ P as the plaintext, K ∈ K as the key and C ∈ C as the ciphertext of the block
cipher.

A block cipher is a function E : P × K → C, such that for every key K ∈ K,
C = E(P,K) is an invertible mapping: the encryption function. The inverse
mapping P = D(C,K) is referred to as the decryption function. Both E and D
should be efficiently computable.

There are 2N ! permutations from N bits to N bits. As the key consists of k
bits, there are (2N !)2k possible block ciphers. An ideal cipher is a block cipher
that is chosen uniformly at random from the space of all possible block ciphers.
Therefore, an ideal cipher is the block cipher analogy of a random oracle for hash
functions. In fact, Coron et al. proved that the random oracle model and the ideal
cipher model are equivalent [41]. Holenstein et al. recently found an error in the
proof of [41], but provided a new proof in [74].

A pseudorandom permutation is one N ×N -bit permutation chosen according
to the uniform distribution out of a family of 2k permutations (addressable by
a key K), in such a way that it is computationally infeasible to distinguish it
from an N × N -bit permutation that is chosen uniformly at random [105]. The
distinguisher can make close to 2N queries, both encryption and decryption queries
are allowed.1

In the pseudorandom permutation model, only one key K is used for all encryp-
tions and decryptions. This is different from the ideal cipher model, which allows
encryptions and decryptions under different keys. Both the ideal cipher model

1Luby and Rackoff [105] use the term super pseudorandom instead of pseudorandom, to
indicate that decryptions are also allowed. For simplicity, we do not make this distinction.

DEFINITION 23

and the pseudorandom permutation model are useful to analyze the complexity
of generic block cipher attacks, as well as to prove the security of protocols and
modes of operations based on block ciphers.

Depending on the setting, a block cipher is considered to be theoretically broken
if it can be distinguished from either a pseudorandom permutation or from an ideal
cipher. Whether a block cipher attack has practical consequences, depends on the
power of the attacker in a particular setting. A large variety of settings exist. The
next section provides a brief overview.

3.2.1 Attack Models

We now describe several attack models, sorted by increasing power to the adversary.
Each of the attacks can be used to distinguish a block cipher from a pseudorandom
permutation.

In a ciphertext-only attack, the attacker has access to the ciphertexts, and to
some statistical information on the plaintexts. For example, the attacker may
know that the plaintext is a text in English.

A known plaintext attack assumes that the attacker can obtain plaintexts and
their corresponding ciphertexts, all encrypted under the same (secret) key. The
attacker may, for example, know the header of a file that has been encrypted. A
known plaintext attack is a passive attack, because the attacker cannot influence
the content of the plaintexts.

In a chosen plaintext attack, the attacker can choose a set of plaintexts, and
obtain the corresponding ciphertext values. This may seem unrealistic, but it
is exactly what happens in the “Identify Friend or Foe” (IFF) protocol, used in
many electronic car keys as part of the KeeLoq [79] access control system. The car
key acts as an encryption device, and will output the encryption of any plaintext
chosen by the attacker.

In an adaptive chosen plaintext attack, the attacker chooses plaintexts adap-
tively based on information learned from previously obtained ciphertexts.

A chosen plaintext / chosen ciphertext attack considers that the attacker can
not only obtain encryptions for a chosen set of plaintexts, but can also choose
ciphertexts and obtain the corresponding plaintexts. Similarly, an adaptive chosen
plaintext / chosen ciphertext attack assumes that the attacker can choose both
plaintexts and ciphertexts adaptively, based on the results of earlier queries. This
may seem even more unrealistic, but there exists a practical attack for websites
secured by SSL v3.0 under this model. In the attack by Bleichenbacher [29], the
attacker recovers the key by choosing ciphertexts in an adaptive way and finding
out if the corresponding plaintexts correspond to correctly padded messages.2

The number of queries that the attacker makes (encryptions or decryptions),
is referred to as the data complexity of the attack. The maximum number of

2Bleichenbacher’s attack does not involve a block cipher, but the public-key cipher RSA.
However, the same attack model is applicable.

24 BLOCK CIPHERS

queries that can be made under a single key, may be limited by the protocol:
the protocol may frequently renegotiate a new, uniformly random key. The block
cipher attacks obtained in Sect. 3.3 are known plaintext attacks with a low data
complexity. Therefore, our attacks are applicable even under very pessimistic
assumptions for the attacker.

3.2.2 Related-Key Attacks

A single, fixed key K is chosen uniformly at random from the entire key space in
the standard (single-key) setting. The adversary can then query the block cipher
E for the encryption of different plaintexts Pi, all under the same key K.

In a related-key setting, the adversary can query the block cipher E for encryp-
tions under different plaintexts Pi and different keys Ki. These keys satisfy the
relationship Ki = Φi(K), where the attacker chooses the functions Φi. As noted
in [13], restrictions are necessary on functions Φi, in order to ensure that not every
block cipher E is vulnerable to a trivial related-key attack.

If related-key attacks exist, a block cipher is not secure under the ideal cipher
model. This may result in attacks for some constructions, for example for hash
functions based on block ciphers [137]. However, the same block cipher may still be
secure in the pseudorandom permutation model. Using the technique introduced
in Sect. 4.5 (see p. 229 and [124]), it becomes easy to prove the security of ciphers
against linear and differential cryptanalysis in a related-key setting.

3.3 Meet-in-the-Middle Attacks

Meet-in-the-middle attacks are a relatively old idea in the field of symmetric-key
cryptanalysis, dating back to the attack on the Double DES block cipher by Diffie
and Hellman in 1977 [53]. For hash functions, the first meet-in-the-middle attack
was given by Merkle [137] on Rabin’s block cipher-based hash function [139]. The
idea behind a meet-in-the-middle attack is to separate the mathematical equations
that describe a symmetric-key cryptographic primitive into two or more groups.
This is done in such a way, that some variables do not appear in at least one
of the groups of equations. Ciphers typically consist of several rounds, and the
separation of the cipher equations into groups often occurs near the middle rounds
of the cipher, hence term “meet-in-the-middle” attacks.

In recent years, there has been a vast increase in the number of results using the
meet-in-the-middle technique. They were used to attack a reduced-round version
of DES [56]. The full version of several block ciphers were broken using meet-
in-the-middle techniques: KeeLoq [79], KTANTAN [32, 180, 181], GOST [80] and
even AES [30]. Meet-in-the middle attacks have been very successful in finding
preimages for hash functions, see Table 3.1 for an overview of attacks on hash
functions outside of the SHA-3 competition. Most of the underlying techniques

MEET-IN-THE-MIDDLE ATTACKS 25

are not only applicable to hash functions, but have inspired the field of block cipher
cryptanalysis as well.

Table 3.1 – Overview of meet-in-the-middle preimage attacks on
hash functions

Hash function Rounds Attacked Reference

AES-MMO 7/10 [145]
HAS-160 68/80 [76,147]
HAS-V 100/100 [150,151]

3-pass HAVAL 96/96 [12,148]
4-pass HAVAL 128/128 [148]
5-pass HAVAL 158/160 [142,148]

Truncated 3-pass HAVAL 96/96 [144]
MD4 48/48 [8, 69]
MD5 64/64 [8, 12,149]

PKC98-Hash 96/96 [150,151]
RIPEMD-128 33/80 [131,172]
RIPEMD-160 32/80 [131]

RIPEMD 47/48 [172]
SHA-0 52/80 [9, 52]
SHA-1 48/80 [9, 52]

SHA-256 43/64 [7, 69,81]
SHA-512 46/80 [7, 69,81]

Tiger 24/24 [69,81,171]
Whirlpool 5/10 [145]

In Sect. 3.3.1 and Sect. 3.3.2, we will present our own meet-in-the-middle at-
tacks on XTEA [154] (see p. 147) and GOST [153] (see p. 169) respectively. All
our attacks require very few known plaintexts and a negligible amount of memory.

3.3.1 XTEA

TEA (Tiny Encryption Algorithm) is a block cipher designed by Wheeler and
Needham [182]. It has a key size of 128 bits, and uses 64 rounds to encrypt 64-bit
blocks. Most notably, TEA uses only a few, simple operations and has an extremely
small implementation in software. QQ Instant Messenger, a very popular instant
messaging program with 712 million active users [162], uses a variant of TEA
where the number of rounds is halved [166]. TEA is also used in Microsoft’s Xbox
gaming console [159].

After its publication, the cipher was attacked in several ways. Most notably,
Kelsey et al. showed that there are equivalent keys for TEA [86], which reduces the

26 BLOCK CIPHERS

effective key size to 126 bits. In response to these attacks, XTEA was released [129]
as a redesign of TEA. Like TEA, XTEA also has a block size of 64 bits and a key
size of 128 bits. Both TEA and XTEA are implemented in the Linux kernel [68].

In [154] (see p. 147), we present meet-in-the-middle attacks on twelve variants
of the XTEA block cipher. Each variant consists of 23 rounds. Two out of these
attacks require only 18 known plaintexts and a computational effort equivalent
to testing about 2117 keys. The success probability of our attacks is 1 − 2−1025.
Currently, there are no published attacks on 23 or more rounds of XTEA, with a
lower time and data complexity than our attacks.

An overview of attacks on XTEA can be found in Table 3.2. After our paper
was published, further results on XTEA were obtained by Chen et al. [40], and by
Bogdanov et al. [33]. Also, Sasaki recently announced that our meet-in-the-middle
attacks could be improved [146]. He constructed meet-in-the-middle attacks on
29, 30 and 31 rounds of XTEA. We could not include his attacks in the overview
table, because the details are not yet published.

3.3.2 GOST

The block cipher GOST (GOST 28147-89) is a Russian standard for encryption
and message authentication [134]. For simplicity, we simply refer to this cipher as
“GOST”. The cipher is used in many applications, including OpenSSL 1.0.0 [132].
In 2010, GOST was submitted to ISO for standardization.

GOST has a block size of 64 bits, a key size of 256 bits and uses 32 rounds.
Following the declassification of GOST in 1989, several cryptanalysis results were
published on GOST. Table 3.3 provides an overview. Attacks on weak key classes,
as well as related-key attacks are omitted. Results that were obtained after our
observations are listed as well, including an attack by Isobe that breaks the full
GOST [80].

In [153] (see p. 169), we present meet-in-the middle attacks on up to 22 rounds
of GOST. Our 22-round attack has a computational complexity equivalent to test-
ing about 2223 keys and a success probability of 1−2−65. The attack requires only
5 known plaintexts. At the time of writing, our attack is the best (going by the
number of rounds) low data complexity key-recovery attack on GOST.

3.4 Conclusion

Block ciphers are an important primitive in cryptography. A block cipher uses a
secret key to transform a plaintext into a ciphertext. Without knowledge of the
secret key, it should be computationally infeasible to recover the original plaintext.
Block ciphers are well studied and standardized, and can be used to build other
cryptographic primitives, including hash functions, message authentication codes
and stream ciphers.

CONCLUSION 27

Table 3.2 – Key recovery attacks on XTEA where the time complex-
ities are averages, if explicitly stated in the original paper, average
success probabilities are given as well (KP: known plaintext, CP: cho-
sen plaintext, RK: in a related-key setting)

Attack Ref. # Rounds Time Data Pr[Success]

• Attacks in the standard (single-key) setting

Meet-in-the-middle p. 147 7 295.00 2 KPs 1− 2−33

Impossible differential [116] 14 285 262.5 CPs Not given

Differential [77] 15 2120 259 CPs Not given

Meet-in-the-middle p. 147 15 295.00 3 KPs 1− 2−65

Truncated differential [77] 23 2120.65 220.55 CPs 0.969

Meet-in-the-middle p. 147 23 2117.00 18 KPs 1− 2−1025

Impossible Differential [40] 23 2116.9 262 CPs Not given

Impossible Differential [40] 23 2105.6 263 CPs Not given

Zero-Correlation
Linear Hull

[33] 25 2124.53 262.62 KPs 0.846

Zero-Correlation
Linear Hull

[33] 27 2120.71 264 1

• Attacks in a related-key setting

Related-key truncated
differential

[91] 27 2115.15 220.5 RK-CPs 0.969

Related-key rectangle
(for 2108.21 weak keys)

[98] 34 231.94 262 RK-CPs Not given

Related-key rectangle [104] 36 2126.44 264.98 RK-CPs 0.63

Related-key rectangle
(for 2110.67 weak keys)

[104] 36 2104.33 263.83 RK-CPs 0.80

Related-key [34] 37 2125 263 RK-CPs Not given

Related-key (for 2107.5

weak keys)
[34] 51 2123 263 RK-CPs Not given

We defined the concept of a block cipher in Sect. 3.2. An overview of attack
models was given in Sect. 3.2.1. The protocol or application determines the power
of the attacker, and therefore also the practical consequences of an attack on the
block cipher. We looked into related-key attacks in Sect. 3.2.2. In a related-key
attack, the attacker can request encryptions or decryptions under two or more
distinct unknown keys, where the relation between the keys is under control of the
attacker.

We described meet-in-the-middle attacks in Sect. 3.3. In Sect. 3.3.1, we pre-

28 BLOCK CIPHERS

Table 3.3 – Full-key recovery attacks on GOST; if explicitly stated in
the original paper, success probabilities are given as well (KP: known
plaintext, CP: chosen plaintext); attacks on weak key classes or using
related keys are not included

Attack Ref. # Rounds Time Data Pr[Success]

Meet-in-the-middle p. 169 8 2127.00 3 KPs 1− 2−65

Meet-in-the-middle p. 169 9, 10 2159.00 3 KPs 1− 2−33

Meet-in-the-middle p. 169 11, 12 2191.00 4 KPs 1− 2−65

Differential [155] 13 Not given 251 CPs Not given

Meet-in-the-middle p. 169 13, 14 2223.00 4 KPs 1− 2−33

Meet-in-the-middle p. 169 16 2223.00 5 KPs 1− 2−65

Meet-in-the-middle p. 169 22 2223.00 5 KPs 1− 2−65

Slide [23] 24 264 ≈ 264 KPs Not given

Slide [23] 30 2253.7 ≈ 264 KPs Not given

Reflection [83] 30 2224 232 KPs Not given

Reflection-meet-in-
the-middle

[54,80] 32 2225 232 KPs Not given

Differential [42] 32 2226.3 264 0.5

sented several meet-in-the-middle attacks on up to 23 rounds of XTEA. Most
notable about our attacks, is that they require no more than 18 known plaintexts.
Our 23-round attacks have a time complexity of 2117.00 equivalent encryptions, and
a success probability of 1− 2−1025. At this time of writing, there are no published
attacks with a lower time and data complexity than our attacks.

Again using meet-in-the-middle techniques, we attacked up to 22 rounds of
GOST in Sect. 3.3.2. The 22-round attack requires a computational complexity
of 2223 keys and has a success probability of 1 − 2−65. Only 5 known plaintexts
are required. Going by the number of rounds, our attack is the best low data
complexity key-recovery attack on GOST.

Chapter 4

Automated Techniques

4.1 Introduction

Besides a theoretical treatment of cryptographic primitives, the previous chapters
focused mostly on the cryptanalysis of specific block ciphers and hash functions.
In Chapter 2, we obtained results for nine SHA-3 candidates, as well as for the
hash function HAS-V outside of the SHA-3 competition. We constructed low-data
complexity meet-in-the-middle attacks on the block ciphers XTEA and GOST in
Chapter 3.

In this chapter, our focus is not on a particular block cipher or hash function.
Instead, we consider automated tools, with which many cryptographic primitives
can be analyzed. So to clarify the title of this chapter: although “automated
techniques” were also used in previous chapters, we now consider them not just as
a means to an end, but worthy of a study on their own.

The Importance of Tools

For both the design and cryptanalysis of cryptographic primitives, computer pro-
grams are becoming increasingly important.

Unfortunately, many software tools are custom-made to analyze a particular
cipher. The programmers also often lack the incentive to clean up their source code
and make it publicly available. In fact, closely guarding such tools even provides
a competitive advantage to obtain additional research results.

The lack of publicly available tools not only represents an entrance barrier for
new researchers, who waste their time reinventing the wheel. If research results
are based on a computer program that is not publicly available, how can we verify
that this tool exists and works correctly?

We feel that the reproducibility, honesty and quality of research results are hurt,
if the tools used to obtain them are not released. In this spirit, we launched the

29

30 AUTOMATED TECHNIQUES

“Tools for Cryptography” initiative1 as part of the ECRYPT II project. A large
number of tools are collected to assist cryptographers and cryptanalysts. Tools
that were developed to obtain the results of this Ph.D. thesis can be found there
as well.

Outline. We explain the concepts of differential and linear cryptanalysis in
Sect. 4.2. These are two of the most powerful techniques in the cryptanalysis of
symmetric-key primitives, and will be used in all results of this chapter.

In Sect. 4.3, the concept of S-functions is introduced. They can be used as
a general framework to analyze ciphers based on components such as addition
modulo 2n, bitwise rotation, XOR and bitwise Boolean functions. In the context
of differential cryptanalysis, we develop fast techniques to calculate the probability
of differentials, to count the number of output differences and to obtain a list of
output differences, sorted in descending order of probability.

We revisit the differential-algebraic attacks proposed by Albrecht and Cid [1,3,
4] in Sect. 4.4. In an differential-algebraic attack, differential cryptanalysis is used
to generate equations, which are then solved using an automated technique, for ex-
ample by computing a Gröbner basis or using a SAT solver. We point out mistakes
in the results by Albrecht and Cid, and explain why their differential-algebraic at-
tacks do not provide an advantage over differential cryptanalysis. Instead, we
propose our own differential-algebraic attacks for reduced-round versions of the
ISO lightweight encryption standard PRESENT [31].

Sect. 4.5 proposes a novel technique that uses Mixed-Integer Linear Program-
ming (MILP) to easily prove the resistance of ciphers against linear and differ-
ential cryptanalysis. Our technique involves writing out simple linear inequality
constraints, which can then be automatically solved using a software package for
MILP programs.

4.2 Differential and Linear Cryptanalysis

We already considered meet-in-the middle attacks for block ciphers and hash func-
tions in Sect. 3.3. In this section, we describe two other techniques that are es-
sential for the design and cryptanalysis of symmetric-key cryptographic primitives:
differential cryptanalysis and linear cryptanalysis. For a more detailed explanation
of these techniques, we refer to [50].

Differential cryptanalysis was introduced by Biham and Shamir [24]. The tech-
nique turned out to be very successful, and resulted in the first attack on the
full DES [25], as well as the first related-key attack on the full AES-192 and
AES-256 [26,27].

A differential attack can be used to distinguish a cipher from a random cipher,
or even to recover the secret key. A differential distinguisher can be constructed
as follows. Assume that we are given two plaintext-ciphertext pairs C = E(P,K)
and C ′ = E(P ′,K), both encrypted under the same key K. The attack is a

1http://www.ecrypt.eu.org/tools

http://www.ecrypt.eu.org/tools

DIFFERENTIAL AND LINEAR CRYPTANALYSIS 31

chosen plaintext attack (see Sect. 3.2.1), where the attacker chooses two plaintexts
with a difference ∆P = P • P ′. In this formula, • is a general operation to
calculate a difference, common examples are XOR and subtraction modulo 2n.
The attacker does not know the key K, but may distinguish the cipher from a
random permutation, if a particular ciphertext difference ∆C = C • C ′ occurs
with a significantly higher (or lower) probability than for a random cipher. To
build a distinguisher with a high success probability, the attacker will have to
encrypt a sufficiently large number of chosen plaintext pairs.

The probability that a plaintext difference ∆P leads to a particular ciphertext
difference ∆C (averaged over all keys K and all plaintexts P), is referred to as the
differential probability corresponding to the differential ∆P → ∆C. Because this
probability may be difficult to calculate, the attacker often makes assumptions on
intermediate differences ∆X,∆Y, . . ., which appear after every round of the cipher.
The sequence of differences ∆P,∆X,∆Y, . . . ,∆C is referred to as a differential
characteristic. These concepts are illustrated in Fig. 4.1.

P

C

X

Y

P ′

C ′

X ′

Y ′

∆X

∆Y

∆C

∆P

...
...

...

Figure 4.1 – A differential distinguisher

It is often possible to convert a differential distinguisher into a key recovery
attack. How this works, is explained in detail in [173] (see p. 203).

Linear cryptanalysis, introduced by Matsui [109], studies an equation of the
form

ΓP · P ⊕ ΓC · C = ΓK ·K , (4.1)

which holds with a probability p 6= 1/2. The notation x · y is used to denote the
parity of the bitwise product of x and y. Whereas differential cryptanalysis involves
differences ∆, linear cryptanalysis involves linear masks Γ. Linear cryptanalysis
is a known plaintext attack (see Sect. 3.2.1), and can either be used to build a
distinguishing attack or a key recovery attack.

32 AUTOMATED TECHNIQUES

4.3 S-functions

4.3.1 Introduction

More and more, cryptographic primitives use components such as addition and
subtraction modulo 2n, as well as bitwise Boolean functions as a source of non-
linearity in GF(2). This is the case for the most commonly used hash functions:
MD5, SHA-1 and the SHA-2 family. Other examples include the block cipher
XTEA [129] and the Salsa20 stream cipher family [17].

In the NIST SHA-3 competition [126], these basic building blocks are used in
6 out of 14 second-round candidates,2 as well as in two out of the five SHA-3
finalists: BLAKE [10] and Skein [61].

There are many advantages to such constructions. They have a very fast per-
formance on general-purpose CPUs, and can be described using only elementary
mathematical operations. There is also no need to store look-up tables, which
not only avoids cache timing attacks [92], but also results in a more compact
implementation.

However, the security properties of these constructions are currently not well
understood. In particular, none of these ciphers are currently proven to be se-
cure against two of the most common attacks against symmetric-key primitives:
differential and linear cryptanalysis (see Sect. 4.2). Ciphers built using S-boxes
are typically resistant against such attacks: the block cipher AES, for example, is
provably secure against both linear and differential cryptanalysis [47].

4.3.2 Background

S-boxes used in cryptographic primitives typically have a size of up to 8× 8 bits.
This leads to a relatively compact difference distribution table, which lists all pos-
sible input and output differences and their corresponding probability. The differ-
ence distribution table of an S-box of 8×8 bits contains 216 = 65, 536 elements. It
is therefore easy to calculate differential probabilities, to sort differentials by their
probability and to count the number of possible output differences corresponding
to a particular input difference.

For cryptosystems built using addition and subtraction modulo 2n, we typically
have n = 32 or n = 64. This means the difference distribution table would contain
264 or 2128 elements. Because it is impractical to construct such a large table, we
need to find other methods to calculate its properties.

Assume that we want to calculate the XOR differential probability of addition
(xdp+): that is, we consider the operation addition modulo 2n, where input and
output differences are expressed using XOR. More formally, let ∆x,∆y,∆z be
fixed XOR differences such that

x2 = x1 ⊕∆x, y2 = y1 ⊕∆y, z2 = z1 ⊕∆z . (4.2)

2In particular: the hash functions BLAKE [10], Blue Midnight Wish [66], CubeHash [18],
Shabal [35], SIMD [99] and Skein [61].

S-FUNCTIONS 33

Then, xdp+(∆x,∆y → ∆z) is equal to the fraction of pairs (x1, y1) for which the
following holds:

((x1 ⊕∆x) + (y1 ⊕∆y))⊕ (x1 + y1) = ∆z . (4.3)

Lipmaa et al. showed in [103] that xdp+ can be calculated by a multiplication
of matrices. Consider the following example where n = 6:

xdp+(11100, 00110→ 10110)

= LA101A100A111A011A000C =
1

4
, (4.4)

where

A000 =

[
1 0
0 0

]

, A001 = A010 = A100 =
1

2

[
0 1
0 1

]

, (4.5)

A011 = A101 = A110 =
1

2

[
1 0
1 0

]

, A111 =

[
0 0
0 1

]

, (4.6)

L = [1 1], C = [1 0]T . (4.7)

For every bit position i, matrix Aw[i] is selected, where w[i] = x[i] ‖ y[i] ‖ z[i].
Lipmaa et al. [103] first present the matrices Aw[i], and then prove mathematically
that they are correct.

4.3.3 Our Results

Inspired by Lipmaa et al.’s work, we raise the following research questions:

• How can we obtain the same matrices Aw[i] that were obtained by Lipmaa
et al., in such a way that they can be mathematically proven to be correct
by construction?

• Lipmaa et al. analyze the XOR differential probability of addition (xdp+) [102],
the Pseudo-Hadamard Transform [101] and the additive differential proba-
bility of XOR (adp⊕) [103]. How can we analyze related constructions?

• How can we construct an efficient algorithm to find the output difference
with the highest probability?

• In some cases, we are not interested in the differential probability, but in
the number of possible output differences. Is there an efficient algorithm for
this?

34 AUTOMATED TECHNIQUES

To answer all these questions, we introduced the framework of S-functions
in [123] (see p. 119). An S-function computes the output at bit position i, based
on the inputs at bit position i and a state S[i]. Only a finite number of states S[i]
are allowed. The paper is accompanied by a publicly available software toolkit.3

Subsequently, we also showed how to calculate the additive differential proba-
bility of an ARX (Addition-Rotation-XOR) operation [168], which is at the core
of the SHA-3 finalists BLAKE and Skein. In [169], we introduced a new type of
difference, referred to as UNAF, that can be used to calculate the probabilities of
differential characteristics of ARX-based ciphers more accurately.

4.4 Differential-Algebraic Attacks

The idea behind algebraic cryptanalysis for block ciphers is to express the cipher
as a multivariate polynomial system of equations. The solution to this system of
equations is the secret encryption key K.

Several techniques exist to solve these systems of equations, including comput-
ing a Gröbner basis or using a SAT solver. These can be seen as automated “black
box” techniques: they can be applied to any non-linear system of equations, but
hopefully detect some inherent structure in the equations, so that a solution can
be obtained faster than using exhaustive key search.

So far, algebraic techniques have had limited success at breaking real-world
cryptographic ciphers. It seems that they are typically not faster than conventional
techniques, such as linear and differential cryptanalysis (Sect. 4.2) or meet-in-the-
middle attacks (Sect. 3.3).

4.4.1 Our Results

Albrecht and Cid [1, 3, 4] proposed to combine algebraic cryptanalysis and differ-
ential cryptanalysis, and claimed that the resulting differential-algebraic attack
performs better than standard differential cryptanalysis. More specifically, they
introduced three new attacks, which are referred to as Attack A, Attack B and
Attack C, and used them to attack reduced rounds of the PRESENT block ci-
pher [31].

The time complexity of Attack A is difficult to determine. For Attack B and
Attack C, Albrecht and Cid construct an algebraic system of equations to filter
out wrong pairs, and recover the key. In [173] (see p. 203), we show that Attack C
cannot be used to filter out wrong pairs with the correct ciphertext difference, and
therefore does not provide an advantage over differential cryptanalysis. We also
explain why Attack B does not have an advantage over differential cryptanalysis
for the block cipher PRESENT.

We have verified our results experimentally, using both PolyBoRi [36] and
MiniSat [58]. Later, Albrecht also confirmed the validity of our results [2].

3http://www.ecrypt.eu.org/tools/s-function-toolkit

http://www.ecrypt.eu.org/tools/s-function-toolkit

MIXED INTEGER-LINEAR PROGRAMMING 35

Based on our observations, we also presented two new differential-algebraic
attacks on reduced-round PRESENT [173] (see p. 203). They have a higher time
complexity than the corresponding differential attacks, but their data complexity
is lower. Whether these attacks perform better than meet-in-the-middle attacks,
is an interesting topic to investigate.

4.5 Mixed Integer-Linear Programming

In Sect. 4.4, we were pessimistic about algebraic cryptanalysis. We showed how
the differential-algebraic attacks proposed by Albrecht and Cid do not provide
an advantage over differential cryptanalysis. Currently, it seems that no efficient
symmetric-key cipher can be broken faster using an algebraic attack than using
conventional techniques.

We now take a different approach: we argue that algebraic techniques can be
very useful to construct cryptographic attacks, and to prove the security of ciphers
against these attacks.

Assume that a cryptographer wants to use an automated technique to prove
the security of a cipher against linear and differential cryptanalysis. We then make
the following observations:

• This program will only be executed once to prove the security bounds,
whereas the cipher will be executed many times to perform encryptions and
decryptions.

• The programmer will typically spend much more time on programming, de-
bugging, optimizing, writing a parallel implementation,... than the time it
takes to execute the resulting program.

• It is very difficult to verify the correctness of a complicated computer pro-
gram. For this reason, a simple program is preferred to an efficient one.

• A programmer’s time is much more expensive than CPU time.

Therefore, we argue that when we write a program to prove the security of
a cipher, the execution time of this program is not so important. Much more
important is to have a solution that is easy to program, easy to verify and easy to
to parallelize.

4.5.1 Our Results

Linear Programming (LP) studies the optimization (minimization or maximiza-
tion) problem of a linear objective function f(x1, x2, . . . , xn), subject to linear
constraints involving decision variables xi, 1 ≤ i ≤ n. In an MILP problem,
certain decision variables xi are restricted to integer values.

36 AUTOMATED TECHNIQUES

In [124] (see p. 229), we showed how to prove the security of many ciphers
against linear and differential cryptanalysis using MILP. Our analysis applies to
both single-key and related-key attacks. The only requirement is that the cipher is
composed of a combination of S-box operations, linear permutation layers and/or
XOR operations. Our technique is based on counting the minimum number of
active S-boxes. The objective function of our MILP program is the number of
active S-boxes, which are subject to simple linear constraints that can easily be
generated using the description of the cipher. The MILP program can then be
solved using an off-the-shelf optimization package, for example IBM’s CPLEX.

We considered both the stream cipher Enocoro-128v2 [178,179] and the block
cipher AES [46, 47]. For Enocoro-128v2, the execution time to prove the secu-
rity against differential cryptanalysis is less than one minute on a 24-core Intel
Xeon X5670 processor, and less than four minutes to prove security against linear
cryptanalysis. For AES, we calculated the minimum number of active S-boxes for
up to 14 rounds. None of the corresponding MILP programs took longer than
0.4 seconds to execute. To the best of our knowledge, we are the first to solve this
problem by generating only one MILP program.

Wang and Bogdanov showed in a follow-up paper how MILP can be used to
demonstrate the tightness of bounds for Feistel ciphers that use the Diffusion
Switching Mechanism (DSM) [174].

4.6 Conclusion

To analyze cryptographic ciphers against cryptanalytic attacks, automated tools
are becoming increasingly important. In this chapter, we focused both on eval-
uating the performance of existing tools, as well as on the development of new
tools.

We first explained linear and differential cryptanalysis in Sect. 4.2. These two
powerful techniques to analyze symmetric-key ciphers are essential to understand
the cryptanalysis tools presented in this chapter.

Increasingly, cryptographic ciphers use operations such as XOR, addition and
subtraction modulo 2n, bitwise Boolean functions, bit shifts and bit rotations.
To analyze such constructions in a general way, we introduced the concept of
S-functions in Sect. 4.3. The S-functions framework allows us to calculate the
probability of differentials, to count the number of output differences, as well as
to efficiently find the output difference or differences with the highest probability.

Algebraic cryptanalysis involves writing out a system of multivariate polyno-
mial equations, and solving them using an automated “black box” techniques, for
example by using a SAT solver or computing a Gröbner basis. If the equations have
a special structure, they may be solved faster than a generic system of non-linear
equations.

Our research investigated the interesting combination of algebraic cryptanaly-
sis and differential cryptanalysis, as proposed by Albrecht and Cid at FSE 2009.

CONCLUSION 37

Contrary to to their original claims, our theoretic observations and extensive com-
puter experiments showed that their differential-algebraic attacks do not outper-
form standard differential cryptanalysis. After the publication of our findings, the
validity of our results were confirmed by Albrecht.

Linear programming (LP) involves optimizing a linear objective function, sub-
ject to linear inequality constraints. In Mixed-Integer Linear Programming (MILP),
some of the variables in the optimization program are restricted to integer values.
We introduced a novel technique to prove the security of ciphers against both lin-
ear and differential cryptanalysis. Our method involves only writing out simple
linear inequality constraints, corresponding to the operations of the cipher. The
resulting MILP program can be used to prove lower bounds against the number of
active S-boxes for both linear and differential cryptanalysis. For the ciphers that
we analyzed (AES and Enocoro-182v2), each of the resulting MILP programs took
less than four minutes to solve.

38 AUTOMATED TECHNIQUES

Chapter 5

Conclusion

Two cryptographic components that are essential to build secure applications are
block ciphers and hash functions. Traditionally, block ciphers provide confidential-
ity by encrypting information using a secret key, whereas hash functions ensure
the integrity of information. However, nowadays block ciphers and hash functions
have a myriad of uses, far beyond their original intentions.

Already in 1996, Dobbertin found a collision for the compression function of
MD5 [55]. More recently, Wang et al. discovered collision attacks for the commonly
used hash functions MD5 and SHA-1. For MD5, it is possible to find collisions for
the hash function in just a few milliseconds on a standard PC. Finding collisions for
SHA-1 is also feasible, however a lot more computing power is required. Although
the SHA-2 hash functions are currently unbroken, they are based on similar design
principles. For these reasons, NIST launched the SHA-3 competition in search for
a new hash functions standard.

This Ph.D. thesis closely follows the SHA-3 competition. Research results
were obtained for the SHA-3 candidates ARIRANG, BLAKE, ESSENCE, Hamsi,
Khichidi-1, LUX, Sarmal, Skein and TIB3. As a result of our analysis, the hash
function Khichidi-1 was withdrawn, and ESSENCE did not advance to the second
round of the competition. We also analyzed the hash function HAS-V, and made
some observations on the concept of a regular hash function.

Our research results do not only involve hash functions, we obtained new at-
tacks for block ciphers as well. For the block ciphers XTEA and GOST, we found
a novel application of the meet-in-the-middle attack. An advantage of our attacks
is that they require only very few known plaintext-ciphertext pairs.

Whereas the attacks of Wang et al. are based on tedious hand calculations, we
strongly favor the use of simple automated techniques. In this context, we have
constructed a general framework to analyze ciphers based on components such as
addition modulo 2n, XOR, bit rotation and bitwise Boolean functions. Our general
S-functions framework allows us to easily calculate the probability of differentials,
find the output difference(s) with the highest probability, as well as count the
number of output differences. The corresponding S-functions toolkit is publicly

39

40 CONCLUSION

available online.
We also evaluated the differential-algebraic attacks proposed by Albrecht and

Cid, which employ automated tools such as MiniSat and PolyBoRi to solve multi-
variate systems of non-linear equations. Contrary to the claims by Albrecht and
Cid, we find that their differential-algebraic attacks do not perform better than
standard differential cryptanalysis. Our results are backed up by a large number
of computer experiments, and were later confirmed by Albrecht.

Mixed-Integer Linear Programming (MILP) is a technique used in business
and economics to solve optimization problems. We show how to construct a single
MILP program to calculate the number of active S-boxes for a given cipher. This
allows us to prove the security of a cipher against both linear and differential
cryptanalysis.

5.1 Directions for Future Research

Symmetric-key cryptography is a relatively new field, given that two of the most
powerful techniques (linear and differential cryptanalysis) have only been publicly
known for the past twenty years. Although the study of block ciphers and hash
functions has matured significantly in recent years, many open problems still re-
main. We now provide an overview of interesting topics for future research.

• Conditions in a differential characteristic that involve two pairs of bits are
referred to as “double conditions” in [120] (see p. 69). As double conditions
involve four bits, there are 216 possible double conditions. For the crypt-
analysis of MD4 [175], MD5 [177], RIPEMD [175] and SHA-1 [176], a subset
of these double conditions was already used: conditions where a bit of one
pair is equal to a bit of another pair, and conditions where they are oppo-
site. These conditions also appeared in [110], where they were obtained by
automated techniques. It seems interesting to explore the application of all
216 possible double conditions to these hash functions.

• The S-functions toolkit provides an algorithm to find the output difference
with the highest probability, using a variant of the A* search algorithm. The
algorithm is described in [169]. Further investigation of the A* heuristic is
required, in order to get a better understanding of the time and memory
complexity of our algorithm.

• After the introduction of our S-function framework [123] (see p. 119) to
analyze differential probabilities, we analyzed the differential probability of
ARX [168] and reduced-round versions of the stream cipher Salsa20 in [169].
We often found that due to a clustering effect of differential characteristics,
the actual differential probability can be much higher than estimated us-
ing only one characteristic. Although we focused on developing advanced
techniques to obtain more accurate estimates, this effect is still not well
understood.

DIRECTIONS FOR FUTURE RESEARCH 41

• Alternatively, the actual differential probability of a characteristic may also
be much lower than estimated (or even zero). We revisited the SHA-1 re-
sults of De Cannière and Rechberger [51]. By searching all messages that
satisfy their 64-step characteristic, we found that the characteristic actually
has a probability of zero: no colliding message pair exists. Careful inspection
shows that the 64-step collision provided in [51] follows the 64-step charac-
teristic only for the first 50 steps. An important open problem is therefore
to efficiently determine whether a characteristic has a non-zero probability.

• A powerful method for the differential cryptanalysis of ARX-based algo-
rithms, is to replace every addition modulo 2n by an XOR operation. The
resulting cipher then becomes linear in GF(2). A low-weight codeword for
this linear cipher may correspond to a useful characteristic for the original
cipher [135]. However, a problem occurs for the first-round SHA-3 candidate
Edon-R [67]. Consider the following equations:

T0 = (Y1 + Y7 + . . .) ≫ 0 ,
T1 = (Y1 + Y4 + . . .) ≫ 5 ,
T3 = (Y4 + Y7 + . . .) ≫ 11 .

We found a differential characteristic where the i-th bit positions of Y1, Y4

and Y7 contain an XOR difference of 1 (and i is not the most significant bit).
In the characteristic, all differences should cancel out, so that the T -words
contain no difference. However, this cancellation will never happen: every
XOR difference of 1 corresponds either to the bit pair (0, 1) or (1, 0), and no
choice of bit pairs for (Y1[i], Y ′1 [i]), (Y4[i], Y ′4 [i]) and (Y7[i], Y ′7 [i]) will lead to a
zero difference in the T -words. An open problem is how to automatically and
efficiently search for Edon-R characteristics that do not have this problem.

• In [173] (see p. 203), two new differential-algebraic attacks were proposed.
Although the time complexity of these attacks is much higher than for a dif-
ferential attack on the same cipher, the data complexity is lower. As a large
number of bits are fixed in our new differential-algebraic attacks, it is inter-
esting to investigate whether meet-in-the-middle attacks could outperform
our differential-algebraic attacks.

• Our attacks on reduced-round XTEA [154] (see p. 147) and GOST [153] (see
p. 169) are based a simple application of the meet-in-the-middle technique.
It is interesting to investigate the application of more advanced techniques,
for example the biclique cryptanalysis used to attack the SHA-3 candidate
Skein-512 [89], the SHA-2 [89] family and the full AES [30].

• We proposed a technique to prove the security of ciphers against linear and
differential cryptanalysis using mixed-integer linear programming [124] (see
p. 229). A direction for future work is to apply our technique to other attacks,
for example to impossible differential cryptanalysis.

42 CONCLUSION

Bibliography

[1] M. Albrecht. Algorithmic Algebraic Techniques and their Application to
Block Cipher Cryptanalysis. PhD thesis, Royal Holloway, University of Lon-
don, 2010.

[2] M. Albrecht. Personal Communication, May 2011.

[3] M. Albrecht and C. Cid. Algebraic Techniques in Differential Cryptanalysis.
In O. Dunkelman, editor, FSE, volume 5665 of Lecture Notes in Computer
Science, pages 193–208. Springer, 2009.

[4] M. Albrecht, C. Cid, T. Dullien, J.-C. Faugère, and L. Perret. Algebraic Pre-
computations in Differential and Integral Cryptanalysis. In X. Lai, M. Yung,
and D. Lin, editors, Inscrypt, volume 6584 of Lecture Notes in Computer
Science, pages 387–403. Springer, 2010.

[5] Alibo. Is This MITM Attack to Gmail’s SSL?, August 2011. https://www.

google.com/support/forum/p/gmail/thread?tid=2da6158b094b225a.

[6] E. Andreeva and M. Stam. The Symbiosis between Collision and Preimage
Resistance. In L. Chen, editor, IMA Int. Conf., volume 7089 of Lecture
Notes in Computer Science, pages 152–171. Springer, 2011.

[7] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang. Preimages for
Step-Reduced SHA-2. In M. Matsui, editor, ASIACRYPT, volume 5912 of
Lecture Notes in Computer Science, pages 578–597. Springer, 2009.

[8] K. Aoki and Y. Sasaki. Preimage Attacks on One-Block MD4, 63-Step MD5
and More. In R. M. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas
in Cryptography, volume 5381 of Lecture Notes in Computer Science, pages
103–119. Springer, 2008.

[9] K. Aoki and Y. Sasaki. Meet-in-the-Middle Preimage Attacks Against Re-
duced SHA-0 and SHA-1. In S. Halevi, editor, CRYPTO, volume 5677 of
Lecture Notes in Computer Science, pages 70–89. Springer, 2009.

43

https://www.google.com/support/forum/p/gmail/thread?tid=2da6158b094b225a
https://www.google.com/support/forum/p/gmail/thread?tid=2da6158b094b225a

44 BIBLIOGRAPHY

[10] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal
BLAKE. Submission to the NIST SHA-3 Competition (Round 3), 2010.
http://131002.net/blake/blake.pdf.

[11] J.-P. Aumasson, G. Leurent, W. Meier, F. Mendel, N. Mouha, R. C.-W.
Phan, Y. Sasaki, and P. Susil. Tuple cryptanalysis of ARX with application
to BLAKE and Skein. ECRYPT II Hash Workshop, 2011. http://www.

ecrypt.eu.org/hash2011/.

[12] J.-P. Aumasson, W. Meier, and F. Mendel. Preimage Attacks on 3-Pass
HAVAL and Step-Reduced MD5. In R. M. Avanzi, L. Keliher, and F. Sica,
editors, Selected Areas in Cryptography, volume 5381 of Lecture Notes in
Computer Science, pages 120–135. Springer, 2008.

[13] M. Bellare and T. Kohno. A Theoretical Treatment of Related-Key Attacks:
RKA-PRPs, RKA-PRFs, and Applications. In E. Biham, editor, EURO-
CRYPT, volume 2656 of Lecture Notes in Computer Science, pages 491–506.
Springer, 2003.

[14] M. Bellare and T. Kohno. Hash Function Balance and Its Impact on Birthday
Attacks, 2004. http://cseweb.ucsd.edu/~mihir/papers/balance.html.

[15] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[16] D. J. Bernstein. Cache-timing attacks on AES, 2005. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.

[17] D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In M. J. B. Robshaw
and O. Billet, editors, The eSTREAM Finalists, volume 4986 of Lecture
Notes in Computer Science, pages 84–97. Springer, 2008.

[18] D. J. Bernstein. CubeHash specification (2.B.1). Submission to the
NIST SHA-3 Competition (Round 2), 2009. http://cubehash.cr.yp.to/

submission2/spec.pdf.

[19] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. RadioGatún, a belt-
and-mill hash function. IACR Cryptology ePrint Archive, 2006:369, 2006.

[20] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
ECRYPT II Hash Workshop, 2007. http://sponge.noekeon.org/.

[21] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3
submission. Submission to the NIST SHA-3 Competition (Round 3), 2011.
http://keccak.noekeon.org/Keccak-submission-3.pdf.

http://131002.net/blake/blake.pdf
http://www.ecrypt.eu.org/hash2011/
http://www.ecrypt.eu.org/hash2011/
http://cseweb.ucsd.edu/~mihir/papers/balance.html
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cubehash.cr.yp.to/submission2/spec.pdf
http://cubehash.cr.yp.to/submission2/spec.pdf
http://sponge.noekeon.org/
http://keccak.noekeon.org/Keccak-submission-3.pdf

BIBLIOGRAPHY 45

[22] E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions -
HAIFA. Cryptology ePrint Archive, Report 2007/278, 2007. http://eprint.

iacr.org/.

[23] E. Biham, O. Dunkelman, and N. Keller. Improved Slide Attacks. In
A. Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science,
pages 153–166. Springer, 2007.

[24] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. J. Cryptology, 4(1):3–72, 1991.

[25] E. Biham and A. Shamir. Differential Cryptanalysis of the Full 16-Round
DES. In E. F. Brickell, editor, CRYPTO, volume 740 of Lecture Notes in
Computer Science, pages 487–496. Springer, 1992.

[26] A. Biryukov and D. Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In M. Matsui, editor, ASIACRYPT, volume 5912 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

[27] A. Biryukov, D. Khovratovich, and I. Nikolic. Distinguisher and Related-
Key Attack on the Full AES-256. In S. Halevi, editor, CRYPTO, volume
5677 of Lecture Notes in Computer Science, pages 231–249. Springer, 2009.

[28] A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. J. Cryp-
tology, 23(4):505–518, 2010.

[29] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1. In H. Krawczyk, editor, CRYPTO,
volume 1462 of Lecture Notes in Computer Science, pages 1–12. Springer,
1998.

[30] A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis
of the Full AES. In D. H. Lee and X. Wang, editors, ASIACRYPT, volume
7073 of Lecture Notes in Computer Science, pages 344–371. Springer, 2011.

[31] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight
Block Cipher. In P. Paillier and I. Verbauwhede, editors, CHES, volume
4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

[32] A. Bogdanov and C. Rechberger. A 3-Subset Meet-in-the-Middle Attack:
Cryptanalysis of the Lightweight Block Cipher KTANTAN. In A. Biryukov,
G. Gong, and D. R. Stinson, editors, Selected Areas in Cryptography, volume
6544 of Lecture Notes in Computer Science, pages 229–240. Springer, 2010.

[33] A. Bogdanov and M. Wang. Zero Correlation Linear Cryptanalysis with
Reduced Data Complexity. In A. Canteaut, editor, FSE, Lecture Notes in
Computer Science. Springer, 2012.

http://eprint.iacr.org/
http://eprint.iacr.org/

46 BIBLIOGRAPHY

[34] C. Bouillaguet, O. Dunkelman, G. Leurent, and P.-A. Fouque. Another
Look at Complementation Properties. In S. Hong and T. Iwata, editors,
FSE, volume 6147 of Lecture Notes in Computer Science, pages 347–364.
Springer, 2010.

[35] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr,
A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin,
J.-R. Reinhard, C. Thuillet, and M. Videau. Shabal, a Submission to NIST’s
Cryptographic Hash Algorithm Competition. Submission to the NIST SHA-
3 Competition (Round 2), 2008. http://ehash.iaik.tugraz.at/uploads/

6/6c/Shabal.pdf.

[36] M. Brickenstein and A. Dreyer. PolyBoRi: A framework for Gröbner-basis
computations with Boolean polynomials. J. Symb. Comput., 44(9):1326–
1345, 2009.

[37] C. Cachin and J. Camenisch, editors. Advances in Cryptology - EURO-
CRYPT 2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceed-
ings, volume 3027 of Lecture Notes in Computer Science. Springer, 2004.

[38] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[39] D. Chang, S. Hong, C. Kang, J. Kang, J. Kim, C. Lee, J. Lee, J. Lee, S. Lee,
Y. Lee, J. Lim, and J. Sung. ARIRANG. Submission to the NIST SHA-3
Competition (Round 1), 2008. http://ehash.iaik.tugraz.at/uploads/

2/2c/Arirang.pdf.

[40] J. Chen, M. Wang, and B. Preneel. Impossible Differential Cryptanalysis of
the Lightweight Block Ciphers TEA, XTEA and HIGHT. Cryptology ePrint
Archive, Report 2011/616, 2011. http://eprint.iacr.org/.

[41] J.-S. Coron, J. Patarin, and Y. Seurin. The Random Oracle Model and the
Ideal Cipher Model Are Equivalent. In D. Wagner, editor, CRYPTO, volume
5157 of Lecture Notes in Computer Science, pages 1–20. Springer, 2008.

[42] N. Courtois and M. Misztal. First Differential Attack on Full 32-Round
GOST. In S. Qing, W. Susilo, G. Wang, and D. Liu, editors, ICICS, volume
7043 of Lecture Notes in Computer Science, pages 216–227. Springer, 2011.

[43] A. Coviello. Open Letter to RSA SecurID Customers, 2011. http://www.

rsa.com/node.aspx?id=3891.

[44] J. Daemen. Personal communication, January 2010.

[45] J. Daemen, L. R. Knudsen, and V. Rĳmen. The Block Cipher Square. In
E. Biham, editor, FSE, volume 1267 of Lecture Notes in Computer Science,
pages 149–165. Springer, 1997.

http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf
http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf
http://ehash.iaik.tugraz.at/uploads/2/2c/Arirang.pdf
http://ehash.iaik.tugraz.at/uploads/2/2c/Arirang.pdf
http://eprint.iacr.org/
http://www.rsa.com/node.aspx?id=3891
http://www.rsa.com/node.aspx?id=3891

BIBLIOGRAPHY 47

[46] J. Daemen and V. Rĳmen. The Wide Trail Design Strategy. In B. Honary,
editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science,
pages 222–238. Springer, 2001.

[47] J. Daemen and V. Rĳmen. The Design of Rĳndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[48] W. Dai. OFFICIAL COMMENT: LUX. NIST SHA-3 mailing list, 2009.
http://ehash.iaik.tugraz.at/uploads/e/ec/Lux_dai.txt.

[49] I. Damgård. A Design Principle for Hash Functions. In G. Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, 1989.

[50] C. De Cannière, A. Biryukov, and B. Preneel. An introduction to block
cipher cryptanalysis. Proceedings of the IEEE, 94(2):346–356, February 2006.

[51] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General
Results and Applications. In X. Lai and K. Chen, editors, ASIACRYPT,
volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

[52] C. De Cannière and C. Rechberger. Preimages for Reduced SHA-0 and
SHA-1. In D. Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in
Computer Science, pages 179–202. Springer, 2008.

[53] W. Diffie and M. E. Hellman. Exhaustive Cryptanalysis of the NBS Data
Encryption Standard. Computer, 10(6):74–84, 1977.

[54] I. Dinur, O. Dunkelman, and A. Shamir. Improved Attacks on Full GOST.
Cryptology ePrint Archive, Report 2011/558, 2011. http://eprint.iacr.

org/.

[55] H. Dobbertin. Cryptanalysis of MD5. Presented at a rump session of Euro-
Crypt ’96, 1996.

[56] O. Dunkelman, G. Sekar, and B. Preneel. Improved Meet-in-the-Middle At-
tacks on Reduced-Round DES. In K. Srinathan, C. P. Rangan, and M. Yung,
editors, INDOCRYPT, volume 4859 of Lecture Notes in Computer Science,
pages 86–100. Springer, 2007.

[57] T. Duong and J. Rizzo. Flickr’s API Signature
Forgery Vulnerability. Netifera Research, September 2009.
Flickr’sAPISignatureForgeryVulnerability.

[58] N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia
and A. Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

http://ehash.iaik.tugraz.at/uploads/e/ec/Lux_dai.txt
http://eprint.iacr.org/
http://eprint.iacr.org/
Flickr's API Signature Forgery Vulnerability

48 BIBLIOGRAPHY

[59] M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash
Functions in RFID Protocols. In R. Meersman, Z. Tari, and P. Herrero,
editors, OTM Workshops (1), volume 4277 of Lecture Notes in Computer
Science, pages 372–381. Springer, 2006.

[60] N. Ferguson. Re: Official comment: Lux. NIST SHA-3 mailing list, 2009.
http://ehash.iaik.tugraz.at/uploads/2/21/Lux_niels.txt.

[61] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker. The Skein Hash Function Family. Submission to
the NIST SHA-3 Competition (Round 3), 2010. http://www.skein-hash.

info/sites/default/files/skein1.3.pdf.

[62] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete
Results. In Çetin Kaya Koç, D. Naccache, and C. Paar, editors, CHES,
volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer,
2001.

[63] F. D. Garcia, G. de Koning Gans, R. Muĳrers, P. van Rossum, R. Verdult,
R. W. Schreur, and B. Jacobs. Dismantling MIFARE Classic. In S. Jajodia
and J. López, editors, ESORICS, volume 5283 of Lecture Notes in Computer
Science, pages 97–114. Springer, 2008.

[64] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 candidate. Submission
to the NIST SHA-3 Competition (Round 3), 2011. http://www.groestl.

info/Groestl.pdf.

[65] H. Gilbert and M. Minier. A Collision Attack on 7 Rounds of Rĳndael. In
AES Candidate Conference, pages 230–241, 2000.

[66] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amund-
sen, and S. F. Mjølsnes. Cryptographic Hash Function BLUE MID-
NIGHT WISH. Submission to the NIST SHA-3 Competition (Round 2),
2009. http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/

Supporting_Documentation/BlueMidnightWishDocumentation.pdf.

[67] D. Gligoroski, R. S. Ødegård, M. Mihova, S. J. Knapskog, L. Kocarev,
A. Drápal, and V. Klima. Cryptographic Hash Function Edon-R. Submis-
sion to the NIST SHA-3 Competition (Round 1), 2008. http://people.

item.ntnu.no/~danilog/Hash/Edon-R/Supporting_Documentation/

EdonRDocumentation.pdf.

[68] A. Grothe. Kernel v2.6.14 tea.c. Linux Headquarters, 2004. http://www.

linuxhq.com/kernel/v2.6/14/crypto/tea.c.

http://ehash.iaik.tugraz.at/uploads/2/21/Lux_niels.txt
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/Edon-R/Supporting_Documentation/EdonRDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/Edon-R/Supporting_Documentation/EdonRDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/Edon-R/Supporting_Documentation/EdonRDocumentation.pdf
http://www.linuxhq.com/kernel/v2.6/14/crypto/tea.c
http://www.linuxhq.com/kernel/v2.6/14/crypto/tea.c

BIBLIOGRAPHY 49

[69] J. Guo, S. Ling, C. Rechberger, and H. Wang. Advanced Meet-in-the-Middle
Preimage Attacks: First Results on Full Tiger, and Improved Results on
MD4 and SHA-2. In M. Abe, editor, ASIACRYPT, volume 6477 of Lecture
Notes in Computer Science, pages 56–75. Springer, 2010.

[70] J. Guo, K. Matusiewicz, L. R. Knudsen, S. Ling, and H. Wang. Practical
Pseudo-collisions for Hash Functions ARIRANG-224/384. In M. J. J. Jr.,
V. Rĳmen, and R. Safavi-Naini, editors, Selected Areas in Cryptography,
volume 5867 of Lecture Notes in Computer Science, pages 141–156. Springer,
2009.

[71] J. Hermans, A. Pashalidis, F. Vercauteren, and B. Preneel. A New RFID
Privacy Model. In V. Atluri and C. Díaz, editors, ESORICS, volume 6879
of Lecture Notes in Computer Science, pages 568–587. Springer, 2011.

[72] K. Hirai. Letter to Honorable Mary Bono Mack and Honorable G. K. But-
terfield. PlayStation.Blog, 2011. http://blog.us.playstation.com/2011/

05/04/sonys-response-to-the-u-s-house-of-representatives/.

[73] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, and H. Yoshida.
A Lightweight 256-Bit Hash Function for Hardware and Low-End Devices:
Lesamnta-LW. In K. H. Rhee and D. Nyang, editors, ICISC, volume 6829
of Lecture Notes in Computer Science, pages 151–168. Springer, 2010.

[74] T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random
oracle model and the ideal cipher model, revisited. In L. Fortnow and S. P.
Vadhan, editors, STOC, pages 89–98. ACM, 2011.

[75] D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, and S. Chee.
A New Dedicated 256-Bit Hash Function: FORK-256. In M. J. B. Robshaw,
editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 195–
209. Springer, 2006.

[76] D. Hong, B. Koo, and Y. Sasaki. Improved Preimage Attack for 68-Step
HAS-160. In D. Lee and S. Hong, editors, ICISC, volume 5984 of Lecture
Notes in Computer Science, pages 332–348. Springer, 2009.

[77] S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, and S. Lee. Differential
Cryptanalysis of TEA and XTEA. In J. I. Lim and D. H. Lee, editors,
ICISC, volume 2971 of Lecture Notes in Computer Science, pages 402–417.
Springer, 2003.

[78] S. Indesteege. The LANE hash function. Submission to the NIST SHA-
3 Competition (Round 1), 2008. http://www.cosic.esat.kuleuven.be/

publications/article-1181.pdf.

http://blog.us.playstation.com/2011/05/04/sonys-response-to-the-u-s-house-of-representatives/
http://blog.us.playstation.com/2011/05/04/sonys-response-to-the-u-s-house-of-representatives/
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

50 BIBLIOGRAPHY

[79] S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Prac-
tical Attack on KeeLoq. In N. P. Smart, editor, EUROCRYPT, volume 4965
of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[80] T. Isobe. A Single-Key Attack on the Full GOST Block Cipher. In A. Joux,
editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages 290–
305. Springer, 2011.

[81] T. Isobe and K. Shibutani. Preimage Attacks on Reduced Tiger and SHA-2.
In O. Dunkelman, editor, FSE, volume 5665 of Lecture Notes in Computer
Science, pages 139–155. Springer, 2009.

[82] A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In M. K. Franklin, editor, CRYPTO, volume 3152 of Lecture
Notes in Computer Science, pages 306–316. Springer, 2004.

[83] O. Kara. Reflection Cryptanalysis of Some Ciphers. In D. R. Chowdhury,
V. Rĳmen, and A. Das, editors, INDOCRYPT, volume 5365 of Lecture Notes
in Computer Science, pages 294–307. Springer, 2008.

[84] J. Kelsey. Personal communication, May 2011.

[85] J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash Functions for
Much Less than 2n Work. In R. Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 474–490. Springer, 2005.

[86] J. Kelsey, B. Schneier, and D. Wagner. Key-Schedule Cryptoanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES. In N. Koblitz, editor,
CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 237–
251. Springer, 1996.

