
Security Analysis and Comparison of the SHA-3 Finalists
BLAKE, Grøstl, JH, Keccak, and Skein

Elena Andreeva, Bart Mennink, Bart Preneel and Marjan Škrobot

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

{elena.andreeva, bart.mennink, bart.preneel}@esat.kuleuven.be, marjanskrobot@yahoo.com

Abstract. In 2007, the US National Institute for Standards and Technology announced a call
for the design of a new cryptographic hash algorithm in response to the vulnerabilities identified
in widely employed hash functions, such as MD5 and SHA-1. NIST received many submissions,
51 of which got accepted to the first round. At present, 5 candidates are left in the third round
of the competition. An important criterion in the selection process is the SHA-3 hash function
security and more concretely, the possible reductions of the hash function security to the security
of its underlying building blocks. At NIST’s second SHA-3 Candidate Conference 2010, Andreeva
et al. provided a provable security classification of the second round SHA-3 candidates in the ideal
model. In this work, we revisit this classification for the five SHA-3 finalists. We evaluate recent
provable security results on the candidates, and resolve remaining open problems for Grøstl, JH,
and Skein.

Keywords. SHA-3, security classification, (second) preimage resistance, collision resistance, in-
differentiability.

1 Introduction

Hash functions are a building block for numerous cryptographic applications. In 2004 a series
of attacks by Wang et al. [48, 49] showed security vulnerabilities in the design of the widely
adopted hash function SHA-1. In response, the US National Institute for Standards and Tech-
nology (NIST) recommended the replacement of SHA-1 by the SHA-2 hash function family
and announced a call for the design of a new SHA-3 hash algorithm [39]. The call prescribes
that SHA-3 must allow for message digests of length 224, 256, 384 and 512 bits, it should be
efficient, and most importantly it should provide an adequate level of security. Five candidates
have reached the third and final round of the competition: BLAKE [7], Grøstl [28], JH [50],
Keccak [10], and Skein [25]. These candidates are under active evaluation by the cryptographic
community. As a result of comparative analysis, several classifications of the SHA-3 candidates,
mostly concentrated on hardware performance, appeared in the literature [24, 26, 47, 31]. At
NIST’s second SHA-3 Candidate Conference 2010, Andreeva et al. [4, 5] provided a classifica-
tion based on the specified by NIST security criteria. Below we recall the security requirements
by NIST in their call for the SHA-3 hash function.

NIST Security Requirements. The future SHA-3 hash function is required to satisfy the
following security requirements [39]: (i) at least one variant of the hash function must securely
support HMAC and randomized hashing. Next, for all n-bit digest values, the hash function
must provide (ii) preimage resistance of approximately n bits, (iii) second preimage resis-
tance of approximately n − L bits, where the first preimage is of length at most 2L blocks,
(iv) collision resistance of approximately n/2 bits, and (v) it must be resistant to the length-
extension attack. Finally, (vi) for any m ≤ n, the hash function specified by taking a fixed
subset of m bits of the function’s output is required to satisfy properties (ii)-(v) with n
replaced by m.

Our Contributions. We revisit the provable security classification of Andreeva et al. [4, 5],
focussing on the five remaining SHA-3 finalists. More concretely, we reconsider the preimage,

second preimage and collision resistance (security requirements (ii)-(iv)) for the n = 256
and n = 512 variants of the five candidates. We also include their indifferentiability security
results. The security analysis in this work is realized in the ideal model, where one or more of
the underlying integral building blocks (e.g., the underlying block cipher or permutation(s))
are assumed to be ideal, i.e. random primitives.

In our updated security classification of the SHA-3 finalists, we include the recent full
security analysis of BLAKE by Andreeva et al. and Chang et al. [2, 20], and the collision
security result of JH by Lee and Hong [33]. Despite these recent advances, there still remain
open questions in the earlier security analysis and classification of [4, 5]. The main contribution
of this work is to address these questions. More concretely, we do so by either providing new
security results or improving some of the existing security bounds. We list our findings for the
relevant hash functions below and refer to Table 1 for the summary of all results.

– Grøstl. We analyze Grøstl with respect to its second preimage security due to the lack of an
optimal security result as indicated in [4, 5]. While optimal collision and preimage security
are achieved following a property-preservation argument, this is not true for the second
preimage security. Another way (than property-preservation) to derive security bounds for
hash function properties is via an indifferentiability result (Thm. 2 in [4, 5]). Following
this approach, an approximately 128-bit and 256-bit second preimage resistance bound is
obtained, where the output size of the Grøstl hash function is 256 or 512 bits, respectively.
This result is unfortunately not optimal. In this work we take a different approach to improve
these bounds, and we provide a direct second preimage security proof for the Grøstl hash
function. Our proof is realized in the ideal permutation model and indicates that Grøstl, in
addition to collision and preimage security, is also optimally ((256−L)-bit and (512−L)-bit,
respectively) second preimage secure, where 2L is the length of the first preimage in blocks;

– JH. The existing bounds on JH for second and preimage security are derived via the indif-
ferentiability result of [14] and are not optimal; approximately 170-bit security for both the
256 and 512 variants. To improve these results, we follow the direct approach and derive
bounds for both security properties in the ideal permutation model. As a result we achieve
optimal 256-bit security for the 256 variant of the hash function. The new bound for the
512 variant is still not optimal (as is the existing bound), but improved to 256-bit secu-
rity. Using different proof techniques, it may be possible to improve the (second) preimage
bound for JH-512, yet we note that by a preimage attack of [14] the maximum amount of
security is upper bounded by 507-bit;1

– Skein. By the implications of the existing indifferentiability results of Skein we can directly
conclude an optimal 256-bit second preimage security for the 256 version of the hash func-
tion. This is however not true for the 512 version, which offers only 256-bit security following
the indifferentiability argument. We, thus, analyze the generic second preimage security of
Skein in the ideal block cipher model and obtain optimal bounds for both its versions, con-
firming the second preimage result for the 256 version and optimally improving the bound
for the 512 version.

The results of Table 1 show that all candidates, with the exception of the (second) preimage
security of JH-512, achieve optimal collision, second and preimage security for both their 256
and 512 variants. The optimal results refer to the general iterative structure of all the algo-
rithms. The analysis in all cases is performed in the ideal setting. But more importantly, we
claim that the provided comparison is sufficiently fair due to the fact that the ideality assump-
tion is hypothesized on basic underlying primitives, such as block ciphers and permutations,
as opposed to higher level compression function building blocks.

1 In independent concurrent research, Moody et al. [38] have reconsidered the indifferentiability bound on JH
and improved it to 256-bit security, therewith confirming our findings on the (second) preimage resistance of
JH.

Table 1. Security results of the SHA-3 finalists. Here, l and m denote the chaining value and the message
input sizes, respectively. The last four columns of both tables correspond to the preimage, second preimage,
collision, and indifferentiability security in bits. Regarding second preimage resistance, the first preimage is of
length 2L blocks. The results in bold are presented in this work. For a more detailed summary we refer to Table
2.

