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Abstract

W
ith the rise of information and communication technologies, the need to
authenticate individuals to authorize their access to online services or
to hold them accountable for their actions has induced the development

of a wide variety of authentication systems. Although for determining sole
authorization it is mostly sufficient to verify an individual’s unlinkable non-
identifying properties, virtually all of these systems involve the disclosure of
personally identifiable information. This raises numerous security and privacy
issues because an uncontrolled dissemination of these data makes individuals
vulnerable to identity theft, financial fraud, profiling, monitoring, discredit, or
embarrassment. These issues are greatly amplified by technologies that ease data
collection, aggregation, analysis, and distribution, by legislation that stipulates
the retention of communication data, and by increasingly frequent data breaches
where vast amounts of (personal) data records are compromised.

Although there exist cryptographic techniques—namely anonymous creden-
tials—that allow individuals to authenticate in a secure and privacy-preserving
manner without having to disclose any personal or identifying information, there
are no authentication systems that utilize these techniques. While the reasons for
this are manifold, there are two major technical inhibitors. On the one hand, the
available implementations are very complex and only usable with cryptographic
expert knowledge, and, on the other hand, the cryptographic mechanisms alone
do not suffice for building an authentication system.

In this work, we overcome these inhibitors and present a functional authenti-
cation system on the basis of anonymous credentials that is usable without expert
knowledge. With our system, service providers can formulate authentication
requirements in terms of the minimal properties that users’ certified attributes
must have, and users can prove that their attributes fulfill these properties without
disclosing their values. In situations where accountability is required, users can
disclose personally identifying information such that it is only accessible if they
misbehave or cause damage—which allows honest users to remain unidentifiable.

The main building block of our system is a language framework with
formal semantics for expressing the service providers’ minimal authentication
requirements as well as users’ cryptographically backed claims in terms of

v



vi ABSTRACT

attribute-based credentials. The framework abstracts away from cryptographic
details and focuses solely on easily intelligible concepts. We also provide
algorithms for transforming claims expressed in our language into the complex
input specifications of the cryptographic implementations—which significantly
eases their use for application developers—and for verifying claims with respect
to a given policy. On the basis of these results, we develop a full-fledged
prototype implementation to prove the concept and its efficiency: we show that
our algorithms entail negligible computational overhead with respect to the time
needed to generate and verify the cryptographic evidence that supports users’
claims.

Our system allows for reducing the information that is disclosed in au-
thentication transactions to the necessary minimum and thereby mitigates the
aforementioned issues of excessive data release. Its use is advantageous for both
users and service providers in that the former benefit from privacy preservation
and the latter from reducing the risks associated with holding large sets of sensitive
personal information.



Samenvatting

D
e opkomst van informatie- en communicatietechnologieën en de daarmee
gepaard gaande noodzaak individuen te authenticeren en hen verantwoor-
delijk te houden voor hun acties, heeft de ontwikkeling teweeggebracht

van verscheidene authenticatiesystemen. Alhoewel in principe niet-traceerbare
en niet-identificerende eigenschappen meestal volstaan voor het nemen van
autorisatiebeslissingen, onthullen vrijwel alle authenticatiesystemen persoonlijk
identificeerbare informatie. Dit brengt talrijke veiligheids- en privacyrisico’s met
zich mee, gezien een ongecontroleerde verspreiding van deze gegevens individuen
blootstelt aan identiteitsdiefstal, financiële fraude, profilering, afluisteren, of het
in diskrediet brengen van het slachtoffer. Deze problemen worden nog versterkt
door technologieën die het verzamelen, analyseren en verdelen van gegevens
vergemakkelijken, door wetgeving die de bewaring van bepaalde gegevens verplicht,
en door de steeds vaker voorkomende datalekken waarbij massieve hoeveelheden
persoonsgegevens worden gecompromitteerd.

Alhoewel er cryptografische technieken bestaan—met name, anonieme cre-
dentials—die individuen in staat stellen zich op een privacy-vriendelijke manier
te authenticeren zonder daarbij persoonlijke of identificerende informatie vrij te
geven, bestaan er geen authenticatiesystemen die deze technieken gebruiken. Dit
heeft verschillende oorzaken, maar er zijn twee belangrijke technische hinderpalen.
Ten eerste zijn de beschikbare implementaties zeer complex en enkel bruikbaar mits
cryptografische vakkennis. Ten tweede volstaan de cryptografische mechanismes
niet om een volledig authenticatiesysteem te bouwen.

In deze thesis overwinnen we deze obstakels en stellen een functioneel
authenticatiesysteem voor gebaseerd op anonieme credentials dat bruikbaar is
zonder cryptografische vakkennis. Dankzij ons systeem kunnen dienstverleners
authenticatievereisten formuleren als de minimale eigenschappen waaraan de
gecertificeerde attributen van de gebruikers moeten voldoen. Gebruikers kunnen
aantonen dat hun attributen aan deze vereisten voldoen, zonder de waarde van
die attributen te onthullen. In situaties waarbij toerekenbaarheid een vereiste is,
kunnen gebruikers persoonlijk identificerende informatie op een zodanige manier
versleutelen dat die enkel toegankelijk wordt zodra ze zich misdragen of schade
veroorzaken—terwijl eerlijke gebruikers anoniem blijven.
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De belangrijkste bouwsteen van ons systeem is een taalraamwerk met een
formele semantiek waarin dienstverleners de minimale authenticatievereisten
kunnen uitdrukken en waarin gebruikers hun cryptografisch ondersteunde bewe-
ringen kunnen uitdrukken op basis van attribuut-gebaseerde credentials. Ons
raamwerk bevat bovendien algoritmes om beweringen uitgedrukt in deze taal om
te zetten in invoerspecificaties voor de cryptografische implementatie—hetgeen
het gebruik ervan door applicatie-ontwikkelaars aanzienlijk vergemakkelijkt—en
om beweringen te verifiëren ten opzichte van een gegeven beleid. Op basis van
deze resultaten ontwikkelen we een volwaardig prototype dat de haalbaarheid
en efficiëntie illustreert: we tonen aan dat onze algoritmes een verwaarloosbare
computationele ballast met zich meebrengen ten opzichte van de tijd om het
cryptografisch bewijsmateriaal te controleren dat de beweringen van de gebruikers
ondersteunt.

Ons systeem laat toe de onthulde informatie in authenticatietransacties tot
een minimum te herleiden en beperkt daarmee de eerder vermelde risico’s van
buitensporige vrijgave van gegevens. Dit is voordelig voor zowel gebruikers
als dienstverleners gezien de eersten profiteren van een behouden privacy en
de laatsten van verminderde risico’s verbonden aan het opslaan van grote
hoeveelheden gevoelige persoonlijke informatie.
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Chapter 1

Introduction

T
he Internet is the most empowering tool that ever existed in terms
of information, communication, commerce, social interaction, education
and entertainment. It enables us to perform more and more activities

electronically: online shopping, travel booking, paying bills, electronic banking,
and tax declaration are just a few of the countless examples that were only
recently performed without the use of computing infrastructure and mobile
devices. The need to authenticate individuals to authorize their accesses to the
respective Internet applications or to hold them accountable for their actions
gave rise to the development of increasingly advanced authentication systems.
These systems range from simple passwords to smart cards, to biometrics, to
public-key infrastructures (PKIs) with digital signatures, to online authentication
mechanisms, and to combinations thereof [60].

Although there exists a wide variety authentication technologies, virtually all of
them involve the disclosure of personal information—or even personally identifiable
information (PII)—which raises numerous security and privacy issues. Amongst
others, these data can be used for social engineering, identity theft, or financial
fraud—or their undesirable disclosure can lead to discredit or embarrassment. The
issues are amplified by the increase of technologies that facilitate data collection,
storage, aggregation, analysis, and distribution [60] as well as by legislation
that stipulates the collection and retention of communication data. Consider,
for example, the surveillance cameras in public and private areas, the “loyalty”
programs collecting data about customers’ buying behavior, the content shared
in electronic social networks (ESNs), the communication data of Internet service
providers, and facial recognition technology used in ESNs that are trained every
time a person is tagged. Moreover, consider that most of the online services we use
are only seemingly “free”. In fact, we are paying them with personal and behavior
data disclosed through the use of the services; these data are then monetized
by advertisements based on profiling of the same, effectively making our personal
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data the new currency of the digital world. Another important factor that worsens
the security and privacy issues are the increasingly frequent data breaches where
vast amounts of (personal) data records are stolen by hackers. The latter clearly
illustrate the need for a paradigm shift in the way how enterprises and governments
treat both cybersecurity as well as personal privacy [19].

In search of a basis for such shift, one just has to recall what authentication
is, why it is done, and what the motives for collecting personal data during
authentication are. Authentication is the process of establishing confidence in
the truth of some claim. In general, user authentication is not an end in itself:
users are authenticated to authorize their requests to perform actions or to hold
them accountable for the actions they perform. Accountability is the ability to
hold an individual responsible for a past action and thus requires unambiguous
identification [60]. For solely determining authorization, in many cases the
verification of unlinkable non-identifying properties of the users suffices. However,
current authentication systems collect identifying information as if accountability
is required. For example, to determine a user’s eligibility to enter a teenage chat
room, neither her name nor her date of birth nor any other personal data are
needed: being convinced of the very fact that the user indeed is between 13 and
19 years old is sufficient. Thus, the conflict between privacy and the need to
involve personal data in authentication is only a seeming one.

The good news is, technological means allowing users to prove to service
providers that they are, for example, teenagers—without disclosing any of their
personal data—do already exist. More precisely, by means of sophisticated
cryptographic techniques [37, 15, 28], users can prove properties about their
attributes without disclosing them—that is, they can minimize the disclosed
information necessary for being granted access to the services they requested.
In situations where authentication is performed to hold users accountable, these
techniques can even solve the issues that originate from the need to collect
personally identifiable information. In particular, this information can be collected
in a way such that it is only accessible if a user misbehaves or causes damage—
which allows honest users to remain unidentifiable.

Despite the existence of general mechanisms for performing authentication in a
privacy-preserving manner as well as of freely available implementations of those
mechanisms that are efficient for practical use cases, they have not found real-
world adoption in a usable authentication system yet. While the reasons for
this are manifold—as we believe—the following two are the primary ones that
inhibit the adoption from a technical point of view (see Chapter 5 for non-technical
inhibitors). On the one hand, the available implementations are usable only for
experts in cryptography: although the implementations exist since years, they are
still virtually impossible to use for application developers because knowledge about
the cryptographic specifics is necessary. On the other hand, the cryptographic
mechanisms and their implementations alone are not sufficient for building a
working data-minimizing authentication system: additional building blocks such
as a policy language to express the minimal authentication requirements as well
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as corresponding algorithms to automatically generate and verify cryptographic
proofs on the basis of the policies are crucial.

In this work, we provide all the missing building blocks and show how a
functional and usable data-minimizing authentication system can be implemented
on the basis of existing cryptographic mechanisms. In particular, we provide
a language framework for expressing authentication requirements that abstracts
away from cryptographic details and rather focuses on intelligible concepts. We
further provide the necessary algorithms for transforming statements in our
language to the input languages of the cryptographic implementations; as those
input languages drive the execution of the cryptographic protocols, we effectively
make the implementations usable for application developers by means of the high-
level concepts. On top of that, we provide the components that are necessary for
verifying cryptographic proofs with respect to authentication policies.

In the following two sections, we describe the issues of authentication as it is
performed today for most online services, and why our data-minimizing system
does not suffer from these issues.

1.1 Authentication Today

There exists a multitude of different authentication mechanisms used for a
wide variety of activities, which range from physical access to buildings (for
example, employer premises) to electronic commerce to the use of smartphone
applications. The activity where authentication is most prominently noticed in
everyday life is the use of online services such as online stores or music streaming
platforms. For the use of virtually any such online service, prior creation of a
user account is either a strict requirement or strongly encouraged by the service
provider. To create a user account, users must choose a username/password
pair and generally have no other choice than revealing an extensive amount
of personal information such as their name, date of birth, sex, e-mail address,
mailing address, and phone number. After account creation, users authenticate
themselves with the previously established username and password to get access
to the service. However, this authentication technique—involving passwords and
personal information disclosure—has a number of drawbacks for both users and
service providers concerning security, privacy, trust, and convenience.

1.1.1 Issues for Users

First of all, there is the imminent danger that the accumulated data sets are
accidentally leaked or actively stolen by hackers. In fact, the list of data breaches
is tremendously long and steadily growing. There is hardly a week going by where
some major enterprise or government agency is not breached for fun or profit [53,
50]. For example, in April and May 2011, hacker attacks on the Sony PlayStation
Network exposed more than 100 million data sets [50] including names, dates
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of birth, credit card data, and mothers’ maiden names. While WikiLeaks and
Anonymous were once known only to a subset of cyber geeks, those are household
names now that appear frequently in news reports [19]. According to the yearly
Verizon data breach investigations reports [86], only between 2008 and 2011 at
least 683 million data records containing personal information were compromised
worldwide, from which 174 million happened in 2011 throughout 855 reported
data breaches. As these staggering and disturbing figures reflect only the known
breaches, the dark figure, which includes the number of unreported cases, is likely
to be much higher. This is because in the United States—where a majority of the
worldwide data is stored and processed—many states do not have a centralized
data loss incident reporting legislation, or even no data loss reporting legislation
at all [50].

Security

The nature of passwords, the disclosure of personal information during user
account creation, and the resulting loss of massive amounts of personal data by
service providers have serious security consequences. In particular, passwords
are inherently insecure because of their vulnerability to guessing and theft, as
they do not change without human intervention, and because they can be easily
shared—either intentionally or by mistake [60]. Because people have trouble
remembering different passwords (and usernames), many users improvidently reuse
the same username/password combination across different service providers. This
erodes the security of passwords, however, as malicious service providers can easily
impersonate users at other service providers. Users who are more considerate and
choose different usernames and passwords for different service providers are prone
to compromising their own passwords: almost every such user was presumably
already in the situation of trying different combinations with a single service
provider, being unsure about which is the right one. Such behavior inherently
compromises all wrongly tried combinations, however.

Further, the involuntary disclosure of sensitive personal information to
service providers during account creation makes users potentially vulnerable to
impersonation, identity theft, blackmailing, financial fraud, and social engineering.
This is not only due to possibly dishonest service providers, but also to the
previously described data theft. For example, hackers can use the obtained
usernames, passwords, and personal information to obtain even more information
such as online banking login data through spear phishing and to empty their
victims bank accounts. Such spear phishing, which is a form of social engineering
that is tailored to the target, is heavily facilitated by the availability of personal
information about the victim. Credulous users are blindsided by the accurate
and comprehensive knowledge about them—that is, information that in their
belief only legitimate parties can have—and tricked into disclosing even more
information.
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Convenience

Users who are considerate with respect to the choice of their usernames and
passwords quickly face the difficulty to remember all the different combinations.
Additionally, passwords are supposed to be long involving special characters—
which makes them cumbersome and even more difficult to remember—and should
or even must be changed regularly. The tedious and inconvenient nature of user
account creation and the associated passwords also comes with a lock-in effect for
users: users may stay with one service provider (an online shop, for example) rather
than setting up a fresh user account with a different provider of the same service.
To mitigate these issues, there are service providers (for example, OpenID [41]
and newly also Facebook) whose service is to exchange the information in their
user accounts with other service providers—which employment effectively makes
them to online identity providers. Although the advantage for a user is that only
the account with the identity provider must be maintained, such a centralized
authentication model raises severe privacy concerns as the identity provider has
notice of each of a user’s authentication transactions by virtue of its involvement
in the transaction.

Privacy

In addition to the described security issues, authentication as it is performed
today as well as the described data breaches raise considerable concerns in terms
of privacy. Once personal data are released—for example, during user account
creation—they can no longer be controlled: they can consequently be distributed
to others and a deletion after the fact is practically impossible because computers
do not forget. Different data records or pieces of disclosed information can be
linked and user profiles can be created [25]. Employing the same username
across different service providers abets this problem because a collusion of service
providers allows them to link the individual user profiles. The privacy risks
associated with the linkage and profiling are embarrassment and discredit—for
example, caused by the unwanted disclosure of particularly sensitive personal
information, including facts about location, interests, age, sexual orientation,
religion, medical history, health concerns, or political affiliation. Moreover, the
built profiles are used for targeted advertising. Although this form of advertising
can be very useful for consumers and is nothing to object to in general, there are
also certain associated dangers. While traders do not care about actual names or
exact physical addresses, they are interested in who we are and a way to reach
us. For a young, sporty, healthy person, it is unproblematic when advertisers can
show targeted ads on her screen, but somebody who is unemployed, in debt, and
sick is a target for predatory loans and fraudulent financial or personal advice [62].

The linkage and profiling of information is facilitated by the (not always lawful)
availability of additional user information that is intentionally, unintentionally,
knowingly, or unknowingly disclosed and collected. For example, consider the
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data traces that we all leave in everyday life: smartphone traffic, email content,
shopping behavior with respect to credit and loyalty cards, web browsing behavior
as determined by browser scripts, closed-circuit television footage, and travelling
habits by virtue of flight tickets and hotel bills are just a few examples. The
recent developments in EU legislation boost these issues because the controversial
Data Retention Directive (2006/24/EC) prescribes the retention of data generated
or processed in connection with the provision of publicly available electronic
communications services or of public communications networks. Member states
have to store citizens’ traffic data (for fixed and mobile telephony, Internet access,
Internet email and Internet telephony) between 6 and 24 months where police and
security agencies are able to request access to details such as IP address and time
of use of every email, phone call and text message sent or received.

Other factors that ease data linking are, for example, the price development of
data storage and the advances of data mining techniques. As storage is becoming
cheaper, nowadays data seem to be stored by default. The wireless router traffic
picked up by Google Street View cars as well as the location data unknowingly
persisted by iPhones are examples of this. To ease privacy concerns that are related
to storage of (sensitive) personal information, corresponding data sets are often
anonymized. However, relating anonymized records from different sources can
easily lead to de-anonymization of the concerned individual [69, 90]. Sophisticated
and highly efficient data mining techniques perform not just trend detection but
also trend prediction (for example, flu pandemics). The potential application of
such techniques to mortgage defaults or criminal behavior is concerning from a
privacy point of view.

Another privacy issue associated with the collection of data is commercial price
discrimination. Companies collect data on consumer behavior and use information
about past purchases to tailor how they treat them in the future. For example,
the personal and behavioural information can be used to extract the maximum
price possible for somebody to pay for a service. The consumers are mostly not
aware that companies can trade and mine this information and, in particular, alter
prices and offers based on these data [62].

In discourse about privacy, a popular retort is the “nothing to hide” argument:
“If you have nothing to hide, then what do you have to fear?” [80] or “What is
it that you are doing that you need to hide?” This argument essentially balances
security concerns against privacy interests—making the latter appear trivial and
thus giving security a clear victory [80]. As everybody probably has something to
hide from somebody, this argument can easily be refuted by calling attention to
matters that the people do want to hide—at least to a certain audience—such as
discreditable or embarrassing details about their private life (for example, health
issues, sex life—“So do you have curtains at home?”). The person bringing the
nothing to hide argument is likely to realize that neither of these details concerns
bad nor illegal behaviour, yet it is simply not anyone else’s business. While
privacy can be motivated with philosophical arguments, after all, privacy is a
fundamental right according to legislation (“I don’t need to justify my position.
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You need to justify yours. Come back with a warrant.” [80]). For example, the
European Data Protection Directive (95/46/EC) requires all EU countries to adopt
similar comprehensive privacy laws that recognize privacy as fundamental human
right. It seeks to protect the individual about whom data are processed through
a combination of rights for data subjects and obligations on data processors. As
privacy is crucial for a functioning democracy (voting, for instance), we should be
able to exercise this right also in digital contexts.

Trust

On the basis of all the security and privacy issues related to the use of the Internet,
the general trust in it is decreasing. The fact that users are required during
account creation to disclose personal information that is often even of no direct
relevance for the service at hand, makes the users—for whom the motivation of the
data collection is not apparent—suspicious. Users usually neither know nor can
control what happens to their data, how they are used, and with whom they are
shared, but still they are forced to provide them. This, and the frequent reports
about the loss or theft of their data, leads to general mistrust of the Internet
as information and communication medium as well as a marketplace. Maglena
Kuneva—former European Commissioner for Consumer Protection—compares the
use of the Internet under these conditions to drinking water while thinking it
might be slightly toxic: despite knowing that it can harm us, we have no choice
but drinking it. But we will drink just enough and no more than necessary, and
the water market will not thrive [62]. This illustrates, that the Internet cannot
unfold its full potential as marketplace and information medium as long as privacy
concerns inhibit this.

1.1.2 Issues for Service Providers

When the security and privacy issues of authentication (and its implementation)
are discussed, mostly only the ones concerning end users are brought forward
and the ones concerning service providers are left out. In particular, it is often
not mentioned that there are also risks and side effects for service providers with
respect to collection of personal data. These risks include the costs associated
with data breaches, for example.

Consequences of Data Breaches

The previously mentioned data breaches do not only impact users whose data is
compromised, but also have implications for the entities who are losing the data.
In particular, data loss may not only have serious legal and financial consequences
(for example, fines, lawsuits, and stock price drop) but also result in damage to
the company’s reputation (for example, bad press and loss of customer’s trust),
loss of customers and thus business and profit loss. With the rise of cloud-based
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infrastructures, which allow for easy and cost-efficient outsourcing of data storage
to external parties, there is also the danger that the assigned storage provider is
breached whereas the service provider will have to take the blame by his customers.

The costs that were reportedly associated with last year’s Sony incidents are
170 million US dollars [2]. In 2010, the costs arising from malicious or criminal
attacks were on average 318 dollars per customer record that was compromised,
which number grew by 43 percent with respect to 2009 [74]. According to the
Symantec Corporation, the total annual losses resulting from cybercrime are valued
at 388 billion dollars—by contrast, illicit sales of marijuana, heroin and cocaine
are an estimated 288 billion dollar industry [81].

Data Quality and Quantity

Further, service providers struggle with quality issues of account data as users can
easily provide incorrect—that is, erroneous, deliberately falsified, or fraudulent—
data during account registration. Erroneous data entries provided by customers
cause more than 25% of the US data quality problems [82]. The reasons for users
to provide falsified data are twofold. On the one hand, users are frustrated with
the tedious registration procedures where they have to enter their data over and
over again. One the other hand, some users simply strive for better privacy and
thus enter adulterated registration information. Their ability for doing so comes
from the fact that data entered into web forms are mostly unverified. In the United
Kingdom, almost 2% of accepted online orders later turn out to be fraudulent [44].

According to Gartner, data growth is the biggest data center challenge faced by
enterprises [54]. While the cost of storage is decreasing, this challenge arises from
the increasing data management and protection expenses, compliance costs, and
legal risks associated with the continuously growing amount of data. To reduce
costs and risk, enterprises start to look into performing defensible data deletion—
where their attention is also turned to the disposal of privacy-related data such as
sensitive personal information.

1.2 Authentication of Tomorrow

In order to mitigate the security and privacy issues of authentication as it is
performed today, a new kind of authentication system is needed that allows
for reducing the amount of (personal) information that is disclosed during
authentication transactions to the necessary minimum. The less information
we share about us, the better we are protected—because less information can
be linked, lost, or used for identity theft. According to Kent et al. [60], the
implications of authentication to privacy do not necessarily equate to violation of
privacy: it rather depends on how a particular authentication system is designed
and implemented. In this work, we present a secure authentication system that
was designed with privacy in mind—that is, a system that has the potential to
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significantly improve users’ security and privacy in authentication transactions and
at the same time assures service providers of fulfillment of their service, legal, and
compliance requirements.

One of the distinguishing features of this system is that it enables users to just
prove that they fulfill a service provider’s authentication requirements without
having to disclose any of personal information. By doing so, the service provider
learns nothing except for the fact that the user fulfills the given requirements. For
example, in an online poll where only adult citizens with particular postal codes are
eligible to vote, a user could prove that she is of age and resident of the designated
area without disclosing her age, date of birth, postal code, home address, or any
other personal information—which is clearly in her privacy interest. Assuming, as
further example, that a company offers discounted health insurance to customers
whose body mass index (BMI)—which is calculated as a person’s weight divided
by the square of its height—is between 18 and 25, a user could prove this fact
without disclosing her exact weight, height, or BMI.

Another feature of the system is that users are enabled to act under a
pseudonym while their real identities remain hidden to the service providers. To
limit the risk of service abuse involved for the service providers, pseudonymous
users can be identified under—and only under—well-defined conditions that are
agreed upon beforehand (that is, before the authentication takes place and before
any identifying information is disclosed by the user) where possibly multiple
external trusted authorities are assigned to judge over the applicability of the
conditions. This enables service providers to hold misbehaving users accountable
for their actions, while honest users can act without being identifiable.

The seemingly contradictory nature of these features—that is, proving users’
attribute properties without disclosing the attributes’ values as well as acting
anonymous yet accountable—are enabled by advanced cryptographic mechanisms.
In particular, they are made possible by anonymous credentials [37, 15, 28],
a privacy-preserving form of digital attribute-based certificates that allow for
exercising absolute control over the data released during an authentication
transaction. The idea is that identity providers certify users’ attributes (date of
birth, for example), and service providers rely on the trustworthiness of the identity
providers for authenticating the attributes and their properties. Various entities
such as governments (for the date of birth), registration offices (for the home
address), medical institutions (for height and weight), or designated companies
may act as identity providers vouching for the attributes they certified. After
issuance, the credentials are kept and managed by the users themselves, who
can selectively disclose attributes from their credentials (to the service provider
directly or to trusted third parties to establish accountability) or derive unlinkable
attribute predicate proofs—all that, without involvement of the identity provider.

In the following paragraphs, we discuss why an authentication system based
on anonymous credentials does not suffer from the issues described in the previous
section.
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1.2.1 Benefits for Users

In our proposed system, users mainly provide unlinkable cryptographic proofs
that the service provider’s authentication requirements are fulfilled. By using
such proofs as means of authentication, there are no more security issues related
to usernames and passwords. In particular, unlike passwords, the cryptographic
proofs cannot be guessed and they are worthless when being stolen from a service
provider. Users are still responsible for protecting their credential repository, which
may involve the use of a personal identification number (PIN) or password, but
this password never leaves the user’s device. Service providers, eavesdroppers, or
hackers cannot replay the proofs, thus, they cannot impersonate users—which is
possible with with username/password combinations. Because mainly unlinkable
proofs are used to authenticate and personal data is only disclosed in situations
where this is strictly necessary, the possibility to link user profiles as well as the
likelihood of being victim of identity theft or social engineering decreases.

With the abandoning of passwords as means of authentication, users no longer
face the hassle of having to come up with, remembering, and changing username/-
password combinations for different service providers. Even in situations where
personal data disclosure is inevitable, the data do not have to be entered manually
but may be taken automatically from the certified credentials.

As the cryptographic attribute property proofs that users derive do not
contain or reveal any personal data and are thus worthless for identity thiefs,
the motivation for hackers to attack enterprise systems and databases practically
disappears: what does not exist cannot be stolen. The proofs are derived locally
on user-controlled devices without involvement of the credential issuer. Issuers
therefore do not have notice of the authentication transactions that users perform
with their credentials, which is different from authentication with online identity
providers who can monitor the user’s authentication behavior. Further, different
proofs created for an authentication transaction by the same user are both
unlinkable to other authentication transactions and untraceable to the issuance
transaction of the credentials underlying the proof, even in the face of collusion of
service providers and credential issuers. Profiling of users by means of attribute
property proofs is hence impossible, which is beneficial for the users’ privacy.
However, users still have the possibility to intentionally establish linkability of
their actions—that is, re-authenticate—without being identifiable. To this end, a
user generates a cryptographic pseudonym from a user secret, provides a service
provider with the pseudonym and proves—whenever she wants to be recognized
as the same user—that she knows the corresponding secret without revealing it.

Moreover, the trust in the Internet in general is likely to rise as soon as users
get back control over their personal data, that is, as soon as they do not have to
disclose personal data any more to use their preferred online services, or as soon
as they just have to disclose the amount that is reasonable in the given context.
A resulting decrease in data breaches due to less circulating personal data as well
as less privacy concerns in general will presumably aid restoring this confidence.
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1.2.2 Benefits for Service Providers

When using anonymous credentials as means of authentication, the resulting
information stored in enterprise databases (that is, cryptographic eligibility proofs
and pseudonyms) becomes significantly less worthwhile for hackers to be stolen
because neither passwords nor exact personal data values are stored. Hackers
accordingly have less reason to attack service providers for data that is usable
for identity theft and the data breaches will diminish. This mitigates the
negative consequences associated with these breaches. The underlying principle
for service providers is: you cannot loose what you do not have. Thus, performing
authentication in a data-minimizing way is a means of risk avoidance for service
providers.

With current authentication mechanisms, companies who generally have no
interest in collecting personal data (for example, because their business model is
not based on online advertisements) may still be forced to do so to hold users
accountable in case of service abuse. For instance, an online game platform
provider whose business model is to sell games and not advertisements, must
collect personal data to fulfill youth protection requirements (consider games that
must not be played by children younger than 16 years), so as to assure audit of
legal compliance. Another example is a car rental company that collects renters’
drivers license and insurance data only to get reimbursed in case of an accident.
With our authentication system, service providers no longer have to store data
that they need for user accountability reasons themselves, but can outsource this
burden to (possibly multiple) designated trusted third parties who are specialized
in data protection.

For the data that must be released to service providers, the data quality will
increase because it originates from credentials that are vetted by trusted identity
providers. Finally, the less personal data service providers have to store, the
less costs for data management and protection (compliance with privacy laws, for
instance) incur.

1.3 Outline

This doctoral thesis is based on publications and consists of two parts. Before we
present reformatted reproductions of a selection of our publications in Part II
starting from page 88, we provide a general introduction to data-minimizing
authentication systems in Part I.

Part I consists of four chapters. In Chapter 1, we motivated our work by
reviewing how authentication to online services is performed today and by pointing
out what the associated drawbacks are. We also described how authentication can
be performed in a data-minimizing manner with anonymous credentials and what
the benefits of this approach are.
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In Chapter 2, we give a comprehensive overview of anonymous credential
systems, which are the basis of the data-minimizing authentication systems that
we propose in this work. This overview first outlines attribute-based credentials as
well as pseudonyms and then elaborates on credential presentation, issuance and
revocation.

In Chapter 3, we describe data-minimizing authentication systems—which are
the centerpiece of our work. First, we introduce data-minimizing authentication
in general. Next, we depict the sequence of data-minimizing authentication
transactions and detail each of the components involved. Afterwards, we present
our open-source authentication framework as well as a prototype implementation,
which is based on this framework, including time measurement results.

In Chapter 4, we provide an extensive summary of our scientific contributions,
which we divide into five contribution groups. For each group, we describe which
of our publications account for this contribution and how these publications build
on each other.

In Chapter 5, we draw conclusions and discuss open problems.



Chapter 2

Anonymous Credential
Systems

B
efore we can describe data-minimizing authentication systems which
are the main contribution of this thesis, it is essential to convey the
basics of anonymous credentials because they are the foundation of such

authentication systems. Accordingly, in this chapter, we provide a comprehensive
overview of the features and capabilities of anonymous credential systems.

A credential system allows users to obtain digital attribute-based credentials
from organizations and accordingly prove possession of these credentials to third
parties. A credential system where transactions performed by the same user
cannot be linked is an anonymous credential system [37, 38, 45, 40, 66, 28] as
it allows the user to remain anonymous across multiple transactions because of
the unlinkability. In particular, in such a system, a user can unlinkably prove
possession of a credential without involving the issuing organization, while the
transaction cannot be related to the initial issuance transaction. Depending on
the implementation, possession of a credential may even be unlinkably proved
an unlimited number of times (see Section 2.6). Due to their unlinkability and
anonymity properties, anonymous credential systems are particularly relevant in
scenarios where the privacy of users must be protected.

Apart from the (multi-show) unlinkability, some anonymous credential sys-
tems [28, 15] have a number of additional powerful privacy-preserving features.
For example, when proving credential possession, users can disclose just a subset
of the attributes that are certified in a credential, or even prove the mere fact that
the attributes from one or multiple credentials have certain properties—without
disclosing the underlying attribute values. The latter feature is particularly
relevant with respect to anonymity retention as attribute-based credentials may
contain identifying attributes such as a user’s name and date of birth. By means

15
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of the mentioned features, a user can, for example, choose to disclose only the fact
that the date of birth is in a certain range, rather than disclosing the date itself.

To mitigate the risks arising from transactions in which users remain anony-
mous, anonymous credential systems optionally allow for anonymity revocation
where a user’s anonymity can be lifted by a trusted third party (TTP) under well-
defined conditions that the user agrees to (see Section 2.3.4) beforehand. This
features adds accountability to otherwise anonymous transaction.

The anonymous credential systems that we consider have strong security
properties. In particular, anonymous credentials are unforgeable in the sense that
users cannot show credentials that they have never obtained, and are consistent
in the sense that each credential belongs to a well-defined user such that multiple
users cannot collaborate to obtain privileges that one user alone would not have
gotten. At the same time, different levels of non-transferability discourage a user
from sharing their credentials with others in the sense that sharing a credential
entails sharing a valuable secret—such as the information to access the user’s bank
account—and/or all of the user’s other credentials.

The privacy-preserving features of anonymous credential systems together
with their security properties enable strong authentication while reducing the
information disclosed in the authentication transaction to a necessary minimum,
and thus allow for implementing data-minimizing authentication systems (see
Chapter 3).

Figure 2.1 shows the entities involved in anonymous credential systems as well
as the interactions among them. Throughout this chapter, we will introduce all
of these entities and give detailed descriptions of the possible interactions. In
the following, we first discuss the general topics of attribute-based credentials,
pseudonyms, and key binding. Then, we elaborate on credential presentation
including all advanced features such as attribute predicate proofs and attribute
disclosure to third parties. Afterwards, we describe credential issuance; although
credentials need to be issued before they can be presented, we discuss the—even—
more exciting presentation aspect first. Then, we show mechanisms for rendering
credentials unusable, and finally we discuss two well-known implementations of
anonymous credential systems.

2.1 Attribute-Based Credentials

A digital credential is a certified bundle of attribute-value pairs issued by a
credential issuer to a credential user. By issuing a credential to a user, the issuer
vouches for the correctness of the certified attributes with respect to the intended
user. The attributes certified in a credential are meant to affirm qualification,
typically in the form of identity and/or authority, that is, the credential serves as
a means to prove such qualification. For example, an electronic driver’s license
certifying the holder’s name and the permitted vehicle category is used to prove
identity and the right to drive motor vehicles of the respective category. As
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Figure 2.1: Entities and interactions in anonymous credential systems [31, 9].
Credential issuance: see Section 2.4. Token presentation: see Section 2.3. Token
inspection: see Section 2.3.4. Credential revocation: see Section 2.5.

the certified attributes are often related to the user’s identity, issuers are also
called identity providers (IdPs). From a technical point of view, a credential is a
particular kind of digital signature on a set of attributes that is verifiable under
the issuer’s public key.

Due to the attribute-based nature of credentials, they are also referred to as
attribute-based credentials (ABCs). ABCs of an anonymous credential system are
referred to as anonymous credentials, or Privacy-ABCs because of their privacy-
preserving potential. An anonymous credential is thus a credential that can
unlinkably be used across multiple transactions.

As the meaning of the information certified in credentials has no technical
relevance and is subject to interpretation of the party relying on it, the attributes
in credentials are described by an attribute type that determines the semantics of
the attribute (for example, first name) and an attribute value that determines
its content (“John”, for example). Each credential is of a specific credential
type where—similar to record types in programming languages—a credential type
specification defines the list of attribute types together with respective data types
(for example, first names are strings) that are encoded in credentials of that
credential type. For example, credentials of type Driver’s License may contain
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the attributes: first name, last name, date of birth, license number, issuance date,
and permitted license categories. In addition to defining the contained attributes,
a credential type specification may also state whether the respective credentials
are revocable and whether they are bound to a secret key (see Sections 2.2 and 2.5,
respectively).

A credential specification may be created by the issuer, or by external
authorities so that multiple issuers can issue credentials according to the same
credential type specification. For verifiers to rely on the semantics of the (ordered)
attributes encoded in a credential, the credential type specifications must be
published and distributed over a trusted channel—for example, by employing
digital signatures.

2.2 Pseudonyms and Key Binding

Anonymous credential systems are also called pseudonym systems [66, 65, 37]
because verifiers may know users only under (cryptographic) pseudonyms. In
traditional public-key cryptography, users generate a public/private key pair that
can be used to authenticate the users. Unlike traditional public-key authentication
schemes, however, in anonymous credential systems, users may generate as many
public keys as they wish from a previously generated secret key [28]; these public
keys are called pseudonyms.

Pseudonyms generated from the same secret key are cryptographically
unlinkable, that is, for two different pseudonyms it cannot be determined whether
they are generated from the same secret key. However, in case different
pseudonyms are associated with the same secret key, the user can (optionally)
convince a verifier about this fact without revealing the secret key. When a
user authenticates to a party, depending on the required level of linkability,
the user can choose to re-authenticate with a previously established pseudonym,
or use a fresh pseudonym. By using a different pseudonym for every party a
user authenticates to, the user can be known to different parties under different
unlinkable pseudonyms, yet use the same secret key to authenticate to all of
them. Conversely, to recognize returning users, a verifier may require that users
authenticate with an established pseudonym.

There are situations, however, where the possibility to generate an unlimited
number of unlinkable pseudonyms is undesirable. For example, in an online
opinion poll, users should not be able to bias the outcome by casting multiple
votes under different pseudonyms. In such situations, the poll host can request a
scope-exclusive pseudonym, which is unique for the user’s secret key and a given
scope string. Like standard pseudonyms, however, scope-exclusive pseudonyms
generated from the same secret key for different scope strings are cryptographically
unlinkable. By using the URL of the opinion poll as the scope string, for instance,
the poll host can ensure that each user registers just a single pseudonym to vote.
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An anonymous credential can optionally be bound to a secret key in the sense
that the credential cannot be used without knowing the secret key. Such key
binding of a credential is indicated in the credential type specification so that
verifiers are aware that they must authenticate the respective secret key. To
some extent, the key binding is analogous to traditional public-key certificates
where the certificate contains a user’s public key; but unlike traditional public-key
certificates, anonymous credentials are bound to a secret key, rather than a public
key. To prevent users from sharing their credentials, a verifier can require a user
to show that certain credentials are bound to the same secret key.

If a pseudonym was generated from the secret key that underlies a particular
key-bound credential, the user can (optionally) convince the verifier of this fact—
that is, that the pseudonym was derived from the same secret key that underlies
the credential.

Although it is sufficient for users to generate a single secret key, they may
also have multiple secret keys. A secret key can also be generated by trusted
hardware (for example, a smart card) that securely stores the key and uses it in
computations—for example, to generate pseudonyms—but never reveals the key.
The secret key is thus bound to the hardware in the sense that it can only be used
in combination with the hardware.

2.3 Credential Presentation

After a user has obtained an anonymous credential from an issuer, she can convince
a verifier of this fact by engaging in an interactive cryptographic zero-knowledge1

protocol—which is called proof protocol. In this protocol, only the user and the
verifier are involved. Because the credential issuer is not involved, anonymous
credential systems are in terms of privacy protection superior to traditional online
authentication mechanisms (such as OpenID [41, 77, 56] or SAML [72]) where
the identity provider participates in the authentication and thus learns that
the user is transacting with the verifier (see p. 129 for more details). A proof
protocol execution is untraceable, that is, no collusion of issuers and verifiers can
correlate a proof protocol execution to the issuance of the underlying credentials.
Depending on the implementation, any two executions of a proof protocol are
also cryptographically unlinkable, that is, no collusion of issuers and verifiers can
determine whether two protocol executions were performed by the same user or by
different users (see Section 2.6). We also call this feature multi-show unlinkability.

By employing a cryptographic technique that is known as Fiat-Shamir
heuristic [49], the proof protocol can be performed non-interactively. That is, the
user independently derives a cryptographic object, which we call token evidence,
and sends it together with an accompanying proof specification as presentation

1Zero-knowledge protocols [46, 76, 12, 8]—also known as zero-knowledge proofs—allow a party
to convince another party of knowing a secret without revealing the secret.
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token to the verifier for verification.2 The proof specification is an implementation-
specific description of the token evidence and is necessary for verifying the
validity of the evidence. As the evidence derivation process is performed without
involvement of the credential issuer, it is also called offline token derivation. The
validity of a derived token evidence, however, is verifiable under the public key
of the issuer of the credential underlying the presentation token. This holds true
for any party who trusts in the authenticity of the issuer’s public key, that is,
the verifier can forward the evidence to third parties such as auditors to convince
them that he properly authenticated his users. We also refer to the process of
providing a verifier with a presentation token as credential presentation or token
presentation.

In its simplest form, the proof protocol only incorporates a proof that the user
owns a particular credential. In addition to performing such proof of ownership
during protocol execution, users have a number of possibilities for disclosing further
information from or about their credential in a privacy-preserving manner. In the
following sections, we first elaborate on the proof of ownership and then discuss
the additional features of the proof protocol.

2.3.1 Proof of Ownership

When a user performs a proof of ownership, the verifier learns nothing more than
the fact that the user owns a credential of a particular credential type from a
particular issuer. Depending on the semantics of the credential type, this may
be sufficient for a verifier to grant certain rights to a user. For example, to enter
the premises of a user’s employer, it may be sufficient to prove to a physical door
lock that the user owns an Employee credential issued by the respective employer,
without revealing any other information about the credential—such as the certified
attribute values. With traditional certificate technologies such as X.509 [42], users
have to reveal all attributes certified in a credential to prove ownership of it as
otherwise the digital signature cannot be verified.

A credential’s type and issuer are the minimal amount of information that a
verifier must learn for being able to verify a user’s credential ownership: the issuer’s
public key is necessary for the cryptographic verification, and the credential’s type
is needed because it determines the semantics of the credential and its attributes.
In fact, it is even possible to merely disclose that a credential is issued by a
member of a group of issuers, rather than a particular issuer [43]. In this work,
we assume that issuers may issue credentials of different types; in case an issuer
only issues credentials of a single type, then the disclosure of the credential’s
type is redundant because this semantic information is implicitly carried by the
public key. For key-bound credentials—that is, credentials whose credential type

2Note that one contribution of this thesis is an implementation-agnostic language for
describing token evidence on the one hand [9, 21], and algorithms for transforming token
descriptions expressed in this language to implementation-specific proof specifications [9] on
the other hand (see Section 4.1).
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specification indicates that they are bound to a secret key—the proof of ownership
may also incorporate the authentication of the underlying secret key. Accordingly,
the verifier also learns that the user indeed knows the corresponding secret key.
Optionally, within a proof of ownership, users may also show that a credential is
bound to the same secret key as another credential or a particular pseudonym.

During one protocol execution, ownership of multiple credentials may be
proved. This is relevant in cases where relations between attributes from different
credentials are proved, for example (see Section 2.3.3).

2.3.2 Selective Attribute Disclosure

When a user proves ownership of an anonymous credential, she can individually
decide for every attribute that is certified in the credential whether its value is
disclosed or not, that is, the credential’s attributes can be disclosed selectively.
In case the user does disclose one or more attribute values, the verifier can verify
the authenticity of these values and can thus rest assured that they are indeed
correct with respect to the credential that was originally issued. As already
mentioned in the previous section, the possibility to disclose only a subset of a
credential’s attributes is in contrast to conventional digital certificate technologies
(for example, X.509 [42]) where a certificate can only be revealed as a whole
together with all the attributes’ values in an all-or-nothing fashion.

To retain the unlinkability properties offered by anonymous credential systems,
it is important to consider that an authentication transaction is only as unlinkable
and anonymous as the information that is intentionally revealed in this transaction.
More precisely, in case a user reveals, for instance, a combination of her first name,
last name, and date of birth in two different authentication transactions with the
same verifier, then these transactions are obviously linkable and not anonymous—
although the cryptographic unlinkability is still guaranteed.

2.3.3 Attribute Predicate Proof

Rather than revealing the exact values of attributes that are certified in credentials,
anonymous credential systems also allow for proving the mere fact that certified
attributes have certain properties—without disclosing the underlying attribute
values. For example, a user can prove that her date of birth according to her
passport is before September 24, 1994—that is, that she is older than 18 years—
without revealing her date of birth.

The proved properties may also involve multiple attributes. For example,
assuming that a company offers premium health insurance to customers whose
body mass index (BMI)—which is calculated as a person’s weight divided by the
square of its height—is between 18 and 25, a user can prove this fact without
disclosing her exact weight, height, or BMI [70].
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Further, the proved properties can involve attributes from multiple different
credentials. For example, a user can prove that the name on her credit card
matches the one on her driver’s license—without revealing the actual name.

Properties that a user can efficiently prove include equality and inequality
(that is, not equal to, greater than, less than, etc.) relations between attributes
and between attributes and constants, membership relations between an attribute
and a list of constants, as well as logical combinations (that is, conjunction
and disjunction) thereof. Although in theory any mathematical property can
be proved, only for certain classes of properties—such as the preceding ones—
techniques for proving them efficiently are known [3].

The properties that a user proves about her credentials are expressed as logical
predicate in the presentation token description. In addition to such attribute
predicate proof, a user has to provide proofs of ownership for all the credentials that
are involved in the proved predicate. In terms of privacy preservation, attribute
predicate proofs are of paramount importance in anonymous credential systems
because they enable users to fulfill authentication requirements without revealing
any information beside the mere fact that the requirement is fulfilled—modulo the
requirement itself and the involved credentials’ type and issuer.