[87] D. Khovratovich and I. Nikolic. Rotational Cryptanalysis of ARX. In S. Hong
and T. Iwata, editors, FSE, volume 6147 of Lecture Notes in Computer
Science, pages 333–346. Springer, 2010.

[88] D. Khovratovich, I. Nikolic, and C. Rechberger. Rotational Rebound Attacks
on Reduced Skein. In M. Abe, editor, ASIACRYPT, volume 6477 of Lecture
Notes in Computer Science, pages 1–19. Springer, 2010.

[89] D. Khovratovich, C. Rechberger, and A. Savelieva. Bicliques for Preim-
ages: Attacks on Skein-512 and the SHA-2 family. IACR Cryptology ePrint
Archive, 2011:286, 2011.

[90] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley Professional, second edition, May 1998.

BIBLIOGRAPHY 51

[91] Y. Ko, S. Hong, W. Lee, S. Lee, and J.-S. Kang. Related Key Differential
Attacks on 27 Rounds of XTEA and Full-Round GOST. In B. K. Roy and
W. Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science,
pages 299–316. Springer, 2004.

[92] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In N. Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[93] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J.
Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 388–397. Springer, 1999.

[94] O. Küçük. The Hash Function Hamsi. Submission to the NIST SHA-
3 Competition (Round 2), 2009. http://www.cosic.esat.kuleuven.be/

publications/article-1203.pdf.

[95] S. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking
Ciphers with COPACOBANA - A Cost-Optimized Parallel Code Breaker.
In L. Goubin and M. Matsui, editors, CHES, volume 4249 of Lecture Notes
in Computer Science, pages 101–118. Springer, 2006.

[96] X. Lai and J. L. Massey. Hash Function Based on Block Ciphers. In R. A.
Rueppel, editor, EUROCRYPT, volume 658 of Lecture Notes in Computer
Science, pages 55–70. Springer, 1992.

[97] A. Langley. Public key pinning, 2011. http://www.imperialviolet.org/

2011/05/04/pinning.html.

[98] E. Lee, D. Hong, D. Chang, S. Hong, and J. Lim. A Weak Key Class of XTEA
for a Related-Key Rectangle Attack. In P. Q. Nguyen, editor, VIETCRYPT,
volume 4341 of Lecture Notes in Computer Science, pages 286–297. Springer,
2006.

[99] G. Leurent, C. Bouillaguet, and P.-A. Fouque. SIMD Is a Message Digest.
Submission to the NIST SHA-3 Competition (Round 2), 2009. http://www.

di.ens.fr/~leurent/files/SIMD.pdf.

[100] C. H. Lim and P. J. Lee. A Study on the Proposed Korean Digital Signature
Algorithm. In K. Ohta and D. Pei, editors, ASIACRYPT, volume 1514 of
Lecture Notes in Computer Science, pages 175–186. Springer, 1998.

[101] H. Lipmaa. On Differential Properties of Pseudo-Hadamard Transform and
Related Mappings. In A. Menezes and P. Sarkar, editors, INDOCRYPT,
volume 2551 of Lecture Notes in Computer Science, pages 48–61. Springer,
2002.

http://www.cosic.esat.kuleuven.be/publications/article-1203.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1203.pdf
http://www.imperialviolet.org/2011/05/04/pinning.html
http://www.imperialviolet.org/2011/05/04/pinning.html
http://www.di.ens.fr/~leurent/files/SIMD.pdf
http://www.di.ens.fr/~leurent/files/SIMD.pdf

52 BIBLIOGRAPHY

[102] H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential
Properties of Addition. In M. Matsui, editor, FSE, volume 2355 of Lecture
Notes in Computer Science, pages 336–350. Springer, 2001.

[103] H. Lipmaa, J. Wallén, and P. Dumas. On the Additive Differential Probabil-
ity of Exclusive-Or. In B. K. Roy and W. Meier, editors, FSE, volume 3017
of Lecture Notes in Computer Science, pages 317–331. Springer, 2004.

[104] J. Lu. Related-key rectangle attack on 36 rounds of the XTEA block cipher.
Int. J. Inf. Sec., 8(1):1–11, 2009.

[105] M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM J. Comput., 17(2):373–386, 1988.

[106] S. Lucks. The Saturation Attack - A Bait for Twofish. In M. Matsui, ed-
itor, FSE, volume 2355 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2001.

[107] J. W. Martin. ESSENCE: A Family of Cryptographic Hashing
Algorithms. http://www.math.jmu.edu/~martin/essence/Supporting_

Documentation/essence_compression.pdf, 2008.

[108] J. W. Martin. Personal communication, July 2009.

[109] M. Matsui. Linear Cryptoanalysis Method for DES Cipher. In EURO-
CRYPT, pages 386–397, 1993.

[110] F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 Characteristics: Search-
ing through a Minefield of Contradictions. In D. H. Lee and X. Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 288–
307. Springer, 2011.

[111] F. Mendel and V. Rĳmen. Weaknesses in the HAS-V Compression Function.
In K.-H. Nam and G. Rhee, editors, ICISC, volume 4817 of Lecture Notes
in Computer Science, pages 335–345. Springer, 2007.

[112] F. Mendel and M. Schläffer. On Free-Start Collisions and Collisions for TIB3.
In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, editors, ISC,
volume 5735 of Lecture Notes in Computer Science, pages 95–106. Springer,
2009.

[113] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[114] R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer, 1989.

http://www.math.jmu.edu/~martin/essence/Supporting_Documentation/essence_compression.pdf
http://www.math.jmu.edu/~martin/essence/Supporting_Documentation/essence_compression.pdf

BIBLIOGRAPHY 53

[115] M. Montes and D. Penazzi. The TIB3 Hash. Submission to the
NIST SHA-3 Competition (Round 1), 2008. http://www.famaf.unc.

edu.ar/~penazzi/tib3/submitted/Supporting_Documentation/TIB3_

Algorithm_Specification.pdf.

[116] D. Moon, K. Hwang, W. Lee, S. Lee, and J. Lim. Impossible Differential
Cryptanalysis of Reduced Round XTEA and TEA. In J. Daemen and V. Rĳ-
men, editors, FSE, volume 2365 of Lecture Notes in Computer Science, pages
49–60. Springer, 2002.

[117] N. Mouha. Collision for Khichidi-1. NIST SHA-3 mailing list, 2008. http://

ehash.iaik.tugraz.at/uploads/8/89/Khichidi-1.txt.

[118] N. Mouha. RE: OFFICIAL COMMENT: LUX. NIST SHA-3 mailing list,
2009. http://ehash.iaik.tugraz.at/uploads/7/78/Lux_nicky.txt.

[119] N. Mouha, T. E. Bjørstad, and B. Preneel. Non-randomness in the Sarmal
compression function, 2009. http://ehash.iaik.tugraz.at/uploads/8/

8c/Sarmal.new.pdf.

[120] N. Mouha, C. De Cannière, S. Indesteege, and B. Preneel. Finding Collisions
for a 45-Step Simplified HAS-V. In H. Y. Youm and M. Yung, editors, WISA,
volume 5932 of Lecture Notes in Computer Science, pages 206–225. Springer,
2009.

[121] N. Mouha, G. Sekar, J.-P. Aumasson, T. Peyrin, S. S. Thomsen, M. S. Turan,
and B. Preneel. Cryptanalysis of the ESSENCE Family of Hash Functions.
In F. Bao, M. Yung, D. Lin, and J. Jing, editors, Inscrypt, volume 6151 of
Lecture Notes in Computer Science, pages 15–34. Springer, 2009.

[122] N. Mouha, G. Sekar, and B. Preneel. Challenging the Increased Resistance
of Regular Hash Functions Against Birthday Attacks. ECRYPT II Hash
Workshop, May 2011. http://www.ecrypt.eu.org/hash2011/.

[123] N. Mouha, V. Velichkov, C. De Cannière, and B. Preneel. The Differential
Analysis of S-Functions. In A. Biryukov, G. Gong, and D. R. Stinson, editors,
Selected Areas in Cryptography, volume 6544 of Lecture Notes in Computer
Science, pages 36–56. Springer, 2010.

[124] N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and Linear Crypt-
analysis using Mixed-Integer Linear Programming. In M. Yung and C.-K.
Wu, editors, Inscrypt, Lecture Notes in Computer Science. Springer, 2011.

[125] National Institute of Standards and Technology. FIPS PUB 46-3: Data
Encryption Standard (DES), October 1999. http://www.itl.nist.gov/

fipspubs/fip186-2.pdf.

http://www.famaf.unc.edu.ar/~penazzi/tib3/submitted/Supporting_Documentation/TIB3_Algorithm_Specification.pdf
http://www.famaf.unc.edu.ar/~penazzi/tib3/submitted/Supporting_Documentation/TIB3_Algorithm_Specification.pdf
http://www.famaf.unc.edu.ar/~penazzi/tib3/submitted/Supporting_Documentation/TIB3_Algorithm_Specification.pdf
http://ehash.iaik.tugraz.at/uploads/8/89/Khichidi-1.txt
http://ehash.iaik.tugraz.at/uploads/8/89/Khichidi-1.txt
http://ehash.iaik.tugraz.at/uploads/7/78/Lux_nicky.txt
http://ehash.iaik.tugraz.at/uploads/8/8c/Sarmal.new.pdf
http://ehash.iaik.tugraz.at/uploads/8/8c/Sarmal.new.pdf
http://www.ecrypt.eu.org/hash2011/
http://www.itl.nist.gov/fipspubs/fip186-2.pdf
http://www.itl.nist.gov/fipspubs/fip186-2.pdf

54 BIBLIOGRAPHY

[126] National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algo-
rithm (SHA-3) Family. Federal Register, 27(212):62212–62220, November
2007. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_

Nov07.pdf.

[127] National Institute of Standards and Technology. Block Cipher Modes – Cur-
rent Modes, November 2011. http://csrc.nist.gov/groups/ST/toolkit/

BCM/current_modes.html.

[128] M. Naya-Plasencia, A. Röck, J.-P. Aumasson, Y. Laigle-Chapuy, G. Leurent,
W. Meier, and T. Peyrin. Cryptanalysis of ESSENCE. In S. Hong and
T. Iwata, editors, FSE, volume 6147 of Lecture Notes in Computer Science,
pages 134–152. Springer, 2010.

[129] R. M. Needham and D. J. Wheeler. TEA extensions. Computer Laboratory,
Cambridge University, England, 1997. http://www.movable-type.co.uk/

scripts/xtea.pdf.

[130] I. Nikolić, A. Biryukov, and D. Khovratovich. Hash family LUX - Algorithm
Specifications and Supporting Documentation. Submission to the NIST SHA-
3 Competition (Round 1), 2008. http://ehash.iaik.tugraz.at/uploads/

f/f3/LUX.pdf.

[131] C. Ohtahara, Y. Sasaki, and T. Shimoyama. Preimage Attacks on Step-
Reduced RIPEMD-128 and RIPEMD-160. In X. Lai, M. Yung, and D. Lin,
editors, Inscrypt, volume 6584 of Lecture Notes in Computer Science, pages
169–186. Springer, 2010.

[132] OpenSSL version 1.0.0, March 2010. http://www.openssl.org/.

[133] N. K. Park, J. H. Hwang, and P. J. Lee. HAS-V: A New Hash Function
with Variable Output Length. In D. R. Stinson and S. E. Tavares, editors,
Selected Areas in Cryptography, volume 2012 of Lecture Notes in Computer
Science, pages 202–216. Springer, 2000.

[134] J. Pieprzyk and L. Tombak. Soviet Encryption Algorithm, June 1994.
http://freeworld.thc.org/root/phun/stego-challenge/gost-spec.

pdf.

[135] N. Pramstaller, C. Rechberger, and V. Rĳmen. Exploiting Coding Theory
for Collision Attacks on SHA-1. In N. P. Smart, editor, IMA Int. Conf.,
volume 3796 of Lecture Notes in Computer Science, pages 78–95. Springer,
2005.

[136] B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://www.movable-type.co.uk/scripts/xtea.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf
http://ehash.iaik.tugraz.at/uploads/f/f3/LUX.pdf
http://ehash.iaik.tugraz.at/uploads/f/f3/LUX.pdf
http://www.openssl.org/
http://freeworld.thc.org/root/phun/stego-challenge/gost-spec.pdf
http://freeworld.thc.org/root/phun/stego-challenge/gost-spec.pdf

BIBLIOGRAPHY 55

[137] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In D. R. Stinson, editor, CRYPTO, volume
773 of Lecture Notes in Computer Science, pages 368–378. Springer, 1993.

[138] J.-J. Quisquater and J.-P. Delescaille. How Easy is Collision Search? Ap-
plication to DES (Extended Summary). In EUROCRYPT, pages 429–434,
1989.

[139] M. Rabin. Digitalized Signatures. In R. A. DeMillo, D. P. Dobkin, A. K.
Jones, and R. J. Lipton, editors, Foundations of Secure Computation, pages
155–168. New York Academic Press, 1978.

[140] P. Rogaway. Formalizing Human Ignorance. In P. Q. Nguyen, editor, VI-
ETCRYPT, volume 4341 of Lecture Notes in Computer Science, pages 211–
228. Springer, 2006.

[141] P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics: Def-
initions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. In B. K. Roy and W. Meier,
editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 371–
388. Springer, 2004.

[142] Y. Sakai, Y. Sasaki, L. Wang, K. Ota, and K. Sakiyama. Preimage Attacks
on 5-Pass HAVAL Reduced to 158-Steps and One-Block 3-Pass HAVAL. 9th
International Conference on Applied Cryptography and Network Security
(ACNS), 2011.

[143] SANS Institute. The Top Cyber Security Risks, 2009. http://www.sans.

org/top-cyber-security-risks/.

[144] Y. Sasaki. Meet-in-the-Middle Attacks Using Output Truncation in 3-Pass
HAVAL. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, edi-
tors, ISC, volume 5735 of Lecture Notes in Computer Science, pages 79–94.
Springer, 2009.

[145] Y. Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes
and an Application to Whirlpool. In A. Joux, editor, FSE, volume 6733 of
Lecture Notes in Computer Science, pages 378–396. Springer, 2011.

[146] Y. Sasaki. Recent Advances in MITM Preimage Attacks. ECRYPT II Hash
Workshop, 2011. http://www.ecrypt.eu.org/hash2011/.

[147] Y. Sasaki and K. Aoki. A Preimage Attack for 52-Step HAS-160. In P. J. Lee
and J. H. Cheon, editors, ICISC, volume 5461 of Lecture Notes in Computer
Science, pages 302–317. Springer, 2008.

[148] Y. Sasaki and K. Aoki. Preimage Attacks on 3, 4, and 5-Pass HAVAL. In
J. Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture Notes in Computer
Science, pages 253–271. Springer, 2008.

http://www.sans.org/top-cyber-security-risks/
http://www.sans.org/top-cyber-security-risks/
http://www.ecrypt.eu.org/hash2011/

56 BIBLIOGRAPHY

[149] Y. Sasaki and K. Aoki. Finding Preimages in Full MD5 Faster Than Ex-
haustive Search. In A. Joux, editor, EUROCRYPT, volume 5479 of Lecture
Notes in Computer Science, pages 134–152. Springer, 2009.

[150] Y. Sasaki, F. Mendel, and K. Aoki. Preimage Attacks against PKC98-Hash
and HAS-V. In K. H. Rhee and D. Nyang, editors, ICISC, volume 6829 of
Lecture Notes in Computer Science, pages 68–91. Springer, 2010.

[151] Y. Sasaki, F. Mendel, and K. Aoki. Preimage Attacks against PKC98-Hash
and HAS-V. IEICE Transactions, 95-A(1):111–124, 2012.

[152] K. Scarfone and M. Souppaya. Guide to Enterprise Password Manage-
ment. NIST special publication 800-118 (draft), National Institute of
Standards and Technology (NIST), April 2009. http://csrc.nist.gov/

publications/drafts/800-118/draft-sp800-118.pdf.

[153] G. Sekar, N. Mouha, and B. Preneel. Meet-in-the-Middle Attacks on
Reduced-Round GOST. ISO/IEC JTC1/SC27 N8875, April 2010.

[154] G. Sekar, N. Mouha, V. Velichkov, and B. Preneel. Meet-in-the-Middle
Attacks on Reduced-Round XTEA. In A. Kiayias, editor, CT-RSA, volume
6558 of Lecture Notes in Computer Science, pages 250–267. Springer, 2011.

[155] H. Seki and T. Kaneko. Differential Cryptanalysis of Reduced Rounds of
GOST. In D. R. Stinson and S. E. Tavares, editors, Selected Areas in Cryp-
tography, volume 2012 of Lecture Notes in Computer Science, pages 315–323.
Springer, 2000.

[156] Sony Corporation. FY2010 Consolidated Results Forecast Revi-
sion, 2011. http://www.sony.net/SonyInfo/IR/financial/fr/viewer/

10revision/slide/03_slide.html.

[157] Sony Corporation. Restoration Of PlayStation R© Network And Qriocity
Services Begins, May 2011. http://www.sony.net/SonyInfo/News/Press/

201105/11-0515E/index.html.

[158] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. A. Molnar, D. A. Os-
vik, and B. de Weger. MD5 considered harmful today: Creating a rogue CA
certificate, December 2008. 25th Chaos Communications Congress, Berlin,
Germany.

[159] M. Steil. 17 Mistakes Microsoft Made in the Xbox Security System. 22nd
Chaos Communication Congress, December 2005. http://events.ccc.de/

congress/2005/fahrplan/events/559.en.html.

[160] M. Stevens. On Collisions for MD5. Master’s thesis, Eindhoven University
of Technology, 2007.

http://csrc.nist.gov/publications/drafts/800-118/draft-sp800-118.pdf
http://csrc.nist.gov/publications/drafts/800-118/draft-sp800-118.pdf
http://www.sony.net/SonyInfo/IR/financial/fr/viewer/10revision/slide/03_slide.html
http://www.sony.net/SonyInfo/IR/financial/fr/viewer/10revision/slide/03_slide.html
http://www.sony.net/SonyInfo/News/Press/201105/11-0515E/index.html
http://www.sony.net/SonyInfo/News/Press/201105/11-0515E/index.html
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html

BIBLIOGRAPHY 57

[161] Tata Consultancy Services. IT Services, Business Solutions, Outsourcing,
2011. http://www.tcs.com/.

[162] Tencent. About Tencent. http://www.tencent.com/en-us/at/

abouttencent.shtml, 2012.

[163] H. Tsukayama. Cyber attack on RSA cost EMC $66 million,
2011. http://www.washingtonpost.com/blogs/post-tech/post/

cyber-attack-on-rsa-cost-emc-66-million/2011/07/26/gIQA1ceKbI_

blog.html.

[164] P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with Crypt-
analytic Applications. J. Cryptology, 12(1):1–28, 1999.

[165] K. Varıcı, O. Özen, and Ç. Kocair. Sarmal: SHA-3 Proposal. Submission
to the NIST SHA-3 Competition (Round 1), 2008. http://homes.esat.

kuleuven.be/~kvarici/Supporting_Documentation/SarmaL.pdf.

[166] Various Authors. libqq-pidgin. http://code.google.com/p/

libqq-pidgin/, 2012.

[167] VASCO. VASCO reports range of estimated losses related to DigiNotar
bankruptcy and related events, 2011. bit.ly/qwANHz.

[168] V. Velichkov, N. Mouha, C. De Cannière, and B. Preneel. The Additive
Differential Probability of ARX. In A. Joux, editor, FSE, volume 6733 of
Lecture Notes in Computer Science, pages 342–358. Springer, 2011.

[169] V. Velichkov, N. Mouha, C. De Cannière, and B. Preneel. UNAF: A Special
Set of Additive Differences with Application to the Differential Analysis of
ARX. In A. Canteaut, editor, FSE, Lecture Notes in Computer Science.
Springer, 2012.

[170] N. Vĳayarangan. A NEW HASH ALGORITHM: Khichidi-1. Submission
to the NIST SHA-3 Competition (Round 1), 2008. http://ehash.iaik.

tugraz.at/uploads/d/d4/Khichidi-1.pdf.

[171] L. Wang and Y. Sasaki. Finding Preimages of Tiger Up to 23 Steps. In
S. Hong and T. Iwata, editors, FSE, volume 6147 of Lecture Notes in Com-
puter Science, pages 116–133. Springer, 2010.

[172] L. Wang, Y. Sasaki, W. Komatsubara, K. Ohta, and K. Sakiyama. (Sec-
ond) Preimage Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a
New Local-Collision Approach. In A. Kiayias, editor, CT-RSA, volume 6558
of Lecture Notes in Computer Science, pages 197–212. Springer, 2011.

http://www.tcs.com/
http://www.tencent.com/en-us/at/abouttencent.shtml
http://www.tencent.com/en-us/at/abouttencent.shtml
http://www.washingtonpost.com/blogs/post-tech/post/cyber-attack-on-rsa-cost-emc-66-million/2011/07/26/gIQA1ceKbI_blog.html
http://www.washingtonpost.com/blogs/post-tech/post/cyber-attack-on-rsa-cost-emc-66-million/2011/07/26/gIQA1ceKbI_blog.html
http://www.washingtonpost.com/blogs/post-tech/post/cyber-attack-on-rsa-cost-emc-66-million/2011/07/26/gIQA1ceKbI_blog.html
http://homes.esat.kuleuven.be/~kvarici/Supporting_Documentation/SarmaL.pdf
http://homes.esat.kuleuven.be/~kvarici/Supporting_Documentation/SarmaL.pdf
http://code.google.com/p/libqq-pidgin/
http://code.google.com/p/libqq-pidgin/
bit.ly/qwANHz
http://ehash.iaik.tugraz.at/uploads/d/d4/Khichidi-1.pdf
http://ehash.iaik.tugraz.at/uploads/d/d4/Khichidi-1.pdf

58 BIBLIOGRAPHY

[173] M. Wang, Y. Sun, N. Mouha, and B. Preneel. Algebraic Techniques in Dif-
ferential Cryptanalysis Revisited. In U. Parampalli and P. Hawkes, editors,
ACISP, volume 6812 of Lecture Notes in Computer Science, pages 120–141.
Springer, 2011.

[174] Q. Wang and A. Bogdanov. The Provable Constructive Effect of the Dif-
fusion Switching Mechanism for CLEFIA-type Block Ciphers. Information
Processing Letters (To Appear), 2012.

[175] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash
Functions MD4 and RIPEMD. In R. Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 1–18. Springer, 2005.

[176] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In
V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 17–36. Springer, 2005.

[177] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In
R. Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Com-
puter Science, pages 19–35. Springer, 2005.

[178] D. Watanabe, K. Okamoto, and T. Kaneko. A Hardware-Oriented Light
Weight Pseudo-Random Number Generator Enocoro-128v2. In The Sym-
posium on Cryptography and Information Security, pages 3D1–3, 2010. (in
Japanese).

[179] D. Watanabe, T. Owada, K. Okamoto, Y. Igarashi, and T. Kaneko. Update
on Enocoro Stream Cipher. In ISITA, pages 778–783. IEEE, 2010.

[180] L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, and S. Ling. Improved
Meet-in-the-Middle Cryptanalysis of KTANTAN. IACR Cryptology ePrint
Archive, 2011:201, 2011.

[181] L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, and S. Ling. Improved
Meet-in-the-Middle Cryptanalysis of KTANTAN (Poster). In U. Parampalli
and P. Hawkes, editors, ACISP, volume 6812 of Lecture Notes in Computer
Science, pages 433–438. Springer, 2011.

[182] D. J. Wheeler and R. M. Needham. TEA, a Tiny Encryption Algorithm. In
B. Preneel, editor, FSE, volume 1008 of Lecture Notes in Computer Science,
pages 363–366. Springer, 1994.

[183] A. Whitten and J. D. Tygar. Why Johnny Can’t Encrypt. In In Proceedings
of the 8th USENIX Security Symposium, 1999.

[184] H. Wu. The Hash Function JH. Submission to the NIST SHA-3 Competition
(Round 3), 2011. http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_

round3.pdf.

http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

BIBLIOGRAPHY 59

[185] S. Wu, D. Feng, and W. Wu. Cryptanalysis of the Hash Function
LUX-256. http://ehash.iaik.tugraz.at/uploads/3/36/Analysis_LUX_

1.pdf, 2008.

[186] D. Zanetti, P. Sachs, and S. Capkun. On the Practicality of UHF RFID
Fingerprinting: How Real is the RFID Tracking Problem? In S. Fischer-
Hübner and N. Hopper, editors, PETS, volume 6794 of Lecture Notes in
Computer Science, pages 97–116. Springer, 2011.

http://ehash.iaik.tugraz.at/uploads/3/36/Analysis_LUX_1.pdf
http://ehash.iaik.tugraz.at/uploads/3/36/Analysis_LUX_1.pdf

60 BIBLIOGRAPHY

Part II

Publications

61

62

List of Publications

Lecture Notes in Computer Science

1. Nicky Mouha, Christophe De Cannière, Sebastiaan Indesteege, and Bart
Preneel. Finding Collisions for a 45-Step Simplified HAS-V. In Heung Youl
Youm and Moti Yung, editors, WISA, volume 5932 of Lecture Notes in Com-
puter Science, pages 206–225. Springer, 2009.

– See p. 69.

2. Nicky Mouha, Gautham Sekar, Jean-Philippe Aumasson, Thomas Peyrin,
Søren S. Thomsen, Meltem Sönmez Turan, and Bart Preneel. Cryptanalysis
of the ESSENCE Family of Hash Functions. In Feng Bao, Moti Yung,
Dongdai Lin, and Jiwu Jing, editors, Inscrypt, volume 6151 of Lecture Notes
in Computer Science, pages 15–34. Springer, 2009.

– See p. 95.

3. Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Preneel.
The Differential Analysis of S-Functions. In Alex Biryukov, Guang Gong,
and Douglas R. Stinson, editors, Selected Areas in Cryptography, volume
6544 of Lecture Notes in Computer Science, pages 36–56. Springer, 2010.

– See p. 119.

4. Vesselin Velichkov, Nicky Mouha, Christophe De Cannière, and Bart Preneel.
The Additive Differential Probability of ARX. In Antoine Joux, editor, FSE,
volume 6733 of Lecture Notes in Computer Science, pages 342–358. Springer,
2011.

63

64 LIST OF PUBLICATIONS

5. Gautham Sekar, Nicky Mouha, Vesselin Velichkov, and Bart Preneel. Meet-
in-the-Middle Attacks on Reduced-Round XTEA. In Aggelos Kiayias, editor,
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 250–267.
Springer, 2011.

– See p. 147.

6. Meiqin Wang, Yue Sun, Nicky Mouha, and Bart Preneel. Algebraic Tech-
niques in Differential Cryptanalysis Revisited. In Udaya Parampalli and
Philip Hawkes, editors, ACISP, volume 6812 of Lecture Notes in Computer
Science, pages 120–141. Springer, 2011.

– See p. 203.

7. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
Linear Cryptanalysis using Mixed-Integer Linear Programming. In Moti
Yung and Chuan-Kun Wu, editors, Inscrypt, Lecture Notes in Computer
Science. Springer, 2011.

– See p. 229.

8. Vesselin Velichkov, Nicky Mouha, Christophe De Cannière, and Bart Pre-
neel. UNAF: A Special Set of Additive Differences with Application to the
Differential Analysis of ARX. In Anne Canteaut, editor, FSE, Lecture Notes
in Computer Science. Springer, 2012.

Under Submission to International Journals

1. Gautham Sekar, Nicky Mouha, and Bart Preneel. Meet-in-the-Middle At-
tacks on Reduced-Round GOST. ISO/IEC JTC1/SC27 N8875, April 2010.

– Under review at an international journal. See p. 169.

2. Nicky Mouha, Gautham Sekar, and Bart Preneel. Challenging the In-
creased Resistance of Regular Hash Functions Against Birthday Attacks.
ECRYPT II Hash Workshop, May 2011. http://www.ecrypt.eu.org/

hash2011/.

– Under review at an international journal. See p. 181.

Invited Lectures

1. Nicky Mouha. ARX-based Cryptography. ECRYPT II Design and Security
of Cryptographic Algorithms and Devices, Invited Lecture, June 2011.

http://www.ecrypt.eu.org/hash2011/
http://www.ecrypt.eu.org/hash2011/

LIST OF PUBLICATIONS 65

2. Nicky Mouha. Cryptanalysis of Symmetric-Key Primitives: Automated
Techniques, Invited Lecture. ECRYPT II Summer School on Tools, May
2012.

Book Chapters

1. Nicky Mouha. MD4-MD5. In Henk C. A. van Tilborg and Sushil Jajodia,
editors, Encyclopedia of Cryptography and Security (2nd Ed.), pages 768–771.
Springer, 2011.

Workshops

1. Nicky Mouha, Christophe De Cannière, Sebastiaan Indesteege, and Bart
Preneel. Finding Collisions for a 45-Step Simplified HAS-V. 3rd Benelux
Workshop on Information and System Security (WISSec), November 2008.

– See p. 69.

2. Nicky Mouha, Søren S. Thomsen, Meltem Sönmez Turan, and Bart Pre-
neel. Observations of non-randomness in the ESSENCE compression func-
tion. The First SHA-3 Candidate Conference, Rump Session Talk, February
2009.

3. Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Preneel.
Toolkit for the Differential Cryptanalysis of ARX-based Cryptographic Con-
structions. ECRYPT II Workshop on Tools for Cryptanalysis, June 2010.

4. Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Preneel.
The Differential Analysis of S-functions. BCRYPT PhD day, May 2010.

– See p. 119.

5. Markus Ullrich, Christophe De Cannière, Sebastiaan Indesteege, Özgül
Küçük, Nicky Mouha, and Bart Preneel. Finding Optimal Bitsliced Im-
plementations of 4 x 4-bit S-boxes. Symmetric Key Encryption Workshop
(SKEW), February 2011.

6. Nicky Mouha, Gautham Sekar, and Bart Preneel. Challenging the In-
creased Resistance of Regular Hash Functions Against Birthday Attacks.
ECRYPT II Hash Workshop, May 2011. http://www.ecrypt.eu.org/

hash2011/.

– See p. 181.

http://www.ecrypt.eu.org/hash2011/
http://www.ecrypt.eu.org/hash2011/

66 LIST OF PUBLICATIONS

7. Jean-Philippe Aumasson, Gaëtan Leurent, Willi Meier, Florian Mendel,
Nicky Mouha, Raphael C.-W. Phan, Yu Sasaki, and Petr Susil. Tuple
cryptanalysis of ARX with application to BLAKE and Skein. ECRYPT II
Hash Workshop, 2011. http://www.ecrypt.eu.org/hash2011/.

8. Meiqin Wang, Yue Sun, Nicky Mouha, and Bart Preneel. Algebraic Tech-
niques in Differential Cryptanalysis Revisited. BCRYPT PhD day, May
2011.

– See p. 203.

Other Publications

1. Nicky Mouha, Tor E. Bjørstad, and Bart Preneel. Non-randomness in
the Sarmal compression function, 2009. http://ehash.iaik.tugraz.at/

uploads/8/8c/Sarmal.new.pdf.

2. Nicky Mouha, Gautham Sekar, Jean-Philippe Aumasson, Thomas Peyrin,
Søren S. Thomsen, Meltem Sönmez Turan, and Bart Preneel. Cryptanalysis
of the ESSENCE Family of Hash Functions. COSIC seminar, December
2009.

– See p. 95.

3. Gautham Sekar, Nicky Mouha, and Bart Preneel. Meet-in-the-Middle At-
tacks on Reduced-Round GOST. ISO/IEC JTC1/SC27 N8875, April 2010.

– See p. 169.

4. Jonathan Etrog, Dmitry Khovratovich, Willi Meier, Nicky Mouha, Jorge
Nakahara Jr., Andrea Röck, Vincent Rĳmen Christian Rechberger Martin
Schläffer, and Vesselin Velichkov. D.SYM.6: New developments in symmet-
ric key cryptanalysis. ECRYPT II Symlab Report, June 2010.

5. Tor E. Bjørstad, Andrey Bogdanov, Henri Gilbert, Kota Ideguchi, Sebasti-
aan Indesteege, Özgül Küçük, Gregor Leander, Nicky Mouha, Jorge Naka-
hara Jr., Axel Poschmann, Christian Rechberger, Vincent Rĳmen, Gautham
Sekar, Kyoji Shibutani, Martin Schläffer, François-Xavier Standaert, El-
mar Tischhauser, Vesselin Velichkov, and Ivan Visconti. D.SYM.5: WG2
Lightweight Cryptographic Algorithms. ECRYPT II Symlab Report, July
2010.

6. Andrey Bodganov, Nicky Mouha, Gautham Sekar, Elmar Tischhauser, Deniz
Toz, Kerem Varıcı, Vesselin Velichkov, and Meiqin Wang. Security Evalua-
tion of the K2 Stream Cipher. CRYPTREC Technical Report, March 2010.

http://www.ecrypt.eu.org/hash2011/
http://ehash.iaik.tugraz.at/uploads/8/8c/Sarmal.new.pdf
http://ehash.iaik.tugraz.at/uploads/8/8c/Sarmal.new.pdf

LIST OF PUBLICATIONS 67

7. Nicky Mouha. ARX-based Cryptography. Lecture at Tsinghua University,
June 2011.

8. Meiqin Wang, Yue Sun, Nicky Mouha, and Bart Preneel. Algebraic Tech-
niques in Differential Cryptanalysis Revisited. ECRYPT II Research Meet-
ing, September 2011.

– See p. 203.

9. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
Linear Cryptanalysis using Mixed-Integer Linear Programming. COSIC
seminar, November 2011.

– See p. 229.

10. Andrey Bogdanov, Simon Knellwolf, Willi Meier, Nicky Mouha, and Vesselin
Velichkov. D.SYM.9: New developments in symmetric key cryptanalysis.
ECRYPT II Symlab Report, December 2011.

68 LIST OF PUBLICATIONS

Publication Chapter

Finding Collisions for a 45-Step
Simplified HAS-V

Publication Data

Nicky Mouha, Christophe De Cannière, Sebastiaan Indesteege, and
Bart Preneel. Finding Collisions for a 45-Step Simplified HAS-V. In
Heung Youl Youm and Moti Yung, editors, WISA, volume 5932 of
Lecture Notes in Computer Science, pages 206–225. Springer, 2009.

Contributions

• Main author. The paper is an extension and generalization of work per-
formed by Christophe De Cannière and Christian Rechberger for SHA-1 [2],
applied to a simplified variant of the hash function HAS-V. The use of double
conditions was suggested by Sebastiaan Indesteege.

69

70 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

Finding Collisions for a 45-Step Simplified HAS-V∗

Nicky Mouha1,2,†, Christophe De Cannière1,2,‡, Sebastiaan Indesteege1,2,§,
and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

Abstract. Recent attacks on hash functions start by constructing
a differential characteristic. By finding message pairs that satisfy
this characteristic, a collision can be found. This paper describes
the method of De Cannière and Rechberger to construct generalized
characteristics for SHA-1 in more detail. This method is further
generalized and applied to a simplified variant of the HAS-V hash
function. Using these techniques, a characteristic for 45 steps is found,
requiring an effort of about 246 compression function evaluations to
find a colliding message pair. A lot of the message bits can still
be freely chosen when using this characteristic, greatly increasing its
usefulness.

Keywords: Cryptanalysis, hash function, HAS-V, collision.

1 Introduction

Hash functions are an important building block in cryptography. As described
in [15], these are functions h that convert an input m of arbitrary length in a
deterministic way to a fixed-length output h(m). It is crucial that a number of
security properties are satisfied, one of which is the infeasibility of finding collisions
(collision resistance). A collision consists of two input values m,m′ where m 6= m′
for which h(m) = h(m′).

Recent attacks by Wang et al. on the widely used hash functions MD4 [19],
MD5 [21], RIPEMD [19] and SHA-1 [20], as well as other hash functions, show
that it is possible to find collisions for these hash functions much faster than
expected by the birthday paradox [15]. In response to these attacks, NIST has
launched a competition to find a new hash function standard [13]. Although a lot

∗This work was supported in part by the IAP Program P6/26 BCRYPT of the Belgian State
(Belgian Science Policy), and in part by the European Commission through the ICT program
under contract ICT-2007-216676 ECRYPT II.
†This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).
‡Postdoctoral Fellow of the Research Foundation – Flanders (FWO)
§F.W.O. Research Assistant, Fund for Scientific Research – Flanders (Belgium).

71

72 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

of cryptanalysis effort is directed to these submissions, we feel that it is still very
important to analyze existing hash function standards.

These recent collisions have lead to several practical attacks on network ap-
plications. For POP3 [6], it is is possible to mount a password recovery attack.
Together with IMAP [1], POP3 [12] is one of the most used protocols for retriev-
ing e-mail. Very recently, a rogue CA certificate was created using a collision for
MD5 [17,18]. This certificate allows an attacker to impersonate any website on the
Internet secured by HTTPS [16], including websites for banking and e-commerce.

The hash function HAS-V [14] is similar in structure to these hash functions.
HAS-V fulfills the need of the KCDSA [7], the Korea Certificate-based Digital
Signature Algorithm, to use a hash function with a variable digest size. The
only cryptanalytic results on HAS-V known to us are described in [11]. Results
using the recent attacks on hash functions have not been published before. The
cryptanalysis of a simplified variant of HAS-V is the subject of this paper.

Recent attacks on hash functions focus on the construction of a differential
characteristic, that allows collisions to be found with a good probability by find-
ing messages m,m′ that satisfy this characteristic. Characteristics are often con-
structed in an ad hoc way, which does not give any insight into the application
of these attacks to other hash functions. This emphasizes the need for automated
methods.

One such method, introduced in [2], is further generalized and applied to the
simplified HAS-V. Using this method, we found a characteristic for a 45-step col-
lision with an expected work factor of 275.84 step function evaluations, which is
given in Table 12. Further improvements lead to the better characteristic shown in
Table 13, which has a work factor of 251.53, making a collision finding attack feasi-
ble. If the cost of one step function evaluation is about 2−5 compression function
evaluations, these work factors are equivalent to about 271 and 246 compression
function evaluations, respectively. Note that a lot of bits in the message words
can still be freely chosen.

Notation is defined in Table 1. In Sect. 2, a description of a simplified variant
of HAS-V is given. An alternative, cyclic description of this hash function is
provided as well. The technique for finding NL-characteristics of [2] is further
explained, generalized and applied to HAS-V in Sect. 3. Techniques for improving
NL-characteristics are laid out in Sect. 4, where good NL-characteristics for a
45-step simplified HAS-V are obtained as well. A conclusion and suggestions for
future work are given in Sect. 5.

Appendix A lists the NL-characteristics we obtained. To assist the reader in
understanding the more abstract explanation of the graph method in this paper, a
simple example is given in Appendix B. Although this method is extensively used
to attack SHA-1 in [2], this paper is the first to fully explain it.

A SIMPLIFIED HAS-V 73

2 A Simplified HAS-V

The hash function HAS-V [14] splits a 1024-bit message block into two 512-bit
message blocks, which are then processed in two streams. The rounds of each
stream alternately use message words of the first and the second 512-bit block. In
our simplified variant of HAS-V, the right stream is omitted, as well as rounds
in the left stream that depend on message words of the second 512-bit message
block. As recent collision finding attacks are applied to hash functions with only
one stream, simplifying the hash function in this way allows us to focus more easily
on the main concepts of these recent attacks. For the same reason, the optional
output tailoring is not applied. All other properties of HAS-V are left intact. A
description of this simplified HAS-V is now given.

2.1 Description

The input message is padded and split into 512-bit message blocks. A 3-round
compression function with 20 steps per round is applied to each of these 512-bit
message blocks. This compression function g(m,h) uses a 160-bit chaining input
h and a 512-bit message block m as its inputs. The chaining input hn+1 of the
next call of the compression function is calculated as hn + g(m,hn). Here, the
addition is done in blocks of 32-bit words, using a total of five adders modulo
232. The chaining variables for the first compression function call are set to fixed
values, referred to as the IV. They are shown in Table 2. The last chaining input
h represents the hash value.

Given a 512-bit message blockm, consisting of 16 32-bit message wordsmi, four
extra message words, referred to as XOR-words, are derived from these message
words for every round, as specified in Table 3. The extended message words wi
consist of the message words mi followed by the four XOR-words.

Table 4 shows how the expanded message wordsWt are derived as a reordering
of the extended message words wi for every round.

Figure 1 gives a schematic representation of the HAS-V step function, which
is also described by

At+1 ← (At ≪ St) + fj(Bt, Ct,Dt, Et) +Wt +Kt ,

Bt+1 ← At ,
Ct+1 ← Bt ≫ 2 ,

Dt+1 ← Ct ,
Et+1 ← Dt .

(1)

Here, fj represents a Boolean function, different for every round j:

f1(B,C,D,E) , (B ∧ C)⊕ (¬B ∧D)⊕ (C ∧ E)⊕ (D ∧ E) ,

f2(B,C,D,E) , (B ∧ C)⊕ (¬B ∧ E)⊕D ,
f3(B,C,D,E) , (¬B ∧ C)⊕ (B ∧D)⊕ (C ∧ E)⊕ (D ∧ E) .

(2)

74 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

Table 1 – Notation

notation description
x ‖ y concatenation of the binary strings x and y
x ∧ y bitwise AND of x and y
x ∨ y bitwise OR of x and y
x⊕ y bitwise XOR of x and y
¬x bitwise NOT of x
x≪ s rotation of x to the left by s positions
x≫ s rotation of x to the right by s positions
x+ y addition of x and y modulo 232 (in text)
x⊞ y addition of x and y modulo 232 (in figures)
x[i] bit selection: 0 if (x ∧ 2i) ≡ 0, 1 otherwise

Table 2 – The IV values for the simplified HAS-V

A B C D E

IV 0x67452301 0xEFCDAB89 0x98BADCFE 0x10325476 0xC3D2E1F0

Table 3 – Calculation of the XOR-words for the simplified HAS-V

w16 w17 w18 w19

Round 1 w0⊕w1⊕w2⊕w3 w4⊕w5⊕w6⊕w7 w8⊕w9⊕w10⊕w11 w12⊕w13⊕w14⊕w15

Round 2 w3⊕w6⊕w9⊕w12 w15⊕w2⊕w5⊕w8 w11⊕w14⊕w1⊕w4 w7⊕w10⊕w13⊕w0

Round 3 w12⊕w5⊕w14⊕w7 w0⊕w9⊕w2⊕w11 w4⊕w13⊕w6⊕w15 w8⊕w1⊕w10⊕w3

Round 4 w7⊕w2⊕w13⊕w8 w3⊕w14⊕w9⊕w4 w15⊕w10⊕w5⊕w0 w11⊕w6⊕w1⊕w12

Round 5 w15⊕w9⊕w5⊕w3 w12⊕w8⊕w6⊕w2 w13⊕w11⊕w7⊕w1 w14⊕w10⊕w4⊕w0

Table 4 – The message expansion for the simplified HAS-V

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Round 1 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15
Round 2 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3
Round 3 18 15 9 5 3 19 12 8 6 2 16 13 11 7 1 17 14 10 4 0

A SIMPLIFIED HAS-V 75

A
t

B
t

C
t

D
t

E
t

A
t+1

B
t+1

C
t+1

D
t+1

E
t+1

f
j

K
t

W
t

<<< S
t

<<<

 2

Figure 1 – The HAS-V step function

Table 5 – Constant Kt for the simplified HAS-V

Round 1 Round 2 Round 3
Kt 0x00000000 0x6ED9EBA1 0xA953FD4E

In every step a constant Kt, different for every round, is added. These are listed
in Table 5. The rotation value St is different for every step of a round. They are
given in Table 6.

2.2 Cyclic Description

Using the step function of the simplified HAS-V, five internal variables At, Bt,
Ct, Dt and Et are obtained from five previous internal variables, At−1, Bt−1,
Ct−1, Dt−1 and Et−1. As Bt ≡ At−1, Ct ≡ At−2 ≫ 2, Dt ≡ At−3 ≫ 2 and
Et ≡ At−4 ≫ 2, it is sufficient to keep track of only At when calculating the step
functions. These At, preceded by the IV values, are denoted byQt. A similar cyclic
formulation was proposed for MD5 in [4], however there Qt refer to values of Bt.
The compression function can then be formulated alternatively for t = 0, . . . , 59
as:

Qt+1 ← (Qt ≪ Si)+fj(Qt−1, Qt−2 ≫ 2, Qt−3 ≫ 2, Qt−4 ≫ 2)+Wt+Kt . (3)

The values of Qt for t = −4, . . . 0 are derived from the IV:

(Q−4, Q−3, Q−2, Q−1, Q0)← (E≪ 2,D≪ 2, C≪ 2, B,A) . (4)

76 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

Table 6 – Rotation value St for the simplified HAS-V

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

St 5 11 7 13 15 6 13 9 5 11 7 12 8 15 13 8 15 6 7 14

Table 7 – All possible conditions for (X[i],X ′[i])

(0, 0) (1, 0) (0, 1) (1, 1)
? X X X X

- X - - X

x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X

- - - -

(0, 0) (1, 0) (0, 1) (1, 1)
3 X X - -
5 X - X -
7 X X X -
A - X - X

B X X - X

C - - X X

D X - X X

E - X X X

It is this cyclic formulation of the simplified HAS-V that will be used from now
on in this text.

3 NL-characteristics

For collision attacks, non-linear characteristics (NL-characteristics) start with chain-
ing input and output difference zero. Differences are introduced via the message
input, which then cancel themselves out with a sufficiently high probability by
following the characteristic. High-probability characteristics are crucial for build-
ing fast collision-finding attacks, yet not much is known about their construction.
They are often generated manually, using a great deal of intuition and experience.
This paper further improves the results from [2], where an automated method is
described for constructing these NL-characteristics.

In this paper, NL-characteristics are applied to the simplified HAS-V. An NL-
characteristic is a set of conditions ∇Q−4, . . .∇QT and ∇W0 . . .∇WT−1. Each
∇X[i] represents a set of possible combinations for (X[i],X[i]′), as shown in Ta-
ble 7. The number of steps T is left variable to be able to study step-reduced
versions of this simplified HAS-V. In this paper, results will be obtained for
T = 45.

3.1 Representation of Conditions on One Bit ∇Qt+1[i]

The step function (3) can be written as follows for every bit, for 0 ≤ t < T and
0 ≤ i < 32. Indices i are calculated modulo 32. The carry input of the addition is
denoted by Ct,i, the carry output by Ct+1,i+1.

NL-CHARACTERISTICS 77

 i-S
t
 i+2

i

 o Q
t-4

 o Q
t-3

 o Q
t-2

 o Q
t-1

 o Q
t

 o Q
t+1

Figure 2 – Calculation of Qt+1[i] from Qt[i−St], Qt−1[i], Qt−1[i+2],
Qt−1[i+ 2] and Qt−1[i+ 2]

Ct+1,i+1 ‖ Qt+1[i]←Qt[i− St] + fj(Qt−1[i], Qt−2[i+ 2], Qt−3[i+ 2],

Qt−4[i+ 2]) +Wt[i] +Kt[i] + Ct,i .
(5)

To calculate Qt+1[i], the bit positions of the previous state words Qt−k (0 ≤
k < 5) are schematically represented in Fig. 2.

In the step function for every bit (5), a single, large addition is used with a
carry input and output. The resulting carry states (Ct+1,i+1, C

′
t+1,i+1) are then

the only way in which adjacent bits of the same message word pair (W t,W
′
t) or

internal states (Qt+1, Q
′
t+1) interact. If a particular carry state (Ct+1,i+1, C

′
t+1,i+1)

cannot occur as the output for the calculation of this bit (Qt+1,i, Q
′
t+1,i), nor as

the input of the calculation of the next bit (Qt+2,i+1, Q
′
t+2,i+1), this combination

of carries is said to be invalid.
For the calculation of every ∇Qt+1[i], all valid combinations of (Ct,i, C

′
t,i),

(Qt−k, Q
′
t−k) for 0 ≤ k < 5 and (Wt,W ′t) are represented by an edge in Fig. 3.

Imposing new conditions on ∇Qt+1[i] will lead to the elimination of some of these
edges.

The Boolean function fj and the constant bitKt[i] are fixed for one bit position.
Therefore, they are not included on the edges in Fig. 3. Each of the 216 input bits
of the edges then completely determines the six output bits (Qt+1[i], Q′t+1[i]) and
(Ct,i+1, C

′
t,i+1).

3.2 Propagation of Conditions for Every Word ∇Qt+1

Initially, all input conditions are allowed for all bits. As this implies that all
outputs are allowed for every bit, this is a self-consistent state. However, as soon
as some restrictions are imposed on a bit, this may affect other bits. We refer to
this mechanism as the propagation of conditions.

To calculate the possible conditions for every word ∇Qt+1 for 0 ≤ t < T , it
is necessary to do both a forward and a backward propagation over all conditions
∇Qt+1[i] for 0 ≤ i < 32. In Fig. 3, every possible input combination is shown as an

78 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

0 1 2 3 C
t,i

C
t,i

’

3

2

1

0 1 2 3 C
t,i+1

C
t,i+1

’

3

2

1

[100110 111001]

[000111 011011]

[001010 100000]

[Q
t
 Q

t-1
 Q

t-2
 Q

t-3
 Q

t-4
 W

t
 Q

t
‘ Q

t-1
‘ Q

t-2
‘ Q

t-3
‘ Q

t-4
‘ W

t
’]

Figure 3 – Explanation of the edges in the graph. When adding four
bits (and the carry input), the carry output Ct,i can be 0, 1, 2 or 3.
The addition of the corresponding four bits of the second message of
the collision pair results in the carry C ′t,i.

0 1 2 3 C
t,i

C
t,i

’

3

2

1

Figure 4 – Removing edges through forward propagation

edge connecting the input carries (Ct,i, C
′
t,i) to the output carries (Ct,i+1, C

′
t,i+1).

Note that there can be multiple edges between two nodes.

In Fig. 4, a forward propagation (for i = 0, 1, . . . , 31) is done where edges
are removed if they start at an impossible input carry. In Fig. 5, a backward
propagation is performed (for i = 31, 30, . . . , 0) where edges are removed if the
output carry is invalid. If necessary, the input conditions ∇Qt[i − St], ∇Qt−1[i],
∇Qt−2[i+2], ∇Qt−3[i+2],∇Qt−4[i+2] and ∇Wt[i], as well as the output condition
∇Qt+1[i] in the NL-characteristic are updated. In this way, one word can affect
the conditions of another word.

This step is repeated for every word ∇Qt+1 for 0 ≤ t < T , until further
propagation would not remove additional edges or until at least one condition is
inconsistent. Every time a message bit Wt[i] is assigned a new value, message bits
Wt′ [i] that are related by the message expansion, are updated as well if necessary.
The remaining valid paths for one word are then shown in Fig. 6.

NL-CHARACTERISTICS 79

0 1 2 3 C
t,i

C
t,i

’

3

2

1

Figure 5 – Removing edges through backward propagation

0 1 2 3 C
t,31

C
t,31

’

3

2

1

0 1 2 3 C
t,0

C
t,0

’

3

2

1

0 1 2 3 C
t,1

C
t,1

’

3

2

1

...

Figure 6 – Remaining valid paths for one word ∇Qt+1

3.3 Double Conditions

Conditions that do not involve one pair of bits, but two pairs of bits, are referred
to as “double conditions”. The use of these is new to this paper. They are similar
to Table 7, except that double conditions apply to four bits instead of two. Thus,
there are 216 possible double conditions, instead of 24.

For the simplified HAS-V, double conditions can be used in three locations for
the calculation of one bit of ∇Qt+1. These are shown in Fig. 7, as the result of
the only possibilities of creating an overlap of at least two bits of Fig. 2 with a
translated version of this pattern.

The use of the first double condition is explained, the other two cases are
analogous. During the calculation of ∇Qt′+1[2], a double condition is used to rep-
resent the possibilities of the joint occurrence of ∇Qt′+1[2] and ∇Qt′−1[2]. When
∇Qt+1[0] is calculated, it can be seen that the same double condition now also
applies to the joint occurrence of∇Qt−2[2] and∇Qt−4[2]. It is possible that this in-
formation leads to the removal of additional edges. If this is the case, the number of
iterations needed to construct an NL-characteristic is lowered, and inconsistencies
can be found sooner. In our implementation of the search for NL-characteristics,
double conditions can be implemented with minimal overhead.

80 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

3.4 Work Factor

The work factor Nw of an NL-characteristic indicates the expected number of step
function evaluations required to find a collision using this characteristic. When
building NL-characteristics, the collision search is optimized by lowering the work
factor. This concept was introduced in [2].

Message Freedom FW(t)

“Single-message modification” [21] (also known as “single-step modification” [19])
can be used during the search process, as there is still freedom left in the choice
of several expanded message words Wt. Due to the constraints imposed by the
XOR-words, this is not possible for each of the 20 message word pairs (Wt,W ′t) of
the first round. Of the five message word pairs involved in the calculation of each
XOR-word, only the first four can be chosen. The last message word pair cannot
be freely chosen, but must equal the XOR of the four others.

The message freedom FW(t) of a characteristic at step t is the number of
ways to choose (Wt,W ′t), without violating any (linear) condition imposed by the
message expansion, given fixed values of (Wj ,W ′j) for 0 ≤ j < t.

The description of the simplified HAS-V indicates that FW(t) is always 1 for
t = 10, 14, 15, 19 and t ≥ 20. For the other values of t, FW(t) is the product of
the number of possibilities for conditions ∇Wt[i] for 0 ≤ i < 32. This number of
possibilities equals the number of checkmarks (X) for the respective conditions in
Table 7.

Uncontrolled Probability Pu(t)

The uncontrolled probability Pu(t) of a characteristic at step t is the probabil-
ity that the output (Qt+1, Q

′
t+1) follows the characteristic, given that all input

pairs (Qt−k, Q′t−k) for 0 ≤ k < 5 and message word pairs (Wt,W ′t) follow this
characteristic as well:

Pu(t) = P
(
(Qt+1, Q

′
t+1) ∈ ∇Qt+1 | (Qt−k, Q′t−k) ∈ ∇Qt−k for 0 ≤ k < 5,

and (Wt,W
′
t) ∈ ∇Wt

)
. (6)

This probability can be calculated as the number of remaining paths of Fig. 6,
divided by the number of paths for which only the input pairs (Qt−k, Q′t−k) for
0 ≤ k < 5 and the message word pairs (Wt,W ′t) follow the characteristic, but not
necessarily the output pair (Qt+1, Q

′
t+1).

Controlled Probability Pc(t)

The controlled probability Pc(t) of a characteristic at step t is the probability that
there exists at least one pair of message words (Wt,W ′t) following the characteristic,

NL-CHARACTERISTICS 81

such that the output (Qt+1, Q
′
t+1) follows the characteristic, given that all input

pairs (Qt−k, Q′t−k) for 0 ≤ k < 5 do as well:

Pc(t) = P
(
∃(Wt,W ′t) ∈ ∇Wt : (Qt+1, Q

′
t+1) ∈ ∇Qt+1 |

(Qt−k, Q
′
t−k) ∈ ∇Qt−k for 0 ≤ k < 5

)
. (7)

A graph is made for every bit i for the calculation of (Qt+1[i], Q′t+1[i]) to de-
termine this probability. Each node of the graph is a carry mask, indicating which
of the 16 possible values of (Ct,i, C ′t,i) can occur. Thus, a carry mask can have 216

possible values. Note the analogy with Table 7, where the possible combinations
of (X[i],X[i]′) are shown.

Let n be the number of possibilities for (Qt−k[i], Q′t−k[i]) ∈ ∇Qt−k[i]for0 ≤ k <
5. For each possibility, we run through all carries (Ct,i, C ′t,i) and all message bit
pairs (Wt[i],W ′t [i]). A binary 16×16 matrix indicates which transition possibilities
from (Ct,i, C ′t,i) to (Ct,i+1, C

′
t,i+1) can occur.

Using this 16×16 transition matrix, we can calculate the possible carry masks
for bit i + 1 using the carry mask of bit i. For the least significant bit (i = 0),
only one carry mask is possible: the carry is (0, 0) with probability 1. Each of the
edges in the graph has probability 1/n. Unlike in Fig. 6, there is never more than
one edge between two nodes. This step is repeated for every (Qt−k[i], Q′t−k[i]) ∈
∇Qt−k[i] for 0 ≤ k < 5.

This calculation is performed for bits i = 0 . . . 31. We now consider the most sig-
nificant bit (i = 31). One carry mask indicates that none of the carries (Ct,31, C

′
t,31)

are valid. Pc(t) then equals the sum of all the other carry masks.

Total Work Factor Nw

In the collision search tree, the average number of children of a node at step t is
FW(t) · Pu(t). Only a fraction Pc(t) of the nodes at step t have children at all.
The search stops as the last step T −1 of the compression function is reached. We
can thus obtain the following recursive relation for the expected number of nodes
Ns(t) at every step of the compression function:

Ns(t) =

{

1 for t = T − 1 ,

max
(
Ns(t+ 1) · F−1

W (t) · P−1
u (t), P−1

c (t)
)

for 0 ≤ t < T − 1 .
(8)

The total work factor is then given by

Nw =
T−1∑

t=0

Ns(t) . (9)

In tables, the base 2 logarithms of FW(t), Pu(t), Pc(t), Ns(t) and Nw(t) are shown.

82 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

Table 8 – Lowest Hamming weights found for L-characteristics, not
taking the weight of ∇Qt+1 for 0 ≤ t < 20 into account

collision near-collision pseudo-collision
40 steps 30 26 27
45 steps 75 68 65

A difference with [2], is that in this work, the double conditions of Sect. 3.3 are
also taken into account in the calculation of the work factor. These are assumed to
be included in the definitions of Pu(t) and Pc(t). This is because double conditions
are used in the actual collision search as well. Implementing this is possible with
minimal overhead, and can only improve Nw. Experimental results of using these
double conditions will be given in Sect. 4.