1234 1234 112345 112345 112345 112345
l m pre sec coll indiff

BLAKE-256 256 512 256 256 128 128

Grøstl-256 512 512 256 256–L 128 128

JH-256 1024 512 256 256 128 256

Keccak-256 1600 1088 256 256 128 256

Skein-256 512 512 256 256 128 256

NIST’s requirements [39] 256 256–L 128 —

1234 1234 112345 112345 112345 112345
l m pre sec coll indiff

BLAKE-512 512 1024 512 512 256 256

Grøstl-512 1024 1024 512 512–L 256 256

JH-512 1024 512 256 256 256 256

Keccak-512 1600 576 512 512 256 512

Skein-512 512 512 512 512 256 256

NIST’s requirements [39] 512 512–L 256 —

On the other hand, while optimality results hold for the five the hash function finalists, the
security of their compression functions again in the ideal model differs. The security here varies
from trivially insecure compression functions for JH and Keccak to optimally secure ones for
BLAKE, Grøstl and Skein. We want to note that the latter remark does not reflect any security
criteria indicated in the security requirements of NIST. In addition to the classical notions of
collision, second and preimage security, we also investigate the notion of indifferentiability [36].
Indifferentiability encompasses structural attacks, such as the length extension attack in single
round interactive protocols [41], and is therefore an important security criteria satisfied by all
five candidates. We include the indifferentiability notion not only because it is relevant by itself,
but it is also an important tool to derive further security results. JH and Skein offer 256-bit
indifferentiability security for both their variants, and BLAKE and Grøstl offer 128-bit and 256-
bit security for their respective 256 and 512 variants. Keccak provides higher indifferentiability
guarantees: 256-bit and 512-bit, respectively, and that is achieved by increasing the iterated
state size to 1600 bits as compared to sizes from 256 bits to 1024 bits for the other hash function
candidates.

Outline. Section 2 briefly covers the notation, and the basic principles of hash function design.
In Sects. 3-7, we consider the five SHA-3 finalists from a provable security point of view. We
give a high level algorithmic description of each hash function, and discuss the existing and
new security results. The revisited security classification, including the newly found results on
Grøstl, JH, and Skein, is given in Table 2. We conclude the paper with Sect. 8 and give some
final remarks on the security comparison.

2 Preliminaries

For n ∈ N, we denote by Zn2 the set of bit strings of length n, and by (Zn2)∗ the set of strings
of length a positive multiple of n bits. We denote by Z∗2 the set of bit strings of arbitrary
length. For two bit strings x, y, x‖y denotes their concatenation and x⊕ y their bitwise XOR.
For m,n ∈ N we denote by 〈m〉n the encoding of m as an n-bit string. The function chopn(x)
takes the n leftmost bits of a bit string x. We denote by Func(m,n) the set of all functions
f : Zm2 → Zn2 . A random oracle [9] is a function which provides a random output for each
new query. A random m-to-n-bit function is a function sampled uniformly at random from
Func(m,n). A random primitive will also be called “ideal”. The set of functions Func may be
restricted, for instance to contain block ciphers or permutations only.

Throughout, we use a unified notation for all candidates. The value n denotes the output
size of the hash function, l the size of the chaining value, and m the number of message bits

compressed in one iteration of the compression function. A padded message is always parsed
as a sequence of k ≥ 1 message blocks of length m bits: (M1, . . . ,Mk).

2.1 Preimage, Second Preimage and Collision Security

In our analysis we model the adversary A as a probabilistic algorithm with oracle access to

a randomly sampled primitive P $← Prims. The set Prims depends on the hash function to
be analyzed. We consider information-theoretic adversaries only. This type of adversary has
unbounded computational power, and its complexity is measured by the number of queries made
to his oracle. The adversary can make queries to P, which are stored in a query history Q as
indexed elements. In the remainder, we assume that Q always contains the queries required
for the attack and that the adversary never makes queries to which it knows the answer in
advance.

Let F : Zp2 → Zn2 for p ≥ n be a compressing function instantiated with a randomly chosen

primitive P $← Prims. Throughout, F will either denote the compression function f or the hash
function H specification of one of the SHA-3 finalists. For the preimage and second preimage
security analysis in this work, we consider the notions of everywhere preimage and second
preimage resistance [42], which guarantees security on every range (resp. domain) point.

Definition 1. Let p, n ∈ N with p ≥ n and let F : Zp2 → Zn2 be a compressing function using
primitive P ∈ Prims. The advantage of an everywhere preimage finding adversary A is defined
as

Advepre
F (A) = max

y∈Zn2
Pr

(
P $← Prims, z ← AP(y) :

F (z) = y

)
.

We define by Advepre
F (q) the maximum advantage of any adversary making q queries to its

oracles.

Definition 2. Let p, n ∈ N with p ≥ n and let F : Zp2 → Zn2 be a compressing function using
primitive P ∈ Prims. Let λ ≤ p. The advantage of an everywhere second preimage finding
adversary A is defined as

Adv
esec[λ]
F (A) = max

z′∈Zλ2
Pr

(
P $← Prims, z ← AP(z′) :

z 6= z′ ∧ F (z) = F (z′)

)
.

We define by Adv
esec[λ]
F (q) the maximum advantage of any adversary making q queries to its

oracles.

If F is a compression function, we require λ = p. Note that, while the length of the first
preimage is of 2L blocks following NIST’s security requirements, here we bound the length by
λ bits. This translates to 2L ≈ λ/m, where m is the size of the message block.

We define the collision security of F as follows.

Definition 3. Let p, n ∈ N with p ≥ n and let F : Zp2 → Zn2 be a compressing function using
primitive P ∈ Prims. Fix a constant h0 ∈ Zn2 . The advantage of a collision finding adversary
A is defined as

Advcol
F (A) = Pr

(
P $← Prims, z, z′ ← AP :

z 6= z′ ∧ F (z) ∈ {F (z′), h0}

)
.

We define by Advcol
F (q) the maximum advantage of any adversary making q queries to its

oracles.

If a compressing function F outputs a bit string of length n, one expects to find collisions with
high probability after approximately 2n/2 queries (due to the birthday attack). Similarly, (sec-
ond) preimages can be found with high probability after approximately 2n queries2. Moreover,
finding second preimages is provably harder than finding collisions [42].

2.2 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [36] is an extension of the classical
notion of indistinguishability; it ensures that a hash function has no structural defects. We
denote the indifferentiability security of a hash function H by Advpro

H , maximized over all
distinguishers making at most q queries of maximal length K ≥ 0 message blocks to their
oracles. We refer to Coron et al. [21] for a formal definition. An indifferentiability bound
guarantees security of the hash function against specific attacks. Although recent results by
Ristenpart et al. [41] show that indifferentiability does not capture all properties of a random
oracle, indifferentiability still remains the best way to rule out structural attacks for a large
class of hash function applications.