With other offline authentication technologies (for example, X.509), the only
way to show that an attribute satisfies a certain condition is to reveal its value.
Although with online authentication mechanisms (OpenID or SAML, for example),
an identity provider could also issue a statement that a user’s attributes have
certain properties, such approach compromises the user’s privacy as the identity
provider is involved in—and thus knows about—every of the user’s authentication
transactions.

2.3.4 Attribute Disclosure to Third Parties

Absolute and unconditional user anonymity in online authentication transactions
can easily lead to abuse of the used services. Therefore, anonymous credential sys-
tems offer the option to add accountability to otherwise anonymous transactions, so
as to hold misbehaving users accountable for their actions. This is enabled through
a feature called verifiable encryption [20, 32, 5] that allows a user to verifiably and
selectively encrypt pseudonyms or attribute values from her credentials such that
they can only be decrypted by a designated trusted third party (TTP)—which
is also called inspector—under previously well defined conditions. Verifiability
here means that the inspector can check whether indeed the stated certified
attributes are encrypted. An opening label describes the condition under which
the inspector is permitted to decrypt the attributes. This label is inseparably
tied to the ciphertext with cryptographic means such that the label cannot be
altered—for example, by the verifier. Note that verifiable encryption in anonymous
credential systems is also referred to as attribute disclosure to third parties [31] or
inspection [21].
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As verifiable encryption is such a crucial feature for mitigating the risks arising
from the use of anonymous credentials, in the following we provide a detailed
description of how attributes are verifiably disclosed to a third party. At first, the
user and the verifier agree on an opening label, a set of attributes or pseudonyms
to encrypt, and a commonly trusted inspector. For example, the opening label in
a car rental transaction may be “In case of damage to the rental car with license
plate number LPN-1234 in the time between July 7, 2012 and July 9, 2012.” To
ensure accountability, the attributes that are to be encrypted must be strongly
identifying, such as the document number of a driver’s license credential, or a
combination of the user’s first name, last name, and date of birth according to a
passport credential.

Then, the user encrypts the chosen attributes under the public key of the
inspector and the opening label, which procedure ensures that the opening label
is inseparably connected with the resulting ciphertext and that only the inspector
can perform the decryption of the attributes. In particular, the inspector can only
decrypt the ciphertext with a combination of the opening label and its private key.

Finally, the ciphertext is provided to the verifier in the course of the
authentication transaction, together with other cryptographic evidence that
supports the proofs of ownership of the credentials underlying the verifiably
encrypted attributes. Upon receiving the ciphertext, the verifier can verify that
indeed the agreed attributes with respect to the agreed credentials are encrypted
and that the agreed opening label is used—however, without learning the cleartext
values of the attributes. The received and verified ciphertext accordingly acts as
security deposit for the verifier, which is forwarded to the inspector for decryption
in case the opening condition is fulfilled. Note that the inspector is neither involved
in the attribute encryption nor in the authentication transaction, that is, the
inspector is not required to be online at the time when these steps are performed.

In case the rental car is crashed and the verifier needs to identify the responsible
user, the verifier provides the inspector with the ciphertext, the opening label, and
evidence that the opening condition is fulfilled (that is, the damaged card). The
inspector then checks by means of the evidence whether the opening condition is
indeed fulfilled, that is, he inspects the condition of the car, decrypts the ciphertext
accordingly and discloses the retrieved identifying information to the verifier.

The described scenario is possible under the assumption that both the user
and the verifier trust the inspector. The user has to trust the inspector in two
ways. First, in that the inspector decrypts the ciphertext (together with the
opening label) only in accordance with the opening condition that is specified in
the opening label (that is, not without a legitimate reason) after having thoroughly
examined the fulfillment of this condition. Second, in that the inspector forwards
the decrypted information to the verifier only if the opening condition is fulfilled.
The verifier has to trust the inspector in that it will indeed decrypt the ciphertext
and forward the retrieved information in case the opening condition is fulfilled.

The fact that the user forwards the ciphertext to the intermediary verifier and
not directly to the inspector—that is, the entity who owns the decryption key—
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can be seen as additional layer of security. To lessen the necessary trust in the
inspector and thus avoid being dependent on the honesty of a single inspector, the
responsibility can be distributed over multiple inspectors in the sense that at least
k out of n ≥ k inspectors must participate in decrypting the ciphertext [47, 59] to
successfully revoke the users anonymity.

2.3.5 Message Signatures

In electronic commerce, it is often often required to consent to certain contractual
clauses such as a merchant’s general terms and conditions. Depending on the
necessary level of security, merchants may obtain consent by requiring a user
to simply tick a designated check box or by requiring her to provide a digital
signature [78, 63, 67], for example. While the former lacks non-repudiation
properties as the merchant obtains no cryptographic evidence, the latter is
unsuitable in scenarios where the user’s privacy must be protected because
traditional digital signatures make the user identifiable and linkable.

When authenticating with anonymous credentials, a user can include a
statement (or message) in the presentation token to express agreement with that
statement and thus can effectively digitally sign that statement. The difference
to traditional digital signatures is that the verifier does not necessarily learn who
consented to the signed statement: the verifier only knows as much about the
signing party as is revealed by the presentation token that contains the message.
For example, in an online shopping transaction, a verifier might only learn that
somebody who is of age and whose credit card limit exceeds 1000 euro has signed
the general terms and conditions. Further, the unlinkability of the cryptographic
token evidence guarantees that the signature is unlinkable on the one hand, and
that it cannot be repudiated on the other hand.

Message signatures with anonymous credentials, however, can only be made
if the proof protocol involves a presentation token, that is, if the protocol is
performed non-interactively. Unlike traditional digital signatures, with anonymous
credentials there is no actual signature object created; the presentation token acts
as signature on the statement. The presentation token is also transferable in the
sense that the verifier can use it to convince third parties (for example, auditors)
of the fact that the user who performed the proof consented to the contained
statement.

2.4 Credential Issuance

Credential issuance is the process in which an identity provider issues a new
credential to a user and thus vouches for the correctness of the certified attributes.
Prior to performing the issuance, the identity provider determines the values that
are to be certified in the new credential by authenticating the receiving user and her
attributes in some way. This can be done by carrying out some secondary means
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of authentication—which may involve physical presence of the user and her official
documents, for example—or by performing a credential presentation as described
in Section 2.3. In the latter case, anonymous credential systems allow for very
advanced issuance scenarios: the attribute values from the user’s existing trusted
credentials can blindly be carried over to attributes of the newly issued credential—
that is, without the issuer learning these values; the newly issued credential can be
bound to the same secret key to which a user’s existing credential or pseudonym is
bound—without the issuer learning the secret key; and attributes can be assigned
jointly generated uniformly random values such that the issuer does not learn the
values and the user cannot bias them.

The possibility to carry over attributes from existing credentials is useful in
situations where a user does not want the issuer to know the certified value or
where an issuer is not interested in learning the value. For instance, for obtaining
a digital membership credential of a university library, the library may require the
user to first present a valid student ID from which the name attribute is blindly
carried over to the library card. In this case, the library trusts in the university
in that it has thoroughly verified the attributes that it certified in the student ID
credential. Issuers can also blindly certify values that are chosen by the receiving
user. To do so, a user first issues a credential with the desired attribute value
to herself and then presents it to the issuer, who blindly carries over the value
to the newly issued credential. For example, assuming that a writers club issues
membership credentials that contain an attribute expressing a member’s pen name,
a member may choose its pen names itself without the club learning it.

Binding a newly issued credential to the same secret key as an existing
credential ties these credentials together and thus allows for preventing users
from sharing their credentials. In particular, a user can show to a verifier that
the presented credentials are owned by the same user—that is, not shared—by
proving that these credentials are bound to the same secret key. A newly issued
credential may also be issued to a (cryptographic) pseudonym by binding it to the
same secret key that underlies the pseudonym, that is, by carrying over the secret
key from the existing pseudonym.

An issuance transaction that supports the previously described advanced
scenarios is an interactive cryptographic protocol—called issuance protocol—
between a user and an issuer. Before the protocol starts, the issuer provides
the user with a specification that describes which credentials and pseudonyms a
user has to present prior to being issued the new credential, and what the relation
between the (possibly undisclosed) attributes of the presented credentials and the
newly issued credential and its attributes is. Then, the user initiates the actual
protocol by providing the issuer with a special presentation token—which is also
called issuance token—at the end of which the user obtains the new credentials.

The authentication requirements that an issuer applies to a user who requests
a new credential are part of the overall security measures that the issuer applies to
a particular issuance process. The exact security measures that the issuer applies
are usually dependent on the type of the credential that shall be issued. For
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example, the security requirements for issuing a Passport credential are obviously
more stringent than the ones for a Membership credential of a library. Continuing
this example, for issuing passports, an issuer may demand the physical presence
of the requesting user as well as two witnesses who guarantee that the claimed
identity of the user matches with her true one.

Depending on the applied security measures, the overall issuance process for a
particular credential type including all organizational issues may be very involved
and time-consuming. Therefore, under certain conditions, anonymous credentials
provide a non-interactive update mechanism [27] that allows for changing attribute
values without having to engage in a complete interactive issuance process. To this
end, an issuer provides a user with update information that the user can employ
to derive an updated credential. Such update mechanism is for instance useful
to prolong the validity of a credential by updating an encoded expiration date
attribute.

2.5 Credential Revocation

In situations where a user looses the right to carry a credential or where the security
of a credential is compromised, it has to be revoked—that is, rendered unusable for
subsequent credential presentations—to prevent misuse. This includes scenarios
where the attribute values of the credential’s user have changed (for example,
change of name because of marriage) or where the corresponding user secret was
compromised. In these cases, the credential must be revoked globally; as the
authority for global revocation is the credential issuer, we call this issuer-driven
revocation. There are also situations, however, where a credential shall be revoked
only for a specific context. For example, a hooligan’s national identity card may
be revoked for entering sport stadiums, while it should still be usable for all other
purposes. Also, consider that in some countries a driver’s license may be used for
both proving the right to drive a vehicle and personal identification, yet revoking
the right to drive leaves the identification capability intact. The authority for such
context-specific revocation is the credential’s verifier, thus we call this verifier-
driven revocation. As issuers and verifiers may delegate or outsource credential
revocation, revocation is described in terms of dedicated revocation authorities
(see Figure 2.1)—they are separate entities in general, but may be under the
control of the issuer or the verifier in particular settings.

For conventional certificate systems, the revocation of one particular certificate
is straightforward because each certificate contains a unique identifier (for example,
a user’s public key in public key certificates): this identifier can be used to blacklist
(by means of a certificate revocation list (CRL) [42]) or whitelist the credential
with the corresponding identifier. For anonymous credential systems, however,
revocation of credentials is significantly more challenging because presentation
tokens do not necessarily reveal any linkable information that can be used as basis
by a verifier for recognizing a revoked credential.
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Nevertheless, a number of cryptographic techniques have been proposed [29, 71,
16, 26, 68, 68, 13] that enable the revocation of anonymous credentials. While the
various approaches differ in their revocation strategy and efficiency (see Lapon et
al. [64] for a more detailed analysis), most of them are usable for both issuer-driven
and verifier-driven revocation. The general idea of the described mechanisms is
that the revocation authority periodically publishes revocation information and
users prove as part of their presentation tokens that their credentials are still valid
with respect to the published information.

Whether a credential is subject to issuer-driven revocation is defined by
the corresponding credential type specification (see Section 2.1). In the case a
credential is issuer-revocable, presentation tokens related to this credential always
have to contain a proof that it has not been revoked yet. Global issuer-driven
revocation is typically achieved by making use of a revocation handle, which is
a dedicated unique value that issuers embedded in credentials but which is never
revealed by the user. Rather than revealing the revocation handle, the user proves
that it is in a published set of valid handles—or not within a set of invalid handles.

In addition to and independent of issuer-revocability, any credential can be
subject to verifier-driven revocation. This revocation kind can be based on any
combination of attribute values, possibly even from different credentials. For
example, a sport stadium operator may revoke combinations of first and last names
according to national identity cards for known hooligans. Rather than revealing
their first and last name, users who want to enter the stadium can prove that their
combination of first and last name is not among the blacklisted ones. In this way,
the privacy of respectably behaving visitors is protected while troublemakers are
prevented from entering the stadium.

An always viable approach for rendering a credential unusable after a
predefined amount of time is to include a dedicated expiration date attribute in it.
When such a credential is presented, the user must accordingly provide an attribute
predicate proof that the encoded expiration date is after the date of the credential
presentation. A combination of an updatable (see Section 2.4) expiration date
attribute and a short validity period of a credential may accordingly be employed
as alternative revocation mechanism in scenarios where the previously mentioned
approaches are not feasible.

2.6 Implementations

Although a number of schemes for realizing anonymous credential systems have
been proposed [37, 38, 45, 40, 66, 28, 30, 7], the schemes of Brands [15] and
of Camenisch and Lysyanskaya [28] are the most famous ones and have been
implemented in the Microsoft U-Prove credential system [17, 73] and in the IBM
Identity Mixer (Idemix) [33, 58], respectively. Both implementations are freely
available and efficient enough for practical use. To motivate the decision of
using Idemix as basis for the prototype implementation of our data-minimizing
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authentication system (see Chapter 3), in the following we briefly compare the
two mentioned schemes.

Depending on the scheme, the unlinkability necessary in anonymous credential
systems is established either during the issuance transaction or during the token
derivation process of the presentation transaction. Brands’ scheme is based on
blind signatures that were proposed by Chaum [35, 36, 37]. A blind signature
scheme allows a party to obtain a digital signature on a message without the
signer learning anything about the content of the message. An often used physical
world analogy is to sign the outside of a carbon paper lined envelope while a letter
containing the message to sign is enclosed in the envelope. By doing so, the signer
cannot see the signed message, yet third parties can later verify the signature.
To create such signature in the digital world—for example, by using common
public key signature schemes such as RSA [79] or DSA—the message first needs
to be disguised, that is, blinded. This blinding provides the unlinkability that
is necessary for implementing anonymous credential systems because the signer
cannot link the blinded message she signs to an un-blinded version.

In contrast to blind signatures, the signature scheme of Camenisch and
Lysyanskaya does not create unlinkable credential signatures during issuance,
but instead allows for transforming the generated signature—which is also called
CL signature—into an unlinkable one that remains verifiable under the signer’s
public key. This way, the necessary unlinkability is established in the token
derivation process of a credential presentation transaction.

Accordingly, CL signatures allow users to unlinkably prove possession of one
and the same credential any number of times without involving the issuer, while
one and the same U-Prove credential can be used only once without becoming
unlinkable. A possible workaround to this issue is to certify not just one but
a number of U-Prove credentials (with the same attributes) such that the user
can use one at a time without ever using the same credential twice. In scenarios
where credentials are stored on resource-constrained devices such as smart cards,
however, the increased bandwidth and memory consumption may make such
workaround infeasible. The one-show properties of U-Prove credentials, however,
are beneficial in electronic cash scenarios [39, 24] where money must be spent only
once.



Chapter 3

Data-Minimizing
Authentication Systems

T
he goal of this doctoral project was to build a functional, usable, and
privacy-preserving authentication system on the basis of anonymous
credentials. Recall that authentication is the process of establishing

confidence in the truth of some claim (see Chapter 1). Further recall that
anonymous credential systems offer a number of outstanding privacy-friendly
capabilities, most notably the ability to prove to a verifier that a user’s certified
attributes have certain properties without disclosing identifying information (see
Chapter 2). Consequently, with anonymous credentials, users can establish
confidence in the truth of a claimed attribute property—that is, authenticate—in
a privacy-preserving manner. Such privacy-preserving authentication, however,
is only possible in authentication systems where the user knows the minimal
authentication requirements in advance, because otherwise she runs the risk of
disclosing too much information and thus of forfeiting part of her privacy. In this
work, we designed and implemented such data-minimizing authentication system
where users are informed about the authentication requirements beforehand such
that they can prove nothing more than the fact that they fulfill the requirements.

The most essential ingredient for a functioning data-minimizing authentication
system is a policy language to express and communicate authentication require-
ments in terms of attribute-based credentials and pseudonyms—such that users can
fulfill the stated requirements by means of anonymous credential proofs. Moreover,
adequate components for processing these policies are needed, so as to generate and
verify corresponding technology-specific proofs on the user and the service provider
side, respectively. Because a user may have multiple options on how to fulfill a
given policy with her credentials, also a component for selecting the preferred
option is required. Additionally, a communication protocol that specifies both the
interaction between the components and the involved messages must be defined.

29
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In the following sections, we first describe general characteristics of data-
minimizing authentication. Then, we discuss the sequence of data-minimizing
authentication transactions. Afterwards, we elaborate on the policy and token
languages required in such transactions, and next we explain all the components
involved in data-minimizing authentication systems in detail. Subsequently, we
discuss the security properties of such systems and finally we provide details on
our prototype implementation together with timing results.

3.1 Introduction

To fully unfold the privacy-preserving power of anonymous credentials by
disclosing only as much information as strictly necessary—that is, as little
information as possible—for a successful authentication, a user must be aware
of the exact authentication requirements prior to performing the authentication.
For example, consider an online poll where only citizens with certain postal codes
are eligible to vote. For such poll, it is in the privacy interest of a voter to merely
reveal that she is resident of the designated area without disclosing her exact
home address or her name or any other personal information. Accordingly, for the
user to just prove residence in the eligible area, it is obviously essential to have
knowledge about the respective authentication requirements beforehand.

Existing authentication systems are not designed to inform a user about the
exact authentication requirements as they typically perform identity authentica-
tion. That is, the user is first associated with a previously established identity
(for example, a user account) by authenticating an identifier (a username, for
example) that refers to this identity, and then the service provider decides on
the basis of—the attributes associated with—this identity whether access to a
requested service or resource is granted. One the one hand, this decision is
taken only after the user has established her account—which is unfavorable for
the user’s privacy—and on the other hand the user is usually left in the dark
about the actual authentication requirements that apply to the current service
request. Moreover, these authentication requirements may be different from the
account creation requirements in the sense that the latter demanded disclosure of
more personal data than the former would have done.

Consequently, for supporting fully privacy-preserving authentication settings
with anonymous credentials, a prerequisite is a paradigm shift on how authentica-
tion is approached—namely, a shift towards systems that are open with respect to
their minimally necessary authentication requirements in the sense that those are
communicated to the user in advance. Part of this necessary paradigm shift also
concerns the way how authentication requirements are expressed; specifically, this
must be done in terms of attribute properties rather than in terms of attributes
whose full values must be disclosed. Continuing the previous polling example,
the poll host should state the authentication requirements in terms of the range
in which the user’s postal code must lie (for instance, to entitle all residents of
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the region Zürich, Switzerland, the postal code must be between 8000 and 8999),
rather than requesting disclosure of the exact home address.

In this chapter, we describe an authentication system that lives up to the
described expectations. Because of its potential to limit the disclosed attribute
information to a minimum with respect to some given authentication requirements,
we call it a data-minimizing authentication system. More specifically, we say that
an attribute-based authentication system is data-minimizing under the following
two conditions: (1) authentication requirements are expressed in terms of the
minimal claim that must be authenticated and (2) it allows for establishing
confidence in the fulfillment of authentication requirements without disclosing
any information other than this fact. For the cryptographic protocols that
we consider in this work, the second condition implies that the authentication
requirements—which are expressed in authentication policies—are known to the
user beforehand.1 It also implies that the system has the necessary technical
capabilities for minimizing the information disclosure. In a data-minimizing
authentication transaction, a user makes an informed decision on whether to
authenticate under the given requirements or not. Accordingly, data-minimizing
authentication systems are user-centric in the sense that the user has control over
the information that is disclosed by performing this affirmative step.

We say that the information disclosed in an authentication transaction is
minimal if it does not reveal more information than was requested by the stated
authentication requirements. For example, if access to some service is granted to
users who are at least 60 years of age according to a national ID card, proving
that one is over 65 according to such card or even the revelation of the exact date
of birth would not be minimal.

Whether the authentication requirements themselves are minimal, or even
legitimate, is a separate concern. We say that authentication requirements are
minimal if they demand only the amount of information that is strictly necessary
in the given context. In this respect we rely on an interplay between the
server’s fairness and the user’s judgement. That is, we assume that users make a
conscious decision on whether certain authentication requirements are suitable and
acceptable for a given authentication scenario. One may also envision designated
authorities who define and certify minimal authentication requirements for certain
standard scenarios such as buying a book online. Users would then have the
possibility to compare whether the required information is minimal according to a
trusted policy certification authority; the provided policy could be digitally signed
by the authority, or the user compares the content of the given policy with an
authentic reference policy published by the authority.

The authentication transactions performed in a data-minimizing authentica-
tion system potentially preserve the authenticating user’s privacy. Whether a
particular authentication transaction is privacy-preserving or not depends both

1There exist oblivious transfer schemes where the user does not learn the policy yet can obtain
access to a resource without disclosing the values of her credentials [23]. However, we do not
consider these schemes here because they are tailored to database query scenarios.
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Figure 3.1: Sequence and components of a data-minimizing authentication
transaction with anonymous credentials [21]. IDMX: Identity Mixer software
module. ta: module placeholder for additional technologies. ∧: logical conjunction.

on the authentication scenario and the respective authentication requirements. In
any case, the level of privacy preservation is also dependent on how the system is
implemented. For example, consider an online identity provider who confirms to a
service provider—after a user’s explicit agreement—that some attribute property
of the user is fulfilled. Although such setup is data-minimizing according to the
preceding definition, the user’s privacy is clearly less preserved (because the issuer
is involved in the authentication transactions) than in a system that functions
with anonymous credentials (as they allow for offline evidence derivation).

Note that the previously mentioned identity authentication is not necessarily
in conflict with privacy interests. The general problem with such identities is that
they usually consist of, or at least include, sensitive personal information (SPI).
In the data-minimizing and privacy-preserving authentication system that we
propose, however, identities can merely consist of non-sensitive attribute properties
where a (cryptographic) pseudonym (see Section 2.2) acts as identifier for these
identities.
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3.2 Data-Minimizing Authentication

In this section, we discuss the sequence of a data-minimizing authentication
transaction with anonymous credentials. The entities involved in such a
transaction are a user and a service provider (which we simply call server).
Figure 3.1 depicts the sequence of such a transaction as well as the individual
components required by the user and the server. We assume that the user already
holds anonymous attribute-based credentials that she accordingly obtained from
identity providers, and that she wants to use a service (for example, a teenage
chat room) that is hosted by the server. For using the service, the server requires
the user to authenticate with respect to a service-specific authentication policy.
As mentioned in the previous section, an important aspect of data-minimizing
authentication is that the policy is formulated in terms of properties of the user’s
attributes, which are certified in her credentials (see Section 3.3). For example,
the policy could state that only teenagers according to an ID card—that is, users
who are between 13 and 19 years old—may use the service.

Upon receiving a request (Message 1 in Figure 3.1) for a service, the server
determines and pre-evaluates the applicable authentication policy (Component 1a
in Figure 3.1) and sends it to the user (Message 2). During the pre-evaluation,
dynamic policy elements such as the current date and time are resolved (see
Section 3.4.1). For each piece of information whose disclosure is demanded by
the policy, the server may optionally specify in a usage control policy how the
disclosed information will be treated (for example, how long the data will be
retained or for which purposes it will be used). Having received the policy, the
user’s system determines which claims—that is, statements about a subset of
attributes certified in one or more of her credentials—can be made that fulfill the
given policy (Component 2a, see Section 3.4.2). For example, a policy requiring
the user to be a teenager according to an ID card may be fulfilled by means of a
user’s national ID card or her student ID. Similar to the policy, the statement of
being a teenager is made by means of an attribute property, that is, by stating
that the user’s age is between 13 and 19 years. (As ID cards typically certify a
date of birth rather than an age attribute, the user would state that the date
of birth lies withing the required range.) The favored claim is then selected
(Component 2b, see Section 3.4.3) interactively by the user [10] or automatically
by a heuristic that is capable of finding the most privacy-preserving one [87].
As soon as a particular claim is determined, the respective credential technology
is instructed to generate corresponding token evidence that reflects this claim
(Component 2c, see Section 3.4.4). The claim—which acts as token description—is
then sent together with the accompanying token evidence to the server (Message 3)
who verifies whether the claim implies the previously sent policy (Component 3a,
see Section 3.4.5) and whether the claim’s evidence is valid (Component 3b, see
Section 3.4.6). If both tests succeed, the user has successfully authenticated with
respect to the policy and is granted access to the requested service (Message 4).

One may also imagine scenarios where a user already knows the authentication
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policy from previous service requests and accordingly sends a token together with
her service request.

3.3 Language Framework

To implement the authentication scenario sketched in the previous section on the
basis of anonymous credentials, a number of languages must be available. First and
foremost, a generic, technology-independent authentication policy language that is
capable of expressing the server’s minimal authentication requirements in terms
of attribute-based credentials and pseudonyms is needed. For policy authors—
who are not expected to understand the cryptographic specifics of anonymous
credentials—it is crucial that the policy language is only concerned with intelligible
high-level concepts, but not with cryptographic details. Secondly, a corresponding
claim language for a user to make statements about her pseudonyms, her
credentials, and the properties of attributes that are certified in these credentials
is necessary. Thirdly, an evidence specification language that directs the token
evidence generation and verification in the underlying anonymous credential
system is required. While the latter type of language exists for Idemix and U-
Prove, the necessary policy and claim languages were developed in this doctoral
project because existing languages did not provide the desired expressivity.

For application developers who build data-minimizing authentication systems
with anonymous credentials, it is important that the anonymous credential systems
can be operated with languages that hide their cryptographic details as much as
possible. The currently existing anonymous credential system implementations
(of Idemix and U-Prove), however, are operated with implementation-specific
evidence specification languages which are complex, unintuitive, and even require
cryptographic background knowledge. This makes it almost impossible for
application developers to use these implementations. To this end, our generic,
implementation-independent policy and claim languages—which abstract away
from the cryptographic mechanisms and focus on the underlying concepts—as
well as corresponding algorithms for an automatic transformation from the high-
level languages into the low-level evidence specifications are indispensable. For this
reason, we also show in this work how these transformations are performed [9].
This enables application developers to control the anonymous credential systems
solely by means of the generic languages that merely require an understanding
of the general credential concepts, but not of the underlying cryptographic
mechanisms. Accordingly, lowering the burden for using anonymous credential
systems also facilitates the implementation of data-minimizing authentication
systems.

To allow for utilizing the advanced issuing features of anonymous credentials,
adapted versions of the mentioned policy and claim languages are also needed.
In fact, to properly operate all aspects of anonymous credential systems that are
relevant for data-minimizing authentication, also languages to express credential
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type specifications, issuer specifications, as well as issuer- and revocation authority
parameters are required. On that account, we developed a whole language
framework [31, 9, 21] (see Section 4.1), that is, a set of coherent languages,
that addresses system setup, credential presentation, and credential issuance—
including the revocation of credentials. In this framework, the policy and claim
languages that are concerned with the presentation of credentials are called
presentation policy languages and presentation token languages, respectively. The
ones that are concerned with issuance are called issuance policy languages and
issuance token languages.

Another aspect in data-minimizing authentication systems that is concerned
with language development is usage control. For each piece of information whose
disclosure is demanded by the authentication policy, the server may optionally
specify by means of a usage control policy language how the disclosed information
will be treated (for example, how long the data will be retained or for which
purposes it will be used). In case the user’s evaluation of the usage control
policy shall be automated, also a language to express a user’s privacy preferences
is needed. In Bussard et al. [18], see page 157, we propose a two-sided usage
control language allowing service providers to specify how they intend to treat
the requested data on the one hand, and users to specify their usage control
preferences on the other. The authentication policy language that we propose
contains placeholders for usage control policies that service providers can use to
state the intended data usage.

In the following two sections, we briefly introduce the languages associated
with credential presentation and issuance.

3.3.1 Presentation Policy- and Token Languages

The presentation policy language that we propose allows for expressing authentica-
tion requirements in terms of credentials and pseudonyms in a technology-agnostic
way. More precisely, the language is capable of expressing the following types of
requirements: which attribute-based credentials of a certain issuer of a certain type
a user has to own; which attributes of these credentials have to be revealed; which
predicate has to hold over the credentials’ attributes—no matter if the attributes
are revealed or not; whether the user has to provide pseudonyms—which possibly
must have been established in a previous transaction; which pseudonyms and
credentials must be bound to the same secret key; which attributes have to be
revealed to third parties; and which statements a user has to consent to.

One of the key features in terms of data minimization is the attribute predicate,
which is a Boolean expression that allows for applying logical, comparison, and
arithmetic operators to attributes, constants, and further expressions. This also
includes predicates involving attributes from different credentials. The most
important aspect in terms of privacy preservation is, however, that predicates
may also involve attributes that are not revealed. The support for pseudonyms
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01: own dl::DriversLicense issued-by DeptMotorVehicles

02: own mc::MemberShipCard issued-by CarRentalCo

03: own cc::CreditCard issued-by Amex,Visa

04: own li::LiabilityInsurance issued-by InsuranceCo

05: reveal cc.number
06: reveal li.pNo to EscrowAgent under ‘in case of damage’
07: where dl.issueDate≤dateSubtrDuration(today(), P3Y ) ∧
08: li.guaranteedAmoutUSD ≥ 30.000 ∧
09: (mc.status == ‘gold’ ∨ mc.status == ‘silver’) ∧
10: dl.name == li.name
11: sign ‘I agree with the general terms and conditions.’

Figure 3.2: Example CARL authentication policy for car rental service [9].

enables users to authenticate pseudonymously while service providers may dictate
the use of previously established pseudonyms.

The development of our presentation policy language took place in two
steps, where the pseudonym and key binding capabilities were only added in
the second step. Moreover, while the initial version of the language—which is
called credential-based authentication requirements language (CARL) [31]—has a
natural-language like syntax, the version supporting pseudonyms is given in XML
format [21]. To give the reader an intuition into our policy language, in Figure 3.2
we provide an example CARL authentication policy for a car rental service that
illustrates the most relevant features. We refer to Chapter 4 and the individual
publications [31, 9, 21, 18] for further details on the full policy and token languages
including pseudonyms and key binding.

According to the example policy, users must fulfill the following six require-
ments: (1) have their driver’s license for at least three years, (2) have gold or silver
membership status with the car rental company, (3) reveal their American Express
or Visa credit card number, (4) reveal the policy number of the driver’s liability
insurance—with a coverage of at least thirty thousand dollars—to a trusted escrow
agent who may disclose this number only in case of damage to the car, (5) consent
to the general terms and conditions, and (6) have the driver’s license and the
insurance issued to the same name.

Users who fulfill this policy, ideally reveal—aside from their credit card
number—merely the facts that they do own credentials of the stated types from
the stated issuers, those credentials do fulfill the stated predicate, and they indeed
disclosed the proper values to the escrow agent. In particular, the server neither
learns the exact values of the attributes occurring in the attribute predicate nor
the number of the insurance policy. However, despite the users’ preserved privacy,
they are accountable in case of damage due to the information the escrow agent
learned. Note that certain policy elements (for example, Visa) represent aliases
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(for example, to cryptographic keys) that are resolved by the credential technology
that is used to fulfill the policy.

Our presentation token language, which is used to express a user’s claim,
follows generally the same schema, however, exhibits three differences. Firstly, for
credential ownership, presentation policies allow for specifying a list of issuers and
credential types where ownership can be proved for any of those issuers and types.
To guide the underlying credential technology on which cryptographic key to use
for generating the claim’s evidence, the presentation token language states just one
issuer and type per credential. Secondly, disclosure requests for attributes that are
to be revealed to the service provider directly are only meaningful in policies. In
the presentation token description, users must rather comply with those requests
by disclosing the corresponding attribute values. Thirdly, similar to the disclosure
requests for attributes, while presentation policies request one or multiple of a
user’s pseudonyms, it is the purpose of presentation token descriptions to provide
concrete pseudonym values.

3.3.2 Issuance Policy- and Token Languages

In Section 2.4, we mentioned that anonymous credential systems allow for
advanced issuance scenarios if the issuance is performed on the basis of a preceding
credential presentation transaction. This capability can be employed to implement
data-minimizing credential issuance scenarios—that is, scenarios where a user
discloses only as much information as strictly necessary for obtaining a new
credential. Consider a data-minimizing authentication scenario (as described in
Section 3.2) with the resource, which is requested by the user and for which
she authenticates, being a credential. In such a scenario, the authentication
requirements become issuance requirements that—in addition to the standard
authentication requirements—state the relation between the credentials to present
and the new credential that is about to be issued. In particular, this relation is
specified in a credential template that contains the following information: the
credential type of the new credential, which attributes of the new credential are
carried over from which attributes of existing credentials, to which credential or
pseudonym the newly issued credential is bound, and which attributes are assigned
jointly generated random values. We call the combination of such a template
and a presentation policy an issuance policy. Users respond to issuance policies
with special presentation tokens—called issuance tokens—that contain additional
cryptographic evidence so that the data-minimizing issuance can take place.

To enable data-minimizing credential issuance scenarios, adequate languages
to express issuance policies and issuance token descriptions as well as respective
algorithms that execute the cryptographic issuance protocols on the basis of such
policies must be available. In Camenisch et al. [21], see page 93, we take the first
step in enabling these scenarios by proposing the necessary languages.
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3.4 System Components

In this section we provide detailed descriptions of the individual components
involved in a data-minimizing authentication transaction—that is, in a token
presentation transaction. In particular, we describe the components shown in
Figure 3.1 one by one.

3.4.1 Policy Discovery

As mentioned in Chapter 1, authentication is usually not an end in itself.
Most commonly, information systems authenticate users so that their requests
to perform actions can be authorized or that they can be held accountable for
the actions they perform [60, p. 34]. Therefore, authentication requirements
are typically not standing by themselves, but are incorporated into authorization
policies that govern who is permitted to perform which action on which resource
or service. In data-minimizing authentication systems, the who-part of such
authorization policies states the authentication requirements and is expressed in
terms of the characteristics that users must have (for example, being a teenager)
for being permitted to access some service (a teenage chat room, for example).

When a service provider receives a service request, the system has to
discover the authorization policy that is applicable to the request, extract
the authentication requirements, possibly pre-process them, and send them as
authentication policy to the user. The pre-processing step ensures that all non-
constant elements of the authentication policy are evaluated to concrete values so
that there is no confusion during policy verification with respect to which values
the verification is performed. For example, age requirements are usually expressed
by relating the user’s date of birth attribute to the current date—that is, the date
of the access request—where the policy only contains a placeholder for the current
date; this placeholder has to be resolved accordingly.

In situations where multiple policies from possibly different sources govern
the access to the requested service, the authentication requirements must be
adequately combined. The exact details of such combination, however, are out
of the scope of this work.

3.4.2 Claim Generation

When a user receives the authentication policy applicable to her service request
(or resource request), the user’s system must determine whether and how this
policy can be fulfilled. In particular, the user’s system locally determines which
claims that fulfill the given policy can be made with respect to the credentials
available in the user’s credential portfolio. To this end, first the different options
of assigning credentials from her portfolio to the credential variables occurring
in the policy such that the policy is fulfilled are computed. We call one such
option a credential assignment; more precisely, a credential assignment of a user
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is a total mapping from the credential variables occurring in an authentication
policy to instances of credentials that the user owns. We further call a credential
assignment valid for a given policy if the policy can be fulfilled by assigning the
credential variables according to the assignment. All valid credential assignments
that are found are then the basis for generating technology-specific claims that
fulfill the policy. In case no assignments are found, the user is informed that her
credentials are not sufficient for fulfilling the authentication requirements. With
the currently available cryptographic techniques, only for credential assignments
that are technology consistent, that is, that map to credential instances that
all have the same underlying credential technology, cryptographic evidence can
be generated. Therefore, inconsistent assignments are disregarded during claim
generation.

Computational Complexity Of Assignment Determination

An important aspect of claim generation is to determine all valid claims—and
thus credential assignments—of a user for a given policy, because otherwise a
user cannot make an informed decision on what is the most privacy-preserving
way to fulfill the policy. The computational complexity of determining all valid
credential assignments depends on two factors: the user’s credential repository and
the authentication policy. The more credentials are required by the policy and the
more credentials a user has in her repository, the more assignments must be tested
on validity. This is because initially all credentials in the repository are candidates
for every credential variable in the policy. In realistic use cases, however, filtering
the possible candidates for a credential variable by credential issuer and credential
type before testing the validity is sufficient for limiting the number of possibilities
to a size that is easily processable. This is because users typically have only very
few credentials from the same issuer of the same type.

The computational complexity of assignment determination may only become
a problem in situations where these two prime filter criteria (issuer and type)
are not sufficient, that is, where a user has a multitude of credentials from the
same issuer of the same credential type. In such situations, an optimized variant
of the assignment algorithm can be used that employs additional filter criteria
on the variable candidates on the basis of the policy’s attribute predicate: first,
the predicate formula is transformed into disjunctive normal form2 (DNF) and
monomials that only involve a single credential variable—which sub-predicates are
called variable-specific—act as additional filter criteria for the respective variable.
This filter technique may be extended to cross-credential monomials, which are
sub-predicates that involve two or more credential variables. Depending on the
availability of variable-specific or cross-credential sub-predicates, various strategies
for combining different filter criteria are conceivable.

2An atomic proposition or its negation is called a literal. A monomial m is a finite conjunction
of literals, that is, m = ℓ1 ∧ . . .∧ℓn where ℓ1, . . . , ℓn are literals. Disjunctive normal form (DNF):
finite disjunction of monomials, that is,

∨

i

∧

j
ℓij .
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A general alternative to pre-computing all valid assignments is to compute
them on the fly on the basis of the user’s input during claim selection.

Technology Dependence Of Claim Generation

In an ideal system implementation, for each valid credential assignment one
minimal claim is generated, that is, a claim that only discloses as much information
as demanded by the policy. However, the currently available anonymous credential
system implementations support only a subset of the theoretically—that is,
cryptographically—provable statements. Until this deficiency is mended, claim
generation algorithms that are tailored to the capabilities (and restrictions) of the
implementation at hand must be employed accordingly (see Section 4 on page 141
in Bichsel et al. [9] for detailed restrictions of the current Idemix and U-Prove
implementations). Figure 3.1 depicts this as technology-specific software modules
(for example, IDMX represents an Idemix module) that are part of the claim
generation component; such modules must be available on the user’s system for all
the technologies (that is, anonymous credential systems) that were used to issue
her credentials.

Depending on the particular restrictions, technology-specific algorithms may
generate multiple claims from one credential assignment. For example, the current
Idemix implementation is not capable of proving disjunctive statements—which is
why a claim must be generated for every valid monomial in the DNF of the policy’s
attribute predicate. It is important to consider the implementation deficiencies
already during claim generation rather than during evidence generation because
users need to know about these limitations to make informed decisions during
claim selection. For example, a user must be informed about the fact that she is
about to disclose which part of a disjunctive statement she fulfills.

Implicit Information Disclosure Detection

When authentication policies are not verifiable by the user with respect to a trusted
policy certification authority (see Section 3.1), users may fall for maliciously
formulated authentication policies that are intentionally formulated in an overly
complex or confusing manner. For example, if the policy demands that one of
the user’s attributes must be revealed and the attribute predicate requires this
attribute to be equal to another attribute, the latter is obviously revealed too.
Another evident example is a policy with an attribute predicate where the value
of a numerical attribute is restricted from two sides such that the value is effectively
disclosed. Although patters like these may remain unrecognized by credulous or
unobservant users, they can easily be discovered by a computer system. Hence, to
avoid unintentional implicit information disclosure, the user’s system must detect
such patterns, inform the user during the claim selection accordingly (for example,
by displaying the respective attributes as if they were explicitly disclosed), and
notify the user about potential malicious intentions of the service providers.
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Informative Insufficiency Feedback

In case a user’s credentials are not sufficient for fulfilling the given authentication
requirements, simply learning that the policy cannot be fulfilled would be
very unsatisfying for the user. The assignment algorithm therefore must be
implemented in a way such that the user can be provided with error feedback that
informs her about the reason why she cannot fulfill the policy. Possible reasons
are that she simply does not have a credential from the required issuer and/or the
required type, or—in case she does—which of the required attribute properties are
not fulfilled by her credentials. Having such information, the user has to possibility
to obtain new credentials accordingly and authenticate successfully afterwards.

3.4.3 Claim Selection

After the user’s system has determined the possible claims that can be made on
the basis of the user’s credentials to fulfill the given policy, one of these claims
must be chosen. For the user to make an informed decision about which of these
claims is most suitable for the current authentication transaction—for example,
in terms of privacy preservation—a graphical user interface (GUI) assists the
user in making her choice. (As claims may disclose information related to a
user’s identity, such graphical user interface is sometimes referred to as identity
selector.) Also in situations where the user can make just a single claim to fulfill the
policy, this interactive step of involving the user is necessary—or at least strongly
advisable—because it informs the user about the information that is about to
be disclosed when continuing the transaction. Before the information related to
the selected claim is effectively disclosed, the user’s system should explicitly obtain
confirmation from the user via the GUI, so as to avoid any confusion about whether
and when personal information is revealed.

A further purpose of the claim selection GUI is to visually present to a user
which information is about to be disclosed to whom in case the transaction is
continued. That is, it shall be conveyed which information is about to be revealed
to the service provider directly, and which information is indirectly revealed in
encrypted form to trusted third parties (that is, inspectors). To minimize the
burden on the user, we recommend that the claim selection information and
the disclosure information are combined in the GUI. For example, whenever a
user selects a claim, the disclosure information related to this claim could be
displayed (see Section 3.6).

As described by Wästlund et al. [89], the design of user-friendly interfaces
that convey anonymous credentials’ privacy benefits to users is a major challenge:
users are unfamiliar with the new and rather complex concept of anonymous
credentials and additionally no obvious real-world analogies exists that can help
them create the correct mental models. The authors recommend an approach
where an adapted card is used to convey the notion that only the information in
the adapted card is sent to the service provider and nothing else. On top of their
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approach, we recommend that an adapted card is displayed for every information
recipient, and that the information in an adapted card is arranged at least in the
following categories: proofs of ownership, pseudonyms, disclosed attribute values,
and attribute properties. The proofs of ownership category merely comprises
credential issuer and type information for the credentials of which the service
provider will learn that the user owns them; the pseudonym category tells the
user which pseudonyms—preferably in terms of a human-readable name that is
associated with the pseudonym—the service provider will learn about; the attribute
values category lists all the attributes together with their values which are fully
disclosed to the service provider; the attribute properties category itemizes all
facts that the service provider will learn about the user’s credentials (for this
purpose, the claim’s attribute predicate may have to be transformed into DNF
whose monomials act as items in the list that is presented to the user). In
addition to the categorization, we further recommend that the GUI assists the
user in making an informed decision by indicating whether a selected claim is
minimal with respect to the policy or not. Another challenge in conveying to a
user which information is actually disclosed and in designing respective GUIs are
cross-credential requirements, that is, attribute predicates that involve attributes
from different credentials. For assisting the user in making the optimal choice in
terms of privacy preservation, anonymity metrics may be employed as proposed
by Verslype [87].

If a user frequently authenticates to the same service provider under the same
authentication policy, the user’s system may store the user’s decision on which
claim is selected and—with the user’s explicit agreement—accordingly disclose
the related information automatically. Such automatism makes the authentication
transparent and more convenient for the user.

In situations where an authentication policy also comprises data handling
information, in addition to the information that is about to be disclosed, the
GUI must also provide the user with details on how the information is treated
after it is disclosed. For example, it is relevant for the user for what purpose the
disclosed data is used, and with whom and under what conditions it may be shared
with whom. In Bussard et al. [18], see page 157, we have developed a dedicated
usage control language that is capable of expressing such facts. However, policies
expressed in this language first have to be prepared for visual presentation to the
user.

3.4.4 Evidence Generation

As soon as a user has explicitly confirmed via the claim selection GUI that a
particular claim (which is expressed in a generic token description language)
shall be proved to the service provider, the user’s system must generate
respective cryptographic evidence that supports this claim. Because the existing
implementations of Idemix and U-Prove both produce evidence on the basis of
evidence specifications expressed in nongeneric languages, the technology-agnostic
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token description expressing the claim must be transformed into implementation-
specific evidence specifications that are semantically equivalent. (For Idemix and
U-Prove these evidence specifications are called Idemix proof specification and U-
Prove token specification, respectively.) Thus, for generating evidence for a given
claim, the user’s system first determines the credential technology underlying
the claim and utilizes a respective anonymous credential system module (see
Figure 3.1) to transform the claim into a proof specification and to produce
cryptographic evidence by means of this specification. Finally, the generated token
evidence is sent together with the token description as presentation token to the
service provider for verification.

In Bichsel et al. [9], see page 129, we show how a generic token description
can be transformed into a semantically equivalent Idemix proof specification that
supports all attribute properties except logical disjunctions. This is a crucial step
for making Idemix usable for application developers because they no longer have
to deal with its complex specifics but can rather control the library solely by means
of technology-agnostic and easily understandable token descriptions.

3.4.5 Policy Verification

When a service provider receives a token that is presented by a user to gain
access to some service, the service provider verifies whether the statements made
in the token description fulfill the authentication policy that was initially provided
to the user for this service request. In particular, the token description fulfills
the policy if (all of) the following conditions hold: the requested proofs of
ownership are provided for credentials of the correct type and issuer; the attribute
value disclosure requests are fulfilled—that is, the requested attribute values are
disclosed; the proven attribute predicate implies the one requested by the policy;
the correct message is signed; the correct information is verifiably encrypted for
third parties; and the requested pseudonyms are provided and also have the correct
key binding relations to other pseudonyms and/or credentials. In Camenisch et
al. [21, Section 5.5], see page 117, we provide precise formal definitions on when a
presentation token description fulfills a presentation policy.