4 Finding NL-characteristics for 45 Steps

To obtain a good NL-characteristic, Stage 1 of [2] consists of obtaining a sparse
L-characteristic to use as a starting point. As can be seen in Table 8, no suitable
L-characteristic could be found for 45 steps of the simplified HAS-V. The weight
of the ∇Qt+1 for the first round is not taken into account, assuming for simplicity
that these can all be satisfied by single-message modification.

To overcome this problem, we looked for message differences that are localized
at a small number of steps of the internal states ∇Qt+1. The Boolean functions fj
are particularly well suited to allow for NL-characteristics consisting of very short
collision regions. It can be seen that both f1 and f3 allow any input difference
to be either passed on or canceled out at the output. For f2(B,C,D,E), this is
also the case for every input difference, except for an input difference at D, which
will always lead to an output difference. The HAS-V specification [14] reveals
that this is by design, in an attempt to satisfy the “Strict Avalanche Criterion
(SAC)” [22]. As the attacker can choose both messages m,m′ of a collision pair,
he can control the output differences of the f -function at certain positions (either
probabilistically, or by single- or multi-message modification). This allows for
more freedom in the construction of NL-characteristics, while still keeping the
probability of the characteristic high.

Differences in the message words mi are only introduced in m12[0] and m14[0].
Due to the message expansion, these differences can be found in W16[0], W18[0],
W21[0], W23[0]. Before and after this collision region, equality is imposed on the
internal state words.

In the short collision region, all conditions for ∇Qt+1[i] are still unrestricted
(“?”) at Stage 1.

Stages 2 and 3 are the same as in [2]. In Stage 2, unrestricted conditions (“?”)
are randomly chosen, and the requirement that they are equal (“-”) is imposed.

CONCLUSION AND FUTURE WORK 83

Table 9 – The work factor Nw (in base 2 logarithm) after each of
the four stages

Stage 1 Stage 2 Stage 3 Stage 4
without double conditions 143.87 89.30 81.84 59.92

with double conditions 143.87 81.28 75.84 51.53

This stage is repeated several times, until a characteristic with a sufficiently low
work factor is obtained. Further in Stage 2, conditions (“x”) start to appear, which
are replaced by either (“u”) or (“n”) when selected. In Stage 3, local optimizations
are performed by going over all “-” conditions, and replacing them by “0” or “1”
if this improves the work factor. By repeating Stage 3 several times, the work
factor gradually decreases. The end result after Stage 3 is shown in Table 12, with
corresponding work factor Nw = 275.84.

After Stage 3, adding a single extra condition will never decrease the work
factor. It is possible, however, to reduce the work factor even further. This is
done in an additional stage, Stage 4, not described in [2]. In Stage 4, not one,
but several conditions are added locally, as long as they do not worsen the work
factor. If adding multiple conditions improves the work factor, a minimal set
of conditions is derived from these, that still lowers the work factor. This set is
obtained by relaxing the additional conditions again, one by one, to see if they had
any impact on the global work factor. Only the conditions of this minimal set are
kept. Experiments show that it is even possible, that relaxing conditions decreases
the work factor of the NL-characteristic. This fourth stage is also repeated several
times. The end result is shown in Table 13, where a work factor Nw of 251.53

is obtained. After the Stage 4, it is not possible to decrease the work factor by
adding or relaxing a single condition.

Note that the characteristics obtained after every stage are not necessarily the
best possible. Every stage can thus be performed several times, until a character-
istic is found that is good enough.

Experimental results indicating the impact of these double conditions on Nw

after each of the four stages, are shown in Table 9.
Although time limits did not allow us to find a colliding message pair, we have

verified for reduced versions that the complexity estimates accurately reflect the
actual search cost, both with and without the inclusion of double conditions.

5 Conclusion and Future Work

This paper shows how techniques developed for SHA-1 in [2] can be further im-
proved and generalized for a simplified variant of the hash function HAS-V. This
simplified variant consists of only a single stream.

For 45 steps of this simplified HAS-V, an NL-characteristic is constructed,

84 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

requiring about 251.53 step function evaluations, or about 246 compression function
evaluations, to find a collision. A lot of the message bits can still be freely chosen
when using this characteristic.

Stage 1 of method of De Cannière and Rechberger [2], the search for a good
L-characteristic, is replaced by the requirement that collisions occur in a very short
region. As the method described in this paper can be applied without finding good
L-characteristics first, it might be used for hash functions such as RIPEMD-160 [3],
for which also no good L-characteristics were found [10].

“Double conditions” are introduced as conditions for two pair of bits. They
can be used to speed up the actual collision search.

An extra stage, Stage 4, is introduced to further improve the work factor for
finding a collision. It is shown how this additional stage can reduce the work
factor from 275.84 step function evaluations, or about 271 compression function
evaluations, in Table 12, to 251.53, or about 246 compression function evaluations,
in Table 13.

6 Acknowledgments

The authors would like to thank their colleagues at COSIC, and the symmetric
cryptography subgroup in particular, for their useful comments and suggestions.
Special thanks go to Vesselin Velichkov, who greatly helped in improving the clarity
of this paper.

Several techniques in this paper were already used in the cryptanalysis of SHA-1
by Christophe De Cannière and Christian Rechberger [2], but had not been ex-
plained before. The authors are greatly indebted to Christian Rechberger, not
only for his useful comments and suggestions, but also for allowing us build upon
his previous work for SHA-1.

References

[1] M. Crispin. Internet Message Access Protocol - Version 4rev1. RFC 3501 (Pro-
posed Standard), March 2003. http://www.ietf.org/rfc/rfc3501.txt.

[2] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General
Results and Applications. In X. Lai and K. Chen, editors, ASIACRYPT,
volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

[3] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A Strengthened
Version of RIPEMD. In D. Gollmann, editor, FSE, volume 1039 of Lecture
Notes in Computer Science, pages 71–82. Springer, 1996.

http://www.ietf.org/rfc/rfc3501.txt

REFERENCES 85

[4] P. Hawkes, M. Paddon, and G. G. Rose. Musings on the Wang et al. MD5 Col-
lision. Cryptology ePrint Archive, Report 2004/264, 2004. http://eprint.

iacr.org/.

[5] S. Indesteege and B. Preneel. Practical Collisions for EnRUPT. In O. Dunkel-
man, editor, FSE, volume 5665 of Lecture Notes in Computer Science, pages
246–259. Springer, 2009.

[6] G. Leurent. Message Freedom in MD4 and MD5 Collisions: Application
to APOP. In A. Biryukov, editor, FSE, volume 4593 of Lecture Notes in
Computer Science, pages 309–328. Springer, 2007.

[7] C. H. Lim and P. J. Lee. A Study on the Proposed Korean Digital Signature
Algorithm. In K. Ohta and D. Pei, editors, ASIACRYPT, volume 1514 of
Lecture Notes in Computer Science, pages 175–186. Springer, 1998.

[8] H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential
Properties of Addition. In M. Matsui, editor, FSE, volume 2355 of Lecture
Notes in Computer Science, pages 336–350. Springer, 2001.

[9] H. Lipmaa, J. Wallén, and P. Dumas. On the Additive Differential Probability
of Exclusive-Or. In B. K. Roy and W. Meier, editors, FSE, volume 3017 of
Lecture Notes in Computer Science, pages 317–331. Springer, 2004.

[10] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rĳmen. On the Collision
Resistance of RIPEMD-160. In S. K. Katsikas, J. Lopez, M. Backes, S. Gritza-
lis, and B. Preneel, editors, ISC, volume 4176 of Lecture Notes in Computer
Science, pages 101–116. Springer, 2006.

[11] F. Mendel and V. Rĳmen. Weaknesses in the HAS-V Compression Function.
In K.-H. Nam and G. Rhee, editors, ICISC, volume 4817 of Lecture Notes in
Computer Science, pages 335–345. Springer, 2007.

[12] J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939 (Standard),
May 1996. http://www.ietf.org/rfc/rfc1939.txt.

[13] National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algo-
rithm (SHA-3) Family. Federal Register, 27(212):62212–62220, November
2007. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_

Nov07.pdf.

[14] N. K. Park, J. H. Hwang, and P. J. Lee. HAS-V: A New Hash Function with
Variable Output Length. In D. R. Stinson and S. E. Tavares, editors, Selected
Areas in Cryptography, volume 2012 of Lecture Notes in Computer Science,
pages 202–216. Springer, 2000.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ietf.org/rfc/rfc1939.txt
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

86 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

[15] B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

[16] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000. http://

www.ietf.org/rfc/rfc2818.txt.

[17] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. A. Molnar, D. A. Osvik,
and B. de Weger. MD5 considered harmful today: Creating a rogue CA
certificate, December 2008. 25th Chaos Communications Congress, Berlin,
Germany.

[18] M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-Prefix Collisions for
MD5 and Colliding X.509 Certificates for Different Identities. In M. Naor,
editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer Science,
pages 1–22. Springer, 2007.

[19] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash
Functions MD4 and RIPEMD. In R. Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 1–18. Springer, 2005.

[20] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In
V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Sci-
ence, pages 17–36. Springer, 2005.

[21] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In
R. Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2005.

[22] A. F. Webster and S. E. Tavares. On the Design of S-Boxes. In H. C. Williams,
editor, CRYPTO, volume 218 of Lecture Notes in Computer Science, pages
523–534. Springer, 1985.

A NL-characteristics

The NL-characteristics obtained after Stage 3 of Sect. 4 are shown in Table 12.
After Stage 4, Table 13 is obtained. The work factor Nw improves from 275.84 to
251.53.

B A Two-bit Example

B.1 Introduction

Let n denote the word size in bits. We will write the differential probability of
addition modulo 2n as xdp+(α, β → γ), where α, β and γ are bitstrings, most
significant bit first. The best known method to find xdp+ was an exponential-in-n

http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2818.txt

A TWO-BIT EXAMPLE 87

calculation, before Lipmaa and Moriai introduced their algorithm in [8]. In [9],
it was shown how xdp+ can be calculated as a series of matrix multiplications in
linear time in n.

In this section, we will calculate the xdp+(11, 01→ 10) by representing the ad-
dition as a graph and applying dynamic programming. We then show the relation
of this graph method with [9], as both algorithms can be implemented in O(n) by
using matrix multiplications. Afterwards, we mention several improvements and
extensions to the graph method. Although this two-bit example may seem con-
trived, we found a fully worked-out example to be very useful to help understand
the more abstract explanation of Fig. 3-6 in Sect. 3. There, an extension of the
graph method is used to represent the step update function of HAS-V.

B.2 Visualizing xdp+(11, 01→ 10) in a Graph

For xdp+(α1 ‖ α0, β1 ‖ β0 → γ1 ‖ γ0) , xdp+(11, 01 → 10), we consider two
additions, z = x+ y and z′ = x′+ y′, as shown in Fig. 8. For this particular xdp+,
we define the input differences for the least significant bits (α0 = x0 ⊕ x′0 = 1
and β0 = y0 ⊕ y′0 = 1), and for the most significant bits (α1 = x1 ⊕ x′1 = 1 and
β1 = y1 ⊕ y′1 = 0). We assume that all valid inputs x, x′ and y, y′ are uniformly
distributed. We then find xdp+(11, 01 → 10) as the probability that the output
has difference γ0 = z0 ⊕ z′0 = 0 and γ1 = z1 ⊕ z′1 = 1.

The calculation for the least significant bits is shown in Table 10. As there is
no carry input for the least significant bits, we only consider C0 = C ′0 = 0. We list
all values that satisfy the input conditions (α0 and β0) for the least significant bit.
Note that the output condition (γ0 = z0 ⊕ z′0 = 0) is satisfied as well for all valid
inputs (C0, C

′
0, x0, y0, x

′
0, y
′
0).

Table 10 – The summation for the least significant bits (z0, z′0),
where α0 = x0 ⊕ x′0 = 1 and β0 = y0 ⊕ y′0 = 1

C0 C ′0 x0 y0 x′0 y′0 C1 C ′1 z0 z′0 α0 β0 γ0
0 0 0 0 1 1 0 1 0 0 1 1 0
0 0 0 1 1 0 0 0 1 1 1 1 0
0 0 1 0 0 1 0 0 1 1 1 1 0
0 0 1 1 0 0 1 0 0 0 1 1 0

We then draw each of these input values as the four rightmost edges in the
graph of Fig. 9. Every edge is labeled with the input conditions [x0 y0 x

′
0 y
′
0],

and starts at (C0, C0). Together, these uniquely determine (z0, z′0) and (C1, C1).
For now, the reader can ignore that some lines are dashed.

Next, we do the calculation for the most significant bits, as shown in Table 11.
We again list all values that satisfy the input conditions (α1 and β1). Note that
now, several carry inputs (C1, C

′
1) are possible. The output condition (γ1 = z1 ⊕

z′1 = 1) is not always satisfied, implying that xdp+(11, 01→ 10) < 1.

88 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

Table 11 – The summation for the most significant bits (z1, z′1),
where α1 = x1 ⊕ x′1 = 1 and β1 = y1 ⊕ y′1 = 0

C1 C ′1 x1 y1 x′1 y′1 C2 C ′2 z1 z′1 α1 β1 γ1
0 0 0 0 1 0 0 0 0 1 1 0 1
0 0 0 1 1 1 0 1 1 0 1 0 1
0 0 1 0 0 0 0 0 1 0 1 0 1
0 0 1 1 0 1 1 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 1 0 0
1 0 0 1 1 1 1 1 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 1 0 1 1 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 1 1 1 0 1 1 1 1 0 0
0 1 1 0 0 0 0 0 1 1 1 0 0
0 1 1 1 0 1 1 1 0 0 1 0 0

Again, we draw each of the inputs of Table 11 as edges in Fig. 9. To improve
the readability, we use three separate coordinate systems on top of each other on
the left of the figure. These should in fact overlap: the same nodes are represented
three times. For example, four edges end in (C2, C

′
2) = (0, 0). If the output

pairs are valid (γ1 = z1 ⊕ z′1 = 1), we use full lines, and if they are invalid
(γ1 = z1 ⊕ z′1 = 0), dashed lines are used.

Due to backward propagation (explained in Fig. 5), the inputs [x0 y0 x
′
0 y
′
0]

with values [00 11] and [11 00] become dashed lines as well: they will eventually
result in an incorrect output difference γ1 = 0. The probability xdp+(11, 01→ 10)
is then equal to the number of paths in the graph with valid inputs (x, x′, y, y′)
and outputs z, z′ (full lines), divided by the number of paths that have valid inputs
(x, x′y, y′) (full or dashed lines). This ratio is equal to 8/16, or 1/2.

Note that storing this graph does not require a lot of memory. For every bit in
the n-bit addition, we need to store 26 bits. Each of these 26 bits is either set to
1 if the input (C0, C

′
0, x0, y0, x

′
0, y
′
0) is valid, and 0 otherwise. For the entire n-bit

addition, we thus need to store only 26n bits; the memory requirement is O(n).

B.3 Calculating xdp+(11, 01→ 10) Using Matrix Multiplications

Similar to [9], we can calculate xdp+ as a series of matrix multiplications. The
graph of Fig. 9 can be seen as a first-order Markov chain. We have [1 0 0 0]T as
the initial distribution, as the input carry of the addition is C0 = C ′0 = 0 with
probability 1. All three other input carries (C0, C

′
0) have probability 0.

As the input conditions for [x0 y0 x
′
0 y
′
0] are given, these specify the transi-

tion matrix of the Markov chain. Every column contains the transition probabili-
ties for one carry input (C0, C

′
0) to every carry output (C1, C

′
1). We left-multiply

A TWO-BIT EXAMPLE 89

the initial distribution by this transition matrix. We do the same for every subse-
quent bit of the n-bit addition.

Lastly, we sum all probabilities (by left-multiplying by [1 1 1 1]): the carry
outputs (Cn, C ′n) are not used, so all of them are valid. This gives us the total
probability of xdp+.

B.4 Extending the Graph Method

As the reader may have noticed, the matrices of the previous section are larger
than those in [9]. This is because we do not take the symmetry into account:
although the value of Ci ⊕ C ′i would be sufficient, we keep track of the values of
(Ci, C ′i). This symmetry exists because we restrict the input differences α, β and
the output differences γ to exclusive-or differences.

The graph based method of the previous section, however, can also support the
signed differences that were used for the cryptanalysis of MD5 [21], and as well as
all the other generalized conditions of Table 7.

It is straightforward to generalize the graph method to the addition of three
or more words. In this case, we extend each of the n adders of Fig. 8 to three or
more input bits. This will increase the maximal values of the carry (Ci, C ′i): for
example, the addition of four bits (and the carry input) can have a maximal carry
output of 3.

In this case, value of the carry (Ci, C ′i) is equal to all output bits of the adder
at position i, except the least significant bit. This can be seen as a variant of
Fig. 8, where three or more bits are input to every adder.

In fact, the method can be generalized for any combination of additions, XORs
and Boolean functions, as long as no rotations are present (except at the input
or output). It is this calculation that was used for every step of SHA-1 in [2],
and is also used for every step of HAS-V in this paper. By constructing higher-
order Markov chains, the graph method was used in [5] to efficiently calculate the
differential probability of a multiplication by 9, given by xdp+(x, x≪ 3).

90 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

 o Q
t-4

 o Q
t-3

 o Q
t-2

 o Q
t-1

 o Q
t

 o Q
t+1

 i-S
t
 i+2

 i-S
t’
 i

 x Q
t’-4

 x Q
t’-3

 x Q
t’-2

 x Q
t’-1

 x Q
t’

 x Q
t’+1

 o Q
t-4

 o Q
t-3

 o Q
t-2

 o Q
t-1

 o Q
t

 o Q
t+1

 i-S
t
 i+4 i

 i-S
t’
 i+2

 x Q
t’-4

 x Q
t’-3

 x Q
t’-2

 x Q
t’-1

 x Q
t’

 x Q
t’+1

 o Q
t-4

 o Q
t-3

 o Q
t-2

 o Q
t-1

 o Q
t

 o Q
t+1

 i-S
t
 i+2

 i-S
t’
 i

 x Q
t’-4

 x Q
t’-3

 x Q
t’-2

 x Q
t’-1

 x Q
t’

 x Q
t’+1

o x

o x

o x

Figure 7 – Double conditions for the HAS-V step function, obtained
as the only possible overlaps of at least two bits in Fig. 2 with a
translated version of this pattern

A TWO-BIT EXAMPLE 91

x
0
 y

0

+

z
0

C
0
=0C

1

x
1
 y

1

+

z
1

C
2

x
0
‘ y

0
‘

+

z
0
‘

C
0
‘=0C

1
‘

x
1
‘ y

1
‘

+

z
1
‘

C
2
‘

Figure 8 – Calculating z = x+y and z′ = x′+y′. All variables with
subscripts represent one bit.

0 1 C
0

C
0
’

1

[01 10]

[x
0
 y

0
 x

0
‘ y

0
‘]

0 1 C
1

C
1
’

1

[11 00]

[10 01]

[00 11]

0 1 C
2

C
2
’

1

0 1 C
2

C
2
’

1

0 1 C
2

C
2
’

1

[01 11]

[00 10]

[11 01]

[10 00]

[11 01]

[00 10]

[01 11]

[10 00]

[01 11]

[11 01]
[10 00][00 10]

[x
1
 y

1
 x

1
‘ y

1
‘]

Figure 9 – Graph representation to calculate xdp+(11, 01 → 10).
Only valid input pairs are shown. Full lines are used for the eight
paths that have valid output pairs (γ1 = z1 ⊕ z′1 = 1), and dashed
lines are used for paths with invalid output pairs (γ1 = z1 ⊕ z′1 = 0).
As there are eight of each, the ratio gives xdp+(11, 01 → 10) =
8/16 = 1/2. The three coordinate systems on top of each other
on the left represent the same nodes three times. This makes the
drawing more readable, however note that, for example, four edges
end in (C2, C

′
2) = (0, 0).

92 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

Table 12 – NL-characteristic of 45 steps after Stage 3, work factor
Nw = 275.84

t ∇Qt+1 ∇Wt FW Pu(t) Pc(t) Ns(t)
-5 00001111010010111000011111000011
-4 01000000110010010101000111011000
-3 01100010111010110111001111111010
-2 11101111110011011010101110001001
-1 01100111010001010010001100000001
0 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
1 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
2 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
3 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
4 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
5 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
6 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
7 -------------------------------- ------------------------------10 30 0.00 0.00 0.00
8 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
9 -------------------------------- -------------------------------- 32 0.00 0.00 0.00

10 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
11 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
12 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
13 ----------------------0--------- -------------------------------- 32 -1.00 0.00 22.60
14 -------------------010001101100- -------------------------------- 0 -12.00 0.00 53.60
15 --------------------001011---1-0 -------------------------------- 0 -9.00 0.00 41.60
16 ---0---------------unnnnnnnnnnnn 1------------------------------u 30 -14.00 -1.00 32.60
17 0--1-----------------0100u111010 -------------------------------- 32 -13.00 0.00 48.60
18 0--1------1---------uu-uu0001110 -----------------------000-----u 28 -19.77 -7.77 67.60
19 01-unn--nnu------------11000nn10 0------------------------------- 0 -19.00 -1.97 75.83
20 n-u0uu001-000----------0-0000-10 -----------------------1-101--00 0 -14.30 -2.30 56.83
21 u-u-0n11----0---------11-010--10 1------------------------------u 0 -18.98 -6.42 42.53
22 --1-110---011----------0-n----11 ------------------------------10 0 -10.00 -1.00 23.56
23 --0-0-10-----------------n-0---0 -----------------------000-----u 0 -7.56 -1.61 13.56
24 --1-1--1-------------------1---- -------------------------------- 0 -4.00 0.00 6.00
25 ---------------------------0---- -------------------------------- 0 -1.00 0.00 2.00
26 ---------------------------1---- -------------------------------- 0 -1.00 0.00 1.00
27 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
28 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
29 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
30 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
31 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
32 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
33 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
34 -------------------------------- 0------------------------------- 0 0.00 0.00 0.00
35 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
36 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
37 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
38 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
39 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
40 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
41 -------------------------------- 0------------------------------- 0 0.00 0.00 0.00
42 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
43 -------------------------------- ------------------------------10 0 0.00 0.00 0.00
44 -------------------------------- -------------------------------- 0 0.00 0.00 0.00

A TWO-BIT EXAMPLE 93

Table 13 – NL-characteristic of 45 steps after Stage 4, work factor
Nw = 251.53

t ∇Qt+1 ∇Wt FW Pu(t) Pc(t) Ns(t)
-5 00001111010010111000011111000011
-4 01000000110010010101000111011000
-3 01100010111010110111001111111010
-2 11101111110011011010101110001001
-1 01100111010001010010001100000001
0 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
1 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
2 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
3 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
4 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
5 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
6 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
7 -------------------------------- ----00------------------------10 28 0.00 0.00 0.00
8 -------------------------------- -------------------------------- 32 0.00 0.00 0.00
9 -------------------------------- -------------------------------- 32 0.00 0.00 0.00

10 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
11 ---------------------0---------- -------------------------------- 32 -1.00 0.00 0.00
12 ---------------------0-0-------- -------------------------------- 32 -2.00 0.00 0.00
13 --------------------1-00-----0-- -------------------------------- 32 -4.00 0.00 23.48
14 -------------------0100011011001 -------------------------------- 0 -13.00 0.00 51.48
15 ------00-----------0001011011110 -------------------------------- 0 -17.00 0.00 38.48
16 -1-0--110----------unnnnnnnnnnnn 10---------------------1-00---0u 25 -17.83 -4.24 21.48
17 01-1--1------------110100u111010 ------------------------0------- 31 -18.00 0.00 28.65
18 00-1-1110011111-----uu1uu0001110 ---------------------01000--1--u 25 -20.00 -1.00 41.65
19 01-unn--nnu1111------1011000nn10 000-00000100000------1-100000000 0 -11.58 -8.59 46.65
20 n-u0uu0010000---------0000000-10 000001011110---1------0101011000 0 -6.10 -4.62 35.07
21 u-u-0n11--110---------11-01---10 10---------------------1-00---0u 0 -10.03 -1.00 28.96
22 --1-110---011----------0-n----11 ----00------------------------10 0 -7.46 -0.12 18.93
23 --0-0-10-----------------n-0---0 ---------------------01000--1--u 0 -5.48 0.00 11.48
24 --1-1--1-------------------1---- -------------------------------- 0 -4.00 0.00 6.00
25 ---------------------------0---- -------------------------------- 0 -1.00 0.00 2.00
26 ---------------------------1---- -------------------------------- 0 -1.00 0.00 1.00
27 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
28 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
29 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
30 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
31 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
32 -------------------------------- ------------------------0------- 0 0.00 0.00 0.00
33 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
34 -------------------------------- 000-00000100000------1-100000000 0 0.00 0.00 0.00
35 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
36 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
37 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
38 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
39 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
40 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
41 -------------------------------- 000-00000100000------1-100000000 0 0.00 0.00 0.00
42 -------------------------------- -------------------------------- 0 0.00 0.00 0.00
43 -------------------------------- ----00------------------------10 0 0.00 0.00 0.00
44 -------------------------------- -------------------------------- 0 0.00 0.00 0.00

94 FINDING COLLISIONS FOR A 45-STEP SIMPLIFIED HAS-V

Publication Chapter

Cryptanalysis of the ESSENCE
Family of Hash Functions

Publication Data

Nicky Mouha, Gautham Sekar, Jean-Philippe Aumasson, Thomas Peyrin,
Søren S. Thomsen, Meltem Sönmez Turan, and Bart Preneel. Crypt-
analysis of the ESSENCE Family of Hash Functions. In Feng Bao, Moti
Yung, Dongdai Lin, and Jiwu Jing, editors, Inscrypt, volume 6151 of
Lecture Notes in Computer Science, pages 15–34. Springer, 2009.

Contributions

• Main author. Devised the attack on 31 rounds. The distinguishing attacks
on 14 rounds are by Gautham Sekar.

95

96 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

Cryptanalysis of the ESSENCE Family of Hash

Functions∗

Nicky Mouha1,2,†, Gautham Sekar1,2,‡, Jean-Philippe Aumasson3,§,
Thomas Peyrin4, Søren S. Thomsen5, Meltem Sönmez Turan6, and

Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
3 FHNW, Windisch, Switzerland.

4 Ingenico, France.
5 Department of Mathematics, Technical University of Denmark, Matematiktorvet

303S, DK-2800 Kgs. Lyngby, Denmark.
6 Computer Security Division, National Institute of Standards and Technology, USA.

{nicky.mouha,gautham.sekar,bart.preneel}@esat.kuleuven.be,

jeanphilippe.aumasson@gmail.com, thomas.peyrin@gmail.com, ssth@win.dtu.dk,

meltem.turan@nist.gov

Abstract. ESSENCE is a family of cryptographic hash functions, ac-
cepted to the first round of NIST’s SHA-3 competition. This paper
presents the first known attacks on ESSENCE. We present a semi-
free-start collision attack on 31 out of 32 rounds of ESSENCE-512,
invalidating the design claim that at least 24 rounds of ESSENCE
are secure against differential cryptanalysis. We develop a novel tech-
nique to satisfy the first nine rounds of the differential characteristic.
Non-randomness in the outputs of the feedback function F is used
to construct several distinguishers on a 14-round ESSENCE block ci-
pher and the corresponding compression function, each requiring only
217 output bits. This observation is extended to key-recovery attacks
on the block cipher. Next, we show that the omission of round con-
stants allows slid pairs and fixed points to be found. These attacks
are independent of the number of rounds. Finally, we suggest several
countermeasures against these attacks, while still keeping the design
simple and easy to analyze.

Keywords: Cryptanalysis, hash function, ESSENCE, semi-free-start
collision, distinguisher, key-recovery, slide attack.

∗This work was supported in part by the IAP Program P6/26 BCRYPT of the Belgian State
(Belgian Science Policy), and in part by the European Commission through the ICT program
under contract ICT-2007-216676 ECRYPT II.
†This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).
‡This author is supported by an ADAPID project.
§Supported by the Swiss National Science Foundation under project no. 113329.

97

mailto:\protect \T1\textbraceleft nicky.mouha,gautham.sekar,bart.preneel\protect \T1\textbraceright @esat.kuleuven.be, jeanphilippe.aumasson@gmail.com, thomas.peyrin@gmail.com, ssth@win.dtu.dk, meltem.turan@nist.gov

98 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

1 Introduction

Recent attacks by Wang et al. on the widely used hash functions MD4 [16],
MD5 [17], RIPEMD [16] and SHA-1 [18], as well as other hash functions, show
that collisions for these hash functions can be found much faster than expected by
the birthday paradox [15].

In search for a new secure hash function standard, NIST announced the SHA-
3 hash function competition [12]. The ESSENCE family of cryptographic hash
functions, designed by Martin [8], advanced to the first round of this competition.
It is a family of block cipher-based hash functions using the Merkle-Damgård
mode of operation. The ESSENCE family uses simple algorithms that are easily
parallelizable and well-established mathematical principles. ESSENCE comes with
a proof of security against linear and differential cryptanalysis, that until this paper
remained unchallenged.

First, we describe several undesired properties of the ESSENCE L function.
These can be used to build a semi-free-start collision attack [11, pp. 371–372] on
31 out of 32 rounds of the ESSENCE-512 compression function using a differential
characteristic. This directly invalidates the design claim that at least 24 rounds
of ESSENCE are resistant against differential cryptanalysis [8]. To build our
attack, we describe a novel technique to satisfy the conditions imposed by the
characteristic in the first nine rounds. We do not know of a similar technique in
existing literature.

Then, we find that the ESSENCE compression functions use a non-linear feed-
back function F that is unbalanced. We first exploit this to build efficient dis-
tinguishers on 14-round versions of the ESSENCE block ciphers as well as the
compression functions. These distinguishers require only 217 output bits. We then
show how to use these results to recover the key with a few known plaintexts and
a computational effort less than that of exhaustive search. We also show that,
under some circumstances, the attacks on 14-round ESSENCE could be extended
to the full 32-round block cipher and compression function.

Following this, we observe that the omission of round constants in ESSENCE
leads to several attacks that cannot be prevented by increasing the number of
rounds. A slide attack can be applied to any number of rounds of the ESSENCE
compression function. We also find fixed points for any number of rounds of the
ESSENCE block cipher, that lead to a compression function output of zero.

ESSENCE was not advanced to the second round of the SHA-3 competition;
however, its appealing features (like design simplicity and hardware efficiency)
make any effort on tweaking it appear worthwhile. Therefore, in this paper, we
also suggest some countermeasures to thwart the aforesaid attacks.

In later work, Naya-Plasencia et al. [13] present different results on ESSENCE.
Our paper presents not only differential cryptanalysis but also distinguishing at-
tacks and slide attacks. Furthermore, some of our techniques can easily be gener-
alized to other block ciphers and hash functions.

The paper is organized as follows. Section 2 describes the compression function

DESCRIPTION OF THE COMPRESSION FUNCTION OF ESSENCE 99

of ESSENCE. In Sect. 3, we define and calculate the branching number of the
linear L function for both linear and differential cryptanalysis. As the branching
number turns out to be quite low, we use this observation to build a semi-free-start
collision attack for 31 out of 32 rounds in Sect. 4. To satisfy the first nine rounds
of the differential characteristic of the semi-free-start collision attack, we develop
a technique in Sect. 5. Our distinguishers that exploit the weakness of F function
are presented in Sect. 6. In the same section, we also show how our distinguishing
attacks can be converted into key-recovery attacks on the block ciphers. Following
this, we show how the omission of round constants allows us to find slid pairs
(Sect. 7) and fixed points (Sect. 8) for any number of rounds. Finally, Sect. 9
enlists our countermeasures and Sect. 10 concludes the paper.

2 Description of the Compression Function of

ESSENCE

The inputs to the compression function of ESSENCE are an eight-word chain-
ing value and an eight-word message block, where each word is 32 or 64 bits in
length, for ESSENCE-224/256 and ESSENCE-384/512 respectively. The compres-
sion function uses a permutation E, that in turn uses a nonlinear feedback function
F , a linear transformation L, some XORs and word shifts.

The message block m = (m0, . . . ,m7) forms the initial value of an eight-word
state k = (k0, . . . , k7). In the case of the block cipher, m is the key k = (k0, . . . , k7).
Similarly, the chaining value c = (c0, . . . , c7) is the initial chaining value of an
eight-word state r = (r0, . . . , r7). In the case of the block cipher, c is the plaintext.
Both states are iterated N times. The designer recommends N to be a multiple
of 8, N ≥ 24 for resistance to differential and linear cryptanalysis and N = 32
as a measure of caution [8]. Figure 1 illustrates one round of ESSENCE. The

? ? ? ? ? ? ?

?

�������

- ?-

L
?F

? ? ? ? ? ? ?

?

�������

- ?-

L
?F

6
�� �r7 r6 r5 r4 r3 r2 r1 r0 k7 k6 k5 k4 k3 k2 k1 k0

Figure 1 – One round of ESSENCE; each rn and kn (n = 0, . . . , 7)
is a 32- or 64-bit word

compression function uses a Davies-Meyer feed-forward (see Fig. 2). That is, at
the end of N rounds, the value r7||r6||r5||r4||r3||r2||r1||r0 is XORed with the initial
chaining value. The result is the r7||r6||r5||r4||r3||r2||r1||r0 for the next iteration.

100 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

E -- ?

6

k

-rini rfin

Figure 2 – The compression function of ESSENCE; E is the round
function of ESSENCE when iterated N times, k denotes the message
block, rini denotes the initial value of r7||r6||r5||r4||r3||r2||r1||r0 and
rfin denotes the value of r for the next iteration

3 Branching Number of the L Function

The L function of ESSENCE is a linear transformation from 32 (or 64) bits to
32 (or 64) bits and it is the only component that causes diffusion between the
different bit positions of a word. Therefore, its properties are very important for
both linear and differential cryptanalysis.

In this section, we focus on the branching number of the L function for both
linear and differential cryptanalysis. Let the branching number for differential
cryptanalysis be the minimum number of non-zero input and output differences
for the L function. These branching numbers are 10 and 16 for the 32-bit and
64-bit L functions respectively. If we were to consider only one-bit differences at
either the input or the output of L, these numbers would be 14 and 27 respectively.

The branching number for linear cryptanalysis can be defined as the (non-zero)
minimum number of terms in a linear equation relating the input and output bits
of the L function. These branching numbers are 10 and 17 for the 32-bit and
64-bit L function respectively. Considering linear relations that involve only one
bit at the input or one bit at the output, we would find branching numbers of 12
and 26 respectively.

Although one-bit differences are spread out well by the L function, this is
clearly not the case for differences in multiple bits. This problem is most severe
with the 64-bit L function. In the next section, we will show how this property
can be used to build narrow trails for all digest sizes of ESSENCE.

4 A 31-Round Semi-Free-Start Collision Attack For

ESSENCE-512

In this section, we will focus only on ESSENCE-512 for the sake of brevity and
clarity. As the strategy is not specific to any particular digest size, these results

A 31-ROUND SEMI-FREE-START COLLISION ATTACK FOR ESSENCE-512 101

can easily be generalized to all digest sizes of ESSENCE.
Although the ESSENCE L function spreads out one-bit differences very well,

the previous section showed that this is not the case for differences in multiple
bits. We therefore propose to use the differential characteristic of Table 1, to
obtain 31-round semi-free-start collisions for ESSENCE-512.

To construct narrow trails, we use the non-zero difference A with the lowest
possible Hamming weight. For this difference, we impose the condition (¬A) ∧
L(A) = 0, where ¬ represents the negation operation and all logical operations
are to be performed bitwise. This can be formulated as follows: if there is a
difference at the output of the L function at a particular bit position, there must
be a difference at the input of L at this bit position as well. This requirement
is necessary, as the F function can absorb or propagate an input difference at
the output, but if no input difference is present, then there won’t be an output
difference either at this particular bit position. This places a restriction on the
output difference of the L function for this bit position.

There exist exactly 8 differences A with a weight of 17 and lower weight differ-
ences A do not exist. These differences are available in Appendix A, along with a
method to calculate them efficiently.

The last two columns of Table 1 provide an estimate of the probability that
the characteristic is satisfied for every round. For these, we have assumed that the
F function propagates or absorbs an input difference with equal probability. A
more accurate calculation of these probabilities takes into account that the shift
register causes input values of the F function to be reused.

We find that this probability is different for bit positions where A and L(A)
both contain a difference, and for bit positions where only A contains a difference.
As such, of all differences A with weight 17, we select the difference that has
the highest weight of L(A). Five such differences exist, and we arbitrarily select
the difference with the smallest absolute value, A = 0A001021903036C3. The
corresponding L(A) = 0200100180301283 has weight 11. As such, we find that
rounds 10 to 16 of the key schedule, and rounds 18 to 24 of the compression
function, each have a probability of 2−8.415·6−8·11 = 2−138.49. For rounds 18 to 23
of the key schedule, we find a probability of 2−7.193·6−7·11 = 2−120.16.

To find semi-free-start collisions, we first search for a message pair that satisfies
the key expansion characteristic, and then afterwards search for a chaining value
pair that satisfies the compression function characteristic. These two searches can
be decoupled, as the chaining value does not influence the key schedule. As such,
the probabilities for the message pairs and IV pairs can be summed up instead of
multiplied.

As will be shown in the next section, only two round function calls are required
to find a message (or IV) that satisfies the first nine rounds of the key expansion
(or compression function). To find a pair of messages (or IVs) that satisfy the
differential characteristic, we use the same depth-first search algorithm that was
introduced for SHA-1 in [2]. The memory requirements of this search algorithm are
negligible. We assume that the cost of visiting a node in this search tree is equiva-

102 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

lent to one round function call, or 2−5 compression function calls. The complexity
calculation of [2] then shows that a 31-round semi-free-start collision can be found
using the characteristic of Table 1 after 2138.49+120.16+1−5 + 2138.49+1−5 = 2254.65

equivalent compression function calls. This is faster than a generic birthday attack,
which requires about 2256 compression function evaluations.

5 Finding Message Pairs for the First Nine Rounds

To find messages that satisfy the first few rounds of the characteristic, single-
message modification [17] cannot be used. This is because the entire message is
loaded into the r-registers before the round function is applied, instead of injecting
one message word every round. We therefore propose to use another technique,
that turns out to be even more efficient than single-message modification. This
concept is explained for the key schedule only, as it is completely analogous for
the compression function.

In this section, we will adopt a stream-based notation for the round function.
Denote the initial eight-word state (k7, k6, k5, k4, k3, k2, k1, k0) as (x−2, x−1, x0,
x1, x2, x3, x4, x5). After clocking one for one round, the value of the register k0 is
represented by x6, and so on. In this text, we will not make a distinction between
linear and affine equations, and use the term “linear equation” for any equation
that contains no monomials of a degree more than one.

Finding a pair of messages that satisfy the characteristic, can be seen as solving
a set of non-linear equations defined by the round function. Solving a set of non-
linear equations is a difficult problem in general. This is even more the case as we
are not looking for a single solution, but for a very large set of solutions.

What we can do, however, is impose linear conditions on the variables x0 to
x12, in such a way that the round function behaves as a linear function. We
then obtain a set of linear equations, of which every solution corresponds to a
message pair that follows the first nine rounds of the characteristic. Enumerating
the solutions of this linear space has a negligible computation cost compared to a
round function evaluation.

For every solution, we have to apply the round function twice to obtain x13

and x14. These are guaranteed to follow the characteristic as well. They serve as
a starting point to satisfy the conditions of the remaining characteristic in a prob-
abilistic way. After reaching round 31, we can calculate x−2 and x−1 by applying
two inverse round functions. These values will always satisfy the characteristic.

Let A[j] denote the j-th significant bit (j = 0 denotes the least significant bit
or LSB) of A. The only non-linear function of ESSENCE is the F function. As
the F function operates on every bit in parallel, the linear conditions that have
to be added, depend on the values A[j] and L(A)[j] at every bit position j. The
equations we use are given in Appendix B. Note that for bit positions j where
A[j] = 0, it is not a problem if x0[j] or x12[j] are represented by a non-linear
expression, as these bits are not involved in any of the linear conditions anyway.

FINDING MESSAGE PAIRS FOR THE FIRST NINE ROUNDS 103

Table 1 – A 31-round semi-free-start collision differential char-
acteristic for the ESSENCE-512 compression function; differences
from R to Y are arbitrary, 0 represents the zero difference, A =
0A001021903036C3

Round Register R Register K Pr for CV Pr for m
0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 1 1
2 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 2−17 2−17

3 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 2−17 2−17

4 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 2−17 2−17

5 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 2−17 2−17

6 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 2−17 2−17

7 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 2−17 2−17

8 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 2−17 2−17

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 1 2−17

11 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 1 2−17

12 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 1 2−17

13 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 1 2−17

14 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 1 2−17

15 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 1 2−17

16 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 1 2−17

17 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 1 1
18 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 2−17 2−17

19 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 2−17 2−17

20 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 2−17 2−17

21 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 2−17 2−17

22 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 2−17 2−17

23 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 2−17 2−17

24 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 R 2−17 1
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R S 1 1
26 0 0 0 0 0 0 0 0 0 0 0 0 0 R S T 1 1
27 0 0 0 0 0 0 0 0 0 0 0 0 R S T U 1 1
28 0 0 0 0 0 0 0 0 0 0 0 R S T U V 1 1
29 0 0 0 0 0 0 0 0 0 0 R S T U V W 1 1
30 0 0 0 0 0 0 0 0 0 R S T U V W X 1 1
31 0 0 0 0 0 0 0 0 R S T U V W X Y 1 1

104 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

As the equations in Appendix B show, we need to add 10 equations for every
bit position j where A[j] = 1, and 6 equations if A[j] = 0. Also, to represent the
64-bit values x8 to x12 resulting from the round function, we need to add 5 · 64
additional equations for outputs of the round function. In total, we obtain a set
of 10 · 17 + 6 · (64 − 17) + 5 · 64 = 772 linear equations in 13 · 64 = 832 binary
variables.

We build this system of equations by successively adding 10+5 = 15 or 6+5 =
11 more equations for every bit position j. With some small probability, the system
of equations becomes inconsistent. If this happens, we add a different set of linear
equations for this bit position. Even this may fail with some probability, in which
case we add a linearization of the F function using 7 + 5 instead of 6 + 5 equations
for this particular bit position. This may or may not decrease the number of
solutions slightly, but it allows us to avoid backtracking.

For one particular run, using only the equations mentioned in Appendix C,
we find a consistent system of 772 linear equations in 832 binary variables. The
number of linearly independent equations turns out to be 771. As such, we have
found 2832−771/2 = 260 pairs of messages that satisfy the first 9 rounds. We divide
by two to avoid counting the same pair twice. If more than 260 pairs of messages
are needed, we can simply run this program again to find the next set of messages.
As including these 771 equations would use up a lot of space, we give only one of
the 260 message pairs in Table 6.

This technique is very similar to the techniques of multi-message modifica-
tion [17], tunneling [7], neutral bits [1] and the amplified boomerang attack [6].
These 260 messages correspond to 60 auxiliary differential paths for the amplified
boomerang attack. No results are known to us where these auxiliary differential
paths were also obtained in a fully automated way.

6 Distinguishing Attacks

Our motivational observation is that the non-linear feedback function F is unbal-
anced. Exploiting this, we first construct distinguishers on 14-round ESSENCE
(both the block cipher and the compression function) and then for the full 32-round
ESSENCE. Towards the end of this section, we present key-recovery attacks on
the ESSENCE family of block ciphers. These attacks can be seen as an immediate
consequence of our distinguishing attacks.

6.1 Weakness in the Feedback Function of ESSENCE

In [8], the designer notes that the security of the algorithms is heavily dependent on
F , as it is the only nonlinear function in ESSENCE. This gave us some motivation
to study the properties of F . The function F takes seven 32-bit or 64-bit words (say,
a, . . . , g) as inputs and produces a 32-bit or 64-bit word as the output. The function

DISTINGUISHING ATTACKS 105

works in a bitsliced manner. The exact description of F is largely irrelevant to our
analysis; hence, we refer the interested reader to Appendix D.

Let F (a, b, c, d, e, f, g)[j] denote the j-th significant bit (j = 0 denotes the
LSB) of F (a, b, c, d, e, f, g). Our motivational observation is the following (con-
firmed both experimentally and from the tables in Appendix D of [8]).

Observation 1: If a, . . . , g are uniformly distributed, then

Pr[F (a, b, c, d, e, f, g)[j] = 0] =
1

2
+

1

27
. (1)

6.2 Distinguishers on 14-Round ESSENCE

In this section, we use Observation 1 to build distinguishers on 14 rounds of
ESSENCE. First, we consider the block cipher, then the compression function.

Let kn[j], rn[j] and L(rn)[j] respectively denote the j-th significant bits (j = 0
denotes the LSB) of kn, rn and L(rn). In the beginning, suppose the key k and
the initial value r are such that k0[0] = r0[0]. Then, after 7 rounds, k7[0] = r7[0].
Now, if after the 7th round, L(r0)[0] = 0 and F (r6, r5, r4, r3, r2, r1, r0)[0] = 0 (from
Observation 1, this occurs with 0.5 + 2−7 probability7), then after the 8th round,
we will have r0[0] = 0. Note that the condition L(r0)[0] = 0 after the 7th round
is the same as the condition L(r1)[0] = 0 after the 8th round. Therefore, when
the key and the plaintext are initially related in the form k0[0] = r0[0], and when
the outputs after 8 rounds satisfy the condition L(r1)[0] = 0 (this occurs with
probability 1/2), then Pr[r0[0] = 0] = 1/2 + 2−7. Now, r0 and r1 after the 8th
round are respectively equal to r6 and r7 after the 14th round. Hence, when the
key and the plaintext are related in the form k0[0] = r0[0], and when the outputs
after 14 rounds satisfy the condition L(r7)[0] = 0, then

Pr[r6[0] = 0] =
1

2
+

1

27
. (2)

6.3 The Distinguisher

A distinguisher is an algorithm that distinguishes one probability distribution from
another. In cryptography, a distinguisher is an algorithm that distinguishes a
stream of bits from a stream of bits uniformly distributed at random (i.e., bitstream
generated by an ideal cipher).

Our distinguisher on ESSENCE is constructed by collecting n outputs r6[0],
after 14 rounds, generated by as many keys (so that the n samples are indepen-
dent) such that k0[0] = r0[0] initially. Let D0 and D1 denote the distributions

7The bit L(r0)[0] is the XOR-sum of r0[0] and several other bits of r0. We assume
that all r0[j] are independent and uniformly distributed. Then the condition L(r0)[0] = 0
does not affect Pr[r0[0] = 0] and therefore the bias in Pr[F (r6, r5, r4, r3, r2, r1, r0)[0] = 0]
is also unaffected.

106 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

of the outputs from 14-round ESSENCE block cipher and a random permuta-
tion, respectively. Given L(r7)[0] = 0, let p0 and p1 respectively denote the
probability that r6[0] = 0 holds given the outputs are collected from 14-round
ESSENCE and the probability that r6[0] = 0 holds given the outputs are gener-
ated by a random source. That is, p0 = 1/2 + 2−7 (from (2)) and p1 = 1/2. Then,
µ0 = n · p0 and µ1 = n · p1 are the respective means of D0 and D1. Similarly,
σ0 =

√

n · p0 · (1− p0) and σ1 =
√

n · p1 · (1− p1) denote the respective standard
deviations of D0 and D1. When n is large, both these binomial distributions can
be approximated with the normal distribution. Now, if |µ0−µ1| > 2(σ0 +σ1), i.e.,
n > 216, the output of the cipher can be distinguished from a random permutation
with a success probability of 0.9772 (since the cumulative distribution function of
the normal distribution gives the value 0.9772 at µ + 2σ) provided L(r7)[0] = 0.
To test whether n is large enough for the normal approximation to the binomial
distribution to hold, we use a commonly employed rule of thumb: n · p > 5 and
n · (1 − p) > 5, where p ∈ {p0, p1}. A simple calculation proves that both the
above inequalities hold when n = 216. Since the condition L(r7)[0] = 0 holds with
0.5 probability, we need to generate 2 · 216 = 217 samples of r6[0] from as many
keys (such that k0[0] = r0[0] initially) to build the distinguisher with a success
probability of 0.9772. Our simulations support this result.

6.4 Distinguishers using Biases in Other Bits

Since the function F operates on its input bits in a bitsliced manner, it is easy to see
that the distinguisher presented for the LSB of r6 also works for more significant
bits. In other words, if initially k0[j] = r0[j], for any j in {0, . . . , 31}, then with 216

samples of r6[j] at the the end of 14 rounds, it is possible to distinguish 14-round
ESSENCE block cipher from a random permutation with a success probability of
0.9772.

6.5 Distinguishers for the Compression Function

The ESSENCE compression function is a Davies-Meyer construction in which the
output of the block cipher is XORed with the initial chaining value. In other
words, the output of the compression function is the XOR-sum of the values of
r7||r6||r5||r4||r3||r2||r1||r0 before and after applying the permutation E. This XOR-
sum is the chaining value r7||r6||r5||r4||r3|| r2||r1||r0 for the next iteration. As
we assume that an attacker can observe both the chaining value input and the
compression function output, it is trivial to undo the Davies-Meyer feedforward
and apply the distinguishers of the 14-round block cipher.

These observations are extended to 32-round ESSENCE in Appendix E.

SLIDE ATTACK 107

6.6 Key-Recovery Attacks

In this section, we show that the distinguishing attacks on the ESSENCE family
of block ciphers can be converted into key-recovery attacks.

Let us say that we have n known plaintexts. Considering that the plaintexts
are initially loaded directly into the r-registers [9], we expect n/2 plaintexts to
have r0[j] = 0. Without loss of generality, let us consider this partition of the
plaintext space where r0[j] = 0. Now, from our analysis in Sect. 6.2, we can
collect statistics on L(r7)[j] ⊕ r6[j] at the end of the 14 rounds and observe its
tendency for sufficiently large n — if L(r7)[j]⊕ r6[j] = 0 more often, then the key
bit k0[j] = 0; likewise, if L(r7)[j]⊕ r6[j] = 1 more often, then the key bit k0[j] = 1
(the results are swapped if we begin with plaintexts in which r0[j] = 1).

Using a similar analysis, we can recover the rest of the key bits in k0. The
number of known plaintexts required is 215. This is obtained as follows, using
standard linear cryptanalysis [10]. We are interested in finding whether, after 14
rounds, the number of times that L(r7)[j] ⊕ r6[j] = 0 holds is greater than n/4.
Accordingly, we determine the key bit k0[j]. Unlike in the distinguishing attacks,
a confidence interval for the uniform distribution is not required. From [10] we
obtain that the success probability of this method is 0.9772 when n/2 = |p −
1/2|−2, where p is the probability that L(r7)[j] ⊕ r6[j] = 0 (or 1). Substituting
p = 1/2 ± 2−7 in the above formula for n, we get n = 215. It follows that the
probability that this recovered key word (k0) is correct is (0.9772)32 ≈ 0.48. The
other 224 bits of the key can be exhaustively searched. Thereby, we expect that
2224/0.48 ≈ 2225.1 keys have to be tested before the correct key is obtained with
guaranteed success. This key-recovery attack can also be applied on the block
cipher of ESSENCE-224 (which is identical to the block cipher of ESSENCE-
256) with the same complexities. For the block ciphers of ESSENCE-384/512,
we require 215 known plaintexts and a computational effort equivalent to testing
2448/(0.9772)64 ≈ 2450.1 keys (where exhaustive search requires testing 2512 keys)
for guaranteed success.

These observations are extended to 32-round ESSENCE in Appendix F.

7 Slide Attack

In this part of the study, we provide an efficient method to find two inputs (c,m)
and (c′,m′) such that their output (after feed-forward) r and r′ are shifted versions
of each other; i.e., if ri = r′i+1 for 0 ≤ i < 7.

The necessary conditions on (c,m) and (c′,m′) are

1. ci = c′i+1 for 0 ≤ i ≤ 7 ,

2. c′0 = m7 ⊕ c7 ⊕ F (c6, . . . , c0)⊕ L(c0) ,

3. mi = m′i+1 for 0 ≤ i ≤ 7 ,

108 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

4. m′0 = m7 ⊕ F (m6, . . . ,m0)⊕ L(m0) .

If these conditions hold, then after 32 rounds (and XORing with the initial value),
the output of the compression function satisfies ri = r′i+1 for 0 ≤ i < 7.

As an example, let mi = 0 for all i. Then we must choose m′i = 0 for all i > 0,
and m′0 = 1n where 1n represents the 32-bit or 64-bit unsigned integer of which
all bits are set. Let ci = 0 for all i, let c′i = 0 for all i > 0, and let c′0 = 1n. Then,
the two outputs of the compression function (with N = 32) are:

c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

c′ FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m′ FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R 6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF B8EE4A3C B6118DC5 775F7BBF

R′ C07ABCFA 6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF B8EE4A3C B6118DC5

For every choice of (c,m), an input (c′,m′) such that this property on the
compression function outputs is obtained can be found in time equivalent to about
one compression function evaluation. Hence, in total about 2512 pairs of inputs
producing slid pairs can be found by the above method. This observation can
easily be extended to slide the output by 2, 3, . . . , 7 steps.

7.1 Slid Pairs with Identical Chaining Values

It is also possible to find slid pairs with c = c′. Let the initial state of the register
R be of the form (c0, c0, . . . , c0), where c0 is selected randomly. For a message
block m of the form (m0,m1, . . . ,m7) where m7 = F (c0, . . . , c0) ⊕ L(c0) and the
rest of the mi’s are selected arbitrarily, select m′ as (m′0,m

′
1, . . . ,m

′
7), such that

m′i+1 = mi for i = 0, 1, 2, . . . , 6 and m′0 = m7 ⊕ F (m6, . . . ,m0) ⊕ L(m0). Then,
the outputs of the compression function for m and m′ also satisfy ri = r′i+1 for
0 ≤ i < 7. It is possible to select c in 232 different ways, and for each selected c, we
can choose 27·32 different message blocks, therefore the number of such slid pairs
is 2256. As an example, assume c0 = 243f6a88, which is the truncated fractional
part of π, and all “free” message words are zero.

c, c′ 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88

m 00000000 00000000 00000000 00000000 00000000 00000000 00000000 F6B1EB63

m′ 094E149C 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R BE31AA01 EB6E9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AA0F6 6E80148E

R′ F86D77C6 BE31AA01 EB6E9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AA0F6

8 Fixed Points for the ESSENCE Block Cipher

If a fixed point for one round of the ESSENCE block cipher can be found, this
automatically leads to a fixed point for all 32 steps of the block cipher. After

MEASURES TO IMPROVE THE SECURITY OF ESSENCE 109

applying the Davies-Meyer feed-forward, the resulting compression function output
will then be zero.

If two different fixed points are found, this would lead to a free-start collision.
This free-start collision is preserved after the output padding is applied.

For a fixed point for one round, c0 = c1 = . . . = c7 and m0 = m1 = . . . = m7

should hold. This is obvious: after one step, all register values move one place, but
must have the same value as in the previous step to form a fixed point. Moreover,
the round update functions should satisfy the following equations.

F (c0, c0, c0, c0, c0, c0, c0)⊕ c0 ⊕ L(c0)⊕m0 = c0 ,

F (m0,m0,m0,m0,m0,m0,m0)⊕m0 ⊕ L(m0) = m0 .

Solving the equations, one gets the following values for ESSENCE-256 and
ESSENCE-512:

ESSENCE-256 ESSENCE-512
c0 993AE9B9 D5B330380561ECF7

m0 307A380C 10AD290AFFB19779

Using similar methods, we have found that the only fixed points for two, three
or four rounds is the same fixed point for one round applied two, three or four
times respectively. We have not been able to extend this result for more rounds.
As such, we have not been able to find a free-start collisions using this technique.
Depending how the compression function is used, however, it might be undesirable
that we can easily find inputs that fix the compression function output to zero.

9 Measures to Improve the Security of ESSENCE

From the analysis in Sect. 3–6, it is clear that ESSENCE has weaknesses in L and
F .

The concatenation of both the input and output of the L function can be
seen as an error-correcting code with [n, k] = [64, 32] or [128, 64]. The branching
number is then equal to the error-correcting code of these dimensions with the
highest minimum weight. Best known results from coding theory [5] can be used
to construct an L function with a branching number for both linear and differen-
tial cryptanalysis of 12 or 22 respectively. Better codes may exist according to
currently known upper bounds for the minimum weight, but have so far not been
found.

A search can be made for variants of these codes (possibly with a slightly lower
branching number) that satisfy all design criteria for the L function. Although
the resulting function will always be linear, it may however not be possible to
implement it as an LFSR.

In (5), the function F is in algebraic normal form (ANF). We know that the
coefficient of the maximum degree monomial in this ANF is equal to the XOR-sum

110 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

of all the entries in the truth table of F . To thwart the attacks in Sect. 6 and
Appendix F, it is necessary that F is balanced. Discarding the maximum degree
monomial is a possible solution.

Other countermeasures include increasing the number of rounds and adding
round constants. In Sect. 7 and Sect. 8, we saw how the omission of round constants
allowed slid pairs and fixed points to be found. Increasing the number of rounds
does not thwart these attacks, but it increases the security margin against the
semi-free-start collision attacks of this paper.

10 Conclusions and Open Problems

In this paper, we first presented a semi-free-start collision attack on 31 out of 32
rounds with a complexity of 2254.65 compression function evaluations. We find
messages that satisfy the first nine rounds of the differential characteristic of the
semi-free-start collision attack as the solution of a large set of linear equations. We
found that six linear input conditions are sufficient to make F behave as a linear
function in Table 5. It is an open problem if solutions using fewer equations exist.

We also presented a set of distinguishers on 14-round ESSENCE. The distin-
guishers can be applied to the block cipher as well as the compression function.
Each of the distinguishers on 14-round ESSENCE requires 217 output bits. The
distinguishers work on all digest sizes of ESSENCE with the same complexity. It
has also been shown how the distinguishing attacks can be turned into key-recovery
attacks.

We then showed how the omission of round constants allowed slid pairs and
fixed points to be found. This cannot be prevented by increasing the number of
rounds.