It has been demonstrated in [4, 5] that

Advatk
H ≤ Pratk

RO + Advpro
H (1)

for any security notion atk, where Pratk
RO denotes the success probability of a generic attack

against H under atk and RO is an ideal function with the same domain and range space as H.

2.3 Compression Function Design Strategies

A common way to build compression functions is to base it on a block cipher [17, 40, 45], or on
a (limited number of) permutation(s) [16, 43, 44]. Preneel et al. [40] analyzed and categorized
64 block cipher based compression functions. Twelve of them are formally proven secure by
Black et al. [17]. These results have been generalized by Stam [45]. By ‘PGVx’ we denote the
x-th type compression function of [40].

In the context of permutation based compression functions, Black et al. [16] analyzed 2l-
to l-bit compression functions based on one l-bit permutation, and proved them insecure. This
result has been generalized by Rogaway and Steinberger [43], Stam [44] and Steinberger [46]
to compression functions with arbitrary input and output sizes, and an arbitrary number of
underlying permutations. Their bounds indicate the number of queries required to find collisions
or preimages for permutation based compression functions.

2.4 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all SHA-3 candidates employ a specific
mode of operation. Central to all designs is the iterated hash function principle [32]: on input
of an initialization vector IV and a message M , the iterated hash function Hf based on the
compression function f , applies a padding mechanism pad to M resulting in (M1, . . . ,Mk), and
proceeds as follows:

Hf (IV;M1, . . . ,Mk) = hk, where: h0 = IV,

hi = f(hi−1,Mi) for i = 1, . . . , k.

2 Kelsey and Schneier [30] describe a second preimage attack on the Merkle-Damg̊ard hash function that requires
at most approximately 2n−L queries, where the first preimage is of length at most 2L blocks. This attack
does, however, not apply to all SHA-3 candidates. In particular, the wide-pipe SHA-3 candidates (l � n)
remain mostly unaffected due to their increased internal state (see the remark on Thm. 3).

This principle is also called the plain Merkle-Damg̊ard (MD) design [22, 37]. Each of the five
remaining candidates is based on this design, possibly followed by a final transformation (FT),
and/or a chop-function3.

The padding function pad : Z∗2 → (Zm2)∗ is an injective mapping that transforms a message
of arbitrary length to a message of length a multiple of m bits (the number of message bits
compressed in one compression function iteration). All candidates employ a sufficiently strong
padding rule (cf. Fig. 1). Additionally, in some designs the message blocks are compressed
along with specific counters or tweaks, that may strengthen the padding rule. We distinguish
between ‘prefix-free’ and/or ‘suffix-free’ padding.

A padding rule is called suffix-free, if for any distinct M,M ′, there exists no bit string X
such that pad(M ′) = X‖pad(M). The plain MD design with any suffix-free padding (also called
MD-strengthening [32]) preserves collision resistance [22, 37]. This result has been generalized
in [4, 5]: informally, this preservation result also holds if the iteration is finalized by a distinct
compression function and/or the chop-function. Similarly, everywhere preimage resistance is
preserved. Other security properties, such as second preimage resistance, are however not pre-
served in the MD design [6]. It is also proven that the MD design with a suffix-free padding
need not necessarily be indifferentiable [21]. However, the MD construction is indifferentiable
if it ends with a chopping function or a final transformation, both when the underlying com-
pression function is ideal or when the hash function is based on a PGV compression function
[21, 29, 35].

A padding rule is called prefix-free, if for any distinct M,M ′, there exists no bit string
X such that pad(M ′) = pad(M)‖X. It has been proved that the MD design, based on ideal
compression function or ideal PGV construction, with prefix-free padding is indifferentiable
from a random oracle [19, 21, 29, 35]. Everywhere preimage resistance is preserved by the MD
design with prefix-free padding. Security notions such as collision resistance are however not
preserved in the MD design with prefix-free only padding.

HAIFA design. A concrete design based on the MD principle is the HAIFA construction
by Biham and Dunkelman [15]. In HAIFA the message is padded in a specific way so as to
solve some deficiencies of the original MD construction: in the iteration, each message block is
accompanied with a fixed (optional) salt of s bits and a (mandatory) counter Ci of t bits. The
counter Ci keeps track of the number of message bits hashed so far, and equals 0 by definition
if the i-th block does not contain any message bits. Partially due to the properties of this
counter, the HAIFA padding rule is suffix- and prefix-free. As a consequence, the construction
preserves collision resistance and the indifferentiability results of Coron et al. [21] carry over.
For the HAIFA design, these indifferentiability results are improved by Bhattacharyya et al. in
[13]. Furthermore, the HAIFA construction is proven optimally secure against second preimage
attacks if the underlying compression function is assumed to behave like an ideal primitive [18].

Wide-pipe design. In the wide-pipe design [34], the iterated state size is significantly larger
than the final hash output: at the end of the iteration, a fraction of the output of a construction
is discarded. As proved in [21], the MD construction with a distinct final transformation and/or
chopping at the end is indifferentiable from a random oracle.

Sponge functions. The sponge hash function design is a particular design by Bertoni et
al. [12]. It has been generalized by Andreeva et al. [1]. Two SHA-3 finalists are known to be
sponge(-like) functions, JH and Keccak. We note that both hash functions can also be described
in terms of the chop-MD construction.

3 The chop-function is not considered to be (a part of) a final transformation. It refers to the chopping off or
discarding a specified number of bits from the output.

BLAKE:
(n, l,m, s, t) ∈ {(256, 256, 512, 128, 64),

(512, 512, 1024, 256, 128)}
E : Z2l

2 × Zm2 → Z2l
2 block cipher

L : Zl+s+t2 → Z2l
2 , L′ : Z2l

2 → Zl2 linear functions
f(h,M, S,C) = L′(EM (L(h, S, C)))⊕ h⊕ (S‖S)

BLAKE(M) = hk, where:
(M1, . . . ,Mk)← padb(M); h0 ← IV
S ∈ Zs2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

Grøstl:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
P,Q : Zl2 → Zl2 permutations
f(h,M) = P (h⊕M)⊕Q(M)⊕ h
g(h) = P (h)⊕ h

Grøstl(M) = h, where:
(M1, . . . ,Mk)← padg(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopn(g(hk))

JH:
(n, l,m) ∈ {(256, 1024, 512), (512, 1024, 512)}
P : Zl2 → Zl2 permutation
f(h,M) = P (h⊕ (0l−m‖M))⊕ (M‖0l−m)

JH(M) = h, where:
(M1, . . . ,Mk)← padj(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopn(hk)

Keccak:
(n, l,m) ∈ {(256, 1600, 1088), (512, 1600, 576)}
P : Zl2 → Zl2 permutation
f(h,M) = P (h⊕ (M‖0l−m))

Keccak(M) = h, where:
(M1, . . . ,Mk)← padk(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopn(hk)

Skein:
(n, l,m) ∈ {(256, 512, 512), (512, 512, 512)}
E : Zm2 × Z128

2 × Zl2 → Zm2 tweakable block cipher
f(h, T,M) = Eh,T (M)⊕M

Skein(M) = h, where:
(M1, . . . ,Mk)← pads(M); h0 ← IV
(Ti)

k
i=1 round-specific tweaks

hi ← f(hi−1, Ti,Mi) for i = 1, . . . , k
h← chopn(hk)

Padding functions:

padb(M) = M‖10−|M|−t−2 mod m1‖ 〈|M |〉t
padg(M) = M‖10−|M|−65 mod l‖

〈⌈
|M|+65

l

⌉〉
64

padj(M) = M‖10383+(−|M| mod m)‖ 〈|M |〉128
padk(M) = M‖10−|M|−2 mod m1

pads(M) = M ′‖0(−|M′| mod m)+m,

where M ′ =

{
M if |M | ≡ 0 mod 8,

M‖10−|M|−1 mod 8 otherwise.