Note that verifying whether the preceding conditions hold does not involve
the performance of any cryptographic operations, that is, checking whether the
token description fulfills the policy is done on a pure logical level, rather than a
cryptographic one.

3.4.6 Evidence Verification

The validity of the presentation token (consisting of a token description and token
evidence) that is provided by the user must be verified by the service provider.
More precisely, the service provider verifies whether the claim that is made in
the token description is supported by the accompanying token evidence—that is,
whether the claim is authentic. This includes verifying whether the credentials
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that were used to derive the evidence are valid in the sense that they are not
revoked (see Section 2.5). In Camenisch et al. [21, Section 5.4], see page 114, we
mathematically define the conditions on when a user can prove a given presentation
token with respect to her credential and pseudonym portfolio.

For verifying a token, the service provider’s system first transforms the user-
provided token description into a technology-specific evidence specification in the
same way as this was done by a user’s system to generate the evidence (see
Section 3.4.4). For the service provider to know which technology was initially
used to generate the evidence and hence to know which technology module must
be used to verify it, the token description contains a corresponding hint. Then,
both the technology-specific evidence specification obtained by the transformation
and the token evidence serve as input to the respective cryptographic library for
verifying the evidence. The library answers in a Boolean fashion stating whether
the evidence supports the evidence specification and thus whether the evidence
supports the token description.

3.5 Security Properties

In the following, we define the security properties of our data-minimizing
authentication system. For showing that these properties are fulfilled, we rely on
the unforgeability property of anonymous credentials (see Chapter 2): users can
convince verifiers of the fulfillment of technology-specific evidence specifications
only if they own the necessary credentials and pseudonyms. Additionally, we
assume that adequate sharing prevention techniques are employed that prevent
users from passing their credentials on to others (see Chapter 2).

Security Property 1. A user must not be able to convince a verifier of fulfilling
a claim expressed in a token description if the token evidence does not support
the claim, that is, a user can convince a verifier of fulfilling a given claim only if
this claim is semantically equivalent to the accompanying evidence.

Security Property 1 is fulfilled because the user does not provide the service
provider with the technology-specific evidence specification that is used by a
cryptographic library for verifying the token evidence, but rather sends the
generic token description (Message 3 in Figure 3.1), which is transformed into
a technology-specific evidence specification independently by the service provider.
The only way how this property can be violated is if a malicious transformation
algorithm is unknowingly employed by the service provider, which algorithm does
not translate token descriptions to semantically equivalent evidence specifications.
Accordingly, in a service provider’s uncompromised computing infrastructure,
evidence verification (Component 3b in Figure 3.1, see Section 3.4.6) ensures that
Security Property 1 holds.

Security Property 2. A user must not be able to convince a verifier of fulfilling
an authentication policy if the user’s credentials or pseudonyms do not fulfill the
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policy, that is, a user can convince a verifier of fulfilling an authentication policy
only if her credentials and pseudonyms indeed fulfill the policy.

Given a user’s token consisting of a token description and token evidence,
Security Property 2 is fulfilled because, one the one hand, the service provider’s
policy verification algorithm (Component 3a in Figure 3.1, see Section 3.4.5)
ensures that the token description fulfills the given authentication policy and,
on the other hand, Security Property 1 ensures that users can only create token
descriptions that are in accordance with their credentials and pseudonyms. This
property can only be violated if Security Property 1 is violated, or if the service
provider’s computing infrastructure is compromised in that a malicious policy
verification algorithm is employed without the service provider having knowledge
about it. Said differently, as long as the user cannot influence the service provider’s
policy verification algorithm, Security Property 2 is fulfilled.

From the user’s point of view, a desired security property would be to have some
form of assurance that, upon successful fulfillment of the stated authentication
policy, access to the requested service or resource is granted. On the one hand,
the guaranteed permission to computing services seems impossible because in the
end users are always dependent on the goodwill of the service provider. On
the other hand, for resources that can be transferred to the user before the
authentication (for example, in encrypted form), oblivious transfer techniques [22]
may be employed. However, this is out of the scope of this work.

3.6 Implementation

To show that our ideas are feasible and efficiently realizable, and to make
data-minimizing authentication more accessible for the general public, we have
implemented an open-source software framework for rendering data-minimizing
authentication decisions on the basis of attribute-based credentials. This
credential-based authentication framework (CBAFx)3 provides a toolbox that
application developers can use to implement data-minimizing authentication
solutions. By means of the framework, we also developed a full-fledged prototype
implementation [9, 11] of a data-minimizing authentication system including a
graphical user interface for claim selection (Component 2b in Figure 3.1). On the
basis of the holistic prototype implementation, we performed time measurements
that show the efficiency of our approach. In the following, we describe our
framework, the prototype, and the timing results.

3.6.1 Open-Source Authentication Framework

The CBAFx is open to be used with any attribute-based credential technology
in that it provides a plug-in mechanism for integrating software modules which

3In software development, the term Framework is sometimes abbreviated with FX or Fx.
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are responsible for a particular credential technology such as Idemix (see the
IDMX modules in Figure 3.1). Our framework is operated by variants of the
CARL policy language [31] and a corresponding CARL-based claim language [9];
both variants are subsets of CARL and support the three most crucial features
for realizing privacy-preserving authentication: proofs of ownership, selective
attribute disclosure, and attribute predicate proofs.

The software framework itself comprises all technology-agnostic components:
the CARL policy language variant, the corresponding CARL-based claim language
variant, language parsers, a type system for attribute predicates, a pre-evaluation
function of CARL policies (Component 1a in Figure 3.1), credential assignment
determination—together with a mechanism to call the correct technology-specific
claim generation module (Component 2a), mechanisms to invoke the technology-
specific evidence generation and verification modules (Components 2c and 3b),
and policy verification (Component 3a).

In addition to the technology-agnostic components, we also provide the
necessary Idemix modules (for Idemix version 2.3.3). These modules are capable of
generating claims that are tailored to the restrictions of the Idemix implementation
(see Section 3.4.2) as well as of producing and verifying Idemix-specific token
evidence. This includes the ability to transform CARL-based token descriptions
into Idemix proof specifications. The automatic transformation is a crucial step
in facilitating the use of Idemix for application developers. In Bichsel et al. [9],
see page 129, we describe the exact details on this transformation.

Our assignment algorithm uses a credential’s issuer and type as filter criteria
(see Section 3.4.2). It further features a simple insufficiency feedback mechanism
that is capable of reporting for which credential variables no candidates were found.

The plugin-mechanism of the framework also allows for the use of credential
technologies that are not privacy-preserving (X.509, for example) or not fully
privacy-preserving (for example, the current U-Prove implementation): properly
implemented claim generation modules can ensure that data-minimizing authenti-
cation policies can be fulfilled with these technologies nevertheless. For example, to
fulfill a policy demanding proof of an attribute predicate, with U-Prove credentials
the attributes that are involved in the predicate have to be revealed, and with
X.509 certificates all attributes of all credentials involved in the attribute have to
be revealed (see Bichsel et al. [9, Section 4.1] on page 141).

We implemented the CBAFx in Java and employed the Eclipse Xtext language
framework [52] (version 1.0) to create both a language parser and the Java object
model for CARL, as well as the Xtext Typesystem [88] (version 1.5) to define the
type system for the CARL attribute predicates. The CBAFx has been released
as Open Source Software under the Eclipse Public License and is available for
download at the website of the EU project PrimeLife [75], where also the Idemix
cryptographic library is available.

The EU project ABC4Trust [1] is currently building on the results (and
partially on the source code of) the CBAFx to implement an extended software
framework that supports also the privacy-preserving features of anonymous
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credential systems that are not supported by the CBAFx—that is, pseudonyms,
key binding, message signatures, and verifiable encryption—including issuance and
revocation.

3.6.2 Prototype and Time Measurement

As mentioned previously, the CBAFx provides a general toolbox for implementing
data-minimizing authentication transactions. For an executable and presentable
solution, however, components that handle all the involved messages as well as a
claim selection GUI is needed. Therefore, we implemented a prototype that adds
these necessary elements.

In particular, our setup comprises the following elements: a static example
credential repository, a static web page with an editable CARL policy input field
that simulates the server’s policy discovery, a Java servlet for the user that is
waiting at a well defined local URL for input consisting of one or multiple CARL
policies (with disjunctive semantics) as well as a URL to send the presentation
token to, and a Java servlet for the server that is waiting for presentation tokens
in order to verify them.

Submitting the input form on the static web page on the user’s host in a web
browser calls the user’s servlet and thus simulates an authentication policy coming
from a server (Message 2 in Figure 3.1). The servlet uses the CBAFx to compute
the possible claims and accordingly displays a GUI4 that is shown as overlay in
the user’s browser. In case the user’s credentials are sufficient for fulfilling one of
the policies, a claim selection GUI is displayed (see the following subsection). In
case the credentials are not sufficient for fulfilling the policies, the GUI informs
the user about the credentials that are missing (see Figure A.3 in Appendix A).
When the user’s servlet URL is called with an empty policy, a GUI displaying the
user’s credential repository is shown (see Figure A.1 in Appendix A).

After a user confirms the information disclosure in the claim selection GUI, the
user’s servlet generates a presentation token, transforms it into Base64 encoding—
so that it can be forwarded within an HTTP request—and submits the encoded
token to the service provider’s servlet (residing at the initially provided URL) for
verification. The service provider’s servlet forwards the user to a web page that
shows the success (or failure) of the verification.

Graphical Claim Selection User Interface

Our prototype claim selection GUI follows the adapted card proposal of Wästlund
et al. [89] as well as the recommendations that we put forward in Section 3.4.3.

4We implemented our GUI by means of the Eclipse Rich Ajax Platform (RAP) [51] that
allows for implementing GUIs in terms of standard Java code which is compiled to a Java
servlet. Interactions with the GUI are translated in real time to Asynchronous JavaScript and
XML (AJAX) messages: these messages are processed by the servlet container which instantly
responds with GUI updates that are shown by the web browser.
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In particular, in addition to claim selection functionality, it is visualized which
information is revealed with the currently selected claim in case the user proceeds.

Figure 3.3 shows such GUI as browser overlay for a policy that has three
credential variables (see Appendix A.1 for the exact policy). For every credential
variable, a variable box is shown that contains icons for all credentials of the user’s
repository that appear in any of the computed credential assignments for this
particular variable. To proceed, users have to make a selection in every box where
only one icon per box can be selected at a time (as indicated by the radio buttons
in Figure 3.3). For the user’s convenience, the GUI automatically pre-selects the
credentials according to the first credential assignment that is found. At the same
time, the GUI ensures that only valid combinations of credentials can be selected
across the different boxes, that is, that there exists a credential assignment that
contains all the currently selected credentials.

What is actually chosen in the GUI by means of the variable boxes are
credential assignments. Because there is not a one to one relation between
credential assignments and claims (for example, because Idemix cannot prove
disjunctive statements, see Section 3.4.2) an additional selection mechanism is
needed if a selected assignment maps to multiple claims.

When there is a credential icon selected in every variable box—and it is
unambiguous which claim corresponds to that respective credential assignment—
that claim is displayed in a structured form as Adapted Card consisting of three
parts. The first part shows what information is disclosed in terms of credential
ownership—that is, it contains information of which type and from which issuer
the selected credentials are. The second part shows the information revealed to the
service provider in clear text, and the third part indicates the attribute properties
(that is, facts) that are revealed to the service provider. Thus, it is clearly displayed
what information is disclosed to a service provider in case the user proceeds and
proves the claim.

In case multiple disjunctive policies are provided to the claim selection GUI, a
set of variable boxes is displayed for every policy (see Figure A.2 in Appendix A).

Timing Results

Table 3.1 shows time measurement results that concern all aspects of a data-
minimizing authentication transaction performed with our prototype implemen-
tation. We structure our timing results in three phases: a user’s preprocessing
phase—covering the time period from receiving an authentication policy to
finishing the rendering of GUI elements for the claim selection;5 a user’s
postprocessing phase—covering the time period from a user’s confirmation of
information disclosure in the browser (via a Submit button) to being ready to
submit the generated presentation token to the service provider; and a server’s
verification phase—covering the time period from receiving a presentation token

5This does not include the time that the web browser takes for rendering the generated AJAX
update. However, this factor is negligible.
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Phase 1. Run 2. Run 3. Run Mean

Preprocessing (user) 1296 ms 1301 ms 1272 ms 1290 ms

Policy parsing 923 ms 961 ms 915 ms 72.3 %
Assignment determination 16 ms 16 ms 17 ms 1.3 %
Claim generation 35 ms 34 ms 33 ms 2.6 %
Claim selection GUI rendering 322 ms 290 ms 307 ms 23.8 %

Postprocessing (user) 1464 ms 1484 ms 1496 ms 1481 ms

Claim transformation 28 ms 24 ms 33 ms 1.9 %
Idemix evidence generation∗ 1357 ms 1382 ms 1385 ms 92.8 %
Token serialization to Base64 79 ms 78 ms 78 ms 5.3 %

Verification (server) 1499 ms 1547 ms 1516 ms 1521 ms

Token de-serialization from Base64 58 ms 76 ms 67 ms 4.4 %
Claim transformation 7 ms 7 ms 8 ms 0.5 %
Idemix evidence verification∗ 1289 ms 1306 ms 1287 ms 85.1 %
Policy verification 145 ms 158 ms 154 ms 10.0 %

Table 3.1: Prototype implementation time measurements. Indentation in the first
column indicates sub-phases. Policy parsing is the transformation of the textual
CARL policy into Java object form. Legend: ∗ cryptographic operation.

to reaching a decision on whether the authentication is successful. The table
shows the timing results for three consecutive independent test runs together with
arithmetic means in absolute numbers (for the totals) and as percentage (for the
sub-phases). For simplicity, we run both the user’s servlet and the server’s servlet
on the same host in the same servlet container. To minimize caching influences, the
web server hosting the respective Java servlet was restarted between the individual
test runs.

During the test runs, the user’s credential repository comprised 6 Idemix cre-
dentials (see Appendix A.2.1), and the authentication policy contained 4 credential
variables and an attribute predicate with 9 monomials (see Appendix A.2.2).
The cryptographic keys that were used to issue these Idemix credentials had a
1024-bit RSA modulus. The exact test data and cryptographic parameters that
were used for performing the time measurements are given in Appendix A.2. As
test environment served a Lenovo notebook, model X220, with an Intel Core i5-
2540M processor (2.6 GHz clock speed, 2 cores, 4 threads), 4 GB memory, a
64-bit Windows 7 Professional operating system (Service Pack 1), and 32-bit Java
version 1.6.0_29.

For the user’s preprocessing phase, the results show that policy parsing (that
is, transformation of the textual CARL policy into Java object form) and the
rendering of the claim selection GUI amount together to average 96.1 percent of
the total average 1290 milliseconds. That is—at least for the given test data—the
time spent on assignment determination and claim generation is with approximate
total 50 milliseconds and 3.9 percent temporally as well as proportionately very
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short. For the reasons given in Section 3.4.2 on computational complexity, we
expect that this desirable result also scales to scenarios with larger credential
portfolios and more complex policies than the ones used in our test environment.
Noteworthy, however, is the considerably long policy parsing sub-phase. This can
be explained by the use of a highly flexible language framework [52] (which is
capable of handling user-defined domain-specific languages) for parsing, rather
than a dedicated parser that is specifically optimized towards our policy language.
The total 1.29 seconds for the preprocessing phase are a reasonable period of time,
but future research should focus on reducing this figure (for example, by employing
an optimized language parser) to improve the user’s experience.

In the user’s postprocessing phase, the Idemix evidence generation takes
as cryptographic operation with 92.8 percent of the total 1481 milliseconds as
expected clearly the major part. The time spent on claim transformation is with
1.9 percent negligible. A reduction of the reasonable total 1.48 seconds is mainly
dependent on efficiency improvements of the cryptographic evidence generation
operation—but this is out of the scope of this thesis.

In the server’s verification phase, again, the cryptographic Idemix evidence
verification operation amounts with 85.1 percent as expected to the main part of
the total 1521 milliseconds. The non-cryptographic policy verification takes with
approximate average 152 milliseconds 10 percent of the total time spent on token
verification. Also in this phase, the total 1.52 seconds are reasonable and a time
improvement is mainly dependent on the underlying cryptographic mechanisms.
The average 7 milliseconds for claim transformation in this phase are remarkably
faster than the average 28 milliseconds that the transformation of the same claim
took in the postprocessing phase. This speed increase can be explained by caching
dynamics because both the user’s servlet and the server’s servlet are running in
the same servlet container.

Summarized, the computational overhead entailed by the algorithms proposed
in this thesis are negligible with respect to the time needed to generate and verify
the cryptographic evidence that supports users’ claims.





Chapter 4

Contributions

S
ummarized, the contribution of this work can be described as the develop-
ment of the missing building blocks that are necessary for implementing an
authentication system that preserves its users’ privacy by minimizing the

disclosed information with respect to an authentication policy. In particular, we
provide a language framework for privacy-preserving attribute-based credentials,
we describe evaluation algorithms for determining whether credential-based
authentication requirements are fulfilled, we define a formal system semantics
of our authentication system, and we show how standardized infrastructure can
be extended to support our approach. In the following, we outline our research
contributions and describe how the individual publications that are included in
this thesis fit together.

4.1 Language Framework for Privacy-Preserving

Attribute-Based Authentication

Our contributions in the language space can be summarized as abstracting away
from all specifics of anonymous credential systems, focusing on the underlying
identity concepts rather than the cryptographic mechanisms, casting these
concepts into one coherent language framework that is instantiable with different
technologies or even combinations thereof, and therefore making them available
to application developers without requiring them to know the specifics of the
underlying cryptographic mechanisms.

Credential-Based Authentication Requirements Language (CARL)

In Camenisch et al. [31], see page 193, we propose a policy language for expressing
authentication requirements in terms of attribute-based credentials. We refer
to this credential-based authentication requirements language as CARL. The

53
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language is specifically targeted at the privacy-preserving functionality supported
by anonymous credential systems (see Chapter 2). In particular, CARL is capable
of expressing which attribute-based credentials a user has to own (i.e., proof of
ownership), which attributes of these credentials have to be revealed (i.e., selective
disclosure), which predicate has to hold over the credentials’ attributes—no matter
if the attributes are revealed or not, which attributes have to be revealed to third
parties (i.e., inspection), which statements have to be consented to (i.e., message
signatures), and how often the credentials may be used in total (i.e., consumption
control). The core properties of CARL are technology independence, privacy
preservation, support for multi-credential and cross-credential predicates, and its
intuitive natural-language-like syntax. While other languages exist that have some
of these properties [31, Section 2], CARL supports of all of them simultaneously.

The language is technology independent in the sense that it hides all specifics of
the technology underlying the employed credentials. Thus, it allows for expressing
authentication requirements without having to worry about implementation
details. Although the main goal of CARL is to support the Idemix and U-Prove
credential technologies, it is equally suitable for technologies that were designed
without privacy considerations.

The privacy-preserving aspect of CARL is due to its support for the principle
of data minimization. As described in Chapter 1, data-minimizing authentication
requires a reference for determining minimality. CARL policies provide such
reference by stating which information has to be minimally disclosed. This is done
by selectively listing the attributes that have to be revealed on the one hand, and
by specifying the properties that attributes have to fulfill as logical predicate. Such
predicate is a Boolean expression that allows for applying logical, comparison, and
arithmetic operators to attributes, constants, and sub-expressions. This includes
predicates involving attributes from different credentials. The most important
aspect in terms of data minimization and privacy preservation is, however, that
predicates may also involve attributes that are not revealed. Thus, a user who
convinces a service provider that a policy is fulfilled only discloses the fact that the
attribute predicate is fulfilled, but not the underlying attributes’ values. While
the support for attribute predicates enables users to remain anonymous when
authenticating, the resulting risk for service providers is acknowledged by the
possibility to revoke the anonymity under well defined user-agreed conditions and
thus make the authentication transaction accountable. This possibility is ensured
by requiring the disclosure of verifiably encrypted strongly identifying attributes
to a trusted third party that decrypts the attributes in case of misuse (see
Section 2.3.4).

Authentication requirements in CARL are expressed in natural-language-like
terms. This makes the language very intuitive and easy to use. For example,
the policy for applying for a restrictive premium health insurance could be:
own c of-type BodyMass issued-by Physician or Hospital where 18≤c.BMI and
c.BMI≤25 and c.issuanceDate>2012/04/01. Readers can easily grasp that this
policy requires users to have a current body mass index (BMI) between eighteen
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and twenty-five according to a physician or a hospital. An advantage of the
human-readable form is that, at least for simple policies, it can be displayed to
users directly or with little post-processing, whereas other languages need more
sophisticated post-processing steps to make it suitable for display.

Claim Language

In Bichsel et al. [9], see page 129, we present a claim language on the basis of CARL.
In general, the language has the same features as CARL, but rather than being
used by service providers to express authentication requirements, it is intended
for users to make statements about their credentials—which are supported by
cryptographic evidence—in order to fulfill given authentication requirements. In
particular, with the language a user can express which credentials she owns, which
predicate holds over the credentials’ attributes, which attributes are revealed to
trusted third parties, which statement is signed, and what the cleartext values
of selected attributes are. For example, a user could state that her salary is
in a certain range with respect to a salary statement of her employer. Stated
claims are used in two ways. For users, they serve as technology-independent
input to software modules that generate technology-specific cryptographic tokens.
For service providers, they serve as basis for verifying a cryptographic token. In
addition to defining a generic claim language on the basis of CARL, we also
extend the Idemix proof specification language to make it as expressive as our
claim language. Although languages such as SAML [72] exist that allow for
exchanging the cleartext values of a user’s attributes, they lack expressivity for
privacy-preserving features such as attribute properties. In Sections 4.2 and 4.3
we describe our contributions regarding the verification of claims that describe
cryptographic tokens.

Language Framework

In Camenisch et al. [21], see page 93, we build on our previous results in the
language space and expand them to an entire language framework, that is, a
set of coherent languages, for privacy-preserving attribute-based authentication
systems. On the one hand, we broaden our system view from one that focuses
on authentication transactions to a holistic one that covers the full life cycle
of attribute-based credentials including issuance and revocation. On the other
hand, we enhance the set of supported features with pseudonyms and key binding
such that all privacy-preserving features of anonymous credential systems (see
Chapter 2) are covered.

More precisely, we revise the existing authentication and claim languages to
support revocation, pseudonyms, and key binding and subsequently call them
presentation policy and presentation token languages. The introduced support
for credential revocation, however, mainly affects the system semantics which is
described in Section 4.2. The framework’s support for pseudonyms enables users
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to authenticate pseudonymously on the one hand and service providers to require
the use of previously established pseudonyms on the other hand. To prevent users
from sharing their credentials and thus abusing the system, service providers can
express that credentials or pseudonyms must have the same underlying secret key
as other credentials or pseudonyms.

Further, we provide technology-independent and cryptography-agnostic policy
and token languages that are concerned with the issuance process of attribute-
based credentials. The issuance policies can express which credentials and
pseudonyms have to be presented prior to the issuance of a new credential
and what the details of this new credential (that is to be issued) are. These
details include, for example, the new credential’s type, which attribute values
are carried over from existing credentials, to which key the new credential is
bound, and which attributes are assigned jointly-generated random values. We
also provide specification languages for credential types, issuer parameters, and
revocation authority parameters that describe technical details necessary for
performing the individual transactions. Summarized, the framework includes
issuance and presentation policy languages [31, 21] as well as issuance and
presentation token [9, 21] languages. The policy languages are used for describing
the requirements on the cryptographic token that has to be presented to a server
during an issuance or an authentication transaction, respectively. The token
languages are used for describing the content of cryptographic presentation tokens
and issuance tokens, respectively.

The language framework acts as control layer for anonymous credential systems
as the individual languages direct the cryptographic protocols underlying these
systems. Such layer is crucial in making data-minimizing authentication usable
for application developers who cannot be expected to know the details of the
underlying cryptographic mechanisms.

A further contribution is that our language framework is unifying the privacy-
preserving cryptographic features and concepts that underlie the two premier
anonymous credential system implementations, that is, Idemix and U-Prove,
by employing a common terminology and offering common interfaces. Such
unification is especially relevant for facilitating the adoption of data-minimizing
authentication because this allows all system entities to freely choose or even
change their preferred implementation. This obviates a frustration of users
caused by incompatibilities between their credentials and their preferred service
providers’ systems. This shall prevent situations where users have privacy-
preserving anonymous credentials, but can only use them with a subset of their
preferred privacy-enabled service providers. The adoption of data-minimizing
authentication has proved to be difficult in the past and thus must be advocated
by joint forces of the system vendors, rather than be hindered by incompatibility
issues.
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4.2 Formal System Semantics

A language without semantics is just an empty shell of syntax without meaning and
can thus not be subject to unambiguous interpretation. To precisely specify the
meaning of the languages that we have developed, we provide a formal semantics
that mathematically defines the various language features as well as the intended
behavior of the overall system. Without such formal semantics, an unambiguous
implementation of the system would be impossible and different implementations
would most likely be incompatible.

In Camenisch et al. [31], see page 193, we provide a formal semantics and
a type inference system for CARL. We describe the semantics by means of a
state transition system that assumes transitions for credential issuance, token
presentation, credential revocation, and token inspection. However, the initial
focus is on authentication transactions, that is, token presentation transitions.
In our model, users maintain credential repositories that contain the credentials
that were issued to them. Further, credential issuers and token verifiers maintain
knowledge states about their communication partners in the form of logical
predicates. To have a certain predicate in one’s knowledge state expresses that
a logical statement over the communication partner’s credentials was true at the
time of the transition. Rather than describing how a transition is performed, we
provide the semantics in terms of the conditions under which the transition can
be performed as well as the effects that the transition has on the knowledge states
of the involved parties. In particular, we specify the conditions under which a
user can prove a given presentation token, and we specify the server’s knowledge
increase when the token is proved. The fact that we formulate the semantics in
terms of the effects on the knowledge of involved parties is particularly beneficial for
understanding the privacy aspects of our system. This is because regarding privacy
protection, the main interest is on disclosing as little information as possible while
still achieving one’s intended goal, that is, the focus is on the increase of knowledge
of a service provider.

In Camenisch et al. [21], see page 93, we enhance the previously introduced
semantics in three ways. First, we extend the set of the supported features
with pseudonyms and key binding, and we provide a revised version of the token
presentation semantics accordingly.

Second, we also formally specify the remaining state transitions, that is,
credential issuance, credential revocation, and token inspection. Thus, we cover
the complete set of privacy-preserving features and the entire credential life
cycle. In particular, we detail how a user’s credential portfolio is augmented
in issuance transactions for basic and for advanced issuance policies, and we
show the corresponding knowledge increase of the issuer. In basic issuance
transactions, all attributes of the new credentials are determined by the issuer.
In advanced issuance transactions, credentials may be bound to keys underlying
existing credentials or pseudonyms, and attribute values may be carried over from
attributes of existing credentials or set to jointly generated random values, without
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the issuer learning the values. Further, we formalize two variants of revocation
semantics, where one is driven by credential issuers and the other by revocation
authorities. Then, we elaborate on what happens to an involved party’s knowledge
when decrypting verifiably encrypted attributes during inspection.

Finally, we formalize how to determine whether a presentation policy is fulfilled
by a proven presentation token, that is, we formalize policy verification. While the
formalized approach considers a single token for the verification, we also elaborate
on a knowledge-based verification variant that additionally considers the verifier’s
accumulated knowledge gained in previous token presentation transactions. The
latter allows users to prove just parts of a policy and still authenticate successfully.
Note that we give an initial informal textual description of the basic policy
verification requirements in Bichsel et al. [9].

We see our formal semantics as consolidated didactical reference for conveying
the various privacy-preserving features of anonymous credentials to laymen in
cryptography. This specifically includes application developers who have the
task to implement a data-minimizing authentication system on the basis of a
cryptographic library such as Idemix, and who are not familiar with the specifics
of the underlying cryptographic protocols. We are not aware of any other work
that discusses these features on an abstract level in such a comprehensive way.

4.3 System Components for Data-Minimizing Au-

thentication

The languages and their well-defined semantics described in the two preceding sec-
tions are important components in a data-minimizing authentication system. For
implementing a functioning system, however, adequate processing algorithms that
generate and verify technology-specific token descriptions and the corresponding
cryptographic evidence, as well as a token selection mechanism are required (see
Chapter 3). Additionally, a communication protocol specifying the interaction
between the components as well as the involved messages is needed.

Architecture and Components

In Camenisch et al. [31], see page 193, we present a system architecture that
captures all the components that are necessary to perform a data-minimizing
authentication transaction. By means of a sequence diagram we illustrate how
the components operate with each other, the messages exchanged between them,
and the order in which these messages occur.

In Bichsel et al. [9], see page 129, we close the gap between high-level authenti-
cation languages and low-level technology-dependent specification languages that
are used for generating and verifying cryptographic evidence.

In particular, we show how to determine the claims—which are also called
presentation token descriptions—that a user can make with respect to a given
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credential repository, so as to fulfill a given presentation policy. We explain that
an algorithm that generates token descriptions has to be tailored to the capabilities
of the technology underlying the employed credentials, that is, the restrictions of
the used technology implementation must be accounted for, and we give such
algorithms for Idemix and U-Prove.

Further, we provide detailed instructions on how to transform a token
description into a semantically equivalent evidence specification. We do this
for Idemix proof specifications and U-Prove token specifications. Such evidence
specifications are crucial for performing data-minimizing authentication in that
they act as input to the respective cryptographic libraries both to produce token
evidence and to verify it. Thus, on the one hand, with these algorithms we
provide the necessary mechanism for generating token evidence that is semantically
equivalent to a given token description, that is, evidence that supports the
statements made in the token description. On the other hand, we provide the
basis for verifying the validity of token evidence, that is, whether a given evidence
is indeed semantically equivalent to a given token description. While the Idemix
library implementation supports—apart from disjunctive statement—all concepts
expressible with our CARL-based claim language, the Idemix proof specification
language cannot address some of these concepts. Therefore, we also show how
the proof specification language of Idemix can be extended with the missing
expressivity.

For a service provider to verify whether a given presentation policy is fulfilled by
a given presentation token, in addition to checking the validity of the token—that
is, whether the evidence corresponds to the description—it also must be verified
whether the statements made in the token description fulfill the policy. Therefore,
we also informally specify under which conditions a CARL-based token-description
fulfills a given CARL policy. Note that we describe policy verification in a formal
manner in Camenisch et al. [21].

Implementation

We show that our ideas and concepts are feasible and efficiently realizable
by providing an open-source implementation of all components of our data-
minimizing authentication system (see Chapter 3). These components comprise:
the CARL policy language and the CARL-based token description language
including adequate language parsers, a pre-evaluation function for policies, Idemix
token description generation, Idemix token evidence generation, Idemix token
verification, and policy verification. Additionally, we provide a policy editor user
interface that provides meaningful error messages for authoring correct CARL
policies. In particular, we developed a modular credential-based authentication
framework that provides application developers with a toolbox for building
data-minimizing authentication solutions. While the framework is open to be
instantiated with any attribute-based credential technology, we provide an Idemix
instantiation that supports the following features: proof of ownership, selective
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disclosure and attribute predicate proofs. On top of the framework, we developed
a prototype implementation [11] with a graphical user interface that on the one
hand allows for selecting the preferred token that fulfills a given policy, and on
the other hand clearly informs a user about which information he is about to send
to a service provider. See Section 3.6.2 for details on runtime evaluation of the
framework and the prototype.

4.4 Data Minimization with Industry Standards

To facilitate the integration of our data-minimizing concepts with existing
infrastructure and consequently drive and accelerate their industry acceptance, we
investigated whether existing industry standards such as the Security Assertion
Markup Language (SAML) and the eXtensible Access Control Markup Language
(XACML) can be extended to support our concepts. SAML is a framework
for exchanging certified attribute values, and XACML defines an access control
policy language as well as a processing model for evaluating policies with respect
to a given access request, which assumes that an enforcement point knows all
the requester’s attribute values. The results of our efforts are a conference
publication [4] as well as an OASIS standardization document [70].

In Ardagna et al. [4], see page 177, we show that authorization decisions can
be made in a privacy-preserving manner with above-mentioned standards if one
is willing to accept certain language and architecture modifications on the one
hand, and an additional communication round-trip involving the disclosure of the
authorization policy applicable to the access request on the other hand. Firstly, we
describe how SAML, which inherently supports the concept of credentials, can be
extended with support for expressing logical predicates over a subject’s attributes.
Then, we elaborate on the necessary modifications to the XACML language,
architecture, and policy evaluation model for support of the credential-based
setting and the incoming SAML attribute predicates. In our proposed privacy-
preserving setting, SAML acts as presentation token language and the XACML
language acts as credential-based presentation policy language. An important
aspect of the XACML extensions with respect to standardization is that they are
fully transparent, that is, an extended XACML authorization system can handle
both standard requests and privacy-preserving requests.

Further, we proposed our privacy-preserving SAML extensions, which are
solely based on standard SAML extension points, in the form of a SAML
V2.0 Attribute Predicate Profile [70] to the OASIS Security Services Technical
Committee (SSTC)—the standardization body responsible for SAML. The profile
was promoted by the SSTC, to the status of Committee Specification, which is the
last step before becoming an OASIS standard. Our Attribute Predicate Profile
is useful in settings where a user’s identity attributes are stored and controlled
by the (online) identity provider. In particular, our modifications allow identity
providers to confirm or deny that a certain predicate over a user’s attributes holds
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without disclosing the exact values of these attributes. That is, identity providers
are now enabled to provide (identity) information in terms of Boolean answers to
the relying party’s yes-no questions, rather than disclosing full attribute values or
even full data sets. This offers advantages for identity providers as well as their
customers. Identity providers have a significant business advantage as they retain
control over the valuable user attributes they have vetted thoroughly. Customers
have a privacy advantage as less personal information is revealed to third parties.

4.5 Language for Controlling Downstream Data Us-
age

The majority of our publications is concerned with authentication techniques that
disclose only the information strictly necessary in a given context. However, even
in such data-minimizing authentication scenarios, users eventually have to disclose
information about themselves. Accordingly, the field of usage control seeks to
protect information after it has been disclosed.

In Bussard et al. [18], see page 157, we extended the state of the art in
usage control with a two-sided XML-based policy language where users specify
their usage control preferences on the one hand, and service providers specify
how they intend to treat the requested data on the other hand. We further
provide a matching semantics, that is, rules that determine whether a user’s
preferences are in agreement with a server’s policy. The result of such matching
is a sticky policy that travels with the disclosed data item and governs its use. An
important and novel aspect of our language is its capability to express downstream
usage requirements, that is, restrictions for controlling with whom and under
what conditions a data consumer may share the disclosed data with further data
consumers and how those data consumers treat the data. In particular, users can
specify the exact path their data is allowed to follow as well as the restrictions that
apply at each hop, and data consumers can specify with whom they intend to share
the data, and how the downstream consumers intend to treat the data. Our usage
control language may also be integrated into the data-minimizing authentication
system that we propose. In fact, the authentication requirements language that
we propose in Camenisch et al. [31], see page 193, provides a placeholder for a
policy that governs the intended usage of a requested attribute.





Chapter 5

Conclusion and Open Problems

H
aving provided a general introduction to data-minimizing authentication
systems in the preceding chapters, in this final chapter we first draw
conclusions. Afterwards, we elaborate on remaining open problems, which

at the same time gives possible directions for future research.

5.1 Conclusion

Authentication as it is performed today causes various problems in terms of
security and privacy. This is because it involves the use and disclosure of personal
information: on the one hand, this information can be stolen and used for identity
theft, and, on the other hand, the disclosure can lead to linkage and monitoring
of users’ behavior and their identification. In this work, we presented a novel
authentication system on the basis of anonymous credentials that was designed
to preserve its users’ privacy. Our system allows service providers to formulate
authentication policies in terms of properties that users’ attributes must satisfy,
and it allows users to prove the mere fact that their certified attributes fulfill
these properties without having to disclose any personal information. Such a
data-minimizing authentication system provides advantages for both users and
service providers: users benefit from significantly increased privacy and service
providers profit from reducing the risks associated with holding large sets of
sensitive personal information.

To facilitate the deployment of privacy-preserving authentication solutions,
we implemented an open-source authentication framework that provides all the
necessary components for rendering data-minimizing authentication decisions
on the basis of attribute-based credentials in general—and Idemix anonymous
credentials in particular. On top of this framework, we developed a full-fledged
prototype implementation of a data-minimizing authentication system. Our
evaluation results of the prototype show that the computational overhead caused
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by the framework’s generation and verification of authentication token descriptions
is low compared to the time needed for generating and verifying cryptographic
evidence that supports the claims made in the token descriptions.

We are aware that the use of our technology is not a panacea and can only
solve parts of the privacy issues arising from the use of electronic media and
computing infrastructure. In particular, identifiers that are implicitly disclosed
when using electronic communication networks (Internet protocol (IP) addresses,
device fingerprints, for example) are challenges in situations where full anonymity
is required. However, they can be addressed to a certain extent with additional
anonymization techniques [34] such as proxies or mix networks [55, 48]. Further,
the use of data-minimizing authentication is obviously not helpful for services
where users voluntarily and purposely disclose sensitive personal information about
themselves—such as in electronic social networks. Because there is a multitude of
services where privacy and unidentifiability are desired (for example, for obtaining
information about health issues), we are convinced that our system is a valuable
contribution in the field of privacy protection and a very important step in the
right direction.

Having shown that data-minimizing authentication systems are technically
feasible and efficiently realizable, the next step must be to drive the adoption
of this technology. A voluntary adoption is mainly dependent on the goodwill
of the service providers as they are in charge of (re-)formulating their service
policies such that only the minimally necessary information for the given context
(for example, proofs that involve only attribute properties rather than disclosure
of attribute values) is demanded. Such voluntary adoption, however, will not be
reachable by simply raising the service providers’ awareness of the issues associated
with collection of personal data and of the availability of technology that mitigates
these issues. Because “the measure of information security and data privacy are
dollars” [25], service providers must be convinced with compelling economical
arguments that it is more profitable to protect users’ privacy than to put it at
stake. Given just the high costs associated with data breaches (see Section 1.1.2),
we expect that such arguments can be made with further scientific studies.

An alternative adoption scenario includes regulatory frameworks governing
that service providers must collect only the data that is minimally necessary in a
given context. In fact, recent political developments indicate that governments are
taking privacy issues more and more seriously and willing to take the necessary
steps to change the status quo on how citizens’ privacy is treated by enterprises.
For example, in February 2012 the administration of US President Barack Obama
unveiled a framework for protecting privacy in the digital age, at which center
stands a Consumer Privacy Bill of Rights [83]. This bill sets forth seven basic
rights for consumers in the commercial Internet. Among these proposed rights, the
following are of high relevance for this work: Individual Control—consumers have
a right to exercise control over what personal data companies collect from them;
Respect for Context—consumers have a right to expect that companies will collect
personal data in ways that are consistent with the context in which consumers
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provide the data; and Focused Collection—consumers have a right to reasonable
limits on the personal data that companies collect and retain. According to the
presidential administration, its intention is to encourage stakeholders to implement
this bill and to put it into law. The passage of such a bill would effectively
make the use of privacy-preserving technologies—such as the data-minimizing
authentication systems that are proposed in this thesis—mandatory.

5.2 Open Problems

In the following, we elaborate on remaining open issues. First, we discuss general
technical challenges. Then, we point out issues that are concerned with the
acceptance and deployment of data-minimizing authentication systems. Finally,
we describe challenges related to awareness and education.

General Technical Challenges

• The current version of the Idemix [33, 58] library (version 2.3.3) has only
partial support for the general feature set that anonymous credential systems
offer (see Chapter 2). In particular, the library lacks support for disjunctive
attribute property proofs [9] and for credential revocation. For a real-world
adoption, however, the availability of these features is crucial.

• Our credential-based authentication framework [9] can merely transform
a subset of the CARL claim language to Idemix evidence specifications,
that is, attribute disclosure to third parties as well as message signatures
are not supported. Given our revised and more comprehensive approach
on expressing claims by means of an XML-based presentation token
language [21] that also has expressivity for revocation, pseudonyms and key
binding, these transformation algorithms must be accordingly adapted to
this new language. At the same time, the transformation capabilities should
be extended for supporting also the U-Prove credential system as well as
certificate technologies such as X.509.

• Although we have mathematically defined the behavior of data-minimizing
authentication systems in terms of a formal language semantics [21], it
remains open to prove that existing implementations are compliant with
this semantics. Such proof would entail that only the information that is
specified in the issuance and presentation token description is disclosed in
issuance and presentation transactions, respectively, and that the underlying
credential system is implemented as intended.

• The work of Wästlund et al. [89] was an important starting point for
designing user interfaces (UIs) that match the mental models of users in
association with anonymous credentials. However, up to now, they have
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investigated these models only for proofs of ownership, selective attribute
disclosure, and simple property proofs. Accordingly, more research is needed
that addresses the entire feature set of anonymous credentials. Additionally,
it is still unclear how such UIs have to be designed for mobile devices such as
smartphones which have significantly smaller screens than stationary desktop
computers.

• To support enterprises in policy authoring and to tap the full potential of
data-minimizing authentication, clear guidelines defining what information
is minimally necessary for certain contexts must be available. To our
knowledge, no such guidelines exist, however. These guidelines should
be specified by independent data protection institutions for standard
authentication use cases such as online shopping with and without physical
good delivery.

• The GUI in our prototype implementation informs a user about which
information she is about to disclose to a service provider (see Section 3.4.3).
On the one hand, further UI research must be conducted to find ways to
also inform users about whether the information they are about to disclose
is minimal with respect to the authentication policy, and whether the
authentication policy itself is minimal with respect to standardized policies
for the use case at hand. On the other hand, is must be studied how such
GUIs can be extended to entire identity management solutions that keep
track of which data and which pseudonyms were disclosed to whom at which
points in time, such that this knowledge can be considered for determining
what the most privacy-friendly claim is that a user can make to be granted
access to some service.

• Our usage control language for expressing which disclosed personal data can
be shared with whom under what conditions [18] is an important starting
point in governing downstream usage control. The bigger challenge, however,
is the enforcement of usage control policies within and across computing
platforms. Although there are first results in this respect from Pretschner
et al. [57, 61], usage control enforcement remains a very challenging task.
Another issue with respect to usage control is that research has so far focused
only on how to control the usage of disclosed attribute values. An interesting
open issue, however, is how to treat attribute properties once they have been
disclosed.

• For a real-world adoption of data-minimizing authentication solutions, it
must be investigated how to build these solutions such that they are secure in
various aspects: secure credential storage and management, secure credential
processing algorithms, secure display of information that is about to be
disclosed (to prevent that information displayed on the computer screen
is maliciously altered), and trusted libraries that generate cryptographic
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evidence (to prevent that the cryptographic modules disclose more data than
confirmed by the user).

Acceptance and Deployment Challenges

• Given the current trend towards the use of mobile computing devices, it is
crucial to study how users can authenticate with the help of such devices in
a data-minimizing manner. An interesting question related to this is how
credentials can be securely stored on such devices (current credential storage
approaches typically involve smart cards as storage medium) without them
being compromisable by smartphone viruses, device loss, or device theft.

• An open issue that is related to the deployment of data-minimizing
authentication systems is user acceptance. In our view, reaching user
acceptance can only be achieved by solutions that focus on convenience.
Given that electronic social network providers (Facebook, for example)
act more and more as identity providers in the sense that other service
providers can rely on the attributes kept in the social network account
(for example, Facebook Connect), it became highly convenient for users
to authenticate with the help of their social network provider. Thus, for
a successful deployment of data-minimizing authentication solutions with
anonymous credentials, ways have to be found for making the new solutions
as unobtrusive and convenient as possible such that they can compete with
the convenience of existing ones.

• The use of data-minimizing authentication solutions with anonymous
credentials inherently involves the need to securely store and access these
credentials. The naive approach for enabling this is to host the credentials
on a trusted user-controlled device. Users nowadays have a number of devices
and also use devices that they do not control themselves, yet users want to
authenticate in a convenient manner from all of these devices, it remains
unclear how this can be achieved. The use of cloud services in combination
with sophisticated cryptographic protocols allowing users to securely access
their credentials may be a possible path to explore in this respect.

• To avoid that incompatibilities between different anonymous credential
system implementations inhibit the deployment and acceptance of data-
minimizing authentication, the availability of unifying cryptographic proto-
cols that allow for the generation of cryptographic evidence that involves
credentials from different implementations would be beneficial. Such
protocols would allow users to fulfill policies that require multiple credentials
with a combination of, for example, Idemix and U-Prove credentials.

• One of the biggest open issues is the question how service providers can be
motivated to accept and deploy data-minimizing authentication solutions.
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Different scenarios range from voluntary adoption, to forced adoption by
regulatory frameworks, to the regulatory power of the free market. As a
voluntary adoption will only happen if it entails a clear financial motivation,
changes in legislation may provide such motivation in the form of significant
fines for data breaches involving sensitive personal data—because currently
the risk, that is, the costs, associated with such data breaches are apparently
too low.