Finally, we suggested some measures to improve the security of ESSENCE.
These suggestions are rather preliminary and need to be worked on further in
order to obtain a more secure family of hash functions.

11 Acknowledgments

The authors would like to thank Christophe De Cannière, Sebastiaan Indesteege,
Gaëtan Leurent, Willi Meier, Tomislav Nad, María Naya-Plasencia, Vincent Rĳ-
men and Andrea Röck for their useful comments and suggestions.

Special thanks go out to the designer of ESSENCE, Jason Worth Martin, who
not only gave us useful feedback, but was also very supportive when we wanted
to make these results public. He has verified the correctness of the results in this
paper.

Part of this work was performed at the Hash Function Retreat, hosted by
the Graz University of Technology as an initiative of the SymLab group of the
ECRYPT II project. We are very grateful to Mario Lamberger, Florian Mendel,

REFERENCES 111

Tomislav Nad, Christian Rechberger, Vincent Rĳmen and Martin Schläffer for
their excellent organization of this retreat.

María Naya-Plasencia, Andrea Röck, Thomas Peyrin, Jean-Philippe Aumas-
son, Gaëtan Leurent and Willi Meier have obtained other, non-overlapping results
on ESSENCE [13] in parallel with these results. Their paper uses different char-
acteristics and another way of finding conforming messages.

References

[1] E. Biham and R. Chen. Near-Collisions of SHA-0. In M. K. Franklin, editor,
CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 290–305.
Springer, 2004.

[2] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General
Results and Applications. In X. Lai and K. Chen, editors, ASIACRYPT,
volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

[3] I. Dinur and A. Shamir. Side Channel Cube Attacks on Block Ciphers. Cryp-
tology ePrint Archive, Report 2009/127, 2009. http://eprint.iacr.org/.

[4] S. Dziembowski and K. Pietrzak. Leakage-Resilient Cryptography. In FOCS,
pages 293–302. IEEE Computer Society, 2008.

[5] M. Grassl. Tables of Linear Codes and Quantum Codes. http://www.

codetables.de/, June 2008.

[6] A. Joux and T. Peyrin. Hash Functions and the (Amplified) Boomerang
Attack. In A. Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in
Computer Science, pages 244–263. Springer, 2007.

[7] V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute.
Cryptology ePrint Archive, Report 2006/105, 2006.

[8] J. W. Martin. ESSENCE: A Family of Cryptographic Hashing
Algorithms. http://www.math.jmu.edu/~martin/essence/Supporting_

Documentation/essence_compression.pdf, 2008.

[9] J. W. Martin. Personal communication, 2009.

[10] M. Matsui. Linear Cryptoanalysis Method for DES Cipher. In EUROCRYPT,
pages 386–397, 1993.

[11] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

http://eprint.iacr.org/
http://www.codetables.de/
http://www.codetables.de/
http://www.math.jmu.edu/~martin/essence/Supporting_Documentation/essence_compression.pdf
http://www.math.jmu.edu/~martin/essence/Supporting_Documentation/essence_compression.pdf

112 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

[12] National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algo-
rithm (SHA-3) Family. Federal Register, 27(212):62212–62220, November
2007. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_

Nov07.pdf.

[13] M. Naya-Plasencia, A. Roeck, T. Peyrin, J.-P. Aumasson, G. Leurent, and
W. Meier. Cryptanalysis of ESSENCE. Unpublished, 2009.

[14] K. Pietrzak. A Leakage-Resilient Mode of Operation. In A. Joux, editor,
EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages
462–482. Springer, 2009.

[15] B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

[16] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash
Functions MD4 and RIPEMD. In R. Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 1–18. Springer, 2005.

[17] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In
R. Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2005.

[18] X. Wang, H. Yu, and Y. L. Yin. Efficient Collision Search Attacks on SHA-0.
In V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2005.

A Finding the Lowest Weight Difference A

We wish to find a difference A that satisfies

(¬A) ∧ L(A) = 0 (3)

and

hw(A) ≤ w , (4)

where hw(A) is the number of bits set in A and w is to be as small as possible.
We proceed as follows. Let w represent the (still unknown) weight of the

lowest weight difference A. We then split w into two integers w0 and w1, such that
w0 + w1 = w and |w1 − w0| ≤ 1. Let L−1 represent the inverse L function, such
that L−1(L(x)) = x. Let M(x) = L(x)⊕ x. The design of ESSENCE guarantees
that M is invertible, as L is not allowed to have any eigenvalues in the ground
field.

First step: We enumerate all x where hw(x) ≤ w0. After calculating A =
L−1(x), we check (3) and (4).

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

MAKING F BEHAVE AS A LINEAR TRANSFORMATION 113

Table 2 – All differences A with hw(A) = 17 that satisfy (3); there
are no solutions where hw(A) < 17 and (3)

A
2461822430680025

48C3044860D0004A

91860890C1A00094

0A001021903036C3

1400204320606D86

2800408640C0DB0C

5000810C8181B618

A001021903036C30

Second step: We enumerate all y where hw(y) ≤ w1. After calculating A =
M−1(y), we check if (3) and (4).

Equation (3) implies that the bit positions where L(A) is 1, is always a subset of
bit positions where A is 1. Therefore, we only have to consider two cases: the case
where the set of bit positions where L(A) is 1 contains no more than w0 elements,
and the case where the set bit positions where L(A) is 0 and A is 1 contains not
more than w1 elements. As w0 + w1 = w, these two steps are guaranteed to find
all A that satisfy (3) and (4). If no solution is found, we increase w by one and
perform the two steps again, enumerating only the new values of x and y.

The total complexity of this search is
(∑w0

i=0 C
64
i

)
+
(
∑w1

j=0 C
64
j

)

. As we find

w = 17 here, the total number of 64-bit linear function evaluations is
(
∑8
i=0 C

64
i

)

+
(
∑9
j=0 C

64
j

)

≈ 235. This calculation can be performed in less than a minute on a

recent desktop computer. The solutions are shown in Table 2.

B Making F Behave as a Linear Transformation

We consider three separate cases, depending on the values of A and L(A) for a
particular bit position j.

If A[j] = 1, we can enumerate all possible input conditions, such that F behaves
linearly and has the required differential behavior. Because we enumerate all
possibilities, we obtain an optimal result: it is not possible to add fewer than 10
linear equations. All existing solutions where 10 linear equations are added, are
shown in Table 3 (for L(A)[j] = 1) and Table 4 (for L(A)[j] = 0).

If A[j] = 0: the differential behavior is always satisfied: if there is no input
difference, there will not be an output difference either. We found that adding
6 equations is sufficient. We do not rule out the possibility that fewer than 6
equations are sufficient. The solutions we found are given in Table 4.

We will omit the index j, so that x0 to x12 represent one-bit variables. The

114 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

Table 3 – Making F linear and imposing the required differential
behavior for position j where A[j] = L(A)[j] = 1 can be done by
adding no more than 10 linear equations; exactly four such solutions
exist

Solution 1 Solution 2 Solution 3 Solution 4
x0 ⊕ x2 = 1 x1 = 1 x1 = 1 x1 = 1
x1 = 0 x2 ⊕ x5 = 0 x2 ⊕ x5 = 0 x2 = 1
x3 = 1 x2 ⊕ x7 = 1 x2 ⊕ x7 = 1 x3 = 0
x4 = 1 x2 ⊕ x8 = 0 x2 ⊕ x8 = 0 x4 = 1
x5 = 1 x2 ⊕ x9 = 0 x2 ⊕ x9 = 0 x5 = 1
x7 = 0 x2 ⊕ x12 = 1 x3 = 0 x7 = 0
x8 = 1 x3 = 0 x4 = 1 x8 = 1
x9 = 0 x4 = 1 x10 = 0 x9 = 1
x10 = 0 x10 = 0 x11 = 0 x10 = 0
x12 = 1 x11 = 0 x12 = 1 x11 = 0

F (x0, . . . , x6) = x6 ⊕ 1 x0 ⊕ x6 x0 ⊕ x6 x0 ⊕ x6

F (x1, . . . , x7) = x2 ⊕ 1 x2 ⊕ 1 x2 ⊕ 1 0
F (x2, . . . , x8) = 0 x2 ⊕ 1 x2 ⊕ 1 0
F (x3, . . . , x9) = 0 x5 x5 1
F (x4, . . . , x10) = 1 1 1 1
F (x5, . . . , x11) = 1 0 0 0
F (x6, . . . , x12) = 0 x7 ⊕ 1 0 x12 ⊕ 1

expressions F (x0, . . . , x6) and F (x6, . . . , x12) are not added to the system of linear
equations of the attack, as this is not necessary. They are only mentioned to show
that their differential behavior is correct.

C A Message Pair for the First Nine Rounds

We give a message pair that satisfies the first 9 rounds of the characteristic of
Table 1 in Table 6.

D The Feedback Function F

We denote the field of two elements by F2. The nonlinear feedback function, F , of
ESSENCE-224/256 (respectively ESSENCE-384/512) takes seven 32-bit (respec-
tively 64-bit) input words and outputs a single 32-bit (respectively 64-bit) word

DISTINGUISHING ATTACKS ON THE FULL 32-ROUND ESSENCE-256 115

Table 4 – Making F linear and imposing the required differential
behavior for position j where A[j] = 1 and L(A)[j] = 0 can be done
by adding no more than 10 linear equations; exactly one such solution
exists

Solution 1
x0 ⊕ x2 = 0
x1 = 0
x3 = 1
x4 = 1
x5 = 1
x7 = 0
x8 = 1
x9 = 0
x10 = 0
x12 = 1

F (x0, . . . , x6) = 1
F (x1, . . . , x7) = x2 ⊕ 1
F (x2, . . . , x8) = 0
F (x3, . . . , x9) = 0
F (x4, . . . , x10) = 1
F (x5, . . . , x11) = 1
F (x6, . . . , x12) = 0

as follows:

F (a, b, c, d, e, f, g) =abcdefg + abcdef + abcefg + acdefg + abceg + abdef+

abdeg + abefg + acdef + acdfg + acefg + adefg + bcdfg+

bdefg + cdefg + abcf + abcg + abdg + acdf + adef + adeg+

adfg + bcde+ bceg + bdeg + cdef + abc+ abe+ abf + abg+

acg + adf + adg + aef + aeg + bcf + bcg + bde+ bdf + beg+

bfg + cde+ cdf + def + deg + dfg + ad+ ae+ bc+ bd+

cd+ ce+ df + dg + ef + fg + a+ b+ c+ f + 1 , (5)

where the multiplication and addition are taken in F2 (i.e., they are the same as
bitwise XOR and bitwise AND, respectively).

E Distinguishing Attacks on the Full 32-Round
ESSENCE-256

The attacks described in Sect. 6.2 can be easily extended to the full ESSENCE-256
block cipher. Let us suppose the key k and the plaintext are related such that

116 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

Table 5 – Making F linear for position j where A[j] = L(A)[j] = 0
can be done by adding no more than 6 linear equations; at least six
such solutions exist

Solution 1 Solution 2 Solution 3

x3 = 0 x3 = 0 x3 = 1
x4 = 0 x4 = 0 x4 = 1
x5 = 1 x5 = 1 x5 = 1
x6 = 0 x6 = 1 x6 = 1
x7 = 1 x7 = 1 x7 = 1
x9 = 1 x8 = 1 x8 = 1

F (x1, . . . , x7) = x1 ⊕ 1 x2 x1

F (x2, . . . , x8) = x2 ⊕ x8 ⊕ 1 x2 ⊕ 1 x2

F (x3, . . . , x9) = x8 ⊕ 1 x9 ⊕ 1 x9

F (x4, . . . , x10) = x8 0 x9 ⊕ x10 ⊕ 1
F (x5, . . . , x11) = x8 ⊕ x10 ⊕ 1 x10 ⊕ x11 ⊕ 1 x10 ⊕ x11 ⊕ 1

Solution 4 Solution 5 Solution 6

x4 = 0 x4 = 0 x4 = 0
x5 = 1 x5 = 1 x5 = 1
x6 = 1 x6 = 1 x6 = 1
x7 = 0 x7 = 0 x7 = 0
x8 = 1 x8 = 1 x8 = 1
x9 = 0 x10 = 0 x11 = 1

F (x1, . . . , x7) = x1 ⊕ x2 ⊕ 1 x1 ⊕ x2 ⊕ 1 x1 ⊕ x2 ⊕ 1
F (x2, . . . , x8) = x3 ⊕ 1 x3 ⊕ 1 x3 ⊕ 1
F (x3, . . . , x9) = 0 x9 x9

F (x4, . . . , x10) = x10 ⊕ 1 x9 ⊕ 1 x9 ⊕ x10 ⊕ 1
F (x5, . . . , x11) = x10 ⊕ 1 x9 ⊕ 1 x9 ⊕ x10 ⊕ 1

Table 6 – A message pair satisfying the first 9 rounds of the charac-
teristic of Table 1

i mi m′i mi ⊕m′i
0 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 0000000000000000

1 1A001021983836CB 1A001021983836CB 0000000000000000

2 5809832A1DEA2458 5809832A1DEA2458 0000000000000000

3 8AEF5FEBEB9FDAAB 8AEF5FEBEB9FDAAB 0000000000000000

4 32F9D8578015D297 32F9D8578015D297 0000000000000000

5 0D031372423B91AC 0D031372423B91AC 0000000000000000

6 B804AC08CD97E348 B804AC08CD97E348 0000000000000000

7 E8BB8E649DC3B35F E2BB9E450DF3859C 0A001021903036C3

KEY-RECOVERY ATTACKS ON 32-ROUND ESSENCE 117

after 18 rounds, r0[0] = k0[0]. Given this, using similar arguments as those used
to derive (2), we obtain that at the end of 32 rounds, if L(r7)[0] = 0, then

Pr[r6[0] = 0] =
1

2
+

1

27
. (6)

We can thus construct a distinguisher by collecting 217 outputs r6[0], after 32
rounds, generated by as many keys (so that the samples are independent) given
that after 18 rounds, k0[0] = r0[0]. In other words, the adversary first tests whether
k0[0] = r0[0] after 18 rounds. If this condition is satisfied, she collects the output
r6[0] after 32 rounds provided L(r7)[0] = 0. Therefore, this constitutes a known-
key distinguishing attack which one may view as an attack on a large set of weak
keys. Alternatively, the attack scenario may be such that two bits of the internal
state after 18 rounds are leaked to the adversary. A similar assumption was made
in [3], as a model for certain side-channel attacks. More generally, this scenario
is captured by the notion of leakage resilience [4, 14], i.e., security when “even a
bounded amount of arbitrary (adversarially chosen) information on the internal
state (. . .) is leaked during computation” [4]. Although this assumption leads
to trivial attacks (e.g., observe the full internal state of AES at the penultimate
rounds), it assists to evaluate security against a wider range of adversaries, and to
better understand the resilience of algorithms against “extreme” adversaries.

Since the condition k0[0] = r0[0] (after 18 rounds) holds with 0.5 probability,
the attacker would need to examine with 217 · 2 = 218 randomly generated keys to
mount the distinguishing attack with a success probability of 0.9772.

It is easy to see that distinguishers of the same complexity can be built by
collecting any other bit of r6 (after 32 rounds) because F operates in a bitsliced
manner. As in Sect. 6.5, when the attacker can observe both the chaining value
input and the compression function output, the above distinguishers can be applied
onto the compression function as well.

F Key-Recovery Attacks on 32-Round ESSENCE

In Appendix E, we extended the distinguisher on 14-round ESSENCE-256 to 32
rounds by selecting plaintexts based upon the intermediate value of r0[j] and k0[j]
at round 18. This result may be viewed in terms of a known plaintext key-recovery
attack against a vulnerable implementation of the ESSENCE-256 block cipher. Let
us say that we are attacking such an implementation of the 32-round ESSENCE-
256 block cipher where through some means (side-channel analysis, cache pollution,
etc.) we can read bit j of r0 after 18 rounds. Like in Sect. 6.6, we focus on a subset
of 214 plaintexts where r0[j] = 0 (or 1) for all 214 texts after 18 rounds. Applying
the same analysis as in Sect. 6.6 to the remaining 14 rounds gives us the value
of k0[j] at round 18. If our vulnerable implementation allows us to read all the
bit positions of r0, then with probability 0.48, we can recover the full key-word
k0 at round 18. Since the key schedule is a bĳection (and easily invertible) we
can recover the original key with minimal effort. Again, a similar analysis can be
applied to the other members of the ESSENCE family of block ciphers.

118 CRYPTANALYSIS OF THE ESSENCE FAMILY OF HASH FUNCTIONS

Publication Chapter

The Differential Analysis of
S-Functions

Publication Data

Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart
Preneel. The Differential Analysis of S-Functions. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryp-
tography, volume 6544 of Lecture Notes in Computer Science, pages
36–56. Springer, 2010.

Contributions

• Main author.

119

120 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

The Differential Analysis of S-functions∗,†

Nicky Mouha‡, Vesselin Velichkov§, Christophe De Cannière¶, and
Bart Preneel

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
{Nicky.Mouha,Vesselin.Velichkov,Christophe.DeCanniere}@esat.kuleuven.be

Abstract. An increasing number of cryptographic primitives use op-
erations such as addition modulo 2n, multiplication by a constant
and bitwise Boolean functions as a source of non-linearity. In NIST’s
SHA-3 competition, this applies to 6 out of the 14 second-round candi-
dates. In this paper, we generalize such constructions by introducing
the concept of S-functions. An S-function is a function that calculates
the i-th output bit using only the inputs of the i-th bit position and
a finite state S[i]. Although S-functions have been analyzed before,
this paper is the first to present a fully general and efficient frame-
work to determine their differential properties. A precursor of this
framework was used in the cryptanalysis of SHA-1. We show how
to calculate the probability that given input differences lead to given
output differences, as well as how to count the number of output dif-
ferences with non-zero probability. Our methods are rooted in graph
theory, and the calculations can be efficiently performed using matrix
multiplications.

Keywords: Differential cryptanalysis, S-function, xdp+, xdp×C , adp⊕,
counting possible output differences, ARX.

1 Introduction

Since their introduction to cryptography, differential cryptanalysis [7] and linear
cryptanalysis [26] have shown to be two of the most important techniques in both
the design and cryptanalysis of symmetric-key cryptographic primitives.
∗The framework proposed in this paper is accompanied by a software toolkit, available at

http://www.ecrypt.eu.org/tools/s-function-toolkit
†This work was supported in part by the IAP Program P6/26 BCRYPT of the Belgian State

(Belgian Science Policy), and in part by the European Commission through the ICT program
under contract ICT-2007-216676 ECRYPT II.
‡This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).
§DBOF Doctoral Fellow, K.U.Leuven, Belgium.
¶Postdoctoral Fellow of the Research Foundation – Flanders (FWO).

121

mailto:\protect \T1\textbraceleft Nicky.Mouha,Vesselin.Velichkov,Christophe.DeCanniere\protect \T1\textbraceright @esat.kuleuven.be

122 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

Differential cryptanalysis was introduced by Biham and Shamir in [7]. For
block ciphers, it is used to analyze how input differences in the plaintext lead to
output differences in the ciphertext. If this happens in a non-random way, this
can be used to build a distinguisher or even a key-recovery attack.

The analysis of how differences propagate through elementary components of
cryptographic designs is therefore essential to differential cryptanalysis. As typical
S-boxes are no larger than 8 × 8, this analysis can be done by building a differ-
ence distribution table. Such a difference distribution table lists the number of
occurrences of every combination of input and output differences.

The combination of S-box layers and permutation layers with good crypto-
graphic properties, are at the basis of the wide-trail design. The wide-trail design
technique is used in AES [10] to provide provable resistance against both linear
and differential cryptanalysis attacks.

However, not all cryptographic primitives are based on S-boxes. Another op-
tion is to use only operations such as addition modulo 2n, exclusive or (xor),
Boolean functions, bit shifts and bit rotations. For Boolean functions, we assume
that the same Boolean function is used for each bit position i of the n-bit input
words.

Each of these operations is very well suited for implementation in software, but
building a difference distribution table becomes impractical for commonly used
primitives where n = 32 or n = 64. Examples using such constructions include
the XTEA block cipher [32], the Salsa20 stream cipher family [5], as well as the
hash functions MD5, SHA-1, and 6 out of 14 second-round candidates3 of NIST’s
SHA-3 hash function competition [31].

In this paper, we present the first known fully general framework to analyze
these constructions efficiently. It is inspired by the cryptanalysis techniques for
SHA-1 by De Cannière and Rechberger [12] (clarified in [30]), and by methods
introduced by Lipmaa, Wallén and Dumas [23]. The framework is used to calcu-
late the probability that given input differences lead to given output differences,
as well as to count the number of output differences with non-zero probability.
Our methods are based on graph theory, and the calculations can be efficiently
performed using matrix multiplications. We show how the framework can be used
to analyze several commonly used constructions.

Notation is defined in Table 1. Section 2 defines the concept of an S-function.
This type of function can be analyzed using the framework of this paper. The
differential probability xdp+ of addition modulo 2n, when differences are expressed
using xor, is analyzed in Sect. 3. We show how to calculate xdp+ with an arbitrary
number of inputs. In Sect 4, we study the differential probability adp⊕ of xor
when differences are expressed using addition modulo 2n. Counting the number of
output differences with non-zero probability is the subject of Sect. 5. We conclude
in Sect. 6. The matrices obtained for xdp+ are listed in Appendix A. We show

3The hash functions BLAKE [4], Blue Midnight Wish [14], CubeHash [6], Shabal [8],
SIMD [20] and Skein [13] can be analyzed using the general framework that is introduced in
this paper.

S-FUNCTIONS 123

Table 1 – Notation

Notation Description
x ‖ y concatenation of the strings x and y
|A| number of elements of set A
x≪ s shift of x to the left by s positions
x≫ s shift of x to the right by s positions
x≪ s rotation of x to the left by s positions
x≫ s rotation of x to the right by s positions
x+ y addition of x and y modulo 2n (in text)
x⊞ y addition of x and y modulo 2n (in figures)
x[i] selection: bit (or element) at position i of word x,

where i = 0 is the least significant bit (element)

all possible subgraphs for xdp+ in Appendix B. In Appendix C, we extend xdp+

to an arbitrary number of inputs. The computation of xdp×C is explained in
Appendix D.

2 S-Functions

In this section, we define S-functions, the type of functions that can be analyzed
using our framework. In order to show the broad range of applicability of the pro-
posed technique, we give several examples of functions that follow our definition.

An S-function (short for “state function”) accepts n-bit words a1, a2, . . . , ak
and a list of states S[i] (for 0 ≤ i < n) as input, and produces an n-bit output
word b in the following way:

(b[i], S[i+ 1]) = f(a1[i], a2[i], . . . , ak[i], S[i]), 0 ≤ i < n . (1)

Initially, we set S[0] = 0. Note that f can be any arbitrary function that can be
computed using only input bits a1[i], a2[i], . . . , ak[i] and state S[i]. For conciseness,
the same function f is used for every bit 0 ≤ i < n. Our analysis, however, does
not require functions f to be the same, and not even to have the same number of
inputs. A schematic representation of an S-function is given in Fig. 1.

Examples of S-functions include addition, subtraction and multiplication by a
constant (all modulo 2n), exclusive-or (xor) and bitwise Boolean functions. Al-
though this paper only analyzes constructions with one output b, the extension to
multiple outputs is straightforward. Our technique therefore also applies to larger
constructions, such as the Pseudo-Hadamard Transform used in SAFER [1] and
Twofish [34], and first analyzed in [21].

With a minor modification, the concept of S-functions allows that the inputs
a1, a2, . . . , ak and the output b are rotated (or reordered) as well. This corresponds
to rotating (or reordering) the bits of the input and output of f . This results in

124 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

f

. . .

a1[0]a2[0] ak[0]

b[0]

S[0]
f

. . .

a1[1]a2[1] ak[1]

b[1]

S[1]
f

. . .

a1[n− 1]a2[n− 1]ak[n− 1]

b[n− 1]

S[n− 1] S[2]S[n]
. . .

Figure 1 – Representation of an S-function

exactly the same S-function, but the input and output variables are relabeled
accordingly. An entire step of SHA-1 as well as the MIX primitive of the block
cipher RC2 can therefore be seen as an S-function. If the extension to multiple
output bits is made, this applies as well to an entire step of SHA-2: for every step
of SHA-2, two 32-bit registers are updated.

Every S-function is also a T-function, but the reverse is not always true. Pro-
posed by Klimov and Shamir [19], a T-function is a mapping in which the i-th bit
of the output depends only on bits 0, 1, . . . , i of the input. Unlike a T-function, the
definition of an S-function requires that the dependence on bits 0, 1, . . . , i−1 of the
input can be described by a finite number of states (independent of n). Therefore,
squaring modulo 2n is a T-function, but not an S-function.

In [11], Daum introduced the concept of a narrow T-function. A w-narrow T-
function computes the i-th output bit based on some information of length w bits
computed from all previous input bits. An S-function, however, requires only the
i-th input bit and a state S[i] to calculate the i-th output bit and the next state
S[i+ 1]. There is a subtle difference between narrow T-functions and S-functions.
If the number of states is finite and not dependent on the word length n, it may not
always be possible for a narrow T-function to compute S[i+ 1] from the previous
state S[i] and the i-th input bit.

It is possible to simulate every S-function using a finite-state machine (FSM),
also known as a finite-state automaton (FSA). This finite-state machine has k
inputs a1[i], a2[i], . . . , ak[i], and one state for every value of S[i]. The output is
b[i]. The FSM is clocked n times, for 0 ≤ i < n. From (1), we see that the output
depends on both the current state and the input. The type of FSM we use is
therefore a Mealy machine [27].

The straightforward hardware implementation of an S-function corresponds to
a bit-serial design. Introduced by Lyon in [24, 25], a bit-serial hardware architec-
ture treats all n bits in sequence on a single hardware unit. Every bit requires one
clock cycle to be processed.

The S-function framework can also be used in differential cryptanalysis, when
the inputs and outputs are xor- or additive differences. Assume that every input
pair (x1, x2) satisfies a difference ∆•x, using some group operator •. Then, if both

COMPUTATION OF XDP+
125

x1 and ∆•x are given, we can calculate x2 = x1•∆•x. It is then straightforward to
define a function to calculate the output values and the output difference as well.
This approach will become clear in the following sections, when we calculate the
differential probabilities xdp+ and adp⊕ of modular addition and xor respectively.

3 Computation of xdp+

3.1 Introduction

In this section, we study the differential probability xdp+ of addition modulo 2n,
when differences are expressed using xor. Until [22], no algorithm was published
to compute xdp+ faster than exhaustive search over all inputs. In [22], the
first algorithm with a linear time in the word length n was proposed. If n-bit
computations can be performed, the time complexity of this algorithm becomes
sublinear in n.

In [23], xdp+ is expressed using the mathematical concept of rational series. It
is shown that this technique is more general, and can also be used to calculate the
differential probability adp⊕ of xor, when differences are expressed using addition
modulo 2n.

In this paper, we present a new technique for the computation of xdp+, using
graph theory. The main advantage of the proposed method over existing tech-
niques, is that it is not only more general, but also allows results to be obtained
in a fully automated way. The only requirement is that both the operations and
the input and output differences of the cryptographic component can be written
as the S-function of Sect. 2. In the next section, we introduce this technique to
calculate the probability xdp+.

3.2 Defining the Probability xdp+

Given n-bit words x1, y1,∆⊕x,∆⊕y, we calculate ∆⊕z using

x2 ← x1 ⊕∆⊕x , (2)

y2 ← y1 ⊕∆⊕y , (3)

z1 ← x1 + y1 , (4)

z2 ← x2 + y2 , (5)

∆⊕z ← z2 ⊕ z1 . (6)

We then define xdp+(α, β → γ) as

xdp+(α, β → γ) =
|{(x1, y1) : ∆⊕x = α,∆⊕y = β,∆⊕z = γ}|

|{(x1, y1) : ∆⊕x = α,∆⊕y = β}| , (7)

= 4−n|{(x1, y1) : ∆⊕x = α,∆⊕y = β,∆⊕z = γ}| , (8)

as there are 2n · 2n = 4n combinations for the two n-bit words (x1, y1).

126 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

3.3 Constructing the S-Function for xdp+

We rewrite (2)-(6) on a bit level, using the formulas for multiple-precision addition
in radix 2 [28, §14.2.2]:

x2[i]← x1[i]⊕∆⊕x[i] , (9)

y2[i]← y1[i]⊕∆⊕y[i] , (10)

z1[i]← x1[i]⊕ y1[i]⊕ c1[i] , (11)

c1[i+ 1]← (x1[i] + y1[i] + c1[i])≫ 1 , (12)

z2[i]← x2[i]⊕ y2[i]⊕ c2[i] , (13)

c2[i+ 1]← (x2[i] + y2[i] + c2[i])≫ 1 , (14)

∆⊕z[i]← z2[i]⊕ z1[i] , (15)

where carries c1[0] = c2[0] = 0. Let us define

S[i]← (c1[i], c2[i]) , (16)

S[i+ 1]← (c1[i+ 1], c2[i+ 1]) . (17)

Then, (9)-(15) correspond to the S-function

(∆⊕z[i], S[i+ 1]) = f(x1[i], y1[i],∆⊕x[i],∆⊕y[i], S[i]), 0 ≤ i < n . (18)

Because we are adding two words in binary, both carries c1[i] and c2[i] can be
either 0 or 1.

3.4 Computing the Probability xdp+

In this section, we use the S-function (18), defined by (9)-(15), to compute xdp+.
We explain how this probability can be derived from the number of paths in a
graph, and then show how to calculate xdp+ using matrix multiplications.

Graph Representation.

For 0 ≤ i ≤ n, we will represent every state S[i] as a vertex in a graph (Fig. 2). This
graph consists of several subgraphs, containing only vertices S[i] and S[i + 1] for
some bit position i. We repeat the following for all combinations of (α[i], β[i], γ[i]):

Set α[i] ← ∆⊕x[i] and β[i] ← ∆⊕y[i]. Then, we loop over all values of
(x1[i], y1[i], S[i]). For each combination, ∆⊕z[i] and S[i] are uniquely determined
by (18). We draw an edge between S[i] and S[i+ 1] in the subgraph, if and only
if ∆⊕z[i] = γ[i]. Note that several edges may have the same set of endpoints.

For completeness, all subgraphs for xdp+ are given in Appendix B. Let α, β, γ
be given. As shown in Fig. 2, we construct a full graph containing all vertices S[i]
for 0 ≤ i ≤ n, where the edges between these vertices correspond to those of the
subgraphs for α[i], β[i], γ[i].

COMPUTATION OF XDP+
127

Theorem 1. Let P be the set of all paths from (c1[0], c2[0]) = (0, 0) to any of the
four vertices (c1[n], c2[n]) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} (see Fig. 2). Then, there is
exactly one path in P for every pair (x1, y1) of the set in the definition of xdp+,
given by (8).

Proof. Given x1[i], y1[i], ∆⊕x[i], ∆⊕y[i], c1[i] and c2[i], the values of ∆⊕z[i],
c1[i + 1] and c2[i + 1] are uniquely determined by (9)-(15). All paths in P start
at (c1[0], c2[0]) = (0, 0), and only consist of vertices (c1[i], c2[i]) for 0 ≤ i ≤ n that
satisfy (9)-(15). Furthermore, edges for which ∆⊕z[i] 6= γ[i] are not in the graph,
and therefore not part of any path P . Thus by construction, P contains every pair
(x1, y1) of the set in (8) exactly once.

0, 0 0, 0

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

(0, 0)

(0, 1)

(1, 0)

(1
, 1

)

(0, 0)(0, 1)
(1, 0)

(1, 1)

0, 0 0, 0

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

(0, 1)

(0, 0)

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(1
, 1

)

(1, 0
)

0, 0

0, 1

1, 0

1, 1

0, 0

0, 1

1, 0

1, 1

0, 0 0, 0

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

(0, 0)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 1)

(0, 0)

(1
, 1

) . . .

Figure 2 – An example of a full graph for xdp+. Vertices
(c1[i], c2[i]) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} correspond to states S[i].
There is one edge for every input pair (x1, y1). All paths that sat-
isfy input differences α, β and output difference γ are shown in bold.
They define the set of paths P of Theorem 1.

Multiplication of Matrices.

The differential (α[i], β[i]→ γ[i]) at bit position i is written as a bit string w[i]←
α[i] ‖ β[i] ‖ γ[i]. Each w[i] corresponds to a subgraph of Appendix B. As this
subgraph is a bipartite graph, we can construct its biadjacency matrix Aw[i] =
[xkj], where xkj is the number of edges that connect vertices j = S[i] and k =
S[i+ 1]. These matrices are given in Appendix A.

Let the number of states S[i] be N . Define 1×N matrix L = [1 1 · · · 1]
and N×1 matrix C = [1 0 · · · 0]T . For any directed acyclic graph, the num-
ber of paths between two vertices can be calculated as a matrix multiplication [9].
We can therefore calculate the number of paths P as

|P | = LAw[n−1] · · ·Aw[1]Aw[0]C . (19)

128 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

Using (8), we find that xdp+(α, β → γ) = 4−n|P |. Therefore, we can define
A∗w[i] = Aw[i]/4, and obtain

xdp+(α, β → γ) = LA∗w[n−1] · · ·A∗w[1]A
∗
w[0]C . (20)

As such, we obtain a similar expression as in [23], where the xdp+ was calculated
using the concept of rational series. Our matrices A∗w[i] are of size 4× 4 instead of
2× 2, however. We now give a simple algorithm to reduce the size of our matrices.

3.5 Minimizing the Size of the Matrices for xdp+.

Corresponding to (20), we can define a non-deterministic finite-state automaton
(NFA) with states S[i] and inputs w[i]. Compared to a deterministic finite-state
automaton, the transition function is replaced by a transition relation. There are
several choices for the next state, each with a certain probability. This NFA can
be minimized as follows.

First, we remove non-accessible states. A state is said to be non-accessible, if
it can never be reached from the initial state S[0] = 0. This can be done using a
simple algorithm to check for connectivity, with a time complexity that is linear
in the number of edges.

Secondly, we merge indistinguishable states. The method we propose, is similar
to the FSM reduction algorithms found independently by [17] and [29]. Initially,
we assign all states S[i] to one equivalence class T [i] = 0. We try to partition this
equivalence class into smaller classes, by repeating the following steps:

• We iterate over all states S[i].

• For every input w[i] and every equivalence class T [i], we sum the transition
probabilities to every state S[i] of this equivalence class.

• If these sums are different for two particular states S[i], we partition them
into different equivalence classes T [i].

The algorithm stops when the equivalence classes T [i] cannot be partitioned fur-
ther.

In the case of xdp+, we find that all states are accessible. However, there are
only two indistinguishable states: T [i] = 0 and T [i] = 1 when (c1[i], c2[i]) are
elements of the sets {(0, 0), (1, 1)} and {(0, 1), (1, 0)} respectively. Our algorithm
shows how matrices A∗w[i] of (20) can be reduced to matrices A′w[i] of size 2 × 2.
These matrices are the same as in [23], but they have now been obtained in an
automated way. For completeness, they are given again in Appendix A. Our
approach also allows a new interpretation of matrices A′w[i] in the context of S-
functions (18): every matrix entry defines the transition probability between two
sets of states, where all states of one set were shown to be equivalent by the
minimization algorithm.

COMPUTATION OF XDP+
129

3.6 Extensions of xdp+

In this section, we show how S-functions not only lead to expressions to calculate
xdp+(α, β → γ), but can be applied to related constructions as well.

Multiple Inputs xdp+(α, β, . . .→ γ).

Using the framework of this paper, we can easily calculate xdp+ for more than two
(independent) inputs. This calculation can be used, for example, in the differen-
tial cryptanalysis of XTEA [32] using xor differences. In [15], a 3-round iterative
characteristic (α, 0) → (α, 0) is used, where α = 0x80402010. In the third round
of the characteristic, there are two consecutive applications of addition modulo 2n.
Separately, these result in probabilities xdp+(α, 0 → α) = 2−3 and xdp+(α, α →
0) = 2−3. It is shown in [15] that the joint probability xdp+(α, 0, α→ 0) is higher
than the product of the probabilities 2−3 · 2−3 = 2−6, and is estimated to be
2−4.755. Using the techniques presented in this paper, we evaluate the exact joint
probability to be 2−3. We also verified this experimentally. The calculations are
detailed in Appendix C. This result can be trivially confirmed using the commu-
tativity property of addition: xdp+(α, α→ 0) · xdp+(0, 0→ 0) = xdp+(α, α→ 0)
= 2−3. Nevertheless, our method is more general and can be used for any input
difference.

Multiplication by a Constant xdp×C .

A problem related to xdp+, is the differential probability of multiplication by a
constant C where differences are expressed by xor. We denote this probability
by xdp×C . In the hash function Shabal [8], multiplications by 3 and 5 occur.
EnRUPT [33] uses a multiplication by 9. In the cryptanalysis of EnRUPT [18], a
technique is described to calculate xdp×9. This technique is based on a precursor
of the framework in this paper. In Appendix D, we show how each of these
probabilities can be calculated efficiently, using the framework of this paper. The
example of xdp×3 is fully worked out.

Pseudo-Hadamard Transform xdpPHT.

The Pseudo-Hadamard Transform (PHT) is defined as PHT(x1, x2) = (2x1 +
x2, x1 + x2). It is a reversible operation, used to provide diffusion in several
cryptographic primitives, including block ciphers SAFER [1] and Twofish [34]. Its
differential properties were first studied in [21]. If we allow an S-function to be
constructed with two outputs b1 and b2, the analysis of this construction becomes
straightforward using the techniques of this paper.

130 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

Step Functions of the MD4 Family.

The MD4 family consists of several hash functions, including MD4, MD5, SHA-1,
SHA-2 and HAS-160. Currently, the most commonly used hash functions world-
wide are MD5 and SHA-1. The step functions of MD4, HAS-160 and SHA-1 can
each be represented as an S-function. This applies as well to the MIX primitive
of the block cipher RC2. They can therefore also be analyzed using our frame-
work. The calculation of the uncontrolled probability Pu(i) in the cryptanalysis
of SHA-1 [12,30] uses a precursor of the techniques in this paper. By making the
extension to multiple outputs, the same analysis can be made as well for the step
function of SHA-2.

4 Computation of adp⊕

4.1 Introduction

In this section, we study the differential probability adp⊕ of xor when differences
are expressed using addition modulo 2n. The best known algorithm to compute
adp⊕ was exhaustive search over all inputs, until an algorithm with a linear time
in n was proposed in [23].

We show how the technique introduced in Sect. 3 for xdp+ can also be applied
to adp⊕. Using this, we confirm the results of [23]. The approach we introduced
in this section is conceptually much easier than [23], and can easily be generalized
to other constructions with additive differences.

4.2 Defining the Probability adp⊕

Given n-bit words x1, y1,∆+x,∆+y, we calculate ∆+z using

x2 ← x1 + ∆+x , (21)

y2 ← y1 + ∆+y , (22)

z1 ← x1 ⊕ y1 , (23)

z2 ← x2 ⊕ y2 , (24)

∆+z ← z2 − z1 . (25)

Similar to (8), we define adp⊕(α, β → γ) as

adp⊕(α, β → γ) =
|{(x1, y1) : ∆+x = α,∆+y = β,∆+z = γ}|

|{(x1, y1) : ∆+x = α,∆+y = β}| , (26)

= 4−n|{(x1, y1) : ∆+x = α,∆+y = β,∆+z = γ}| , (27)

as there are 2n · 2n = 4n combinations for the two n-bit words (x1, y1).

COMPUTATION OF ADP⊕ 131

4.3 Constructing the S-function for adp⊕

We rewrite (21)-(25) on a bit level, again using the formulas for multiple-precision
addition and subtraction in radix 2 [28, §14.2.2]:

x2[i]← x1[i]⊕∆+x[i]⊕ c1[i] , (28)

c1[i+ 1]← (x1[i] + ∆+x[i] + c1[i])≫ 1 , (29)

y2[i]← y1[i]⊕∆+y[i]⊕ c2[i] , (30)

c2[i+ 1]← (y1[i] + ∆+y[i] + c2[i])≫ 1 , (31)

z1[i]← x1[i]⊕ y1[i] , (32)

z2[i]← x2[i]⊕ y2[i] , (33)

∆+z[i]← (z2[i]⊕ z1[i]⊕ c3[i])[0] , (34)

c3[i+ 1]← (z2[i]− z1[i] + c3[i])≫ 1 , (35)

where carries c1[0] = c2[0] = 0 and borrow c3[0] = 0. We assume all variables to
be integers in two’s complement notation, all shifts are signed shifts. Let us define

S[i]← (c1[i], c2[i], c3[i]) , (36)

S[i+ 1]← (c1[i+ 1], c2[i+ 1], c3[i+ 1]) . (37)

Then (28)-(35) correspond to the S-function

(∆+z[i], S[i+ 1]) = f(x1[i], y1[i],∆+x[i],∆+y[i], S[i]), 0 ≤ i < n . (38)

Both carries c1[i] and c2[i] can be either 0 or 1; borrow c3[i] can be either 0 or −1.

4.4 Computing the Probability adp⊕

Using the description of the S-function (38), the calculation of adp⊕ follows directly
from Sect. 3.4. We obtain eight matrices Aw[i] of size 8 × 8. After applying the
minimization algorithm of Sect. 3.5, the size of the matrices remains unchanged.
Here, we use the expression −4 · c3[i] + 2 · c2[i] + c1[i] as an index to order the
states S[i]. The matrices we obtain are then permutation similar to those of [23];
their states S′[i] can be related to our states S[i] by permutation σ:

σ =

(
0 1 2 3 4 5 6 7
0 4 2 6 1 5 3 7

)

. (39)

We calculate the number of paths using (19). From (27), we get adp⊕(α, β →
γ) = 4−n|P |. Therefore, we can define A∗w[i] = Aw[i]/4, and obtain

adp⊕(α, β → γ) = LA∗w[n−1] · · ·A∗w[1]A
∗
w[0]C . (40)

132 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

5 Counting Possible Output Differences

5.1 Introduction

In the previous sections, we showed for several constructions how to calculate the
probability that given input differences lead to a given output difference. A related
problem is to calculate the number of possible output differences, when the input
differences are given. We say that an output difference is possible, if it occurs with
a non-zero probability.

First, we describe a naive algorithm to count the number of output differences.
It has a time complexity that is exponential in the word length n. We investigate
both improvements in existing literature, as well as cryptanalysis results where
such a calculation is necessary.

Then, we introduce a new algorithm. We found it to be the first in existing
literature with a time complexity that is linear in n. We show that our algorithm
can be used for all constructions based on S-functions.

5.2 Algorithm with a Exponential Time in n

Generic Exponential-in-n Time Algorithm.

A naive, but straightforward algorithm works as follows. All output differences
with non-zero probability can be represented in a search tree. Every level in this
tree contains nodes of one particular bit position, with the least significant bit
at the top level. This tree is traversed using depth-first search. For each output
difference with non-zero probability that is found, we increment a counter for the
number of output differences by one. When all nodes are traversed, this counter
contains the total number of possible output differences. The time complexity of
this algorithm is exponential in n, the memory complexity is linear in n.

Improvement for xdc+(α, β).

We introduce the notation xdc+(α, β) for the number of output xor-differences
of addition modulo 2n, given input xor-differences α and β. In [3], xdc+ was
used to build a key-recovery attack on top of a boomerang distinguisher for 32-
round Threefish-512 [13]. They introduced a new algorithm to calculate xdc+.
The correctness of this algorithm is proven in the full version of [3], i.e. [2]. The
algorithm, however, only works if one of the inputs contains either no difference,
or a difference only in the most significant bit. Also, it does not generalize to other
types of differences. The time complexity of this algorithm is exponential in the
number of non-zero input bits, and the memory complexity is linear in the number
of non-zero input bits. As a result, it is only usable in practice for sparse input
differences. We were unable to find any other work on this problem in existing
literature.

COUNTING POSSIBLE OUTPUT DIFFERENCES 133

5.3 Algorithm with a Linear Time in n

In Sect. 3 and 4, we showed how to calculate the probability of an output difference
using both graph theory and matrix multiplications. We now present a similar
method to calculate the number of possible output differences. First, the general
algorithm is explained. It is applicable to any type of construction based on S-
functions. Then, we illustrate how the matrices for xdp+ can be turned into
matrices for xdc+. This paper is the first to present an algorithm for this problem
with a linear-in-n time complexity. We also extend the results to adp⊕. Our
strategy is similar to the calculation of the controlled probability Pc(i), used in
the cryptanalysis of SHA-1 [12,30].

Graph Representation.

As in Sect. 3.4, we will again construct a graph. Let N be the number of states
|T [i]| that we obtained in Sect. 3.5. For xdp+, we found N = 2. We will now
construct larger subgraphs, where the nodes do not represent states T [i], but
elements of its power set P(T [i]). This power set P(T [i]) contains 2N elements,
ranging from the empty set ∅ to set of all states {0, 1, . . . , N − 1}. In automata
theory, this technique is known as the subset construction [16, §2.3.5]. It converts
the non-deterministic finite-state automaton (NFA) of Sect. 3.5 into a deterministic
finite-state automaton (DFA).

For every subgraph, the input difference bits α[i] and β[i] are fixed. We then
define exactly one edge for every output bit γ[i] from every set in P(T [i]) to the
corresponding set of next states in P(T [i + 1]). The example in the next section
will clarify this step.

Theorem 2. Let P be the set of all paths that start in {0} at position i = 0
and end in a non-empty set at position i = n. Then, the number of paths |P |
corresponds to the number of possible output differences.

Proof. All paths P start in {0} at i = 0, and end in a non-empty set at i = n. For
a given output difference bit, there is exactly one edge leaving from a non-empty
set of states to another non-empty set of states. Therefore by construction, every
possible output difference corresponds to exactly one path in P .

Multiplication of Matrices.

The differential (α[i], β[i]) at bit position i is written as a bit string w[i]← α[i] ‖
β[i]. As in Sect. 3.4, we construct the biadjacency matrices of these subgraphs.
They will be of size 2N × 2N . As we are only interested in possible output differ-
ences, these matrices can be reduced to matrices Bw[i] of size (2N − 1)× (2N − 1)
by removing the empty set ∅.

Define 1 × (2N − 1) matrix L = [1 1 · · · 1] and (2N − 1) × 1 matrix
C = [1 0 · · · 0]T . Similar to (19), we obtain the number of possible output

134 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

differences as

|P | = LBw[n−1] · · ·Bw[1]Bw[0]C . (41)

The time complexity of (41) is linear in the word length n.

We note that these matrices can have large dimensions. However, this is often
not a problem in practice, as they are typically very sparse. If we keep track of
only non-zero elements, there is little memory required to store vectors, and fast
algorithms exist for sparse matrix-vector multiplications. Also, the size of the
matrices can be minimized using Sect. 3.5.

5.4 Computing the Number of Output Differences xdc+

In the minimized matrices for xdp+ (given in [23] and again in Appendix A), we
refer to the states corresponding to the first and the second column as S[i] = 0
and S[i] = 1 respectively. Then, the subgraphs for xdc+ can be constructed as in
Fig. 3. Regardless of the value of the output bit, edges leaving from the empty
set ∅ at i will always arrive at the empty set at i + 1. Assume that the input
differences are α[i] = β[i] = 0, and that we are in state S[i] = 1, represented in
Fig. 3 as {1}. Recall that the matrices for xdp+ are

A′000 =

[
1 0
0 0

]

, A′001 =
1

2

[
0 1
0 1

]

, (42)

for output differences γ[i] = 0 and γ[i] = 1 respectively. To find out which states
can be reached from state S[i] = 1, we multiply both matrices to the right by
[

0 1
]T

. We obtain

A′000

[
0
1

]

=

[
0
0

]

, A′001

[
0
1

]

=
1

2

[
1
1

]

. (43)

We see that we cannot reach a valid next state if γ[i] = 0, so there is an edge
between {1} at i and ∅ at i+1 for γ[i] = 0. If γ[i] = 1, both states can be reached.
Therefore, we draw an edge between {1} at i and {0, 1} at i+ 1 for γ[i] = 1. The
other edges of Fig. 3 can be derived in a similar way.

Matrices B00, B01, B10, B11 of (41) can be derived from Fig. 3 as

B00 =

1 0 1
0 0 0
0 1 1

 , B01 = B10 =

0 0 0
0 0 0
1 1 2

 , B11 =

0 0 0
0 1 1
1 0 1

 . (44)

If the input differences are very sparse or very dense, (41) can be sped up by using

COUNTING POSSIBLE OUTPUT DIFFERENCES 135

(1,1)

∅ ∅

{0} {0}

{1} {1}

{0, 1} {0, 1}

0

1
1

0

0

1

1

0

(0,1) and (1,0)

∅ ∅

{0} {0}

{1} {1}

{0, 1} {0, 1}

0

1
0

1

1

0
0

1

(0,0)

∅ ∅

{0} {0}

{1} {1}

{0, 1} {0, 1}

0

1
1

0
0

1

0

1

Figure 3 – All possible subgraphs for xdc+. Vertices correspond to
valid sets of states S[i]. There is one edge for every output difference
bit γ[i]. Above each subgraph, the value of (α[i], β[i]) is given in bold.

the following expressions for the powers of matrices:

Bk00 =

1 k − 1 k
0 0 0
0 1 1

 , Bk01 = Bk10 =

0 0 0
0 0 0

2k−1 2k−1 2k

 ,

Bk11 =

0 0 0
k − 1 1 k

1 0 1

 . (45)

This way, we obtain an algorithm with a time complexity that is linear in the
number of non-zero input bits. As such, our algorithm always outperforms the
naive exponential time algorithm, as well as the exponential time algorithm of [3]
that only works for some input differences.

Let L = [1 1] and C = [1 0]T . We illustrate our method by recalculat-
ing the example given in [3]:

xdc+(0x1000010402000000, 0x0000000000000000) (46)

= L ·B3
00 ·B10 ·B19

00 ·B10 ·B5
00 ·B10 ·B8

00 ·B10 ·B25
00 · C (47)

= 5880 (48)

5.5 Calculation of adc⊕

We can also calculate adc⊕, which is the number of output differences for xor, when
all differences are expressed using addition modulo 2n. As the matrices A∗w[i] for

adp⊕ are of dimension 8 × 8, the matrices Bw[i] of adc⊕ would be of dimension
(28 − 1) × (28 − 1) = 255 × 255. However, we find that only 24 out of 255 states
are accessible. Furthermore, we find that all 24 accessible states are equivalent to
2 states. In the end, we obtain the following 2× 2 matrices:

136 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

B00 =

[
1 0
0 2

]

, B01 = B10 = B11 =

[
0 0
1 2

]

. (49)

These matrices Bw[i] are consistent with Theorem 2 of [23]. Although the end
result is simple, this example encompasses many of the techniques presented in
this paper.

6 Conclusion

In Sect. 2, we introduced the concept of an S-function, for which we build a
framework in this paper. In Sect. 3, we analyzed the differential probability xdp+

of addition modulo 2n, when differences are expressed using xor. This probability
was derived using graph theory, and calculated using matrix multiplications. We
showed not only how to derive the matrices in an automated way, but also give
an algorithm to minimize their size. The results are consistent with [23]. This
technique was extended to an arbitrary number of inputs and to several related
constructions, including an entire step of SHA-1. A precursor of the methods
in this section was already used for the cryptanalysis of SHA-1 [12, 30]. We are
unaware of any other fully systematic and efficient framework for the differential
cryptanalysis of S-functions using xor differences.

Using the proposed framework, we studied the differential probability adp⊕ of
xor when differences are expressed using addition modulo 2n in Sect 4. To the
best of our knowledge, this paper is the first to obtain this result in a constructive
way. We verified that our matrices correspond to those obtained in [23]. As these
techniques can easily be generalized, this paper provides the first known systematic
treatment of the differential cryptanalysis of S-functions using additive differences.

Finally, in Sect. 5, we showed how the number of output differences with non-
zero probability can be calculated. An exponential-in-n algorithm was already
used for this problem in the cryptanalysis of Threefish [3]. As far as we know, this
paper is the first to present an algorithm for this with a time complexity that is
linear in the number of non-zero bits.

Acknowledgments. The authors would like to thank their colleagues at
COSIC, and Vincent Rĳmen in particular, for the fruitful discussions, as well
as the anonymous reviewers for their detailed comments and suggestions. Thanks
to James Quah for pointing out an error in one of the matrices of Appendix A,
and for several suggestions on how to improve the text.

References

[1] R. J. Anderson, editor. Fast Software Encryption, Cambridge Security Work-
shop, Cambridge, UK, December 9-11, 1993, Proceedings, volume 809 of Lec-
ture Notes in Computer Science. Springer, 1994.

REFERENCES 137

[2] J.-P. Aumasson, C. Calik, W. Meier, O. Özen, R. C.-W. Phan, and
K. Varıcı. Improved Cryptanalysis of Skein. Cryptology ePrint Archive, Re-
port 2009/438, 2009. http://eprint.iacr.org/.

[3] J.-P. Aumasson, Çagdas Çalik, W. Meier, O. Özen, R. C.-W. Phan, and
K. Varıcı. Improved Cryptanalysis of Skein. In M. Matsui, editor, ASI-
ACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 542–559.
Springer, 2009.

[4] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 pro-
posal BLAKE. Submission to the NIST SHA-3 Competition (Round 3), 2010.
http://131002.net/blake/blake.pdf.

[5] D. J. Bernstein. The Salsa20 Family of Stream Ciphers. In M. J. B. Robshaw
and O. Billet, editors, The eSTREAM Finalists, volume 4986 of Lecture Notes
in Computer Science, pages 84–97. Springer, 2008.

[6] D. J. Bernstein. CubeHash specification (2.B.1). Submission to the
NIST SHA-3 Competition (Round 2), 2009. http://cubehash.cr.yp.to/

submission2/spec.pdf.

[7] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. J. Cryptology, 4(1):3–72, 1991.

[8] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr,
A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin,
J.-R. Reinhard, C. Thuillet, and M. Videau. Shabal, a Submission to NIST’s
Cryptographic Hash Algorithm Competition. Submission to the NIST SHA-3
Competition (Round 2), 2008. http://ehash.iaik.tugraz.at/uploads/6/

6c/Shabal.pdf.

[9] E. W. Chittenden. On the Number of Paths in a Finite Partially Ordered
Set. The American Mathematical Monthly, 54(7):404–405, 1947. http://www.

jstor.org/stable/2304391.

[10] J. Daemen and V. Rĳmen. The Design of Rĳndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[11] M. Daum. Narrow T-Functions. In H. Gilbert and H. Handschuh, edi-
tors, FSE, volume 3557 of Lecture Notes in Computer Science, pages 50–67.
Springer, 2005.

[12] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General
Results and Applications. In X. Lai and K. Chen, editors, ASIACRYPT,
volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

http://eprint.iacr.org/
http://131002.net/blake/blake.pdf
http://cubehash.cr.yp.to/submission2/spec.pdf
http://cubehash.cr.yp.to/submission2/spec.pdf
http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf
http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf
http://www.jstor.org/stable/2304391
http://www.jstor.org/stable/2304391

138 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

[13] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker. The Skein Hash Function Family. Submission to the
NIST SHA-3 Competition (Round 3), 2010. http://www.skein-hash.info/

sites/default/files/skein1.3.pdf.

[14] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amund-
sen, and S. F. Mjølsnes. Cryptographic Hash Function BLUE MID-
NIGHT WISH. Submission to the NIST SHA-3 Competition (Round 2),
2009. http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/

Supporting_Documentation/BlueMidnightWishDocumentation.pdf.

[15] S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, and S. Lee. Differential Crypt-
analysis of TEA and XTEA. In J. I. Lim and D. H. Lee, editors, ICISC,
volume 2971 of Lecture Notes in Computer Science, pages 402–417. Springer,
2003.

[16] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-Wesley, 2006.

[17] D. A. Huffman. The synthesis of sequential switching circuits. Journal of the
Franklin Institute, 257(3):161–190, 1954.

[18] S. Indesteege and B. Preneel. Practical Collisions for EnRUPT. J. Cryptology,
24(1):1–23, 2011.

[19] A. Klimov and A. Shamir. Cryptographic Applications of T-Functions. In
M. Matsui and R. J. Zuccherato, editors, Selected Areas in Cryptography,
volume 3006 of Lecture Notes in Computer Science, pages 248–261. Springer,
2003.

[20] G. Leurent, C. Bouillaguet, and P.-A. Fouque. SIMD Is a Message Digest.
Submission to the NIST SHA-3 Competition (Round 2), 2009. http://www.

di.ens.fr/~leurent/files/SIMD.pdf.

[21] H. Lipmaa. On Differential Properties of Pseudo-Hadamard Transform and
Related Mappings. In A. Menezes and P. Sarkar, editors, INDOCRYPT,
volume 2551 of Lecture Notes in Computer Science, pages 48–61. Springer,
2002.

[22] H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential
Properties of Addition. In M. Matsui, editor, FSE, volume 2355 of Lecture
Notes in Computer Science, pages 336–350. Springer, 2001.

[23] H. Lipmaa, J. Wallén, and P. Dumas. On the Additive Differential Probability
of Exclusive-Or. In B. K. Roy and W. Meier, editors, FSE, volume 3017 of
Lecture Notes in Computer Science, pages 317–331. Springer, 2004.

http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://www.di.ens.fr/~leurent/files/SIMD.pdf
http://www.di.ens.fr/~leurent/files/SIMD.pdf

MATRICES FOR XDP+
139

[24] R. F. Lyon. Two’s Complement Pipeline Multipliers. IEEE Transactions on
Communications, 24(4):418–425, April 1976.

[25] R. F. Lyon. A bit-serial architectural methodology for signal processing. In
J. P. Gray, editor, VLSI-81, pages 131–140. Academic Press, 1981.

[26] M. Matsui and A. Yamagishi. A New Method for Known Plaintext Attack of
FEAL Cipher. In EUROCRYPT, pages 81–91, 1992.