Fig. 1. In all algorithmic descriptions, IV denotes an initialization vector, h denotes state values,
M denotes message blocks, S denotes a (fixed) salt, C denotes a counter and T denotes a tweak.
The functions L,L′ underlying BLAKE are explained in the corresponding section. The padding
rules of BLAKE and Skein are additionally defined by a counter or tweak (see Sects. 3 and 7).

3 BLAKE

The BLAKE hash function [7] is a HAIFA construction. The message blocks are accompanied
with a HAIFA-counter, and the function employs a suffix- and prefix-free padding rule. The
underlying compression function f is based on a block cipher E : Z2l

2 ×Zm2 → Z2l
2 . It moreover

employs an injective linear function L, and a linear function L′ that XORs the first and second
halves of the input. The BLAKE hash function design is given in Fig. 1.

As the mode of operation of BLAKE is based on the HAIFA structure, all security properties
regarding this type (cf. Sect. 2.4) hold [15], provided the compression function is assumed to
be ideal. However, as independently shown by Andreeva et al. [2] and Chang et al. [20], the
BLAKE compression function shows non-random behavior: it is differentiable from a random
compression function in about 2n/4 queries, making the above-mentioned security properties
invalid. This attack has invalidated the results on BLAKE reported in the second round SHA-3
classification of [4, 5].

The security results have been reconfirmed by Andreeva et al. [2] in the ideal cipher model.
Firstly, the authors prove optimal security bounds on the compression function, Advepre

f =

Θ(q/2n) and Advcol
f = Θ(q2/2n). In the ideal model, everywhere second preimage resistance of

the compression function can be proven similar as the preimage resistance, up to a constant (the
security analysis differs only in that we give the adversary one query for free). The BLAKE mode
of operation preserves collision resistance and everywhere preimage resistance due to which we

obtain Advcol
H = Θ(q2/2n) and Advepre

H = Θ(q/2n). The hash function is moreover proven
optimally second preimage resistance in the ideal cipher model by Andreeva et al. [2], which

gives Adv
esec[λ]
H = Θ(q/2n). Finally, the BLAKE hash function is reproven indifferentiable from

a random oracle up to bound Θ((Kq)2/2n), this time under the assumption that the underlying
block cipher is assumed to be ideal [2, 20].

4 Grøstl

The Grøstl hash function [28] is a chop-MD construction, with a final transformation before
chopping. The hash function employs a suffix-free padding rule. The underlying compression
function f is based on two permutations P,Q : Zl2 → Zl2. The final transformation g is defined
as g(h) = P (h)⊕ h. The Grøstl hash function design is given in Fig. 1.

The compression function of Grøstl is permutation based, and the results of [43, 44] apply.
Furthermore, the preimage resistance of the compression function is analyzed in [27], and an
upper bound for collision resistance can be obtained easily. As a consequence, we obtain tight
security bounds on the compression function, Advepre

f = Θ(q2/2l) and Advcol
f = Θ(q4/2l). In

the ideal model, everywhere second preimage resistance of the compression function can be
proven similar as the preimage resistance, up to a constant (the security analysis differs only in
that we give the adversary one query for free). The Grøstl mode of operation preserves collision
resistance and everywhere preimage resistance due to which we obtain Advcol

H = Θ(q2/2n) and
Advepre

H = Θ(q/2n). Finally, it is proven indifferentiable from a random oracle up to bound
O((Kq)4/2l) if the underlying permutations are ideal [3].

As an addition to above results, in this work we consider second preimage resistance of the
Grøstl hash function. We prove that optimal second preimage resistance (up to a constant) is
achieved for all versions.

Theorem 1. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in finding a second
preimage for the Grøstl hash function H after q < 2l−1 queries can be upper bounded by

Adv
esec[λ]
H (q) ≤ ((λ+ 65)/m+ 2)q(q − 1)

2l
+

2q

2n
.

Proof. Let M ′ ∈ Zλ2 be any target preimage. Denote by h′0, . . . , h
′
k′ the state values correspond-

ing to the evaluation of H(M ′), and let h = chopn(P (h′k′)⊕ h′k′).
We consider any adversary A making q queries to its underlying permutations P and Q.

Associated to these queries, we introduce an initially empty graph G that indicates compression
function calls for Grøstl that can be derived from these queries. Note that any P -query (xP , yP)
and any Q-query (xQ, yQ) correspond to exactly one compression function call, namely xP ⊕
xQ → xP ⊕ yP ⊕ xQ ⊕ yQ where the message input is xQ. In order to find a second preimage,
the adversary

(1) either needs to end up with a graph that contains a path (labeled differently from the first
preimage) from IV to any node of {h′0, . . . , h′k′},

(2) or he needs to find a P -query (xP , yP) with xP 6= h′k′ such that chopn(xP ⊕ yP) = h and
G contains a path from IV to xP .

A proof of this claim can be found in [2, 18]. To achieve the first goal, the adversary needs to
find a preimage for the Grøstl compression function, for any image in {h′0, . . . , h′k′}. To achieve
the second goal, the adversary needs to find a preimage for the final transformation of the
Grøstl compression function. For i = 1, . . . , q, we consider the probability of the i-th query to
render success. We distinguish between the two success cases.

Case (1). Without loss of generality the i-th query is a forward query xP to P , let yP be the
oracle answer drawn uniformly at random from a set of size at least 2l − q. Let (xQ, yQ) be
any Q-query in the query history. The query results in a compression function call xP ⊕ xQ →
xP⊕yP⊕xQ⊕yQ. This value hits any of {h′0, . . . , h′k′} with probability at most k′+1

2l−q . Considering

any of the at most i − 1 possible Q-queries, case (1) is achieved with probability at most
(k′+1)(i−1)

2l−q . The same bound is found for queries to Q and for inverse queries.