• To let the free market solve the acceptance issue of privacy-preserving
technologies, new innovative business models must be developed that can
monetize online privacy. Alternatively, companies may come up with
marketing strategies that promote the use of data-minimizing techniques
as competitive advantage—similar to how this is currently done with green
technology—in the hope that users give precedence to service providers who
do not spurn the foundational right of their users but employ authentication
technologies that let users retain control over their own data. The ultimate
(philosophical) question is, what users are willing to pay for their privacy.

• Without a doubt, anonymous credentials are the ideal technology for
electronic versions of national identity cards issued by governments. On the
one hand, governments (mostly) have a constitutional interest in protecting
the privacy of their citizens. On the other hand, identity providers could
use such government-issued credentials to bootstrap the issuance of their
own credentials, which effectively makes their credentials more trustworthy.
However, as governments have not adopted such approach yet, the exact
causes of this lack of adoption are yet to be determined and to be tackled.

Awareness and Education Challenges

• Human being’s perception of their interactions with information technology
is distorted in the sense that they unconsciously apply the rules of social
interaction to their interaction with computers. These rules include that
other human beings tend to not disclose information that is very personal,
that they gradually forget or lose track of information that they did not use
for some time, and that they are able to distinguish right from wrong [14].
This is one of the reasons why, for example, it became the norm for teenagers
to share sensitive personal information on social network platforms without
actively controlling the access to this information [84, 85]. Accordingly,
we must develop and integrate awareness features into information and
communication technology (ICT) that alert users to the possible security
and privacy threats as well as provide early education of users to understand
ICT in the appropriate ways [14]. A positive and innovative example of a
general effort to create such awareness is provided by a group of privacy
enthusiasts who met the subject with a portion of irony: they created an
online game [6] where users deal with personal data: user profiles must be
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collected, linked, and sold on a virtual black market. The more sensitive the
handled data is, the more profitable is their fictional business.

• The possibilities opened up by the advanced features of anonymous credential
systems are counterintuitive and seemingly contradictory in that users can
prove attribute properties without disclosing the attributes’ values on the
one hand and act anonymous yet accountable on the other hand. Further,
these features are incompatible with the way users think about the (non-
anonymous) credentials they use today: the plastic cards in their wallets
are used in an all-or-nothing fashion where users either show these cards
with all the information they contain or they do not show them at all. In
the physical world, users do not have the opportunity of merely proving
logical statements about the information certified on their cards, and it is not
trivial to understand that this possibility exists at all, let alone to understand
how this can be done technically. Consequently, we must find ways to raise
awareness that modern technology has these capabilities and to properly
educate individuals about the positive security and privacy implications that
the use of this technology has.
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Appendix A

Prototype Details

A.1 Example CARL policy

The claim selection GUI displayed in Figure 3.3 was rendered to fulfill the following
CARL policy:

own mc of-type [MemberShipCard] issued-by [CarRentalCo.com]

own cc of-type [CreditCard] issued-by [Amex.com], [Visa.com]

own dl of-type [DriversLicense] issued-by [DeptMotorVehicles.com]

reveal cc.cardNumber

where dl.vehicleCategoryB==true and

(mc.status=="gold" or

mc.status=="silver") and

cc.expirationDate>2012-05-07 and

mc.givenName==dl.firstName and

mc.surname==dl.lastName

A.2 Test Data for Time Measurement

In this section we list the test data that was used for measuring the performance
of the prototype implementation.

A.2.1 Credential Repository

The following 6 credentials were in the credential repository. Note that the
attributes’ values are just example data and do not reflect reality.

• Hertz Membership Card:
Type=MemberShipCard, Issuer=CarRentalCo.com,
givenName=Franz-Stefan, surname=Preiss, dateOfBirth=1982/05/17, sta-
tus=gold, expirationDate=2014/03/09
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• Private Liability Insurance:
Type=LiabilityInsurance, Issuer=InsuranceCo.com,
policyNumber=2009/2M/9876/12345,
guaranteedUSDAmount=2000000, firstName=Franz-Stefan,
lastName=Preiss, expirationDate=2015/07/18

• Employer Benefit Insurance:
Type=LiabilityInsurance, Issuer=EmployerBenefits.com,
policyNumber=2007/30K/7A57/28,
guaranteedUSDAmount=30000, firstName=Franz-Stefan, lastName=Preiss,
expirationDate=2021/07/18

• Private Visa Card:
Type=CreditCard, Issuer=Visa.com, cardNumber=4711 3702 3910 7228,
nameOnCard=PREISS FRANZ-STEFAN, surName=Preiss, cardVerifica-
tionValue=845, expirationDate=2013/10/31

• Corporate American Express Card:
Type=CreditCard, Issuer=Amex.com, cardNumber=5733 030243 24302,
nameOnCard=FRANZ-STEFAN PREISS, surName=Preiss, cardVerifica-
tionValue=4867, expirationDate=2013/05/31

• Swiss Drivers License:
Type=DriversLicense, Issuer=DeptMotorVehicles.com, firstName=Franz-
Stefan, lastName=Preiss, dateOfBirth=1982/05/17,
expirationDate=2112/12/08, vehicleCategoryA=false,
vehicleCategoryAFrom=NA, vehicleCategoryB=true,
vehicleCategoryBFrom=2002/05/17

A.2.2 Authentication Policy

own mc of-type [MemberShipCard] issued-by [CarRentalCo.com]

own cc of-type [CreditCard] issued-by [Amex.com], [Visa.com]

own dl of-type [DriversLicense] issued-by [DeptMotorVehicles.com]

own is of-type [LiabilityInsurance] issued-by [InsuranceCo.com],

[EmployerBenefits.com]

reveal cc.cardNumber, is.policyNumber

where dl.vehicleCategoryB==true and

is.guaranteedUSDAmount>=30000 and

(mc.status=="gold" or

mc.status=="silver") and

cc.expirationDate>2012-05-07 and

is.expirationDate>2012-05-07 and

mc.givenName==dl.firstName and

mc.surname==dl.lastName and

dl.firstName==is.firstName and

dl.lastName==is.lastName
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A.2.3 Token Description

Claim:

i own mc of-type [MemberShipCard] issued-by [CarRentalCo.com]

i own cc of-type [CreditCard] issued-by [Amex.com]

i own dl of-type [DriversLicense] issued-by [DeptMotorVehicles.com]

i own is of-type [LiabilityInsurance] issued-by [EmployerBenefits.com]

where dl.vehicleCategoryB and

is.guaranteedUSDAmount>=30000 and

mc.status=="gold" and

cc.expirationDate>2012-05-07 and

is.expirationDate>2012-05-07 and

mc.givenName==dl.firstName and

mc.surname==dl.lastName and

dl.firstName==is.firstName and

dl.lastName==is.lastName

Revealed values:

dl.vehicleCategoryB -> true

cc.cardNumber -> 5733 030243 24302

is.policyNumber -> 2007/30K/7A57/28

mc.status -> gold

A.2.4 Idemix Parameters

Idemix System Parameters

<?xml version="1.0" encoding="UTF-8"?>

<SystemParameters xmlns="http://www.zurich.ibm.com/security/idemix"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation=

"http://www.zurich.ibm.com/security/idemix SystemParameters.xsd">

<Elements>

<l_e>597</l_e>

<l_ePrime>120</l_ePrime>

<l_Gamma>768</l_Gamma>

<l_H>256</l_H>

<l_k>160</l_k>

<l_m>256</l_m>

<l_n>1024</l_n>

<l_Phi>80</l_Phi>

<l_pt>80</l_pt>

<l_r>80</l_r>

<l_res>1</l_res>

<l_rho>256</l_rho>

<l_v>2048</l_v>

<l_enc>256</l_enc>

</Elements>

</SystemParameters>
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Idemix Group Parameters

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<GroupParameters xmlns="http://www.zurich.ibm.com/security/idemix"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=

"http://www.zurich.ibm.com/security/idemix GroupParameters.xsd">

<References>

<SystemParameters>

http://www.zurich.ibm.com/security/idmx/v2/sp.xml

</SystemParameters>

</References>

<Elements>

<Gamma>

9165290133237088109252622858539437514127166392609483973154562

3682806064687757966976688617296290724878397989803379609106232

5584064802287728294468642896625540973839483206710301877044439

993929928642627540845322563879925233590363456951

</Gamma>

<g>

5449393241448649514864998992383115155669081501945008303794874

6480571560693553166565029454365555716112029901661254577882483

6663055752526772831734129015277436123987064573455560044643331

42435951065180663951579430775691960502983242764

</g>

<h>

1489933697667334616115515259305243490263272953907739732035561

0160369286495793486680379194910037536533127925620182006059541

5932131561156675272129317873339407328687111761685099261975482

883051455076337069146295684075848193739268392318

</h>

<rho>

7234402063248475505695455931507896457865468817738931859006516

5919266027648453

</rho>

</Elements>

</GroupParameters>
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A.3 Screenshots

Figure A.1: Credential repository browser of prototype application displaying
example credit card.

The claim selection GUI shown in Figure A.2 was rendered to fulfill the
following disjunctive authentication policy:

own id of-type [IDCard] issued-by [Republic-Online.info]

own mc of-type [MemberShipCard] issued-by [Kids-Chat.com]

where id.expirationDate>2012-05-07 and

mc.expirationDate>2012-05-07 and

id.dateOfBirth>dateSubtractDuration(2012-05-07,P17Y)

OR

own sc of-type [MemberShipCard] issued-by [School.gov]

where sc.expirationDate>2012-05-07 and

sc.dateOfBirth>dateSubtractDuration(2012-05-07,P17Y)



Figure A.2: Credential selection with two alternative policies.

Figure A.3: Credential selection where credentials are insufficient to fulfill the
policy.
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Attribute-Based Authentication
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G. Neven1, C. Paquin2, and F.-S. Preiss1

1 IBM Research – Zurich, Switzerland
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Abstract. Existing cryptographic realizations of privacy-friendly
authentication mechanisms such as anonymous credentials, minimal
disclosure tokens, self-blindable credentials, and group signatures
vary largely in the features they offer and in how these features are
realized. Some features such as revocation or de-anonymization even
require the combination of several cryptographic protocols. These
differences and the complexity of the cryptographic protocols hinder
the deployment of these mechanisms for practical applications and
also make it almost impossible to switch the underlying cryptographic
algorithms once the application has been designed. In this paper,
we aim to overcome this issue and simplify both the design and de-
ployment of privacy-friendly authentication mechanisms. We define
and unify the concepts and features of privacy-preserving attribute-
based credentials (Privacy-ABCs), provide a language framework
in XML schema, and give a formal semantics to describe the
effects of the transactions in a privacy-friendly authentication system
using Privacy-ABCs. Our language framework enables application
developers to use Privacy-ABCs with all their features without having
to consider the specifics of the underlying cryptographic algorithms—
similar to as they do today for digital signatures, where they do not
need to worry about the particulars of the RSA and DSA algorithms
either.

Keywords: Authentication, privacy, data-minimization, anonymous creden-
tials, digital credentials.

1 Introduction

More and more transactions in our daily life are performed electronically and the
security of these transactions is an important concern. Strong authentication and
according authorization based on certified attributes of the requester is paramount
for protecting critical information and infrastructures online.
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Most existing techniques for transferring trusted user attributes cause privacy
issues. In systems where an online identity provider creates access tokens on
demand, such as SAML, OpenID, or WS-Federation, the identity provider can
impersonate its users and can track a user’s moves online. Systems with offline
token creation, such as X.509 certificates and some WS-Trust profiles, force the
user to reveal more attributes than strictly needed (as otherwise the issuer’s
signature cannot be verified) and make her online transactions linkable across
different websites.

These drawbacks can be overcome with privacy-preserving authentication
mechanisms based on advanced cryptographic primitives such as anonymous cre-
dentials, minimal disclosure tokens, self-blindable credentials, or group signatures
[25, 10, 18, 21, 5, 47]. In these schemes, users obtain certified credentials for their
attributes from trusted issuers and later derive, without further assistance from
any issuer, unlinkable tokens that reveal only the required attribute information
yet remain verifiable under the issuer’s public key. Well-known examples being
Brands’ scheme [10] and Camenisch-Lysyanskaya’s scheme [18], which have been
implemented in Microsoft’s U-Prove [26] and IBM’s Identity Mixer [24, 32],
respectively. Both implementations are freely available and efficient enough for
practical use, yet the real-world adoption is slower than one may hope.

One possible reason for the slow adoption of privacy-preserving authentication
technologies might be that the various schemes described in the literature have
a large set of features where similar features are often called differently or are
realized with different cryptographic mechanisms. Many of the features such as
credential revocation, efficient attribute encoding, or anonymity lifting even require
a combination of separate cryptographic protocols. This makes these technologies
hard to understand and compare and, most importantly, very difficult to use.

To overcome this, we provide unified definitions of the concepts and features
of the different privacy-preserving authentication mechanisms. We will refer to
this unification as privacy-preserving attribute-based credentials or Privacy-ABCs.
Our definitions abstract away from the concrete cryptographic realizations but are
carefully crafted so that they can be instantiated with the different cryptographic
protocols—or a combination of them. To enable the use and integration of
Privacy-ABCs in authentication and authorization systems, we further present
cryptography-agnostic definitions of all concepts as well as a language framework
with data formats for, e.g., policies and claims. All languages are specified in
XML schema and separate the abstract functionality expected from the underlying
cryptographic mechanisms from the opaque containers for the cryptographic data
itself. Thus, these languages allow application developers to employ Privacy-ABCs
without having to think about their cryptographic realization, similarly to how
digital signatures or encryption can be used today. The language described in this
paper has been implemented in the ABC4Trust project (www.abc4trust.eu) and
will be made available as part of a reference implementation of a Privacy-ABC
system which will include a number of cryptographic solutions.
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Finally, we present a formal semantics that precisely defines the meaning
of our comprehensive language and their expressed features. Such a rigorous
mathematical description allows to determine, for instance, whether a user can
fulfill a given authentication policy with her credential portfolio or whether
a derived access token satisfies a policy. As our language covers the entire
Privacy-ABC system, we also provide semantics that describe the intended
system behaviour, i.e., the effects of state transitions— which are steered by our
language—on the different entities and their knowledge states.

2 Related work

Our work is based on the credential-based access control requirements language
(CARL) recently proposed by Camenisch et al. [22]. CARL allows a service
provider (verifier) to specify which attributes certified by whom a user needs to
present in order to get access. Compared to our work, CARL defines only a
small part of a Privacy-ABC system, namely the presentation policy, but does
not consider how these attributes are transmitted nor how credentials are issued
or revoked. Bichsel et al. [6] have extended CARL to cover the transmission
of certified attributes. Version 1 of the U-Prove protocols [26] covers credential
issuance and presentation but only supports selective attribute disclosure. It does
not consider other features such as attribute predicates, inspection, key binding,
(cryptographic) pseudonyms, or revocation.

Privacy-ABCs can be used to realize a privacy-respecting form of attribute-
based access control. Traditional attribute-based access control [7, 40, 48],
however, does not see attributes as grouped together in a credential or token. Thus
our framework allows one to realize more specific and more precise access control
policies. Also, role-based access control [29, 43] can be seen as a special case of our
attribute-based setting by encoding the user’s roles as attributes. Recent work [33]
extended RBAC with privacy-preserving authentication for the particular case of
role and location attributes.

Bonatti and Samarati [7] also propose a language for specifying access control
rules based on “credentials”. The language focuses on credential ownership and
does not allow for more advanced requirements such as for example revealing of
attributes, signing statements, or inspection. The same is true for the languages
proposed by Ardagna et al. [2] and by Winsborough et al. [49]. However, the latter
allows one to impose attribute properties on credentials and its extension by Li
et al. [35] supports revealing of attributes. The Auth-SL language [46] focuses on
multi-factor authentication and enables the policy author to specify restrictions on
the properties of the authentication mechanisms themselves, but not on attributes
of individual users.

The language by Ardagna et al. [3] can also be considered as a predecessor to
our language in the sense that it focuses on anonymous credential systems and
some of the advanced features. However, it considers only the presentation phase
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Figure 1: Entities and interactions diagram.

and is less expressive than ours, for instance, it cannot express statements involving
attributes from different credentials.

VeryIDX [41] is a system to prevent identity theft by permitting the use of
certain identity attributes only in combination with other identity attributes. So-
called verification policies specify which attributes have to be presented together.
However, these policies are introduced only conceptually without any details on
exact expressivity, syntax, or semantics.

Several logic-based and technology-neutral approaches to distributed access
control have been proposed [1, 9, 31, 36]. However, none of these have been
designed with Privacy-ABCs in mind. In particular, they do not support selective
disclosure of attributes, proving predicates over attributes, or attribute inspection.

Summarized, our language framework is the first that covers the whole life-
cycle of Privacy-ABCs and also the first one unifying the full spectrum of their
features.

3 Concepts and Features

Figure 1 gives an overview of the entities involved in Privacy-ABC systems
and the interactions between them. These entities are users, issuers, verifiers,
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inspectors and revocation authorities. Each issuer generates a secret issuance
key and publishes the issuer parameters that include the corresponding public
verification key. Similarly, each inspector generates a private decryption key and
a corresponding public encryption key, and each revocation authority generates
and publishes its revocation parameters. Users get issued credentials by issuers.
A credential contains attributes that its issuer vouches for w.r.t. the user. A
credential can also specify one or more revocation authorities who are able to
revoke the credential if necessary for some reason. Using her credentials, a user
can form a presentation token that contains a subset of the certified attributes,
provided that the corresponding credentials have not been revoked. Additionally,
some of the attributes can be encoded in the presentation token so that they can
only be retrieved by an inspector. Receiving a presentation token from a user, a
verifier checks whether the presentation token is valid w.r.t. the relevant issuers’
public keys and inspector public keys and the latest revocation information. If the
verification succeeds, the verifier will be convinced that the attributes contained
in the presentation token are vouched for by the corresponding issuers.

Informally, a secure realization of a Privacy-ABC system must guarantee that
(1) users can only generate a valid presentation token if they were indeed issued the
corresponding credentials that have not been revoked, (2) that attributes encoded
in the presentation token for an inspector can indeed be retrieved by that inspector,
and (3) that the presentation tokens do not reveal any further information about
the users other than the attributes contained in them.

We now provide a brief explanation of the main features supported by Privacy-
ABCs, with a focus on the ones that were not modeled so far in existing identity
frameworks.

3.1 Pseudonyms

Each user can generate a secret key. Unlike traditional public-key authentication
schemes, however, there is no single public key corresponding to the secret key.
Rather, the user can generate as many public keys as she wishes. These public
keys are called pseudonyms in Privacy-ABCs. Pseudonyms are cryptographically
unlinkable, meaning that given two different pseudonyms, one cannot tell
whether they were generated from the same or from different secret keys. By
generating a different pseudonym for every verifier, users can thus be known under
different unlinkable pseudonyms to different sites, yet use the same secret key to
authenticate to all of them.

While it is sufficient for users to generate a single secret key, they can also have
multiple secret keys. A secret key can be generated by a piece of trusted hardware
(e.g., a smart card) that stores and uses the key in computations (e.g., to generate
pseudonyms), but that never reveals the key. The key is thereby bound to the
hardware, in the sense that it can only be used in combination with the hardware.

There are situations, however, where the possibility to generate an unlimited
number of unlinkable pseudonyms is undesirable. For example, in an online
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opinion poll, users should not be able to bias the result by entering multiple
votes under different pseudonyms. In such situations, the verifier can request
a special pseudonym called a scope-exclusive pseudonym, which is unique for the
user’s secret key and a given scope string. Scope-exclusive pseudonyms for different
scope strings remain unlinkable. By using the URL of the opinion poll as the scope
string, for example, the verifier can ensure that each user can only register a single
pseudonym to vote.

3.2 Credentials and Key Binding

A credential is a certified container of attributes issued by an issuer to a user.
Formally, an attribute is described by the attribute type that determines the
semantics of the attribute (e.g., first name) and the attribute value that determines
its contents (e.g., “John”). By issuing a credential, the issuer vouches for the
correctness of the contained attributes with respect to the user. The credential
specification lists the attribute types that are encoded in a credential. A credential
specification can be created by the issuer, or by an external authority so that
multiple issuers can issue credentials according to the same specification. The
credential specification must be published and distributed over a trusted channel.
How exactly this is done goes beyond the scope of our language framework; the
specification could for example be digitally signed by its creator.

Optionally, a credential can be bound to a user’s secret key, i.e., it cannot
be used without knowing the secret key. We call this option key binding. It is
somewhat analogous to traditional public-key certificates, where the certificate
contains the CA’s signature on the user’s public key, but unlike traditional public-
key certificates, a Privacy-ABC is not bound to a unique public key: it is only
bound to a unique secret key. A user can derive as many pseudonyms as she wishes
from this secret key and (optionally) show that they were derived from the same
secret key that underlies the credential.

3.3 Presentation

To authenticate to a verifier, the user first obtains the presentation policy that
describes which credentials the user must present and which information from these
credentials she must reveal. If the user possesses the necessary credentials, she can
derive from these credentials a presentation token that satisfies the presentation
policy. The presentation token can be verified using the issuer parameters of all
credentials underlying the presentation token.

Presentation tokens derived from Privacy-ABCs only reveal the attributes that
were explicitly requested by the presentation policy – all the other attributes
contained in the credentials remain hidden. Moreover, presentation tokens are
cryptographically unlinkable (meaning no collusion of issuers and verifiers can tell
whether two presentation tokens were generated by the same user or by different
users) and untraceable (meaning that no such collusion can correlate a presentation
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token to the issuance of the underlying credentials). Of course, presentation tokens
are only as unlinkable as the information they intentionally reveal.

Rather than requesting and revealing full attribute values, presentation policies
and tokens can also request and reveal predicates over one or more issued
attributes. For example, a token could reveal that the name on the user’s credit
card matches that on her driver’s license, without revealing the name. As another
example, a token could reveal that the user’s birthdate is before January 1st, 1994,
without revealing her exact birthdate.

3.4 Issuance

In the simplest setting, an issuer knows all attribute values to be issued and simply
embeds them into a credential. Privacy-ABCs also support advanced issuance
features where attributes are blindly “carried over” from existing credentials,
without the issuer becoming privy to their values. Similarly, the issuer can blindly
issue self-claimed attribute values (i.e., not certified by an existing credential),
carry over the secret key to which a credential is bound, or assign a uniformly
random value to an attribute such that the issuer cannot see it and the user
cannot bias it.

Advanced issuance is an interactive protocol between the user and the issuer.
In the first move, the issuer provides the user with an issuance policy that consists
of a presentation policy specifying which pseudonyms and/or existing credentials
the user must present, and of a credential template specifying which attributes or
secret keys of the newly issued credential will be generated at random or carried
over from credentials or pseudonyms in the presentation policy. In response, the
user sends an issuance token containing a presentation token that satisfies the
issuance policy. Then the (possibly multi-round) cryptographic issuance protocol
ensues, at the end of which the user obtains the new credential.

3.5 Inspection

Absolute user anonymity in online services easily leads to abuses such as spam,
harassment, or fraud. Privacy-ABCs provide the option to add accountability for
misbehaving users through a feature called inspection. Here, a presentation token
contains one or more credential attributes that are encrypted under the public key
of a trusted inspector. The verifier can check that the correct attribute values were
encrypted, but cannot see their actual values. The inspection grounds describe the
circumstances under which the verifier may call upon the inspector to recover the
actual attribute values. The inspector is trusted to collaborate only when the
inspection grounds have been met; verifiers cannot change the inspection grounds
after receiving a presentation token, as the grounds are cryptographically tied to
the token.
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The presentation policy specifies which attributes from which credentials have
to be encrypted, together with the inspector public keys and inspection grounds
under which they have to be encrypted.

3.6 Revocation

Credentials may need to be revoked for several reasons: the credential and the
related user secrets may have been compromised, the user may have lost her
right to carry a credential, or some of her attribute values may have changed. In
such cases, credentials need to be revoked globally and we call this issuer-driven
revocation. Sometimes credentials may be revoked only for specific contexts. For
example, a hooligan may see his digital identity card revoked for accessing sport
stadiums, but may still use it for all other purposes. We call this verifier-driven
revocation.

Revocation for Privacy-ABCs is cryptographically more complicated than for
classical certificates, but many mechanisms with varying efficiency [34] exist [19,
39, 11, 16, 38]. Bar a few exceptions, all of them can be used for both issuer-driven
and verifier-driven revocation.

We describe revocation in a generic mechanism-agnostic way and consider
credentials to be revoked by dedicated revocation authorities. They are separate
entities in general, but may be under the control of the issuer or verifier in
particular settings. The revocation authority publishes static revocation authority
parameters and periodically publishes the most recent revocation information.
When creating presentation tokens, users prove that their credentials have not
been revoked, possibly using non-revocation evidence that they fetch and update
from the revocation authority. The revocation authority to be used is specified
in the issuer parameters for issuer-driven revocation and in the presentation
policy for verifier-driven revocation. When a credential is subject to issuer-driven
revocation, a presentation token related to this credential must always contain a
proof that the presented credential has not been revoked. Issuer-driven revocation
is performed based on the revocation handle, which is a dedicated unique attribute
embedded in a credential. Verifier-driven revocation can be performed based on
any combination of attribute values, possibly even from different credentials. This
allows the revocation authority for example to exclude certain combinations of
first names and last names to be used in a presentation token.

3.7 Cryptographic Realization

The most prominent instantiations of Privacy-ABC systems are IBM’s Identity
Mixer [24, 32] and Microsoft’s U-Prove [26]. Both systems currently support only
a subset of the features presented here, but will be extended to support the full
feature set as part of the ABC4Trust project. Here, we sketch how the different
features can be realized cryptographically and give pointers to relevant related
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literature; a full security analysis of the combined system is beyond the scope of
this paper.

At the core of a Privacy-ABC system is a signature scheme with efficient
protocols to prove possession of signatures. Identity Mixer and U-Prove build
on the Camenisch-Lysyanskaya [20] and the Brands [10] signature schemes,
respectively, but other schemes also exist [21, 4]. An issued credential is a signature
(or, for single-show schemes such as [10], a batch of renewable signatures) under
such a scheme on the user’s attributes. Some schemes inherently support key
binding [20, 21, 4], others can be extended by using a randomly chosen attribute
as secret key [10].

Ordinary pseudonyms are cryptographic commitments [42, 27] to the secret
key; scope-exclusive pseudonyms can be realized as the output of a verifiable
random function [28, 14] applied to the secret key as seed and the scope string
as input. Inspection can be obtained through verifiable encryption [23] of the
inspectable attributes. Revocation of Privacy-ABCs can be done through signed
revocation lists [38], through dynamic accumulators [19, 39, 16], or through
efficient updates of short-lived credentials [17].

The glue binding all primitives together in a presentation token is provided
by generalized zero-knowledge proofs of knowledge of discrete logarithms [44, 15]
made non-interactive through the Fiat-Shamir transform [30]. These proofs are
also used for equality predicates over attributes; inequality predicates can be
proved using range proofs [8, 13].

4 Language Framework

Given the multitude of distributed entities involved in a full-fledged Privacy-ABC
system, the communication formats that are used between these entities must be
specified and standardized.

None of the existing format standards for identity management protocols such
as SAML, WS-Trust, or OpenID support all Privacy-ABCs’ features. Although
most of them can be extended to support a subset of these features, we define
for the sake of simplicity and completeness a dedicated language framework which
addresses all unique Privacy-ABC features. Our languages can be integrated into
existing identity management systems.

In this section we introduce our framework covering the full life-cycle of
Privacy-ABCs, including setup, issuance, presentation, revocation, and inspection.
As the main purpose of our data artifacts is to be processed and generated by
automated policy and credential handling mechanisms, we define all artifacts in
XML schema notation, although one could also create a profile using a different
encoding such as ASN.1 or JSON.

The XML artifacts formally describe and orchestrate the underlying crypto-
graphic mechanisms and provide opaque containers for carrying the cryptographic
data. Whenever appropriate, our formats also support user-friendly textual names
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or descriptions which allow to show a descriptive version of the XML artifacts to
a user and to involve her in the issuance or presentation process if necessary.

For didactic purposes we describe the different artifacts realizing the concepts
from Section 3 by means of examples. The full schema is available in [12]. In
what follows, we explicitly distinguish between user attributes (as contained in a
credential) and XML attributes (as defined by XML schema) whenever they could
be confused.

4.1 Credential Specification

Recall that the credential specification describes the common structure and
possible features of credentials. For example, suppose the Republic of Utopia
issues electronic identity cards to its citizens containing their full name, state,
and date of birth. Utopia may issue Privacy-ABCs according to the credential
specification shown in Figure 2.

1 <CredentialSpecification KeyBinding="true" Revocable="true">
2 <SpecificationUID>urn:creds:id</SpecificationUID>
3 <AttributeDescriptions MaxLength="32">
4 <AttributeDescription Type="urn:creds:id:name" DataType="xs:string"
5 Encoding="xenc:sha256">
6 <FriendlyAttributeName lang="EN"> Full Name
7 </FriendlyAttributeName>
8 </AttributeDescription>
9 <AttributeDescription Type="urn:creds:id:state" DataType="xs:string"

10 Encoding="xenc:sha256"/>
11 <AttributeDescription Type="urn:creds:id:bdate" DataType="xs:date"
12 Encoding="ASN1:GeneralizedTime"/>
13 </AttributeDescriptions>
14 </CredentialSpecification>

Figure 2: Credential specification of the identity card.

The XML attribute KeyBinding indicates whether credentials adhering to
this specification must be bound to a secret key. The XML attribute Revocable

being set to “true” indicates that the credentials will be subject to issuer-driven
revocation and hence have a built-in revocation handle. The assigned revocation
authority is specified in the issuer parameters.

To encode user attribute values in a Privacy-ABC, they must be mapped to
integers of a limited length. The maximal length is indicated by the MaxLength

XML attribute (Line 3), here 32 bytes. Electronic identity cards contain a person’s
full name, state, and date of birth. The XML attributes Type, DataType, and
Encoding respectively contain the unique identifier for the user attribute type, for
the data type, and for the encoding algorithm that specifies how the value is to
be mapped to an integer of the correct size (Lines 4, 9, 11). Attributes that may
have values longer than MaxLength have to be hashed, as is done here for the
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name using SHA-256. The specification can also define human-readable names for
the user attributes in different languages (Line 6–7).

4.2 Issuer and Revocation Parameters

The government of Utopia, that acts as issuer and revocation authority for the
identity cards, generates an issuance key pair and publishes the issuer parameters,
and generates and publishes the revocation authority parameters.

1 <IssuerParameters>
2 <ParametersUID>urn:utopia:id:issuer</ParametersUID>
3 <AlgorithmID>urn:com:microsoft:uprove</AlgorithmID>
4 <SystemParameters>...</SystemParameters>
5 <CredentialSpecUID>urn:creds:id</CredentialSpecUID>
6 <HashAlgorithm>xenc:sha256</HashAlgorithm>
7 <CryptoParams>...</CryptoParams>
8 <KeyBindingInfo>...</KeyBindingInfo>
9 <RevocationParametersUID>urn:utopia:id:ra</RevocationParametersUID>

10 </IssuerParameters>

1 <RevocationAuthorityParameters>
2 <ParametersUID>urn:utopia:id:ra</ParametersUID>
3 <RevocationMechanism>
4 urn:abc4trust:accumulators:cl
5 </RevocationMechanism>
6 <RevocationInfoReference ReferenceType="url">
7 https:utopia.gov/id/revauth/revinfo
8 </RevocationInfoReference>
9 <NonRevocationEvidenceReference ReferenceType="url">

10 https:utopia.gov/id/revauth/nrevevidence
11 </NonRevocationEvidenceReference>
12 <CryptoParams>...</CryptoParams>
13 </RevocationAuthorityParameters>

Figure 3: Issuer and revocation authority parameters.

They are illustrated in Figure 3. The ParametersUID element assigns
unique identifiers for the issuer and revocation authority parameters. The
issuer parameters additionally specify the chosen cryptographic Privacy-ABC and
hash algorithm, the credential specification that credentials issued under these
issuer parameters will follow, and the parameters identifier of the revocation
authority that will manage the issuer-driven revocation. The SystemParameters,
CryptoParams, and KeyBindingInfo contain cryptographic algorithm-specific
information about the public key.

The revocation authority parameters can be used for both issuer- and verifier-
driven revocation. They specify a unique identifier for the parameters, the
cryptographic revocation mechanisms, and references to the network endpoints
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where the most recent revocation information and non-revocation evidence can be
fetched.

4.3 Presentation Policy with Basic Features

Suppose that a user already possesses an identity card from the Republic of Utopia
issued according to the credential specification depicted in Figure 2. Further
suppose that all residents of Utopia can sign up for one free library card using an
online issuance service. To get a library card the applicant must present her valid
identity card and reveal only the state from it. This results in the presentation
policy depicted in Figure 4.

1 <PresentationPolicy PolicyUID="libcard">
2 <Message>
3 <Nonce> bkQydHBQWDR4TUZzbXJKYUM= </Nonce>
4 </Message>
5 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true"/>
6 <Credential Alias="id" SameKeyBindingAs="nym">
7 <CredentialSpecAlternatives>
8 <CredentialSpecUID>urn:creds:id</CredentialSpecUID>
9 </CredentialSpecAlternatives>

10 <IssuerAlternatives>
11 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
12 </IssuerAlternatives>
13 <DisclosedAttribute AttributeType= "urn:creds:id:state"/>
14 </Credential>
15 </PresentationPolicy>

Figure 4: Presentation policy for an identity card.

We now will go through the preceding presentation policy and describe how
the different features of Privacy-ABCs can be realized with our language. We will
first focus on the basic features and describe extended concepts such as inspection
and revocation in our second example.

Signing Messages

A presentation token can optionally sign a message. The message to be signed is
specified in the policy (Fig. 4, Lines 2–4). It can include a nonce (to prevent replay
attacks and to use for cryptographic evidence generation), any application-specific
message, and a human-readable name and/or description of the policy.

Pseudonyms

The optional Pseudonym element (Fig. 4, Line 5) indicates that the presentation
token must contain a pseudonym. A pseudonym can be presented by itself or in
relation with a credential if key binding is used (which we discuss later).
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The associated XML attribute Exclusive indicates that a scope-exclusive
pseudonym must be created, with the scope string given by the XML attribute
Scope. This ensures that each user can create only a single pseudonym satisfying
this policy, so that the registration service can prevent the same user from
obtaining multiple library cards. Setting Exclusive to “false” would allow an
ordinary pseudonym to be presented. The Pseudonym element has an optional
boolean XML attribute Established, not illustrated in the example, which, when
set to “true”, requires the user to re-authenticate under a previously established
pseudonym. The presentation policy can request multiple pseudonyms, e.g., in
order to verify that different pseudonyms actually belong to the same user.

Selective Disclosure

For each credential that the user is requested to present, the policy contains a
Credential element (Fig. 4, Lines 6–14). The XML attribute Alias assigns an alias
by means of which the credential can be referred to from other places in the policy,
e.g., from the attribute predicates. For each credential, a list of accepted credential
specifications and issuer parameters can be specified, as well as the list of attributes
that must be disclosed. The preceding policy only requests the presentation of an
identity card and the exposure of the state by the DisclosedAttribute element
(Fig. 4, Line 13).

Key Binding

If present, the SameKeyBindingAs attribute of a Credential or Pseudonym

element (Fig. 4, Line 6), contains an alias referring either to another Pseudonym
element within this policy, or to a Credential element for a credential with key
binding. This indicates that the current pseudonym or credential and the referred
pseudonym or credential have to be bound to the same key. In our preceding
example, the policy requests that the identity card and the presented pseudonym
must belong to the same secret key.

4.4 Issuance Policy

To support the advanced features described in Section 3, we propose a dedicated
issuance policy.

A library card contains the applicant’s name and is bound to the same secret
key as the identity card. So the identity card must not only be presented, but also
used as a source to carry over the name and the secret key to the library card, and
the library should learn neither of them during the issuance process. Altogether,
to issue library cards the state library creates an issuance policy depicted in Figure
5. It contains the presentation policy from Figure 4 and the credential template
that we describe in details below.
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1 <IssuancePolicy>
2 <PresentationPolicy PolicyUID="libcard">... </PresentationPolicy>
3 <CredentialTemplate SameKeyBindingAs="id">
4 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
5 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>
6 <UnknownAttributes>
7 <CarriedOverAttribute TargetAttributeType= "urn:utopia:lib:name">
8 <SourceCredentialInfo Alias="id" AttributeType="urn:creds:id:name"/>
9 </CarriedOverAttribute>

10 </UnknownAttributes>
11 </CredentialTemplate>
12 </IssuancePolicy>

Figure 5: Issuance policy for a library card. The presentation policy on Line 2 is
depicted in Figure 4.

Credential Template

A credential template describes the relation of the new credential to the existing
credentials that were requested in the presentation policy. The credential template
(Fig. 5, Lines 3–11) must first state the unique identifier of the credential
specification and issuer parameters of the newly issued credential. The optional
XML attribute SameKeyBindingAs further specifies that the new credential will
be bound to the same secret key as a credential or pseudonym in the presentation
policy, in this case the identity card.

Within the UnknownAttributes element (Fig. 5, Lines 6–10) it is specified
which user attributes of the new credential will be carried over from existing
credentials in the presentation token. The SourceCredentialInfo element (Fig. 5,
Line 8) indicates the credential and the user attribute of which the value will be
carried over.

Although this is not illustrated in our example, an attribute value can also
be specified to be chosen jointly at random by the issuer and the user. This is
achieved by setting the optional XML attribute JointlyRandom to “true”.

4.5 Presentation and Issuance Token

A presentation token consists of the presentation token description, containing
the mechanism-agnostic description of the revealed information, and the crypto-
graphic evidence, containing opaque values from the specific cryptography that
“implements” the token description. The presentation token description roughly
uses the same syntax as a presentation policy. An issuance token is a special
presentation token that satisfies the stated presentation policy, but that contains
additional cryptographic information required by the credential template.

The main difference with the presentation and issuance policy is that in the
returned token a Pseudonym (if requested in the policy) now also contains a
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concrete PseudonymValue (Fig. 6, Line 6). Similarly, the DisclosedAttribute

elements (Fig. 6, Lines 10–12) in a token now also contain the actual user
attribute values. Finally, all data from the cryptographic implementation of the
presentation token and the advanced issuance features are grouped together in the
CryptoEvidence element (Fig. 6, Line 17).

1 <IssuanceToken>
2 <IssuanceTokenDescription>
3 <PresentationTokenDescription PolicyUID ="libcard" >
4 <Message>...</Message>
5 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true" />
6 <PseudonymValue> MER2VXISHI=</PseudonymValue>
7 </Pseudonym>
8 <Credential Alias="id" SameKeyBindingAs="nym" >
9 ...

10 <DisclosedAttribute AttributeType="urn:creds:id:state" >
11 <AttributeValue> Nirvana </AttributeValue>
12 </DisclosedAttribute>
13 </Credential>
14 </PresentationTokenDescription>
15 <CredentialTemplate SameKeyBindingAs="id" >...</CredentialTemplate>
16 </IssuanceTokenDescription>
17 <CryptoEvidence>...</CryptoEvidence>
18 </IssuanceToken>

Figure 6: Issuance token for obtaining the library card.

4.6 Presentation Policy with Extended Features

Suppose that the state library has a privacy-friendly online interface for borrowing
digital and paper books. Books can be browsed and borrowed anonymously using
the digital library cards based on Privacy-ABCs. Paper books can be delivered in
anonymous numbered mailboxes at the post office. However, when books are
returned late or damaged, the library must be able to identify the reader to
impose an appropriate fine. Repeated negligence may even lead to exclusion from
borrowing further paper books while borrowing digital books remains possible.

Moreover, assume that the library offers special conditions for young readers
that can be used by anyone below the age of twenty-six years. As library cards do
not contain a date of birth, a user must prove to be below that age by combining
her library card with her identity card. Altogether, for borrowing books under the
“young-reader”-conditions, users have to satisfy the presentation policy depicted
in Figure 7.

A presentation policy that is used for plain presentation (i.e., not within
an issuance policy) can consist of multiple policy alternatives, each wrapped
in a separate PresentationPolicy element (Fig. 7, Lines 2–37). The returned
presentation token must satisfy (at least) one of the specified policies.
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1 <PresentationPolicyAlternatives>
2 <PresentationPolicy PolicyUID= "young−reader" >
3 <Message>...</Message>
4 <Credential Alias="libcard" SameKeyBindingAs="id" >
5 <CredentialSpecAlternatives>
6 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
7 </CredentialSpecAlternatives>
8 <IssuerAlternatives>
9 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>

10 </IssuerAlternatives>
11 <DisclosedAttribute AttributeType= "urn:utopia:lib:name" >
12 <InspectorAlternatives>
13 <InspectorPublicKeyUID> urn:lib:arbitrator
14 </InspectorPublicKeyUID>
15 </InspectorAlternatives>
16 <InspectionGrounds> Late return or damage. </InspectionGrounds>
17 </DisclosedAttribute>
18 </Credential>
19 <Credential Alias="id" >
20 <CredentialSpecAlternatives>
21 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
22 </CredentialSpecAlternatives>
23 <IssuerAlternatives>
24 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
25 </IssuerAlternatives>
26 </Credential>
27 <VerifierDrivenRevocation>
28 <RevocationParametersUID> urn:lib:blacklist
29 </RevocationParametersUID>
30 <Attribute CredentialAlias ="libcard"
31 AttributeType="urn:utopia:lib:name" />
32 </VerifierDrivenRevocation>
33 <AttributePredicate Function= "...:date−greater−than" >
34 <Attribute CredentialAlias ="id" AttributeType= "urn:creds:id:bdate" />
35 <ConstantValue> 1986−07−16 </ConstantValue>
36 </AttributePredicate>
37 </PresentationPolicy>
38 </PresentationPolicyAlternatives>

Figure 7: Presentation policy for borrowing books.

The example presentation policy contains two Credential elements, for the
library and for the identity card, which must belong to the same secret key as
indicated by the XML attribute SameKeyBindingAs.

Attribute Predicates

No user attributes of the identity card have to be revealed, but the AttributePred-

icate element (Fig. 7, Lines 33–36) specifies that the date of birth must be after
July 16th, 1986, i.e., that the reader is younger than twenty-six. Supported
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predicate functions include equality, inequality, greater-than and less-than tests for
most basic data types, as well as membership of a list of values. The arguments of
the predicate function may be credential attributes (referred to by the credential
alias and the attribute type) or constant values.

Inspection

To be able to nevertheless reveal the name of an anonymous borrower and
to impose a fine when a book is returned late or damaged, the library
can make use of inspection. The DisclosedAttribute element for the user
attribute “...:name” contains InspectorPublicKeyUID and InspectionGrounds

child elements, indicating that the attribute value must not be disclosed to the
verifier, but to the specified inspector with the specified inspection grounds. The
former child element specifies the inspector’s public key under which the value must
be encrypted, in this case belonging to a designated arbiter within the library. The
latter element specifies the circumstances under which the attribute value may be
revealed by the arbiter. Our language also provides a data artifact for inspection
public keys, which we omit here for space reasons.

Issuer-Driven Revocation

When the presentation policy requests a credential that is subject to issuer-driven
revocation, the credential must be proved to be valid with respect to the most
recent revocation information. However, a policy can also specify a particular
version of the revocation information to use. In the latter case, the element
IssuerParametersUID has an extra XML attribute RevocationInformationUID

containing the identifier of the specific revocation information. The specification
of the referenced RevocationInformation is given in [12].

Verifier-Driven Revocation

If customers return borrowed books late or damaged, they are excluded from
borrowing further paper books, but they are still allowed to use the library’s
online services. In our example, this is handled by a VerifierDrivenRevocation

element (Fig. 7, Lines 26–29), which specifies that the user attribute “...:name” of
the library card must be checked against the most recent revocation information
from the revocation authority “urn:lib:blacklist”. Revocation can also be based on
a combination of user attributes from different credentials, in which case there
will be multiple Attribute child elements per VerifierDrivenRevocation. The
presentation policy can also contain multiple VerifierDrivenRevocation elements
for one or several credentials, the returned presentation token must then prove its
non-revoked status for all of them.
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5 Semantics

To precisely specify the meaning of the XML language that we propose, we provide
a formal semantics which mathematically defines the various language features
and thus the intended system behavior. The semantics that we propose is based
on the one shown by Camenisch et al. [22] for the CARL language. Similar to
their approach, we also define our semantics in the context of a state transition
system, but apart from token presentation we additionally cover state transitions
for credential issuance, credential revocation, and token inspection as well as
pseudonyms and key binding.

In our model, users maintain credential portfolios containing the credentials
that were issued to them. Issuers and verifiers maintain knowledge states
about their communication partners in the form of logical predicates. These
predicates express that a certain logical expression over the communication
partner’s credentials has been successfully verified at the time of the transition.
Similar to [22], the semantics is given in terms of the effects that the transitions
have on the knowledge states and portfolios of the parties involved in the transition.

5.1 Dedicated Functions and Attributes

We abstract away from the XML notation of our language and list all the
information contained in a presentation token in a formal manner. We first
introduce some notation, then we specify the semantics of attribute predicates, and
afterwards we describe a set of dedicated functions and attributes that are needed
to specify the semantics associated with pseudonyms, inspection, revocation, and
attribute predicates.

We assume that an ontology T defines data types, attributes, credential types,
and functions on the data types, which correspond to the data types, attribute
types, credential specifications and predicate functions from the XML notation.
All parties in the system are assumed to use the same ontology T. A credential type
defines which attributes the credentials of this type contain. An issued credential
is represented as a function of its attributes to values of the correct data types.
The ontology contains the equality function for all data types and greater-than
and less-than functions on integers and dates.