[27] G. H. Mealy. A method for synthesizing sequential circuits. Bell Systems
Technical Journal, 34:1045–1079, 1955.

[28] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[29] E. F. Moore. Gedanken experiments on sequential machines. Automata Stud-
ies, pages 129–153, 1956.

[30] N. Mouha, C. De Cannière, S. Indesteege, and B. Preneel. Finding Collisions
for a 45-Step Simplified HAS-V. In H. Y. Youm and M. Yung, editors, WISA,
volume 5932 of Lecture Notes in Computer Science, pages 206–225. Springer,
2009.

[31] National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algo-
rithm (SHA-3) Family. Federal Register, 27(212):62212–62220, November
2007. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_

Nov07.pdf.

[32] R. M. Needham and D. J. Wheeler. TEA extensions. Computer Laboratory,
Cambridge University, England, 1997. http://www.movable-type.co.uk/

scripts/xtea.pdf.

[33] S. O’Neil, K. Nohl, and L. Henzen. EnRUPT Hash Function
Specification. Submission to the NIST SHA-3 Competition (Round
1), 2008. http://enrupt.com/SHA3/Supporting_Documentation/EnRUPT_

Specification.pdf.

[34] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. The
Twofish encryption algorithm: a 128-bit block cipher. John Wiley & Sons, Inc.,
New York, NY, USA, 1999.

A Matrices for xdp+

The four distinct matrices Aw[i] obtained for xdp+ in Sect. 3.4 are given in (50).
The remaining matrices can be derived using A001 = A010 = A100 and A011 =

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf
http://enrupt.com/SHA3/Supporting_Documentation/EnRUPT_Specification.pdf
http://enrupt.com/SHA3/Supporting_Documentation/EnRUPT_Specification.pdf

A101 = A110.

A000 =

3 0 0 1
0 0 0 0
0 0 0 0
1 0 0 3

, A001 =

0 1 1 0
0 2 0 0
0 0 2 0
0 1 1 0

,

A011 =

2 0 0 0
1 0 0 1
1 0 0 1
0 0 0 2

, A111 =

0 0 0 0
0 1 3 0
0 3 1 0
0 0 0 0

. (50)

Similarly, we give the four distinct matrices A′w[i] of Sect. 3.4 in (51). The remain-
ing matrices satisfy A′001 = A′010 = A′100 and A′011 = A′101 = A′110.

A′000 =

[
1 0
0 0

]

, A′001 =
1

2

[
0 1
0 1

]

, A′011 =
1

2

[
1 0
1 0

]

, A′111 =

[
0 0
0 1

]

. (51)

B All Possible Subgraphs for xdp+

All possible subgraphs for xdp+ are given in Fig. 4.

C Computation of xdp+ with Multiple Inputs.

In Sect. 3, we showed how to compute the probability xdp+(α, β → γ), by introduc-
ing S-functions and using techniques based on graph theory and matrix multiplica-
tions. Similarly, we can also evaluate the probability xdp+(α[i], β[i], ζ[i], . . .→ γ[i])
for multiple inputs. We illustrate this for the simplest case of three inputs. We
follow the same basic steps from Sect. 3 and Sect. 4: construct the S-function,
construct the graph and derive the matrices, minimize the matrices, and multiply
them to compute the probability.

Let us define

S[i]← (c1[i], c2[i]) , (52)

S[i+ 1]← (c1[i+ 1], c2[i+ 1]) . (53)

Then, the S-function corresponding to the case of three inputs x, y, q and output
z is:

(∆⊕z[i], S[i+ 1]) = f(x1[i], y1[i], q1[i],∆⊕x[i],∆⊕y[i],∆⊕q[i], S[i]). 0 ≤ i < n .
(54)

Because we are adding three words in binary, the values for the carries c1[i] and
c2[i] are both in the set {0, 1, 2}. The differential (α[i], β[i], ζ[i] → γ[i]) at bit
position i is written as a bit string w[i] ← α[i] ‖ β[i] ‖ ζ[i] ‖ γ[i]. Using this S-
function and the corresponding graph, we build the matrices Aw[i]. After we apply

COMPUTATION OF XDP×3
141

the minimization algorithm (removing inaccessible states and combining equivalent
states) we obtain the following minimized matrices. The remaining matrices satisfy
A0001 = A0010 = A0100 = A1000, A0011 = A0101 = A0110 = A1001 = A1010 = A1100

and A0111 = A1011 = A1101 = A1110.

A0000 =

4 0 0 2
0 0 8 0
0 0 0 0
4 0 0 6

, A0001 =

0 1 0 0
0 4 0 0
0 0 0 0
0 3 0 0

, A0011 =

2 0 0 0
4 0 4 4
0 0 2 0
2 0 2 4

,

A0111 =

0 0 0 0
0 4 0 0
0 1 0 0
0 3 0 0

, A1111 =

0 0 0 0
8 0 0 0
0 0 4 2
0 0 4 6

.

D Computation of xdp×3

Given n-bit words x1,∆⊕x, we can calculate ∆⊕z using

x2 ← x1 ⊕∆⊕x , (55)

z1 ← x1 · 3 = (x1 ≪ 1) + x1 , (56)

z2 ← x2 · 3 = (x2 ≪ 1) + x2 , (57)

∆⊕z ← z2 ⊕ z1 . (58)

We then define xdp×3(α→ γ) as

xdp×3(α→ γ) =
|{x1 : ∆⊕x = α,∆⊕z = γ}|

|{x1 : ∆⊕x = α}| , (59)

= 2−n|{x1 : ∆⊕x = α,∆⊕z = γ}| , (60)

as there are 2n values for the n-bit word x1.
The left shift by one requires one bit of both x1[i] and x2[i] to be stored for

the calculation of the next output bit. For this, we will use d1[i] and d2[i]. In
general, shifting to the left by i positions requires the i previous inputs to be
stored. Therefore, (55)-(58) correspond to the following bit level expressions:

x2[i]← x1[i]⊕∆⊕x[i] , (61)

z1[i]← x1[i]⊕ d1[i]⊕ c1[i] , (62)

c1[i+ 1]← (x1[i] + d1[i] + c1[i])≫ 1 , (63)

d1[i+ 1]← x1[i] , (64)

z2[i]← x2[i]⊕ d2[i]⊕ c2[i] , (65)

c2[i+ 1]← (x2[i] + d2[i] + c2[i])≫ 1 , (66)

d2[i+ 1]← x2[i] , (67)

∆⊕z[i]← z2[i]⊕ z1[i] , (68)

142 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

where c1[0] = c2[0] = d1[0] = d2[0] = 0. Let us define

S[i]← (c1[i], c2[i], d1[i], d2[i]) , (69)

S[i+ 1]← (c1[i+ 1], c2[i+ 1], d1[i+ 1], d2[i+ 1]) . (70)

Then (61)-(68) correspond to the S-function

(∆⊕z[i], S[i+ 1]) = f(x1[i],∆⊕x[i], S[i]), 0 ≤ i < n . (71)

Each of c1[i], c2[i], d1[i], d2[i] can be either 0 or 1. After minimizing the 16
states S[i], we obtain only 4 indistinguishable states. Define again 1 × 4 matrix
L = [1 1 1 1] and 4 × 1 matrix C = [1 0 0 0]T . The differential
(α[i] → γ[i]) at bit position i is written as a bit string w[i] ← α[i] ‖ γ[i]. Then
xdp×3 is equal to

xdp×3(α→ γ) = LA∗w[n−1] · · ·A∗w[1]A
∗
w[0]C , (72)

where

A∗00 =
1

2

1 0 2 0
0 0 0 2
1 0 0 0
0 0 0 0

, A∗01 =

1

2

0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

,

A∗10 =
1

2

0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0

, A∗11 =

1

2

0 0 0 0
2 0 0 0
0 0 0 1
0 0 2 1

. (73)

We now illustrate this calculation by example. Let α = 0x12492489 and γ =
0x3AEBAEAB. Then xdp×3(α→ γ) = 2−15, whereas xdp+(α, α≪ 1→ γ) = 2−25.
From this example, we see that approximating the probability calculation of mul-
tiplication by a constant using xdp+, can give a result that is completely different
from the actual probability. This motivates the need for the technique that we
present in this section. We note there is no loss in generality when we analyze
xdp×3: the same technique can be automatically applied for xdp×C, where C is
an arbitrary constant.

COMPUTATION OF XDP×3
143

(0
,0

,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0

)

(1
,
0

)

(0
,
1

)

(1
,
0

)

(0
,
1

)

(1
,
1

)

(0
, 0

)

(1
,1

)

(0
,0

,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0
)

(0
, 0

)

(0
,
1

)

(1
,
0

)

(1
,
0

)

(0
,
1

)

(1
,1

)

(1
,
1
)

(0
,1

,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
1
)

(0
, 0

)

(0
,
0

)

(1
,
0

)

(0
,
1

)

(1
,
1

)

(1
,1

)

(1
,
0
)

(0
,1

,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0

)

(0
,
1

)

(1
,
0
)

(1
,1

) (0
, 0

)
(0
,
1
)

(1
,
0

)

(1
,
1

)

(1
,0

,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(1
,
0
)

(0
, 0

)

(0
,
0

)

(0
,
1

)

(1
,
0

)

(1
,
1

)

(1
,1

)

(0
,
1
)

(1
,0

,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0

)

(1
,
0

)

(0
,
1
)

(1
,1

) (0
, 0

)
(1
,
0
)

(0
,
1

)

(1
,
1

)

(1
,1

,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(1
,
0

)

(0
,
1

)

(0
,
0
)

(1
,1

) (0
, 0

)
(1
,
1
)

(1
,
0

)

(0
,
1

)

(1
,1

,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(1
,
0

)

(0
,
1

)

(0
,
0

)

(1
,
1
)

(0
,
0
)

(1
,
0

)

(0
,
1

)

(1
,
1

)

F
ig

u
re

4
–

A
ll

p
os

si
b
le

su
b
gr

ap
h
s

fo
r

xd
p

+
.

V
er

ti
ce

s
(c

1
[i

],
c 2

[i
])

co
rr

es
p

on
d

to
st

at
es
S

[i
].

T
h
er

e
is

on
e

ed
ge

fo
r

ev
er

y
in

p
u
t

p
ai

r
(x

1
,y

1
).

A
b

ov
e

ea
ch

su
b
gr

ap
h
,

th
e

va
lu

e
of

(α
[i

],
β

[i
],
γ

[i
])

is
gi

ve
n

in
b

ol
d
.

144 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

CORRECTION 145

Correction

Contrary to the statement of Sect. 2, the formulas in Definition 2 of [11] clarify that
Daum’s w-narrow T-function is in fact the same as an S-function. However, Daum
uses w-narrow T-functions in a completely different context: to solve systems of
equations, and not to calculate differential probabilities. We’d like to point out that
our incorrect statement is only relevant to the literature study that we performed.
It does not invalidate any of the research results in the paper.

146 THE DIFFERENTIAL ANALYSIS OF S-FUNCTIONS

Publication Chapter

Meet-in-the-Middle Attacks on
Reduced-Round XTEA

Publication Data

Gautham Sekar, Nicky Mouha, Vesselin Velichkov, and Bart Preneel.
Meet-in-the-Middle Attacks on Reduced-Round XTEA. In Aggelos
Kiayias, editor, CT-RSA, volume 6558 of Lecture Notes in Computer
Science, pages 250–267. Springer, 2011.

Contributions

• Main author. Devised the attack on 23 rounds, and provided complexity
and success probability calculations for all attacks. The introduction and
the attacks on 7 and 14 rounds are due to Gautham Sekar.

147

148 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

Meet-in-the-Middle Attacks on Reduced-Round

XTEA∗

Gautham Sekar†, Nicky Mouha‡, Vesselin Velichkov§, and Bart Preneel

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
{Gautham.Sekar,Nicky.Mouha,Vesselin.Velichkov,Bart.Preneel}@esat.kuleuven.be

Abstract. The block cipher XTEA, designed by Wheeler and Need-
ham, was published as a technical report in 1997. The cipher was
a result of fixing some weaknesses in the cipher TEA (also designed
by Wheeler and Needham), which was used in Microsoft’s Xbox gam-
ing console. XTEA is a 64-round Feistel cipher with a block size of
64 bits and a key size of 128 bits. In this paper, we present meet-
in-the-middle attacks on twelve variants of the XTEA block cipher,
where each variant consists of 23 rounds. Two of these require only
18 known plaintexts and a computational effort equivalent to testing
about 2117 keys, with a success probability of 1− 2−1025. Under the
standard (single-key) setting, there is no attack reported on 23 or
more rounds of XTEA, that requires less time and fewer data than
the above. This paper also discusses a variant of the classical meet-
in-the-middle approach. All attacks in this paper are applicable to
XETA as well, a block cipher that has not undergone public analysis
yet. TEA, XTEA and XETA are implemented in the Linux kernel.

Keywords: Cryptanalysis, block cipher, meet-in-the-middle attack,
Feistel network, XTEA, XETA.

1 Introduction

Timeline: the TEA family of block ciphers

∗This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, and by
the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT program under contract ICT-2007-216676 ECRYPT
II.
†This author is supported by an FWO project.
‡This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).
§DBOF Doctoral Fellow, K.U.Leuven, Belgium.

149

mailto:\protect \T1\textbraceleft Gautham.Sekar,Nicky.Mouha,Vesselin.Velichkov,Bart.Preneel\protect \T1\textbraceright @esat.kuleuven.be

150 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

• 1994. The cipher TEA (Tiny Encryption Algorithm) is a 64-round Feistel
cipher that operates on 64-bit blocks and uses a 128-bit key. Designed by
Wheeler and Needham, it was presented at FSE 1994 [24]. Noted for its
simple design, the cipher was subsequently well studied and came under a
number of attacks.

• 1996. Kelsey et al. established that the effective key size of TEA was 126
bits [12]. This result led to an attack on Microsoft’s Xbox gaming console
where TEA was used as a hash function [23].

• 1997. Kelsey, Schneier and Wagner constructed a related-key attack on
TEA with 223 chosen plaintexts and 232 time [13]. Following these results,
TEA was redesigned by Needham and Wheeler to yield Block TEA and
XTEA (eXtended TEA) [18]. While XTEA has the same block size, key size
and number of rounds as TEA, Block TEA caters to variable block sizes for
it applies the XTEA round function for several iterations. Both TEA and
XTEA are implemented in the Linux kernel.

• 1998. To correct weaknesses in Block TEA, Needham and Wheeler designed
Corrected Block TEA or XXTEA, and published it in a technical report [19].
This cipher uses an unbalanced Feistel network and operates on variable-
length messages. The number of rounds is determined by the block size, but
it is at least six. An attack on the full Block TEA is presented in [20], where
some weaknesses in XXTEA are also detailed.

• 2002–2010. A number of cryptanalysis results on the TEA family were
reported in this period. Table 1 lists the attacks on XTEA and their com-
plexities. In [11], it was shown that an ultra-low power implementation of
XTEA might be better suited for low resource environments than AES. Note
that XTEA’s smaller block size also makes it advantageous if an application
requires fewer than 128 bits of data to be encrypted at a time.

The meet-in-the-middle attack. The meet-in-the-middle attack was first intro-
duced by Diffie and Hellman in 1977 [5]. Since then, this technique and its variants
have been successfully used against several block ciphers, including reduced-round
DES [4,6] and the full KeeLoq [10]. Unlike Diffie and Hellman’s original attack, the
meet-in-the-middle attacks in this paper3 have negligible memory requirements.

We denote the message space and the key space byM and K respectively. Now
consider two block ciphers AK , BK :M × K →M and let YK = BK ◦AK , where

3The attack presented in Sect. 5 of this paper can also be seen as a meet-in-the-middle
attack, however the (partial) encryptions and decryptions cannot be performed over all
rounds, as the attacker only searches exhaustively over parts of the key. We therefore
use a technique similar to the partial matching technique of Sasaki and Aoki. This very
recent technique was successfully applied to several hash functions, including MD4 [2],
MD5 [21], HAS-160 [8] and SHA-2 [1].

INTRODUCTION 151

Table 1 – Key recovery attacks on XTEA where the time complex-
ities are averages, if explicitly stated in the original paper, average
success probabilities are given as well (KP: known plaintext, CP: cho-
sen plaintext, RK: in a related-key setting)

Attack Ref. # Rnds Time Data Pr[Success]

• Attacks in the standard (single-key) setting

Meet-in-the-middle This paper 7 295.00 2 KPs 1− 2−33

Impossible differential [17] 14 285 262.5 CPs Not given

Differential [9] 15 2120 259 CPs Not given

Meet-in-the-middle This paper 15 295.00 3 KPs 1− 2−65

Truncated differential [9] 23 2120.65 220.55 CPs 0.969

Meet-in-the-middle This paper 23 2117.00 18 KPs 1− 2−1025

• Attacks in a related-key setting

Related-key truncated
differential

[14] 27 2115.15 220.5 RK-CPs 0.969

Related-key rectangle
(for 2108.21 weak keys)

[15] 34 231.94 262 RK-CPs Not given

Related-key rectangle [16] 36 2126.44 264.98 RK-CPs 0.63

Related-key rectangle
(for 2110.67 weak keys)

[16] 36 2104.33 263.83 RK-CPs 0.80

Related-key [3] 37 2125 263 RK-CPs Not given

Related-key (for 2107.5

weak keys)
[3] 51 2123 263 RK-CPs Not given

◦ denotes function composition. In a meet-in-the-middle attack, the adversary
deduces K from a given plaintext-ciphertext pair (p, c), where c = YK(p), by
solving the equation

AK(p) = B−1
K (c) . (1)

Contribution of this paper. This paper presents meet-in-the-middle attacks
on block ciphers with 7, 15 and 23 rounds of XTEA. Our attacks are under the
standard setting, giving the attacker less freedom than under a related-key setting.
In Table 1, we see that there is no attack on 23 or more rounds of XTEA, that is
better than ours given the standard setting. Furthermore, each of our attacks re-
quires only a few known plaintexts, whereas every attack listed in Table 1 requires
many chosen plaintexts.

The Linux kernel not only includes XTEA, but also a variant called XETA [7].
The cipher XETA resulted from a bug in the C implementation of XTEA, where

152 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

higher precedence was incorrectly given to exclusive-OR over addition in the round
function. From this paper, it is easy to verify that all our results to XTEA directly
apply to XETA as well. This is because our attacks exploit weaknesses in the key
schedule, which is the same for both XTEA and XETA. To the best of our knowl-
edge, this paper is the first to give cryptanalysis results on XETA.

Organization. This paper is organized as follows. Section 2 lists the notation
and convention that we follow. The description of XTEA is provided in Sect. 3.
Our main observation is presented in Sect. 4 and it is developed into an attack on
15-round XTEA in Sect. 5. Here, we also provide other sets of 15 rounds that could
be similarly attacked. Section 6 describes our attack on 23 rounds on XTEA and
provides other sets of 23 rounds that could be attacked in a similar way. Section 7
concludes the paper and provides an interesting open problem. In Appendix A,
we show which countermeasures can be introduced to XTEA to prevent all the
attacks in this paper. The 23-round attack is illustrated in Appendix B.

2 Notation and Convention

The notation used in this paper is listed in Table 2.

Table 2 – Notation

Symbol / Notation Meaning

⊞ Addition modulo 232

⊕ Exclusive-OR
≪ Left shift
≫ Right shift
|| Concatenation
⌊x⌋ maxy∈Z(y ≤ x), Z is the set of integers
LSB Least significant bit
MSB Most significant bit

[i] Select bit i, i = 0 is the LSB
[j . . . i] Select bits k where j ≥ k ≥ i, k = 0 is the LSB

0k Concatenation of k times the string ‘0’

3 Description of XTEA

The block cipher XTEA has block size of 64 bits and key size of 128 bits. It uses a
64-round Feistel network (see Fig. 1). The F -function of the Feistel network (see

DESCRIPTION OF XTEA 153

Fig. 2) takes a 32-bit input x and produces a 32-bit output as:

F (x) = ((x≪ 4)⊕ (x≫ 5)) + x . (2)

The 128-bit key K of XTEA is divided into four 32-bit subkeys K0, . . . ,K3. At
every round, one of the 4 subkeys is selected according to a key schedule. A
constant δ = ⌊(

√
5 − 1) · 231⌋ is defined, derived from the golden ratio. Two bits

from a different multiple of δ are used at every round as the index of the subkey.
The 32-bit subkey αt used in round t, where 1 ≤ t ≤ 64, is chosen from the set
{K0,K1,K2,K3} according to the following rule:

αt ←
{

Kδt[1...0] if t is odd ,

Kδt[12...11] if t is even ,
(3)

where

δt =

⌊
t

2

⌋

δ, 1 ≤ t ≤ 64 . (4)

The 64-bit input to round t of XTEA consists of two 32-bit parts Lt−1 and Rt−1

(see Fig. 1). For round 1, the plaintext p is used as input: (L0 ‖ R0) ← p. The
input for round t + 1 is computed recursively from the input to round t as given
by:

Lt ← Rt−1 , (5)

Rt ← Lt−1 ⊞ ((δt ⊞ αt)⊕ F (Rt−1)) , (6)

where αt is selected according to (3). For reference, we also list the subkeys used
in every round in Table 3.

The ciphertext c of XTEA is produced by concatenating the two parts obtained
after the 64th round: c← L64 ‖ R64.

Finally, we note that in the description above by round we mean a Feistel
round. This is not to be confused with the term cycle used in the original proposal
of XTEA [18]. A cycle is equivalent to two Feistel rounds. Therefore XTEA has
64 rounds or 32 cycles.

Table 3 – Subkeys used in XTEA

Rounds Subkey used
1, 8, 9, 10, 17, 18, 20, 25, 30, 33, 40, 41, 49, 50, 57, 60 K0

3, 6, 11, 16, 19, 26, 27, 28, 35, 36, 38, 43, 46, 48, 51, 58, 59 K1

4, 5, 13, 14, 21, 24, 29, 34, 37, 44, 45, 53, 54, 56, 61, 64 K2

2, 7, 12, 15, 22, 23, 31, 32, 39, 42, 47, 52, 55, 62, 63 K3

154 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

Lt−1 Rt−1δt

αt

F

Lt Rtδt+1

αt+1

F

Lt+1 Rt+1

Figure 1 – The Feistel structure of XTEA showing two rounds

4 Motivational Observation

We begin by observing that the subkey K2 is not used in rounds 6–12. For the
remainder of this section, let K ← (K0,K1,X,K3), where X can be any 32-bit
value, as subkey K2 is irrelevant in the analysis. Given one plaintext-ciphertext
pair (p0, c0), with each key guess, the attacker checks whether

E
(6...12)
K (p0) = c0 , (7)

where E(6...12)
K denotes the 7-round (rounds 6–12) encryption using the key K. At

first glance, it may appear that 1 KP is sufficient. However, it is to be noted

≪ 4

F (x) x

≫ 5

Figure 2 – The function F used in the round function of XTEA

MOTIVATIONAL OBSERVATION 155

that the key space (296 keys K) is larger than the ciphertext space (264 ciphertext
blocks).

We now show that obtaining a second KP (p1, c1) is sufficient for an attack
with an average time complexity of 295.00 7-round encryptions and an average
success probability of 1 − 2−33. The attacker iterates over the 2k keys K, where
k = 96. For every candidate key K, (7) is tested using the first KP. If this equality
is satisfied, the second KP is used to check

E
(6...12)
K (p1) = c1 . (8)

If either (7) or (8) is not satisfied, the candidate key K is incorrect and can be
sieved. The approximate number of plaintext-ciphertext pairs that are needed can
also be estimated from Shannon’s unicity distance [22].

We make the reasonable assumption throughout this paper, that the 7-, 15-
and 23-round block ciphers that we consider have perfect confusion and diffusion
properties [22]. If either the plaintext or the key, or both are changed, it is as-
sumed that the corresponding ciphertext will be generated uniformly at random,
independent from previously obtained ciphertexts.

Under this assumption, each of the 64-bit conditions that result from (7) and (8)
is satisfied with probability 2−64. All time complexities are stated as the number
of equivalent encryptions of the reduced-round block cipher.

The average success probability can be calculated as follows. The two 64-bit
conditions are simultaneously satisfied with probability 2−2·64 = 2−128. We can
therefore eliminate a wrong key with probability 1 − 2−128. Assume that key i
is the correct key, where 0 ≤ i < 2k. It will be output by the algorithm if all
previous keys are eliminated. This happens with probability (1 − 2−128)i. The
correct key can be located anywhere among the list of 2k candidate keys with
equal probability. Therefore, the average success probability is

2−k ·
2k−1∑

i=0

(1− 2−128)i = 2128−k · (1− (1− 2−128)2k) ≈ 2128−k · (1− e−2k−128

)

≈ 1− 2−33 . (9)

The approximations result from using the first and the second order Taylor
approximations of ex around 0. We now calculate the time complexity of the
attack. For a candidate key K to be determined as wrong, the expected number
of trials is 1 + 2−64. This is because for every key, (7) is always checked, and for
2−64 keys (8) is checked as well. If the candidate key is correct, two encryptions
are always performed. As the correct key can be located anywhere in the list of
2k candidates keys with equal probability, the average number of encryptions of
the algorithm is

2−k ·
2k−1∑

i=0

(
i · (1 + 2−64) + 2

)
= 2−1 · (1 + 2−64) · (2k − 1) + 2 ≈ 295.00 . (10)

156 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

From Table 3, we obtain several other 7-round block ciphers that can be at-
tacked in a similar way. Table 4 lists all such ciphers. Finally, we note that for

Table 4 – All 7-round attacks; each attack requires 2 KPs and on
average 295.00 7-round encryptions for an average success probability
of 1− 2−33

Cipher consisting of XTEA rounds Unused subkey
6–12 K2

24–30 K3

42–48 K0

46–52 K2

n = 0 and n = 1 respectively, one can replace both (7) and (8) with

E
(6...r−1)
K (pn) = D(r...12)

K (cn) , (11)

where r ∈ {6, . . . , 12}, E(6...5)
K (pn) = pn, andD(r...12)

K denotes (13-r)-round (rounds
r–12) decryption using the key K.4 Therefore, what we essentially constructed
above can be viewed as meet-in-the-middle attacks. In (11), the value of r deter-
mines the subkeys that are required for encryption and decryption.

5 Attacks on 15 Rounds of XTEA

The attack described in Sect. 4 on rounds 6–12, can be extended to rounds 6–20 as
follows. First, the attacker performs a meet-in-the-middle attack, where (partial)
encryptions and decryptions cannot be performed over all rounds, the attacker only
exhaustively searches over part of the key. From the remaining rounds, however,
the number of possibilities for the full key is reduced. Only three known plaintexts
(pn, cn), 0 ≤ n < 2 are required for the attack.

Let us now split a reduced-round XTEA block cipher into outer rounds and
inner rounds. In the outer rounds, one particular subkey is not used, whereas the
inner rounds use only this subkey. The attack is described for rounds 6–20. As
can be seen from Table 3, the outer rounds (6–12) and (15–20) do not involve K2,
whereas the two inner rounds (13–14) use only K2.

By encrypting plaintext p0 from round 6 to round 12 (i.e., until the beginning
of round 13) and decrypting the corresponding ciphertext c0 for 6 rounds starting
backwards from round 20, we obtain the subkeys used in the inner rounds. They

4One may interpret (11) as encryptions and decryptions with block ciphers of fewer than seven
rounds. Given the assumption that a 7-round block cipher has perfect confusion and diffusion,
separate assumptions are not required for these further reduced block ciphers.

ATTACKS ON 15 ROUNDS OF XTEA 157

are denoted as K
′

2 and K
′′

2 for inner rounds 13 and 14 respectively. Then, the
attacker checks whether K

′

2 = K
′′

2 . This can be understood from Fig. 1. Therefore,
not the ciphertext values (as in Sect. 4), but the key values “meet in the middle”.
To the best of our knowledge, such an approach has not been described in previous
literature.

If K
′

2 6= K
′′

2 , the candidate key of (K0,K1,K3) cannot be correct, and the
attacker proceeds to the next candidate key. Otherwise, the candidate key is
extended to (K0,K1,K2, K3), where K2 = K

′

2 = K
′′

2 . Then, the meet-in-the-
middle attack is performed as described in Sect. 4. That is, a plaintext is encrypted
with candidate keys (K0,K1,K2, K3), to check which of the computed ciphertexts
agrees with the actual (corresponding) ciphertext. For the 15-round attack, it is
sufficient to use two additional known plaintexts (p1, c1) and (p2, c2).

The average success probability can be calculated as follows. Using (p0, c0) a
32-bit condition is obtained when K

′

2 = K
′′

2 is checked. Then, (p1, c1) and (p2, c2)
each gives an additional 64-bit condition. A wrong key will pass these tests with
probability5 2−32 ·

(
2−64
)2

= 2−160. Thus, with probability 1 − 2−160, a wrong
key is eliminated. Assume that i is the correct key, where 0 ≤ i < 2k. It will be
output by the algorithm if all previous keys are eliminated. This happens with
probability (1− 2−160)i. The correct key can be located anywhere among the list
of 2k candidate keys with equal probability. The average success probability is

2−96 ·
296−1∑

i=0

(1− 2−160)i = 2160−96 · (1− (1− 2−160)296

) ≈ 264 · (1− e−264

)

≈ 1− 2−65 . (12)

We now calculate the time complexity of the attack. For a candidate key
(K0,K1,K3) to be determined as wrong, the expected number of trials is 1 +
2−32 + 2−96. This is because for every candidate key (K0,K1,K3), the attacker
always checks whether K

′

2 6= K
′′

2 . For 2−32 and 2−96 candidate keys, the attacker
encrypts using the second and third known plaintext respectively. If the candidate
key is correct, the equivalent of three encryptions is always performed. As the
correct key can be located anywhere in the list of 296 candidates keys with equal
probability, the average number of (equivalent) encryptions of the algorithm is

2−96 ·
296−1∑

i=0

(
i · (1 + 2−32 + 2−96) + 3

)
= 2−1 · (1 + 2−32 + 2−96) · (296 − 1) + 3

≈ 295.00 . (13)

5If the texts obtained by encrypting p0 and decrypting c0, in the 13 outer rounds,
are uniformly distributed at random, then so are the subkeys K

′

2 and K
′′

2 . This fact,
explained in Appendix C, is explicitly stated here because the assumption of perfect
confusion and diffusion was made for ciphertexts, and not for subkeys.

158 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

Finally, in Table 5, we provide a list of all 15-round block ciphers that can be
attacked with the same complexity.

Table 5 – All 15-round attacks; each attack requires 3 KPs and on
average 295.00 computations of the 15 rounds for an average success
probability of 1− 2−65

Cipher consisting of XTEA rounds Inner rounds Inner round subkey

6–20 13,14 K2

16–30 22,23 K3

24–38 31,32 K3

34–48 40,41 K0

38–52 44,45 K2

42–56 49,50 K0

6 Attacks on 23 Rounds of XTEA

In this section, we extend the 15-round attack of Sect. 5 to 23 rounds. This 23-
round attack has an average time complexity of 2117.00 (equivalent) encryptions
and an average success probability of 1 − 2−1025. It requires only 18 known (not
chosen) plaintexts and corresponding ciphertexts. For the same number of rounds,
both the time complexity and the data complexity of our attack are much lower
than those in [9]. Our attack is therefore the best attack on 23-round XTEA so
far in the standard setting, and the only attack requiring such a low number of
plaintexts and corresponding ciphertexts. We note that we have optimized our
attack to have the time complexity as low as possible. It is possible to reduce
the number of known plaintexts even further, but not without increasing the time
complexity of the attack.

The technique used is a meet-in-the-middle attack, similar to the attacks in [4].
As in Sect. 5, the reduced-round XTEA block cipher is split into outer rounds
and inner rounds. In the outer rounds, one subkey is not used. The inner rounds
can contain any of the subkeys. Our attack applies to rounds 16–38 of XTEA.
Rounds 16–21 and 33–38 are the outer rounds, and do not involve subkey K3.
The inner rounds are rounds 22–32. The attack is a sieving attack, as the correct
key is found by eliminating keys that lead to contradictions. The attack is given
in Algorithm 1.

The k-bit key is recovered in two stages. First, the attacker exhaustively
searches over k1 bits of the key K and use m known plaintexts to check a one-
bit condition that each of the m plaintexts yield. These k1 bits consist of K0,
K1, K2, and the 21 least significant bits of K3. This one-bit condition, tested
in test_keys_1(K), results from the following observation, also illustrated in

ATTACKS ON 23 ROUNDS OF XTEA 159

Appendix B. We see that, without using K3[31 . . . 21], the attacker can calculate

L27[0] ← E(16...27)
K (p)[0], and L

′

27[0] ← D(28...38)
K (c)[0]. As L27[0] = L

′

27[0] al-
ways holds if the candidate key K is correct, a wrong key can be discarded if
L27[0] 6= L′27[0] . Note that only k1 bits of the candidate key K are used to test
this condition, as the remaining k2 bits do not affect this condition.

If none of the m plaintexts cause a key to be discarded, the attacker exhaus-
tively searches over the remaining k2 bits of key K in test_keys_2(K). These
k2 bits are the 11 most significant bits of K3. In this stage, ℓ ≤ m of the m plain-
texts are reused. Now, (L27, R27) ← E(16...27)

K (p) and (L
′

27, R
′

27) ← D(28...38)
K (c)

are recalculated using the full key K. For efficiency, this calculation is sped up
by using stored values p⋆n and c⋆n for the outer rounds, and encrypting only the
inner rounds. Equations L27 = R27 and L

′

27 = R
′

27 yield only 63-bit conditions,
as L27[0] = L

′

27[0] was already tested. If both equations are satisfied for all ℓ
plaintexts, the candidate key K is output as the correct key, and the algorithm
halts.

Let us now determine the average time complexity and the average success
probability of Algorithm 1.

The algorithm succeeds if no wrong key K that passes all m + ℓ tests is en-
countered before the correct key. How efficiently the attacker searches through
these candidate keys K, does not influence the success probability of Algorithm 1.
We therefore assume that the exhaustive search is over 2k keys, and then both
test_keys_1(K) and test_keys_2(K) are performed for each of these keys.

Each of the m plaintexts yields a one-bit condition in test_keys_1(K), sat-
isfied randomly with a probability of 2−1. When ℓ ≤ m of these plaintexts are
reused in test_keys_2(K), there is a condition on the 63 remaining bits, satisfied
randomly with a probability of 2−63. A wrong key will be detected if at least one of
them+ℓ tests fail. This eliminates a wrong key with a probability of 1−2−m ·2−63ℓ.
Assume that i is the correct key, where 0 ≤ i < 2k. Then, it will be output by the
algorithm if all previous candidate keys lead to contradictions. This happens with
probability (1− 2−m · 2−63ℓ)i. As the correct key can be located anywhere in the
list of 2k candidate keys with equal probability, the average success probability of
the algorithm is

2−k ·
2k−1∑

i=0

(1− 2−m · 2−63ℓ)i = 2m+63ℓ−k · (1− (1− 2−m−63ℓ)2k)

≈ 2m+63ℓ−k · (1− e−2k−m−63ℓ

) . (14)

We now calculate the time complexity of the attack. Let i and j (where
0 ≤ i < 2k1 and 0 ≤ j < 2k2) be parts of the correct key Kc where i =
(Kc0,K

c
1,K

c
2,K

c
3[20 . . . 0]) and j = Kc3[31 . . . 21]. Any 117-bit key (K0,K1,K2,K3

[20 . . . 0]), tested in test_keys_1(K) before the correct key is encountered, passes
test_keys_1(K) with probability 2−m. Therefore, of the i 117-bit keys tested

160 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

before the correct key, i · 2−m keys are expected to pass test_keys_1(K). For
each of these i · 2−m keys, test_keys_2() is performed 2k2 times. Summarizing,

• the attacker performs an expected i · T1 23-round computations, where T1

is the expected number of 23-round computations for a wrong key under
test_keys_1();

• the attacker additionally performs an expected i · 2−m · 2k2 · T2 23-round
computations, where T2 is the expected number of 23-round computations
for a wrong key under test_keys_2().

It is easy to see that

T1 ,

m−1∑

i=0

2−i . (15)

To compute T2, note that test_keys_2() only encrypts the 11 inner rounds again,
and uses stored values for (partial) encryptions and decryptions of the outer rounds.
This is equivalent to 11/23 encryptions of the 23-round block cipher and therefore

T2 ,
11

23
·
ℓ−1∑

j=0

2−63j . (16)

For the correct (partial) key i, the number of steps under test_keys_1() is m. To
determine the remaining part of the correct 128-bit key Kc, the attacker performs
an expected j · T2 + (11/23) · ℓ 23-round computations, where

1. j·T2 is the expected number of 23-round computations, under test_keys_2(),
for all the j wrong (partial) keys preceding key j;

2. ℓ is the number of 11-round steps under test_keys_2() for the correct key
j.

As the correct key j can take any value in the set {0, . . . , 2k2 − 1}, the average
number of 23-round computations corresponding to the correct key i, is

2−k2 ·
2k2−1∑

j=0

(

j · T2 +
11

23
· ℓ
)

. (17)

As the correct key i can take any value in the set {0, . . . , 2k1 − 1}, the average
number of 23-round computations in total is

2−k1 ·
2k1−1∑

i=0

i · T1 +m+ i · 2−m · 2k2 · T2 + 2−k2 ·
2k2−1∑

j=0

(

j · T2 +
11

23
· ℓ
)

 (18)

The derivation of (18) will be more clear from Fig. 3 in Appendix B.

CONCLUSIONS AND OPEN PROBLEMS 161

Now, we choose the parameters m and ℓ for the attack on rounds 16–38.
From (18), we find that we cannot lower the average time complexity below 2117.00.
Therefore, we choose m and ℓ such that we have the lowest number of known
plaintexts, and the highest success probability for this particular time complexity.
Setting m = ℓ = 18, we find that 18 KPs are sufficient, and that the correspond-
ing success probability using (14) is 1− 2−1025. Note that the success probability
of exhaustive search over the full k-bit key using 18 KPs has the same success
probability. This shows that all KPs are optimally used in our attack from an
information theoretic point of view [22]. Note that the number of KPs can still be
lowered further, but then the time complexity must increase. This can be done by
either increasing ℓ (which would make the second stage dominate in the attack),
or by increasing k1 (and thus perform the meet-in-the-middle on more than one
bit).6 We do not consider such options, as the number of KPs in our attack is
already low enough for a practical attack. The time complexity, however, is still
beyond reach with current hardware. Each of these attacks requires only negligible
memory (about 4 · 64 · 18 = 212.17 bits to store (pn, cn) and (p⋆n, c

⋆
n) values).

As shown in Table 6, a total of 12 variants of the XTEA block cipher can be
attacked, where each variant consists of 23 rounds. For rounds 34–56, the attack
works in exactly the same way as for 16–38, and has the same complexities. The
10 other attacks require that k1 = 122: the exhaustive search is now over all but
the 6 most significant bits of one subkey in Algorithm 1, in order to obtain a
condition on one bit to perform the meet-in-the-middle. The middle bit involved
in this condition is given as well in Table 6.

Using (18), we calculate the time complexity for the 10 attacks that use 12
or 13 inner rounds. The lowest possible average time complexity for our attack
strategy is 2122.00. For this time complexity, the best parameters are m = ℓ = 13.
We then obtain an average success probability of 1− 2−705, using 13 KPs. Again,
each of these attacks requires only negligible memory (about 211.70 bits to store
(pn, cn) and (p⋆n, c

⋆
n) values).

7 Conclusions and Open Problems

This paper presented several meet-in-the-middle attacks on 7-, 15- and 23-round
XTEA. The main highlight of our attacks is that they require very few known
plaintexts (not more than 18) as opposed to previously reported attacks (the best
of these attacks requires 220 chosen plaintexts). Furthermore, our attacks use
different approaches - the 7- and 23-round attacks use a straightforward meet-in-
the-middle approach; in the 15-round attacks, the meet-in-the-middle corresponds
to inner round subkeys rather than intermediary text values.

6In the attack, one bit in the middle is independent of 11 key bits. Two bits in the
middle are simultaneously independent of fewer than 11 key bits, thereby corresponding
to a larger k1.

162 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

Table 6 – All 23-round attacks

Total rnds. Inner rnds. Middle bit Unused key bits # Inner rnds.

16–38 22–32 L27[0] K3[31 . . . 21] 11 rounds

34–56 40–50 L45[0] K0[31 . . . 21] 11 rounds

6–28 13–24 L19[0] K2[31 . . . 26] 12 rounds

8–30 12–23 L18[0] K3[31 . . . 26] 12 rounds

24–46 31–42 L37[0] K3[31 . . . 26] 12 rounds

26–48 30–41 L36[0] K0[31 . . . 26] 12 rounds

30–52 34–45 L40[0] K2[31 . . . 26] 12 rounds

42–64 49–60 L55[0] K0[31 . . . 26] 12 rounds

20–42 26–38 L32[0] K1[31 . . . 26] 13 rounds

38–60 44–56 L50[0] K2[31 . . . 26] 13 rounds

2–24 8–20 L14[0] K0[31 . . . 26] 13 rounds

12–34 16–28 L22[0] K1[31 . . . 26] 13 rounds

Each of our attacks on 23-round XTEA requires less time (2117.00 23-round
computations) than the previously best-known attack on 23 rounds (2120.65 23-
round computations) in the standard setting. The time complexities of the 7- and
15-round attacks are also significantly better than exhaustive key search, with each
of these attacks requiring about 295 time.

Our attacks apply to XETA as well, a close variant of XTEA that is also imple-
mented in the Linux kernel. We are unaware of any other published cryptanalysis
results on XETA.

An interesting observation from one of the anonymous reviewers, is that there
is also a 15-round attack on rounds 2–16. In this case, subkey K0 is used con-
secutively in the inner rounds 8, 9 and 10, but not elsewhere. By exhaustively
searching over K1,K2,K3 and six of the least significant bits of K0, we can per-
form the same meet-in-the-middle attack that is described in Sect. 6. However,
this attack has a higher time and data complexity than the other 15-round attacks
of Sect. 5, for a comparable success probability.

When constructing the 23-round attack in Sect. 6, we found that for any num-
ber of inner rounds (where all subkeys can be used) up to 16, there is no corre-
sponding attack on more than 23 rounds. However, if the number of inner rounds
can be increased to 17, this leads to a 29-round attack. All such 29-round attacks
are listed in Table 7. We present the cryptanalysis of these 29-round XTEA block
ciphers as an interesting open problem.

Acknowledgments. The authors would like to thank Tor E. Bjørstad, Gaë-
tan Leurent, Matt Robshaw and Aleksander Wittlin for their useful comments
and suggestions. Part of this work was performed at the Cryptanalysis of Light-
Weight Ciphers Research Meeting, hosted by Katholieke Universiteit Leuven as an

REFERENCES 163

Table 7 – All reduced-round XTEA block ciphers for which a 29-
round attack consists of 17 inner rounds

Total rounds Inner rounds Subkey containing unused key bits

11–39 27–33 K0

15–43 21–37 K2

29–57 35–51 K1

33–61 40–56 K3

initiative of SymLab-WG2: Lightweight Cryptography of the ECRYPT II project.
The authors would like to thank the anonymous reviewers for their constructive
comments as well.

References

[1] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang. Preimages for
Step-Reduced SHA-2. In M. Matsui, editor, ASIACRYPT, volume 5912 of
Lecture Notes in Computer Science, pages 578–597. Springer, 2009.

[2] K. Aoki and Y. Sasaki. Preimage Attacks on One-Block MD4, 63-Step MD5
and More. In R. M. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas
in Cryptography, volume 5381 of Lecture Notes in Computer Science, pages
103–119. Springer, 2008.

[3] C. Bouillaguet, O. Dunkelman, G. Leurent, and P.-A. Fouque. Another Look
at Complementation Properties. In S. Hong and T. Iwata, editors, FSE,
volume 6147 of Lecture Notes in Computer Science, pages 347–364. Springer,
2010.

[4] D. Chaum and J.-H. Evertse. Crytanalysis of DES with a Reduced Number
of Rounds: Sequences of Linear Factors in Block Ciphers. In H. C. Williams,
editor, CRYPTO, volume 218 of Lecture Notes in Computer Science, pages
192–211. Springer, 1985.

[5] W. Diffie and M. E. Hellman. Exhaustive Cryptanalysis of the NBS Data
Encryption Standard. Computer, 10(6):74–84, 1977.

[6] O. Dunkelman, G. Sekar, and B. Preneel. Improved Meet-in-the-Middle At-
tacks on Reduced-Round DES. In K. Srinathan, C. P. Rangan, and M. Yung,
editors, INDOCRYPT, volume 4859 of Lecture Notes in Computer Science,
pages 86–100. Springer, 2007.

164 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

[7] A. Grothe. Kernel v2.6.14 tea.c. Linux Headquarters, 2004. http://www.

linuxhq.com/kernel/v2.6/14/crypto/tea.c.

[8] D. Hong, B. Koo, and Y. Sasaki. Improved Preimage Attack for 68-Step HAS-
160. In D. Lee and S. Hong, editors, ICISC, volume 5984 of Lecture Notes in
Computer Science, pages 332–348. Springer, 2009.

[9] S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, and S. Lee. Differential Crypt-
analysis of TEA and XTEA. In J. I. Lim and D. H. Lee, editors, ICISC,
volume 2971 of Lecture Notes in Computer Science, pages 402–417. Springer,
2003.

[10] S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A Prac-
tical Attack on KeeLoq. In N. P. Smart, editor, EUROCRYPT, volume 4965
of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[11] J.-P. Kaps. Chai-Tea, Cryptographic Hardware Implementations of xTEA.
In D. R. Chowdhury, V. Rĳmen, and A. Das, editors, INDOCRYPT, volume
5365 of Lecture Notes in Computer Science, pages 363–375. Springer, 2008.

[12] J. Kelsey, B. Schneier, and D. Wagner. Key-Schedule Cryptoanalysis of IDEA,
G-DES, GOST, SAFER, and Triple-DES. In N. Koblitz, editor, CRYPTO,
volume 1109 of Lecture Notes in Computer Science, pages 237–251. Springer,
1996.

[13] J. Kelsey, B. Schneier, and D. Wagner. Related-key cryptanalysis of 3-
WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Y. Han,
T. Okamoto, and S. Qing, editors, ICICS, volume 1334 of Lecture Notes in
Computer Science, pages 233–246. Springer, 1997.

[14] Y. Ko, S. Hong, W. Lee, S. Lee, and J.-S. Kang. Related Key Differential
Attacks on 27 Rounds of XTEA and Full-Round GOST. In B. K. Roy and
W. Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science,
pages 299–316. Springer, 2004.

[15] E. Lee, D. Hong, D. Chang, S. Hong, and J. Lim. A Weak Key Class of XTEA
for a Related-Key Rectangle Attack. In P. Q. Nguyen, editor, VIETCRYPT,
volume 4341 of Lecture Notes in Computer Science, pages 286–297. Springer,
2006.

[16] J. Lu. Related-key rectangle attack on 36 rounds of the XTEA block cipher.
Int. J. Inf. Sec., 8(1):1–11, 2009.

[17] D. Moon, K. Hwang, W. Lee, S. Lee, and J. Lim. Impossible Differential
Cryptanalysis of Reduced Round XTEA and TEA. In J. Daemen and V. Rĳ-
men, editors, FSE, volume 2365 of Lecture Notes in Computer Science, pages
49–60. Springer, 2002.

http://www.linuxhq.com/kernel/v2.6/14/crypto/tea.c
http://www.linuxhq.com/kernel/v2.6/14/crypto/tea.c

COUNTERMEASURES 165

[18] R. M. Needham and D. J. Wheeler. TEA extensions. Computer Laboratory,
Cambridge University, England, 1997. http://www.movable-type.co.uk/

scripts/xtea.pdf.

[19] R. M. Needham and D. J. Wheeler. Correction to xtea. Computer Laboratory,
Cambridge University, England, 1998. http://www.movable-type.co.uk/

scripts/xxtea.pdf.

[20] M.-J. Saarinen. Cryptanalysis of Block TEA. unpublished manuscript, Oc-
tober 1998. http://groups.google.com/group/sci.crypt.research/msg/

f52a533d1e2fa15e.

[21] Y. Sasaki and K. Aoki. Finding Preimages in Full MD5 Faster Than Exhaus-
tive Search. In A. Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes
in Computer Science, pages 134–152. Springer, 2009.

[22] C. E. Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, 28:656–715, 1949.

[23] M. Steil. 17 Mistakes Microsoft Made in the Xbox Security System. 22nd
Chaos Communication Congress, December 2005. http://events.ccc.de/

congress/2005/fahrplan/events/559.en.html.

[24] D. J. Wheeler and R. M. Needham. TEA, a Tiny Encryption Algorithm. In
B. Preneel, editor, FSE, volume 1008 of Lecture Notes in Computer Science,
pages 363–366. Springer, 1994.

A Countermeasures

The attacks in this paper are made possible because a particular subkey Ki is
often not used for a large number of rounds. To prevent against the attacks in
this paper, we propose to use each of the subkeys K0,K1,K2,K3 once every four
rounds, in a random order. This countermeasure does not prevent trivial meet-in-
the-middle attacks on 6 rounds. Note that the subkeys cannot repeat in a cyclic
manner, as we want to avoid the possibility of slide attacks.

B Illustration of the Attack on Rounds 16–38

In Fig. 4, we illustrate the 23-round attack of Sect. 6. The attack is on rounds
16–38, and uses 11 inner rounds (22–32). Grey boxes represent bits that do not
depend on the value of K3[31 . . . 21]. In Fig. 3, we illustrate Algorithm 1 from the
point of view of computation of its time complexity.

http://www.movable-type.co.uk/scripts/xtea.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf
http://www.movable-type.co.uk/scripts/xxtea.pdf
http://www.movable-type.co.uk/scripts/xxtea.pdf
http://groups.google.com/group/sci.crypt.research/msg/f52a533d1e2fa15e
http://groups.google.com/group/sci.crypt.research/msg/f52a533d1e2fa15e
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html

166 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

2
117

117 bits

i

j

11 bits

2
11

elements

elements

test_keys_1() test_keys_2()

γ

Figure 3 – Attack on rounds 16–38 using Algorithm 1: the tables
(not stored in memory) denote the two stages of Algorithm 1 and the
shaded 128 bits denote the correct 128-bit key; for a wrong key γ,
test_keys_2() is performed 211 times

C Randomness of the Inner-Round Subkeys in the

15-Round Attacks

Here, we show that if the texts obtained by encrypting p0 and decrypting c0 in
the 13 outer rounds (of a 15-round attack) are uniformly distributed at random,
then so are the subkeys in the inner rounds. As there are only two inner rounds,
the problem may be viewed as follows. In Fig. 1, if Lt−1||Rt−1 and Lt+1||Rt+1 are
uniformly distributed at random, then we need to show that αt and αt+1 are also
uniformly distributed at random. Henceforth, the term random means uniformly
distributed at random.

Since F is a bĳection, the output of F is random given Rt−1 is random. We
know that modular addition (or subtraction) or exclusive-OR of two random val-
ues results in a random value. Given this, since Rt = Lt+1 and Lt+1||Lt−1 is
random, from Fig. 1 we obtain that δt ⊞ αt is random. As δt is a constant, αt is
random. By similar arguments, it is easily seen that αt+1 is also random.

RANDOMNESS OF THE INNER-ROUND SUBKEYS IN THE 15-ROUND ATTACKS 167

Algorithm 1 Recovering the key of the 23-round XTEA block cipher consisting of
rounds 16–38; an average 2117.00 (equivalent) encryptions and 18 KPs are required
for an average success probability of 1− 2−1025

Require: m known plaintexts p0 . . . pm−1 and corresponding ciphertexts
c0 . . . cm−1 .

Ensure: The output key K (of length k bits) is the correct key with probability

2m+63ℓ−k(1− e−2k−m−63ℓ

), where ℓ is chosen such that ℓ ≤ m.
1: global p⋆0 . . . p

⋆
m−1, c⋆0 . . . c

⋆
m−1 .

2: while test_key_1(K) do
3: for n← 0 . . .m− 1 do
4: p⋆n ← E

(16...21)
K (pn)

5: c⋆n ← D
(33...38)
K (cn)

6: (L27, R27)← E(22...27)
K (p⋆n)

7: (L′27, R
′
27)← D(28...32)

K (c⋆n)
8: if L27[0] 6= L′27[0] then
9: return false

10: return true
11: while test_key_2(K) do
12: for n← 0 . . . ℓ− 1 do
13: (L27, R27)← E(22...27)

K (p⋆n)

14: (L′27, R
′
27)← D(28...32)

K (c⋆n)
15: if L27 6= L′27 or R27 6= R′27 then
16: return false
17: return true
18: for (K0,K1,K2)← (0 . . . 232 − 1, 0 . . . 232 − 1, 0 . . . 232 − 1) do
19: for K3[20 . . . 0]← 0 . . . 221 − 1 do
20: K ← (K0,K1,K2, 011 ‖ K3[20 . . . 0])†

21: if test_key_1(K) then
22: for K3[31 . . . 21]← 0 . . . 211 − 1 do
23: if test_key_2(K) then
24: output K and halt
†Since the 11 bits K3[31 . . . 21] do not affect L27[0] or L′27[0], one can have any value β from the set

{1, . . . , 211 − 1} in place of 011. We have used 011 for ease of understanding how the attack works.

168 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND XTEA

MSB LSB

31 0 31 0

L15 R15K1
L16 R16K0
L17 R17K0
L18 R18K1
L19 R19K0
L20 R20K2
L21 R21K3
L22 R22K3
L23 R23K2
L24 R24K0
L25 R25K1
L26 R26K1
L27 R27

L′27 R′27
K1 L′28 R′28
K2 L′29 R′29
K0 L′30 R′30
K3 L′31 R′31
K3 L′32 R′32
K0 L′33 R′33
K2 L′34 R′34
K1 L′35 R′35
K1 L′36 R′36
K2 L′37 R′37
K1 L′38 R′38

Figure 4 – 23-round attack (rounds 16–38), using 11 inner rounds
(the grey boxes represent bits that do not depend on the value of
K3[31 . . . 21])

Publication Chapter

Meet-in-the-Middle Attacks on
Reduced-Round GOST

Publication Data

Gautham Sekar, Nicky Mouha, and Bart Preneel. Meet-in-the-Middle
Attacks on Reduced-Round GOST. ISO/IEC JTC1/SC27 N8875, April
2010.

This paper is currently under submission to an international journal.

Contributions

• Main author together with Gautham Sekar. The paper is strongly influenced
by our XTEA results [9] (see p. 147), because the ciphers can be analyzed
in a similar way.

169

170 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND GOST

Meet-in-the-Middle Attacks on Reduced-Round

GOST∗

Gautham Sekar†, Nicky Mouha‡, and Bart Preneel

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
{Gautham.Sekar,Nicky.Mouha,Bart.Preneel}@esat.kuleuven.be

Abstract. The block cipher GOST (GOST 28147-89) is a Russian
standard for encryption and message authentication that is included
in OpenSSL 1.0.0. In this paper, we present meet-in-the-middle at-
tacks on several block ciphers, each consisting of 22 or fewer rounds of
GOST. Our 22-round attack on rounds 10–31 requires only 5 known
plaintexts and a computational effort equivalent to testing about 2223

keys for a success probability of 1− 2−65. This attack is the best (go-
ing by the number of rounds) low data complexity key-recovery attack
on GOST. A variant of the classical meet-in-the-middle approach is
presented as well.

Keywords: Cryptanalysis, block cipher, meet-in-the-middle attack,
Feistel network, GOST

1 Introduction

The GOST block cipher (GOST 28147-89) is a Russian standard for encryption
and message authentication [7]. From hereon, we will refer to it as “GOST” for
simplicity. It was designed in the erstwhile USSR, and declassified in 1989. This
cipher is used in several applications, including OpenSSL 1.0.0, an open source
toolkit for SSL/TLS [6].

Both GOST and the US standard DES [5] are Feistel networks. GOST has 32
rounds, a block size of 64 bits and a key size of 256 bits. Following its release to
the public, several cryptanalysis results were published. Full-key recovery attacks
on GOST are listed in Table 1. In this table, we omitted attacks that work only
for classes of weak keys, as well as related-key attacks.

∗This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, and by
the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT program under contract ICT-2007-216676 ECRYPT
II.
†This author is supported by an FWO project.
‡This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).

171

mailto:\protect \T1\textbraceleft Gautham.Sekar,Nicky.Mouha,Bart.Preneel\protect \T1\textbraceright @esat.kuleuven.be

172 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND GOST

Table 1 – Full-key recovery attacks on GOST; if explicitly stated in
the original paper, success probabilities are given as well (KP: known
plaintext, CP: chosen plaintext, MitM: meet-in-the-middle); attacks
on weak key classes or using related keys are not included

Attack Ref. # Rounds Time Data Pr[Success]

MitM This paper 8 2127.00 3 KPs 1− 2−65

MitM This paper 9, 10 2159.00 3 KPs 1− 2−33

MitM This paper 11, 12 2191.00 4 KPs 1− 2−65

Differential [10] 13 Not given 251 CPs Not given

MitM This paper 13, 14 2223.00 4 KPs 1− 2−33

MitM This paper 16 2223.00 5 KPs 1− 2−65

MitM This paper 22 2223.00 5 KPs 1− 2−65

Slide [1] 24 264 ≈ 264 KPs Not given

Slide [1] 30 2253.7 ≈ 264 KPs Not given

Reflection [4] 30 2224 232 KPs Not given

The meet-in-the-middle attack. Let M and K denote the message space
and the key space, respectively. Let AK , BK : M × K → M denote two block
ciphers and let YK = BK ◦AK , where ◦ denotes function composition. In a meet-
in-the-middle attack, the adversary deduces K from a known plaintext-ciphertext
pair (p, c), where c = YK(p), by solving AK(p) = B−1

K (c).
In this paper, we use a variant of this technique to attack 16 rounds of GOST.