Case (2). Case (2) can only be achieved in a query to P . Without loss of generality, the i-th
query is a forward query xP , let yP be the oracle answer drawn uniformly at random from a
set of size at least 2l−q. This value satisfies chopn(xP ⊕yP) = h with probability at most 2l−n

2l−q .

By the union bound, we obtain the following bound on the second preimage resistance of Grøstl:

Adv
esec[λ]
H (q) ≤

q∑
i=1

(
(k′ + 1)(i− 1)

2l − q
+

2l−n

2l − q

)
≤ (k′ + 1)q(q − 1)

2(2l − q)
+
q2l−n

2l − q
.

As for q < 2l−1 we have 1
2l−q ≤

2
2l

and k′ ≤ (λ+ 65)/m+ 1, we obtain our result. ut

Given that for Grøstl we have l = 2n, for q < 2n the result of Thm. 1 directly implies a
Θ(λ/m · q/2n) bound on the second preimage resistance.

5 JH

The JH hash function [50] is a sponge-like function, but can also be considered as a parazoa
function [1] or a chop-MD construction. The hash function employs a suffix-free padding rule.
The compression function f is based on a permutation Zl2 → Zl2. The JH hash function design
is given in Fig. 1. Note that the parameters of JH satisfy l = 2m.

The compression function of JH is based on one permutation, and collisions and preimages
for the compression function can be found in one query to the permutation [16]. The JH
hash function is proven optimally collision resistant [33], and we obtain Advcol

H = Θ(q2/2n).

Furthermore, it is proven indifferentiable from a random oracle up to bound O

(
q3

2l−m
+
Kq3

2l−n

)
if the underlying permutation is assumed to be ideal [14]. As explained in [4, 5], using (1) this

indifferentiability bound additionally renders an improved upper bound O
(
q

2n + q3

2l−m

)
on the

preimage and second preimage resistance.

We note, however, that these bounds on the preimage and second preimage resistance of JH
are non-optimal for both variants. We improve these bounds in Thms. 2 and 3. Although the
new bounds are still not better than the trivial bound for n = 512 (as was the previous bound),
they are now optimal (up to a constant) for the 256 variant. In independent concurrent research
Moody et al. [38] improved the indifferentiability bound on JH to O((Kq)2/2l−m), therewith
confirming our findings on the (second) preimage resistance of JH.

In the proofs of Thms. 2 and 3 we will use the chop-function for both the left and right side
of x. Therefore, we introduce the functions leftn(x) and rightn(x) that take the n leftmost and
rightmost bits of x, respectively.

Theorem 2. Let n ∈ N. The advantage of any adversary A in finding a preimage for the JH
hash function H after q < 2l−1 queries can be upper bounded by

Advepre
H (q) ≤ 4q2

2l−m
+

2q

2n
.

Proof. Let h ∈ Zn2 be any point to be inverted (cf. Def. 1). IV denotes the initialization vector
of size l bits. We consider any adversary A making q queries to its underlying permutation P .
Associated to these queries, we introduce an initially empty graph G that indicates compression
function calls for JH that can be derived from these queries. We denote Gi as the graph after
the i-th query (i = 0, . . . , q). Each query adds 2m edges to the graph, and Gi thus contains i2m

edges. In order to find a preimage, the adversary must necessarily end up with a graph that
contains a path from node IV to any node in H := {h‖h′ | h′ ∈ Zl−n2 }. We denote by winAi
the event that after the i-th query this property is satisfied.

We denote by Gout
i , resp. Gin

i , the set of nodes in Gi with an outgoing, resp. incoming,
edge. We denote by τ IVi the subgraph of Gi consisting of all nodes and edges reachable from
IV. Similarly, τHi denotes the subgraph of Gi consisting of all nodes and edges from which any
node in H can be reached. Next to event winAi, we say the adversary also wins if either of the
following events occurs for any i = 1, . . . , q:

winBi : τ IVi contains two nodes v, v′ with leftl−m(v) = leftl−m(v′),

winCi : τHi \H contains two nodes v, v′ with rightl−m(v) = rightl−m(v′).

We denote by wini = winAi ∨ winBi ∨ winCi the event that after the i-th query the adversary
has won. We have

Advepre
H (q) ≤ Pr (winAq) ≤ Pr (winq) =

q∑
i=1

Pr (wini ∧ ¬wini−1) . (2)

For i = 1, . . . , q, we consider the probability of the i-th query to render success. We distinguish
between forward and inverse queries.

Forward query. Suppose the adversary makes a forward query xi to receive a random yi.
By ¬winBi−1, there is at most one v ∈ τ IVi−1 such that leftl−m(v) = leftl−m(xi). Denote M =
rightl−m(v) ⊕ rightl−m(xi); this query will add only the edge v → yi ⊕ (M‖0l−m) =: w to the
tree. We define the following events.

badAi : rightl−m(yi) ∈ {rightl−m(w) | w ∈ τHi−1},
badBi : leftl−m(w) ∈ {leftl−m(v) | v ∈ τ IVi−1},
badCi : w ∈ Gout

i ,

badDi : leftn(w) = h.

Here, badAi covers the event that τHi−1 is extended. Event badBi covers the case that the
updated τ IVi contains two nodes with the same left half (note that this would directly make
winBi satisfied). The case badCi covers the event that the newly added edge to τ IVi hits any
node with outgoing edge, and badDi covers the event that the newly added edge to the tree
would hit h (in both cases a valid preimage path may have been established). Denote badi =
badAi ∨ badBi ∨ badCi ∨ badDi.

By basic probability theory, we have in case of forward queries

Pr (wini ∧ ¬wini−1) ≤ Pr (wini ∧ ¬wini−1 ∧ ¬badi) + Pr (badi ∧ ¬wini−1) .

We consider the first probability. Assume ¬wini−1 ∧ ¬badi. Recall that by ¬winBi−1, v → w is
the only edge added to τ IVi−1. Now, we have ¬winAi by ¬winAi−1 and as by ¬badCi∧¬badDi this
new edge does not connect τ IVi with H. Case ¬winBi follows from ¬winBi−1∧¬badBi. Finally, by
¬badAi, the tree τHi−1 is not extended, and hence ¬winCi follows from ¬winCi−1. Thus, the first
probability equals 0 and for forward queries we have Pr (wini ∧ ¬wini−1) ≤ Pr (badi ∧ ¬wini−1).
This probability will be analyzed later.

Inverse query. Suppose the adversary makes an inverse query yi to receive a random xi.
By ¬winCi−1, there is at most one v ∈ τHi−1 such that rightl−m(v) = rightl−m(yi). Denote
M = leftl−m(v)⊕ leftl−m(yi); this query will add only the edge w := xi⊕ (0l−m‖M)→ v to the
tree. We define the following events.

badA′i : leftl−m(xi) ∈ {leftl−m(v) | v ∈ τ IVi−1},
badB′i : rightl−m(v) ∈ {rightl−m(w) | w ∈ τHi−1},
badC′i : v ∈ Gin

i ,

badD′i : v = IV.