An AttributePredicate element represents a logical predicate φ = f(. . .),
where f is a boolean-valued function over attribute variables and constants, which
are expressed by Attribute and ConstantValue XML elements, respectively. We
denote attribute variables with C.a for a credential alias C and an attribute a. If
an interpretation I assigns the value true to a predicate φ, it is called a model
of that predicate, which we denote as I |= φ. Multiple predicates φ1, . . . , φn

within the same PresentationPolicy element are conjunctively combined to φ =
φ1 ∧ . . . ∧ φn. We define the meaning of attribute predicates with respect to a
given ontology T and an interpretation I. An interpretation assigns values to the
symbols in a formula so that the formula can be evaluated. In particular, for a
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function symbol f , we denote by fT the ontology-defined meaning of f , and for
terms t1, . . . , tn, where a term is an attribute variable or a constant, we define
f(t1, . . . , tn)I = fT(tI1 , . . . , t

I
n) and (C.a)I = (CI)(a).

We assume a non-deterministic function k ← genKey, which generates a new
unique secret key k every time it is called. We denote the set of keys that user
U generated with SU and assume all users’ key sets are disjoint. Further, we
assume a non-deterministic function p← nym(k), which derives a new unique
pseudonym p from secret key k every time it is called, and a boolean function
verifyNym(p, k) that is true iff p was derived from k. Pseudonyms derived from the
same secret key are in principle unlinkable, i.e., for two pseudonyms p1 = nym(k)
and p2 = nym(k′), it cannot be determined whether k = k′ , unless the user
explicitly creates a presentation token showing that p and p′ are associated to the
same key, denoted by the boolean function verifyNyms(p, p′).

Also, we assume a function d ← seNym(k,w), which derives a unique scope-
exclusive pseudonym d from a secret key k for scope w, as well as a boolean function
verifySeNym(d,w, k) that is true iff d was derived from k for w. Scope-exclusive
pseudonyms are also unlinkable, i.e. for two pseudonyms d1 ← seNym(k,w) and
d2 ← seNym(k′, w′) with w 6= w′, it cannot be determined whether k = k′. We
denote with NU and DU the pseudonyms and scope-exclusive pseudonyms that
were derived from a key k ∈ SU .

For inspection, we further assume a verifiable encryption function e ←
vEncrypt(S, g, v1, v2, . . .), which encrypts a concatenation of values v1, v2, . . .

under the public key of party S and inspection grounds g, as well as a
decryption function 〈v1, v2, . . .〉 ← vDecrypt(e, sk, g′), which decrypts e with
the secret key sk on grounds g′ to the originally encrypted concatenation
〈v1, v2, . . .〉 iff sk is the secret key of S and g = g′. Also, we assume a
boolean function verifyEnc(e, S, g, v1, v2, . . .), which evaluates to true iff e =
vEncrypt(S, g, v1, v2, . . .).

All credentials have the dedicated attributes type and issuer. Credentials with
key binding, i.e., whose credential specification has XML attribute KeyBinding=
“true”, additionally have an attribute uKey of type String containing the secret
key of its owner. Revocable credentials have a dedicated attribute rHandle

representing the revocation handle.

5.2 Credential Issuance

We first consider simple issuance policies whose credential template merely
specifies a credential type τ and an issuer I. After introducing the semantics
for token presentation, we extend the issuance semantics for unrestricted issuance
policies.

An issuance transition between a user U and an issuer I has effects on the user’s
credential portfolio PU as well as the issuer’s knowledge state KI(X), where X is
some issuer-chosen identifier under which U is currently known to I. Note that the
same user U may be known to the issuer under multiple different identifiers. After
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the transition, the augmented credential portfolio P′
U = PU ∪{N} contains a new

credential N of type τ , of issuer I, and with N(ai) = Ai ::βi for ai ::βi ∈ Aτ , where
a ::β denotes that attribute a has data type β, where Aτ = {a1 ::β1, . . .} is the set
of attributes that credentials of credential type τ have, and where the Ai are the
attribute values that I certifies for U . If τ is revocable, then N(rHandle) = r,
where r is a globally unique issuer-chosen revocation handle. The new knowledge
state K′

I(X) of the issuer increases such that K′
I(X) = KI(X) ∧ N.type == τ ∧

N.issuer == I∧∧
|Aτ |
i=1 N.ai == Ai. If τ is revocable, then K′

I(X) has the additional
conjunct N.rHandle == r. This models that for simple issuance policies the
issuer learns the values of all the attributes that are certified in the newly issued
credential N .

5.3 Credential Revocation

In order to define the semantics of revocation, we introduce revocation epochs and
revocation logs. Note that these concepts are only part of our ideal world that is
modeled, i.e., typically they do not have counterparts in a real implementation.
We assume that revocation authorities maintain revocation epochs in the form of
sequence numbers, where a function h← currEpoch(Y ) returns the current epoch
h ∈ Z for revocation authority Y . Revocation authorities advance their current
epoch at their own discretion, e.g., at regular time intervals or whenever a new
credential is revoked, from h to h′ > h.

For issuer-driven revocation, the revocation authority I maintains a local
revocation log file RI that is a set of pairs (h, r) of an epoch h ∈ Z and a
revocation handle r, representing that the credential with handle r was revoked
in epoch h. An issuer adding an entry to his revocation log models an issuer-
revocation transition in our transition system. A credential C is not issuer-revoked
for epoch h, denoted notIssRevoked(I, h, r), iff ∄

(

h′, r
)

∈ RC(issuer) · h
′ ≤ h.

Similarly, for verifier-driven revocation, each revocation authority V maintains
a local revocation log file LV containing tuples (h, v1, v2, . . .) of an epoch h ∈ Z
and a list of values v1, v2, . . .. The predicate notVerRevoked(V, h, v1, v2, . . .) is true
iff ∄(h′, v1, v2 . . .) ∈ LV · h

′ ≤ h.

5.4 Token Presentation

In this section we define the semantics of a token presentation transition, which
models that a user U proves to a verifier S that she fulfills the statements made
in a given presentation token. We first formalize the requirements on the user’s
portfolio such that it can be used to prove a token, and then we specify the
knowledge increase of the verifier to whom the token is proved.

Let T be a presentation token that, from an abstract point of view, i.e. without
considering its form in XML notation, contains the following information:3

3We underline variables to express that they are associated with a presentation token.
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− k pseudonym values p
1
, . . . , p

k

− ℓ scope-excl. pseudonym values d1, . . . , dℓ for scopes wd1
, . . . ,wdℓ

− n credentials C1 :: τ1, . . . , Cn :: τn of issuers IC1
, . . . , ICn

with reference
revocation epochs hC1

, . . . , hCn

− Attribute predicate φ

− Disclosed values v(i,S) for the attributes C.a(i,S), for 1 ≤ i ≤ nS where nS is
the number of attributes disclosed to S

− Attributes C.a(i,Sj) that are verifiably encrypted for inspector Sj in ciphertext
eSj

on grounds g
Sj

for 1 ≤ i ≤ nSj
and 1 ≤ j ≤ q, where nSj

is the number of

attributes disclosed to Sj and q is the number of different inspectors

− Non-revoked attributes C.a(i,Vj) at revocation authority V j with reference
revocation epochs hVj

for 1 ≤ i ≤ nVj
and 1 ≤ j ≤ o where nVj

is the number
of revocation attributes of V j and o is the number of revocation authorities

− Message m

− Symmetric key binding relation K ⊆ R × R, with R = {C1, . . . , Cn} ∪
{p

1
, . . . , p

k
} ∪ {d1, . . . , dℓ}, where x 7→ y ∈ K states that x is key-bound to y.

As a credential’s type and issuer are treated as dedicated attributes, for each
credential C :: τ ∈ {C1, . . . , Cn} issued by I we let the predicate φ contain an
additional conjunct C.type == τ ∧ C.issuer == I. Further, for all pairs of
credentials C,C ′∈{C1, . . . , Cn} that are bound to the same key, i.e., C 7→C ′∈K,

we let the predicate φ contains a conjunct C.uKey==C ′.uKey. Note that there is
only one inspection ground per inspector in our model, while in the XML notation
there is one ground per attribute to disclose. This is because in our model the
attributes disclosed to one inspector are packaged into one ciphertext to capture
their semantic correlation. Without preserving this correlation, dishonest verifiers
might mix attributes disclosed within different ciphertexts or across different token
presentations.

We say that U can prove the presentation token T iff there exists a credential
assignment b and an interpretation I such that

1. b is a total mapping from {C1, . . . , Cn} to PU ,

2. I |= φ, with CI
i = b(Ci) for 1≤ i≤n,

3. ∀C∈{C1, . . . , Cn} · notIssRevoked
(

IC , hC , (C.rHandle)
I
)

,

4. ∀V∈{V 1, . . . , V o} · notVerRevoked(V, hV ,(C.a(1,V ))
I , . . . , (C.a(n

V
,V ))

I),

5. ∀i∈{1, . . . , nS} · (C.a(i,S))
I = v(i,S), i.e., the sent values are correct w.r.t. the

credential assignment b,

6. ∀x∈{S1, . . . , Sq} · verifyEnc
(

ex, x, gx
, (C.a(1,x))

I , . . . , (C.a(n
x

,x))
I
)

,

7. ∀i∈{1, . . . , k} · p
i
∈NU ∧

(

e(p
i
)→ KS(p

i
) 6= ǫ

)

4 ∧
(

∀C∈{C1, . . . , Cn} · pi
7→C∈

4If pseudonym p
i

is claimed to be established, then p
i

must have been used in a previous

token presentation transition with verifier S
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K→verifyNym(p
i
, (C.uKey)I)

)

∧
(

∀j∈{1, . . . , i− 1, i+ 1, . . . , k} · p
i
7→p

j
∈K→

verifyNyms(p
i
, p

j
)
)

∧
(

∀j ∈{1, . . . , ℓ} · p
i
7→dj ∈K→verifyNyms(p

i
, dj)

)

, where

the predicate e(x) denotes that pseudonym x is claimed to be established and
ǫ denotes an empty predicate, i.e., U knows the secret keys of the pseudonyms,
the pseudonyms are correctly established and all stated key-bindings are
correct, and

8. ∀i∈{1, . . . , ℓ}·di∈DU ∧
(

e(di)→KS(di) 6=ǫ
)

∧
(

∀C∈{C1, . . . , Cn}·di 7→C∈K→

verifySeNym(di, wdi
, (C.uKey)I)

)

∧
(

∀j ∈{1, . . . , i − 1, i + 1, . . . , ℓ} · di 7→ dj ∈

K→verifyNyms(di, dj)
)

∧
(

∀j∈{1, . . . , k} · di 7→p
j
∈K→verifyNyms(di, pj

)
)

.

When a user can prove a token and convinces the verifier S of this fact by
engaging in a presentation proof protocol, the effect of the token presentation
transition is twofold. First, there is an increase of knowledge of S about the
token’s pseudonyms in the form of a logical predicate. This models that S learns
that the corresponding predicate was true at the time of the transition. Second,
the transcript of the proof protocol acts as transferable signature σT on message
m, i.e., S may subsequently use σT to convince third parties about the fact that
the user who proved token T (i.e., who fulfilled all the properties stated in T )
consented to the statement m.

Concerning the knowledge increase, we require that the credential variables in
the verifier’s knowledge state are disjoint with the credential variables C1, . . . , Cn

of T . If this is not the case, the variables of the verifier’s state have to be renamed.
Let KC

x = {y ∈ {C1, . . . , Cn} | x 7→ y ∈ K} be the set containing all credentials

that x is key-bound to, and let KN

x and KD

x be analog sets for pseudonyms and
scope-exclusive pseudonyms, respectively. The following specifies the knowledge
of S after the token presentation transition about the 1 ≤ i ≤ k pseudonyms:

K′
S(p

i
)=KS(p

i
) ∧ φ ∧ ∧

n
S

j=1C.a(j,S) ==v(j,S) ∧

∧
n

j=1 notIssRevoked(ICj
, hCj

, Cj .rHandle) ∧

∧
o

j=1 notVerRevoked(V j , hVj
, C.a(1,Vj), . . . , C.a(n

Vj
,Vj)) ∧

∧
q

j=1 verifyEnc(eSj
, Sj , gSj

, C.a(1,Sj), . . . , C.a(n
Sj

,Sj)) ∧

∧x∈KC
p

i

verifyNym(p
i
, x.uKey) ∧

∧x∈KN

p
i

∪KD

p
i

verifyNyms(p
i
, x) ∧

∧i−1
j=1

−→

K′
S(p

j
) ∧ ∧

k

j=i+1

−→

K′
S(p

j
) ∧ ∧

ℓ

j=1

−→

K′
S(dj)

The analog we require for knowledge states K′
S(di) for 1≤i≤ℓ, where the last three

lines of the formula are adapted accordingly. The above formula models that S
learns the values that U discloses, and that the predicate φ over the contained
attribute variables holds, however, S does not learn the values of these attributes.
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Further, S learns that the credentials used to prove the token are neither issuer-
revoked nor verifier-revoked, however, S neither learns the revocation handle nor
the values of the non-revoked attributes, respectively. Also, S learns that the
ciphertext ex for inspector x contains the values that correspond to the attributes
C.a(1,x), . . . , C.a(1,n

x
), however, he does not know what the values are. The

verifier also learns which credentials and pseudonyms have the same underlying
key, however, he does not learn the key itself. The last line of above formula
models that the knowledge states of all pseudonyms used within the presentation

token are merged. We use the notation
−→
· to express that a predicate is not used

by value, but rather by reference. This models that a verifier can transitively link
all pseudonyms that were jointly contained in presentation tokens proved to him.
For example, consider two consecutive token presentations where in the first one
the predicate ψ1 for pseudonyms p1 and p2 is proved, and in the second one ψ2

with p1. With the ’by reference’ semantics, K(p2) is then ψ1 ∧ ψ2, rather than
just ψ1 with the ’by value’ semantics. For the knowledge states that are merged,
we require that the states’ variables are disjoint, as otherwise new (and possibly
wrong) knowledge about credentials is created by the merge operation itself. In
case a token contains no pseudonyms at all, i.e., k+ℓ = 0, a new unique identifier X
is used to refer to the new knowledge K′

S(X) = φ∧ · · · (same as above, except the
last three formula lines as they contain references to pseudonyms). Unlinkability
of credentials is achieved due to the renaming of the verifier’s variables that was
mentioned above, i.e., a verifier does not learn whether a user used the same or
different credentials to prove a particular token.

5.5 Policy Verification

For a server to make an access control decision after a presentation token has been
proved, he verifies that token w.r.t. a presentation policy. In the following, we
describe how such verification is performed in detail. Let P be the presentation
policy of S that U needs to satisfy. Each alternative contains from an abstract
point of view, i.e. without considering its form in XML notation, the following
information:

− k pseudonym aliases p1, . . . , pk, optionally established

− ℓ scope-excl. pseudonym aliases d1, . . . , dℓ for scopes wd1
, . . . , wdℓ

, optionally
established

− Message m

− n credentials C1, . . . , Cn with type- and issuer-alternatives, and revocation
epochs hI(i,Cj )

for each issuer alternative I(i,Cj) for 1 ≤ i ≤ nCj
and 1 ≤ j ≤ n,

where nCj
is the number of issuer alternatives for Cj

− Attribute predicate φ

− Attributes C.a(i,S) to disclose for 1 ≤ i ≤ nS where nS is the number of
attributes to disclose to S
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− Attributes C.a(i,Sj) to disclose to inspector Sj on grounds gSj
for 1 ≤ i ≤ nSj

and 1 ≤ j ≤ q where nSj
is the number of attributes to disclose to Sj and q is

the number of different inspectors

− Non-revoked attributes C.a(i,Vj) at revocation authority Vj with reference
revocation epochs hVj

for 1 ≤ i ≤ nVj
and 1 ≤ j ≤ o where nVj

is the number
of revocation attributes of Vj and o is the number of revocation authorities

− Symmetric key binding relation K ⊆ R × R, with R = {C1, . . . , Cn} ∪
{p1, . . . , pk} ∪ {d1, . . . , dℓ}, where x 7→ y ∈ K states that x is key-bound to y.

For simplicity, we do not consider inspector alternatives. Again, a credential’s type
and issuer are treated as dedicated attributes, and thus are specified as part of
the predicate φ. In particular, specifying alternatives τ1, . . . , τn for a credential C
is an abbreviation for specifying C.type== τ1 ∨ . . . ∨C.type== τn as additional
conjunct of φ. Issuer alternatives are treated analog. We further assume that
for all pairs of credentials C,C ′ ∈ {C1, . . . , Cn} that are bound to the same key,
i.e., C 7→ C ′ ∈ K, φ contains a conjunct C.uKey == C ′.uKey. Note that the
revocation epochs are optional in the XML notation. For our model we assume
hx = currEpoch(x) for revocation authority x in case hx is not given.

We say that the presentation token T fulfills the presentation policy P iff:

1. k ≥ k and ∀x∈{1, . . . , k}·e(x)→
(

KS(p
x
) 6=ǫ

)

, where the predicate e(x) denotes
that x-th pseudonym in the policy is required to be established and ǫ denotes
an empty predicate, i.e., at least k pseudonyms are provided and established,
respectively,

2. ℓ ≥ ℓ and ∀x∈{1, . . . , ℓ}·wdx
=wdx

∧
(

e(x)→(KS(dx) 6=ǫ)
)

, i.e., at least ℓ scope-
exclusive pseudonyms for the requested scopes are provided and established,
respectively,

3. m = m, i.e., the correct message is signed,

4. {C1, . . . , Cn} ⊆ {C1, . . . , Cn}, i.e., the same credential variables are used in the
policy and the token,

5. φ implies φ, i.e., the proved attribute predicate implies the one requested, which
incorporates verifying the permitted type- and issuer-alternatives,

6. ∀x∈{C1, . . . , Cn} · hx ≥ hI
x
, i.e., all requested credentials were valid w.r.t. the

corresponding epoch required by the policy or a later one,

7. {C.a(1,S), . . . , C.a(nS ,S)} ⊆ {C.a(1,S), . . . , C.a(n
S

,S)}, i.e., at least the
requested attributes to disclose are disclosed,

8. ∀x ∈ {S1, . . . , Sq}·gx = g
x
∧{C.a(1,x), . . . , C.a(nx,x)} ⊆ {C.a(1,x), . . . , C.a(n

x
,x)},

i.e., at least the requested attributes to disclose to the respective inspectors are
disclosed,

9. ∀x ∈ {V1, . . . , Vn} · hx ≥ hx ∧ ∀i ∈ {1, . . . , nx} · C.a(i,x) = C.a(i,x), i.e., the
exact requested combination of attribute values is not revoked at the respective
requested revocation authorities, and

10. there exists a total injective mapping r from R to R that maps (a) the policy’s
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credential aliases to token aliases and (b) the policy’s pseudonym aliases to
token pseudonym values, such that ∀x 7→y ∈ K · ∃x′ 7→y′ ∈ K · x′ = r(x)∧ y′ =
r(y), i.e., for all key-bindings required by the policy there exists a corresponding
key-binding in the token.

A token T fulfills a presentation policy P = {P1, . . . , PnP
} with alternatives

P1, . . . , PnP
iff ∃p∈P such that T fulfills p.

5.6 Token Inspection

During a token presentation transition, a server S may obtain verifiably encrypted
values for attributes C.a(i,I) for 1 ≤ i ≤ nI in the form of a ciphertext eI that
is only decryptable by the designated inspector I on grounds g

I
. To obtain

the plaintext values, S provides I with the ciphertext, the decryption grounds,
and evidence for these grounds (e.g., a damaged book). I checks by means of
the evidence whether the grounds are indeed fulfilled and (only) then decrypts
eI with his secret key sk to the originally encrypted values 〈v1, . . . , vn

I
〉 ←

vDecrypt(eI , sk, gI
). Assuming that I shares these values with S and that the user

who initially provided the cipertext was known under identifier X, the knowledge
state of S after this transition is: K′

S(X)=KS(X)∧C.a(1,I) ==v1∧· · ·∧C.a(n
I

,I) ==
vn

I
. This models that S learns the plaintext values of the verifiably encrypted

attributes.

5.7 Advanced Credential Issuance

Now we look at issuance transaction between a user and an issuer that are based
on more advanced issuance policies than the one described in Section 5.2. In
particular, we now consider credential templates that may also contain key-binding
information and carried-over attributes.

Let Q = 〈P,M〉 be an issuance policy that consists of a presentation policy
P and credential template M , where P contains the information as specified
in Section 5.5, and M contains, from an abstract point of view, i.e. without
considering its form in XML notation, the following information:

− Type τ to be issued

− Issuer I

− Attributes qi to carry over from C.a(i,I) for 1 ≤ i ≤ nI where nI is the number
of attributes to carry over

− Attributes r1, . . . , rnr
to establish with joint random values

− Optional key-binding either (1) to credential B, or (2) to the i-th pseudonym
for 1 ≤ i ≤ k, or (3) to the i-th scope-exclusive pseudonym for 1 ≤ i ≤ ℓ

Further, let T be a presentation token containing the information as specified
in Section 5.4, that can be fulfilled by U under interpretation I. An advanced
issuance transition between a user U and an issuer I is performed when U proves
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the presentation token T to I under interpretation I such that the proved T

fulfills the presentation policy P that is contained in Q. As for basic issuance,
the transition has effects on the user’s credential portfolio as well as the issuer’s
knowledge state.

The set of credentials that U owns is augmented in the same way as this is
the case for basic issuance, where the newly issued credential N has the following
additional properties:

− N(qi) =
(

C.a(i,I)

)I
for 1 ≤ i ≤ nI

− N(ri) is a jointly generated random number for 1 ≤ i ≤ nr

− in case of a key-binding with a credential:
N(uKey) = (B.uKey)I

− in case of a key-binding with a (scope-exclusive) pseudonym:
N(uKey) = s, where s is the user key that underlies p

i
or di from the token T ,

respectively

The issuer’s knowledge increase of the advanced issuance transaction is a
conjunction of:

1. the knowledge increase that we specified for token presentation transitions in
Section 5.4,

2. the knowledge increase that we specified for basic issuance in Section 5.2,

3. the predicate
∧nI

i=1 N.qi == C.a(i,I), which models that I knows that the
carried-over attributes are equal to its source attributes, however, I does not
learn the values of those attributes,

4. the predicate
∧nr

i=1 jointlyRandom(N.ri), which models that I knows which
attributes have jointly random generated values (expressed by a dedicated
boolean function jointlyRandom(C.a) for attribute variable C.a), but without
I learning these values,

5. in case of a key-binding with a credential: the predicate
N.uKey == B.uKey, which models that I learns that the user keys of the new
and the source credentials are equal, however, I does not learn the key itself,

6. in case of a key-binding with a pseudonym: the predicate
verifyNym(p

i
, N.uKey), which models that I learns that the new credential is

bound to the same user key that underlies p
i
, however, I does not learn the key

itself,

7. in case of a key-binding with a scope-exclusive pseudonym: the predicate
verifySeNym(di, wdi

, N.uKey), which models that I learns that the new
credential is bound to the same user key that underlies di for scope wdi

, however,
I does not learn the key itself.
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5.8 Knowledge-Based Policy Verification

In Section 5.5 we show how a verifier determines whether a given presentation
policy is fulfilled by the information proved in a given presentation token. Rather
than considering merely the information provided in one single token for verifying
the policy, a verifier S may also consider all the accumulated knowledge KS

about all known pseudonyms for the verification. This flexible approach allows
a user to prove just parts of a policy while still being granted access due to
prior token presentations. As knowledge states are indirectly time stamped with
epochs, verifiers can choose to disregard—or forget—knowledge before a certain
epoch. The presentation policy language can accordingly be extended with a switch
stating whether all of the verifier’s accumulated knowledge is considered for policy
verification or only the information provided in the current token. However, we
leave the formalization of such sophisticated policy verification approach for future
work.

6 Security Discussion

For our framework to be useful, the various parties need to be given security
guarantees: a verifier wants to be sure that if a presentation token verifies then
all the statements made in it are indeed supported by the issuer and have not
been revoked. Furthermore, the verifier wants to be sure that inspection will
succeed when needed. The issuer wants to have similar guarantees w.r.t. issuance
tokens. The user wants assurance that her privacy is maintained, i.e., that no more
information is leaked than what she willingly released in a presentation token.

Formally proving that such guarantees are fulfilled, provided the underlying
cryptography is sound, is far beyond the scope of this paper and is the topic of
future work. For the individual cryptographic building blocks, security proofs
are given in the literature and Camenisch and Lysyanskaya give a proof for their
credential system [18]. However, already proving the security for the different
combination of the building blocks has not been done, although there is no reason
to believe that such combinations would not be secure. Thus, the first step in
proving security of our language framework is to provide precise security notions
that capture the high-level security properties stated above and to prove that the
composition of the cryptographic building blocks as imposed by our languages
achieves those. Next, one would have to show that the mapping of our languages
to the concrete crypto realizations is sound. Only then one could attempt to
formally prove that the security guarantees as stated above are fulfilled.

7 Conclusion

We presented a language framework enabling a unified deployment of Privacy-
ABC technologies, in particular, of U-Prove and Identity Mixer. Our framework
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improves upon the state of the art [37, 22] by covering the entire life-cycle of
Privacy-ABCs, including issuance, presentation, inspection, and revocation, and
by supporting advanced features such as pseudonyms and key binding. The
framework offers a set of abstract concepts that make it possible for application
developers to set up a Privacy-ABC infrastructure and to author policies without
having to deal with the intricacies of the underlying cryptography. We demonstrate
the soundness of our languages by providing a formal semantics that specifies the
effects of issuing, presenting, verifying, inspecting, and revoking credentials on the
user’s credential portfolio and on the knowledge states of the involved parties.

The proposed language framework has been implemented as part of the
ABC4Trust project, where it will be rolled out in two pilot projects. Preliminary
tests indicate that our language framework adds a noticeable but reasonable
overhead to the cryptographic routines, comparable to the overhead incurred by,
for example, XML Signature [45] with respect to the underlying signing algorithm.

Our language framework supports a number of different authentication
mechanisms including the mentioned privacy-preserving ones but also standard
mechanisms such as X.509. However, most of them will not support the full set
of features but we are currently working on a protocol framework that allows the
combination of different cryptographic mechanisms to address this.
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Abstract. Classical authentication mechanisms have various draw-
backs such as the weak security properties they achieve, users’
privacy, service providers’ data quality, and the necessary protection
of the collected data. Credential-based authentication is a first step
towards overcoming these drawbacks. When used with anonymous
credentials, the personal data disclosed can be reduced to the mini-
mum w.r.t. a business purpose while improving the assurance of the
communicated data. However, this privacy-preserving combination of
technologies is not used today. One reason for this lack of adoption
is that a comprehensive framework for privacy-enhancing credential-
based authentication is not available. In this paper we review the
different components of such an authentication framework and show
that one remaining missing piece is a translation between high-
level authentication policies and the cryptographic token specification
level. We close this gap by (1) proposing an adequate claim language
for specifying which certified data a user wants to reveal to satisfy
a policy and by (2) providing translation algorithms for generating
cryptographic evidence from a given claim. For the latter we consider
the Identity Mixer and the U-Prove technologies, where we provide
detailed translation instructions for the former.

Keywords: Access control, policy languages, privacy, anonymous credentials,
digital credentials.

1 Introduction

Authentication has become an all-embracing requirement in electronic commu-
nication. Virtually any online service, from music streaming platforms to online
bookstores, requires its users to log in or at least provides added value for registered
users. The prevailing method to authenticate is by username and password, a
simple and cheap solution most users are familiar with. At account establishment
time, users often have to provide an extensive set of personal information. This
erodes the users’ privacy and opens the door for criminals misusing the data, e.g.,
for identity theft.
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Authentication based on anonymous credentials (proposed by Chaum [11] and
implemented by Brands [5] or Camenisch and Lysyanskaya [8]) can overcome these
security issues by providing strong authentication, minimizing the personal data
required for a transaction, and ensuring correctness of data revealed, all at the
same time. Unfortunately, this technology is not deployed today as it is hard to
understand and complex to use.

In this paper we aim at removing the barriers for using privacy-friendly
authentication. To this end, we review the different pieces of a framework for
credential-based authentication. This framework consists of (1) a policy language
that allows service providers to express which data about a user they require and
which authorities they trust in vouching for such data, (2) mechanisms to generate
a specification about how a user wants to satisfy the policy, (3) means to generate
evidence supporting this specification, (4) mechanisms for the service provider to
verify whether the evidence corresponds to the original policy, and (5) means to
verify the evidence itself.

As a concrete instance of the first component, i.e., a policy language, we use
the credential-based authentication requirements language (CARL) as proposed
in [9]. It abstracts the cryptographic aspects of anonymous credentials into well-
known authentication concepts. We selected this language as it provides the
most comprehensive support for privacy-preserving features. The third and fifth
components are provided by several credential technologies, e.g., Identity Mixer
(idemix), U-Prove, or X.509 that provide evidence generation and verification.
However, so far no efforts have been made to provide the components (2) and (4)
and thereby to close the gap between high-level authentication languages and
low-level technology-dependent specification languages used for the evidence
generation and verification algorithms.

We solve this problem by (a) proposing a high-level claim language, (b) showing
how this language can be translated into two specific specification languages of
anonymous credentials, namely, the idemix proof specification and the U-Prove
token specification, and (c) showing how a service provider can verify the evidence
it received against the policy it had sent. For translating the claim specification
into the idemix proof specification, we show how the different cryptographic
building blocks need to be orchestrated to generate evidence realizing the different
claim elements. Finally, we discuss how to extend idemix and U-Prove so that all
concepts in the claim language (except disjunction) can be realized. We believe
that connecting the high-level languages to the specific technologies is a major step
towards enabling data-minimizing credential-based authentication and will foster
deployment of the technology.

Related Work While currently no other authentication solution provides the
comprehensive set of privacy features offered by our framework, the Security
Assertion Markup Language (SAML) and WS-Trust as standards for exchanging
certified information must be mentioned.
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SAML enables a party to send certified attribute information to a recipient.
Such attribute information is accumulated within so-called assertions, which are
similar to what we call credentials. Depending on the underlying certification
technology, attributes may be disclosed selectively, however, there is neither
support for attribute predicates nor for concepts such as attribute disclosure to
third parties. Therefore, without extensions, SAML is not suitable for being used
as claim language in data-minimizing authentication scenarios. Ardagna et al. [1]
give a brief intuition on how SAML may be extended with those missing features.
This extended version of SAML is an alternative to our proposed claim language,
however, our language makes deriving claims from CARL policies much easier
as it is based on CARL. Further, our language provides a clear grammar that
can directly be used for implementing the language. WS-Trust defines protocols
to issue, renew and cancel WS-Security tokens. However, WS-Trust is agnostic
w.r.t. the type of token. Users obtain tokens from so called security token services
(STS) and present those to web services. Web services publish their security policy
by means of the WS-Policy standard. WS-Policy, however, merely standardizes
an empty container that needs to be filled by concrete policy languages such as
CARL. Thus, while we may use WS-Trust or WS-Policy in a data-minimizing
authentication framework, they do not close the existing gap between the different
levels of languages we currently have.

2 Preliminaries

Anonymous credentials are an important ingredient of privacy-friendly authenti-
cation. Therefore we provide a brief overview about the concepts and technologies
that implement such systems, borrowing notation from Camenisch et al. [9].

We consider a credential to be a set of attributes together with the values of
a specific entity, which we call the owner of the credential. Each credential has a
type that defines the set of attributes the credential contains. As an example, a
credential of type ‘passport’ would contain the attributes name, address, and date
of birth. Further, each credential has an entity, the so-called issuer, that vouches
for the attribute values. As the certified values identify the owner, we also denote
the issuer as identity provider (IdP). The reputation of an issuer as well as the
issuance process (e.g., with physical presence or not) influence the trustworthiness
of a credential.

Credentials can be issued using various technologies such as anonymous
credential systems [5, 8], X.509 [13], OpenID [12], SAML [15], or LDAP [19].
Identity providers can vouch for users directly or by means of certification. That
is, the issuer either communicates the credential directly to the relying party
(i.e., service provider) or it provides the user with a certified credential she can
then show to the relying party. We call these two approaches online and certified
credentials, respectively, and discuss them in the remainder of this section.
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2.1 On-Line Credentials

In the case of online credentials, the issuer retains the user’s attribute values and
when a user wants to use a credential, the relying party and the issuer interact
directly. We call such credentials ‘online’ as the issuer needs to be online for each
transaction of a user.

Let us illustrate how online credentials work on the example of OpenID.
An OpenID provider, which may be seen as identity provider, stores the user’s
attribute values, e.g., in an database. If the user wants to release any of her
attribute values, she relates the relying party to her issuer, i.e., her OpenID
provider. The latter sends the attributes to the relying party by using a secure
channel to transfer the information. Based on the trust of the relying party
in the OpenID provider as well as the security provided by the communication
channel, the relying party derives the assurance about the communicated attribute
values. Note that this information flow does not require certified information to
be transferred.

2.2 Certified Credentials

Credential technologies such as X.509 or anonymous credentials use a different
approach. They add a certification value to the credential, i.e., some form of
a digital signature. This value allows a user to prove that the issuer vouches
for her credential without involving the issuer into the communication with the
relying party. From a privacy perspective, this is an important advantage over
online credentials as the issuer does not get involved into any transaction of a
user. As mentioned before, our main interest lies in credential technologies that
support even more privacy-preserving features compared to standard certification
technology such as X.509.

Anonymous credential system implementations, more specifically, idemix [18]
or U-Prove [16], do offer such additional features. In essence, they allow a user to
obtain a signature from an issuer on a number of attributes similar to standard
certification technology. One important difference being that the issuer does not
necessarily learn the attributes that it certifies.

After a user has obtained a credential she can release the certified attributes to a
relying party. In contrast to other certified credentials the signature released to the
relying party is unlinkable to the signature generated by the issuer. In addition, not
all attributes need to be shown for verifying the signature. Anonymous credentials
enable a user to only release a subset of the attributes where the signature of the
issuer can still be verified by the relying party. This feature is called selective
attribute disclosure. Another important advantage of anonymous credentials lies
in the fact that properties about attributes can be proven without revealing the
attributes themselves. For example, using an anonymous credential containing a
user’s date of birth allows her to prove the certified statement that she is older
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than 21 years (provided this is indeed the case) without revealing the exact date
itself.

3 Data-Minimizing Authentication

In this section we discuss the different components of credential-based authentica-
tion systems [9] and classify them into already existing and missing components.
Thereafter we discuss the existing ones in this section and provide the missing
components in the remainder of this paper.

Figure 1 depicts the components of a data-minimizing authentication system
and the sequence of an authentication transaction. Users own certified credentials
(in [9] called “cards”) that were previously issued to them from identity providers.
The figure depicts how a user wants to use a service (e.g., a teenage chat room)
hosted by some server. For using their service, the server requires the user to
authenticate w.r.t. service-specific authentication policy. An important aspect
of data-minimizing authentication is that the policy is formulated in terms of
properties of the user’s credentials. For example, a policy could specify that only
users who are teenagers according to an ID card may use the service.

Claim

selection
(2b)

Policy

discovery & pre-

evaluation (1a)

Claim
generation

(2a)

Evidence
generation

(2c) (3a)

Claim

verification

Evidence
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Figure 1: Data-Minimizing Authentication

Upon receiving an authentication request (1) for a service, a server determines
and pre-evaluates the applicable policy (1a) and sends it to the user (2). During
this pre-evaluation, references to static content such as the current date are
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resolved. Having received the policy, the user’s system determines which claims,
i.e., statements about a subset of attributes of one or more of the available
credentials, can be made that fulfill the given policy (2a). For example, a policy
requiring the user to be a teenager according to an ID card may be fulfilled by
means of a user’s national ID card or her student ID. In doing so, the statement
of being a teenager can be made by disclosing the exact date of birth or by
a (cryptographic) proof that the birth date lies within the required range, i.e.,
the claims that a user can make depend on the capabilities of the underlying
credential technology. The favored claims are then selected (2b) interactively by
the user [3] or automatically by a heuristics capable of finding the most privacy-
preserving one. Once the claim is defined, the specific credential technologies
are instructed to generate the necessary evidence (also called token) that satisfies
this claim. To this end, a technology-specific proof specification (e.g., an idemix
proof specification or a U-Prove token specification) is generated. Based on this
specification the technology-specific evidence can be generated (2c). The claim is
then sent together with the accompanying evidence to the server (3) who verifies
that the claim implies the policy (3a) and checks whether the claim’s evidence is
valid (3b). Depending on the credential technology, the evidence may be generated
and verified with or without the credential issuer being involved. After successful
verification, the user is authenticated (4) as someone fulfilling the authentication
requirements dictated in the policy. The strength of anonymous credential systems
lies in the fact that the server does not learn more than what it strictly requested.
For example, the only information the server learns about the user is the fact the
she or he is indeed a teenager according to an ID card issued by a trusted identity
provider. Thus, the user has minimized the information revealed about herself
w.r.t. the given authentication policy. Ideally, the policy also reflects the minimal
information necessary for conducting the scenario at hand.

For implementing such authentication scenario, at least three types of
languages are required. First, a policy language to express the server’s
authentication requirements. Second, a claim language to describe statements
about (attributes of) a user’s credentials, and third, a technology-specific language
that directs the evidence generation. Camenisch et al. [9] provide a suitable policy
language with their credential-based authentication requirements language (CARL,
cf. Section 3.1). The currently existing idemix proof specification [2] language
is a technology-specific language for generating evidence (cf. Section 3.2). The
language expressing a user’s claim, however, is missing. In this paper, we provide
this missing piece by defining such language on the basis of CARL. In addition,
we extend the idemix proof specification language to make it as expressive as our
claim language.

Given this new claim language, in Section 4 we further describe how technology-
specific claims can be generated and verified for a given policy. In Section 5 we
explain how evidence can be generated and verified for a claim formulated in the
specified claim language with a focus on anonymous credential technologies.
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3.1 CARL Policy Language

We briefly introduce the CARL policy language [9] as it is the basis for the
claim language that we define in Section 4.2. The language allows for expressing
authentication requirements in terms of credentials in a technology-agnostic way.
One kind of requirement states a predicate over the credential’s attributes. The
predicate is a Boolean expression that allows for applying logic, comparison and
arithmetic operators to attributes, constants or further expressions. Consider
the following example policy for a car rental service that illustrates the language
features relevant for us:

01: own dl::DriversLicense issued-by DeptMotorVehicles

02: own mc::MemberShipCard issued-by CarRentalCo

03: own cc::CreditCard issued-by Amex,Visa

04: own li::LiabilityInsurance issued-by InsuranceCo

05: reveal cc.number
06: reveal li.pNo to EscrowAgent under ‘in case of damage’
07: where dl.issueDate≤dateSubtrDuration(today(), P3Y ) ∧
08: li.guaranteedAmoutUSD ≥ 30.000 ∧
09: (mc.status == ‘gold’ ∨ mc.status == ‘silver’) ∧
10: dl.name == li.name
11: sign ‘I agree with the general terms and conditions.’

According to this policy, authentic users (a) have their driver’s license for at
least three years, (b) have gold or silver membership status with the car rental
company, (c) reveal their American Express or Visa credit card number, (d) reveal
the policy number of the driver’s liability insurance – with a coverage of at least
thirty thousand dollars – to a trusted escrow agent who may disclose this number
only in case of damage to the car, (e) consent to the general terms and conditions,
and (f) have the driver’s license and the insurance issued to the same name. Users
who fulfill this policy with idemix evidence reveal – aside from their credit card
number – merely the facts that (1) they do own credentials of the stated types
from the stated issuers, (2) those credentials do fulfill the stated predicate and (3)
they indeed disclosed the proper values to the escrow agent. In particular, the
server neither learns the exact values of the attributes occurring in the policy’s
where clause nor the number of the insurance policy. However, despite the users’
preserved privacy, they are accountable in case of damage due to the information
the escrow agent learned. Note that identities such as Visa represent aliases
(e.g., to cryptographic keys) that are resolved by the credential technology used to
fulfill the policy. We refer to Sections 4 and 5 of [9] for more detailed information
on syntax and semantics of CARL, respectively.

3.2 Idemix Proof Specification

The idemix anonymous credential system consists of a number of cryptographic
building blocks including signature scheme, encryption, and commitment schemes.
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Combined in the right way, those components allow for data-minimizing authen-
tication to be realized. The components as well as their combination is driven
by specification languages that abstract from cryptographic details [2]. Thus, to
generate idemix evidence that fulfills a given claim, we have to translate claims
into the idemix proof specification language. We summarize the main features
that idemix provides and that can be realized using the idemix proof specification.
One major advantage of anonymous credentials over other credential technology is
their ability to disclose attributes selectively. The language supports this feature
by specifying for each attribute of each credential whether it should be revealed
or not. A further advantage is that they allow a user to prove that attributes
that are certified in different credentials fulfill a specified relation using so called
cross-credential predicates.

Note that there is a gap between what has been proposed as features for
idemix in the scientific community (e.g., limited spending [7]), what is specified and
implemented [18], and what can be expressed with the language proposed in [2].
We start by highlighting the predicates that can be expressed by the language as
this is the most limited set. Those predicates are (1) equality among attributes, (2)
inequality between attributes and constants, and (3) set membership of attributes.
First, equality among attributes can cryptographically be proven by using the same
values for both attributes within a zero-knowledge proof. The proof specification
achieves this feature by using the same so-called identifier for several attributes.
Second, inequalities allow the user to specify that an attribute is smaller or larger
than some constant. In fact, the language supports the operators <,≤,≥ and >

and provides a distinct construct for the specification of the attribute, the constant,
and the operator. Third, the language specifies a construct to define attributes
that should be used in a set membership proof. Set membership proofs are only
available for specially encoded attributes, where the idemix implementation uses
prime encoded attributes as proposed by Camenisch and Gross [6].

In addition to the given predicates the library implements concepts such as
disclosure of attributes to a third party, or signature on messages. The former is
realized using verifiable encryption as proposed in [10] and the latter amounts to
signing the message using the Fiat-Shamir heuristic [14]. As those features are
not credential-specific, they are addressed by dedicated statements in the proof
specification language. Furthermore, the library implements that idemix proofs
can be tied to pseudonyms. However, this concept is currently not reflected in our
claim language.

Finally, the proof specification language offers the creation of pseudonyms,
commitments and representations. All of which are cryptographic objects that
can be employed to implement high level functionality. In this paper we show
how those constructs can be used to implement arbitrary arithmetic statements
about certified attributes. For example, in Figure 2 we provide the idemix proof
specification corresponding to the claim described in Section 4.2. Note that we
only indicate the attributes required in the claim.
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<ProofSpecification [...]>
<Declaration>

<AttributeId name="id1" proofMode="unrevealed" type="string"/>
<AttributeId name="id2" proofMode="unrevealed" type="date" />
<AttributeId name="id3" proofMode="revealed" type="string"/>
<AttributeId name="id4" proofMode="revealed" type="int" />
<AttributeId name="id5" proofMode="unrevealed" type="int" />
<AttributeId name="id6" proofMode="unrevealed" type="int" />

</Declaration>

<Specification>
<Credentials>

<Credential name="kdsfjk230fsefj32" ipk="http://www.DeptMotorV.com/ipk.xml"
credStruct="http://www.un.org/license/driver.xml">

<Attribute name="name">id1</Attribute>
<Attribute name="issueDate">id2</Attribute>
[...]

</Credential>
<Credential name="oiwd26ia3m232ewo" ipk="http://www.CarRentalCo.com/ipk.xml"

credStruct="http://www.CarRentalCo.com/memCard.xml">
<Attribute name="status">id3</Attribute>
[...]

</Credential>
<Credential name="kdf92fjiu01fj028" ipk="http://www.visa.com/ipk.xml"

credStruct="http://www.imf.org/creditcard.xml">
<Attribute name="number">id4</Attribute>
[...]

</Credential>
<Credential name="028dkd93rdlra039" ipk="http://www.InsuranceCo.com/ipk.xml"

credStruct="http://www.InsucanceCo.com/policy.xml">
<Attribute name="name">id1</Attribute>
<Attribute name="pNo">id5</Attribute>
<Attribute name="guaranteedAmountUSD">id6</Attribute>
[...]

</Credential>
</Credentials>
<Inequalities>

<Inequality pk="http://www.DeptMotorV.com/ipk.xml" operator="leq"
secondArgument="76168">id2 </Inequality>

<Inequality pk="http://www.InsuranceCo.com/ipk.xml" operator="geq"
secondArgument="30000">id6</Inequality>

</Inequalities>
<VerifiableEncryptions>

<VerifiableEncryption name="jd2e0asfdkkj3rqq1" label="in case of damage"
pk="http://www.EscrowAgent.com/vepk.xml">id5</VerifiableEncryption>

</VerifiableEncryptions>
<Messages>

<Message name="d0fsdfkii2fucxzkl">I agree with the general terms and
conditions.</Message>

</Messages>
</Specification>

</ProofSpecification>

Figure 2: Idemix proof specification that realizes the example claim specified in
Section 4.2.
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3.3 Privacy Benefits

The choice of anonymous credential systems as credential technology lies in their
privacy benefits over competing technologies. We provide an overview of the
privacy features and distinguish again between online and certified credentials.
Depending on the definition of privacy, online credentials may have many
advantages. That is, if we only care about a user’s privacy w.r.t. to the relying
parties, they are a feature-rich and privacy-friendly variant. Their main drawback
is that the issuer of the credential (i.e., the IdP) is involved in each transaction,
i.e., it provides unlinkability when using a credential multiple times only w.r.t.
the relying parties. In addition, features such as proving predicates that involve
credentials issued by different IdPs can only be achieved using special protocols
between those IdPs. Table 1 shows that, except for the generation of the evidence
independently from the IdP, all privacy features are provided by online credentials.
Note that the restrictions on unlinkability and cross-credential proofs are due to
the reasons mentioned before.