In this approach, the place where the meet-in-the-middle occurs is at the subkeys
instead of at the intermediate texts. This technique will be explained in Sect. 4.
Contribution of this paper. In this paper, we present meet-in-the-middle at-
tacks on block ciphers consisting of up to 22 rounds of GOST. Our aim is to find
out the maximum number of rounds that could be attacked given the following
criteria.

1. The key is recovered with an information theoretically optimal probability
of success indicated by the unicity distance [11].

2. The attack is in a non-related-key setting.

3. The attack works for the full key space (i.e., no classes of weak keys are
used).

4. Very few known plaintext-ciphertext pairs (KPs) are required.

These criteria make the scenario very difficult from the point of view of the attacker.
In Table 1, the 24-round and 30-round slide attacks require almost the entire

DESCRIPTION OF GOST 173

codebook. The 30-round reflection attack also requires a large number of KPs
when compared to our 22-round attack, with the time complexities of both attacks
being identical. Therefore, our 22-round attack may be regarded as the best attack
(going by the number of rounds) to recover the key with a low data complexity.

Biryukov and Wagner show in [2] that the reversal in the order in which the
subkeys are used in the last 8 rounds, helps preclude slide attacks. We find that
this reversal is responsible for many of the attacks (including the 22-round one) in
this paper.
Organization. The paper is organized as follows. The specifications of GOST
algorithm are given in Sect. 2. In Sect. 3, we describe our attacks on block ciphers
consisting of up to 14 rounds of GOST. Sections 4 and 5 describe our attacks on
16 and 22 GOST rounds, respectively. We suggest countermeasures and conclude
the paper in Sect. 6.

2 Description of GOST

First, we introduce the following notation. Addition modulo 232 will be represented
by ⊞ and ⊟ respectively. We will use ⊕ to denote exclusive-OR, ≪ for circular
left shift and ‖ for concatenation.

The block cipher GOST has a block size of 64 bits and a key size of 256 bits.
It is a 32-round Feistel network in which each round uses eight 4× 4 S-boxes.

The 256-bit key K of GOST is divided into eight 32-bit subkeys K0, . . . ,K7.
At every round, one of the 8 subkeys is selected according to a simple key schedule.
The 32-bit subkey αi used in round i, where 1 ≤ i ≤ 32, is chosen from the set
{K0, . . . ,K7} according to the following rule:

αi ←
{

Ki−1 mod 8 if i ∈ {1, . . . , 24} ,
K32−i mod 8 if i ∈ {25, . . . , 32} .

(1)

In this paper, we will show that the reversal of the round-key order (in the last 8
rounds), is not a good design choice with respect to meet-in-the-middle attacks.

The 64-bit input to round i of GOST consists of two 32-bit parts Li−1 and
Ri−1. For round 1, the plaintext p is used as input: (L0 ‖ R0) ← p. The input
for round i + 1 is computed iteratively from the input to round i as given by
Li ← Ri−1 and Ri ← Li−1 ⊕ (S(Ri−1 ⊞αi) ≪ 11). We select αi according to (1).
The concatenated output from the 8 S-boxes of round i is denoted by S(x), where
x is split into 4-bit words. The ciphertext c of GOST is produced by concatenating
the two parts obtained after the 32nd round: c← R32 ‖ L32. A full description of
the GOST block cipher is given in [7].

Note that [7] does not specify the S-boxes. Saarinen [8] has developed an attack
with 232 CPs to recover the S-boxes, assuming the attacker has black box access
to the encryption device, and can specify the key used to encrypt. As his attack
works for any number of rounds, it can be used to turn each of the attacks in this

174 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND GOST

paper into an attack with secret S-boxes. First, the S-boxes are recovered using
Saarinen’s attack, and afterwards the secret key is recovered.

3 Attacking up to 14 Rounds of GOST

In this section, we show how to construct an attack on block ciphers consisting
of r rounds of GOST, where 8 ≤ r ≤ 14. In each of these block ciphers, at
least one subkey is not used. Therefore, exhaustive search requires less than 2255

encryptions on average.
From (1), we obtain ciphers with unused subkey(s). Table 2 lists all these

ciphers.

Table 2 – All r-round reduced block ciphers (8 ≤ r ≤ 14) with
unused subkeys

Rounds Rounds
8 18–25, 19–26, 20–27, 21-28, 22-29, 23-30, 24-31
9 18–26, 19–27, 20–28, 21-29, 22-30, 23-31
10 18–27, 19–28, 20–29, 21-30, 22-31
11 18–28, 19–29, 20–30, 21-31
12 18–29, 19–30, 20–31
13 18–30, 19–31
14 18–31

We now evaluate the data and time required for attacking the block ciphers
listed in Table 2. Let us consider a block cipher in which s 32-bit subkeys, 1 ≤
s ≤ 4, are not used.

Given one plaintext-ciphertext pair (p0, c0), with each key guess, the attacker
checks whether

E
(a...a+r−1)
K (p0) = c0 , (2)

where E(a...a+r−1)
K denotes the r-round (rounds a to a + r − 1) encryption using

the k-bit key K, where k = (256 − 32 · s). One KP is not sufficient, because the
key space (2256−32·s keys K) is larger than the ciphertext space (264 ciphertext
blocks). Therefore, the attacker requires more known plaintext-ciphertext pairs
to determine the key K with sufficiently high probability. The number of KPs is
denoted by n.

For every candidate k-bit key K, the attacker tests (2) using the first KP. If
this equality is satisfied, the attacker uses a subsequent KP to check

E
(a...a+r−1)
K (pj) = cj , (3)

ATTACKING UP TO 14 ROUNDS OF GOST 175

where j is at most n − 1. If one of the n equations (2), (3) is not satisfied, the
candidate key K is incorrect and can be discarded.

Throughout this paper, we use the reasonable assumption that every block
cipher under consideration has perfect confusion and diffusion properties as defined
by Shannon [11]. If either the plaintext or the key, or both are changed, we
assume that the corresponding ciphertext will be generated uniformly at random,
independent from previously obtained ciphertexts.

With this assumption, each of the 64-bit conditions resulting from (2), (3) is
satisfied with probability 2−64. We now calculate the data and time complexities
for our attacks. All time complexities are stated as the number of equivalent
encryptions of the reduced-round block cipher.

The average success probability can be calculated as follows. The n 64-bit
conditions are simultaneously satisfied with probability 2−n·64. The attacker can
therefore eliminate a wrong key with probability 1− 2−n·64. Assume that key m
is the correct key, where 0 ≤ m < 2k. This key will be found by our attack if all
previous keys are eliminated. This happens with probability (1 − 2−n·64)m. The
correct key can be located anywhere among the list of 2k candidate keys with
equal probability. Therefore, the average success probability is

2−k ·
2k−1∑

m=0

(1− 2−n·64)m = 2n·64−k · (1− (1− 2−n·64)2k) ,

≈ 2n·64−k · (1− e−2k−n·64

) ≈ 1− 2k−n·64−1 , (4)

assuming 2k−n·64 ≈ 0. The approximations result from using the first and the
second order Taylor approximations of ex around 0. We now calculate the time
complexity of the attack. For a candidate key K to be determined as wrong, the
expected number of trials is 1 + 2−64 + . . .+ 2−(n−1)·64. The average (equivalent)
number of encryptions of the algorithm is given by:

2−k ·
2k−1∑

m=0

(

m · (1 + 2−64 + . . .+ 2−(n−1)·64) + n
)

=
1

2
· 1− 2−n·64

1− 2−64
· (2k − 1) + n .

(5)

Table 3 gives the average time complexities and the average success probabil-
ities for various values of s (= (256 − k)/32) and n. The approximate number of
plaintext-ciphertext pairs that are needed can also be calculated from Shannon’s
unicity distance [11] as k/64.

We note that (2), (3) can be replaced with E(a...t−1)
K (pj) = D(t...a+r−1)

K (cj),

where 0 ≤ j < n, t ∈ {a, . . . , a+r−1}, E(a...a−1)
K (pj) = pj , andD(t...a+r−1)

K denotes
(a + r − t)-round (rounds t to a + r − 1) decryption using the key K. Therefore,
the attacks in this section can also be seen as meet-in-the-middle attacks.

176 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND GOST

Table 3 – Time complexities and success probabilities of attacks of
Sect. 3 for several values of s and n

s n k Average time complexity Average success probability

1 4 224 2223 1− 2−33

2 4 192 2191 1− 2−65

3 3 160 2159 1− 2−33

4 3 128 2127 1− 2−65

4 Attack on 16-Round GOST

In this section, we analyze the block cipher consisting of rounds 17–32 of GOST.
We begin with the observation that K7 is used consecutively in rounds 24 and 25.

Our attack assumes that the S-boxes are bĳective. Note, however, that a
similar attack works for non-bĳective S-boxes, but then the computations of the
time complexity and success probability become more involved.

Let K = (K0,K1,K2,K3,K4,K5,K6,X), where X is not relevant to the anal-
ysis because the attacker exhaustively searches over all subkeys except K7. For
every candidate key K, the attacker computes E(17...23)

K (p0), given a plaintext-
ciphertext pair (p0, c0), and gets L23 and R23. Similarly, the attacker computes

D
(26...32)
K (c0) and gets L25 and R25. Using α24 = S−1((L25 ⊕ L23) ≫ 11) ⊟ R23

and α25 = S−1((R25 ⊕ R23) ≫ 11) ⊟ L25, the subkeys used in rounds 24 and 25
are obtained. If they are equal (for a wrong candidate key K, this happens with
probability 2−32),3 the attacker sets K7 ← α24 = α25.

Then, using n− 1 other plaintext-ciphertext pairs (pj , cj), 1 ≤ j ≤ n− 1, the

attacker tests if E(17...32)
K (pj) = cj with the value found for K7. A wrong key will

pass these tests with probability 2−32 ·
(
2−64
)n−1

= 2−32−(n−1)·64. Thus, with
probability 1−2−32−(n−1)·64, a wrong key is eliminated. Using a similar reasoning
as in Sect. 3, we obtain the average success probability:

2−224 ·
2224−1∑

m=0

(1− 2−32−(n−1)·64)m = 232+(n−1)·64−224 · (1− (1− 2−32−(n−1)·64)2224

)

≈ 232+(n−1)·64−224 · (1− e−2224−32−(n−1)·64

)

≈ 1− 2224−32−(n−1)·64−1 , (6)

where the approximations hold when n ≥ 5. We now calculate the time complexity
of the attack. For a candidate key K to be determined as wrong, the expected

3If the texts obtained by encrypting p0 and decrypting c0, in the 13 outer rounds, are
distributed uniformly at random, then so are the subkeys in rounds 24 and 25.

ATTACK ON 22-ROUND GOST 177

number of trials is 1 + 2−32 + 2−32−64 + . . . + 2−32−(n−2)·64. This is because for
every candidate key K, the attacker always checks whether the subkeys used in
rounds 24 and 25 agree. For 2−32 candidate keys, the attacker uses the second
known plaintext, for 2−96 the attacker uses the third known plaintext, and so on.
If the candidate key is correct, the attacker always performs n encryptions. As
the correct key can be located anywhere in the list of 2224 candidates keys with
equal probability, the average number of 16-round computations is

2−224 ·
2224−1∑

m=0

(
m · (1 + 2−32 + 2−32−64 + . . . +2−32−(n−2)·64) + n

)

=
1

2
· (1 + 2−32 + 2−32−64 + . . .+ 2−32−(n−2)·64) · (2224 − 1) + n . (7)

Substituting n = 5 in (6) and (7), the average success probability is 1− 2−65 and
the average number of 16-round computations is 2223.00.

5 Attack on 22-Round GOST

From (1), we observe that the subkey K0 is used only once in the block cipher
consisting of rounds 10–31 of GOST. Therefore, here the attacker first checks
for the equality of R16 and R′16. These are obtained by respectively computing

E
(10...16)
K (p0) and D(18...31)

K (c0), where K = (X,K1,K2,K3,K4,K5,K6,K7). As
subkey K0 is not necessary to perform these partial encryptions and decryptions,
X can be any 32-bit value.

If R16 = R′16 (this happens with probability 2−32), the corresponding value of
K0 (= α17) is obtained using:

α17 = S−1((R17 ⊕ L16) ≫ 11) ⊟R16 . (8)

The attacker uses n − 1 KPs (pj , cj) subsequently to check E(10...31)
K (pj) = cj

with the value obtained for K0. For every j, where j is at most n−1, this equation
is satisfied with probability 2−64.

Using the same formulas as in Sect. 4, we find an average time complexity of
2223.00 for a success probability of 1 − 2−65. A similar attack can be mounted
on other reduced-round block ciphers, each with less than 22 GOST rounds (e.g.,
rounds 11–31), where a particular subkey is used only once. Again, attacks similar
to those in this section can be applied to the respective block ciphers even if the
S-boxes are not bĳective.

6 Conclusions and Open Problems

This paper presented several meet-in-the-middle attacks on GOST reduced to up
to 22 rounds. To the best of our knowledge, the 22-round attack is the best attack
(going by the number of rounds) to recover the key with very few known plaintexts.

178 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND GOST

Our attacks use different approaches – attacks on 14 or fewer rounds use a
straightforward meet-in-the-middle approach and so does the 22-round attack; in
the 16-round attacks, the meet-in-the-middle corresponds to inner round subkeys
rather than intermediary text values. Our attacks work in a non-related-key set-
ting.

The time complexity of both the 16-round and 22-round attacks is 2223.00. It
is required in these attacks that the S-boxes are bĳective, but similar attacks can
be constructed as well if this is not the case.

An interesting open problem would be extending our attacks to more rounds
using other approaches to the meet-in-the-middle technique; for example, similar
to those of [3].

References

[1] E. Biham, O. Dunkelman, and N. Keller. Improved Slide Attacks. In
A. Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Sci-
ence, pages 153–166. Springer, 2007.

[2] A. Biryukov and D. Wagner. Advanced Slide Attacks. In B. Preneel, editor,
EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages
589–606. Springer, 2000.

[3] O. Dunkelman, G. Sekar, and B. Preneel. Improved Meet-in-the-Middle At-
tacks on Reduced-Round DES. In K. Srinathan, C. P. Rangan, and M. Yung,
editors, INDOCRYPT, volume 4859 of Lecture Notes in Computer Science,
pages 86–100. Springer, 2007.

[4] O. Kara. Reflection Cryptanalysis of Some Ciphers. In D. R. Chowdhury,
V. Rĳmen, and A. Das, editors, INDOCRYPT, volume 5365 of Lecture Notes
in Computer Science, pages 294–307. Springer, 2008.

[5] National Institute of Standards and Technology. FIPS PUB 46-3: Data
Encryption Standard (DES), October 1999. http://www.itl.nist.gov/

fipspubs/fip186-2.pdf.

[6] OpenSSL version 1.0.0, March 2010. http://www.openssl.org/.

[7] J. Pieprzyk and L. Tombak. Soviet Encryption Algorithm, June 1994. http://

freeworld.thc.org/root/phun/stego-challenge/gost-spec.pdf.

[8] M.-J. Saarinen. A chosen key attack against the secret S-boxes of GOST,
1998. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.

5532.

[9] G. Sekar, N. Mouha, V. Velichkov, and B. Preneel. Meet-in-the-Middle At-
tacks on Reduced-Round XTEA. In A. Kiayias, editor, CT-RSA, volume 6558
of Lecture Notes in Computer Science, pages 250–267. Springer, 2011.

http://www.itl.nist.gov/fipspubs/fip186-2.pdf
http://www.itl.nist.gov/fipspubs/fip186-2.pdf
http://www.openssl.org/
http://freeworld.thc.org/root/phun/stego-challenge/gost-spec.pdf
http://freeworld.thc.org/root/phun/stego-challenge/gost-spec.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5532
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5532

REFERENCES 179

[10] H. Seki and T. Kaneko. Differential Cryptanalysis of Reduced Rounds of
GOST. In D. R. Stinson and S. E. Tavares, editors, Selected Areas in Cryp-
tography, volume 2012 of Lecture Notes in Computer Science, pages 315–323.
Springer, 2000.

[11] C. E. Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, 28:656–715, 1949.

180 MEET-IN-THE-MIDDLE ATTACKS ON REDUCED-ROUND GOST

Publication Chapter

Challenging the Increased
Resistance of Regular Hash
Functions Against Birthday
Attacks

Publication Data

Nicky Mouha, Gautham Sekar, and Bart Preneel. Challenging the
Increased Resistance of Regular Hash Functions Against Birthday At-
tacks. ECRYPT II Hash Workshop, May 2011. http://www.ecrypt.

eu.org/hash2011/.

This paper is currently under submission to an international journal.

Contributions

• Main author together with Gautham Sekar.

181

http://www.ecrypt.eu.org/hash2011/
http://www.ecrypt.eu.org/hash2011/

182 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

Challenging the Increased Resistance of Regular Hash

Functions Against Birthday Attacks∗

Nicky Mouha1,2,†, Gautham Sekar3,‡, and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
3 Temasek Laboratories, National University of Singapore,

5A, Engineering Drive 1, #09-02, Singapore 117411.
{Nicky.Mouha,Bart.Preneel}@esat.kuleuven.be, tslgs@nus.edu.sg

Abstract. At EUROCRYPT 2004, Bellare and Kohno presented the
concept of a regular hash function. For a hash function to be regular,
every hash value must have the same number of preimages in the do-
main. The findings of their paper remained unchallenged for over six
years, and made their way into several research papers and textbooks.
In their paper, Bellare and Kohno claim that regular hash functions
are more resistant against the birthday attack than random hash
functions. We counter their arguments, by showing that the success
probability of the birthday attack against a regular hash function can
be made arbitrarily close to that of a random hash function (for the
same number of trials). Our analysis uses the fact that the choices
of the attacker can be limited to any subset of the domain. Further-
more, we prove that it is not possible to construct a hash function
that is regular for only a small fraction of subsets of the domain. In
order to avoid these problems, we propose to model hash functions
as random functions. Compared to regular functions, we argue that
the statistics of random functions are more similar to hash functions
used in practice, regardless of how the attacker chooses the domain
points.

Keywords: Hash function, balance, regularity, birthday attack, (lin-
ear) subset regularity, random function.

∗This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, and by
the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT program under contract ICT-2007-216676 ECRYPT
II.
†This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).
‡Part of this work was performed during the author’s PhD research at COSIC.

183

mailto:\protect \T1\textbraceleft Nicky.Mouha,Bart.Preneel\protect \T1\textbraceright @esat.kuleuven.be, tslgs@nus.edu.sg

184 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

1 Introduction

Let h : D → R be a function, where both the domain D and the range R are finite
sets. Denote |D| by d and |R| by r. If d > r, h is referred to as a hash function.
Although strictly not required, D is finite for commonly used hash functions; e.g.
for SHA-1, D consists of all strings of length at most 264 − 1 bits [8].

Any pair (x, y) where x, y ∈ D for which x 6= y and h(x) = h(y), is denoted
as a collision for hash function h. A possibly trivial collision is a pair (x, y) where
x, y ∈ D for which h(x) = h(y). That is, unlike for a collision, it is allowed that
x = y. Among other requirements [14], a cryptographic hash function should be
collision resistant, i.e. it should be computationally infeasible to find a collision.
In this paper, a “hash function” does not necessarily refer to a “cryptographic
hash function.” For any choice of h, a generic birthday attack can be used to find
a collision.

In a birthday attack, points x1, . . . , xq are picked from D. For i = 1, . . . , q,
we compute yi = h(xi). We say that the birthday attack is successful, if we find
h(xi) = h(xj), where 1 ≤ i < j ≤ q. We refer to q as the number of trials of the
birthday attack.

There are several variants of the birthday attack, that differ in the way that
the points x1, . . . , xq are chosen. In their analysis [1, 2], Bellare and Kohno only
consider the case where the domain points are chosen independently and uniformly
at random from all m-bit strings (therefore |D| = 2m). Yuval [26] instead suggests
using q minor modifications of a message, in such a way that all messages are
meaningful. Using distinguished points, Quisquater and Delescaille [18] showed
that collisions for meaningful messages can also be found with negligible memory
requirements, i.e. without storing all (xi, h(xi)) for i = 1, . . . , q. An efficient
parallel implementation of their algorithm was proposed by Van Oorschot and
Wiener [22].

For most applications, only a small subset of all m-bit strings are meaningful.
If, for example, the messages consist of only ASCII characters, a necessary (but
not sufficient) requirement is that the most significant bit of every character is
zero.

Let Ch(q) be the probability that the birthday attack finds a possibly trivial
collision for h after q trials. If for every domain point, the corresponding range
point of h is chosen uniformly and independently at random from all r range points,
we refer to h as a random function. The success probability of the birthday attack
for a random function is denoted as C$

h(q).
Bellare and Kohno [2] point out that if h is a random function, this does not

necessarily mean that h(x) is uniformly distributed in R. In order to have such
a uniform distribution in R, every range point must have the same fraction of
preimages under the hash function. We refer to such a hash function as a regular
function. This can be defined more formally as follows.

Definition 1 (Balance and Regularity). Let h : D → R be a hash function with

INTRODUCTION 185

domain D of size d and range R = {R1, R2, . . . , Rr} of size r. For h to be a hash
function, we must have d > r. For 1 ≤ i ≤ r, di = |h−1(Ri)| denotes the size of
the preimage of Ri under h. The balance of h is then defined as

µ(h) = logr

(
d2

d21 + d22 + . . .+ d2r

)

. (1)

A hash function is regular iff µ(h) = 1 (that is, iff ∀ 1 ≤ i ≤ r : di = d/r) [2, §5].

If h is a regular function, the success probability of the birthday attack is
denoted by Creg

h (q). Bellare and Kohno calculate4 that C$
h(q) > (8/5) · Creg

h (q), if
d = 2r ≥ 10. Therefore, they conclude that “regular functions fare better than
random functions [against the birthday attack].”

We recall that their reasoning assumes that the attacker chooses the messages
uniformly at random from D. In the following sections, we investigate the case
where the attacker limits the choice of the domain points to subsets ofD. We prove
that it is not possible to construct a hash function that is regular with respect to
only a small fraction of subsets of the domain. For this, we introduce the concepts
of subset regularity and linear subset regularity.

Bellare and Kohno pointed out in their analysis that there is only a small
difference between regular and random functions in their resistance against the
birthday attack. For random functions, the success probability of the birthday
attack does not depend on how the attacker chooses the domain points.

NIST is currently holding a competition in search for a new hash function
standard [15]. Our result may be relevant to the analysis of statistical properties
of the hash functions in this competition.

Organization. This paper is organized as follows. In Sect. 2, we describe the
birthday problem and its relation to the birthday attack. Section 3 provides a
brief overview of some works that employ the notion of regularity. In Sect. 4, we
compute the ratio of regular functions to all functions with the same domain and
range. Our notions of subset regularity and linear subset regularity are introduced
in Sects. 5 and 6, respectively. The impact of our observations on the birthday
attack is discussed in Sect. 7, where we show that the success probability of the
birthday attack against a regular hash function can be made arbitrarily close to
that of a random hash function (for the same number of trials). In Sect. 8, we
describe the relation of regularity to the dictionary problem in computer science.

We propose in Sect. 9 that, to analyze the complexity of the birthday attack
for commonly used hash functions, we model hash functions as random functions
instead of as regular functions. A proof that random functions do not suffer from
any of the problems in this paper is given as well. We conclude in Sect. 10.

We show in Appendix A how the construction of a 3-to-1 bit linear subset
regular hash function fails. In Appendix B, we calculate the inverse of some

4In this proof, the values from the domain are randomly chosen, but with replacement. The
replacement can result in a possibly trivial collision with a collision in the domain. The authors
show in [2, §7.2] that the higher success probability is not due to the possibility of such collisions.

186 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

matrices that we use in Sect. 6.

2 The Birthday Problem

Assume that there are N people in one room. How large must N be, in order to
have a probability of at least 1/2 that two people share the same birthday? It
is assumed that birthdays are independently and uniformly distributed over the
365 days of the year (leap years are ignored). This is the birthday problem (see
Feller [9, §2.3]), which dates back to von Mises [23]. The answer to the problem
is N ≥ 23.

Bloom showed that the probability that two people share the same birthday,
is the lowest when birthdays are uniformly distributed [3]. Nunnikhoven [16]
analyzed the birthday problem for nonuniform birth frequencies.

Based on the mathematics of the birthday problem, Yuval proposed the birth-
day attack for hash functions [26]. In the attack, a large number of messages are
generated, until two messages are found that result in the same hash value. The
attack complexity depends on the distribution of the hash values. If the hash
values are uniformly distributed, the analysis of the original birthday problem ap-
plies. In case of a nonuniform distribution, collision probabilities were calculated
by Cachin [5, §3.2.5], as well as Bellare and Kohno [2].

In this paper, we point out that the distribution of the hash values not only
depends on the hash function, but also on how the attacker chooses the input
messages. This is different from the birthday problem, where the probability
distribution of the birthdays is fixed in advance (to have a uniform distribution).
In the following sections, we investigate the impact of the attacker’s choice of the
messages.

3 Balance and Regularity in Existing Literature

The results of [2] not only remained unchallenged for over six years, but were
also often cited in papers on cryptographic theory, in cryptanalysis papers and in
textbooks. In this section, we give a brief overview of some of the most notable
results.

Since Bellare and Kohno introduced their balance measure µ(h) in [1, 2] (de-
fined in (1)), this measure has been applied to several hash functions. Already
in their original paper, the balance measures of truncated variants of SHA-1 were
analyzed. Later, Yoshida et al. calculated the balance of a reduced version of
MAME [25]. Ødegård and Gligoroski recently computed the balance measures of
reduced versions of EDON-R [17].

In each of these papers, hash function balances are calculated. However, the
results show that not a single one of the hash functions variants under consideration
is regular, and the balance measure µ(h) seems to decrease if the number of output

FRACTION OF REGULAR FUNCTIONS 187

bits of h is increased. The balance of the actual (untruncated) hash functions is
never calculated, because this would be computationally infeasible. Because of this
difficulty, we question the applicability of the balance measure to analyze practical
hash functions.

The notions of balance and regularity also appear in several textbooks. In [11],
Goldwasser and Bellare state that “If h is not regular, it turns out the [birthday]
attack succeeds even faster, telling us that we ought to design hash functions to
be as “close” to regular as possible.” In this paper, we explain why we counter this
design criterion.

Buchmann’s book [4] states: “We assume that strings from [the domain] can be
chosen such that the distribution on the corresponding hash values is the uniform
distribution.” However, it is the attacker who can freely determine how strings are
chosen from the domain. In this paper, we show that there always exists a way for
the attacker to restrict the domain so that the resulting function is not regular.

In the first edition of his book [19], Stinson describes the birthday attack under
the assumption that the hash function is regular. This assumption is dropped in
the second edition [20], in favor of random oracles [10].

In [13], Joux refers to [1] for a more precise analysis of collisions in hash func-
tions for the unbalanced case. Bellare and Kohno provide bounds for this unbal-
anced case [2], which they refer to as “the generalized birthday problem”. The
reader should not confuse this with the generalized birthday problem that Wagner
studied earlier [24].

4 Fraction of Regular Functions

We begin with the following lemmata.

Lemma 1. The total number of hash functions |h| is given by rd.

Proof. Each of the d elements of the domain, can have r possible range points.
This results in a total of rd combinations.

Lemma 2. The total number of functions |hreg| that are regular is given by

|hreg| =
{
d!/((d/r)!)r if r | d ,
0 if r ∤ d .

(2)

Proof. For a function to be regular, each range point must have the same number
of preimages under the function. This is achieved if and only if r | d. Given that
the function is regular, the first range point that we consider has one of C(d, d/r)
possible sets of d/r preimages mapping to it. Here, C(u, v) denotes the quantity
u!/(v! · (u − v)!). Any domain point in the set that maps to this range point
cannot map to any other range point; otherwise the mappings do not constitute a
function. Therefore, the second range point that we consider will have one of only

188 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

C(d − d/r, d/r) possible sets of d/r preimages mapping to it. Similarly, the i-th
range point will have one of C(d− (i−1) ·d/r, d/r) sets of domain points mapping
to it. In total, therefore, we have

r∏

i=1

C(d− (i− 1) · d/r, d/r) =
d!

((d/r)!)r
(3)

functions that are regular. Figure 1 illustrates the above arguments with an ex-
ample.

R
2

R
3

R
1

.
.

.

.

. .

.

D R

.

.

.

.

.

Figure 1 – In this example, d = 9 and r = 3; the shaded area
represents one of the C(9, 3) possible sets of 3 domain points that
can map to the range point R1 given that the function is regular; for
R2 there are only C(6, 3) sets

Theorem 1. Assume r | d. The probability that a random function is also a
regular function, is given by

|hreg|
|h| ≈ 2−(r/2)·log2(2πd/r) . (4)

Proof. Stirling’s approximation:

log2 (z!) ≈ 1

2
log2 (2πz) + z log2

(z

e

)

. (5)

Using Lemma 1 and Lemma 2, we obtain:

log2

(|hreg|
|h|

)

= log2 (|hreg|)− log2 (|h|)

= log2

(
d!/(dr !)r

)
− log2

(
rd
)

= log2 (d!)− r log2

(
d

r
!

)

− d log2(r)

SUBSET REGULARITY 189

≈ 1

2
log2 (2πd) + d log2

(
d

e

)

− r
2

log2 (2πd/r)− d log2

(
d

re

)

− d log2(r)

=
1

2
log2 (2πd)− r

2
log2 (2πd/r)

≈ −r
2

log2

(
2πd

r

)

. (6)

Let us consider a random hash function with d = 2161 and r = 2160. According
to Theorem 1, the probability5 that this function is a regular function, is 2−2160.9

.
We note that it is therefore extremely unlikely that a hash function chosen uni-
formly at random from the set of rd hash functions is regular. This relates to the
observations made in the literature study of Sect. 3, where we discuss papers that
analyze the balance of several hash function variants.

5 Subset Regularity

First, we recall a rather obvious point from [2]. Assume that for an n-bit hash
function h, we restrict the input of h to messages of at most m bits. Let g be
a hash function, such that the domain is restricted to at most m′ bits, where
m′ ≥ m. Suppose g(x) = h(x), ∀ x : |x| ≤ m. Then, a collision for h will also be
a collision for g. If g is SHA-1, then m′ can be at most 264 − 1. A collision for,
say, h : {0, 1}161 → {0, 1}160 is a collision for SHA-1 for any m′ > 161. In other
words, as separately stated by Bellare and Kohno [2, §7.2],

“[A]n adversary attacking a hash function with a very large domain D might re-
strict its choices of domain elements to some smaller subset of D.”

One possibility is to restrict the domain elements to sets of size 2a, where a ∈ N
and 2a > r. In this paper, we assume that the attacker chooses to make such a
restriction. We also assume that |D| is even, and that the size of the restricted
domain is always half the size of D.

For certain applications, the domain D must be restricted to a smaller subset.
For example, if a message consists of ASCII characters, the most significant bit of
every character must be zero.

5Although Stirling’s approximation (5) is used for a small value of z, namely d/r = 2, all
digits of the calculated probability using the approximation are correct.

190 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

Definition 2 (Subset regularity). Let h : D → R be a hash function with domain
D and range R = {R1, R2, . . . , Rr} of size d and r respectively. Assuming |D| is
even, the attacker can restrict the elements ofD to a subset S such that |S| = |D|/2.
For 1 ≤ i ≤ r, si = |h−1(Ri) ∈ S| denotes the size of the preimage of Ri under h,
when the domain is restricted to S. We say that a hash function is subset regular
with respect to S, if it is not only regular, but also ∀ 1 ≤ i ≤ r : si = d/(2r). That
is, it must also be regular when the domain is restricted to subset S. We impose
the condition d > 2r, to ensure that |S| > |R|.

We now introduce the following lemma.

Lemma 3. The total number of hash functions |hsreg| that are subset regular with
respect to S, is given by

|hsreg| =
{

((d/2)!/((d/2r)!)r)2 if 2r | d ,
0 if 2r ∤ d .

(7)

Proof. Suppose that |D| is even. Let the domain D be partitioned into two equally-
sized sets D1 and D2, and consider only domain elements in one of these sets (D1

or D2). Then every range point can have the same number of preimages, if and
only if 2r | d. This also implies r | d, which is required for the regularity criterion
on the entire domain. The reasoning now is exactly the same as for Lemma 2, but
with d replaced by d/2 as the regularity criterion holds on the smaller domain as
well. Because the subset regularity criterion has to hold on the other subset of the
domain, we square the entire expression. If |D| is not even, it is not possible that
h is subset regular with respect to S.

Theorem 2. If 2r | d, the probability that a regular function chosen uniformly at
random is also subset regular with respect to S, is given by

|hsreg|
|hreg| ≈ 2(−r/2)·log2(πd/2r) . (8)

Proof. Using Lemma 2 and Lemma 3, we obtain:

log2

(|hsreg|
|hreg|

)

= log2 (|hsreg|)− log2 (|hreg|)

= log2

((
d

2 !/(d2r !)r
)2
)

− log2

(
d!/(dr !)r

)

= 2 log2

(
d

2
!

)

− 2r log2

(
d

2r
!

)

− log2 (d!) + r log2

(
d

r
!

)

≈ log2 (πd) + d log2

(
d

2e

)

− r log2 (πd/r)− d log2

(
d

2re

)

− 1

2
log2 (2πd)− d log2

(
d

e

)

+
r

2
log2 (2πd/r)

LINEAR SUBSET REGULARITY 191

+ d log2

(
d

re

)

=
1

2
log2

(
πd

2

)

+
r

2
log2

(
2r

πd

)

≈ −r
2

log2

(
πd

2r

)

. (9)

Assume that for a regular hash function, d = 2162 and r = 2160. The attacker
decides to restrict the choice of the domain points to a smaller subset, consisting of
2161 elements. According to Theorem 2, the probability6 that a randomly chosen
regular function is also subset regular with respect to S, is 2−2160.5

.
This leads us to conclude that if h is a regular function chosen uniformly

at random (from all regular functions with the same domain and range), the
probability that h is also a regular function for a particular subset is negligible.

6 Linear Subset Regularity

In Sect. 5, we showed that a randomly chosen regular hash function is also subset
regular with respect to S with a probability of almost zero. Our calculations
assumed that r was at least reasonably large, otherwise finding collisions using the
birthday attack becomes feasible in practice.

One might therefore propose the design of a hash function h that is not only
regular, but also subset regular with respect to arbitrary subsets. We now prove
that no such h exists, by showing that a hash function can be subset regular with
respect to only a negligible fraction of all C(d, d/2) possible subsets. In order to
do this, we first introduce the definition of linear subset regularity.

Definition 3 (Linear subset regularity). Let h : D → R be a hash function with
d = |D| = 2m and r = |R|. Every element of D consists of m bits, which we
label from x0 to xm−1, where x0 represents the least significant bit. The attacker
can restrict the elements of D to a smaller subset, including only domain points
that satisfy am−1xm−1 ⊕ am−2xm−2 ⊕ . . . ⊕ a0x0 = 0, where ai ∈ {0, 1}. We can
therefore construct 2m − 1 subsets of D, for all choices of ai, 0 ≤ i < m, except
the all-zero case. We impose d > 2r, to ensure that each of these subdomains is
larger than the range R. We say that a hash function is linear subset regular, if it
is not only regular for the domain D, but also for each of the 2m − 1 subsets of
the domain that we defined.

We first prove that there are nom-to-1 bit hash functions that are linear subset
regular. Using this, we prove that there are also no m-to-n bit hash functions that
are linear subset regular.

6The approximation given by (8) results in 2−2160.4
, but we have calculated this value more

accurately by including additional terms in Stirling’s approximation (5).

192 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

Theorem 3. There does not exist an m-to-1 bit hash function that is linear subset
regular.

Proof. A necessary condition for a 3-to-1 bit hash function to be linear subset
regular, is that exactly four hash values are 0, and that for every linear subset
exactly two hash values are 0. This condition can be described by the following
system of linear equations:

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

h(000)
h(001)
h(010)
h(011)
h(100)
h(101)
h(110)
h(111)

=

4
2
2
2
2
2
2
2

. (10)

We find that there is only one solution, namely h(000) = h(001) = . . . =
h(111) = 1/2. As none of these range points are in the set {0, 1}, we conclude
that there does not exist a 3-to-1 bit hash function that is linear subset regular.
In Appendix A, we show how the explicit construction of a 3-to-1 bit linear subset
regular hash function fails.

Let the 8 × 8 matrix in (10) be denoted as A8. By Ād we denote the matrix
that results when the logical negation operator is applied to every element of Ad.
Matrices Ad can then be constructed as follows:

A1 = [1] , (11)

Ad =

[
Ad/2 Ad/2
Ad/2 Ād/2

]

, for 1 ≤ log2 (d) ∈ N . (12)

Every row of Ad corresponds to a subset of the domain defined by the linear
expression am−1xm−1 ⊕ am−2xm−2 ⊕ . . . ⊕ a0x0, where ai ∈ {0, 1}, 0 ≤ i < m
indicates if a linear term is included or not, and x0 refers to the least significant bit.
By definition, we assume that a linear expression containing zero terms corresponds
to the regularity condition. The values of ai are different for every row, and Ad is
constructed such that the top d/2 rows have am−1 = 0 and the bottom d/2 rows
have am−1 = 1.

In order to extend our result from 3-to-1 bit hash functions to m-to-1 bit hash
functions, we must prove that the following system of equations has no solutions
that consist of only elements in {0, 1}:

AdX =
d

4

[
2 1 1 . . . 1

]T
. (13)

By counting the number of ones in every row of Ad, we make the observation

that X =
[

1 1 · · · 1
]T
/2 is always a valid solution. This is the only solution

LINEAR SUBSET REGULARITY 193

if Ad is invertible. In Appendix B, we prove that matrices Ad are invertible, by
showing their relation to Hadamard matrices. As none of the elements of X are
in the set {0, 1}, there are no m-to-1 bit hash functions that are linear subset
regular.

We now show that if no m-to-1 bit linear subset regular hash functions exist,
there exist no m-to-n bit linear subset regular hash functions.

Theorem 4. There exists no m-to-n bit hash function that is linear subset regular.

Proof. We show by induction on n. Let P (n) denote the proposition:

There exists no m-to-n bit hash function that is linear subset regular.

The base case P (1) is true by Theorem 3. Let P (i) be true for some i < n.
Then, we derive the truth table of Table 1.

Table 1 – Truth table for an m-to-i bit hash function h; αj,ℓ ∈ {0, 1}
∀ j ∈ {0, . . . , 2m − 1} and ℓ ∈ {0, . . . , i− 1}

x
︷ ︸︸ ︷

xm−1 xm−2 · · · x0

0 0 · · · 0
0 0 · · · 1
...

...
. . .

...
0 1 · · · 1
1 0 · · · 0
1 0 · · · 1
...

...
. . .

...
1 1 · · · 1

h(x)
︷ ︸︸ ︷

αi−1 αi−2 · · · α0

α0,i−1 α0,i−2 · · · α0,0

α1,i−1 α1,i−2 · · · α1,0

...
...

. . .
...

α2m−1−1,i−1 α2m−1−1,i−2 · · · α2m−1−1,0

α2m−1,i−1 α2m−1,i−2 · · · α2m−1,0

α2m−1+1,i−1 α2m−1+1,i−2 · · · α2m−1+1,0

...
...

. . .
...

α2m−1,i−1 α2m−1,i−2 · · · α2m−1,0

Now, if a hash function is linear subset regular then it is

• regular, and

• subset regular under all linear conditions, each of which partitions the do-
main into two equally-sized sets.

Therefore, if a hash function is not linear subset regular then it is either (i) not
regular or (ii) not subset regular with respect to at least one linear condition.
Given case (ii), without loss of generality, let us assume that subset regularity
does not hold for xm−1 = 0. Then, in the truth table in Table 1, at least one of
the 2m−1 i-bit outputs corresponding to xm−1 = 0 appears more than the expected

194 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

2m−1/2i = 2m−i−1 times. Again, without loss of generality, let the output {0}i
appear t > 2m−i−1 times (i.e., say, αj,ℓ = 0 ∀ j ∈ {0, . . . , t−1} and ℓ ∈ {0, . . . , i−1}
in Table 1). Then, if we append one bit to each of the t output strings {0}i, one
of the strings {0}i||0 and {0}i||1 appears strictly more than 2m−1/2i+1 = 2m−i−2

times. Since {0}i||0 and {0}i||1 should each appear exactly 2m−i−2 times when
the m-to-(i + 1) bit hash function is subset regular under the linear condition
xm−1 = 0, P (i + 1) is true when P (i) is true. Given case (i), following a similar
line of reasoning, replacing 2m−1 with 2m and recalculating the formulas, we obtain
that P (i)⇒ P (i+1). Therefore, by the principle of mathematical induction, P (n)
is true.

Let us again consider a regular hash function with d = 2162 and r = 2160. If we
require this function to be linear subset regular as well, the function must be subset
regular for a fraction of d − 1 out of all C(d, d/2) possible subsets consisting of
half of the domain elements. For d = 2162, this fraction evaluates to about 2−2162

.
Therefore, by imposing subset regularity for only an extremely small fraction of the
possible subsets that we consider, we prove that no linear subset regular functions
exist.

In the previous section, we showed that the fraction of subset regular hash
functions was negligible. In this section, we obtained an even stronger result:
there does not exist a hash function that is regular for more than a negligibly
small fraction of subsets of the domain.

Therefore, in the birthday attack, the attacker can always restrict the domain
in such a way that the resulting hash function is not regular. This counters Bellare
and Kohno’s interpretation of why regular functions fare better than random func-
tions against the birthday attack. However, we do not dispute the mathematics
of their analysis.

7 Impact on the Birthday Attack

In the previous sections, we showed how unlikely it is that a hash function is
regular, if the attacker restricts the inputs to a particular subset. We now use
this observation to increase the success probability of the birthday attack against
a regular hash function (for the same number of trials), compared to Bellare and
Kohno’s analysis.

Bellare and Kohno [2, §7.2] see a possibility for the attacker to restrict the
domain to a smaller subset of d = 2r > 10 elements, and calculate that in this
case, C$

h(q) > (8/5) ·Creg
h (q). From this, they conclude that regular hash functions

fare better than random hash functions against the birthday attack. However,
Bellare and Kohno’s analysis assumes that the attacker restricts the domain in
such a way, that D consists of all strings of length log2(r) + 1 bits.

As Bellare and Kohno already pointed out, Creg
h (q) approaches C$

h(q) if the
length of the input strings increases. Therefore, to increase the success probability

RELATED WORK 195

of the birthday attack against a regular hash function with d = 2r (for the same
number of trials q), the attacker can consider long input messages. The attacker
will then restrict these long input messages to a set of d = 2r elements, and
perform the birthday attack. Therefore, by increasing the length of the input
messages (but still restricting the domain points in the birthday attack to d = 2r
elements), the success probability of the birthday attack against a regular hash
function can be made arbitrarily close to that of a random hash function, for the
same number of trials q. This contradicts Proposition 7.4 of [2], which states that
if |D| = 2|R| ≥ 10, then C$

h(q) > (8/5)·Creg
h (q) for all q satisfying 2 ≤ q ≤ 0.1·r1/2.

8 Related Work

In 1956, Dumey introduced the concept of (non-cryptographic) hashing [7]. It was
proposed as a solution to the dictionary problem. In the dictionary problem, a
sequence of operations Insert(k, x), Delete(k) and Lookup(k) are given. They
are used to respectively insert, delete and look up key-value pairs (k, x), and are
performed on an initially empty table of key-value pairs. The goal is to minimize
the time and memory used by these operations.

Let h′ : D′ → R′ be a hash function, where both the domain |D′| = d′ and the
range |R′| = r′ are finite, and d′ > r′. The construction known as chained hashing
is then described as follows. We initialize an array A[1 . . . r′], and let A[i] contain
a linked list of all key-value pairs (k, x) for which h′(k) = i.

Assume that r′ | d′. For chained hashing, h′ is ideally chosen such that every
A[i] contains the same number of key-value pairs. This is related to the notion
of a regular hash function by Bellare and Kohno, where every hash value has the
same number of preimages in the domain D′. If D′ is the set of all keys that are
added to the table, then the number of key-value pairs that have to be read when
either of the three operations are performed, is at most d′/r′. If there exists an
A[i] with fewer than d′/r′ elements, then there also exists an A[j] where i 6= j
with more than d′/r′ elements. Therefore, regular hash functions obtain the best
performance in the worst-case scenario.

Doing a rigorous analysis of chained hashing is difficult, because the calcu-
lations strongly depend on sequence of keys k. For example, by the pigeonhole
principle there always exists a sequence of keys k that all map to the same hash
value h′(k). Sometimes assumptions are placed on the sequence of keys k, but
these may be very difficult (or even impossible) to guarantee in practice. This is
also evident from the analysis in our paper.

As a novel solution to the dictionary problem, we mention the universal classes
of hash functions proposed by Carter and Wegman [6]. In their paper, it is pro-
posed that h′ is chosen uniformly at random, but not from the set of all possible
functions. The class of hash functions H ′ is chosen in such a way, that the average
performance (for all h′ ∈ H ′) for the worst case input is bounded.

More formally, let h′ : D′ → R′ be a hash function, where both the domain

196 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

|D′| = d′ and the range |R′| = r′ are finite, and d′ ≥ r′. A universal class of hash
functions is then defined such that for a randomly chosen h′ ∈ H ′, the probability
that any h′(x) = h′(y) is at most 1/r′ for any two distinct x and y.

However, not all protocols allow a hash function to be selected uniformly at
random from a class of hash functions. In that case, the notion of universal classes
of hash functions is not meaningful.

9 Random Functions

Bellare and Kohno showed [2] that several reduced versions of SHA-1 do not be-
have as regular functions. This indicates that regular functions may not be a
suitable theoretical model to analyze the collision resistance of commonly used
hash functions. In previous sections, we also made an observation on Bellare and
Kohno’s claim that regular hash functions fare better than random hash functions
against the birthday attack. Based on this, we suggest not to model hash functions
as regular functions.

Instead, we propose to model hash functions as random functions when analyz-
ing the complexity of the birthday attack. We agree with Bellare and Kohno that
“the design principle of attempting to make hash functions have random behavior
[...] is sound and central to security” [2]. We now explain why random functions
do not suffer from any of the problems described in this paper.

A random function can be defined as follows:

Definition 4 (Random Function). Let F : {0, 1}∗ → {0, 1}n be a random func-
tion. If xi ∈ {0, 1}n has not been queried before, the random function chooses yi
uniformly at random from all 2n range points, and outputs yi = F (xi). Otherwise,
if xi = xj where j < i, the random function outputs yj = F (xj) = F (xi).

Unlike for a regular hash function, it is not necessary for a random function to
require that the domain consists of a finite number of elements. Also, it is clear
from the random function definition, that for any subset of the domain, the range
points yi are chosen randomly and independently from a uniform distribution as
well. The statistics of a random function are the same, no matter how the domain
points are chosen. Therefore, for a random function, the success probability of the
birthday attack does not depend on how the domain points are chosen.

10 Conclusions

The notion of a regular hash function was introduced by Bellare and Kohno at
EUROCRYPT 2004, and has subsequently appeared in several research papers. It
is defined as a hash function that has the same number of preimages in the domain
for every hash value. In their original paper, Bellare and Kohno state that “regular
functions fare better than random functions [against the birthday attack]”.

REFERENCES 197

We explain that this statement, which until now remained unchallenged, is
based on the assumption that the attacker chooses the domain points uniformly at
random. However, Bellare and Kohno note that “there are several variants of [the
birthday attack] which differ in the way the [domain] points x1, . . . , xq are chosen.”
One possible restriction is that domain points correspond to meaningful messages.
For example, if messages consist of only ASCII characters, the most significant bit
of every character must be zero.

For simplicity, we assumed that the choices of the attacker are restricted to
half of the domain points. In that case, we calculate that the probability that the
resulting function is still regular under this restriction is very close to zero.

We then attempt to extend the concept of regularity, and require that a hash
function is also regular under subsets of the domain. We prove that no such hash
function exists, even if we consider only a very small fraction of all possible ways
to divide the domain into subsets.

Thus, the attacker can restrict the domain points in the birthday attack in
such a way that the resulting hash function is not regular. This is our point of
disagreement with Bellare and Kohno’s analysis of why regular functions perform
better than random functions against the birthday attack.

We show how the success probability of the birthday attack against a regular
hash function can be increased (for the same number of trials), compared to Bellare
and Kohno’s analysis. Our results hold even for a highly restricted domain.

If hash functions are modeled as random functions, the choice of the domain
points does not change the success probability of the birthday attack.

Acknowledgments. The authors would like thank the anonymous reviewers
for their detailed comments and suggestions.

References

[1] M. Bellare and T. Kohno. Hash Function Balance and Its Impact on Birthday
Attacks. In C. Cachin and J. Camenisch, editors, EUROCRYPT, volume 3027
of Lecture Notes in Computer Science, pages 401–418. Springer, 2004.

[2] M. Bellare and T. Kohno. Hash Function Balance and Its Impact on Birthday
Attacks, 2004. http://cseweb.ucsd.edu/~mihir/papers/balance.html.

[3] D. M. Bloom. A birthday problem. American Mathematical Monthly, 80:1141–
1142, 1973.

[4] J. A. Buchmann. Introduction to Cryptography, Second Edition. Springer,
2004.

[5] C. Cachin. Entropy Measures and Unconditional Security in Cryptography.
PhD thesis, ETH Zurich, 1997. Reprint as vol. 1 of ETH Series in Informa-
tion Security and Cryptography, ISBN 3-89649-185-7, Hartung-Gorre Verlag,
Konstanz, 1997.

http://cseweb.ucsd.edu/~mihir/papers/balance.html

198 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

[6] J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions. Journal
of Computer and System Sciences, 18(2):143–154, April 1979.

[7] A. I. Dumey. Indexing for Rapid Random Access Memory Systems. Comput-
ers and Automation, 5(12):6–9, December 1956.

[8] Federal Information Processing Standards. FIPS 180-1: Secure Hash Stan-
dard. http://www.itl.nist.gov/fipspubs/fip180-1.htm, 1995.

[9] W. Feller. An Introduction to Probability Theory and its Applications. John
Wiley, New York, NY, USA, 1950.

[10] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems. In A. M. Odlyzko, editor, CRYPTO, volume
263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[11] S. Goldwasser and M. Bellare. Lecture Notes on Cryptography. http://

cseweb.ucsd.edu/~mihir/papers/gb.pdf, 2008.

[12] J. Hadamard. Résolution d’une question relative aux déterminants. Bulletin
des Sciences Mathématiques, 17:240–246, 1893.

[13] A. Joux. Algorithmic Cryptanalysis. Chapman & Hall / CRC, 2009.

[14] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[15] National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algo-
rithm (SHA-3) Family. Federal Register, 27(212):62212–62220, November
2007. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_

Nov07.pdf.

[16] T. S. Nunnikhoven. A birthday problem solution for nonuniform birth fre-
quencies. The American Statistician, 46(4):270–274, Nov. 1992.

[17] R. S. Ødegård and D. Gligoroski. On the Randomness and Regularity of
Reduced EDON-R Compression Function. Cryptology ePrint Archive, Report
2009/234, 2009. http://eprint.iacr.org/.

[18] J.-J. Quisquater and J.-P. Delescaille. How Easy is Collision Search? Ap-
plication to DES (Extended Summary). In EUROCRYPT, pages 429–434,
1989.

[19] D. R. Stinson. Introduction to Cryptography, First Edition. CRC-Press, 1995.

[20] D. R. Stinson. Introduction to Cryptography, Second Edition. Chapman &
Hall / CRC, 2002.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://eprint.iacr.org/

LINEAR SUBSET REGULARITY FOR 3-TO-1 BIT HASH FUNCTIONS 199

[21] J. J. Sylvester. Thoughts on inverse orthogonal matrices, simultaneous sign-
successions, and tessellated pavements in two or more colours, with appli-
cations to Newton’s rule, ornamental tile-work, and the theory of numbers.
Philosophical Magazine, 34:461–475, 1867.

[22] P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with Crypt-
analytic Applications. J. Cryptology, 12(1):1–28, 1999.

[23] R. von Mises. Über Aufteilungs- und Besetzungswahrscheinlichkeiten. (On
Partitioning and Occupation Probabilities). İstanbul Üniversitesi Fen Fakül-
tesi Mecmuasi, 4:145–163, 1939.

[24] D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer,
2002.

[25] H. Yoshida, D. Watanabe, K. Okeya, J. Kitahara, H. Wu, Ö. Küçük, and
B. Preneel. MAME: A Compression Function with Reduced Hardware Re-
quirements. In P. Paillier and I. Verbauwhede, editors, CHES, volume 4727
of Lecture Notes in Computer Science, pages 148–165. Springer, 2007.

[26] G. Yuval. How to Swindle Rabin. Cryptologia, 3:187–189, 1979.

A Linear Subset Regularity for 3-to-1 Bit Hash Func-

tions

Here, we will attempt to construct a 3-to-1 bit linear subset regular hash function
h(x). Let the input x be a binary string, resulting from the concatenation of the
three input bits, such that x ← x2 ‖ x1 ‖ x0. We set h(000) = A, where A can
be either 0 or 1. The other output symbol will then be denoted by B. We now
consider three cases, as shown in Table 2.

• Case 1: Assume h(001) = A. Subset regularity with respect to x2 then
leads to h(010) = h(011) = B. Furthermore, subset regularity with respect
to x1 results in h(100) = h(101) = B. For h to be regular, we must have
h(110) = h(111) = A. However, we now find that restricting the inputs to
x2 ⊕ x1 = 0 results in a constant function.

• Case 2: Assume h(001) = B and h(010) = A. Subset regularity with
respect to x2 then leads to h(011) = B. Furthermore, subset regularity with
respect to x0 results in h(100) = h(110) = B. For h to be regular, we must
have h(101) = h(111) = A. However, we now find that restricting the inputs
to x2 ⊕ x0 = 0 results in a constant function.

200 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

Table 2 – Constructing a 3-to-1 bit linear subset regular hash func-
tion h(x), where x← x2 ‖ x1 ‖ x0; the values in bold were set initially,
the others are derived from the linear subset regular conditions

Case 1
x2 x1 x0 h(x)

0 0 0 A

0 0 1 A

0 1 0 B
0 1 1 B
1 0 0 B
1 0 1 B
1 1 0 A
1 1 1 A

Case 2
x2 x1 x0 h(x)

0 0 0 A

0 0 1 B

0 1 0 A

0 1 1 B
1 0 0 B
1 0 1 A
1 1 0 B
1 1 1 A

Case 3
x2 x1 x0 h(x)

0 0 0 A

0 0 1 B

0 1 0 B

0 1 1 A
1 0 0 B
1 0 1 A
1 1 0 A
1 1 1 B

• Case 3: Assume h(001) = B and h(010) = B. Subset regularity with
respect to x2 then leads to h(011) = A. Furthermore, subset regularity with
respect to x1 ⊕ x0 results in h(100) = h(111) = B. For h to be regular, we
must have h(101) = h(110) = A. However, we now find that restricting the
inputs to x2 ⊕ x1 ⊕ x0 = 0 results in a constant function.

Consequently, there are no 3-to-1 bit hash functions that are linear subset
regular. Also note that imposing all but one linear subset regular condition in
Table 2 leads to an affine hash function. We found by exhaustive search that all
3-to-1 bit hash functions where all but one linear subset regular conditions are
imposed, result in affine hash functions.

B Calculating the Inverses of Matrices Ad

In this section, we prove that the matrices Ad of Theorem 3 are invertible, by
showing their relation to Hadamard matrices. We give an explicit formula for
their inverses.

Hadamard matrices are square matrices of which all elements are either 1 or
−1. They were initially proposed by Sylvester [21]. Hadamard [12] later showed
that these matrices are the solution to his maximum determinant problem. An
d× d Hadamard matrix Hd can be defined a matrix satisfying

HdH
T
d = dId , (14)

where Id denotes the d× d identity matrix.

CALCULATING THE INVERSES OF MATRICES AD 201

If d is a power of two, Sylvester [21] proposed the following construction for Hd:

H1 = [1] , (15)

Hd =

[
Hd/2 Hd/2
Hd/2 −Hd/2

]

, for 1 ≤ log2(d) ∈ N . (16)

Let Jd be the d× d matrix where every element is equal to one. Matrix Kd is
the d×d matrix where every element of the first column is 1, and all other elements
are zero. Note that KdKTd = Jd. Matrices Ad of Theorem 3 satisfy the equation
Hd = 2Ad − Jd. We now show that matrices Ad are invertible, and calculate their
inverse. Using (14), we obtain

(2Ad − Jd)(2Ad − Jd)T = dId (17)

⇔ (2Ad − Jd)(2ATd − JTd) = dId

⇔ 4AdA
T
d − 2AdJ

T
d − 2JdA

T
d + JdJ

T
d = dId

⇔ 4AdA
T
d − d(KTd + Jd)− d(Kd + JTd) + dJd = dId

⇔ 4AdA
T
d − dKTd − dKd − dJTd = dId

⇔ 4AdA
T
d − dKTd − dKd − dKdKTd = dId

⇔ 4AdA
T
d = d(Kd + Id)(Kd + Id)

T (18)

As KdKd = Kd, we have

(Kd + Id)(Id −Kd/2) = Kd −KdKd/2 + Id −Kd/2 = Id . (19)

Therefore, (Kd + Id)
−1 = Id −Kd/2. From (18), we then obtain

AdA
T
d (2Id −Kd)T (2Id −Kd) = dId . (20)

This equation shows that Ad is invertible, and that its inverse is given by

A−1
d =

1

d
ATd (2Id −Kd)T (2Id −Kd) . (21)

202 CHALLENGING THE INCREASED RESISTANCE OF REGULAR HASH FUNCTIONS AGAINST

BIRTHDAY ATTACKS

Publication Chapter

Algebraic Techniques in
Differential Cryptanalysis
Revisited

Publication Data

Meiqin Wang, Yue Sun, Nicky Mouha, and Bart Preneel. Algebraic
Techniques in Differential Cryptanalysis Revisited. In Udaya Param-
palli and Philip Hawkes, editors, ACISP, volume 6812 of Lecture Notes
in Computer Science, pages 120–141. Springer, 2011.