Here, badA′i covers the event that τ IVi−1 is extended. Event badB′i covers the case that the
updated τHi contains two nodes with the same right half (note that this would directly make
winCi satisfied). The case badC′i covers the event that the newly added edge to τHi hits any
node with incoming edge, and badD′i covers the event that the newly added edge to the tree
would hit IV (in both cases a valid preimage path may have been established). Denote bad′i =
badA′i ∨ badB′i ∨ badC′i ∨ badD′i.

By basic probability theory, we have in case of inverse queries

Pr (wini ∧ ¬wini−1) ≤ Pr
(
wini ∧ ¬wini−1 ∧ ¬bad′i

)
+ Pr

(
bad′i ∧ ¬wini−1

)
.

We consider the first probability. Assume ¬wini−1∧¬bad′i. Recall that by ¬winCi−1, v → w is the
only edge added to τHi−1. Now, we have ¬winAi by ¬winAi−1 and as by ¬badC′i∧¬badD′i this new
edge does not connect IV with τHi . By ¬badA′i, the tree τ IVi−1 is not extended, and hence ¬winBi
follows from ¬winBi−1. Finally, case ¬winCi follows from ¬winCi−1 ∧ ¬badB′i. Thus, the first
probability equals 0 and for inverse queries we have Pr (wini ∧ ¬wini−1) ≤ Pr

(
bad′i ∧ ¬wini−1

)
.

This probability will be analyzed later.

As each query is either a forward or an inverse query, we obtain for i = 1, . . . , q:

Pr (wini ∧ ¬wini−1) ≤ max{Pr (badi | ¬wini−1; forward query) ,

Pr
(
bad′i | ¬wini−1; inverse query

)
}. (3)

As explained above, provided ¬wini−1, the i-th query adds at most one node to τ IVi−1 and at most
one node to τHi−1, regardless whether it is a forward or inverse query. This particularly means
that |τ IVi−1| ≤ i and |τHi−1| ≤ i − 1. Additionally, |Gout

i |, |Gin
i | ≤ i2m. It is now straightforward

to analyze the success probabilities of badi, bad
′
i to occur. As the answer from P is drawn

uniformly at random from a set of size at least 2l − q, we obtain from (3):

Pr (wini ∧ ¬wini−1) ≤ (2i− 1)2m

2l − q
+

i2m

2l − q
+

2l−n

2l − q
. (4)

This combines with (2) to

Advepre
H (q) ≤

q∑
i=1

(
(3i− 1)2m

2l − q
+

2l−n

2l − q

)
≤ 2q22m

2l − q
+
q2l−n

2l − q
,

The result is now obtained as for q < 2l−1 we have 1
2l−q ≤

2
2l

. ut

The proof of second preimage resistance of JH is similar. Note that the attack by Kelsey and
Schneier [30] only impacts JH in the internal state, which is reflected by the second part of
the bound. In accordance with NIST’s security requirements, we can assume q < 2n−L, or in
particular that λ/m · q . 2n (see the remark below Def. 2). Consequently, the second term of
the second preimage bound is negligible.

Theorem 3. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in finding a second
preimage for the JH hash function H after q < 2l−1 queries can be upper bounded by

Adv
esec[λ]
H (q) ≤ 4q2

2l−m
+

2(λ/m+ 2)q

2l
+

2q

2n
.

Proof. The proof follows the same argument as the proof of Thm. 2; we only highlight the
differences. Let M ′ ∈ Zλ2 be any target preimage. Denote by h′0, . . . , h

′
k′ the state values cor-

responding to the evaluation of H(M ′), and set leftn(h′k′) = h. Now, the adversary necessarily
needs to end up with a graph that contains a path from IV to any node in

{h′0, . . . , h′k′} ∪ {h‖h′ | h′ ∈ Zl−n2 }.

This path must be labeled by a message different from M ′. The analysis of Thm. 2 carries
over, with the minor difference that badCi and badC′i are replaced by

badCi : w ∈ Gout
i ∪ {h′0, . . . , h′k′−1},

badC′i : v ∈ Gin
i ∪ {h′1, . . . , h′k′}.

Similar as before, we obtain

Adv
esec[λ]
H (q) ≤

q∑
i=1

(
(3i− 1)2m

2l − q
+

k′

2l − q
+

2l−n

2l − q

)
≤ 2q22m

2l − q
+

k′q

2l − q
+
q2l−n

2l − q
.

The result is now obtained from the fact that k′ ≤ λ/m+ 2. ut

6 Keccak

The Keccak hash function [10] is a sponge function, but can also be considered as a parazoa
function [1] or a chop-MD construction. The compression function f is based on a permutation
Zl2 → Zl2. The hash function output is obtained by chopping off l− n bits of the state4. Notice
that the parameters of Keccak satisfy l = 2n+m. The Keccak hash function design is given in
Fig. 1.

The compression function of Keccak is based on one permutation, and collisions and preimages
for the compression function can be found in one query to the permutation [16]. The Keccak
hash function is proven indifferentiable from a random oracle up to bound Θ((Kq)2/2l−m) if
the underlying permutation is assumed to be ideal [11]. Using (1), this indifferentiability bound
renders an optimal collision resistance bound for Keccak, Advcol

H = Θ(q2/2n), as well as optimal
preimage second preimage resistance bounds Θ(q/2n).

7 Skein

The Skein hash function [25] is a chop-MD construction. The message blocks are accompanied
with a round-specific tweak5, and the function employs a suffix- and prefix-free padding rule.

4 We notice that sponge function designs are more general [12], but for Keccak this description suffices.
5 More formally, the design is based on the UBI (unique block identifier) chaining mode which queries its

underlying tweakable block cipher on additional tweaks, that differ in each iteration. The general description
of Skein involves a specific final transformation. In the primary proposal of the hash function, however, this
final transformation consists of another execution of the compression function, with an output-specific tweak
and with message 0m. As we included this final message block in the padding, the given description of Skein
suffices.

The compression function f is based on a tweakable block cipher E : Zm2 × Z128
2 × Zl2 → Zm2 .

The Skein hash function design is given in Fig. 1.

The compression function of Skein is the PGV1, or Matyas-Meyer-Oseas, compression function,
with a difference that a tweak is involved. As claimed in [8], the results of [17] carry over, giving
optimal preimage and collision security bounds on the compression function, Advepre

f = Θ(q/2l)

and Advcol
f = Θ(q2/2l). In the ideal model, everywhere second preimage resistance of the

compression function can be proven similar as the preimage resistance, up to a constant (the
security analysis differs only in that we give the adversary one query for free). The Skein mode
of operation preserves collision resistance and everywhere preimage resistance due to which
we obtain Advcol

H = Θ(q2/2n) and Advepre
H = Θ(q/2n). Furthermore, the Skein hash function

is proven indifferentiable from a random oracle up to bound O((Kq)2/2l) if the underlying
tweakable block cipher is assumed to be ideal [8]. This proof is based on the preimage awareness
approach [23]. Using (1), this indifferentiability bound additionally renders an improved upper

bound O
(
q

2n + q2

2l

)
on the second preimage resistance.