Certified credentials such as X.509, idemix, or U-Prove credentials provide a
significant advantage over online credentials. They allow a user to proof possession
of the credential without involving the IdP, which provides privacy w.r.t. to the
issuer that an online credential can never provide. However, when it comes to the
privacy w.r.t. to the relying party, certified credentials cause some difficulty. On
one hand, protection of the user’s privacy demands that the latter can change the
credential to make it fit for a given purpose. On the other hand the issuer needs
to make sure that only specific changes to the credential can be made, i.e., the
semantics of the credential must remain unchanged.

Feature On-line X.509 U-Prove Idemix

Message Signatures X X X X

Proof of Ownership X X X X

Evidence w/o IdP X X X

Selective Disclosure X X X

Predicate Proofs X X(+) X

Disclosure to Third-Parties X X(+) X

Limited Spending X X(+) X(+)

Cross-Credential Proofs (X) X(+) X

Unlinkable Multi-Use (X) X

Table 1: Certification technology feature comparison. X: Supported. (X):
Limited support. X(+): Possible and described in the literature, but currently
not implemented.

Table 1 shows that X.509 credentials only support basic signatures and
ownership proofs. As mentioned before they do allow to generate evidence without
involving the IdP. The reason for providing such limited set of functionality lies in
the fact that a user cannot adapt the cryptographic signature.
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Implementations of anonymous credentials, such as idemix or U-Prove, provide
more flexibility in terms of privacy protection. Both allow a user to selectively
reveal attributes that have been certified in a credential (cf. Selective Disclosure
in Table 1). U-Prove strives for simplicity, thus, it does not provide further privacy
protecting features even though the underlying signature scheme would support
them. The idemix library1 is currently the most advanced implementation of a
privacy-preserving authentication system. In addition to proofs of ownership and
selective release of attributes it supports proofs of predicates over attributes, e.g.,
proving equality among attributes (cf. Section 3.2). Using verifiable encryption,
the implementation allows for conditionally disclosing attributes to a (trusted)
third party. Limiting the possibilities of spending credentials such as allowing a
credential to be used only k times within a certain time interval as proposed in [7]
is currently not implemented but it could be added to the current implementation.
The distinction between idemix and U-Prove boils down to the fact that an
individual idemix credential can be used multiple times without the resulting
evidence becoming linkable. We refer to this property as Unlinkable Multi-Use
in Table 1.

4 Claim Handling

We compare in Section 4.1 different ways on how an authentication policy can
be fulfilled. The decision which of the different possibilities is chosen, is mainly
driven by the capabilities of the underlying credential technology. Therefore, those
capabilities have to be known and considered at the time of claim generation. No
matter how the policy is fulfilled, however, an adequate claim language is needed
to express the statements made about the credential’s attributes.

In general, claims may be accompanied with evidence from different credential
technologies. However, requirements across different credentials, so called cross-
credential predicates cannot be proven using different credential technologies.
Although the claim language itself is technology-independent, the expressed
statement must be in accordance with the capabilities of the underlying credential
technology. In this section we describe how to generate claims for the anonymous
credential technologies idemix and U-Prove. Naturally, we are only interested
in claims that logically imply the policy, therefore we define claim semantics in
Section 4.2.

4.1 Methods To Fulfill A Policy

An authentication policy can be fulfilled in several ways. Intuitively, in case a
policy requires the user to show that she owns a driver’s license, we can see
that the user can comply by providing a proof of such statement or by simply
revealing the driver’s license information as we do today. On a more conceptual

1http://www.zurich.ibm.com/~pbi/identityMixer_gettingStarted/

http://www.zurich.ibm.com/~pbi/identityMixer_gettingStarted/
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level we can distinguish three methods for complying with a given authentication
policy. First, using online credentials, a user can request a claim that closely
matches the given policy. Second, the use of standard certified credentials as
introduced in Section 2 allows a user to generate a claim without involvement of
the IdP. However, standard technology lacks the ability to adapt claims to a given
policy, i.e., to limit the released information. Third, privacy-preserving certified
credentials such as anonymous credentials enable a user to generate a claim specific
to a given policy. The privacy implications on each of those options are discussed
in more detail in Section 3.3. For all three methods a claim language is needed to
describe the generated evidence.

4.2 Claim Language

Just like servers who express their authentication requirements in a policy
language, users make authentication statements in a claim language. A claim
precisely describes the statements that a user proves by means of technology-
dependent evidence. In particular, claims serve as technology-independent input
to technology-specific evidence generation modules. Although such claim language
is a crucial building block for data-minimizing authentication systems, no adequate
claim language has been proposed yet.

The claim language we propose allows a user to state which credentials she
owns and what properties those credentials have. Such properties are expressed
in terms of a logical predicate over the credential’s attributes. Additionally, the
language allows users to consent to a certain message or to disclose attributes to a
(trusted) third party. The language we propose is intended as counterpart to the
CARL policy language (cf. Section 3.1). In fact, most language constructs can be
reused, however, three concepts need special attention.

First, for credential ownership (i.e., ‘own’ lines) CARL policies allow for
specifying a list of issuers with disjunctive semantics, i.e., ownership can be
proven for any of those issuers. As it must be unambiguous for the underlying
credential technology which cryptographic key to use for generating the claim’s
evidence, the claim language just states one issuer. Second, disclosure requests for
attributes that are to reveal to the server (i.e., ‘reveal’ lines without ‘to’) are only
meaningful in policies. A claim must rather fulfill those requests by disclosing
the corresponding attribute values. In our language, such attribute disclosure
is addressed by stating equality between the respective attribute and its value.
Third, CARL supports basic variables that may act as substitute for a number of
syntax elements. While being useful in policies, such variables provide no benefit
to a claim language. Therefore, the only kind of variable we consider are attribute
variables which reference credential attributes.

Figure 3 shows the (left factored) grammar of our claim language. Apart
from above mentioned restriction, credential ownership is expressed with ‘i own’
lines in the same way as ‘own’ lines in CARL. We prefix the main keywords with
‘i’ to stress the claim’s active statement character. The attribute predicate is
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expressed after the ‘where’ keyword in terms of a Boolean expression. Beside
the standard operators of logics (∧, ∨ and ¬), also equality, inequality (6=, >,
etc.) and arithmetic operators may be applied to expressions. Expressions
may further be (1) attributes qualified with the ID of a previously declared
credential (e.g., dl.issueDate), (2) constants of data type String, Boolean, Date
(e.g., 1984/01/01), Float and Duration (e.g., P3Y represents a period of three
years), as well as (3) function calls with expressions as arguments. A type system
equivalent to the one of CARL [9, Appendix C] ensures that the predicates are
type correct w.r.t. the data types defined in the credentials’ types and the function
definitions. The message to sign is given after the ‘i sign’ keyword. It must be a
constant expression that evaluates to data type string. To disclose a list of terms
to a third party, the ‘i reveal’ keyword is used. Although CARL also provides
syntax to address limited credential spending, we do not consider this concept
here. Consider the following example claim:

01: i own dl::DriversLicense issued-byDeptMotorVehicles

02: i own mc::MemberShipCard issued-by CarRentalCo

03: i own cc::CreditCard issued-by Visa

04: i own li::LiabilityInsurance issued-by InsuranceCo

05: where dl.issueDate≤dateSubtrDuration(today(), P3Y ) ∧
06: li.guaranteedAmoutUSD ≥ 30.000 ∧
07: mc.status == ‘silver’ ∧ dl.name == li.name ∧
08: cc.number == ‘1234 5678 9012 3456’
09: i reveal li.pNo to EscrowAgent under ‘in case of damage’
10: i sign ‘I agree with the general terms and conditions.’

This claim is one possible counterpart to the policy given in Section 3.1. Its
intent is to fulfill the choices given in the policy with a visa credit card and a
membership card of silver status. Additionally, a concrete credit card number is
revealed. The functions and their interpretations are specified in an ontology that
is commonly agreed upon by the user and the server.

Note that the example claim reveals that the membership status is silver, rather
than just saying that it is silver or gold. In general, the latter would be preferable,
however, current implementations do not yet allow to prove disjunctive statements
(cf. Section 5). Further note that the user may be involved in the selection of the
most desirable claim in case (1) multiple credentials are possible to use according to
policy (e.g., multiple credit cards), or (2) multiple claims result from one assertion,
e.g., because a credential technology does not support disjunctive statements.

4.3 Claim Generation

When a user u receives the policy applicable to her authentication request (cf.
Step 2 in Figure 1), it has to be determined which claims can be made w.r.t. her
credential portfolio Pu. To do so, the possible options of assigning credentials
from Pu to all of the credential variables occurring in the policy are calculated.
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Claim = PrfOfOs+ [‘where’ Exp] Discl∗ [‘i sign’ Exp] ;

PrfOfOs = ‘i own’ CredVar ‘::’ URI ‘issued-by’ URI ;

Discl = ‘i reveal’ Term (‘, ’ Term)∗ ‘to’ URI ;

CredVar = ID ;

AttrVar = CredVar ‘.’ ID ;

Term = AttrVar

| String | Float | Date | Bool | Duration ;

Exp = DisjExp ;

DisjExp = ConjExp (‘∨’ ConjExp)∗ ;

ConjExp = EquExp (‘∧’ EquExp)∗ ;

EquExp = InEquExp (‘==’ InEquExp)∗ ;

InEquExp = AddExp ((‘6=’ | ‘<’ | ‘>’ | ‘≤’ | ‘≥’) AddExp)∗;

AddExp = MultExp ((‘+’ | ‘−’) MultExp)∗ ;

MultExp = NegExp ((‘·’ | ‘÷’) NegExp)∗ ;

NegExp = [‘¬’] SigExp ;

SigExp = [‘+’ | ‘−’] PrimExp ;

PrimExp = ‘(’ Exp ‘)’
| Term

| ID ‘(’ [Exp (‘, ’ Exp)∗] ‘)’ ;

ID = Alpha Alphanum∗ ;

Alpha and Alphanum are alphabetic and alphanumeric characters. The URI after
the ‘issued-by’ keyword must map to a identifier that the underlying credential
technology can resolve. The URI after the ‘::’ keyword must map to a credential
type. IDs must be different from the used keywords.

Figure 3: Claim Language Grammar

We call one such option a credential assignment. An important aspect of the claim
generation component is to determine all possible credential assignments of a user
for a given policy. This is to enable the user to select the most privacy-preserving
assignment. In case no credential assignments are found, the user’s credentials are
not sufficient to fulfill the policy.

Every credential assignment found by above-mentioned algorithm is then
transformed into a claim. The transformation, however, is dependent on the
technologies of the assignment’s credentials. This is due to the varying capabilities
of the different credential technologies (cf. Section 3.3). In case all credentials in
the assignment are of the same technology, the assignment is transformed to a
technology-specific claim according to the idemix and U-Prove restrictions given
in the following subsections, respectively. In general it is possible to support the
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case where the assignment’s credentials are of different technologies. However, in
this work this is out of scope.

Idemix Claim Restrictions

To generate claims from an assignment that is based on idemix credentials, the
capabilities of the idemix technology must be taken into account. The current
implementation of idemix supports most of the possible claim statements. In
particular, with the extensions to the proof specification that we discuss in this
paper, idemix supports all statements with the exception of disjunctive expressions
(cf. Tables 1 and 2). Thus, generating claims from an idemix-based assignment is
done in the following way. The policy’s predicate is first transformed to disjunctive
normal form (DNF) and separate claims are generated for all monomials (also
called conjunctive clauses, or conjunctions of literals) of the DNF that (a) hold
w.r.t. the given credential assignment, and (b) resemble the given policy (apart
from the predicate being only the monomial, not the full predicate). Note that at
least one of those monomials does hold, otherwise the assignment finder component
would not have produced the assignment. Further note that using a monomial of
the predicate’s DNF as predicate in the claim is less privacy-preserving than stating
the full predicate as it is disclosed which disjunct is proven. To create a claim
that resembles the policy, we use a ‘copy’ of the policy and modify it according
to the constraints on the claim language defined in Section 4.2. According to
the definition, every credential declaration must have exactly one issuer. This
issuer is unambiguously defined as the issuer of the credential that is assigned
to the corresponding credential variable via the credential assignment. Further,
all attributes, for which a disclosure request exists in the policy, are disclosed by
adding an equality expression between the corresponding attribute and its value
as additional conjunct to the monomial.

U-Prove Claim Restrictions

The latest specification of U-Prove [16] allows for selective disclosure of attributes,
signing messages, and proof of ownership, but does not support features such as
predicate proofs and disclosure to third parties (cf. Tables 1 and 2). A policy that
includes predicates over attributes or disclosure to third parties, can be fulfilled
if all these attributes are fully disclosed to the relying party. To this end, one
needs to process the policy’s predicate and transform it into a claim predicate
in which all attributes occurring in the predicate are selectively disclosed. Claims
including cross-credential statements and limited spending cannot be fulfilled with
the current specification of U-Prove.



146 A COMPREHENSIVE FRAMEWORK ENABLING DATA-MINIMIZING AUTHENTICATION

4.4 Claim Verification

A server receiving a claim with accompanying evidence from a user verifies whether
this claim indeed implies the initially provided policy (cf. Step 3a in Figure 1). A
claim implies a policy if all of the following five conditions hold.

(1) For each disclosure request in the policy there is a corresponding attribute
– with the same credential variable and the same attribute variable – disclosed in
the claim. (2) The predicate of the policy implies the predicate of the claim’s
statement. To account for technologies that fulfill the policy’s predicate by
disclosing all attributes occurring in it (e.g., U-Prove), all the attributes of the
policy’s predicate that are disclosed in the claim are substituted with the revealed
values. Then, if the resulting predicate is constant, it is verified whether it
evaluates to true. If so, the predicate is fulfilled. Otherwise the claim does not
imply the policy. (3) The credential declarations of the claim’s statement imply
those of the policy. A claim’s credential declaration implies a policy’s declaration
if (a) their credential variables are equal, and (b) their credential types are equal
(for hierarchical credential types, this might be extended to checking whether the
claim’s credential type is a subtype of the policy’s credential type), and (c) the
issuer of the claim’s declaration is contained in the list of issuers of the policy’s
declaration. (4) In case the policy requires the signature of a message m, the claim
must also contain an ‘i sign’ statement for m. (5) The set of terms disclosed to
third party S1 in the claim must be a superset of the set of terms that is required
to be disclosed to S1 in the policy.

5 Evidence Handling

In this section we show how idemix and U-Prove evidence is generated and verified
for a given claim. In particular, this section elaborates on the components (2c)
and (3b) of Figure 1. Note that in the evidence verification we only handle claims
that have previously been generated (cf. Section 4.3) and we assume that claims
adhere to the restrictions of the respective technology.

For transforming the claim to semantically equivalent evidence, we break our
claim language syntax down to a set of building blocks. We therefore only need
to show how evidence is generated for those building blocks.

5.1 Claim Building Blocks

In Table 2 we show the building blocks of our claim language and detail which
ones are supported by the current implementations of idemix and U-Prove. For
idemix, we distinguish between existing support and support introduced through
extensions we propose in Section 6. Of particular interest are the building blocks
for attribute predicates. We show how every attribute predicate can be rewritten
in terms of building blocks. In particular, any attribute predicate with arbitrary
logical nesting and negations can be transformed to disjunctive normal form



EVIDENCE HANDLING 147

(DNF), i.e.,
∨

i

∧

j ℓij , where ℓij is an atomic expression (AtomicExp in Table 2)
with no further logical structure. In DNF negations occur only immediately before
atomic expressions. Such negations are eliminated by inverting the respective
operators (e.g, ¬(a < b) maps to a ≥ b). Further, expressions with no further
logical structure that do not match any of the building blocks 6 – 15 can be
rewritten to do so. For example, the expression (a.b + c.d) ≤ e.f can be rewritten
to (a.b + c.d) − e.f ≤ 0, which is building block 14. Atomic expressions that
are constant cannot be proven using any credential technology but they can be
trivially evaluated.

Note that we distinguish three cases for equality, not equal to, and inequality
although they are overlapping. For example, blocks 6 and 7 are instances of 8.
The reason being that simpler cases can typically be implemented more efficiently
and are already supported, while the more general case is not implemented yet.
For instance, block 6 and 7 are currently implemented in idemix, but block 8 is
not.

5.2 Idemix Evidence

To generate evidence for a claim with the idemix technology, we assume it only
contains expressions that are supported in the implementation extended with our
proposals as described in Section 6. In particular, for idemix this means that
a claim must not contain disjunctive expressions, while all other constructs are
supported. As the current idemix implementation does not support proving of
disjunctive expressions, the corresponding idemix claim generator (cf. Section 4.3)
only produces claims that have monomials (i.e., conjunctions of Boolean literals)
as their statement’s formula (or the formula is null). Thus, we assume that the
statement of the given claim is a monomial and determine the individual Boolean
literals of the statement’s formula. In case the formula is null, the list of Boolean
literals is empty. Every literal of the monomial is an instance of one of the
expression patterns described in the following paragraphs, which describe how
a semantically equivalent proof specification can be created.

Generating Idemix Evidence

This section describes how to generate idemix-specific evidence. We show an
overview of the supported features (which includes those that require extension to
the idemix proof specification) in Table 2.

Proof of Ownership (incl. Selective Disclosure) A proof of ownership is the
basic feature of certified credentials. The idemix proof specification provides this
functionality by including for each credential declaration a Credential tag in
the proof specification. This tag contains Attribute tags for all attributes that
are declared in the credential’s type definition, and also allows for referring to
the credential in the rest of a proof specification. An attribute tag refers to a
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corresponding attribute identifier that is declared by means of an AttributeId

tag. Attribute identifiers specify whether the corresponding attribute remains
unrevealed or whether it is revealed. In addition, attribute identifiers are used
to express equalities among attributes. This is possible even if the attributes are
certified in different credentials. In particular, the same attribute identifier is
used for all attributes that are equal according to the claim. Note that attribute
equality can only be proven if the data types of the attributes match.

Message Signatures A policy may request a user to sign a message, which will
be reflected in a claim according to the example in Section 4.2. The idemix
proof specification provides a dedicated Message element, which allows for a direct
translation from the claim.

Attribute Disclosure to Third Parties Conditional attribute disclosure to third
parties is also included into the proof specification as a distinct primitive.
Consequently, it can be almost employed as directly as message signatures. The
essential difference is that a verifiable encryption requires the user to specify the
public key of the trusted entity, which she has to (authentically) retrieve before
being able to create the encryption. Furthermore, she needs to add the condition
under which the decryption is released to the VerifiableEncryption element.

Note that to attain a transaction binding, i.e., the binding among all attributes
that are verifiably encrypted to one another, the verifiable encryption needs to
contain all the transaction relevant attributes. This is of importance to make sure
that none of the parties in the accountability transaction can change the context,
i.e., misuse the verifiable encryption. While the claim language allows for disclosing
a list of terms, i.e., attribute references or constants, the proof specification does
not currently do so. Thus, for every attribute reference we create a separate
verifiable encryption. Disclosure of constants is currently not supported by the
proof specification.

Attribute Predicates Predicates over attributes range from simple expressions
that can be directly achieved using a dedicated element in the proof specification
to almost arbitrarily complex statements, which need extensions to the proof
specification language to be expressable. We explain the transformations for the
cases mentioned in Table 2 in Section 5.2. Note that attribute predicate proofs
over revealed attributes are not supported. Therefore, all the predicate’s attribute
variables whose values are revealed have to be replaced with their disclosed values.

Generating Attribute Predicate Evidence

In the following, we introduce the mappings of a claim’s attribute predicate to an
idemix proof specification. We refer to Section 6 for further details.
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Equality Details of equality predicates in a claim are given on Line 6-8 in
Table 2. As already mentioned, the proof specification expresses equality among
attributes (Line 6) by using the same attribute identifier. Proving equality between
an attribute and a given constant (Line 7) amounts to revealing the attribute
value. Note that the verifier needs to check whether the value stated in the claim
actually corresponds to the revealed value. Finally, equality statements involving
arithmetic expressions have to be mapped to commitments and representations.
We show a concrete example of the equality a.b · c.d == e.f in Section 6.2.

Not Equal To Statements that express that one value is unequal to another one,
are generically hard to proof as technology like idemix is built for proving equality
of elements. Still, we can prove a statement a.b − c.d 6= 0 rather than a.b 6= c.d.
While maintaining semantic equivalence we manage to change the statement such
that the verifier can check it. This results as we handle the attributes as exponents
and the verifier can check that the resulting exponent is not equal to zero.

Using this rational we can transform the statements of Line 9 and 10 into
statements that are not equal to zero, i.e., a.b − c.d 6= 0, a.b − ConstExp 6= 0.
Consequently, using commitments and representations in the generalized form as
we explain in Section 6.2, we can express “Not Equal To” statements.

InEquality The inequality operators <,≤,≥, and > are implemented using
Boudot [4] interval proofs. This concept profits from a dedicated element called
Inequality in the idemix proof specification. A limitation w.r.t. the claim
language is that only integers and dates (which are encoded into integers) are
supported.

In addition, the current implementation only allows for comparing unrevealed
attributes with (1) constants or (2) revealed attributes. For example, the formula
a.b < c.d (of the form indicated in Line 12 in Table 2) can only be proven if either
a.b or c.d is revealed. To prove inequality expressions where both attributes are
unrevealed, they need to be transformed to a.b − c.d < 0. We use commitments
for each of the attributes to build a representation that contains the subtraction
of the attributes, i.e., a.b− c.d. Using this value we prove an inequality statement
as if the value a.b − c.d were a regular attribute value directly certified within a
credential.

Non-constant Expressions In the Lines 8, 11 and 14 of Table 2, the non-constant
expressions (NonConstExp) may either be an arithmetic expression or a function
call. We address the former by generating commitments as well as representations
such that the desired value, e.g., a.b − 2c.d, is available as if it were a regular
attribute in a credential. The example in Section 6.2 provides an intuition on how
the commitments and representations have to be generated.

Support for function calls heavily depends on the concrete function. Subse-
quently, each function would require a dedicated mapping and possibly even special
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algorithms for the functionality to be supported. We envision special functions
only to become available once a convincing use case for a particular function is
available.

Verifying Idemix Evidence

Once the idemix evidence has been generated and transmitted to the server, the
latter needs to translate the user-provided claim into a proof specification the
same way the user did. As a result it will get an idemix proof specification
that, together with the evidence itself, serves as input to the idemix library
(cf. Figure 1). The first step of the verification consists of the idemix library
verifying the cryptographic properties of the evidence. The second step consists
of the verification of the disclosed attributes, which have to be matched with the
constants used in the claim. A particularity of the idemix implementation lies in
the fact that strings currently are encoded by employing a hash function. Thus,
the disclosed attributes can, in case of strings, not be mapped to their original
value, thus, they have to be transmitted from the user to the verifier. Still the
verifier needs to assert that the transmitted values match the values revealed in
the evidence.

5.3 U-Prove Evidence

To fulfill a claim with U-Prove, our claim language needs to be translated into
a U-Prove token as specified in the U-Prove WS-Trust profile [17]. This profile
defines which attributes are revealed (in WS-Trust attributes are called claims).
Thus, to generate U-Prove evidence in our system, we would need to translate
our claim into a set of U-Prove WS-Token specifications, one for each credential
(U-Prove token) that shall be used. These specifications then define the attributes
that are revealed. Finally, the different U-Prove tokens generated according to
these specifications are assembled to build the final evidence.

6 Idemix Proof-Spec Extensions

Table 2 shows basic expression patterns that are theoretically supported by the
idemix library but cannot be expressed using the current proof specification
language. As we only need to slightly change the languages proposed in [2] in
order to provide a substantial improvement to the overall system, we describe
those changes here. We provide an intuition on how to extend the idemix proof
specification language such that the concepts marked with a X+ in Table 2 are
supported.
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6.1 Generalized Issuance Process

The design of the proof specification considers a limited issuance scenario, namely,
it does not consider that a credential structure is defined by an entity different from
an issuer. As we presume that multi-national organizations will specify the format
of widely used credentials, we need to specify credential structures independently
from issuer-related values. We attain this independence by removing the issuer
public key from the credential structure and adding it to each credential in a proof
specification. The rational being that a credential structure is independent from
an issuer and only a credential, i.e., the instantiation of a credential structure, is
linked to the issuer.

6.2 Generalized Representations

Considering the definition of representations in [2] we require a set of extensions.
More specifically we require that a representation may (1) refer to other elements
(e.g., commitments or representations) as its bases, (2) use constant exponents,
and (3) re-use an already defined representation object. We use the first and
second property to recursively build elements from arithmetic formulas involving
certified attributes as referred to in Section 5.2. The last property is needed to
establish an equality relation among different representations, which can be used
to establish the equality of formulas.

For instance, assume that we need to prove that one attribute is the product
of two other attributes, i.e., a.b · c.d = e.f (cf. Line 8 of Table 2). To realize this,
we need to generate a commitment to each of these attributes and then prove
that the commitment to the third attribute is equal to the commitments to the
second attribute, raised to power of the value of the first attribute, times the
group element used to randomize commitments raised to power of some integer
(the value of which is not of relevance). Similar to this example we can implement
more elaborate arithmetic expression by translating them into commitments and
representations.

6.3 Relation between U-Prove and Idemix

The signature schemes that underlie U-Prove and idemix are similar. That is,
they are both schemes that allow an issuer to (blindly) sign messages where
the messages are algebraically encoded as exponents of a representation of an
element of an algebraic group. The selective disclosure of attributes is in both
cases realized by revealing some exponents (messages) and using a zero-knowledge
proof of knowledge of the undisclosed attributes. A zero-knowledge proof can, as
the name suggests, convince a verifier of the fact that the prover holds some values
without communicating any other information. The difference between the two
schemes is that they are based on different cryptographic assumptions and that,
due to its cryptographic properties, a U-Prove signature can only be used once
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to in a proof (otherwise, the proof is no longer zero-knowledge and transactions
become linkable).

The advanced features that idemix provides are all realized with cryptography
that uses discrete-logarithms mechanisms. Therefore, they can in principle also be
employed for U-Prove if the U-Prove specification [16] were modified accordingly.
As a result the specification will presumably become rather complex.

Alternatively, one could also embed U-Prove into the idemix framework [18].
As the idemix implementation treats different cryptographic building blocks such
as signature, commitment, and verifiable encryption schemes as different modules
and orchestrates them guided by issuing and proof specifications (cf. Section 3.2),
the Brands signature scheme [5] could be integrated as an alternative to the CL
signature scheme [8].

7 Implementation

We have implemented the data-minimizing authentication framework shown in
Figure 1. In particular, we implemented the CARL policy and the claim languages,
the pre-evaluation aspect of component (1a) as well as the components (2a),
(2c), (3a) and (3b). Although the implementation is open for being used with
any credential technology, the components (2c) and (3b) have been instantiated
with the evidence generation and verification mechanisms that employ the idemix
cryptographic library. Note that message signatures and disclosure to third
parties are currently not implemented. All components of the framework have
been released as Open Source Software under the Eclipse Public License and
are available for download at http://www.primelife.eu/, where also the idemix
cryptographic library is available.

We are currently working on the implementation of the claim selection (2b) that
presents the possible claims to the user so that she can make a selection accordingly.
Once this is finished, applications can be built that employ our framework for
privacy-friendly authentication. Building such an application could for instance
be realized by integrating our framework with an XACML access control engine.
Ardagna et al.[1] give an intuition on how this could be done.

8 Conclusion

We presented an important reason that hinders privacy-friendly authentication to
be used in practice today, namely, the lack of a framework that utilizes privacy-
friendly credential technologies, such as anonymous credentials, for authentication
purposes. In this paper we describe all necessary components that allow for an
implementation of such framework. We propose a simple claim language that
provides adequate expressivity to address the core functionality of anonymous
credential systems. Further, we describe how those functionalities are mapped to
the concrete evidence specification languages of idemix and U-Prove.

http://www.primelife.eu/
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We implemented the proposed framework and connected it to the existing
idemix implementation. We show how the latter should be amended to attain the
full expressivity of our claim language. Using our implementation has the following
advantages, namely, (1) users benefit from significantly increased more privacy, (2)
service providers gain in data quality due to the certified data being used, and (3)
service providers substantially reduce the risks associated with holding large sets
of sensitive information.

We envision to continue this trail of thought and provide a mapping from
the claim language to SAML. By using SAML as WS-Trust security token, our
data-minimizing authentication scenario may be implemented by means of current
standards, which would also benefit its adoption.
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Abstract. Whereas access control describes the conditions that have
to be fulfilled before data is released, usage control describes how the
data has to be treated after it is released. Usage control can be
applied to digital rights management, where the data are usually
copyright-protected media, as well as in privacy, in which case the
data are privacy-sensitive personal information. An important aspect
of usage control for privacy, especially in light of the current trend
towards composed web services (so-called mash-ups), is downstream
usage, i.e., with whom and under which usage control restrictions
data can be shared. In this work, we present a two-sided XML-based
policy language: on the one hand, it allows users to express in their
preferences in a fine-grained way the exact paths that their data is
allowed to follow, and the usage restrictions that apply at each hop
in the path. On the other hand, it allows data consumers to express
in their policies how they intend to treat the data, with whom they
intend to share it, and how the downstream consumers intend to treat
the data.

Keywords: Privacy, policy languages, usage control, data sharing.

1 Introduction

Many web services today are so-called service mash-ups. A mash-up is a service
that acts as a front-end for a composition of multiple subservices that are offered
by different companies. For example, a travel booking mash-up may offer an
integrated interface to book flights, hotels, and rental cars. In the background,
however, it invokes the web service APIs of different specialized airline, hotel, and
car rental subsidiaries to collect offers. The best offers are presented to the user,
who selects an offer, enters her booking and payment information, and confirms
to let the mash-up make all the bookings for her through the subsidiaries’ APIs.

Service mash-ups are important for leveraging online service APIs to create
new functionality, but pose significant privacy risks for their users. The users
cannot keep track of who stores what information about them, and often they do
not even know the subsidiaries their data is shared with.

159
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To overcome this problem, service providers publish their privacy policies to
inform the users about how the gathered data is used. Human-readable privacy
policies, e.g., have the disadvantage of mostly being written in complex language
influenced by the legal profession and thus being ignored by users. Even if clear
privacy policies are presented, they often remain vague about the sharing of
information with third parties. For example, the privacy policy of Expedia.com3,
a popular online travel service, mentions the following with regard to sharing
personal information with suppliers:

We do not place limitations on our suppliers’ use or disclosure of
your other personal information [i.e., other than the email address].
Therefore, we encourage you to review the privacy policies of any travel
supplier whose products you purchase through this site.

Machine-interpretable privacy policy languages such as EPAL [2] and P3P [17]
is a promising approach, in particular when used in combination with a privacy
preference language such as APPEL [8]. In the latter language, users can express
how they expect their data to be treated, so that an automated or semi-automated
matching procedure can decide on the acceptability of a proposed P3P policy.

Unfortunately, EPAL and P3P are both rather constrained in expressivity
regarding sharing personal information with third parties, or downstream usage
as we call it here. EPAL leaves the definition of specific actions and obligations
up to enterprise-defined vocabularies, and is hence silent about downstream usage.
Support in P3P is limited to specifying which of six classes of third-party recipients
the information will be shared with; it is up to the server to classify his recipients
into one or more of the classes.

In this work, we investigate how to structure a policy language suitable for
downstream usage control. The difficulty here is that downstream usage control
involves a mixture of what is typically considered access control (who is allowed
to receive the data, e.g., by roles or owned credentials) and usage control (how
is the recipient supposed to treat the data, e.g., usage purposes or retention
period). We consider the most general setting here, where the user states in
her privacy preferences, for each hop in a chain of downstream recipients, how
they have to treat her data and to whom they can further forward it. At
the same time, each recipient specifies in his privacy policy how he intends to
treat the data and to whom he intends to forward it. We propose XML-based
languages to express both the user’s preferences and the servers’ policies, and
describe an automated matching algorithm to determine whether the proposed
policies are allowed by the specified preferences. The user and the servers can
specify downstream usage restrictions up to any number of hops (not necessarily
the same number). Optionally, they can either specify that the last restrictions
in the chain are valid for all subsequent hops, or that after that hop no further
downstream usage is allowed. Moreover, for situations where the server does not

3cf. http://www.expedia.com/daily/service/privacy.asp

http://www.expedia.com/daily/service/privacy.asp
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know at the time of data collection to whom he may forward the data, we propose
an alternative matching algorithm at which a server declares his willingness to
impose any restrictions on further downstream usage that the user may specify.

This work relies on the trust model of P3P and EPAL: each service is
willing to enforce its privacy policy. Authors assume that service providers are
appropriately enforcing their policies to protect their reputation and/or that
services are regularly audited and certified by trusted third parties. Proving the
correctness of policy enforcement, for instance using a trusted stack (certified
TPM, trusted OS, and trusted application), is out of the scope of this paper.

2 Related Work and Contributions

Our work is closely related to rights expression languages (RELs), privacy policy
languages, and usage control. We give a brief overview of each of these lines of
work and how they relate to the language we propose.

Rights Expression Languages Even if scenarios and trust models are different,
there are clear similarities between digital right management (DRM), enterprise
right management (ERM), and privacy policies as described in this paper. Indeed,
in each case, a data provider attaches constraints, in the form of a license or a
sticky policy, to data sent to a data consumer. The domain-specific vocabularies for
privacy policies and RELs may be rather different, but the same overall language
structure can be used for both.

There are three main differences between our approach and the state of the art
ERM and DRM languages MPEG-21 REL [18], XrML [7], and ODRL [13]. First,
in RELs it is the data provider who unilaterally creates the license and imposes it
onto the consumer, without any kind of matching procedure. In privacy settings,
the provider (i.e., the user) usually does not have such power. Second, RELs focus
mainly on rights (e.g., play, print) and constraints on these rights (e.g., temporal,
fees, device), but obligations remain underspecified. Third, the constraints on
downstream data sharing (e.g., sell, lease, share) are not nearly as expressive as
in our model.

Privacy Policy Languages In the introduction we already discussed the short-
comings of the privacy policy languages EPAL [2], P3P [17], and APPEL [8] when
it comes to expressing restrictions on downstream usage. SecPAL for Privacy
(S4P) [4] is a logic-based language to specify privacy policies and preferences. In
S4P, matching is about evaluating queries with a set of assertions, while in the work
presented in this document, matching is done by comparing statements. Ardagna
et al. [1] describe a data handling policy language that allows for specifying data
recipients, usage purposes and obligations. The data recipient can specify global
rules on who may receive the data, but transitive downstream usage restrictions
cannot be expressed.
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Usage Control The subject of usage control [14, 9] is concerned with how data
is treated after its release. The Obligation Specification Language (OSL) [10]
supports a wide range of usage control requirements related to time, cardinality,
purpose, and events. OSL is logic-based, so that a sequence of events can
automatically be checked for compliance with the specified policy. The OSL
extensions for policy evolution [15] target a use case similar to ours as they allow
for expressing which consumers (indicated by their roles) have to adhere to which
rights and duties. However, in OSL the data provider unilaterally creates the
policy to be adhered to, whereas in our language it is the result of matching a
consumer’s policy against the provider’s preferences. Moreover, in our language
one can describe the full downstream path that the data is allowed to follow,
including who can share it with whom, and how many hops it can take. For
example, in our language a patient could impose one usage control policy when a
health insurance company obtains her medical record through the hospital, and
another policy when it obtains the record from the patient directly. In OSL both
cases are treated the same.

Provenance Access Control As highlighted in [11], we consider that metadata
associated with personal data may also be subject to usage control. For instance,
the obligation of notifying the user may contain an e-mail address.

3 Description of Solution

3.1 Example Scenario

Alice is a privacy-aware user who regularly shops online, but who is concerned
about what happens to the data that she provides about herself. For example,
she’s willing to provide her postal address to online shops so that the goods can be
delivered, but she realizes that most shops rely on external shipping companies.
She wants to impose a detailed set of usage control preferences though, where the
restrictions on the shipping company depend on who the front-end service is from
which it obtained the address. Namely, when obtained through a book shop, she is
fine with the shipping company using her address for statistics, but when obtained
through any other store, which may include liquor or lingerie stores, she is not.
More precisely, she wants to enforce the following preferences:

• Book shops can collect her address for the purpose of statistics, contact, and
account administration. They must delete it after two years and are allowed
to forward to shipping companies who can use it for shipping and statistics,
have to delete it after two weeks, and can further forward it to shipping
companies under the same restrictions.

• Any shop can collect her address for the purpose of account administration
provided they delete it within one year. They can further forward it to
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shipping companies who can use it for shipping only, have to delete it after
two weeks, and are not allowed to share the data with anyone.

Alice regularly buys books at the online book shop bookshop.com because its
privacy policy matches her preferences. Namely, bookshop.com states that it will

• use her address for statistics and account administration, that it will delete
the address after one year, and that it will forward the address only to
shipping.com.

The policy of shipping.com states that

• the address will be used for shipping and statistical purposes, and will be
deleted after one week.

When buying a book at bookshop.com, Alice can safely give her address
away since bookshop.com’s and shipping.com’s privacy policies match her own
preferences. However, when buying a bottle of wine at liquor.com, who also use
shipping.com for shipping, the transaction will be refused, as Alice’s preferences
in this case do not allow shipping.com to use her address for statistical analysis.

3.2 Language Model

The abstract scenario we consider is one where two parties, typically a user and
a server, engage in an interaction where one of the parties, typically the server,
requests some personally identifiable information (PII) from the other party. We
will from now on call the party that provides the data the data provider and the
party that requests the data the data consumer. Moreover, we consider a scenario
where at a later point in time, the data consumer may want to forward the PII to
a third party, called the downstream data consumer.

Both the data provider and the data consumer have their own policies
expressing the required and proposed treatment of the PII, respectively. These
policies contain access control and usage control policies. A piece of PII is only
sent to a data consumer after (1) the access control requirements have been met,
and (2) a suitable usage control policy has been agreed upon.

We distinguish three kinds of policies:

• Preferences: In his preferences the data provider describes, for specific
pieces of PII, which access control requirements a data consumer has to
satisfy in order to obtain the PII, as well as the usage control requirements
according to which the PII has to be treated after transmission. These
requirements may include downstream usage requirements, meaning the
requirements that a downstream data consumer has to fulfill in order to
obtain the PII from the (primary) data consumer.

• Policy: The policy is the data consumer’s counterpart of the data
controller’s preferences. In a policy the data consumer contains, for specific
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pieces of PII to be obtained, his certified properties (roles, certificates, etc.)
that can be used to fulfill access control requirements, and a usage control
policy describing how he intends to use the PII.

• Sticky policy: The sticky policy describes the mutual agreement concerning
the usage of a transmitted piece of PII. This agreement is the result of
a matching process between a data providers’s preferences and a data
consumer’s policy. Technically a sticky policy is quite similar to preferences
as described above, but it describes a mutual agreement between the data
provider and the data consumer that cannot be changed. After receiving the
PII, the data consumer is responsible for storing and enforcing the sticky
policy.

To illustrate our ideas we employ a simple XML-based language to express
preferences, policies, and sticky policies. In the following we first introduce our
language and then focus on how to express downstream usage requirements. Note
that we provide the full language schemas in an extended version of this paper [6].

Preferences model

Figure 1 shows Alice’s preferences for book shops expressed in our policy language.
The Preferences root element contains multiple Preference elements, each
describing to which PII it applies and what the respective access and usage controls
are. An attribute sticky indicates whether these preferences are in fact a sticky
policy for the PII (cf. 3.2), acting as an explicit reminder that they cannot be
changed. Alternatively, one could keep all sticky policies separately in a read-
only policy store. A Preference can refer to the applicable PII by their data
type, meaning that the Preference applies to all PII of this type, or by a unique
identifier pointing to a single instance of PII. We assume that a typing mechanism
and unique naming scheme for PII are in place. A complete language would
probably offer more powerful mechanisms to specify applicability, allowing for
example attribute expressions or temporal constraints.

Our language is strictly limited to positive statements, in the sense that it
explicitly lists the permitted information exchanges, and assumes that all other
exchanges are forbidden. Apart from this being a safe privacy-conservative choice,
it also simplifies the matching procedure. However, it means that one cannot
express conditions of the form “do not forward to X” or “do not use for purpose Y”.

If multiple Preference elements apply to a single piece of PII, then satisfying
the conditions in either of them results in a match. In other words, Preferences
are combined according to “or” semantics. This makes it possible to define more
permissive exceptions to general preferences.

Within a Preference, access and usage control requirements occur in a pair
enclosed in an ACUC element. A pair (AC,UC) means that any data consumer
satisfying access requirements AC can obtain the PII when adhering to usage
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1 <Preferences>
2 <Preference>
3 <Applicability>
4 <DataType> Address </DataType>
5 </Applicability>
6 <ACUC>
7 <AccessControl>
8 <Rule>CertifiedAsBy{bookshop, CAx}</Rule>
9 </AccessControl>
10 <UsageControl>
11 <Rights>
12 <UseDownstream allowLazy="false">
13 <ACUC id="ACUCshipping@alice">
14 <AccessControl>
15 <Rule>CertifiedAsBy{shipping, CAy}</Rule>
16 </AccessControl>
17 <UsageControl>
18 <Rights>
19 <UseDownstream allowLazy="false">
20 <ACUC reference="ACUCshipping@alice"/>
21 </UseDownstream>
22 <UseForPurpose>statistics</UseForPurpose>
23 <UseForPurpose>shipping</UseForPurpose>
24 </Rights>
25 <Obligations>
26 <DeleteWithin>P14D</DeleteWithin>
27 </Obligations>
28 </UsageControl>
29 </ACUC>
30 </UseDownstream>
31 <UseForPurpose>statistics</UseForPurpose>
32 <UseForPurpose>contact</UseForPurpose>
33 <UseForPurpose>accountadmin</UseForPurpose>
34 </Rights>
35 <Obligations>
36 <DeleteWithin>P2Y</DeleteWithin>
37 </Obligations>
38 </UsageControl>
39 </ACUC>
40 </Preference>
41 ...
42 </Preferences>

Figure 1: Excerpt from Alice’s preferences.

requirements UC. To allow multiple AC/UC combinations for a single piece of
PII, one can use multiple Preference elements with the same Applicability.

An optional attribute id assigns a unique identifier to an ACUC pair. This
identifier can be referred to from another ACUC element via a reference attribute.
The referring element is then interpreted as if it was substituted with the referred
element.

Access control requirements are expressed in terms of Rules where each rule
specifies a property that a data consumer must have in order to be granted access.



166 DOWNSTREAM USAGE CONTROL

Properties are stated in terms of attributes as certified by some certification
authority (CA). Empty access control requirements mean that anybody who
commits to fulfilling the usage control requirements is granted access. The simple
access control language that we use here could in a real system, e.g., be substituted
with a complete role-based [16], attribute-based [5, 12], or logic-based [3] access
control language.

Usage control requirements are expressed by distinguishing between Rights

and Obligations. A right states an action that the data consumer is allowed to
perform on the data, but doesn’t have to perform to comply with the policy. An
obligation states an action that a data consumer is obliged to perform. We model
two types of rights and two types of obligations here:

• UseDownstream: The right to forward the PII under given conditions to
further data consumers. This is a crucial element in our policy language; we
come back to its exact structure and meaning later.

• UseForPurpose: The right to use the PII for a specific purpose.

• DeleteWithin: The obligation to delete the PII within a given amount of
time.

• NotifyOnAccess: The obligation to notify the user when the PII is accessed.

The complete language supports more rights and obligations, however, those four
suffice to illustrate the ideas of this work. Multiple rights and obligations within a
UsageControl element are combined by “and” semantics, meaning that the data
consumer obtains all the specified rights and has to adhere to all of the specified
obligations.

Policy model

A data consumer’s policy states which usage control requirements he is willing to
adhere to when requesting a specific resource from a data provider. In addition the
policy states the properties the data consumer is willing to disclose for fulfilling
the data provider’s access control rules for that resource.

The language schema of the server policy resembles the schema of the
preferences, exhibits the following differences though. The top-level elements
are Policies and Policy, where the Policy has no sticky attribute; the
AccessControl element contains the properties in Property elements rather than
access requirement rules; and the ACUC element in the UseDownstream right has
different cardinality as explained later. In the following we provide example
policies for the book shop and the shipping company.

The shop’s policy stated in Figure 2 expresses that for collecting addresses,
it is willing to authenticate as a shop or a book shop certified by CAx, and as
bookshop.com certified by CAz. The address will be deleted after one year and
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1 <Policies id="Policies@Shop">
2 <Policy>
3 <Applicability>
4 <DataType> Address </DataType> </Applicability>
5 <ACUC id="ACUCaddress@Shop">
6 <AccessControl>
7 <Property>CertifiedAsBy{bookshop, CAx}</Property>
8 <Property>CertifiedAsBy{shop, CAx}</Property>
9 <Property>CertifiedAsBy{bookshop.com, CAz}</Property>
10 </AccessControl>
11 <UsageControl>
12 <Rights>
13 <UseDownstream allowLazy="false">
14 <ACUC reference="ACUCaddress@Shipping"/>
15 </UseDownstream>
16 <UseForPurpose>statistics</UseForPurpose>
17 <UseForPurpose>accountadmin</UseForPurpose>
18 </Rights>
19 <Obligations>
20 <DeleteWithin>P1Y</DeleteWithin>
21 </Obligations>
22 </UsageControl>
23 </ACUC>
24 </Policy>
25 ...
26 </Policies>

Figure 2: Excerpt from bookshop.com’s policies.

used for statistics and account administration. Further, the shop wants to be able
to forward it under the policy of the shipping company (that is specified below).