Contributions

• Did a complete rewrite of an earlier draft. All results were extensively ver-
ified, and corrections were made where necessary. Most computer experi-
ments were performed by Yue Sun.

203

204 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

Algebraic Techniques in Differential Cryptanalysis

Revisited∗

Meiqin Wang1,2,3,†, Yue Sun1, Nicky Mouha2,3,‡, and Bart Preneel2,3

1 School of Mathematics, Shandong University, Jinan 250100, China
2 Department of Electrical Engineering ESAT/SCD-COSIC,

Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

mqwang@sdu.edu.cn

Abstract. At FSE 2009, Albrecht et al. proposed a new cryptana-
lytic method that combines algebraic and differential cryptanalysis.
They introduced three new attacks, namely Attack A, Attack B and
Attack C. For Attack A, they explain that the time complexity is dif-
ficult to determine. The goal of Attacks B and C is to filter out wrong
pairs and then recover the key. In this paper, we show that Attack C
does not provide an advantage over differential cryptanalysis for typ-
ical block ciphers, because it cannot be used to filter out any wrong
pairs that satisfy the ciphertext differences. Furthermore, we explain
why Attack B provides no advantage over differential cryptanalysis for
PRESENT. We verify our results for PRESENT experimentally, us-
ing both PolyBoRi and MiniSat. Our work helps to understand which
equations are important in the differential-algebraic attack. Based on
our findings, we present two new differential-algebraic attacks. Us-
ing the first method, our attack on 15-round PRESENT-80 requires
259 chosen plaintexts and has a worst-case time complexity of 273.79

equivalent encryptions. Our new attack on 14-round PRESENT-128
requires 255 chosen plaintexts and has a worst-case time complexity of
2112.83 equivalent encryptions. Although these attacks have a higher
time complexity than the differential attacks, their data complexity
is lower.

Keywords: Differential-Algebraic Attack, Block Cipher, PRESENT

∗This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, the
IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by the
European Commission through the ICT program under contract ICT-2007-216676 ECRYPT II.
†This author is supported by 973 Project (No.2007CB807902), NSFC Projects (No.61070244

and No.60931160442), Outstanding Young Scientists Foundation Grant of Shandong Province
(No.BS2009DX030), IIFSDU Project (No. 2009TS087).
‡This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).

205

mailto:mqwang@sdu.edu.cn

206 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

1 Introduction

Differential cryptanalysis [6, 7] is one of classic cryptanalytic methods for block
ciphers. Resistance against differential cryptanalysis is a typical design criterion for
new block ciphers. Algebraic cryptanalysis is a general method to attack ciphers.
It has been widely used to cryptanalyze many primitives such as stream ciphers [12,
15], multivariate cryptosystems [18] and in particular block ciphers [13,14, 16, 21].
The basic idea of algebraic cryptanalysis is to express the block cipher as a large
multivariate polynomial system of equations. The secret key of the cipher is the
solution of this system of equations. If the system is very sparse, overdefined or
structured, it may be solved faster than a generic non-linear system of equations.
By solving the system of equations for the block cipher, the key can be recovered
with only a few plaintext-ciphertext pairs.

There are several methods to solve these systems of equations, such as com-
puting a Gröbner basis or using a SAT solver. To compute a Gröbner basis,
PolyBoRi [10] can be used. MiniSat [17] is a fast SAT solver. The advantage
of computing a Gröbner basis is that useful equations can be generated, but this
computation is typically slower than using a SAT solver and can more easily run
out of memory.

However, the feasibility of algebraic cryptanalysis against block ciphers still
remains a source of speculation. The main problem is that the size of the corre-
sponding algebraic system is so large (thousands of variables and equations) that it
seems infeasible to correctly predict the complexity of solving such polynomial sys-
tems. Therefore, algebraic cryptanalysis has so far had limited success in targeting
modern block ciphers.

Recently, some works combining statistical cryptanalysis and algebraic crypt-
analysis were presented [1,3,4,19,25]. Specifically, the combination of differential
cryptanalysis and algebraic cryptanalysis appears to offer an advantage in reduc-
ing the data complexity. In [1,3], Albrecht et al. propose new differential-algebraic
cryptanalytic methods, which they refer to as Attack A, Attack B and Attack C.
In order to describe them, let p denote the probability of the r-round differential
characteristic for an N -round block cipher.

In Attack A, the system of equations consists of the equations of the plaintext
bits, ciphertext bits, and subkey bits, the equations of the key schedule, and
the linear equations resulting from the differential characteristic and the filter
equations of the last (N − r) rounds (i.e. the equations that must hold if the
output difference after round r holds). Attack A recovers the key by solving this
system of equations for each of the about 1/p plaintext-ciphertext pairs.

In Attack B, the same system of equations is used. The longest time to find
that the system of equations is inconsistent, is measured. If this time is exceeded,
a right pair is found with a high probability.

In Attack C, the system of equations only consists of the filter equations after
r rounds for an r-round differential and the key schedule algorithm after r rounds.
The conditions resulting from the differential characteristic and the conditions

INTRODUCTION 207

from the plaintext to the corresponding ciphertext are omitted in Attack C. The
goal of Attack C in [3] is to filter out wrong pairs by solving the system of equations
using tools such as PolyBoRi or MiniSat, and to use the remaining right pair to
recover the subkey bits.

In differential cryptanalysis, the filtering process can only filter out the wrong
pairs according to the difference values of the ciphertext pairs. That is, after the
filtering process, a lot of wrong pairs may still remain, which may increase the time
complexity to recover the key in the differential attack. However, in Attack B and
Attack C, Albrecht et al. claim that the right pairs can be identified with a good
probability if the equations after the r-th round of the differential characteristic
are inconsistent. They claim that with their technique, the time complexity will
be lower than in the standard differential attack. Their work received a lot of
attention in the cryptographic community [5, 8, 11, 20, 22], because it gives hope
for the combination of a statistical attack and an algebraic attack.

In this paper, we will revisit the differential-algebraic attack given by Al-
brecht et al., which they applied to PRESENT [9]. We find that Albrecht’s method
cannot filter out most of the wrong pairs satisfying the ciphertexts differences.
However, we will show that wrong pairs that do not satisfy the ciphertext differ-
ences, can easily be filtered out without the algebraic method. Using [3, 4], it is
not possible to filter out more wrong pairs than using differential cryptanalysis.

Firstly, we show that Attack C typically cannot be used to filter out wrong
pairs that do not satisfy the difference values of the ciphertexts to improve the
differential cryptanalysis. Secondly, we verify using PolyBoRi and MiniSat2 that
Attack B does not improve the current differential results for the PRESENT block
cipher. The reason is that there are too few usable equations in the system of
equations to derive an inconsistency for the wrong pairs or to find a solution for
the right pairs. Based on our findings, we introduce two new methods that can
more reliably use the right pairs to solve the right key within an acceptable time.
For wrong pairs, no solution will be produced. One method is to fix certain key bits
in the system of equations. This will allow an inconsistency to be derived faster.
Another method is to use more than one plaintext-ciphertext pair to construct the
system of equations.

We apply our attack methods to a reduced-round PRESENT block cipher.
With the first method, we attack 15-round PRESENT-80 with 259 chosen plain-
texts and 273.79 equivalent encryptions in the worst case. The 2R-differential
attack on 15-round PRESENT-80 has a data complexity of more than 259 and a
time complexity of less than 262 memory accesses. Therefore, the time complexity
of the differential-algebraic attack for PRESENT-80 is much larger than that of
the differential attack, but the data complexity is lower and the key does not have
to be the same for every pair. If the number of chosen plaintext pairs that the
attacker can obtain is limited, the algebraic-differential attack might be the only
feasible attack. Note, however, that more rounds can be attacked in the case of
PRESENT-80 using differential cryptanalysis (16 rounds instead of 15 rounds).
We also provide a new attack on 14-round PRESENT-128 with a data complexity

208 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

of 255 chosen plaintexts and a worst-case time complexity of 2112.83 equivalent
encryptions.

With our second method, the time complexity will be larger than with the first
method for 15-round PRESENT-80. It is an open question whether the second
method can offer an improvement for other block ciphers.

Our work also points out which equations are important in the differential-
algebraic attack. With pure algebraic cryptanalysis, a 5-round PRESENT block
cipher [14,21] can be attacked. Compared to this result, our differential-algebraic
attack can attack more rounds, but the data complexity will be higher than that
for the pure algebraic attack.

This paper is organized as follows. Section 2 describes Albrecht’s differential-
algebraic attack. In Sect. 3, we show why Attack C cannot filter out more wrong
pairs than differential cryptanalysis for most block ciphers. We verify using Poly-
BoRi and MiniSat2 that Attack B cannot improve the differential cryptanalysis of
the PRESENT block cipher. In Sect. 4, we present two methods that can be used
to successfully solve the right key with the right pairs. Our attack methods are
then applied to a reduced-round PRESENT block cipher. We conclude the paper
in Sect. 5.

2 Description of Albrecht’s Differential-Algebraic At-
tack

In [1, 3], Albrecht et al. proposed three types of attacks that combine algebraic
techniques with differential cryptanalysis. They are referred to as Attack A, At-
tack B and Attack C. We now describe these three types of attacks.

Attack A.

For an r-round differential characteristic ∆ = (δ0, δ1, . . . , δr), the probability of
the differential characteristic is denoted by p. For a pair of plaintexts (P ′, P ′′),
where P ′ ⊕ P ′′ = δ0, and the corresponding ciphertexts (C ′, C ′′), two systems of
equations F ′ and F ′′ are constructed under the same encryption key K. With the
differential characteristic, the following linear equations are constructed:

X ′i,j ⊕X ′′i,j = ∆Xi,j → ∆Yi,j = Y ′i,j ⊕ Y ′′i,j ,

where X ′i,j and X ′′i,j are the j-th bit of the input to the S-box layer in round i
for the systems F ′ and F ′′ respectively. The corresponding output bits are Y ′i,j
and Y ′′i,j . The values resulting from the differential characteristic are ∆Xi,j and
∆Yi,j . The linear expressions corresponding to bits of active S-boxes hold with
some non-negligible probability. For the non-active S-boxes, the following linear
relations also hold with non-negligible probability:

X ′i,j ⊕X ′′i,j = 0 = Y ′i,j ⊕ Y ′′i,j .

DESCRIPTION OF ALBRECHT’S DIFFERENTIAL-ALGEBRAIC ATTACK 209

If the r-round differential characteristic is used to recover the key for N rounds,
the differences from the (r + 1)-th round to the N -th round can be derived from
the output difference of the r-th round. Theses differences after the r-th round
are described by equations. Attack A combines the two systems of equations F ′

and F ′′, the above linear relations resulting from the differential characteristic and
the equations from the difference values after round r to produce the system of
equations F that holds with probability p. If about 1/p systems corresponding to
1/p pairs of plaintext-ciphertext can be solved, a right pair is expected to be found
which can then be used to obtain the right key. However, the time complexity to
solve the system about 1/p times may be very high.

Attack B.

Attack B uses the same system equations as Attack A to filter out the wrong pairs.
In a differential attack, the ciphertext difference values are commonly used to filter
out wrong pairs. However, in Attack B, by measuring the time t it maximally
takes to find that the system is inconsistent, it is assumed that a right pair has
been identified with high probability if a time t has elapsed without finding an
inconsistency. More specifically, Attack B assumes that ∆Y1,j holds with a high
probability after time t has elapsed. With the remaining pairs, the subkey bits
involved in the active S-boxes in the first round can be recovered. An alternative
form of Attack B is to recover key bits from the last round. It is assumed that if
time t passes for a given plaintext-ciphertext pair, a right pair has been found. In
this case, some subkey bits in the last rounds will be fixed, and then it is checked
whether time t still passes without contradiction. The time to find an inconsistency
or a reduced-round PRESENT block cipher was measured in Appendix C of [3].

Attack C.

In Attack C, the differential is used instead of the differential characteristic as in
Attack B. If the r-round differential δ0 → δr is used to recover the key forN rounds,
the system of equations only consists of the equations resulting from the round
functions from round (r + 1) to round N , the relations for the difference values
from the (r + 1)-th round to the N -th round, and the equations of key schedule
from the (r + 1)-th round to the N -th round. In this system of equations, there are
no equations to restrict the relations between the plaintext and the corresponding
ciphertext, and there are no equations for the difference values from the first round
to the r-th round. By solving the system of equations and waiting for a fixed time
t, a contradiction can be found in the system of equations. If one tested pair
did not produce a contradiction after a fixed time, it is assumed to be a right
pair satisfying the differential. Then with the right pair, the partial information
for the subkey bits can be recovered. Appendix D in [3] measured the time to
find an inconsistency for a reduced-round PRESENT block cipher. Based on
this measured time, attacks on 16-round PRESENT-80, 17, 18 and 19 rounds of

210 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

PRESENT-128 block cipher were given in [1, 3].

3 Inapplicability of Albrecht et al.’s Attacks

3.1 Inapplicability of Attack C

In this section, we will show that Attack C typically cannot be used to filter out the
wrong pairs satisfying the difference values of the ciphertexts. Therefore, the right
pairs cannot be identified and the key cannot be recovered. Moreover, Attack C
can not filter out more wrong pairs than differential cryptanalysis to improve the
differential cryptanalysis. As in the previous description, the system of equations
in Attack C consists of the equations resulting from the round functions from
round (r + 1) to round N , the relations resulting from the difference values from
the (r + 1)-th round to the N -th round, and the equations of key schedule from the
(r + 1)-th round to the N -th round. Let C ′i and C ′′i be the i-th bit of ciphertext
pair C ′ and C ′′ respectively, and ∆Ci is the i-th bit of the difference value of
ciphertext pair C ′ and C ′′. We then classify these equations into three groups,
Group A, Group B and Group C.

Group A.

The linear equations resulting from the difference values of ciphertexts correspond-
ing to the non-active S-boxes in the last round are

∆Ci = C ′i ⊕ C ′′i = 0 ,

where the i-th bit position corresponds to an output bit of any non-active S-box.

Group B.

The equations resulting from the difference values of ciphertexts corresponding to
the active S-boxes in the last round are

(∆Ci1 ‖ ∆Ci2 ‖ · · · ‖ ∆Cia) =
(
C ′i1 ‖ C

′
i2 ‖ · · · ‖ C

′
ia

)
⊕
(
C ′′i1 ‖ C

′′
i2 ‖ · · · ‖ C

′′
ia

)

= δN , δN ∈ ΓN ,

where i1, i2, . . . , ia correspond to output bits of the active S-boxes, and ΓN is the
set of the ciphertext difference values.

Group C.

The remaining equations are the equations resulting from the round functions from
round (r + 1) to round N , the relations resulting from the difference values from
the (r + 1)-th round to the (N − 1)-th round, and the equations of key schedule

INAPPLICABILITY OF ALBRECHT ET AL.’S ATTACKS 211

from the (r + 1)-th round to the N -th round.

If a plaintext-ciphertext pair satisfies all the equations in Group A, Group B
and Group C, it must be a right pair for the given differential. In the differential
attack, the wrong pairs that do not satisfy the equations in Group A and Group B
are easy to filter out using a look-up table combined with a time-memory trade-off.
Because the equations in Group C involve unknown subkey bits, they cannot easily
be used to filter out the remaining wrong ciphertext pairs after the filtering process
with the ciphertext differences. In Attack C, Albrecht et al. wish to measure the
maximum time t to identify a pair as a wrong pair with all the equations in
Group A, B and C. In fact, the equations in Group A and Group B can easily
be used to find a contradiction because they are only related to the ciphertext
difference values. For a typical block cipher, it is impossible to find contradictions
for the equations in Group C. To understand why this is the case, we claim the
following.

Claim 1. If there is a wrong ciphertext pair that satisfies all the equations in
Group A and Group B but does not satisfy the equations in Group C, it is impossible
for a typical block cipher to find a contradiction for the equations in Group C.

Proof. We consider a block cipher based on a substitution-permutation network
(SPN). For other structures (Feistel, Generalized Feistel,...), a similar proof can
be given. We assume that the difference value of the ciphertext pair satisfies the
equations in Group A and Group B, but does not satisfy the equations in Group C.
First, we will prove Claim 1 for a 1R-attack and extend the proof to an sR-attack4

(s = 1, 2, 3, . . .).
In a 1R-attack, the wrong ciphertext pair satisfies the output difference values

of all non-active and active S-boxes in the last round, but does not satisfy the input
difference of some active S-boxes in the last round. In most SPN block ciphers,
after the S-box layer in the last round, the whitening subkeys will be XORed.

Let us introduce the shortened notation

X ′i ← X ′i,j1 ||X
′
i,j2 || . . . ||X

′
i,jm ,

where X ′i,j is the j-th bit of the input to the S-box layer in round i. We can then
describe the round function for the last round as follows:

Y ′N = S[X ′N] , C ′N = Y ′N ⊕KN ,
Y ′′N = S[X ′′N] , C ′′N = Y ′′N ⊕KN ,

where X ′N and X ′′N are the inputs of the S-box layer S in the last round for the
system F ′ and F ′′ respectively, and Y ′N and Y ′′N are the corresponding outputs.
The values C ′N and C ′′N are the ciphertext bits, and K ′N is the whitening subkey
in the last round.

4An sR-attack means that the r-round differential is used to recover the key for (r+s) rounds
of the block cipher. We require in this paper that s≪ N , which is the case for typical differential
attacks.

212 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

S

KN

C ′

X ′

S

C ′′

X ′′

Ωr

ΩeY ′ Y ′′

KN
∆C

S

KN ⊕ Z

C ′ ⊕ Z

X ′

S

C ′′ ⊕ Z

X ′′

Ωr

ΩeY ′ Y ′′

KN ⊕ Z
∆C

(a) Right pair, right key (b) Wrong pair, wrong key

Figure 1 – It is not possible to detect that (C ′ ⊕ Z,C ′′ ⊕ Z) is a
wrong pair (see Claim 1).

We now consider Fig. 1. Under the right key, the wrong ciphertext pair (C ′ ⊕
Z,C ′′ ⊕ Z) will result in the output difference of the S-box Ωe and the input
difference of the S-box Ωw, however, the right pair (C ′, C ′′) will result in the
output difference and the input difference for the S-box as Ωe and Ωr respectively.
As the subkey bits in the above equations are unknown variables, we will solve the
following system of equations,

X ′N ⊕X ′′N = Ωr.

We can obtain
S−1[Y ′N]⊕ S−1[Y ′′N] = Ωr,

where S−1 denotes the inverse S-boxes Layer. Then we have

S−1[C ′N ⊕KN]⊕ S−1[C ′′N ⊕KN] = Ωr .

Because the right pair always can produce the difference from Ωr 7→ Ωe for the
active S-boxes, there is at least one pair of input values (X ′r,X

′′
r) and the corre-

sponding output values (Y ′r , Y
′′
r) satisfying the following equations:

X ′r ⊕X ′′r = Ωr, Y
′ ⊕ Y ′′ = Ωe .

We have
S−1[Y ′r]⊕ S−1[Y ′′r] = X ′r ⊕X ′′r = Ωr.

For the wrong pair (C ′ ⊕ Z,C ′′ ⊕ Z), let the whitening subkey in the last round
satisfy the following equations:

C ′N ⊕ Z ⊕KN = Y ′r , C
′′
N ⊕ Z ⊕KN = Y ′′r .

The resulting wrong whitening subkey KN ⊕Z in the last round can make the
wrong pair (C ′ ⊕ Z,C ′′ ⊕ Z) produce the right input difference Ωr, so the wrong

INAPPLICABILITY OF ALBRECHT ET AL.’S ATTACKS 213

pair (C ′ ⊕ Z,C ′′ ⊕ Z) cannot be filtered out with the system of equations in the
last round.

The proof for 1R-attack is helpful to understand the idea. The analysis of
the sR-attack works in a similar way. As stated by Biham and Shamir [7] (and
similarly by Selçuk [23]):

“Each surviving pair suggests several possible values for [the subkey] bits. Right
pairs always suggest the correct value for [the subkey] bits (along with several wrong
values), while wrong pairs suggest random values [for the subkey bits].”

This statement is true for typical block ciphers. Therefore, any remaining wrong
pair must produce some solutions for the subkey satisfying the difference values
in the last s-round. The solution may be the right subkey or the wrong subkey.
Thus, it is impossible for most block ciphers to produce a contradiction for the
sR-attack in the above s-round equations.

The equations for the key schedule may lead to a contradiction in Group C
for the derived subkey value for the last s rounds, but the number of the sub-
key bits involved in the last s rounds is usually not large enough to produce a
contradiction, assuming the key schedule is random. However, assume that the
equations for the key schedule result in a contradiction for the subkey values of the
last s rounds. Then, this contradiction holds for all values of the subkeys. That
is, the contradiction is independent of the subkey values. The contradiction must
be a contradiction on the difference of the ciphertext pair: a contradiction on the
values of the ciphertext pair cannot appear because the ciphertext is calculated
as C = YN ⊕ KN . Therefore, this contradiction can be included into Group A
or Group B. Because the differential cryptanalysis attack uses the equations of
Group A and Group B to filter the ciphertext values, an inconsistency in the key
schedule does not improve the differential attack.

In order to verify Claim 1, we tested the filtering time for different values
of N and r of the PRESENT block cipher. In our tests, we constructed wrong
ciphertext pairs that only satisfy the equations in Group A and Group B, but do
not satisfy the equations in Group C when evaluated on the correct key. We used
the source code provided by Albrecht [2] to apply Attack C with PolyBoRi-0.6 and
MiniSat2. We performed a Gröbner basis computation to generate the filtering
equations from the (r + 1)-th round to the (r + 4)-th round for the differential
characteristic (2 ≤ r ≤ 14) for PRESENT-80. These filtering equations can speed
up the procedure of producing the contradiction.

However, there is no contradiction for any ciphertext pair with PolyBoRi-0.6
after six hours of computation. MiniSat2 always obtained the wrong solution for
the key. In Table 1, we list these test results. For the wrong pairs under the right
key, the wrong solution can be obtained within t seconds. We tested 20 wrong
pairs for different values of r and N , and list one example of a wrong pair (P ′, P ′′)
and the corresponding right key K. Due to space limitations, we only present the

214 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

difference values for the wrong pair in the last row of Table 1 and the differential
characteristic for the right pair in Table 2. In Table 2, the output difference for
the wrong pair of the r-th (r = 12) round is not equal to the output difference
of the characteristic, but the output difference of the 13-th round is equal to the
output difference of the characteristic. Therefore, this is a wrong pair.

At the same time, we construct the wrong ciphertext pairs for PRESENT-80
which do not satisfy the equations in any Group, the contradiction can be produced
quickly and the filtering time is listed in Table 3. In addition, we construct some
wrong ciphertext pairs that only satisfy the equation in Group A, the time to
produce the contradiction is listed in Table 4. Moreover, we use a look-up table
combined with a time-memory trade-off in differential cryptanalysis to filter out
these pairs. As a result, our filter is more efficient than Attack C.

The computer we used is an IBM X3950 M2 with a CPU clock frequency of
2.4 GHz and 64GB RAM. From Tables 3 and 4, our test time with PolyBoRi
approaches the corresponding time in Appendix D of [3], but our tested time with
MiniSat2 is greater. The main reason is that our CPU is not same as Albrecht’s.
However, we can deduce that the wrong pairs Albrecht et al. used are wrong
pairs that do not satisfy the equations in Group A or Group B, so they did not
filter out wrong pairs that do satisfy the equations in Group A and Group B.
Furthermore, even if Attack C is used as a filter for wrong pairs that do not satisfy
the equations in Group A and Group B, its efficiency is much lower than the filter
used in differential cryptanalysis. This shows that Attack C does not provide an
advantage over differential cryptanalysis for most block ciphers.

Using Group A and Group B in a Differential Attack.

We now clarify in more detail how the equations of Group A and Group B can be
used in a differential attack. We consider two types of differential attacks:

(a) By generating a table of all possible ciphertext differences (corresponding to
all solutions to the equations of Group A and Group B), wrong pairs can
easily be filtered out. Because key counters will be used for the subkey bits
corresponding to the active S-boxes, the number of output differences is less
than the number of key counters required. Therefore, the table of all possible
ciphertext differences provides only a relatively small overhead.

(b) In the filtering process, for each pair of ciphertexts (C ′, C ′′), a table is made
of all possible input differences for the last round. This table does not depend
on the value of the subkey bits in the last round. If we do not find a valid
input difference for a particular pair of ciphertexts, this pair is identified as a
wrong pair (i.e. it does not satisfy the equations of Group A and Group B). In
this way, it is only necessary to make table of all input differences, and not all
ciphertext differences. Typically, the table of all input differences should be
small. For the remaining pairs, subkey bits in the last round will be guessed

INAPPLICABILITY OF ALBRECHT ET AL.’S ATTACKS 215

(instead of using key counters), to filter out pairs. For a wrong key, no pairs
will remain, but the right pair will remain for the right key.

Note that (b) is in fact a time-memory trade-off applied to (a). In both (a) and
(b), if output differences are invalid for some active S-boxes, they can be filtered
using smaller tables. Then, the table that is described in (a) and (b) will be used
to filter out the remaining pairs. In the next paragraph, we describe in detail how
(a) can be used for a 2R attack on PRESENT. To construct a filter for a 3R and
4R attack on PRESENT, (b) can be used.

Relation to the Work of [4].

The equation system that Albrecht et al. set up in [4], is similar to the system
of [3], except that the ciphertext bits (C ′i and C ′′i) are variables instead of fixed
values. This equation system is used to compute a Gröbner basis for PRESENT
up to degree D = 3 using PolyBoRi. Polynomials that contain non-ciphertext
variables are removed.

The resulting equations are used as a first filter for the ciphertext pairs. Al-
brecht et al. estimate the probability p1 that a random ciphertext pair passes the
first filter as p1 ≈ 2−50.669 for a 2R-attack on PRESENT-80 and PRESENT-128.
Afterwards, [4] uses Attack C to filter out the remaining pairs. They estimate the
total filtering probability p2 ≈ 2−51.669 for PRESENT-80 and p2 ≈ 2−51.361 for
PRESENT-128.

For a 2R-attack on PRESENT, it is straightforward to write a fast program
to compute the total number of ciphertext differences. We find that 11664 ≈
213.51 ciphertext differences are possible, and store them in a small table. This
results in the accurate filtering probability of pa = 213.51/264 = 2−50.49 for both
PRESENT-80 and PRESENT-128. When we derive the probability of p1 ourselves,
using the equations in [4, Fig. 2], we find that p1 = p2 = pa = 2−50.49. This
confirms our result, and shows that the calculation of p1 and p2 in [4] is not
correct. The accurate filtering probability pa is slightly lower than the probability
of the rough filter used by Wang [24].

By storing the output differences in a small table, we can easily filter out
the wrong ciphertext pairs without using the algebraic method. Furthermore,
we calculate that the reinterpretation of Attack C in [4] as a technique to filter
ciphertext differences, does not result in a better filter. Therefore, Attack C does
not provide an advantage over differential cryptanalysis in the case of a 2R-attack
on PRESENT.

For a 3R-attack and a 4R-attack on PRESENT, we used a look-up table com-
bined with a time-memory trade-off to filter out 1000 randomly generated wrong
pairs. We note that although the filtering probability of our filter and Attack C is
same, our filter is much faster than Attack C.

216 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

3.2 Inapplicability of Attack B to PRESENT

Attack B involves two other types of equations, besides the equations in Group A,
Group B and Group C in Attack C. The first type of equations is the linear
equations derived from the difference values from round 1 to round r, and the
second type of equations is the round functions and the key schedule algorithm
from round 1 to round r. In this way, the restriction from the plaintext to the
corresponding ciphertext was added. Although we cannot show that Attack B
does not provide an advantage over differential cryptanalysis for any block cipher,
we make the following two observations for Attack B:

Observation 1.

If N approaches the maximum number of rounds that can be attacked with a pure
algebraic attack, the linear equations for the inner rounds and the round functions
restricting the relation between the plaintext and the ciphertext are all usable to
solve the system of equations. There are three possible subcases:

1. If the key size is much larger than the block size, for a wrong pair, the
probability that a solution can be found for the key in the system of equations
is non-negligible. In this way, there is a non-negligible probability that a
contradiction for the wrong pairs cannot be produced. Attack B will likely
fail.

2. If the key size is smaller than the block size, for a wrong pair, the probability
that no solution can be found for the key in the system of equations is high.
In this way, the contradiction for the wrong pairs can be produced and
the right solution for the right pair can be found with a high probability.
Attack B is likely to succeed.

3. If the key size approaches the block size, Attack B can either succeed or fail.

Observation 2.

If N is much larger than the maximum number of rounds that can be attacked with
a pure algebraic attack, the linear equations for the inner rounds and the round
functions and the key schedule algorithm for the inner rounds are not crucial to
solve the system of equations. Only the equations for the outer rounds are relevant.
We consider two subcases.

1. If there are few active S-boxes in the outer rounds, the restriction condi-
tions are so few that a contradiction will be produced with low probability.
Attack B will likely fail.

2. If there are many active S-boxes in the outer rounds, there are enough re-
striction conditions to derive a contradiction with high probability. Attack B
is then likely to succeed.

INAPPLICABILITY OF ALBRECHT ET AL.’S ATTACKS 217

In order to verify our observations for a small number of rounds, we apply
Attack B to PRESENT-80 with for N = 4, r = 3. The block size and the key
size for PRESENT-80 are 64 and 80, respectively. We have tested 10 wrong pairs
satisfying the filter conditions in Group A and Group B, but not satisfying the
conditions in Group C. We found that among 10 wrong pairs, only one wrong pair
was filtered out within 1500 seconds. The reason is that the key size is larger than
the block size.

As N and r increase, we ran several tests and list the results in Table 5. We
identify different differential characteristics for the PRESENT-80 block cipher. For
any value of r we tested, the characteristics have two active S-boxes from round 1
to round r. There will be two active S-boxes in round (r+ 1) and 6, 7 or 8 active
S-boxes in round (r + 2). Round r + 3 has at least 12 active S-boxes and round
(r + 4) has 16 active S-boxes. We use MiniSat2 to filter out the wrong pairs. For
N = r, N = r + 1 or N = r + 2, no wrong pairs were filtered out. For N = r + 3,
very few wrong pairs were filtered out. Although for N = r+ 4, more wrong pairs
were filtered out compared to N = r + 3, lots of wrong pairs still remain. The
reason is that there are more active S-boxes in round (r+ 4) than in round (r+ 3).
This result is consistent with Table 10.8 of [1], where N = r + 4 is used as well.

Further experiments are listed in Table 5. In Table 5, the plaintext pairs are
all wrong pairs and we cannot filter them out within 1500 seconds. Even if wrong
pairs can be filtered out after 1500 seconds, the time complexity of Attack B would
become much higher than differential cryptanalysis. Due to space limitations, we
only present the difference values for the pair in the last row of Table 5 and the
characteristics for the right pair in Table 6. For the pair in Table 6, the output
difference of the r-th (r = 14) round is same as that of the characteristics, but the
difference values from round 2 to round 10 are different from that of the character-
istic. Therefore, this pair is a wrong pair. We also confirmed experimentally that
Attack B cannot filter out wrong pairs that do not satisfy the output difference
for the first round.

Observation 2 can be derived from the following statements:

1. SAT solvers use a tree-structured search algorithm, where branching is per-
formed by heuristic guesses based on non-algebraic criteria. In order to
reduce the search time, we must minimize both the average search depth
and the dependencies of the unknown variables. In this way, those equations
should be identified that tend to result in an inconsistency sooner.

2. In the system of equations in Attack B, the equations that lead to inconsis-
tencies the soonest, are the equations related to the difference values, the
round functions in the outer rounds such as the previous few rounds and the
later few rounds. In contrast, the equations related to the difference values
and the round functions in the inner rounds do not easily lead to inconsisten-
cies. Therefore, the equations in the inner rounds can be removed in order
to reduce the solving time.

218 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

3. Since the equations for the difference value in the outer rounds are very
important for the solving process, we must obtain enough such equations to
ensure there are enough restrictions for the dependent unknown subkey bits.
If there are fewer active S-boxes in the outer rounds, there are not enough
restrictions on the involved unknown subkey bits to obtain the right solution
or filter out the wrong solutions. In other words, if there are more active
S-boxes in the outer rounds, the solving process or the filtering process will
be more efficient.

It is noted that if there are more active S-boxes in the outer rounds, the filtering
process will be efficient, but it is not favorable to filter out the wrong ciphertext
pairs directly according to the difference value of the ciphertexts. This will further
increase the time complexity.

To overcome these problems, we propose the following two methods for the
differential-algebraic attack. The first method is to fix certain key bits to ensure
with a high probability that the right key can be recovered from the right pair.
The second method has the same goal, but adds some extra equations. We will
describe these two attacks in Sect. 4.

4 New Differential-Algebraic Attacks

In Sect. 3, we showed that neither Attack C nor Attack B can improve the differen-
tial cryptanalysis of the PRESENT block cipher. We also explained why Attack C
does not provide an improvement for most block ciphers. The reason is that the
attacks cannot filter out the wrong pairs satisfying the ciphertext difference values
to identify the right pair. We present two methods that can find the right solution
in acceptable time t, based on the system of equations constructed in Attack B.
For the right pair, we can solve the right key within time t. If a pair cannot be
filtered within time t, we discard it and consider another pair.

Attack 1 Based on Fixing Certain Key Bits.

According to the key schedule algorithm and the outer rounds of the characteristic,
fix the key bits related to the active S-boxes in the top rounds or the bottom rounds.
In this way, inconsistencies can be found sooner. As we showed in Sect. 3.2,
Attack B cannot be used to filter out most wrong pairs. Therefore, our attack
fixes key bits in all tested pairs. The idea of fixing key bits was already proposed
in [3]. The difference with Attack 1 is that we recover the entire key, and not only
subkey bits from the last rounds.

Attack 2 Based on Multiple Pairs.

Because the equations for the difference values in the outer rounds lead to in-
consistencies sooner, appending more such equations will be helpful to find the

NEW DIFFERENTIAL-ALGEBRAIC ATTACKS 219

inconsistency. Using multiple plaintext-ciphertext pairs to construct more equa-
tions of outer rounds will make the solving process or the filtering process more
efficient. For example, if two plaintext-ciphertext pairs are used to perform the
attack, the number of such equations will double. This means that if we use two
right pairs to solve the system of equations, the right key can be found. However,
if there is at least one wrong pair involved in the two pairs, the key cannot be
found. In addition, if we use three plaintext-ciphertext pairs, the efficiency can
be improved further. However, as the number of pairs increase, the number of
combinations of pairs grows exponentially and the time complexity increases. So
the number of pairs to construct the system of equations should not be too high.

Our experiments show that some wrong pairs can be filtered out quickly, but
others cannot. However, if most of the wrong pairs cannot be filtered out, the
attack becomes infeasible. So we attack the PRESENT block cipher with the
above approaches and try to solve the right key with the right pairs.

4.1 Attack 1 for the PRESENT Block Cipher

We now apply Attack 1 to the PRESENT block cipher. The results are listed
in Table 7. If we use r = 13 to attack N = 15 rounds of PRESENT-80, the
probability of the characteristic is 2−58 (using the last 13 rounds of the 14-round
characteristic of [24]). The filtering probability according to the difference value for
the ciphertext pair is 2−50.49 (as calculated at the end of Sect. 3.1). The CPU clock
frequency is 2.4 GHz. From Table 7, we find that it takes at most 523.16 s to find an
inconsistency. The table also shows that we should guess at least 34 key bits, so the
time complexity will be 234 · 258−50.49 · 2.4 · 109 · 523.16 = 234 · 27.51 · 231.16 · 29.03 =
281.70 CPU cycles. We assume that a single encryption costs at least 16 CPU
cycles per round.5 Therefore, the time complexity for our attack (273.79 equivalent
encryptions) is better than exhaustive search (280).6 The data complexity is 259

chosen plaintexts. For the 2R-differential attack, the data complexity must be
higher than 259 chosen plaintexts, because then one right plaintext-ciphertext pair
is not sufficient to recover the key with a high success probability. However, the
time complexity of the 15-round 2R-differential attack must be lower than 262

memory accesses (the time complexity given for the 16-round differential attack
in [24]). Depending on the processor, one memory access requires about 2 to 10
CPU cycles. This means the complexity of the differential-algebraic attack for
PRESENT-80 is much higher than that of the differential attack, but the data
complexity is lower. Depending on how many chosen plaintext-ciphertext pairs
the attacker can obtain, the algebraic-differential attack might however be the
only feasible attack.

For PRESENT-128, we could not identify the right pairs for r > 12 using
the method from [1]. If we use the 12-round differential characteristic with the

5The bitsliced implementation of PRESENT by Albrecht achieves 16.5 cycles per round [1].
6We used 20 trials to obtain time t. Although more trials may result in a longer time t, we

expect that our attack will still be much faster than exhaustive search.

220 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

probability 2−54 to attack 14-round PRESENT-128, the time complexity will be
about 278+54−50.49+31.16+7.97 = 2120.64 CPU cycles, or about 2112.83 equivalent
encryptions. The data complexity is 255 chosen plaintexts.

4.2 Attack 2 for the PRESENT Block Cipher

We respectively use two pairs and three pairs to attack PRESENT. The test results
are listed in Tables 8 and 9. For the right pairs, the right key can be solved within
t seconds. We ran 10 trails for different values of r and N , and one example
of right pairs {(P ′0, P ′′0), (P ′1, P

′′
1)} or {(P ′0, P ′′0), (P ′1, P

′′
1), (P ′2, P

′′
2)} and list the

corresponding right key K. As in Attack 1, we can solve the right key from the
right pairs, but the wrong pairs cannot always be filtered out. So we perform
the test with the right pairs to recover the right key. We obtained the following
results:

1. For N = r + 3 or N = r + 4 rounds of PRESENT-80 with the r-round
differential characteristic, the right key can be solved with the two right
pairs. Some test results are listed in Table 8. However, because we use two
right pairs, this means that if m pairs of ciphertexts remain after filtering
according to the ciphertext difference, we must consider

(
m
2

)
combinations

of two pairs. However, the solving time for
(
m
2

)
combinations of two pairs

becomes unacceptable. If we attack 16-round PRESENT-80 with a 13-round
differential characteristic with the probability 2−58, we choose 259 pairs of
plaintexts and the filtering probability with the ciphertext difference is about
2−25.711, so the number of the remaining ciphertext pairs is about 233.289

which will be combined to produce 265.578 combinations of two pairs. The
time complexity will be 265.578 · 231.16 · t > 288. We have not identified the
right pairs for r = 13, so we cannot test the time for t and it should be more
than 100 seconds according to the test time for r < 13. Therefore, Attack 2
is slower than exhaustive search.

2. For N = r + 2 rounds of PRESENT-80, only few combinations of two right
pairs can be used to solve the right key, so the success rate is too low.

3. For N = r + 4 rounds of PRESENT-128 with the r-round differential, only
few combinations of two right pairs can be used to recover the right key and
the success rate is also very low.

4. ForN = r+3 rounds of PRESENT-80 andN = r+4 rounds of PRESENT-128
with the r-round differential, the right key can be solved with the three right
pairs. The test results are listed in Table 9. However, because we use three
pairs, this means that if m pairs of ciphertexts remain, there are

(
m
3

)
com-

binations of three pairs. However, the solving time for
(
m
3

)
combinations of

three pairs becomes unacceptable.

CONCLUSION 221

From the above results, Attack 2 (using two pairs or three pairs for PRESENT)
has no advantage over Attack 1 (fixing certain key bits). Maybe these attacks have
some advantage for other ciphers. For example, if there would be more active S-
boxes involved in the outer rounds in PRESENT, maybe we could obtain the right
key using two right pairs with a high success probability.

5 Conclusion

The cryptanalytic method combining differential cryptanalysis and algebraic crypt-
analysis has been a focus topic in the field of the cryptanalysis of symmetric ciphers.
At FSE 2009, Albrecht et al. propose new differential-algebraic attacks, which they
claim improves the results of the differential cryptanalysis. In this paper, we revis-
ited Albrecht’s cryptanalytic method and identified that the time complexity to
identify the right pairs is not correct. Firstly, we showed that Attack C cannot be
used to filter out the wrong pairs satisfying the difference value of the ciphertexts
for most block ciphers to improve the differential cryptanalysis. We identified some
important properties for Attack B and showed that Attack B does not provide an
advantage over differential cryptanalysis for PRESENT. Faugère et al. presented
a similar attack for DES, however, they could only attack 8-round DES with a
5-round differential characteristic. Their attack for DES is accordant with our
Observation 1 in Sect. 3.2 because the key size for DES is smaller than the block
size.

In this paper, we introduce two new methods to perform a differential-algebraic
attack. The first method is to fix certain key bits to solve the system of equations
and the second method is to use multiple pairs to construct the system of equa-
tions. This method is more efficient for the PRESENT block cipher and its data
complexity is better than that of the differential attack, but the time complexity
is worse. Although we did not significantly improve the results of the differential
cryptanalysis for PRESENT, our work indicates which equations are important in
the differential-algebraic attack. For the differential-algebraic attack, we obtain
the following three conclusions:

1. Compared with the differential cryptanalysis, the differential-algebraic at-
tack can reduce the data complexity, but the time complexity increases.
Compared with the algebraic cryptanalysis, the differential-algebraic attack
can attack more rounds because the relations resulting from the differential
characteristic are very important for the solving process.

2. In order to make the solving process in the differential-algebraic attack more
efficient, more active S-boxes should be involved in the outer rounds. How-
ever, more active S-boxes will reduce the filtering probability with the cipher-
text difference and it will increase the time complexity. The lower bound
for the number of the active S-boxes should be used to ensure the system of

222 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

equations can be solved reliably. The detailed analysis of this case can be
seen as future work.

3. If the methods to solve systems of equations can be improved, and if the
computational power available increases, we expect that differential-algebraic
attacks will gain in importance.

Acknowledgments. The authors would like thank the anonymous reviewers for
their detailed comments and suggestions.

References

[1] M. Albrecht. Algorithmic Algebraic Techniques and their Application to Block
Cipher Cryptanalysis. PhD thesis, Royal Holloway, University of London,
2010.

[2] M. Albrecht. Tools for the algebraic cryptanalysis of crypto-
graphic primitives, 2010. http://www.ecrypt.eu.org/tools/

tools-for-algebraic-cryptanalysis.

[3] M. Albrecht and C. Cid. Algebraic Techniques in Differential Cryptanalysis.
In O. Dunkelman, editor, FSE, volume 5665 of Lecture Notes in Computer
Science, pages 193–208. Springer, 2009.

[4] M. Albrecht, C. Cid, T. Dullien, J.-C. Faugère, and L. Perret. Algebraic Pre-
computations in Differential and Integral Cryptanalysis. In X. Lai, M. Yung,
and D. Lin, editors, Inscrypt, volume 6584 of Lecture Notes in Computer
Science, pages 387–403. Springer, 2010.

[5] G. V. Bard. Algebraic Cryptanalysis, volume XXXIV of Security and Cryp-
tology. Springer, 2009.

[6] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. J. Cryptology, 4(1):3–72, 1991.

[7] E. Biham and A. Shamir. Differential Cryptanalysis of the Full 16-Round
DES. In E. F. Brickell, editor, CRYPTO, volume 740 of Lecture Notes in
Computer Science, pages 487–496. Springer, 1992.

[8] C. Blondeau and B. Gérard. Multiple Differential Cryptanalysis: Theory and
Practice. In A. Joux, editor, FSE, volume 6733 of Lecture Notes in Computer
Science, pages 35–54. Springer, 2011.

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight
Block Cipher. In P. Paillier and I. Verbauwhede, editors, CHES, volume 4727
of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

http://www.ecrypt.eu.org/tools/tools-for-algebraic-cryptanalysis
http://www.ecrypt.eu.org/tools/tools-for-algebraic-cryptanalysis

REFERENCES 223

[10] M. Brickenstein and A. Dreyer. PolyBoRi: A framework for Gröbner-basis
computations with Boolean polynomials. J. Symb. Comput., 44(9):1326–1345,
2009.

[11] J. Y. Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In
J. Pieprzyk, editor, CT-RSA, volume 5985 of Lecture Notes in Computer
Science, pages 302–317. Springer, 2010.

[12] N. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 176–194. Springer, 2003.

[13] N. Courtois and G. V. Bard. Algebraic Cryptanalysis of the Data Encryption
Standard. In S. D. Galbraith, editor, IMA Int. Conf., volume 4887 of Lecture
Notes in Computer Science, pages 152–169. Springer, 2007.

[14] N. Courtois and B. Debraize. Specific S-Box Criteria in Algebraic Attacks on
Block Ciphers with Several Known Plaintexts. In S. Lucks, A.-R. Sadeghi,
and C. Wolf, editors, WEWoRC, volume 4945 of Lecture Notes in Computer
Science, pages 100–113. Springer, 2007.

[15] N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear
Feedback. In E. Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 345–359. Springer, 2003.

[16] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In Y. Zheng, editor, ASIACRYPT, volume 2501 of
Lecture Notes in Computer Science, pages 267–287. Springer, 2002.

[17] N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia and
A. Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2003.

[18] J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner Bases. In D. Boneh, editor, CRYPTO,
volume 2729 of Lecture Notes in Computer Science, pages 44–60. Springer,
2003.

[19] J.-C. Faugère, L. Perret, and P.-J. Spaenlehauer. Algebraic-Differential Crypt-
analysis of DES. In Western European Workshop on Research in Cryptology
- WEWoRC 2009, pages 1–5, 2009.

[20] Z. Gong, P. H. Hartel, S. Nikova, and B. Zhu. Towards Secure and Practical
MACs for Body Sensor Networks. In B. K. Roy and N. Sendrier, editors,
INDOCRYPT, volume 5922 of Lecture Notes in Computer Science, pages
182–198. Springer, 2009.

224 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

[21] J. Nakahara, P. Sepehrdad, B. Zhang, and M. Wang. Linear (Hull) and
Algebraic Cryptanalysis of the Block Cipher PRESENT. In J. A. Garay,
A. Miyaji, and A. Otsuka, editors, CANS, volume 5888 of Lecture Notes in
Computer Science, pages 58–75. Springer, 2009.

[22] O. Özen, K. Varıcı, C. Tezcan, and Çelebi Kocair. Lightweight Block Ci-
phers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT.
In C. Boyd and J. M. G. Nieto, editors, ACISP, volume 5594 of Lecture Notes
in Computer Science, pages 90–107. Springer, 2009.

[23] A. A. Selçuk. On Probability of Success in Linear and Differential Cryptanal-
ysis. J. Cryptology, 21(1):131–147, 2008.

[24] M. Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In S. Vau-
denay, editor, AFRICACRYPT, volume 5023 of Lecture Notes in Computer
Science, pages 40–49. Springer, 2008.

[25] M. Wang, X. Wang, and L. C. Hui. Differential-algebraic cryptanalysis
of reduced-round of Serpent-256. SCIENCE CHINA Information Sciences,
53(3):546–556, 2010.

Table 1 – Attack C’s Filtering Test for Wrong Pairs with MiniSat2

N r P ′ P ′′ K t(s)

8-10 7 8b29917c174f21b7 8c29917c174f26b7 2b8bc6ad5d4b869101c2 12.20-12.77

9-11 8 d549bf122a09edfa d249bf122a09eafa 5d05c98dce5da5894fc5 12.26-12.92

10-12 9 f5fc5a0d3979d9d3 f2fc5a0d3979ded3 f53e4ecaf9ce361ee6d7 12.11-13.03

11-13 10 50d752ee7f6017d7 57d752ee7f6010d7 afc238c99ce160d8254b 12.22-12.73

12-14 11 155fdec5b70e8b3a 125fdec5b70e8c3a b544c98fce9474d53925 12.33-12.92

13-15 12 504ad07e763a8289 574ad07e763a8589 a7ece17b6ab73269d7e9 12.01-12.71

N : the round number we attack; r: the round number of the differential; K: right key;
(P ′, P ′′): one example of wrong pairs; t: the wrong solution obtained within t seconds.

REFERENCES 225

Table 2 – Difference Values for Wrong Pair and Right Pair in At-
tack C

R ∆wrong ∆right R ∆wrong ∆right

I x2 = 7, x14 = 7 x2 = 1, x14 = 1

R1 S x2 = 1, x14 = 1 x2 = 1, x14 = 1 R8 S x0 = 9, x2 = 9 x8 = 9, x10 = 9
R1 P x0 = 4, x3 = 4 x0 = 4, x3 = 4 R8 P x0 = 5, x12 = 5 x2 = 5, x14 = 5

R2 S x0 = 5, x3 = 5 x0 = 5, x3 = 5 R9 S x0 = 1, x12 = 1 x2 = 1, x14 = 1
R2 P x0 = 9, x8 = 9 x0 = 9, x8 = 9 R9 P x0 = 1, x3 = 1 x0 = 4, x3 = 4

R3 S x0 = 4, x8 = 4 x0 = 4, x8 = 4 R10 S x0 = 3, x3 = 3 x0 = 5, x3 = 5
R3 P x8 = 1, x10 = 1 x8 = 1, x10 = 1 R10 P x0 = 9, x4 = 9 x0 = 9, x8 = 9

R4 S x8 = 3, x10 = 3 x8 = 9, x11 = 9 R11 S x0 = 4, x4 = 4 x0 = 4, x8 = 4
R4 P x2 = 5, x6 = 5 x2 = 5, x14 = 5 R11 P x8 = 1, x9 = 1 x8 = 1, x10 = 1

R5 S x2 = 1, x6 = 1 x2 = 1, x14 = 1 R12 S x8 = 9, x9 = 9 x8 = 9, x10 = 9
R5 P x0 = 4, x1 = 4 x0 = 4, x3 = 4 R12 P x2 = 3,x14 = 3 x2 = 5,x14 = 5

R6 S x0 = 5, x1 = 5 x0 = 5, x3 = 5 R13 S x2 = 1,x14 = 1 x2 = 1,x14 = 1
R6 P x0 = 3, x8 = 3 x0 = 9, x8 = 9 R13 P x0 = 4,x3 = 4 x0 = 4,x3 = 4

R7 S x0 = 1, x8 = 1 x0 = 4, x8 = 4
R7 P x0 = 1, x2 = 1 x8 = 1, x10 = 1

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); ∆wrong: differential value for wrong pair;

∆right: differential value for right pair.

Table 3 – Filter Time for Wrong Pairs Not Satisfying Equations in
any Group

N r ♯trails PolyBoRi MiniSat2 N r ♯trails PolyBoRi MiniSat2

9 8 20 3.51-3.85 4.06-4.64 13 12 20 4.99-5.34 4.96-5.25
10 8 20 4.89-5.23 7.57-8.44 14 12 20 6.67-6.83 8.86-9.26
11 8 20 7.89-8.41 11.29-12.34 15 12 20 9.69-10.20 12.80-13.15

10 9 20 3.92-4.27 4.55-4.79 14 13 20 5.66-5.78 5.07-5.37
11 9 20 5.32-5.66 8.40-8.66 15 13 20 7.02-7.50 9.08-9.38
12 9 20 6.24-6.59 12.19-12.45 16 13 20 7.99-8.51 12.91-13.58

11 10 20 4.28-4.67 4.73-4.99 15 14 20 6.06-6.18 5.24-5.52
12 10 20 4.75-5.09 8.35-8.59 16 14 20 6.50-6.95 9.04-9.47
13 10 20 6.93-7.05 12.32-12.59 17 14 20 8.48-8.88 13.17-13.77

12 11 20 4.66-5.02 4.87-5.12
13 11 20 6.09-6.42 8.69-8.97
14 11 20 7.41-10.17 12.42-12.75

♯trails: the number of wrong pairs we test;
PolyBoRi: the filtering time in seconds with PolyBori;

MiniSat2: the filtering time in seconds with Minisat2.

226 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

Table 4 – Filter Time for Wrong Pairs Only Satisfying Equations in
Group A

N r ♯trails PolyBoRi MiniSat2

10 8 20 5.07-5.55 8.09-8.53

11 9 20 6.33-6.68 7.34-7.81

12 10 20 6.02-6.45 7.53-8.12

Table 5 – Attack B’s Filtering Test for Wrong Pairs Satisfying Ci-
phertext Difference Values with MiniSat2 (Timeout t = 1500 s)

N r P ′ P ′′ K

5-7 4 67279b1efdb93674 60279b1efdb93174 9ad864e12a6ecc872280

6-8 5 cdc43299824183d4 cac43299824184d4 70be32f5dd35396cdbfd

7-9 6 bc887a5de0597dd6 bb887a5de0597ad6 716d9698292707b0b6da

8-10 7 c53f11ab7329e7cf c23f11ab7329e0cf 78bf3977acaffded898a

9-11 8 6d736a36a28d4f93 6a736a36a28d4893 5e7f5234d2063c5dd11d

10-12 9 94bd4ffd6585072e 93bd4ffd6585002e 1e00538c107f7abc4a73

11,12,13 10 f02f740d8d4b6d37 f72f740d8d4b6a37 df76f9fdaf4ead07d9a2

12,13,14 11 85f4ab19cf1dd9ac 82f4ab19cf1ddeac 5d0de0769a874e36d362

13,14,15 12 ca8b8755e65217af cd8b8755e65210af 2d0d71c7a40d3084ac3a

15,16,17 14 934c64486fa9ed41 944c64486fa9ea41 8b1c1828ec601df09214

Table 6 – Difference Values for Wrong Pair and Right Pair in At-
tack B

R ∆wrong ∆right R ∆wrong ∆right

I x2 = 7, x14 = 7 x2 = 7, x14 = 7

R1 S x2 = 1, x14 = 1 x2 = 1, x14 = 1 R8 S x8 = 5, x10 = 5 x8 = 9, x10 = 9
R1 P x0 = 4, x3 = 4 x0 = 4, x3 = 4 R8 P x2 = 5, x10 = 5 x2 = 5, x14 = 5

R2 S x0 = 9, x3 = 9 x0 = 5, x3 = 5 R9 S x2 = 1, x10 = 1 x2 = 1, x14 = 1
R2 P x0 = 9, x12 = 9 x0 = 9, x8 = 9 R9 P x0 = 4, x2 = 4 x0 = 4, x3 = 4

R3 S x0 = 4, x12 = 4 x0 = 4, x8 = 4 R10 S x0 = 5, x2 = 5 x0 = 5, x3 = 5
R3 P x8 = 1, x11 = 1 x8 = 1, x10 = 1 R10 P x0 = 5, x8 = 5 x0 = 9, x8 = 9

R4 S x8 = 9, x11 = 9 x8 = 9, x10 = 9 R11 S x0 = 4, x8 = 4 x0 = 4, x8 = 4
R4 P x2 = 9, x14 = 9 x2 = 5, x14 = 5 R11 P x8 = 1, x10 = 1 x8 = 1, x10 = 1

R5 S x2 = 4, x14 = 4 x2 = 1, x14 = 1 R12 S x8 = 9, x10 = 9 x8 = 9, x10 = 9
R5 P x8 = 4, x11 = 4 x0 = 4, x3 = 4 R12 P x2 = 5, x14 = 5 x2 = 5, x14 = 5

R6 S x8 = 5, x11 = 5 x0 = 5, x3 = 5 R13 S x2 = 1, x14 = 1 x2 = 1, x14 = 1
R6 P x2 = 9, x10 = 9 x0 = 9, x8 = 9 R13 P x0 = 4, x3 = 4 x0 = 4, x3 = 4

R7 S x2 = 4, x10 = 4 x0 = 4, x8 = 4 R14 S x2 = 4, x10 = 4 x0 = 4, x8 = 4
R7 P x8 = 4, x10 = 4 x8 = 1, x10 = 1 R14 P x0 = 9, x8 = 9 x0 = 9, x8 = 9

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); ∆wrong: differential value for wrong pair;

∆right: differential value for right pair.

REFERENCES 227

Table 7 – Time to Solve Right Key under Some Fixed Key Bits with
MiniSat2

Ks N r ♯trails Nk t(s) Ks N r ♯trails Nk t(s)

80 10 10 20 32 45.18-285.20 80 14-17 14 20 36 63.47-120.08
80 11 10 20 32 64.45-564.87 128 10 10 20 79 43.75-288.63
80 12 10 20 32 61.88-591.56 128 11 10 20 78 63.38-821.45
80 13 10 20 32 53.49-497.96 128 12 10 20 75 79.83-966.38
80 11 11 20 33 60.19-151.28 128 13 10 20 72 89.15-751.30
80 12 11 20 33 53.01-316.94 128 11 11 20 79 98.35-662.19
80 13 11 20 33 56.64-528.03 128 12 11 20 79 58.73-483.92
80 14 11 20 33 56.25-104.26 128 13 11 20 79 69.41-805.18
80 12 12 20 34 97.19-487.77 128 14 11 20 71 78.20-891.08
80 13 12 20 34 69.24-680.41 128 12 12 20 82 57.35-115.11
80 14 12 20 34 61.09-110.02 128 13 12 20 82 118.08-668.53
80 15 12 20 34 59.25-77.82 128 14 12 20 78 61.84-251.14
80 13-16 13 20 34 85.54-523.16 128 15 12 20 66 64.86-309.90

Nk: the number of fixed key bits.