The second preimage bound for Skein is optimal for the n = 256 variant, but meets the
trivial bound for the n = 512 variant. Therefore, we reconsider second preimage resistance of
the Skein hash function. We prove that optimal second preimage resistance (up to a constant)
is achieved for all versions.

Theorem 4. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in finding a second
preimage for the Skein hash function H after q < 2l−1 queries can be upper bounded by

Adv
esec[λ]
H (q) ≤ 2q

2l
+

2q

2n
.

Proof. The proof follows a similar reasoning as the proof of Thm. 1, and we only highlight
the differences. Let M ′ ∈ Zλ2 be any target preimage. Denote by h′0, . . . , h

′
k′ the state values

corresponding to the evaluation of H(M ′), and let h = chopn(h′k′).

We consider any adversary A making q queries to its underlying block cipher E. Associated
to these queries, we introduce an initially empty graph G that indicates compression function
calls for Skein that can be derived from these queries. Note that any query tuple (M,T, h)→ C
corresponds to exactly one compression function call, namely h → C ⊕M where the message
input is M and where T is a tweak value. These tweaks are round-specific (see Fig. 1). In order
to find a second preimage, the adversary needs to end up with a graph that contains a path
(labeled different from the first preimage) from IV to any node of {h′0, . . . , h′k′} ∪ {h‖h′ | h′ ∈
Zl−n2 }, where the associated tweaks need to be compliant with the hash function evaluation
corresponding to the path. A proof of this claim can be found in [2, 18]. To achieve the first
goal, the adversary needs to find a preimage for the Skein compression function, for any image
in H1 := {h′0, . . . , h′k′} or H2 := {h‖h′ | h′ ∈ Zl−n2 } (where the tweak is compliant). For
i = 1, . . . , q, we consider the probability of the i-th query to render success. We distinguish
between the two sets H1, H2. Without loss of generality, let the i-th query be a forward query
M,T, h, and let C be the oracle answer drawn uniformly at random from a set of size at least
2l − q. The same bounds are found for inverse queries.

Set H1. As the tweaks need to be compliant, depending on T there is at most one value h ∈ H1

for which a collision h = C ⊕M may result in a valid second preimage. The i-th query thus
renders a collision with H1 probability at most 1

2l−q .

Set H2. A collision with any element from H2 may result in a valid preimage. C ⊕M collides
with any element from H2 with probability at most 2l−n

2l−q .

By the union bound, we obtain the following bound on the second preimage resistance of Skein:

Adv
esec[λ]
H (q) ≤

q∑
i=1

(
1

2l − q
+

2l−n

2l − q

)
≤ q

2l − q
+
q2l−n

2l − q
.

The result is now obtained as for q < 2l−1 we have 1
2l−q ≤

2
2l

. ut

8 Conclusions

In this work we revisited the previous summary of [4, 5] with respect to the five finalist SHA-3
hash functions. More concretely, we updated existing results with the new results in the area
in Table 2, part of which are freshly proved in this paper. A main improvement of this work is
that all results in our analysis hold for ideal primitives of comparable size; either ideal ciphers
or permutations. Secondly, most “security gaps” (with respect to preimage, second preimage,
and collision resistance) remaining from [4, 5] are closed. One of the few open problems left
for the security analysis of the five finalist hash functions in the ideal model is achieving an
optimal (second) preimage bound of the 512 variant of the JH hash function.

We note that our security analysis needs to be read with care and for this purpose we
provide the following discussion:

– Ideal primitives do not exist and the ideal model proofs are only an indication for security.
In particular, none of the candidates’ underlying block cipher or permutation is ideal.
However, due to the lack of security proofs in the standard model (other than preserving
collision security of the compression function in MD based designs), assuming ideality of
these underlying primitives gives significantly more confidence in the security of the higher
level hash function structure than any ad-hoc analysis or no proof at all;

– While assuming ideality of sizable underlying building blocks like permutations and block
ciphers allows for a fair security comparison of the candidates on one hand, it disregards
internal differences between the idealized primitives on the other. Such specific design de-
tails can distort the security results for the distinct hash functions when concrete attacks
exploiting the internal primitive weaknesses are applied. Moreover, further differences, such
as chaining sizes and message input sizes, are also not fully reflected in the comparison.

Acknowledgments. This work has been funded in part by the IAP Program P6/26 BCRYPT
of the Belgian State (Belgian Science Policy), and in part by the European Commission through
the ICT program under contract ICT-2007-216676 ECRYPT II. The second author is supported
by a Ph.D. Fellowship from the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).

References

[1] Andreeva, E., Mennink, B., Preneel, B.: The parazoa family: Generalizing the sponge hash functions. Int.
J. Inf. Sec. (2012), to appear

[2] Andreeva, E., Luykx, A., Mennink, B.: Provable security of BLAKE with non-ideal compression function.
Cryptology ePrint Archive, Report 2011/620 (2011)

[3] Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash function. In: SCN
2010. LNCS, vol. 6280, pp. 88–105. Springer-Verlag, Berlin (2010)

[4] Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the second round SHA-3 candidates. In:
ISC 2010. LNCS, vol. 6531, pp. 39–53. Springer-Verlag, Berlin (2010)

[5] Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the SHA-3 candidates (2010), NIST’s 2nd
SHA-3 Candidate Conference 2010

[6] Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX.
In: ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer-Verlag, Berlin (2007)

Table 2. A schematic summary of all security results of the SHA-3 finalists. The second column summarizes
the parameters n, l,m, which denote the hash function output size, the chaining value size and the message
input size, respectively. The last row of the table gives a representation of the security requirements (ii)-(iv)
by NIST.

n/l/m Advepre
f Adv

esec[λ]
f Advcol

f Advepre
H Adv

esec[λ]
H Advcol

H Advpro
H

BLAKE
256/256/512,
512/512/1024

Θ(q/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q2/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q2/2n)
E ideal

Θ((Kq)2/2n)
E ideal

Grøstl
256/512/512,

512/1024/1024
Θ(q2/2l)
P,Q ideal

Θ(q2/2l)
P,Q ideal

Θ(q4/2l)
P,Q ideal

Θ(q/2n)
P ideal

Θ(λ/m · q/2n)
P,Q ideal

Θ(q2/2n)
P,Q ideal

O((Kq)4/2l)
P,Q ideal

JH
256/1024/512,
512/1024/512

Θ(1)
P ideal

Θ(1)
P ideal

Θ(1)
P ideal

O(q/2n +
q2/2l−m)
P ideal

O(q/2n +
q2/2l−m)
P ideal

Θ(q2/2n)
P ideal

O((Kq)2/2l−m)
P ideal

Keccak
256/1600/1088,
512/1600/576

Θ(1)
P ideal

Θ(1)
P ideal

Θ(1)
P ideal

Θ(q/2n)
P ideal

Θ(q/2n)
P ideal

Θ(q2/2n)
P ideal

Θ((Kq)2/2l−m)
P ideal

Skein
256/512/512,
512/512/512

Θ(q/2l)
E ideal

Θ(q/2l)
E ideal

Θ(q2/2l)
E ideal

Θ(q/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q2/2n)
E ideal

O((Kq)2/2l)
E ideal

NIST’s security
requirements [39]