Figure 3 depicts shipping.com’s relevant policies. When collecting addresses,
it is willing to authenticate as a shipping company certified by CAy and as
shipping.com certified by CAz. It intends to use the address for shipping and
statistical purposes and will delete it within one week.

Sticky policy model

Sticky policies follow the same schema as preferences, but have the sticky

attribute in the Preference element set to true. This is to indicate that this sticky
policy originates from another party and must thus not be modified. Note that a
data consumer may, in addition to the sticky policy, also have own preferences for
forwarding previously received PII. Those preferences can, however, be changed
and are therefore not sticky.

3.3 Downstream usage

The crucial aspect of our policy language is that it allows both the data provider
and the data consumer to express to whom and under what conditions PII can or



168 DOWNSTREAM USAGE CONTROL

1 <Policies id="Policies@Shipping">
2 <Policy>
3 <Applicability>
4 <DataType> Address </DataType> </Applicability>
5 <ACUC id="ACUCaddress@Shipping">
6 <AccessControl>
7 <Property>CertifiedAsBy{shipping,CAy}</Property>
8 <Property>CertifiedAsBy{shipping.com,CAz}</Property>
9 </AccessControl>
10 <UsageControl>
11 <Rights>
12 <UseForPurpose>shipping</UseForPurpose>
13 <UseForPurpose>statistics</UseForPurpose>
14 </Rights>
15 <Obligations>
16 <DeleteWithin>P7D</DeleteWithin>
17 </Obligations>
18 </UsageControl>
19 </ACUC>
20 </Policy>
21 ...
22 </Policies>

Figure 3: Excerpt from shipping.com’s policies.

will be forwarded. These conditions are expressed in UseDownstream elements.

We first focus on UseDownstream elements occurring in the data provider’s
preferences. Each UseDownstream element contains exactly one ACUC child
element. This ACUC element either contains a fully specified pair of access and usage
control requirements, or another ACUC element is referenced with the reference

attribute.

In the former case, the access control requirements specify to which downstream
data consumers the PII can be forwarded, while the usage control requirements
specify how these downstream consumers are supposed to treat it. Usage
requirements can on their turn also contain UseDownstream elements that specify
to whom and under what conditions the downstream consumer can further forward
the PII, which on their turn can contain UseDownstream elements as well, etc. This
mechanism enables the data provider to restrict the forwarding of his PII up to
an arbitrary number of “hops”. We refer to this approach as nested downstream
usage control.

In the case where an ACUC element references the content of another ACUC

element, for the sake of simplicity we insist that it can only refer to its closest
ancestor ACUC element, i.e., the ancestor four levels higher in the XML tree. (We
impose this restriction since it simplifies the matching procedure and there seem
to be no convincing use cases for “cyclically recursive” policies with cycle length
greater than one.) This means that the data consumer can then forward the PII
under the same restrictions that were imposed on himself. We therefore call this
approach recursive usage control. Note that our policy language allows to combine
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nested and recursive usage control by defining a chain of nested usage controls for
the first number of hops and a final recursive usage control for any further hops.

In a data consumer’s policy, each UseDownstream element contains at most
one ACUC element. If present, it contains a set of properties describing to whom
he plans to forward the PII, and a usage control policy describing how that
downstream consumer will treat the data. This usage control policy could contain
further UseDownstream elements, describing the next hops up to an arbitrary
nesting degree. Alternatively, the reference attribute can be used to point to
another ACUC element. This element may even be hosted directly by a downstream
consumer (where we assume the reference to act as a URL).

In many situations, the downstream consumer or his policy are not be known
at the time the PII is transmitted to the primary consumer. Rather than
specifying all intended hops in full detail, the data consumer can indicate his
willingness to enforce any restrictions imposed by the data provider by setting
the allowLazy attribute of the UseDownstream element to true and omitting
the ACUC element. The matching between the data provider’s preferences and
the downstream consumer’s policy is then done by the primary consumer at the
time the PII is forwarded to the downstream consumer. We refer to the next
section for more details on lazy matching. When the allowLazy attribute occurs
in Preferences, it indicates whether the data provider allows the restrictions
expressed in the child ACUC element to be matched lazily.

Finally, in the UseDownstream element a maxDepth attribute can be set to an
integer or to unbounded to indicate how often a piece of PII can be forwarded
at most. The intended behavior concerning this limit can be explained with a
counter contained in sticky policies. The counter in a sticky policy that is attached
to forwarded PII is decreased by one w.r.t. the previous sticky policy or w.r.t.
maxDepth in case the PII is forwarded by the primary data provider.

4 Matching

Given a data provider’s preferences and a consumer’s policies, matching aims at
automating the process of deciding whether the provider can safely transmit a
piece of personal data. We introduce a ’more or equally permissive than’ operator
to match preferences with policies. We say there is a match when the preferences
are more or equally permissive than the policy.

4.1 Matching Privacy Preferences and Policies

To explain the matching procedure, we use a set-based representation of the XML
structure described in the previous section. A Preferences element is represented
by a set Prefs containing an element Pref ∈ Prefs for each of its Preference

child elements in the XML structure. Pref .App represents a set containing all
the PII owned by the user that is covered by the Applicability element, and
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Pref .ACUC designates the contained ACUC child elements. The set ACUC .AC is
the set of access control rules (e.g., CertAsBy) contained in the Rule elements of
the embedded AccessControl, while ACUC .UC is the set of usage controls in
terms of rights (UC.Rights) and obligations (UC .Obls), specified by the Rights

and Obligations elements, respectively. We use an analogous notation for the
consumers’ policies.

Intuitively, preferences Prefs are more or equally permissive than policies Pols,
denoted Prefs D Pols, if the access control properties in Pols satisfy the rules in
Prefs and if Pols asks for less rights and promises to adhere to stricter obligations
than specified in Prefs. We “overload” the notation of the D operator to compare
not only preferences with policies, but also to compare rights, obligations, access
control policies as well as usage control policies.

To determine if there is a match between preferences Prefs and policies4 Pols,
it is verified if for each ACUC pair in a policy the user has a corresponding piece
of PII with a more or equally permissive ACUC pair:

Prefs D Pols ⇔ ∀Pol ∈ Pols · ∃Pref ∈ Prefs · ∃PII ∈ PIIs ·

(PII ∈ (Pol.App ∩ Pref .App) ∧ Pref .ACUC D Pol.ACUC ) (1)

Above, PIIs is the set of all pieces of personal information that the user possesses,
and PII can be any specific piece of PII in that set. In the following, we use
the notations ∗Pref and ∗Pol to denote elements within preferences and policies
respectively.

Pairs of access control and usage control policies are matched as follows:

ACUC Pref D ACUC Pol ⇔ (ACUC Pref .AC D ACUC Pol .AC ) ∧

(ACUC Pref .UC D ACUC Pol .UC ) (2)

Note that (2) is evaluated multiple times during the evaluation of (1). For example,
ACUC Pol is instantiated subsequently with Poli.ACUC for all Poli in Pols. The
access control mechanism we employ is based on certified properties such as roles
or IDs. To match access control requirements, it is verified if for each Rule in the
preferences there is a corresponding Property in the policy:

AC Pref D AC Pol ⇔ ∀r ∈ AC Pref · ∃r
′

∈ AC Pol · r = r
′ (3)

This could be extended to cover more sophisticated access control mechanisms
such as claim-based access control or hierarchical roles. However, the matching
becomes more complex when doing so (e.g., as environment attributes such as
time of day cannot be pre-evaluated). Usage control requirements are matched as
follows:

UC Pref D UC Pol ⇔

(∀R ∈ UC Pol .Rights · ∃R
′

∈ UC Pref .Rights ·R
′

D R) ∧

(∀O ∈ UC Pref .Obls · ∃O
′

∈ UC Pol .Obls ·O D O
′) (4)

4Note that policies Pols are not complete privacy policies of a website but rather policies of
specific inputs in a Web form or policies of credential attributes required to authenticate.
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The matching of rights and obligations is specified for the different types of rights
and obligations individually. In the following we give example specifications for
the ones introduced in Section 3.2. If obligations R and R′ specify that the user
must be notified when her PII is accessed, R′DR is evaluated with the appropriate
D operator, i.e., (6) in this case. Letting obligation DeleteWithin with duration
t be denoted as DelWithin(t), matching is done as follows:

DelWithin(t) D DelWithin(t′) ⇔ t ≥ t
′

. (5)

Letting obligation NotifyOnAccess with contact information c be denoted as
NotifyOnAcc(c), matching is done as follows (where ∗ represents any string):

NotifyOnAcc(c) D NotifyOnAcc(c′) ⇔ c
′ = ∗ ∨ c = c

′

. (6)

Letting right UseForPurpose with purpose p be denoted as UseForPurp(p),
matching is done as follows:

UseForPurp(p) D UseForPurp(p′) ⇔ p = p
′ (7)

For the sake of readability, support for hierarchical purposes is not described here.
As downstream usage is the focus of this paper, the following two subsections

explain the details of the matching procedure for downstream usage rights.

4.2 Proactive Matching of Downstream Rights

This section provides the intuition behind proactively matching a downstream
structure, i.e., matching structures where both the preferences and the full chain
of downstream usage policies are known at the time of matching.

For a given pair ACUC , let |ACUC | be the “local” ACUC, meaning containing
only those restrictions and obligations that do not affect downstream usage. Using
this notation, we can represent the structure of an ACUC policy with downstream
usage as a directed graph where each node represents a hop in the downstream
usage. Each node is labeled with the local ACUC policy describing how the
data are to be treated locally. Each edge represents the permission (in case of
a provider’s preferences) or intention (in case of a consumer’s policy) to forward
the data under the restrictions specified by the ACUC of the endpoint of the edge.
By the restrictions that we imposed on the connection among ACUC pairs, the
structure of the graph is similar to that of a tree where the leaf nodes can optionally
have a loop, representing recursion in the downstream usage policy. Intuitively,
matching two ACUC pairs ACUC Pref taken from a provider’s preferences and
ACUC Pol specified in a consumer’s policy is done by simultaneously going over
the nodes in the two tree representations of ACUC Pref and ACUC Pol and verifying
that it is possible to cover each branch of the policy-side tree with a more or equally
permissive branch on the preference side.

Letting UseDS(ACUC ) denote a UseDownstream element with an ACUC child
element represented by ACUC , the matching for downstream usage rights works
according to the rule:

UseDS(ACUC ) D UseDS(ACUC
′) ⇔ ACUC D ACUC

′ (8)
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We assume that an ACUC specifying recursive downstream sharing right with depth
d is “folded out” into a graph of d+ 1 nested ACUC. Formula (8) is thus sufficient
to handle nested as well as recursive access and usage control. Obviously, to
improve performance when matching recursive ACUC and to avoid infinite loops in
case of unlimited recursion depth, the concrete implementation of the matching
algorithm must keep track of which combinations of ACUC elements have already
been matched against one another and must take depth into account. We refer to
the extended version [6] for a complete example of a proactive matching process.

4.3 Lazy Matching

In the previous section we focused on proactive matching, i.e., matching where all
downstream policies are known beforehand. It is, however, not always possible
to collect all policies during matching. For this reason, we also introduce lazy
matching, which only takes into account the properties and policies of the data
consumer, but not those of any downstream data consumers. Rather, the data
consumer expresses that he is willing to impose whatever usage restrictions on
downstream consumers that the data provider may specify.

Both types of matching imply that the sticky policy that the data consumer
associates to the data must at least enforce the preferences of the data provider.
On one hand, proactive matching allows to minimize the rights and maximize
the obligations that are transferred as the matching procedure can already take
the downstream consumers and their policies into account. On the other hand,
lazy matching offers more flexibility and is the only option in dynamic settings,
where either the downstream consumers or their policies are not known yet at the
moment of matching, or where the access control policy depends on environment
variables that will only be known when the data is actually forwarded.

To support lazy matching, we redefine formula (8) to take the allowLazy
attribute into account, which is represented by a boolean value lazy here. Matching
for downstream usage then follows the rule:

UseDS(lazy, ACUC ) D UseDS(lazy
′

, ACUC
′) ⇔

(lazy ∧ lazy
′) ∨ (ACUC D ACUC

′) (9)

4.4 Creating Sticky Policies

A sticky policy specifies the commitment of the data consumer towards the data
provider w.r.t. treatment of her shared data. We envision a sticky policy SP to be
produced in case a matching procedure is successful. This sticky policy then never
violates the preferences and is compliant with the policy, i.e., Prefs D SP D Pols
always holds. (Note that we assume that matching preferences with preferences is
analog to the matching of preferences with policies.)

A privacy-conservative matching algorithm will choose a sticky policy that is
as close as possible to the policy proposed by the consumer. Note that a sticky
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policy includes only those preferences that contain rights the data consumer gets
or obligations he has to adhere to w.r.t. a given piece of PII.

Clearly, when a primary data consumer forwards the data to a downstream
consumer, he must also attach a sticky policy. The data consumer may have its
own preferences Prefs′ regarding data sharing. On top of his own preferences,
the data consumer must enforce the sticky policy SP associated to this piece of
data. In other words, the primary data consumer has to find a downstream sticky
policy SP ′ so that Prefs′

D SP ′
D Pols′ and, informally, SP D SP ′

D Pols′, where
Pols′ is the policy of the downstream data consumer. More precisely, the latter
evaluation is done by first extracting downstream preferences (PrefsDS) from the
sticky policy (SP ) as depicted below, where A← B denotes the assignment to A
of the value of B:

∀Pref ∈ SP · (∀R · (R ∈ Pref .ACUC .UC .Rights ∧R =UseDS(·, ·)) ·

(Pref DS .App ← P ref.App,

Pref DS .ACUC ← R.ACUC ,

PrefsDS ← PrefsDS ∪ Pref DS)) (10)

Next PrefsDS is used for matching the downstream policy (i.e., PrefsDS D Pols′)
and to create the downstream sticky policy SP ′ so that PrefsDS D SP ′

D Pols′.

5 Conclusion and Future Work

This paper presents a simple yet expressive language to specify privacy policies and
user preferences which may express downstream usage requirements. Our paper
also describes a matching algorithm that, given a server’s privacy policy, helps a
user to decide whether her personal data can be shared with the server according
to her preferences.

In our language we employ disjunctive semantics when combining multiple
preference elements. We are currently investigating if deviating from this semantics
allows policies and preferences to be expressed in a more compact way. Moreover,
we also study how the matching algorithms have to be adapted when employing
more advanced access control mechanisms than the one described in this paper.

Finally, we are developing tools to facilitate the enforcement of policies. Those
tools only help honest services to fulfill their commitments. Proving correct
enforcement remains out of our scope.

The main ideas of our language have been integrated into the PrimeLife Policy
Language (PPL). A prototype engine implementation is currently being developed
by the PrimeLife project.
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Abstract. In this paper we describe extensions to the access control
industry standards XACML and SAML to enable privacy-preserving
and credential-based access control. Rather than assuming that an
enforcement point knows all the requester’s attributes, our extensions
allow the requester to learn which attributes have to be revealed
and which conditions must be satisfied, thereby enabling to leverage
the advantages of privacy-preserving technologies such as anonymous
credentials. Moreover, our extensions follow a credential-based
approach, i.e., attributes are regarded as being bundled together
in credentials, and the policy can refer to attributes within specific
credentials. In addition to defining language extensions, we also show
how the XACML architecture and model of evaluating policies can be
adapted to the credential-based setting, and we discuss the problems
that such extensions entail.

Keywords: Access control, privacy, anonymous credentials, XACML.

1 Introduction

An appropriate access protection of valuable online services and resources is
fundamental to support the ongoing digitalization of businesses, institutions, and
governments. In particular, enterprises are moving away from an assumption
of an a priori knowledge of all authorized users. Rather, they are increasingly
opening up their services to — possibly new and unknown — users in possession
of credentials issued by trusted third-party identity providers.

In such a scenario, classic access control approaches are not adequate, and
alternative approaches such as attribute-based access control (ABAC) [3] are more
and more deployed, allowing for the expression of access control restrictions in
terms of conditions over the attributes of the requester and of the protected
resource. Moreover, standards such as the eXtensible Access Control Markup
Language (XACML) and the Security Assertion Markup Language (SAML) were

179



180 ENABLING PRIVACY-PRESERVING CREDENTIAL-BASED ACCESS CONTROL WITH XACML & SAML

proposed to specify ABAC policies and to exchange authenticated attribute values,
respectively.

A number of recent works [11, 2, 1, 6] have proposed a shift from ABAC to
credential-based access control (CBAC, also called “card-based access control”), in
which the attributes, which are collectively attached by a requester in ABAC, are
instead grouped in credentials (or “cards”) owned by such requester. The issuer
of a credential vouches for the correctness of the attribute values with respect to
the credential owner.

Not only does this abstract view on credentials intuitively mirror the real-world
authentication cards found in every citizen’s wallet today, but it also acts as an
excellent model to unify authentication technologies as diverse as SAML, OpenID,
X.509 certificates, trusted LDAP servers, and anonymous credentials [8, 4, 5]. In
particular, we see anonymous credentials as particularly interesting, because of the
strong privacy advantages they offer. More specifically, they enable the requester
to selectively reveal subsets of attributes from a credential, and even to merely
prove that the attributes contained in a credential satisfy a certain condition
without revealing the exact attribute values, and all of this while preserving
unlinkability between different uses of the same credential.

The goal of this work is to bring privacy-preserving credential-based access
control to the real world by leveraging the status of XACML as de facto standard
in access control languages. To do so, however, a number of issues need to be
addressed. First, XACML does not manage attributes bundled in credentials,
and, thus, does not allow to distinguish whether two attributes are contained in
the same credential or in different ones. This feature is needed to avoid abuses like,
for instance, the possibility for the owner of two university diploma credentials to
use the course of study of one diploma and the grades of the other. Also, the type
of the containing credential may be important, e.g., to distinguish the name as it
appears on a passport and on a driver’s license, even if both are issued by the state.
To achieve such a result, it is fundamental to have a description of credentials and
their attributes and that such description is shared among all the actors involved
in the system, i.e., there is a need for an ontology of credential types.

Second, XACML prescribes that the requester communicates all of her
attributes to the server for the evaluation of the access control policy, which
is problematic from a privacy perspective. Some technologies such as SAML,
OpenID, and anonymous credentials, offer the possibility to reveal only a subset
of the attributes contained in a credential. Such features can be exploited by
first communicating the policy to the requester, so that she can disclose only the
information necessary for the access.

Third, XACML and SAML merely allow requesters to reveal concrete attribute
values, rather than allowing them to prove that certain conditions over the
attributes hold. This further privacy-preserving feature can be obtained by
leveraging the cryptographic power of anonymous credentials.

This work tackles above issues and is organized as follows: Sections 2 and 3
provide an overview of the literature and the scenario we refer to, respectively;
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Section 4 presents the basics of XACML, which are then extended in Section 5 to
deal with credentials; Section 6 illustrates how we leverage existing Semantic Web
standards to organize credentials and their attributes into hierarchies; Section 7
provides the details of the extension of SAML to enable users to prove conditions
over their attributes, and Section 8 shows the necessary modifications of the
current XACML architecture to support the proposed extensions; finally, Section 9
summarizes our efforts and discusses our future work.

2 Related Work

The problem of performing access control without prior knowledge of the access-
requesters is typically overcome by basing the access control decisions on, possibly
certified, properties the requester has. Most of the proposed solutions, e.g., [3, 10,
14], are based on different forms of logic. Although such approaches are highly
expressive and powerful, they are difficult to apply in practice where simplicity
and easy of use are required. In addition, all such proposals lack support for
anonymous credentials.

The eXtensible Access Control Markup Language (XACML) [9] is the de facto
standard for expressing access control policies and permits to express access control
rules on the basis of a requester’s properties. Although XACML enjoys large
adoption in industry due to its simplicity and its powerful extension mechanism,
it has several limitations. In particular, there is no support for certified credentials
nor does it allow for dealing with unknown requesters. Rather, it is assumed that
requesters provide all their properties together with the access request. However,
this poses significant privacy risks for the requesters.

Some recent proposals have investigated credential-based access control with
anonymous credentials. Ardagna et al. [2] introduce a language that is explicitly
targeted to anonymous credentials. However, unlike the solution presented in this
paper, their proposal does not extend to other technologies. Camenisch et al. [6]
propose a language for technology-independent credential-based access control,
but the language follows a proprietary syntax, which makes deployment in real-
world access control scenarios hard. The recent work by Ardagna et al. [1] defines
credential-based access control extensions for XACML, but cannot express the
advanced functionalities of anonymous credentials. Neither of the above languages
specifies wire formats necessary for the server to communicate the applicable access
control requirements to the requester, and for the requester to send a description
of her claimed credential properties back to the server. In this work we solve this
issue by extending SAML with the necessary expressivity.

3 Scenario

The setting that we envisage is the following. The requester owns a set
of credentials obtained from various issuers, possibly implemented in different
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credential technologies. A credential is a list of attribute-value pairs with
technology-specific information, called pre-evidence, that the requester will need
to substantiate the claims that she will make about the credential. A credential
is always of a certain type that defines which attributes are contained in the
credential. We assume that every credential has the dedicated attributes type
and issuer.

Servers host resources and protect them with policies expressed in an extended
version of XACML. Users requesting access to a resource receive the relevant
policy, which describes the requirements on the requester’s credentials in order to
be granted access. The policy may include requirements on multiple credentials at
the same time, meaning that multiple credentials have to be presented in order to
obtain access, and may include provisional actions, i.e., actions that the requester
needs to fulfill prior to being granted access.

Subsequently, the requester inspects the policy and, if she has the necessary
credentials to satisfy it, she creates a claim over a suitable subset of her credentials,
which can describe (1) values of attributes contained in these credentials,
(2) conditions over non-disclosed attributes, and (3) the fulfilled provisional
actions. From the pre-evidence contained in the credentials, the requester derives
(technology-specific) evidence for the claim to convince the server of its correctness,
of the integrity of the attribute values, of her ownership of the credentials, and,
possibly, of the freshness of the claim.

Afterwards, the requester makes a new request for the resource, but this time
she includes the created claim and evidence. The server verifies the validity of the
evidence w.r.t. the claim and evaluates whether the policy is fulfilled by the claim.
Acces is granted or denied accordingly.

Note that there is a clear distinction between a credential and a claim: while
the former is a typically long-lived bundle of attributes, the latter is a short-
lived description of properties that these attributes enjoy. The requester keeps
her credentials and the associated pre-evidence until they expire or are revoked;
a claim and the corresponding evidence are usually only relevant within a single
session with a server.

4 Basics of XACML

XACML defines an XML-based access control policy language as well as a
processing model for evaluating the policies on the basis of a given XACML access
request. Such request specifies by means of attributes which subject (i.e., who)
wants to perform which action (i.e., do what) on which resource (i.e., on what).

An XACML policy has a PolicySet root element that further contains Policy or
PolicySet elements. A Policy contains a set of Rules that define positive or negative
authorizations (Permit or Deny rules). The Rule, Policy and PolicySet elements
may contain a Target that determines their applicability, i.e., to which access
requests the respective elements and their children apply. The Target is expressed
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Figure 1: XACML architecture with extensions. Standard XACML components
are depicted with solid lines. Extensions are depicted with dotted lines.

in terms of simple combinations of attributes describing applicable subjects,
actions and resources. The applicability of a Rule is further determined by a
boolean Condition that allows for more complex restrictions by means of functions
over such attributes. Functions are stated by means of Apply elements that specify
a respective FunctionID XML-attribute (e.g., ’string-equal’) and that contain child
elements representing the appropriate function parameters. Such parameters may
be: (1) AttributeDesignator elements referring to attributes given in the request,
(2) concrete attribute values, or (3) further Apply elements. Each PolicySet and
Policy element also specifies a combining algorithm defining how to combine the
different outcomes of the contained child elements (i.e., Policy/PolicySet and Rule
elements, respectively) when a request is evaluated w.r.t. an XACML policy.

An XACML system consists at least of a policy enforcement point (PEP), a
policy decision point (PDP), a policy administration point (PAP) and a context
handler (cf. Figure 1). Access requesters issue their requests to the PEP who
is responsible for enforcing the access control decisions that are rendered by the
PDP on the basis of the request. The PDP makes decisions w.r.t. policies that
are created and maintained by the PAP. The context handler is an intermediate
component between the PEP and the PDP that buffers the attributes that were
given to the PEP in the request and provides them to the PDP on demand.

5 Credential-based XACML

In the following we use the namespace prefix xacml to refer to the XACML 3.0 [9]
namespace. Our extensions are defined in namespace http://www.primelife.eu,
denoted by prefix pl or without prefix.

The language extensions that we propose to XACML go beyond the standard
extension points. All proposed extensions are in line with the semantics of
existing XACML language constructs though, i.e., we do not alter the semantics
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of existing elements or attributes. To facilitate the adoption of our approach in
existing XACML code bases, we designed our extensions for minimal impact on
the language and the XACML evaluation mechanism.

XACML rules that contain credential requirements can only have effect Permit.
Rules with effect Deny are pointless as they essentially require that the requester
does not have a certain credential. Assuming that the requester’s goal is to obtain
access, she can always pretend not to have the specified credentials.

Our extensions enable policy authors to express conditions on the credentials
that a requester must own and the actions that she must perform to be granted
access. To this end we augment the <xacml:Rule> element with optional
<CredentialRequirements> and <ProvisionalActions> child elements. The
former describes the credentials that the requester needs to own and the conditions
these credentials have to satisfy. The latter describes the actions that she has to
perform. We now discuss both elements in more detail.

5.1 Credential Requirements

To express credential-based access control policies, the language needs a way to
refer to the credentials that bundle several attributes together. For example, it
must be possible to refer to the requester’s name as it appears on her passport,
not on her credit card. Cross-credential conditions are another important use case:
for example, the policy language must allow to express that the names on a credit
card and on a passport must match, or that the expiration date of an entry visa
is before the expiration date of a passport.

To this end, <CredentialRequirements> contains a <Credential> child
element for each credential involved in the rule, which is assigned a (rule-
wide unique) identifier CredId as an attribute. The <Credential> can contain
<AttributeMatchAnyOf> child elements that allow to compare an attribute of
that credential to a list of values. The <CredentialRequirements> also contain a
<Condition> where conditions on the credentials’ attributes can be expressed.
Inside a condition, one can refer to an attribute AttrId within a particular
credential by means of a <CredAttributeDesignator> element which takes both
CredId and AttrId as attributes. We purposely did not add an optional CredId

attribute to <xacml:AttributeDesignator>, as the Issuer attribute of the latter
would conflict with the credential attribute pl:Issuer. An example rule is given
in Figure 2.

Conditions on credential attributes are expressed using the same schema
as the <xacml:Condition> element (including the mentioned extension with
the <CredAttributeDesignator> element), but are contained in a separate
<Condition> child element of the <CredentialRequirements> element. The
reason for this separation is that whenever no adequate claim is attached to a
resource request, the applicable policy must be returned. Deciding applicability of
a policy entails evaluating the <xacml:Condition>, which is impossible when it
involves credential attributes that have not been revealed yet. To avoid this issue,
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<Rule Effect="Permit" RuleId="rule2">
<xacml:Condition>

<!-- XACML condition relevant for the rule’s applicability -->
</xacml:Condition>
<CredentialRequirements>
<Credential CredentialId=’pp’>
<AttributeMatchAnyOf AttributeId="pl:CredentialType">
<MatchValue MatchId="pl:subtype-of">un:PhotoID</MatchValue>

</AttributeMatchAnyOf>
<AttributeMatchAnyOf AttributeId="pl:Issuer">
<MatchValue MatchId="xacml:anyURI-equal">http://www.usa.gov</MatchValue>

</AttributeMatchAnyOf>
</Credential>
<Condition>
<xacml:Apply FunctionId=’xacml:date-less-than-or-equal’>
<CredentialAttributeDesignator CredId="pp" AttributeId="un:DateOfBirth"/>
<xacml:Apply FunctionId="xacml:date-subtract-yearMonthDuration">
<xacml:EnvironmentAttributeDesignator AttributeId="xacml:current-date"/>
<xacml:AttributeValue DataType="xs:duration">P21Y</xacml:AttributeValue>

</xacml:Apply>
</xacml:Apply>

</Condition>
</CredentialRequirements>
<ProvisionalActions>
<ProvisionalAction ActionId="pl:Reveal">
<xacml:AttributeValue DataType="xs:anyURI">un:Sex</xacml:AttributeValue>
<xacml:AttributeValue DataType="xs:anyURI">pp</xacml:AttributeValue>

</ProvisionalAction>
</ProvisionalActions>

</Rule>

Figure 2: Example rule stating that access is granted to users who are at least
twenty-one years old according to a piece of PhotoID issued by the US government,
but only after revealing the gender mentioned on the same piece of PhotoID.
Namespace prefix xacml refers to the XACML 3.0 namespace, xs to XML Schema,
pl to http://www.primelife.eu, and un to http://www.un.org.

we keep the credential requirements separate from elements relevant to the rule’s
applicability.

Conditions can contain any combination of restrictions on any credential
attributes, including the issuer and the type of the credential. For matching
credential types, we introduce a new function pl:subtype-of that checks whether
the presented credential is of a subtype of a specified credential type as per the
ontology that we will discuss in Section 6.

5.2 Provisional Actions

The <ProvisionalActions> element contains the actions that have to be
performed by a requester prior to being granted access. The types of actions
that we model are:
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−Consent: The requester has to explicitly consent to a given statement, e.g., the
terms of service. How consent is given could depend on the underlying technology:
it could for example involve a cryptographic signature, or simply a click on a button
in the user interface.

−Attribute disclosure: Rather than assuming that all attributes of a credential are
revealed by default, the policy explicitly lists which attributes of which credential
need to be revealed. Moreover, in order to fully leverage the power of privacy-
enhancing technologies such as anonymous credentials that allow the requester
to prove conditions without revealing the attribute values, this list does not
(necessarily) include the attributes that occur in the conditions. Apart from the
attribute and credential identifiers, the requirement to reveal an attribute can
optionally specify a data handling policy describing how the attribute value will
be treated.

In some cases, it is not the PEP who needs the attribute value, but some third
party. For instance, an online bookshop may require the requester to reveal her
address to a shipping company, not to the bookstore itself. When using anonymous
credentials, such requirements can be efficiently fulfilled by means of verifiable
encryption [7]. We model this with an optional fourth argument describing the
entity to whom the attribute must be disclosed.

−Consumption control: Consumption control allows the policy author to impose
limitations on how often the same credential can be used to obtain access. For
example, one could impose that each ID card can only be used once to vote in an
online opinion poll. A consumption control statement has to specify the credential
to be consumed, the number of units to spend, the limit of units that can be spent
in total, and a “consumption scope”. We refer to [6] for details on their exact
semantics.

Rather than restricting our extensions to the above action types, we leave
open the possibility to add new types of provisional actions later. We do so by a
mechanism similar to the one used for defining functions in XACML. Namely, each
provisional action is contained in a <ProvisionalAction> element that includes
an action identifier as an attribute ActionId. We define action identifiers for the
action types above, but allow users to add more identifiers later.

Provisional actions can be parameterized with arguments, e.g., the statement
to be consented to in a Consent action. We use an approach similar to how
in XACML arguments are passed to functions in the <xacml:Apply> element.
Namely, a <ProvisionalAction> can take any number of <xacml:Expression>

child elements, in which the action arguments are encoded. For example, the
policy in Figure 2 contains the requirement to reveal the gender as specified on
the identity card.

This is, however, slightly problematic for actions with optional arguments:
since arguments are passed as an unnamed sequence of <xacml:Expression>

elements, parsing them becomes ambiguous if more than one argument is optional.
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For example, the requirement to reveal an attribute takes one mandatory argument
(the attribute to be revealed) and three optional arguments (the recipient, the
data handling policy, and the credential identifier). We solve this problem by
introducing separate action identifiers for each possible combination of specified
attributes. For example, for attribute disclosure we define the action identifiers
pl:Reveal, pl:RevealTo, pl:RevealUnderDHP, and pl:RevealToUnderDHP.

6 Credential Type Ontologies

For an effective extension of XACML that bundles attributes into credentials,
such organization of information, which we call a credential type ontology, must
be shared by all involved parties. The best way to achieve this result is to express
the structures of the credentials in a widespread standard language. Moreover,
this language should allow for the extension of existing types, so that credential
issuers can introduce new types within the context of the ontologies already in use.
We rely on the Web Ontology Language (OWL) [13], which is XML-based, thus
allowing for ontologies that are easily extended and exchanged by applications,
regardless of the platform.

In our model, each credential belongs to a specific type, which defines the
list of its attributes. The type of a credential is itself an attribute. Types and
attributes are defined in ontologies that can be referred to in the policy language
by means of URIs, possibly mapped onto prefixes (e.g. http://www.un.org/ is
mapped onto un:). For example, the United Nations could design an ontology that
defines the attribute un:nationality as specifying the nationality of a credential
bearer, encoded as a two-character ISO 3166 country code, and the credential type
un:Passport as a digital template for real-world passports, comprised of a list of
attributes including un:nationality. Attributes defined in an ontology can be
reused in other ontologies: a government may define a credential type for national
ID cards, including the un:nationality attribute. Credential types are organized
in a hierarchy with supertypes and subtypes. If credential type A has a subtype B,
then B contains all the attributes of A with possible restrictions on their values,
and it may include additional attributes. Multiple inheritance is allowed, meaning
that a subtype contains all the attributes of all its supertypes.

Our use of OWL for credential ontologies is based on the following idea: a
credential type is modeled as an OWL class. In particular, the URI of the OWL
class can be used as the URI of the credential type, and we are enabled to exploit
the OWL class definition mechanism to define which attributes a certain credential
type includes. Moreover, we can make use of OWL’s subclassing mechanism
(rdfs:subClassOf) to model inheritance among credential types in a very natural
way, with OWL subclasses corresponding to credential subtypes.

We define a root credential type with URI pl:Credential (cf. Figure 3), which
is the supertype of all other credential types and contains the credential’s issuer
(pl:issuer) as an attribute.
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<owl:Class rdf:about="Credential">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="issuer"/>
<owl:qualifiedCardinality

rdf:datatype="&xsd;nonNegativeInteger"> 1 </owl:qualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;anyURI"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Figure 3: An OWL class for credentials

All other credentials can be defined as a subclass of the pl:Credential class.
For instance, the United Nations’ un:Passport credential type can be defined
as a subclass of pl:Credential by extending its attribute list with attributes
un:firstName, un:lastName, un:dateOfBirth, un:nationality, and un:photo.

In our model, when a policy requires the presentation of a credential of a certain
type, a credential of any subtype is accepted, as it contains all the information
included in the supertype, and some more. Function pl:subtype-of is introduced
to be applied to two URIs to check whether the first argument refers to a subclass
of the class referred to by the second argument. Let us suppose a credential of type
un:Passport is presented by an access requester for the evaluation of a policy that
requires an instance of pl:Credential. By exploiting the capabilities of ontology
reasoners, function pl:subtype-of states that un:Passport is indeed a subclass
of pl:Credential, so that the requester can be granted access.

7 SAML as Claims Language

Here we describe how we extend SAML for transporting the claims defined in
Section 3. SAML is a standard allowing for the exchange of certified attributes
bundled together into assertions, which are similarly structured as credentials.
The standard, however, allows only for the exchange of attribute values but
not conditions on such values nor notifications of provisional action fulfillment.
To address these issues, we use the standard’s extension points to embed our
<Condition> and <ProvisionalAction> elements into SAML assertions. This
allows for the expression of conditions on attributes from one or more credentials
as well as action fulfillments, together with the necessary evidence.

8 Architectural Extensions

In the following we sketch how we adapt the XACML architecture such that (1) the
credential-based XACML policy applicable to a request is communicated to the
requester, and (2) the policy can be evaluated on the basis of the provided SAML
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claim. The modified architecture maintains all standard XACML functionality,
i.e., the modifications are extensions that do not substitute existing functionality
and that are usable in combination with standard features.

We adapt the XACML communication model for allowing the following
two-round pattern. In the first round, the requester specifies a resource and
obtains the relevant policy from the PEP; in the second round the requester
sends the same request with an additional SAML claim. Resending the request
is necessary because the XACML architecture is stateless, meaning that the
individual components do not maintain information across multiple rounds. A
PEP’s response in the first round is embedded in an XACMLPolicy Assertion
element (cf. SAML profile of XACML [12]), to which the requester is supposed
to reply with an appropriate SAML claim. The PEP grants or denies access
depending on the claim’s validity and the decision of the PDP.

We need to modify the PEP such that it obtains all policies applicable to a
user’s request and it sends them in a pre-evaluated version to the user. The pre-
evaluation substitutes known attributes, e.g., environment attributes such as time
and date, with concrete values. One way to obtain all applicable policies is to
exploit the ReturnPolicyIdList feature of XACML 3.0, which enables a PEP to
learn from a PDP all the relevant policy identifiers. The PEP can then obtain the
policies directly from the policy administration point (PAP). Alternatively, the
PDP could be modified to return not only a list of PolicyIds to the PEP, but
rather the policies themselves.

When the PEP receives a request with an attached SAML claim, it has to verify
the validity of the claim and make it available to the PDP. To verify the validity
of the claim evidence, we extend the PEP with an evidence verifier component
(cf. Figure 1). For every supported credential technology t, this component has
a plug-in that can verify evidence specific to this technology. To make the claim
available to the PDP, we introduce a claim handler component within XACML’s
context handler. If the claim is valid, the PEP forwards it to the claim handler,
which buffers it so that it can be retrieved by the PDP. The PEP then forwards
the request (without attached claim) to the PDP.

A PDP evaluates a request from the PEP as usual w.r.t. the rules in the policy.
However, rules with credential requirements or provisional actions are treated
specially. For such rules to yield a Permit decision, not only its applicability
(specified by its target and condition) is relevant, but also the fulfillment of the
credential-requirements and provisional actions if any are specified. If so, the PDP
fetches the claim from the claim handler. We extend the PDP with a rule verifier
component that, for given credential requirements, given provisional actions, and a
given claim, decides whether the claim implies the requirements and fulfills all the
provisional actions. If so, then the rule evaluates to Permit, otherwise it evaluates
to Indeterminate.
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9 Conclusion

In this paper, we proposed extensions to the industry standards XACML and
SAML to add support for credential-based access control that fully leverage
the power of privacy-preserving technologies such as anonymous credentials. A
prototype engine for the language and architecture extensions that we defined
is currently being developed under the auspices of the European Commission’s
PrimeLife project.

Our current architecture requires a new access control process with new claims
to take place for each resource request with associated credential requirements. In
future work, we will investigate to which extent this can be avoided by comparing
the relevant policy to previously made claims.
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A Card Requirements Language Enabling
Privacy-Preserving Access Control

J. Camenisch, S. Mödersheim, G. Neven, F.-S. Preiss, and D. Sommer

IBM Research – Zurich, Switzerland

Abstract. We address the problem of privacy-preserving access
control in distributed systems. Users commonly reveal more
personal data than strictly necessary to be granted access to online
resources, even though existing technologies, such as anonymous
credential systems, offer functionalities that would allow for privacy-
friendly authorization. An important reason for this lack of
technology adoption is, as we believe, the absence of a suitable
authorization language offering adequate expressiveness to address
the privacy-friendly functionalities. To overcome this problem, we
propose an authorization language that allows for expressing access
control requirements in a privacy-preserving way. Our language is
independent from concrete technology, thus it allows for specifying
requirements regardless of implementation details while it is also
applicable for technologies designed without privacy considerations.
We see our proposal as an important step towards making access
control systems privacy-preserving.

Keywords: Access control, policy languages, privacy, anonymous credentials,
digital credentials.

1 Introduction

Current industry trends such as software as a service and cloud computing drive
businesses to open up their software infrastructures to a wider online audience.
Enterprises that used to populate their internal user directories by doing their
own identity vetting are now moving away from their closed-world assumption
and start relying more and more on external identity providers instead. On the
other hand, as users’ personal data move outside the enterprise boundaries, privacy
protection becomes an even bigger concern than before. Clearly, companies have
to strike a trade-off between the protection of their resources and the privacy of
their users. A crucial tool in implementing this trade-off is an adequate language
to express access control requirements in a way that does not force users to reveal
more personal information than strictly necessary.
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A plethora of technologies exist to authenticate users and bind attributes to
them, including X.509 certificates, SAML, OpenID, trusted LDAP directories,
and anonymous credentials [20, 12, 16]. The latter offer a number of appealing
privacy features, such as proving predicates over attributes, disclosing attributes
to third parties, accountable anonymity, and privacy-friendly consumption control.
In this paper, we abstract all of these technologies into a generic model of digital
“cards” that captures the advanced features they offer, but makes abstraction of
the technical details. The idea of using an abstraction is not new. In particular,
the Identity Metasystem [21] advocates an abstraction called “identities” which is
similar to our card model (cf. Section 2 for details).

We model a card as an authenticated list of attribute-value pairs issued by an
issuer to a card owner. To obtain access to a server’s resource, the card owner
creates a claim, i.e., a statement about some of the attributes of one or more of
her cards. She also generates (technology-dependent) evidence for the claim that
is basis for the server (also called the relying party) to verify the authenticity of
the claim, the freshness of the evidence, and fulfillment of the policy protecting
the resource.

In this paper, we propose a card-based access control requirements language
(CARL) that allows the server to express the requirements that a user’s cards have
to satisfy in order to gain access to a resource, without having to worry about
the specifics of the underlying technology. Moreover, our language is privacy-
preserving in the sense that it expresses the minimal claim that a user has to
present. It does so in terms of which cards have to be involved in the claim, which
attributes of those cards have to be revealed, and which conditions have to hold
over the attributes (whether these were revealed or not). This approach allows
the user to minimize the amount of data that she reveals to the server, which
is important as cards often contain sensitive personal information. Moreover,
some of the supported technologies (including SAML, OpenID, and in particular
anonymous credentials) allow to derive claims that do not necessarily reveal all
of the attributes of a card, but only a subset of them, or even just the fact that
their values satisfy a certain boolean condition. Our language leverages these
technologies to their full potential, without making compromises on compatibility
with older technologies though, since the user can always choose to reveal more
information than required.

We summarize the core features of our language below. While some of the
individual features may also be supported in previous work, we see as important
contribution that the CARL supports all these features simultaneously. See the
next section for a detailed comparison with related work.

Privacy preservation. The CARL is privacy-preserving in the sense that it
supports the principle of minimal information disclosure. Rather than
assuming that all attributes in a card are revealed by default, it explicitly
specifies which attributes must be revealed, and clearly distinguishes between
the requirement to reveal the value of an attribute (e.g., the date of birth)
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and the requirement that an attribute has to satisfy a certain condition
(e.g., age greater than 18). Our language also supports accountability, so
that anonymity can be revoked by a third party in case of abuse.

Technology independence. Our language is independent of the technology
underlying the cards, so that different technologies or even a mix of
technologies can be used without modifying the policy specifications. Also,
its concepts are detailed enough to leverage the advanced features of
available technologies (in particular those of anonymous credentials) such
as consumption control and attribute disclosure to third parties.

Multi-card claims. Our policy language can express requirements involving
multiple cards at the same time and has a way to refer to individual cards and
the attributes they contain. It can thereby impose “cross-card” conditions,
e.g., a car rental service can request to see an identity card, a driver’s license,
and a credit card, which are all registered to the same name. The card type
determines the attributes a card contains, and the policy can specify a card
to be of a certain type. For example, the car rental service may want to see
the address as stated on the credit card, not on the driver’s license. Being
able to reference individual cards is also important when a user has multiple
cards of the same type. For example, when a user has two credit cards, the
policy should be unambiguous about whether it wants to see the credit card
number and security code of the same card or of different cards. (We refer
to this issue as the card mixing problem.)

Formal semantics. We provide a formal semantics for our language that
mathematically defines an ideal system that determines what a particular
realization must implement. This ideal system defines the proof goal for any
realization with a concrete technology. We do not define a particular kind
of realization in terms of a concrete set of actions (such as an exchange of
particular messages), because this would be technology dependent.1 Defining
a formal semantics has helped us to surface subtle problems that might
otherwise go unnoticed, such as the card mixing problem mentioned above.

In this paper, we focus only on the language that is used to describe card
requirements. When designing a comprehensive access control language, various
additional aspects have to be taken into account, such as how to specify the
resources and requested actions to which the policy applies, how to express trust
relationships and trust delegation, how to state data handling policies, how to
combine multiple applicable policies, etc. In Appendix D, we sketch how our
language can be integrated into XACML [34] to profit from the mechanisms
for defining the applicable resources and actions, and how it can be integrated
into existing authorization languages like SecPal [7] and DKAL [28] to express
delegation and other complex trust structures.

1An example of such a realization was done by Mödersheim and Sommer [17].
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2 Related Work

Card-based access control can be seen as a generalization of a variety of access
control models. Role-based access control [25, 35] can be seen as a special case of
our card-based setting by encoding a user’s roles as attributes in a card. Attribute-
based access control [10, 34, 37] comes closer to our concept of card-based access
control, but it does not see attributes as grouped together in cards.