Table 8 – Time to Solve Right Key using Two Right Pairs with
MiniSat2

Ks N r P ′0, P
′
1 P ′′0 , P

′′
1 K t(s)

80 12 9 39121b2bffad3bbc, 3e121b2bffad3cbc, 4634342e33 ‖ 132.88-377.13
91f1a75a4f4d33e0 96f1a75a4f4d34e0 0d53e8cd71

80 13 10 67bb6eecd081767c, 60bb6eecd081717c, 6fcaf3033d ‖ 122.00-849.89
6f62c9bd561f718e 6862c9bd561f768e 39296c0f66

80 14 11 c2b3135aa3b8f3b4, c5b3135aa3b8f4b4, 22c587b7b2 ‖ 129.01-213.98
8a43480c3122ab14 8d43480c3122ac14 607cddab90

80 15 12 c2b3135aa3b8f3b4, 125fcb08afed6df3, 155fcb08af ‖ 133.64-141.75
85c6576306a6a545 82c6576306a6a245 ed6af317f1

80 13 9 0c03406225bf97cd, 0b03406225bf90cd, cca9deeb2c ‖ 115.61-133.35
0bbd25aea7c5b0c9 0cbd25aea7c5b7c9 0d98071ca6

80 14 10 9434381cb8083429, 9334381cb8083329, ab7b47fdf8 ‖ 124.22-132.99
0b40a64e215244c6 0c40a64e215243c6 93fb87c9cd

80 15 11 8814d6bea07fd660, 8f14d6bea07fd160, a7d16cda8d ‖ 130.48-144.89
f02e367f419a412e f72e367f419a462e b76ec42756

80 16 12 cbaef2f923614742, ccaef2f923614042, 6b9b4087a6 ‖ 189.26-280.49
b37ee1f334c4207b b47ee1f334c4277b 254f2bbef2

228 ALGEBRAIC TECHNIQUES IN DIFFERENTIAL CRYPTANALYSIS REVISITED

Table 9 – Time to Solve Right Key using Three Right Pairs with
MiniSat2

Ks N r P ′0,P ′1,P ′2 P ′′0 ,P ′′1 ,P ′′2 K t(s)

80 11 9 d9591ff50fc1df6d, de591ff50fc1d86d,
f9866c0009f3bf44, fe866c0009f3b844, 66efab8af3 ‖ 177.77-1402.2
0e768137f568779d 09768137f568709d 74afe67553

80 12 10 3a659aa3dc72107c, 3d659aa3dc72177c,
62129df1a637b88f , 65129df1a637bf8f , 2dc9fceff3 ‖ 240.70-578.68
c566bb319010f0df c266bb319010f7df 174f9919c4

80 13 11 383663a9bc01cec5, 3f3663a9bc01c9c5,
88042f67e3b59e95, 8f042f67e3b59995, a0f5a7209b ‖ 247.53-t
c842b19a415d9105 cf42b19a415d9605 b95180a21c (t > 2500)

80 14 12 2ddbc9427defb9ee, 2adbc9427defbeee,
2aa2624e2cb1dede, 2da2624e2cb1d9de, 3200679dd6 ‖ 293.21-408.40
4d19fefd126a29ee 4a19fefd126a2eee 3d29ae18bc

80 12 9 3d84126858c7435e, 3a84126858c7445e,
32a6811bd0c6a32e, 35a6811bd0c6a42e, 5da70ed0b5 ‖ 216.35-239.90
cd66cbdb18c23c55 ca66cbdb18c23b55 13fb14435c

80 13 10 e519cccfa40ce691, e219cccfa40ce191,
e5aa80afcfc216a3, e2aa80afcfc211a3, 72ada6021d ‖ 238.47-258.13
8a179faf87127908 8d179faf87127e08 d2667ab4e5

80 14 11 f5a33b54749b6624, f2a33b54749b6124,
b2f64b6c661d6101, b5f64b6c661d6601, 8ab6e28d86 ‖ 292.15-319.56
2d106b5e6d2b4e24 2a106b5e6d2b4924 9ef6858a87

80 15 12 e6005b48d2abd194, e1005b48d2abd694,
41909dfa1ac196d9, 46909dfa1ac191d9, 393d660706 ‖ 271.31-340.26
0e43381eb485d900 0943381eb485de00 1dbe32c806

128 13 9 9d6902f268514522, 9a6902f268514222, 0578224d0c9eba10 ‖
95d585a882e6e250, 92d585a882e6e550, bb0fd3b56d8b4834 235.64-265.20
2da0d2114f1805c2 2aa0d2114f1802c2

128 14 10 972331fa763f86bd, 902331fa763f81bd, d8ca446899016e69 ‖
50d342a2a6dce17a, 57d342a2a6dce67a, 17641f71e11d09f5 235.16-291.02
efdfd44485f1ee81 e8dfd44485f1e981

128 15 11 76971713b1f0d438, 71971713b1f0d338, 9e3328405c865b25 ‖
aed2ee07ad11dc6d, a9d2ee07ad11db6d, 2201229c273fd1dd 285.00-303.82
e609bfed79d4143b e109bfed79d4133b

128 16 12 eb449a907d31f33e, ec449a907d31f43e, 73fdf364db99c472 ‖
84363465aaddb304, 83363465aaddb404, bb7a8e563b20a1f2 316.21-414.30
e3a2e5866f5814a9 e4a2e5866f5813a9

Publication Chapter

Differential and Linear
Cryptanalysis using
Mixed-Integer Linear
Programming

Publication Data

Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential
and Linear Cryptanalysis using Mixed-Integer Linear Programming.
In Moti Yung and Chuan-Kun Wu, editors, Inscrypt, Lecture Notes in
Computer Science. Springer, 2011.

Contributions

• Main author.

229

230 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

Differential and Linear Cryptanalysis using

Mixed-Integer Linear Programming∗

Nicky Mouha1,3,†, Qingju Wang1,2,3, Dawu Gu2, and Bart Preneel1,3

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai, China.
3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.

{Nicky.Mouha,Qingju.Wang}@esat.kuleuven.be

Abstract. Differential and linear cryptanalysis are two of the most
powerful techniques to analyze symmetric-key primitives. For mod-
ern ciphers, resistance against these attacks is therefore a mandatory
design criterion. In this paper, we propose a novel technique to prove
security bounds against both differential and linear cryptanalysis. We
use mixed-integer linear programming (MILP), a method that is fre-
quently used in business and economics to solve optimization prob-
lems. Our technique significantly reduces the workload of designers
and cryptanalysts, because it only involves writing out simple linear
inequality constraints that are input into an MILP solver. As very
little programming is required, both the time spent on cryptanalysis
and the possibility of human errors are greatly reduced. Our method
is used to analyze Enocoro-128v2, a stream cipher that consists of 96
rounds. We prove that 38 rounds are sufficient for security against
differential cryptanalysis, and 61 rounds for security against linear
cryptanalysis. We also illustrate our technique by calculating the
number of active S-boxes for AES.

Keywords: Differential cryptanalysis, Linear Cryptanalysis, Mixed-
Integer Linear Programming, MILP, Enocoro, AES, CPLEX

1 Introduction

Differential cryptanalysis [1] and linear cryptanalysis [18] have shown to be two
of the most important techniques in the analysis of symmetric-key cryptographic

∗This work was supported in part by the Research Council K.U.Leuven: GOA TENSE, the
IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by the
European Commission through the ICT program under contract ICT-2007-216676 ECRYPT II,
and is funded by the National Natural Science Foundation of China (No. 61073150).
†This author is funded by a research grant of the Institute for the Promotion of Innovation

through Science and Technology in Flanders (IWT-Vlaanderen).

231

mailto:\protect \T1\textbraceleft Nicky.Mouha,Qingju.Wang\protect \T1\textbraceright @esat.kuleuven.be

232 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

primitives. For block ciphers, differential cryptanalysis analyzes how input differ-
ences in the plaintext lead to output differences in the ciphertext. Linear crypt-
analysis studies probabilistic linear relations between plaintext, ciphertext and
key. If a cipher behaves differently from a random cipher for differential or linear
cryptanalysis, this can be used to build a distinguisher or even a key-recovery
attack.

For stream ciphers, differential cryptanalysis can be used in the context of a
resynchronization attack [10]. In one possible setting, the same data is encrypted
several times with the same key, but using a different initial value (IV). This is
referred to as the standard (non-related-key) model, where the IV value is assumed
to be under control of the attacker. An even stronger attack model is a related-key
setting, where the same data is encrypted with different IVs and different keys.
Not only the IV values, but also the differences between the keys are assumed
to be under control of the attacker. Similar to differential cryptanalysis, linear
cryptanalysis can also be used to attack stream ciphers in both standard and
related-key models. In the case of stream ciphers, linear cryptanalysis amounts to
a known-IV attack instead of a chosen-IV attack.

Resistance against linear and differential cryptanalysis is a standard design cri-
terion for new ciphers. For the block cipher AES [12], provable security against
linear and differential cryptanalysis follows from the wide trail design strategy [11].
In this work, we apply a similar strategy. After proving a lower bound on the
number of active S-boxes for both differential and linear cryptanalysis, we use the
maximum differential probability (MDP) of the S-boxes to derive an upper bound
for the probability of the best characteristic. We assume (as is commonly done)
that the probability of the differential can accurately be estimated by the proba-
bility of the best characteristic. Several works focus on calculating the minimum
number of active S-boxes for both Substitution-Permutation Networks (SPNs) [11]
and (Generalized) Feistel Structures (GFSs) [4, 5, 15, 23]. Unfortunately, it seems
that a lot of time and effort in programming is required to apply those techniques.
This may explain why many related constructions have not yet been thoroughly
analyzed. In this paper, we introduce a novel technique using mixed-integer linear
programming in order to overcome these problems.

Linear programming (LP) is the study of optimizing (minimizing or maximiz-
ing) a linear objective function f(x1, x2, . . . , xn), subject to linear inequalities in-
volving decision variables xi, 1 ≤ i ≤ n. For many such optimization problems,
it is necessary to restrict certain decision variables to integer values, i.e. for some
values of i, we require xi ∈ Z. Methods to formulate and solve such programs
are called mixed-integer linear programming (MILP). If all decision variables xi
must be integer, the term (pure) integer linear programming (ILP) is used. MILP
techniques have found many practical applications in the fields of economy and
business, but their application in cryptography has so far been limited. For a good
introductory level text on LP and (M)ILP, we refer to Schrage [22].

In [6], Borghoff et al. transformed the quadratic equations describing the

INTRODUCTION 233

stream cipher Bivium into a MILP problem. The IBM ILOG CPLEX Optimizer4

was then used to solve the resulting MILP problem, which corresponds to recov-
ering the internal state of Bivium. In the case of Bivium A, solving this MILP
problem takes less than 4.5 hours, which is faster than Raddum’s approach (about
a day) [21], but much slower than using MiniSAT (21 seconds) [8].

For the hash function SIMD, Bouillaguet et al. [7] used an ILP solver to find
a differential characteristic based on local collisions. Using the SYMPHONY
solver,5 they could not find the optimal solution, but found lower bounds for
both SIMD-256 and SIMD-512. The computation for SIMD-512 took one month
on a dual quad-core computer.

In [4,5], Bogdanov calculated the minimum number of linearly and differentially
active S-boxes of unbalanced Feistel networks with contracting MDS diffusion. He
proved that some truncated difference weight distributions are impossible or equiv-
alent to others. For the remaining truncated difference weight distributions, he
constructed an ILP program which he then solved using the MAGMA6 Compu-
tational Algebra System [3]. Compared to Bogdanov’s technique, the fully au-
tomated method in this paper is much simpler to apply: Bogdanov’s approach
requires a significant amount of manual work, and the construction of not one but
several ILP programs. We will show how this can be avoided by introducing extra
dummy variables into the MILP program.

While this paper was under submission, Wu and Wang released a paper on
ePrint [27] that also uses integer linear programming to count the number of
active S-boxes for both linear and differential cryptanalysis. Just as in Bogdanov’s
approach, their algorithms require a large number of ILP programs to be solved,
instead of only one as in the technique of this paper.

We apply our technique to the stream cipher Enocoro-128v2 [25, 26], in order
to obtain bounds against differential and linear cryptanalysis. We consider both
the standard and related-key model. All MILP programs are solved using CPLEX.
There are 96 initialization rounds in Enocoro-128v2. We prove that 38 rounds
are sufficient for security against differential cryptanalysis, and 61 rounds against
linear cryptanalysis. These security bounds are obtained after 52.68 and 228.94
seconds respectively. We also calculate the minimum number of active S-boxes for
up to 14 rounds of AES, which takes at most 0.40 seconds for each optimization
program. Our experiments are performed on a 24-core Intel Xeon X5670 Processor,
with 16 GB of RAM.

This paper is organized as follows. Sect. 2 explains how to find the minimum
number of active S-boxes for a cryptographic primitive by solving an MILP pro-
gram. A brief description of Enocoro-128v2 is given in Sect. 3. In Sect. 4 and
Sect. 5, we construct an MILP program to prove that Enocoro-128v2 is secure
against differential cryptanalysis and linear cryptanalysis respectively. We pro-
vide some ideas for future work in Sect. 6, and conclude the paper in Sect. 7. In

4http://www.ibm.com/software/integration/optimization/cplex-optimizer/
5http://projects.coin-or.org/SYMPHONY
6http://magma.maths.usyd.edu.au/

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://projects.coin-or.org/SYMPHONY
http://magma.maths.usyd.edu.au/

234 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

App. A, we calculate the minimum number of active S-boxes for AES using our
technique, and provide the full source code of our program.

2 Constructing an MILP Program to Calculate the

Minimum Number of Active S-boxes

We now explain a technique to easily prove the security of many ciphers against
differential and linear cryptanalysis. Our method is based on counting the mini-
mum number of active S-boxes. To illustrate our technique, we use Enocoro-128v2
and AES as test cases in this paper. The constraints we describe are not spe-
cific to these ciphers, but can easily be applied to any cipher constructed using
S-box operations, linear permutation layers, three-forked branches and/or XOR
operations.

2.1 Differential Cryptanalysis

We consider truncated differences, that is, every byte in our analysis can have
either a zero or a non-zero difference. More formally, we define the following
difference vector:

Definition 1. Consider a string ∆ consisting of n bytes ∆ = (∆0,∆1, . . . ,∆n−1).
Then, the difference vector x = (x0, x1, . . . , xn−1) corresponding to ∆ is defined
as

xi =

{

0 if ∆i = 0 ,

1 otherwise .

Constraints Describing the XOR Operation.

Let the input difference vector for the XOR operation be (x⊕in1
, x⊕in2

) and the
corresponding output difference vector be x⊕out. The differential branch number is
defined as the minimum number of input and output bytes that contain differences,
excluding the case where there are no differences in inputs nor outputs. For XOR,
the differential branch number is 2. In order to express this branch number in
linear inequality constraints, we need to introduce a new binary dummy variable
d⊕.7 If and only if all of the three variables x⊕in1

,x⊕in2
and x⊕out are zero, d⊕ is zero,

otherwise it should be one. Therefore we obtain the following linear constraints (in
binary variables) to describe the relation between the input and output difference

7Note that this extra variable was not added in [4, 5], which is why Bogdanov had to solve
several ILP programs instead of only one.

CONSTRUCTING AN MILP PROGRAM TO CALCULATE THE MINIMUM NUMBER OF ACTIVE S-BOXES

235

vectors:

x⊕in1
+ x⊕in2

+ x⊕out ≥ 2d⊕ ,

d⊕ ≥ x⊕in1
,

d⊕ ≥ x⊕in2
,

d⊕ ≥ x⊕out .

Constraints Describing the Linear Transformation.

The constraints for a linear transformation L can be described as follows. Assume
L transforms the input difference vector (xLin1

, xLin2
, · · · , xLinM) to the output dif-

ference vector (xLout1 , x
L
out2 , · · · , xLoutM). Given the differential branch number BD,

a binary dummy variable dL is again needed to describe the relation between the
input and output difference vectors. The variable dL is equal to 0 if all variables
xLin1
, xLin2
, · · · , xLinM , xLout1 , x

L
out2 , · · · , xLoutM are 0, and 1 otherwise. Therefore the

linear transformation L can be constrained by the following linear inequalities:

xLin1
+ xLin2

+ · · ·+ xLinM + xLout1 + xLout2 + · · ·+ xLoutM ≥ BDd
L ,

dL ≥ xLin1
,

dL ≥ xLin2
,

· · · · · ·
dL ≥ xLinM ,
dL ≥ xLout1 ,
dL ≥ xLout2 ,
· · · · · ·
dL ≥ xLoutM .

The Objective Function.

The objective function that has to be minimized, is the number of active S-boxes.
This function is equal to the sum of all variables that correspond to the S-box
inputs.

Additional Constraints.

An extra linear constraint is added to ensure that at least one S-box is active:
this avoids the trivial solution where the minimum active S-boxes is zero. If all d-
variables and all x-variables are restricted to be binary, the resulting program is a
pure ILP (Integer Linear Programming) problem. If all d-variables are restricted to
be binary, but only the x-variables corresponding to the input (plaintext), the lin-
ear inequality constraints ensure that the optimal solution for all other x-variables

236 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

will be binary as well. This is similar to Borghoff’s suggestion in [6], and results in
an MILP (Mixed-Integer Linear Programming) problem that may be solved faster.

2.2 Linear Cryptanalysis

For linear cryptanalysis, we define a linear mask vector as follows:

Definition 2. Given a set of linear masks Γ = (Γ0,Γ1, . . . ,Γn−1), the linear mask
vector y = (y0, y1, . . . , yn−1) corresponding to Γ is defined as

yi =

{

0 if Γi = 0 ,

1 otherwise .

The duality between differential and linear cryptanalysis was already pointed
out by Matsui [19]. The constraints describing a linear function are the same as
in the case for differential cryptanalysis, however the differential branch number
BD is replaced by the linear branch number BL. The linear branch number is the
minimum number of non-zero linear masks for the input and output of a function,
excluding the all-zero case. No extra constraints are introduced for the XOR
operations, because the input and output linear masks are the same.

For a three-forked branch, we proceed as follows. Let the input linear mask
vector for the three-forked branch be y⊢in, and the corresponding output linear mask
vector be (y⊢out1 , y

⊢
out2). We introduce a binary dummy variable l⊢ to generate the

following linear constraints for the three-forked branch:

y⊢in + y⊢out1 + y⊢out2 ≥ 2l⊢ ,

l⊢ ≥ y⊢in ,
l⊢ ≥ y⊢out1 ,
l⊢ ≥ y⊢out2 .

3 Description of Enocoro-128v2

The first Enocoro specification was given in [24]. Enocoro is a stream cipher,
inspired by the Panama construction [9]. Two versions of Enocoro were specified:
Enocoro-80v1 with a key size of 80 bits, and Enocoro-128v1 with a key size of 128
bits. Later, a new version for the 128-bit key size appeared in [14]. It is referred
to as Enocoro-128v1.1. We now give a short description of Enocoro-128v2. For
more details, we refer to the design document [25,26].

Internal State.

The internal state of Enocoro-128v2 is composed of a buffer b consisting of 32 bytes
(b0, b1, . . . , b31) and a state a consisting of two bytes (a0, a1). The initial state is

DESCRIPTION OF ENOCORO-128V2 237

loaded with a 128-bit key K and a 64-bit IV I as follows:

b
(−96)
i = Ki, 0 ≤ i < 16 ,

b
(−96)
i+16 = Ii, 0 ≤ i < 8 .

All other internal state bytes are loaded with predefined constants.

Update Function.

The update function Next uses functions ρ and λ to update the internal state as
follows:

(a(t+1), b(t+1)) = Next(S(t)) = (ρ(a(t), b(t)), λ(a(t), b(t))) .

An schematic overview of this function is given in Fig. 1.

Function ρ.

The function ρ updates the state a. It consists of an 8-bit S-box operation, a
linear transformation L and XORs. The transformation L is defined as a linear
transformation with a 2-by-2 matrix over GF(28):

(
v0
v1

)

= L(u0, u1) =

(
1 1
1 d

)(
u0

u1

)

, d ∈ GF(28) ,

where d = 0x02, u0 = a
(t)
0 ⊕ S[b

(t)
2] and u1 = a

(t)
1 ⊕ S[b

(t)
7]. The updated state

(a
(t+1)
0 , a

(t+1)
1) is then calculated as follows:

a
(t+1)
0 = v0 ⊕ S[b

(t)
16] ,

a
(t+1)
1 = v1 ⊕ S[b

(t)
29] .

Function λ.

The λ function of Enocoro-128v2 consists of XOR operations and a byte-wise
rotation of the buffer b. It is defined as follows:

b
(t+1)
i =

b
(t)
31 ⊕ a

(t)
0 , if i = 0 ,

b
(t)
2 ⊕ b

(t)
6 , if i = 3 ,

b
(t)
7 ⊕ b

(t)
15 , if i = 8 ,

b
(t)
16 ⊕ b

(t)
28 , if i = 17 ,

b
(t)
i−1 otherwise .

238 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

0 2 0 1

L

S

6 7

0 3 7 0 18 17 29 30

S

S

S

15 16 28 29 31

3116

Figure 1 – State Update during the Initialization of Enocoro-128v2.
Indices of buffer (on the left) refer to b-variables, indices of the state
(on the right) refer to a-variables.

Output Function Out.

After 96 initialization rounds, the Enocoro-128v2 output function outputs the
lower byte of the state.

Out(S(t)) = a
(t)
1 .

Several results [13, 16, 17, 20, 26] on differential and linear cryptanalysis have
already been published for different versions of Enocoro. In this paper, we consider
the most recent version Enocoro-128v2 [25, 26] as an example to illustrate our
technique. Watanabe et al. already showed that at least 2177.8 chosen IVs are
required for a differential attack on Enocoro-128v2 [26]. For a linear attack, Konosu
et al. [17] showed that 2216 known IVs are required for an attack on the 64-round
variant Enocoro-128v1.1. Although these results are already sufficient to prove the
security of Enocoro-128v2 against linear and differential cryptanalysis, we explain
in this paper how to prove the security against these attacks in a much easier way.

4 Differential Cryptanalysis of Enocoro-128v2

Our technique is now used to find the minimum number of active S-boxes for the
stream cipher Enocoro-128v2. We consider an idealized variant of Enocoro-128v2,
for which the minimum number of active S-boxes is a lower bound for the real
Enocoro-128v2. In this idealized variant of Enocoro-128v2, the S-boxes can map
any non-zero input difference to any non-zero output difference. The same holds
for the L-function, with the restriction that the branch number is 3.

For this idealized variant of Enocoro-128v2, we have written a program to
calculate the minimum number of active S-boxes. We present our problem as
a mixed-integer linear programming (MILP) problem, and use CPLEX to solve

DIFFERENTIAL CRYPTANALYSIS OF ENOCORO-128V2 239

it. The solution corresponds to the minimum number of differentially active S-
boxes for Enocoro-128v2. It is used to prove the security of the cipher against
differential cryptanalysis, using a similar proof as for the block cipher AES [11,12].
Note that an actual characteristic with the given number of active S-boxes may or
may not exist, depending on the specific S-box and L-function that is used. This
is not a concern for us, as our goal is to prove a security bound against differential
cryptanalysis.

4.1 Constructing the MILP Program

Enocoro-128v2 has eight XOR operations and one linear transformation L in each
round. We represent the differential behavior of each of these operations by a
set of linear inequality constraints, as described in Sect. 2. Let us take the first
round of Enocoro-128v2 as an example. The initial difference vector in the buffer
and states is represented by the binary variables (x0, x1, . . . , x31) and (x32, x33)
respectively. Let us consider the XOR operation which has the rightmost byte of
buffer b, i.e. b31, and state byte a0 as inputs. These correspond to binary variables
x31 and x32 respectively, the input difference vector for this XOR operation. From
the update function, we can obtain the corresponding value of the leftmost byte
of buffer b, i.e. b0, after the first round. Let the corresponding output difference
vector be x34, which is the first new binary variable that we introduce. After
introducing a binary dummy variable d0, this XOR operation can be described by
the constraints:

x31 + x32 + x34 ≥ 2d0 ,

d0 ≥ x31 ,

d0 ≥ x32 ,

d0 ≥ x34 .

We now consider the second XOR operation, for which buffer b2 (input to the
first S-box) and the state a0 are the inputs. Because the S-box is bĳective, it is
not only the case that the zero input difference results in a zero output difference,
but also that a non-zero input difference results in a non-zero output difference.
We find that (x2, x32) is the difference vector of the second XOR operation. The
second new variable, x35, will be the output difference vector for this second XOR
operation. Similarly, for the third XOR operation, the input difference vector is
(x7, x33) (corresponding to (b7, a1)), and the output difference vector is x36. Given
two binary dummy variables d1 and d2 for the second and third XOR operation
respectively, we again obtain four linear constraints for every XOR operation.

From the structure of the linear transformation of Enocoro-128v2, we know
that (x35, x36) is the input difference vector for the linear transformation L in the
first round. By introducing a new binary variable d3, the relations between the
output difference vector (x37, x38) and the input difference vector (x35, x36) are

240 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

?

?

�

x31

x32

x34

L

x35

?

?

-

x32

x2

x35

?

?

-

x33

x7

x36

x36

x37 x38

? ?

? ?

?

?

- ? ?�

?

?

?

� ?�

?

-

?

x37

x16

x39

x38

x29

x40

x2

x41

x6

x7

x42

x15

x16

x43

x28

Figure 2 – Difference Vectors for Nine Operations in the First Round

L

S

S

0 1 2 6 7 15 16 28 29 31 32 33

34 39 400 1 41 6 42 43 178 28 29 303

S

S

35 36

37 38

34

6 15

Figure 3 – Differential State Update during the Initialization of
Enocoro-128v2. The indices refer to x-variables.

easily described by the following constraints:

x35 + x36 + x37 + x38 ≥ 3d3 ,

d3 ≥ x35 ,

d3 ≥ x36 ,

d3 ≥ x37 ,

d3 ≥ x38 .

The other five XORs in the first round are represented in a similar way. The
new variables x39, x40, x41, x42 and x43 are shown in Fig. 2. These constraints
result in the binary dummy variables d4, d5, d6, d7, d8. For all the eight XORs
and one linear transformation L, ten new binary variables x34, x35, . . . , x43 and
nine binary dummy variables d0, d1, . . . , d8 are required. Therefore, a system of

DIFFERENTIAL CRYPTANALYSIS OF ENOCORO-128V2 241

4 · 8 + 5 · 1 = 37 constraints is obtained to describe all the nine operations in
the first round (and also every subsequent round) of Enocoro-128v2. The detailed
input and output vectors for all the nine operations are shown in Fig. 2.

After one round the difference vector for buffer and state will be

(x34, x0, x1, x41, x3, . . . , x6, x42, x8, . . . , x15, x43, x17, . . . , x30)

and (x39, x40) respectively. All binary xi-variables obtained for the first round are
illustrated in Fig. 3. Therefore, using this technique we can represent the differen-
tial update of Enocoro-128v2 for any round with a system of linear constraints.

4.2 The Minimum Number of Active S-boxes for Differential
Cryptanalysis

We now focus on the variables that represent the S-box inputs in every round. Note
that x2, x7, x16, and x29 correspond to the input differences of the S-boxes, and
therefore determine if the S-box is active or not. Let Di include the four indices
of variables that represent the four S-box inputs in the i-th round (1 ≤ i ≤ 96).
The 96 sets include the indices for variables that represent the four S-box inputs
in each round. They can easily be obtained from Sect. 4.1, and are as follows:

D1 = {2, 7, 16, 29} ,
D2 = {1, 6, 15, 28} ,
D3 = {0, 5, 14, 27} ,
D4 = {34, 4, 13, 26} ,
D5 = {44, 3, 12, 25} ,

...

D96 = {954, 941, 902, 863} .

Let kN be the number of active S-boxes for N rounds of Enocoro-128v2. If

IN =
⋃

1≤i≤N

Di ,

then
kN =

∑

i∈IN

xi

will be the number of active S-boxes in N rounds of Enocoro-128v2. To avoid
the trivial case where no S-boxes are active, we add an extra linear constraint
to specify that least one S-box is active. If we can minimize the linear function
kN =

∑

i∈IN
xi, it will give us the minimum number of active S-boxes for N

rounds of Enocoro-128v2. This will provide a security bound for Enocoro-128v2
against differential cryptanalysis. The objective function kN =

∑

i∈IN
xi is a linear

242 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

function, constrained by a system of 37N linear inequalities. If all variables must
be binary variables, this corresponds to an ILP program.

It is easy to verify that the maximum differential probability for the 8-bit S-
box of Enocoro-128v2 is 2−4.678. As the IV is limited to 64 bits, there are at
most 264 IV pairs for any given difference (if the key is fixed). Because there
exists a generic attack with a data complexity of 264 IV s (obtaining the entire
codebook under one key), attacks requiring 264 IV s or more should not be feasible.
Therefore, we do not consider attacks using more than 264 IV s, even in a related-
key setting. If the number of active S-boxes in the initialization rounds is at
least 14 > 64/4.678, we consider the cipher to be resistant against differential
cryptanalysis. Because we allow differences in both the key and the IV, our results
hold both in single-key and related-key settings. We note that typically, differential
and linear cryptanalysis are used to attack a few more rounds than the number of
rounds of the characteristic. The cipher must also be resistant against other types
of attacks and add extra rounds to provide a security margin. For these reasons,
more rounds should be used than suggested by our analysis.

In order to optimize the MILP program, we use CPLEX. The experiments are
implemented on a 24-core Intel Xeon X5670 @ 2.93 GHz, with 16 GB of RAM.
Because this computer is shared with other users, execution times may be longer
than necessary, which is why we do not give timing information for all problem
instances. We found that it takes about 52.68 seconds to show that the minimum
number of active S-boxes for 38 rounds of Enocoro-128v2 is 14. Therefore, 38
rounds of Enocoro-128v2 or more are secure against differential cryptanalysis. The
minimum number of active S-boxes for each round of Enocoro-128v2 are listed in
Table 1.

We would like to point out to the reader, that the seemingly complex bookkeep-
ing of variable indices should not be a concern for the cryptanalyst who wishes to
use this technique. The MILP linear constraints can be generated by a small com-
puter program. This program keeps track of the next unused x- and d-variables.
It is then easy to replace every XOR and L function operation in the reference im-
plementation of the cipher by a function to generate the corresponding constraints,
and every S-box application by a function that constructs the objective function.
For a typical cipher, this should not require more than half an hour of work for a
minimally experienced programmer.

If all d-variables are restricted to binary variables, as well as variables x0 up
to x33, the constraints ensure that the optimal solution for all other xi-variables
will be binary as well. Therefore, similar to Borghoff’s suggestion in [6], we might
solve an MILP program where only the d-variables and x0 up to x33 are binary
variables, instead of a pure ILP program. We find that Borghoff’s observation can
give dramatic speed-ups in some cases: for 72 rounds, it takes 5,808.15 seconds
using an MILP, compared 342,747.78 seconds using a pure ILP. However, our
MILP program for 38 rounds takes longer: 75.68 seconds instead of 52.68 seconds.
Explaining this phenomenon seems to be a useful direction for future work.

LINEAR CRYPTANALYSIS OF ENOCORO-128V2 243

Table 1 – Minimum Number of Differentially Active S-boxes min(kN)
for N rounds of Enocoro-128v2

N min(kN)

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 2

N min(kN)

21 2
22 3
23 3
24 3
25 4
26 5
27 7
28 8
29 8
30 8
31 8
32 9
33 9
34 10
35 11
36 12
37 13
38 14
39 15
40 15

N min(kN)

41 16
42 17
43 18
44 18
45 18
46 19
47 20
48 20
49 21
50 22
51 22
52 22
53 22
54 22
55 22
56 22
57 23
58 23
59 24
60 24

N min(kN)

61 25
62 26
63 27
64 27
65 28
66 29
67 30
68 30
69 30
70 31
71 32
72 34
73 35
74 35
75 36
76 37
77 37
78 38
79 38
80 38

N min(kN)

81 39
82 39
83 40
84 40
85 40
86 41
87 42
88 43
89 43
90 44
91 44
92 45
93 45
94 46
95 47
96 47

5 Linear Cryptanalysis of Enocoro-128v2

We will use our technique to analyze an ideal variant of Enocoro-128v2 for linear
cryptanalysis. Similarly as for differential cryptanalysis, the real Enocoro-128v2
will have at least as many linearly active S-boxes as the idealized one, and therefore
can be used to prove a security bound.

5.1 Constructing the MILP Program

We now illustrate our technique by presenting the constraints for the first round
of the stream cipher Enocoro-128v2 for linear cryptanalysis. For the initial state,
let the linear mask vector for the buffer be (y0, y1, . . . , y31), and for the state be
(y32, y33). Consider the three-forked branch, which has the state byte a0 as the
input linear mask and buffer byte b31 as one output linear mask. We obtain the first
new binary variable y34 as the other output vector. The input and output linear
mask vector for this three-forked branch are then y32 and (y31, y34) respectively.
By introducing the binary dummy variable l0, the four constraints describing the

244 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

y31

y32

y34

L

y35

y2

y35

�-

y33

y36

y36

y37

y38

? ?

? ?

?

- �

? ?

�

?

-

?

y37

y16

y39

y29

y40 y41

y6

y7

y42 y43

?

�

y34

?

y34

?

y33

y15

y39

y28

y41 -

Figure 4 – Linear Mask Vectors for Nine Operations in the First
Round

L

S

S

S

S

0 2 6 7 8 14 15 16 17 27 28 31 32 33

31 0 1 37 3 5 38 39 8 14 40 41 17 27 42 43 30

29

31

33

35 36

35

34

34

36

Figure 5 – Linear Mask Vectors Update during the Initialization of
Enocoro-128v2. The indices refer to y-variables.

three-forked branch can be described as follows:

y31 + y32 + y34 ≥ 2l0 ,

l0 ≥ y31 ,

l0 ≥ y32 ,

l0 ≥ y34 .

For the XOR operation, the two inputs and the output all have the same
linear mask. The bĳectiveness of the S-box implies the linear mask at the output
will be non-zero if and only if the input mask is non-zero. Therefore, the linear
transformation L has an input linear mask vector of (y34, y33), and an output linear
mask vector of (y35, y36). Using a new binary dummy variable l1, the constraints

LINEAR CRYPTANALYSIS OF ENOCORO-128V2 245

describing the L transformation are:

y34 + y33 + y35 + y36 ≥ 3l1 ,

l1 ≥ y34 ,

l1 ≥ y33 ,

l1 ≥ y35 ,

l1 ≥ y36 .

As an Enocoro-128v2 round contains eight three-forked branch operations and one
linear transformation L, ten new binary variables y34, y35, . . . , y43, as well as nine
binary dummy variables l0, l1, . . . , l8 are introduced. Therefore, 4 · 8 + 5 · 1 = 37
constraints are required to describe the propagation of linear masks for the first
round (as well as any subsequent round) of Enocoro-128v2. The input and output
linear mask vectors for all nine operations in the first round are shown in Fig. 4.
The linear mask vector for the buffer and state after one round are

(y31, y0, y1, y37, y3, · · · , y5, y38, y39, y8, · · · , y14, y40, y41, y17, · · · , y27, y42, y43, y30)

and (y35, y36) respectively. They are shown in Fig. 5.

5.2 The Minimum Number of Active S-boxes for Linear Crypt-
analysis

Using the technique in the previous section, we can represent any number of rounds
of Enocoro-128v2. We now explain how to calculate the number of active S-boxes.
Let Li include all indices of the four variables representing the input linear mask
vector of S-boxes in the i-th round (1 ≤ i ≤ 96). We then obtain the following 96
sets:

L1 = {34, 33, 35, 36} ,
L2 = {44, 36, 45, 46} ,
L3 = {54, 46, 55, 56} ,
L4 = {64, 56, 65, 66} ,
L5 = {74, 66, 75, 76} ,

...

L96 = {984, 976, 985, 986} .

Let mN be the number of active S-boxes for N rounds of Enocoro-128v2. If

JN =
⋃

1≤j≤N

Lj ,

246 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

then

mN =
∑

j∈JN

yj

will be the number of active S-boxes for N rounds of Enocoro-128v2. By minimiz-
ing the linear objective function mN , we obtain the minimum number of linearly
active S-boxes for N rounds of Enocoro-128v2.

The maximum correlation amplitude of the 8-bit S-box of Enocoro-128v2 is
Cmax = 2−2. For the same reasons as for differential cryptanalysis, we limit the
number of IV s to 264. Let us denote the minimum number of active S-boxes by a.
From the limit on the number of IV s, we then find that resistance against linear
cryptanalysis requires [12, pp. 142–143]:

Camax = (2−2)a ≤ 2−64/2 .

This inequality is satisfied for a ≥ 16. Therefore, if the number of linearly active
S-boxes is at least 16, Enocoro-128v2 can be considered to be resistant against
linear cryptanalysis (in both single-key and related-key settings).

If we solve the resulting MILP problem using CPLEX, we find that the mini-
mum number of active S-boxes is 18 for 61 rounds of Enocoro-128v2. This result
was obtained after 227.38 seconds. Therefore, we conclude that Enocoro-128v2
with 96 initialization rounds is secure against linear cryptanalysis (in both single-
key and related-key settings). Table 2 lists the minimum number of active S-boxes
for Enocoro-128v2.

6 Future Work

It is interesting to investigate how the internal parameters of CPLEX can be
fine-tuned to calculate bounds against linear and differential cryptanalysis in the
fastest possible time. If there are symmetries in the round function, these may be
used to speed up the search as well. Similarly, the attacker may improve a given
(suboptimal) lower bound for a particular cipher by clocking the round functions
forward or backward in order to obtain a lower number of S-boxes. To obtain
a rough lower bound for a large number of rounds, the “split approach” (see for
example [2]) may be used. For example, if r rounds of a cipher contain at least
a active S-boxes, then kr rounds of a cipher must contain at least ka active S-
boxes. It is useful to explore how these observations can be applied when CPLEX
takes a very long time to execute. Otherwise, the shorter solving time does not
compensate for the additional time to construct the program. For ILP programs
with a very long execution time, it may be better to calculate the minimum number
of active S-boxes using a different technique (e.g. [2]).

The technique in this paper is quite general, and may also be used for trun-
cated differentials, higher-order differentials, impossible differentials, saturation

CONCLUSION 247

Table 2 – Minimum Number of Linearly Active S-boxes min(mN)
for N rounds of Enocoro-128v2

N min(mN)

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0

N min(mN)

21 0
22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 3
34 6
35 6
36 6
37 6
38 6
39 6
40 6

N min(mN)

41 6
42 9
43 9
44 9
45 12
46 12
47 12
48 12
49 12
50 12
51 12
52 15
53 15
54 15
55 15
56 15
57 15
58 15
59 15
60 15

N min(mN)

61 18
62 18
63 18
64 18
65 18
66 18
67 18
68 21
69 21
70 21
71 21
72 21
73 21
74 21
75 21
76 24
77 24
78 24
79 24
80 24

N min(mN)

81 24
82 27
83 27
84 27
85 27
86 27
87 27
88 27
89 27
90 27
91 27
92 27
93 30
94 30
95 33
96 33

attacks,... It can also be applied to other ciphers constructed using S-box oper-
ations, linear permutation layers, three-forked branches and/or XOR operations.
We leave the exploration of these topics to future work as well.

7 Conclusion

In this paper, we introduced a simple technique to calculate the security of many
ciphers against linear and differential cryptanalysis. The only requirement is that
the cipher is composed of a combination of S-box operations, linear permutation
layers and/or XOR operations. Our technique involves writing a simple program
to generate a mixed-integer linear programming (MILP) problem. The objective
function of the MILP program is the number of linearly or differentially active S-
boxes, which we want to minimize. This MILP problem can then easily be solved
using an off-the-shelf optimization package, for example CPLEX. The result can
be used to prove the security of a cryptosystem against linear and differential
cryptanalysis.

248 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

Our technique can be applied to a wide variety of cipher constructions. As an
example, we apply the technique in this paper to the stream cipher Enocoro-128v2.
We prove that for Enocoro-128v2 38 rounds are sufficient for security against dif-
ferential cryptanalysis, and 61 rounds against linear cryptanalysis. These results
are valid both in single-key and related-key models. As Enocoro-128v2 consists of
96 initialization rounds, this proves the security of Enocoro-128v2 against linear
and differential cryptanalysis.

We would like to point out that only little programming is required to obtain
this result. A minimally experienced programmer can modify the reference imple-
mentation of a cipher, in order to generate the required MILP program in about
half an hour. In the case of Enocoro-128v2, it takes CPLEX less than one minute
on a 24-core Intel Xeon X5670 processor to prove security against differential crypt-
analysis, and less than four minutes to prove security against linear cryptanalysis.
We note that because very little programming is required, both the time spent on
cryptanalysis and the possibility of making errors are greatly reduced.

Acknowledgments. The authors would like to thank their colleagues at
COSIC, as well as the anonymous reviewers for their detailed comments and sug-
gestions. Special thanks to Hirotaka Yoshida for reviewing an earlier draft of this
paper.

References

[1] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. J. Cryptology, 4(1):3–72, 1991.

[2] A. Biryukov and I. Nikolic. Search for Related-Key Differential Characteristics
in DES-Like Ciphers. In A. Joux, editor, FSE, volume 6733 of Lecture Notes
in Computer Science, pages 18–34. Springer, 2011.

[3] A. Bodganov. Personal Communication, 2011.

[4] A. Bogdanov. Analysis and Design of Block Cipher Constructions. PhD thesis,
Ruhr University Bochum, 2009.

[5] A. Bogdanov. On unbalanced Feistel networks with contracting MDS diffusion.
Des. Codes Cryptography, 59(1-3):35–58, 2011.

[6] J. Borghoff, L. R. Knudsen, and M. Stolpe. Bivium as a Mixed-Integer Linear
Programming Problem. In M. G. Parker, editor, IMA Int. Conf., volume 5921
of Lecture Notes in Computer Science, pages 133–152. Springer, 2009.

[7] C. Bouillaguet, P.-A. Fouque, and G. Leurent. Security Analysis of SIMD.
In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas in Cryp-
tography, volume 6544 of Lecture Notes in Computer Science, pages 351–368.
Springer, 2010.

REFERENCES 249

[8] J. P. Cameron McDonald, Chris Charnes. An Algebraic Analysis of Triv-
ium Ciphers based on the Boolean Satisfiability Problem. Cryptology ePrint
Archive, Report 2007/129, 2007. http://eprint.iacr.org/.

[9] J. Daemen and C. S. K. Clapp. Fast Hashing and Stream Encryption with
PANAMA. In S. Vaudenay, editor, FSE, volume 1372 of Lecture Notes in
Computer Science, pages 60–74. Springer, 1998.

[10] J. Daemen, R. Govaerts, and J. Vandewalle. Resynchronization Weaknesses
in Synchronous Stream Ciphers. In EUROCRYPT, pages 159–167, 1993.

[11] J. Daemen and V. Rĳmen. The Wide Trail Design Strategy. In B. Honary,
editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science,
pages 222–238. Springer, 2001.

[12] J. Daemen and V. Rĳmen. The Design of Rĳndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[13] M. Hell and T. Johansson. Security Evaluation of Stream Cipher Enocoro-
128v2. CRYPTREC Technical Report, 2010.

[14] D. W. K. Muto and T. Kaneko. Strength evaluation of Enocoro-128 against
LDA and its Improvement. In Symposium on Cryptography and Information
Security, pages 4A1–1, 2008. (in Japanese).

[15] M. Kanda. Practical Security Evaluation against Differential and Linear
Cryptanalyses for Feistel Ciphers with SPN Round Function. In D. R. Stin-
son and S. E. Tavares, editors, Selected Areas in Cryptography, volume 2012
of Lecture Notes in Computer Science, pages 324–338. Springer, 2000.

[16] K. M. Kazuto Okamoto and T. Kaneko. Security evaluation of Pseudorandom
Number Generator Enocoro-80 against Differential/Linear Cryptanalysis (II).
In Symposium on Cryptography and Information Security, pages 20–23, 2009.
(in Japanese).

[17] K. Konosu, K. Muto, H. Furuichi, D. Watanabe, and T. Kaneko. Security
evaluation of Enocoro-128 ver.1.1 against resynchronization attack. IEICE
Technical Report, ISEC2007-147, 2008. (in Japanese).

[18] M. Matsui. Linear Cryptoanalysis Method for DES Cipher. In EUROCRYPT,
pages 386–397, 1993.

[19] M. Matsui. On Correlation Between the Order of S-boxes and the Strength
of DES. In EUROCRYPT, pages 366–375, 1994.

[20] K. Muto, D. Watanabe, and T. Kaneko. Security evaluation of Enocoro-80
against linear resynchronization attack. Symposium on Cryptography and
Information Security, 2008. (in Japanese).

http://eprint.iacr.org/

250 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

[21] H. Raddum. Cryptanalytic Results on Trivium. eSTREAM report 2006/039,
2006. http://www.ecrypt.eu.org/stream/triviump3.html.

[22] L. Schrage. Optimization Modeling with LINGO. Lindo Systems, 1999.
http://www.lindo.com.

[23] K. Shibutani. On the Diffusion of Generalized Feistel Structures Regarding
Differential and Linear Cryptanalysis. In A. Biryukov, G. Gong, and D. R.
Stinson, editors, Selected Areas in Cryptography, volume 6544 of Lecture Notes
in Computer Science, pages 211–228. Springer, 2010.

[24] D. Watanabe and T. Kaneko. A construction of light weight Panama-like
keystream generator. In IEICE Technical Report, ISEC2007-78, 2007. (in
Japanese).

[25] D. Watanabe, K. Okamoto, and T. Kaneko. A Hardware-Oriented Light
Weight Pseudo-Random Number Generator Enocoro-128v2. In The Sympo-
sium on Cryptography and Information Security, pages 3D1–3, 2010. (in
Japanese).

[26] D. Watanabe, T. Owada, K. Okamoto, Y. Igarashi, and T. Kaneko. Update
on Enocoro Stream Cipher. In ISITA, pages 778–783. IEEE, 2010.

[27] S. Wu and M. Wang. Security Evaluation against Differential Cryptanalysis
for Block Cipher Structures. Cryptology ePrint Archive, Report 2011/551,
2011. http://eprint.iacr.org/.

A Number of Active S-boxes for AES

The four-round propagation theorem of AES [12] proves that the number of active
S-boxes in a differential or linear characteristic of four AES rounds is at least 25.
Combined with the properties of the AES S-box, this result was used in the AES
design document to prove the resistance against linear and differential attacks. In
this section, we illustrate our technique by applying it to the block cipher AES.
We not only confirm the four-round propagation theorem, but also determine the
minimum number of active S-boxes for up to 14 rounds in Table 4.

An AES round update consists of four operations: AddRoundKey (AR), Sub-
Bytes (SB), ShiftRows (SR) and MixColumns (MC). The update of the first AES
round is shown in Table 3. Every variable corresponds to a byte of the AES state.
The variable is 1 if the difference is non-zero, and 0 if the difference is zero. All
variables corresponding to the inputs of the SubByte operations are summed in the
objective function, this corresponds to the number of active S-boxes. The linear
function used in the MixColumns operation has a differential as well as a linear
branch number of 5.

A program was written in C to generate the constraints for this optimization
problem in the CPLEX LP format. To illustrate the simplicity of our technique,

http://www.ecrypt.eu.org/stream/triviump3.html
http://www.lindo.com
http://eprint.iacr.org/

NUMBER OF ACTIVE S-BOXES FOR AES 251

we provide this program (including source code comments) below in full. None of
the optimization problems in Table 4 took longer than 0.40 seconds to solve, using
only a single core of our 24-core Intel Xeon X5670 processor.

Table 3 – The Variables in the First Round Update of AES

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

SB
−→

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

SR
−→

x0 x4 x8 x12

x5 x9 x13 x1

x10 x14 x2 x6

x15 x3 x7 x11

MC
−−→

x16 x20 x24 x28

x17 x21 x25 x29

x18 x22 x26 x30

x19 x23 x27 x31

Table 4 – Minimum Number of Differentially or Linearly Active S-
boxes min(kN) for N rounds of AES

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

min(kN) 1 5 9 25 26 30 34 50 51 55 59 75 76 80

#include <stdio.h>

int i,j,r;

const int ROUNDS = 4; /* number of rounds */

int next = 0; /* next unused state variable index */

int dummy = 0; /* next unused dummy variable index */

void ShiftRows(int a[4][4]) {

int tmp[4];

for(i = 1; i < 4; i++) {

for(j = 0; j < 4; j++) tmp[j] = a[i][(j + i) % 4];

for(j = 0; j < 4; j++) a[i][j] = tmp[j];

}

}

void MixColumns(int a[4][4]) {

for(j = 0; j < 4; j++) {

for (i = 0; i < 4; i++) printf("x%i + ",a[i][j]);

for (i = 0; i < 3; i++) printf("x%i + ",next+i);

printf("x%i - 5 d%i >= 0\n",next+3,dummy);

for(i = 0; i < 4; i++)

printf("d%i - x%i >= 0\n",dummy,a[i][j]);

for(i = 0; i < 4; i++)

printf("d%i - x%i >= 0\n",dummy,a[i][j]=next++);

dummy++;

}

252 DIFFERENTIAL AND LINEAR CRYPTANALYSIS USING MIXED-INTEGER LINEAR PROGRAMMING

}

int main() {

int a[4][4]; /* the bytes of the AES state */

for (i = 0; i < 4; i++)

for (j = 0; j < 4; j++)

a[i][j] = next++; /* initialize variable indices */

printf("Minimize\n"); /* print objective function */

for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);

printf("x%i\n\n",ROUNDS*16-1);

printf("Subject To\n"); /* round function constraints */

for (r = 0; r<ROUNDS; r++) { ShiftRows(a); MixColumns(a); }

/* at least one S-box must be active */

for (i = 0; i < ROUNDS*16-1; i++) printf("x%i + ",i);

printf("x%i >= 1\n\n",ROUNDS*16-1);

printf("Binary\n"); /* binary constraints */

for (i = 0; i < 16; i++) printf("x%i\n",i);

for (i = 0; i < dummy; i++) printf("d%i\n",i);

printf ("End\n");

return 0;

}

Curriculum Vitae

Nicky Mouha was born on November 23, 1986 in Tongeren, Belgium. Already
during his high school years at Onze-Lieve-Vrouwehumaniora Tongeren (currently
known as viio humaniora Tongeren), he excelled in 2003 by reaching the second
place in the semifinal of the Flemish Chemistry Olympiad. In the final round,
he finished fourth. In the same year, he also competed in the final round in the
Belgian Federal Parliament of the school debating competition organized by Junior
Chamber International Vlaanderen.

From 2003 to 2006, Nicky studied Bachelor of Science in Electrical Engineer-
ing (Option: Electrical Engineering – Computer Science) at KU Leuven, Belgium.
Subsequently from 2006 to 2008, he studied Master of Science in Electrical Engi-
neering (Option: Multimedia – Signal Processing) at the same university. He was
the only student of the Department of Electrical Engineering (ESAT) to graduate
summa cum laude in July 2008.

In October 2008, he joined the research group COSIC (Computer Security and
Industrial Cryptography) of ESAT under the supervision of Prof. Bart Preneel.
The main focus of his Ph.D. research was hash functions, but he obtained sev-
eral results on block ciphers and stream ciphers as well. His Ph.D. research was
supported by a personal grant from IWT-Vlaanderen.

In 2011, he performed research at Tsinghua University, P.R. China as the first
non-Chinese Ph.D. student to work under the supervision of Prof. Xiaoyun Wang.

During his Ph.D. studies, Nicky was very active in organizing conferences and
workshops. He organized ECRYPT II Bounds for Symmetric Constructions to-
gether with Andrey Bogdanov in 2010. In 2011, he was a member of the Orga-
nizing Committee of the ECRYPT II Hash Workshop. He also co-organized the
COSIC Course 2011. Together with Péla Noë and Saartje Verheyen, he was the
official responsible for the practical organization of CARDIS 2011, DPM 2011,
EuroPKI 2011, FAST 2011, SETOP 2011 and TrustED 2011. He was also very
active in the organization of FSE 2009, RFIDSec09, ECRYPT II Hash3: Proofs,
Analysis, and Implementation and ESORICS 2011.

Starting from 2010, he volunteers at KU Leuven Residence Management as a
resident assistant. Studentenwĳk Arenberg consists of 820 student rooms. He is
personally responsible for the supervision of 110 student rooms, but also organizes
events together with his colleagues for all students of Studentenwĳk Arenberg.

253

254 CURRICULUM VITAE

Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Electrical Engineering (ESAT)

Computer Security and Industrial Cryptography (COSIC)

Kasteelpark Arenberg 10 — 2446, 3001 Heverlee, Belgium

	Acknowledgments
	Abstract
	Samenvatting
	Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	I Automated Techniques for Hash Function and Block Cipher Cryptanalysis
	Introduction
	Motivation
	Challenges
	Thesis Outline

	Hash Functions
	Introduction
	Definition
	Preimage Resistance
	Second Preimage Resistance
	Collision Resistance

	Other Security Requirements
	Theory of Hash Functions
	Iterated Hash Functions
	Merkle-Damgård construction

	Analysis of Hash Functions
	Introduction
	ESSENCE
	Khichidi-1
	LUX
	Sarmal
	Skein and BLAKE
	Other SHA-3 Results
	HAS-V

	Conclusion

	Block Ciphers
	Introduction
	Definition
	Attack Models
	Related-Key Attacks

	Meet-in-the-Middle Attacks
	XTEA
	GOST

	Conclusion

	Automated Techniques
	Introduction
	Differential and Linear Cryptanalysis
	S-functions
	Introduction
	Background
	Our Results

	Differential-Algebraic Attacks
	Our Results

	Mixed Integer-Linear Programming
	Our Results

	Conclusion

	Conclusion
	Directions for Future Research

	Bibliography

	II Publications
	List of Publications
	Finding Collisions for a 45-Step Simplified HAS-V
	Introduction
	A Simplified HAS-V
	Description
	Cyclic Description

	NL-characteristics
	Representation of Conditions on One Bit Qt+1[i]
	Propagation of Conditions for Every Word Qt+1
	Double Conditions
	Work Factor

	Finding NL-characteristics for 45 Steps
	Conclusion and Future Work
	Acknowledgments
	References
	NL-characteristics
	A Two-bit Example
	Introduction
	Visualizing xdp+(11, 01 10) in a Graph
	Calculating xdp+(11, 01 10) Using Matrix Multiplications
	Extending the Graph Method

	Cryptanalysis of the ESSENCE Family of Hash Functions
	Introduction
	Description of the Compression Function of ESSENCE
	Branching Number of the L Function
	A 31-Round Semi-Free-Start Collision Attack For ESSENCE-512
	Finding Message Pairs for the First Nine Rounds
	Distinguishing Attacks
	Weakness in the Feedback Function of ESSENCE
	Distinguishers on 14-Round ESSENCE
	The Distinguisher
	Distinguishers using Biases in Other Bits
	Distinguishers for the Compression Function
	Key-Recovery Attacks

	Slide Attack
	Slid Pairs with Identical Chaining Values

	Fixed Points for the ESSENCE Block Cipher
	Measures to Improve the Security of ESSENCE
	Conclusions and Open Problems
	Acknowledgments
	References
	Finding the Lowest Weight Difference A
	Making F Behave as a Linear Transformation
	A Message Pair for the First Nine Rounds
	The Feedback Function F
	Distinguishing Attacks on the Full 32-Round ESSENCE-256
	Key-Recovery Attacks on 32-Round ESSENCE

	The Differential Analysis of S-Functions
	Introduction
	S-Functions
	Computation of xdp+
	Introduction
	Defining the Probability xdp+
	Constructing the S-Function for xdp+
	Computing the Probability xdp+
	Minimizing the Size of the Matrices for xdp+.
	Extensions of xdp+

	Computation of adp
	Introduction
	Defining the Probability adp
	Constructing the S-function for adp
	Computing the Probability adp

	Counting Possible Output Differences
	Introduction
	Algorithm with a Exponential Time in n
	Algorithm with a Linear Time in n
	Computing the Number of Output Differences xdc+
	Calculation of adc

	Conclusion
	References
	Matrices for xdp+
	All Possible Subgraphs for xdp+
	Computation of xdp+ with Multiple Inputs.
	Computation of xdp3
	Correction

	Meet-in-the-Middle Attacks on Reduced-Round XTEA
	Introduction
	Notation and Convention
	Description of XTEA
	Motivational Observation
	Attacks on 15 Rounds of XTEA
	Attacks on 23 Rounds of XTEA
	Conclusions and Open Problems
	References
	Countermeasures
	Illustration of the Attack on Rounds 16–38
	Randomness of the Inner-Round Subkeys in the 15-Round Attacks

	Meet-in-the-Middle Attacks on Reduced-Round GOST
	Introduction
	Description of GOST
	Attacking up to 14 Rounds of GOST
	Attack on 16-Round GOST
	Attack on 22-Round GOST
	Conclusions and Open Problems
	References

	Challenging the Increased Resistance of Regular Hash Functions Against Birthday Attacks
	Introduction
	The Birthday Problem
	Balance and Regularity in Existing Literature
	Fraction of Regular Functions
	Subset Regularity
	Linear Subset Regularity
	Impact on the Birthday Attack
	Related Work
	Random Functions
	Conclusions
	References
	Linear Subset Regularity for 3-to-1 Bit Hash Functions
	Calculating the Inverses of Matrices Ad

	Algebraic Techniques in Differential Cryptanalysis Revisited
	Introduction
	Description of Albrecht's Differential-Algebraic Attack
	Inapplicability of Albrecht et al.'s Attacks
	Inapplicability of Attack C
	Inapplicability of Attack B to PRESENT

	New Differential-Algebraic Attacks
	Attack 1 for the PRESENT Block Cipher
	Attack 2 for the PRESENT Block Cipher

	Conclusion
	References

	Differential and Linear Cryptanalysis using Mixed-Integer Linear Programming
	Introduction
	Constructing an MILP Program to Calculate the Minimum Number of Active S-boxes
	Differential Cryptanalysis
	Linear Cryptanalysis

	Description of Enocoro-128v2
	Differential Cryptanalysis of Enocoro-128v2
	Constructing the MILP Program
	The Minimum Number of Active S-boxes for Differential Cryptanalysis

	Linear Cryptanalysis of Enocoro-128v2
	Constructing the MILP Program
	The Minimum Number of Active S-boxes for Linear Cryptanalysis

	Future Work
	Conclusion
	References
	Number of Active S-boxes for AES

	Curriculum Vitae