(not
specified)

(not
specified)

(not
specified)

O(q/2n) O(λ/m · q/2n) O(q2/2n)
(not

specified)

[7] Aumasson, J., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE (2010), submission to NIST’s
SHA-3 competition

[8] Bellare, M., Kohno, T., Lucks, S., Ferguson, N., Schneier, B., Whiting, D., Callas, J., Walker, J.: Provable
security support for the Skein hash family (2009)

[9] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In:
ACM Conference on Computer and Communications Security. pp. 62–73. ACM, New York (1993)

[10] Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The KECCAK sponge function family (2011), submission
to NIST’s SHA-3 competition

[11] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction.
In: EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer-Verlag, Berlin (2008)

[12] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions (ECRYPT Hash Workshop 2007)
[13] Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of hash functions and opti-

mal bounds of popular domain extensions. In: INDOCRYPT 2009. LNCS, vol. 5922, pp. 199–218. Springer-
Verlag, Berlin (2009)

[14] Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH hash function. In: FSE
2010. LNCS, vol. 6147, pp. 168–191. Springer-Verlag, Berlin (2010)

[15] Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Cryptology ePrint Archive,
Report 2007/278 (2007)

[16] Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient blockcipher-based hash
functions. In: EUROCRYPT 2005. LNCS, vol. 3494, pp. 526–541. Springer-Verlag, Berlin (2005)

[17] Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function con-
structions from PGV. In: CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer-Verlag, Berlin (2002)

[18] Bouillaguet, C., Fouque, P.: Practical hash functions constructions resistant to generic second preimage
attacks beyond the birthday bound (2010), submitted to Information Processing Letters

[19] Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of popular hash functions with
prefix-free padding. In: ASIACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer-Verlag, Berlin (2006)

[20] Chang, D., Nandi, M., Yung, M.: Indifferentiability of the hash algorithm BLAKE. Cryptology ePrint
Archive, Report 2011/623 (2011)

[21] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How to construct a hash
function. In: CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer-Verlag, Berlin (2005)

[22] Damg̊ard, I.: A design principle for hash functions. In: CRYPTO ’89. LNCS, vol. 435, pp. 416–427. Springer-
Verlag, Berlin (1990)

[23] Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical applications. In: EU-
ROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer-Verlag, Berlin (2009)

[24] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: Engi-
neering comparison of SHA-3 candidates (2010)

[25] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein
Hash Function Family (2010), submission to NIST’s SHA-3 competition

[26] Fleischmann, E., Forler, C., Gorski, M.: Classification of the SHA-3 candidates. Cryptology ePrint Archive,
Report 2008/511 (2008)

[27] Fouque, P.A., Stern, J., Zimmer, S.: Cryptanalysis of tweaked versions of SMASH and reparation. In: SAC
2008. LNCS, vol. 5381, pp. 136–150. Springer-Verlag, Berlin (2009)

[28] Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.:
Grøstl – a SHA-3 candidate (2011), submission to NIST’s SHA-3 competition

[29] Gong, Z., Lai, X., Chen, K.: A synthetic indifferentiability analysis of some block-cipher-based hash func-
tions. Des. Codes Cryptography 48(3), 293–305 (2008)

[30] Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work. In: EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer-Verlag, Berlin (2005)

[31] Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation of hardware performance for
the SHA-3 candidates using SASEBO-GII. Cryptology ePrint Archive, Report 2010/010 (2010)

[32] Lai, X., Massey, J.: Hash function based on block ciphers. In: EUROCRYPT ’92. LNCS, vol. 658, pp.
55–70. Springer-Verlag, Berlin (1992)

[33] Lee, J., Hong, D.: Collision resistance of the JH hash function. Cryptology ePrint Archive, Report 2011/019
(2011)

[34] Lucks, S.: A failure-friendly design principle for hash functions. In: ASIACRYPT 2005. LNCS, vol. 3788,
pp. 474–494. Springer-Verlag, Berlin (2005)

[35] Luo, Y., Gong, Z., Duan, M., Zhu, B., Lai, X.: Revisiting the indifferentiability of PGV hash functions.
Cryptology ePrint Archive, Report 2009/265 (2009)

[36] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and appli-
cations to the random oracle methodology. In: TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer-Verlag,
Berlin (2004)

[37] Merkle, R.: One way hash functions and DES. In: CRYPTO ’89. LNCS, vol. 435, pp. 428–446. Springer-
Verlag, Berlin (1990)

[38] Moody, D., Paul, S., Smith-Tone, D.: Improved indifferentiability security bound for the JH mode (2012),
NIST’s 3rd SHA-3 Candidate Conference 2012

[39] National Institute for Standards and Technology. Announcing Request for Candidate Algorithm Nomina-
tions for a New Cryptographic Hash Algorithm (SHA3) Family (November 2007)

[40] Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach.
In: CRYPTO ’93. LNCS, vol. 773, pp. 368–378. Springer-Verlag, Berlin (1993)

[41] Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indifferentiability
framework. In: EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer-Verlag, Berlin (2011)

[42] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations
for preimage resistance, second-preimage resistance, and collision resistance. In: FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer-Verlag, Berlin (2004)

[43] Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In: EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer-Verlag, Berlin (2008)

[44] Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In: CRYPTO
2008. LNCS, vol. 5157, pp. 397–412. Springer-Verlag, Berlin (2008)

[45] Stam, M.: Blockcipher-based hashing revisited. In: FSE 2009. LNCS, vol. 5665, pp. 67–83. Springer-Verlag,
Berlin (2009)

[46] Steinberger, J.: Stam’s collision resistance conjecture. In: EUROCRYPT 2010. LNCS, vol. 6110, pp. 597–
615. Springer-Verlag, Berlin (2010)

[47] Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.: High-speed hardware
implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak,
Luffa, Shabal, SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510 (2009)

[48] Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: CRYPTO 2005. LNCS, vol. 3621,
pp. 17–36. Springer-Verlag, Berlin (2005)

[49] Wang, X., Yu, H.: How to break MD5 and other hash functions. In: EUROCRYPT 2005. LNCS, vol. 3494,
pp. 19–35. Springer-Verlag, Berlin (2005)

[50] Wu, H.: The Hash Function JH (2011), submission to NIST’s SHA-3 competition

	Security Analysis and Comparison of the SHA-3 Finalists BLAKE, Grøstl, JH, Keccak, and Skein
	Elena Andreeva, Bart Mennink, Bart Preneel and Marjan Škrobot