The idea of technology independence for authentication mechanisms is not new.
In particular, the Identity Metasystem [21] advocates a very similar abstraction,
but focuses solely on use cases where only a single card (called “identity” in their
framework) is used at each authentication session. The associated WS-* suite of
policy languages and the CardSpace implementation support selective attribute
disclosure and even a limited set of predicates over attributes, but again only for
a single card per authentication. We think that multi-card authentication is an
important use case, even though it necessarily adds to the complexity of the policy
language; hence the need for our language. Advanced features such as disclosure to
third parties, signing statements, and consumption control are also not supported
in the Identity Metasystem.

Bonatti and Samarati [10] propose a language for specifying access control rules
based on “credentials”, the equivalent of our cards. The language focuses on card
ownership and does not allow for more advanced requirements such as revealing
of attributes or signing statements. The same is true for the language proposed
in [2].

Winsborough et al. [38] present a credential-based access control language
that allows one to impose attribute properties on credentials, but does not
support advanced features such as revealing of attributes, signing statements,
or consumption control. The extension by Li et al. [30] supports revealing of
attributes, but not the other features.

The PolicyMaker [8] and KeyNote [9] trust management system uses ‘creden-
tials’ to bind ‘assertions’ to keys. In PolicyMaker, assertions can be described in
any safe language, while KeyNote fixes a language. Both could be used to encode
attribute-value pairs in the assertion to implement our card concept, but selective
attribute disclosure would not be possible, unless new credentials are re-issued at
each login.

P3P [36] defines a format for websites to express their privacy practices.
EPAL [4] is a framework that allows enterprises to manage personal data they have
collected on the basis of privacy statements. However, no support for credentials
is offered.

The languages mentioned above are not targeted to anonymous transactions
and thus lack language constructs that allow for obtaining accountability in
anonymous transactions, which we do achieve through a combination of signing
statements and disclosure to third parties. The first paper towards third-party
disclosure is due to Backes et al. [6]. Gevers and De Decker [27] extend P3P to
describe credentials and necessary access control requirements, including verifiable
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encryption (which we generalized to disclosure to third parties), but no precise
syntax or semantics are specified.

The recent language by Ardagna et al. [3] features a card typing mechanism
and advanced features such as consumption control and signing statements. It
focuses only on anonymous credential systems though, hence cannot be used in
combination with other technologies. It also lacks a formal semantics and suffers
from the card mixing problem.

Several logic-based approaches for authentication and distributed access control
have been devised to achieve similar goals as this work: a technology-neutral,
declarative specification of distributed access control [1, 11, 26, 31]. The
fundamental idea is to describe access control requirements by formulae in
authentication logic and to provide a calculus for proving such formulae. To
gain access, the requester constructs a valid proof for the formula based on the
credentials she owns and sends it, together with the relevant credentials, to the
server. However, none of these approaches is fully privacy-preserving: they do
not support selective disclosure of attributes (as opposed to transmitting entire
credentials/cards), proving predicates over attributes (as opposed to disclosing
these attributes), disclosing attributes to third parties, and signing statements
with respect to the proved attribute properties.

In contrast, CARL specifies the minimal amount of information each involved
party has to learn for access to be granted. The formal semantics is specified not as
a calculus but as conditions on the cards/credentials that the requester holds and
the precise amount of information the involved parties gain. It is then the duty of
an implementation to show that users can only prove statements that hold on their
credentials and that involved parties do not learn more information than specified.
We briefly discuss how to combine CARL with existing logic-based approaches in
Appendix D.1; we leave an in-depth investigation of such combinations for future
work.

3 Background

In the following we explain in more detail our abstract model of a “card”. We also
discuss some of the technologies that can be used to instantiate this model and the
functionalities that they offer, because they have strongly influenced the design of
our language. Finally, we sketch how our language fits into the bigger picture of a
complete privacy-enhanced card-based access control solution.

3.1 Our Card Model

The language that we present is geared towards enabling user-centric and privacy-
preserving access control based on certified cards. While it leverages the advanced
features offered by anonymous credential systems, it is technology-agnostic in the
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sense that it makes abstraction of the particular technology that is used to certify
the cards.

To better understand our model, we will at each step illustrate the concepts by
describing how they are instantiated by X.509 v3 certificates [23]. These allow a
certification authority (CA) to bind arbitrary community-specific attributes to a
user’s public key by creating a signature (under the CA’s public key) of the user’s
attributes and her public key. In the next subsection, we sketch how a number of
other technologies can also be seen to implement the same concepts.

A card is issued by a card issuer to a card owner. The issuer vouches for the
correctness of the information on the card with respect to the intended owner.
The information is meant to affirm qualification, typically in the form of identity
or authority. However, the meaning of the information has no technical relevance
and is subject to interpretation of the party relying on it. In an X.509 certificate,
the CA acts as card issuer. While we are mainly interested in cards that can be
presented to third parties, some cards may be intended for internal use only and
be verifiable only by the issuer; think for example of a company-internal LDAP
directory.

A card consists of a list of attribute-value pairs and of technology-specific
auxiliary data called the pre-evidence. The pre-evidence can contain meta-data
(cryptographic or other) that the owner needs when presenting the card to a relying
party. In an X.509 certificate, e.g., the pre-evidence contains the CA’s public key
pkCA, the user’s public key pkU, the user’s secret key skU, and the CA’s signature
σCA on the list of attributes and pkU. (For simplicity, we assume that the CA is
a root authority; otherwise, the pre-evidence also contains the certificate chain of
pkCA to a root authority.) The issuing process may be carried out on-line, e.g., by
visiting the issuer’s website, as well as off-line, e.g., at the local town hall.

Cards are always of a certain card type that specifies the list of attributes that
the card contains. For example, a national ID card may contain the first name,
last name, date of birth, and address of the owner, while a movie ticket contains
the time and date of the showing and a seat number. We consider a hierarchical
ontology of card types so that types can inherit from other types; see Section 4.1
for details. A card serves as a means for proving qualification, i.e., it typically
serves to prove identity, authority, or both. For example, a national ID card can
be used to prove identity, a movie ticket to prove authority to attend a particular
movie showing from a particular seat, and a driver’s license to prove identity as
well as the authorization to drive motor vehicles of a certain category.

For gaining access to a resource protected by a policy, the server has to be
convinced that the policy is fulfilled. To do so, in our system model the card owner
makes a claim about the cards she owns and about the attributes they contain.
Claims are made independent from concrete technology, and are authenticated
by accompanying evidence. The evidence is, however, specific to the technology
underlying the cards. In the ideal case of privacy-preserving technologies, this
claim reflects exactly the policy. For other technologies, the claim is something
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stronger than required. With X.509, e.g., all cards’ attributes are revealed, no
matter what the policy requires.

The evidence is derived from the card’s pre-evidence, and used by the server
to check (1) the integrity of the claim, (2) the freshness of the evidence, and (3)
the rightful ownership of the card. Depending on the technology, the user may
be able to derive the evidence herself, or she may need to interact with the card
issuer. Likewise, the server may be able to independently verify the evidence, or
may need the help of the issuer.

For X.509, for example, the evidence consists of pkCA, pkU, σCA, and a
signature σU created by the owner on the claim statement and a random nonce
chosen by the relying party. Here, σCA protects the integrity of the attributes,
while σU simultaneously acts as a proof of freshness of the claim and a proof
of ownership (through the knowledge of skU) of the card. The evidence is
independently created by the owner; the relying party may have to contact the
issuer however to check that pkU has not been revoked.

3.2 Example Technologies

By above card abstraction our policy language can specify access control
restrictions without having to worry about the underlying technology. This means
that a card of any supported technology can be used to satisfy a policy, and even
that cards of different technologies can be combined in a single claim.

We already described how X.509 certificates fit our card model. Below, we
sketch how anonymous credentials and trusted LDAP directories fit our model, and
in Appendix A we point out how OpenID, Kerberos, SAML, and even everyday
email accounts can be seen to do so as well. This list is by no means exhaustive;
in fact, we envision that most existing and even future technologies will fit our
model.

Anonymous Credentials Much like an X.509 certificate, an anonymous creden-
tial [20, 12, 16] can be seen as a list of attribute-value pairs signed by the issuer with
an underlying secret signing key for the user. Unlike X.509 certificates, however,
anonymous credentials have the advantage that the owner can reveal subsets of
the attributes, or merely prove that a condition over the attributes holds. Also,
they provide additional privacy guarantees like unlinkability, meaning that, even
when colluding with the issuer, a server cannot link multiple visits by the same
user or link a visit to the issuing of the card.

Two main anonymous credential systems have been implemented today, namely
Identity Mixer [16, 19] and UProve [24]. We will focus mainly on Identity Mixer
in this paper because of its multitude of associated cryptographic tools such as
verifiable encryption and consumption control (also known as “limited spending”),
but we stress that UProve credentials can be used as a technology for our policy
language as well.
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LDAP The Lightweight Directory Access Protocol defines a standard interface
to directory servers containing information about users. If the LDAP server is
trusted, one can see each user directory entry as a card belonging to that user
and issued by the LDAP server. The user authenticates to the LDAP server using
a password or using a more advanced authentication mechanism.The evidence
of a claim is simply the LDAP server’s URL, the relying party can verify the
attributes simply by looking them up in the directory. Any subset of attributes
can be revealed, even though a cheating server can always look up other attributes
as well.

3.3 Functionality

We now describe a number of special features of cards that our policy language
supports and sketch how these features are or could be implemented in the different
technologies.

Proof of ownership To bind a card to its legitimate owner, the card’s pre-
evidence may contain information that is used to authenticate the owner. This
could be a picture of the user, a PIN code, a password, or a signing key. Proving
card ownership in our notion means that the owner authentication is successfully
performed with whatever mechanism is in place. Depending on the employed
mechanism, successful authentication may also provide a liveness guarantee (to
prevent replay attacks).

The actual implementation of the ownership proof is technology dependent.
For X.509 certificates, ownership can be proven by signing a random nonce. In
anonymous credentials, users construct a zero-knowledge proof of knowledge of an
underlying master secret. OpenID, LDAP, Kerberos, and email accounts all work
with a password-based approach.

Related to the question of ownership is the transferability of a card from
one user to another. Some cards may be transferable (e.g., movie tickets) while
others may not (e.g., driver’s licenses and identification cards in general). We do
not further elaborate this concept here, but rather assume that the underlying
technology prevents abuse if necessary, for example by letting the underlying
authentication secret be the same as that of a highly sensitive card, e.g., the
signing key of a national ID card.

Selective attribute disclosure Some technologies allow attributes within a card
to be revealed selectively, i.e., the relying party only learns the value of a subset
of the attributes contained in the card.

Not all technologies support this feature. Verification of the issuer’s signature
on an X.509 certificate requires all attribute values to be known. The LDAP
protocol specifies the attributes to fetch, but the user has no control over which
attributes a cheating server looks up. Anonymous credentials, SAML, and (under
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certain settings) OpenID, on the other hand, have native support for this feature,
although the mechanisms are quite different. For OpenID and SAML the provider
simply only reveals those attributes that were explicitly requested, while for
anonymous credentials it is the cryptography that ensures that no information
is leaked about non-disclosed attributes.

Proving conditions on attributes Anonymous credentials even allow one to prove
conditions over attributes without revealing their actual values. (While in theory
any condition can be proved, this mechanism is only truly practical for certain
classes of conditions. We refer to [3] for details.)

For all other technologies the only way to prove that an attribute satisfies a
condition is by revealing its value. Perhaps future versions of technologies with
online verification such as OpenID or SAML will enable the identity provider to
confirm that conditions over attributes hold, rather than having to reveal their
values.

Attribute disclosure to third parties Usually attributes will be revealed to
the relying party enforcing the policy, but the policy could also require certain
attributes to be revealed to an external third party. For example, the server may
require that the user reveals her full name to a trusted escrow agent, so that she
can be de-anonymized in case of fraud, thereby adding accountability to otherwise
anonymous transactions. As another example, an online shop could require the
user to reveal her address to the shipping company directly, rather than disclosing
it to the shop.

Of course, the relying party needs some sort of evidence that the user actually
did reveal the necessary information to the third party. Identity Mixer elegantly
supports this feature using verifiable encryption [14, 5, 18]. Here, the user hands
to the relying party a ciphertext containing the relevant attribute(s), encrypted
under the third party’s public key, and adds a zero-knowledge proof that the
correct attribute was encrypted. Moreover, a data handling policy can be bound
to the ciphertext, e.g., to describe under what conditions it can be decrypted. The
relying party is unable to change the data handling policy when forwarding the
ciphertext to the third party.

This feature could be added to other technologies as well by letting either the
user or the issuer send the necessary attributes to the third party directly, and
letting the third party sign a receipt that can be shown to the relying party.

Signing of statements Our policy language also enables the server to require the
user’s explicit consent to some statement, e.g., the terms of service or the privacy
policy of the site. The signature acts as evidence that this statement was agreed
to by a user fulfilling the policy in question.

There are various ways in which users can express consent; our language
does not impose a particular implementation. Using X.509 certificates the most
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straightforward way is to digitally sign the document. Anonymous credentials
allow to sign statements while maintaining maximal privacy: anyone can verify
that the signature was placed by a user satisfying the access control policy, but
only a trusted opening authority can tell who exactly the user was. Using other
technologies, the relying party could simply record the fact that the user confirmed
the statement by clicking an OK-button.

Note that these signatures, together with attribute disclosure to third parties,
are the key to make anonymity revocable and actions accountable. Consider, e.g., a
policy requiring a user to reveal her real name n and an order confirmation number
o to a trusted third party. In addition, the user has to sign a statement involving
o. In case of a dispute, the server forwards the signature to the trusted party who
can now resolve the issue with the person named n. The server itself, however,
cannot find out this name. With conventional non-privacy-friendly technologies,
the signature will also reveal the real name of the user to the server though.

Consumption control The server may want to impose limitations on the number
of times that the same card can be used (or “consumed”) to access a resource, e.g.,
to specify that each national ID card can only be used once to vote in an online
opinion poll.

Bowers et al. [11] previously proposed a logic-based policy language for
consumable cards (or credentials in their work). To each card, they associate
a single global consumption limit and a ratifier, a central entity who keeps track
of each usage of the card. This works well for settings such as electronic cash where
the issuer of the card determines how often the card is to be consumed globally,
but falls short of covering use cases like the opinion poll example where the relying
party wants to impose a limit how often the same card can be used locally.

We therefore extend their consumption functionality in our language such that
the relying party itself can specify (1) the consumption amount, i.e., the number of
units that is to be consumed from the card per access; (2) the consumption limit,
i.e., the maximum number of units that can be consumed from the card before
access is refused; and (3) the ratification scope being a URI defining the “scope”
of the consumption, i.e., the limit becomes relative to this scope.

Part of the scope URI could be used to identify the central entity who keeps
track of the number of consumptions, but it can additionally encode the scope
within which consumption is to be tracked. For example, the access restrictions of
the opinion poll service would be such that a different URI is used for each poll,
specifying that each ID can be used once for each poll, rather than that the user
can only take part in a single poll. The scope mechanism allows also to express
more complex limitations. For example, to prevent two resources A and B from
being accessed more than n times total per month, the scope URI in both policies
is set to append(‘examplescope:AorB:’,currMonth(), ‘/’, currYear()).

Some anonymous credential systems support consumption control (usually
referred to as limited spending) natively in the underlying cryptography [13, 15].
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They do so in a highly privacy-preserving way: the user’s anonymity and
unlinkability remain guaranteed until overspending occurs.

None of the other technologies have native support for consumable cards, but
for all of them support could be added by letting the issuer play the role of
ratifier, or by adding a unique serial number that is revealed whenever the card is
consumed. (The latter approach makes all transactions of the same card linkable,
though.)

3.4 System Model

Our system model involves three kinds of entities: users, servers (also called
service providers), and issuers. Users hold certified cards C1, . . . , Ck that they
have obtained from issuers and want to access protected resources R1, . . . , Rm

(e.g., web pages, databases, web services) hosted by the servers. Servers restrict
access to their resources by means of access control policies A1, . . . , Aℓ. Rather
than simply specifying which user is allowed to access which resources by means
of a classical access matrix, the policies contain requirements in terms of the cards
that a user needs to own in order to be granted access.

Figure 1 depicts how authorization decisions are rendered in our model.
Initially, a user contacts a server to request access to a resource she is interested
in (1).

Having received the request, the server responds with the access control policy
applicable for the resource (2). The applicable policy may be a composition (1a)
of multiple policies the server holds, e.g., it may contain a number of alternative
policies of which one must be satisfied to obtain access. It contains the card
requirements expressing which conditions on which card attributes have to hold,
which attributes have to be revealed to whom, and who the server trusts as issuers
for these cards. For each attribute to be revealed, the server may also specify in a
data handling policy what he aims to do with the obtained information, e.g., how
long he will retain the data, or for which purposes he will use it.

Upon receiving the policy, the user’s system evaluates which claims she can
derive from her available cards that fulfill the given policy (2a). For example, a
policy requiring a valid travel document may be fulfilled by means of the user’s
national identity card or her passport, while the validity may be shown by proving
its expiration date to be in the future or by disclosing the exact date. The
favored claim is then chosen interactively by the user, or automatically by a data-
minimizing heuristic (2b). In addition, the user decides whether she agrees with
the server’s data handling policy, and whether she wants to proceed. In this
case, evidence for the chosen claim is generated (2c) and sent, together with the
claim and the attributes to reveal, to the server (3). As claims are expressed
independent from a concrete technology, the user’s systems must have respective
means available (e.g., in the form of a plug-in for technology ta) to generate
evidence specific to the technology of the used cards.
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Figure 1: Decision rendering in our system model

Finally, the server verifies whether the policy is implied by the claim (3a) and
if the evidence supports the validity of the claim (3b). If so, access to the resource
is granted (4). Clearly, to verify the evidence the server must support the same
technology that was used to generate the claim.

Finding possible claims in step (2a) could, e.g., be done by finding logical proofs
with the policy formula as proof goal using the available cards as premises. A user
could then select one proof and according to the proof-carrying paradigm [1] this
proof would be sent to the server as sample solution for the claim verification in
step (3a).

To implement the scenario sketched above, a number of languages need to
be available. In particular, languages to express the access control policy on the
server (which includes the card requirements and the data handling policies), to
communicate the policy to the user, to express the claims as sent by the user, and
to describe the cards that the user owns. In case the user’s evaluation of the data
handling policy shall be automated, also a language to express a user’s privacy
preferences is needed.

In this paper, we focus on the card requirements language, which is used as part
of the access control policy on the server, as well as of the communicated policy
to the user. The language contains placeholders for the data handling policies
associated to revealed attributes, but we do not make this language explicit. We
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do not make any of the other languages explicit either.

4 Language

The language we propose is intended for expressing requirements on cards that
have to be fulfilled in order to gain access to some resource. These requirements
involve (1) the ownership of cards of the right type and issued by the right
authority, (2) the disclosure of attributes certified in these cards to the verifier
or to third parties, and (3) conditions on attributes expressed in a mathematical
formula. In addition, (4) the signing of statements as well as (5) the consumption
of cards can be required. To fulfill a policy, all requirements stated in it must be
fulfilled.

A CARL policy can only be fulfilled ‘as a whole’ (cf. Section 5.2). To combine
multiple policies, e.g., offering a choice among a set of alternative claims to satisfy,
they need to be embedded into other languages. In Appendix D.2 we describe how
this can be done for XACML.

Our language is typed, therefore we begin with depicting the basic properties
of the typing. Then we illustrate how the particular requirements are expressed
in our language.

4.1 Typing and Ontology

To help policy designers avoid specification and interpretation mistakes, we make
use of a type system in a similar way as many programming languages do. We
distinguish between card types and data types. We first motivate the use of card
types and then describe the type system’s properties.

For a server to make access control decisions, he needs to distinguish the
different kinds of cards and attributes he processes, as their meanings may differ
depending on their type. For example, consider a university issuing digital student
IDs and diploma certificates having the same basic format (e.g., both contain the
student’s name and field of study). These cards do clearly have different purposes
and must be distinguishable from one another. Relying only on the fact of who
issued a card would be insufficient for determining its purpose and trustworthiness.
Also, standard attributes such as ‘name’ have meaning only in conjunction with
additional information such as a card type. To this end, we make use of card
types (e.g., drivers license, residence permit) that specify the attributes contained
in cards of this type.

We therefore assume as given an ontology T that defines a set of data types, a
set of card types, a partial order on those card types, as well as a set of functions
and relations on the data types.

First, we assume that the ontology defines the data types β1, . . . , βn. Examples
of data types include Int, String, Date, Boolean and URI . Data types need not
necessarily be disjoint, e.g., URIs are typically also strings. We denote by [[β]] the
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extension of a data type β (the set of constants of type β). A constant c can have
several types, i.e., every type β such that c ∈ [[β]].

Further, we assume that the ontology specifies a set of card types τ1, . . . , τm.
These types are similar to record types in programming languages: every card type
τ is defined by a set of attributes with their types Aτ = {a1 :: β1, . . . , al :: βl},
where we denote with a :: β an attribute a that has type β. Like a record in a
programming language, a card can be represented as a function from the attributes
to values of the respective attribute type. For instance a card with attributes
{a1 :: β1, a2 :: β2} is a function f with domain {a1, a2} such that f(a1) ∈ [[β1]] and
f(a2) ∈ [[β2]]. Thus, the extension of a card type τ (the set of all cards of type τ)
is defined as the set of all such functions:

[[τ ]] ={f :: (Aτ→ [[β1]] ∪ . . . ∪ [[βn]]) | ∀(a ::β) ∈ Aτ . f(a) ∈ [[β]]}

Additionally, like classes in object-oriented programming languages, a card
type τ1 may be extended by another card type τ2, i.e., τ2 inherits all attributes of
τ1 and includes further attributes. This induces a partial order ≤T on card types
such that if τ2 ≤T τ1 then Aτ1

⊆ Aτ2
. Thus every card of type τ2 may be used in

place of τ1. For example, Passport ≤T PhotoID models that Passport is lower in
the type hierarchy than (i.e., a subtype of ) PhotoID and can be used in place of
it.

Finally, the ontology should define a set of functions and relations on the data
types. We assume to have at least the equivalence relation =β on every data type
β. We also assume the addition and a total order on both types, Int and Date.
Functions may depend on the state of the access control system on which it is
evaluated, e.g., the function today() can be defined to return the current date.
For a function symbol f of the ontology, we denote by fT the function defined for
this symbol by the ontology, similarly the relation symbol R is interpreted as the
ontology-defined relation RT.

In the following we only consider specifications that are type correct w.r.t. the
type inference system given in Appendix C.

4.2 Expressing requirements

We now describe how the different kinds of card requirements are expressed in
our policy language. We first give a basic intuition for our language by means of
an example policy, and then use it as a running example to discuss the different
elements of our language in detail. The full grammar of our language can be found
in Appendix B.
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01: own p::Passport issued-by USAgov

02: own r ::ResidencePermit issued-byPittsbghTownhall

03: own c::CreditCard issued-by Visa,Amex

04: reveal c.number , c.expDate under ‘purpose=payment’
05: reveal r .address to ShipCo under ‘purpose=shipping’
06: sign ‘I agree with the general terms and conditions.’
07: where p.dateOfBirth ≤ dateMinusYears(today(), 21) ∧
08: c.expDate > today()

The policy states that access is granted to users who (1) are at least twenty-
one years old, (2) reveal their valid credit card information for payment purposes,
(3) reveal their address to the shipping company ShipCo for shipping purposes and
(4) agree to the general terms and conditions. Here, an American passport must
certify the age, the payment data must be certified by a valid Visa or American
Express card, and a residence permit from the city of Pittsburgh must certify the
address. We assume the ontology defines the functions dateMinusYears(ref, k),
subtracting k years from date ref , and today(), returning the current date.

Proof of ownership

The most basic requirement expressible is the ownership of a card of a specific
type by a specific issuer. For each required card the policy contains a line of the
form (cf. lines 01–03 in the example policy):

own c :: Type issued-by I1 , . . . , In

Here, c is a card variable used to refer to this card within the policy. We already
discussed card type ontologies in Section 4.1; we assume that each type Type is
unambiguously defined by a uniform resource identifier (URI). In the same way, we
assume that the allowed card issuers I1, . . . , In are referred to by means of URIs.
Depending on the underlying technology, these URIs may be mapped to public
keys (for X.509 and anonymous credentials), server URLs (for LDAP and OpenID),
or any other way of pointing to a card issuer. Specifying multiple issuers indicates
that any of these issuers is accepted. Omitting the issued-by clause indicates that
no restrictions are imposed on the issuer, meaning that even self-issued cards are
allowed.

Attribute disclosure

To require disclosure of a card attribute’s value, a line of the form (cf. lines 04–05
in the example policy) is stated:

reveal c.att to Recipient under dhp

The attribute to reveal is specified by the card variable c as defined in a previous
own line, and the attribute name att as defined by the card type, separated by a
dot.
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By using the keyword to, the policy can optionally specify the recipient
(identified by a URI) to whom the attribute is to be revealed. If no recipient
is specified, then the intended recipient is assumed to be the server enforcing the
access control. For proving the policy, the server has to be provided with evidence
showing that the attribute values were indeed transmitted to the recipient. In the
example policy, the credit card data has to be revealed to the server itself (line 04)
and the address to the shipping company (line 05).

Optionally, the server may attach a data handling policy dhp describing how
the server intends to treat the information after receiving it, e.g., the intended
purpose of the data, retention periods, further recipients, etc. The policy could be
specified in natural language or in a machine-interpretable language like P3P [36];
we do not impose any particular format though.

Conditions on Attributes

Using the keyword where, a policy may state a formula φ expressing conditions on
the cards’ attributes. For example, lines 07–08 require the date of birth to be at
least 21 years in the past and the credit card to be valid.

In general, a formula allows for applying the standard operators for comparison
(numeric and non-numeric), arithmetics and logics (cf. Appendix B). Functions
and relations may be applied to expressions whereby we assume a built-in standard
set of these (such as date and time arithmetics, string manipulation, etc.) defined
in the ontology T together with their meaning. Expressions may further be
qualified attributes, constants or basic variables. Basic variables are different
from card variables as they are of a data type, rather than a card type. Basic
variables that appear in φ may act as substitute for (1) a card’s issuer, (2) an
attribute that has to be revealed, (3) the purpose and (4) recipient of attributes
to reveal as well as (5) the statement to sign. Our running example could, e.g.,
as well have been written as own c::CreditCard issued-by i while extending φ with
i = Visa ∨ i = Amex. In case a basic variable x appears in the list of attributes
to reveal, the concrete value for x, under which φ is satisfied, must be revealed (cf.
Section 5.3).

Signing of statements

By including a line of the form

sign statement

a policy requires to sign the statement in the following sense: it is ensured that
the signature was produced by someone who fulfills (the rest of) the policy. For
example, line 06 of the policy example requires signing of the statement ‘I agree
with the general terms and conditions’.
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Consumption control

Limitations on the number of times the same card can be used to obtain access
can be imposed by lines of the form

consume amount maximally limit of c scope scope

where amount is the consumption amount, limit is the consumption limit, c is the
card to be consumed, and scope is the ratification scope (cf. Section 3.3).

For example, the Pittsburgh Theater hands out discount cards entitling its
holder to buy theater tickets at a reduced price. The below policy protects the
theater’s discounted ticketing service and states that students of the University of
Pittsburgh are eligible for six discounts per year:

own sid::StudentID issued-by PittsbghUniversity

own dc::DiscountCred issued-by PittsbghTheater

consume 1 maximally 6 of dc scope s
where s =append(‘urn:scope:pbgTheater:year:’,currYear())

To access the service, proofs of ownership for a student card and a discount
card need to be provided to the server. For granting access, the server verifies that
the sum of the amounts of all consumptions of the discount card (including the
current one) in the given scope does not exceed the limit. Each time a student
successfully purchases a discounted ticket, one unit is consumed. (More units
could, e.g., be charged for extra-long shows.)

5 Semantics

We now provide a formal semantics for our language. The semantics abstractly
defines the intended behavior of an access control system for a given policy and
thereby defines the obligations that an actual realization must meet. The context
of this definition is a state transition system with transitions for issuing cards,
proving a policy, and other transactions such as revocation of cards or application-
specific actions. As our CARL is concerned only with the conditions for fulfilling
a policy and the effects of proving a policy, so is our semantics.

We define the formal semantics of CARL in three steps. First, we define the
meaning of a policy formula based on the ontology and an interpretation of the
variables. Second, for a given policy and a set of cards that a user owns, we define
if the user fulfills the policy. Third, a user who fulfills the policy can prove this
fact to the server and we call this simply proving the policy; we define the effect
that proving the policy has on the knowledge of the server and the trusted third
parties.

Note that, in the last step, we define only the effect of proving a policy, rather
than describing how such a proof could be performed. This is because such actions
depend on the concrete technology that is employed, from which our language
abstracts. Indeed, when mapping CARL onto a concrete technology by translating
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the policy specification into a sequence of actions within the respective card system,
our semantics sets out two obligations for this translation: 1) actions can only be
performed by a user who owns the necessary cards and 2) other parties learn
from the action exactly the information specified by the semantics. As not all
technologies offer the same level of privacy protection, we also provide a variant
of our semantics that allows for more information to be disclosed than what is
required by the policy. An example for such a mapping is provided by Mödersheim
and Sommer for the Identity Mixer anonymous credential system [17].

5.1 Formula Semantics

We define the meaning of policy formula with respect to a given ontology T and an
interpretation I that maps all basic and card variables to values of the respective
type. Recall that the ontology provides the interpretation fT for every function
symbol f and RT for every relation symbol R, respectively. For a card C, an
attribute a, and terms t1, . . . , tn, we define (C.a)I = (CI)(a) and f(t1, . . . , tn)I =
fT(tI1 , . . . , t

I
n).

Our typing system ensures that all these values are well-defined for a given I.
The satisfaction relation is defined as:

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2 , I |= ¬φ iff I 6|= φ ,

I |= R(t1, . . . , tn) iff RT(tI1 , . . . , t
I
n)

Other constructs of the CARL formulae are the usual abbreviations, e.g., φ1∨φ2

is short for ¬(¬φ1 ∧ ¬φ2). Further, we define φ1 |= φ2 iff for all I holds I |= φ1

implies I |= φ2. Finally, we define φ1 ≡ φ2 iff φ1 |= φ2 and φ2 |= φ1. These
definitions are similar to other definitions in formal logic; following these standards
improves the understanding of the concepts described by our language.

5.2 Fulfilling a Policy

The second step is concerned with the question whether a user owns cards sufficient
to satisfy a given policy. We denote with PU the set of cards that the user U owns.
We now consider the local state of the parties, the conditions on a party’s state
to fulfill a policy, and the transition of parties’ states when proving policies. For
now, we assume that a U ’s state contains at least the set of cards PU the party
U owns.

We first look at a policy without consume lines, which we consider in
Section 5.4. Let U be a user and S be a server and U be known to S under
the identifier I. This identifier may for instance be a one-time pseudonym in
privacy-friendly technologies or (linkable) username otherwise.

Let P be the policy of S that U needs to satisfy in the following form:
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own C1 :: τ1, . . . , Cn :: τn

reveal t(1,S), . . . , t(nS ,S)

reveal t(1,S1), . . . , t(nS1 ,S1) to S1

. . .

reveal t(1,Sm), . . . , t(nSm ,Sm) to Sm

where φ

sign s

We require that the variables of P and of the current state are disjoint (which
can be achieved by a suitable renaming of the policy variables). Note that we
here omitted the issued-by part of the own line because we treat the issuer of a
card simply as an attribute (of type URI ) and the issuer can thus be specified as
part of the formula φ itself. Indeed, issued-by I1, . . . , In for a card C is just an
abbreviation for C.issuer = I1 ∨ . . .∨C.issuer = In (as an additional conjunct of
φ).

We say that U can fulfill the policy P under card assignment p and
interpretation I iff

1. p is a total mapping from {C1, . . . , Cn} to PU ,

2. for every 1 ≤ i ≤ n it holds that p(Ci) :: σi for a type σi ≤T τi and
CI

i = (Aτi
⊳ p(Ci)) where A ⊳ f is the domain restriction of function f to

set A, and

3. I |= φ.

We say that U can fulfill the policy P iff there exists such an interpretation I and
mapping p.

5.3 Proving a Policy

When a user can fulfill a policy and chooses to prove the policy to another
participant, the effect of this transition is an increase of knowledge of all
participants to which information is revealed. We denote with KS(I) and K′

S(I)
formulae characterizing the knowledge of a party S about a user I before and after
the transition, respectively. As before, I is an identifier under which the user is
known to S.

For each part O ∈ {S, SI
1 , . . . , S

I
m} to whom information is revealed, we require

K′
O(I)=KO(I) ∧ φ ∧ (t(1,O) = tI(1,O)) ∧ . . . ∧ (t(nO,O) = tI(nO,O)) .

This models that each party O learns that the user acting under the identifier I
owns cards with property φ together with the concrete values tI(i,O) of the terms
t(i,O) that have been revealed to O. Additionally, the server S obtains a signature
on the statement sI with respect to the formula proved to S, i.e., φ ∧ (t(1,S) =
tI(1,S)) ∧ . . . ∧ (t(nS ,S) = tI(nS ,S)).
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To model unlinkable values, we use variables in a particular way here. For
this, first recall that we require a renaming of the policy variables so that no
variable occurs in the considered state. Therefore, when a user uses the same card
several times in proving policies to the same or to different servers, this card is
referred to by a fresh variable each time. This reflects that the servers, even when
they cooperate, are unable to decide whether particular authentications have been
performed with the same or with different cards. However, for what concerns
all the information revealed by a single transaction for fulfilling a policy P to
several different parties, the additional knowledge uses the same variable names
for all parties. For two servers S and S′ who cooperate, we define their shared
knowledge about a user identified as I simply as: KS,S′(I) = KS(I)∧KS′(I). This
reflects that they can relate only information about a transaction that was done
under the same pseudonym I.

For proving a policy in a typical system realization, the user’s system creates
a claim that implies the policy to be fulfilled and sends it with accompanying
evidence to the server (cf. Section 3.4).

Our definition of the knowledge of servers characterizes the ideal case of
privacy-friendly technologies: one does not reveal more information than required
by the policy. Conventional card systems cannot achieve this as cards are
transmitted as a whole. Thus, for conventional technologies we relax the
constraints of our semantics, allowing for the release of more information than
necessary, formally, any formula ψ that implies the above K′

O(I) formula.

5.4 Consumption Control

We now extend the semantics to specify the behavior of consumable cards. In
our model, consumption of cards is tied to a ratification scope that controls the
consumption (cf. Section 3.3). In a nutshell, one can spend a card if the value of
all its consumptions (including the current one) in the ratification scope does not
exceed the consumption limit.

To model the consumption, we introduce global log files, one log file for each
consumption scope (these log files are only part of the ideal world that is modeled
by our transition system; they usually will not have a counterpart in an real
implementation). Each log file is a list of pairs 〈C, k〉 of a card C and a positive
integer k, representing that k units of card C are spent in the domain represented
by the log file. The balance of card C in a log file is the sum of all consumptions
of C in the log file.

Consider a policy P as before with the following additional consumption line
(where C is a card of some own line of P ):

consume k maximally n of C scope scope

We define that P can be fulfilled for I and p if 1) the policy resulting from P

by removing the consumption line according to the definition in Section 5.3 can
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be fulfilled and 2) the balance of card p(C) in the log file of scopeI plus kI is less
than or equal to nI .

Similarly, we extend the definition of proving P , i.e., it will have the same
effects as before, plus the effect that the log file of scopeI is augmented with the
pair 〈p(C), kI〉.

We covered here only a policy with one consumption line, the extension to
several consumption lines is as expected, where we assume that the interpretation
of the consumption scope scopeI (which usually is a constant chosen by the server)
is never the same for different consumption lines.

6 Conclusions & Future Work

We presented a language for specifying requirements on a user’s cards to be used
for obtaining access in any kind of open access control setting. We not only
provide a formal language specification, but also formally define the semantics
as to help future systems designers and implementers to avoid mistakes through
ambiguous interpretation of the text. Our language aims to serve as a central
piece in an open access control setting. It enables the use of a plurality of
underlying card technologies that are available today or are becoming available,
such as OpenID or anonymous credentials. Each card technology can be used
for access control by providing a mapping from the verification process of the
respective technology to a policy in CARL. Our language enables properties of
privacy and anonymity through data minimization while retaining accountability.
When being deployed together with technologies such as anonymous credential
systems, a privacy-preserving user-centric model of access control can be realized
as the user is put into full control over her data.

Our next step towards an open and privacy-enhancing system for access control
is to link the feature set and formalism of CARL with concrete card systems.
Mödersheim and Sommer [17] describe such a connection for the Identity Mixer
anonymous credential system. A proof that this connection agrees with the CARL
semantics, as well as providing similar connections for other technologies are part
of our ongoing work.
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A Other Card Technologies

OpenID In OpenID [22] each account is identified by a unique URL bound
to the user by the OpenID provider. The recent OpenID Attribute Exchange
extension [29] allows for the exchange of user-defined attributes. When logging on
to a website, the user sends her unique URL to the relying party. The user is then
redirected to her OpenID provider where she authenticates using a password. If
the authentication is successful, the OpenID provider either sends a confirmation
and the requested attributes directly to the relying party, or sends these through
the user with integrity protection with a MAC (under a key that the provider and
relying party agreed upon directly).

An OpenID account can be seen as a card issued by the OpenID provider.
Any subset of attributes can be revealed in a claim, which is good for privacy, but
on the negative side all transactions with the same card are linkable through the
unique URL. Also, since claim creation and verification both involve the OpenID
provider, he learns which user authenticates to which server at which time. The
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user’s password acts as a proof of ownership; the integrity of the attributes is
protected by MACs.

Kerberos A Kerberos user account [32] could also be seen as a card issued by the
key distribution center (KDC) containing the user’s identity. Each claim derived
from this card contains the user’s identity; the Kerberos ticket acts as the evidence.
The pre-evidence is the user’s password and perhaps connection information to the
KDC. Both claim creation by the user and verification by the relying party require
interaction with the KDC.

SAML SAML [33] is an XML-based framework for communicating user au-
thentication, entitlement, and attribute information. The user’s attributes are
stored by an Identity Provider (IP). When logging in to a relying party, the user
authenticates to the IP and requests a signed claim (called assertion in SAML)
containing the attribute values that the relying party requires. SAML is somewhat
technology agnostic in the sense that it does not specify how the user has to
authenticate to the identity provider, but the evidence of the claim is always an
XML Signature by the IP. The user’s account at the IP containing all the attributes
can be seen as a card in our framework. The IP is the issuer of the card, the user’s
pre-evidence consists of her authentication secret with respect to the IP.

Email Even a simple email account can be seen as a card: the only attribute is
the email address itself, the mail server acts as the issuer. The user’s pre-evidence
is her account password, the integrity and ownership of the email address are
checked by the owner’s ability to click on a link or enter a code sent to her by
email.

B Grammar

The following shows the grammar of our policy language:
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Policy = CredDef+ RevealDef∗ SpendDef∗

[‘where‘ Formula] [SignDef] ;

CredDef = ‘own‘ CredVar ‘ :: ‘ CredTypeIdent

[‘issued-by‘ IdentityTerm

(‘, ‘ IdentityTerm)∗] ;

RevealDef = ‘reveal‘ ValueList [‘to‘ IdentityTerm]
[‘under‘ Term] ;

SpendDef = ‘consume‘ Term ‘maximally‘ Term

‘of‘ CredVar ‘scope‘ Term ;

SignDef = ‘sign‘ Term ;

CredVar = Identifier ;

CredTypeIdent = Identifier ;

IdentityTerm = Term ;

ValueList = Value [‘ :: ‘ TypeIdent] [‘, ‘ ValueList] ;

TypeIdent = Identifier ;
Formula = Formula ‘∧‘ Formula

| Formula ‘∨‘ Formula

| ‘¬‘Formula

| ‘(‘ Formula ‘)‘
| Exp RelationOp Exp

| RelationName ‘(‘ [ExpList] ‘)‘ ;

Exp = Term

| Exp ArithmeticOp Exp

| FunctionName ‘(‘ [ExpList] ‘)‘ ;

RelationOp = ‘=‘ | ‘< ‘ | ‘> ‘
| ‘≤ ‘ | ‘≥ ‘ | ‘ 6=‘ ;

Term = Value | Constant ;

ArithmeticOp = ‘+‘ | ‘−‘ | ‘·‘ | ‘÷‘ ;

Value = CredVar ‘.‘ AttrIdent

| BasicVar ;

ExpList = Exp [‘, ‘ ExpList] ;

RelationName = Identifier ;

FunctionName = Identifier ;

Constant = Identifier ;

AttrIdent = Identifier ;

BasicVar = Identifier ;

Identifier = Alpha Alphanum∗ ;

Alpha and Alphanum are alphabetic and alphanumeric characters. IdentityTerm

must map to the URI of an identity. CredTypeIdent must map to a credential type.
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TypeIdent must map to a data type. An Identifier cannot be a keyword.

C Type Inference System

To limit specification mistakes in CARL policies, we have introduced typing and
though types can be automatically inferred in many cases, it is recommended for
the policy writer to explicitly specify the types of all variables, both basic and
credential variables.

We describe the type system now by a type inference system similar to the
ones used in the definition of programming languages. We use type judgments
of the form Γ ⊢ t :: τ to denote that under the type definitions in Γ, it can be
derived that term t is of type τ . Further, we use type judgments of the form
Γ ⊢ φ to express that φ is type correct according to Γ. Initially, the set Γ contains
the following. First, it includes the types for all constant, function, and relation
symbols that are defined by the ontology. Note that we do allow several type
definitions for the same symbol, e.g. ‘=’ is a comparison relation for each type,
e.g. P(Int × Int); similarly, e.g., a string constant may also have type URI . This
models the overloading of symbols. Second, the initial Γ includes a unique type for
every variable of the specification. Since for basic variables the type specification
is optional, one must “guess” a type for each unspecified variable initially and
verify that with that guess, the policy is well-typed. Note that variables for an
issuer or the recipient of revealed data are always of type URI .

The axiom is that we can derive anything given:

Γ ∪ {t :: τ} ⊢ t :: τ

We can now derive types of terms and formulae:

Γ ⊢ t1 :: α1 . . . Γ ⊢ tn :: αn Γ ⊢ f :: α1 × . . .× αn → β

Γ ⊢ f(t1, . . . , tn) :: β

Γ ⊢ C :: τ
Γ ⊢ C.a :: β

(a :: β) ∈ Aτ

Γ ⊢ t1 :: τ1 . . . Γ ⊢ tn :: τn Γ ⊢ R :: P(τ1 × . . .× τn)

Γ ⊢ R(t1, . . . , tn)

Γ ⊢ φ1 Γ ⊢ φ2

Γ ⊢ φ1 ∧ φ2

Γ ⊢ φ

Γ ⊢ ¬φ

Given a formula φ and an initial set of type definitions Γ, we say that φ is
well typed iff Γ ⊢ φ can be derived. If there is more than one derivation, we
say that φ is ambiguous. While it is common that subterms of a formula may
have different type derivations, there should be only one derivation for the entire
formula. Otherwise, there is probably a typing problem. This could, e.g., lead
to using a wrong instance of an overloaded function symbol. In such a case, the
policy specifier should thus be advised of the ambiguity.
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D Language Integration

The language we present addresses the specification of credential requirements in
credential-based access control. In this section we sketch how our language can be
integrated with other languages to utilize the strengths of those.

D.1 Abstract Authorization Languages

For expressing authorization, delegation, and trust, e.g., within a large organiza-
tion, a complete enumeration of business units, employees, and their relations and
access rights is usually not feasible and too inflexible. Therefore, authorization
languages such as SecPal [7] and DKAL [28] have been developed. They are based
on a simple but powerful mechanism: they specify Horn clauses on abstract facts,
i.e., rules of the form “if facts f1, . . . , fn hold, then also fact f holds.” The facts
represent either direct statements, e.g., “X says Y”, initially given relationships
such as trust relationships, or derived facts that are consequences of other facts
by the Horn-clauses.

All these facts thus represent a high-level view that is not related to concrete
credentials, signatures and the like. Our CARL language can provide this
relationship, i.e. specifying precisely what credentials and properties correspond
to a particular abstract fact like “X says Y” or “Z is-an-adult”. A connection
between CARL and Horn-clause based authorization language can thus be made
by specifications of the form f ⇐ P for an abstract fact f and a CARL policy P .
This means that one way to derive the fact f is to fulfill the policy P .

For example, one may specify with Horn clauses that X can access resource R
if owner O of R has given permission to X. Permission can be given directly by
O, or O could have delegated that to a deputy D and D granted access. CARL
policies specify the concrete credentials and properties that correspond to the
access permission from O or from D as well as a credential for the delegation from
O to D. The combination tells us that one may either access R when (1) one has
the credential that corresponds to the permission from O or (2) when there are
credentials that show that O delegated this right to D (this may already be known
by the respective policy enforcement point) and the credential that D issued the
permission for access.

Combining the CARL with the abstract facts of a Horn-based language gives
a powerful and high-level method to specify complex authorization, trust, and
delegation rules on credentials. Observe that a delegation chain as in the example
cannot be specified in CARL (because the length of the chain is unbounded). In
fact, the focus of CARL is on the specification of the credentials, their conditions,
and the revealing of information to different parties, exactly what the abstract
Horn-based languages abstract from. The languages are thus complementary
and it makes sense to distinguish between a high-level deduction engine and the
connection to concrete credentials.
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D.2 XACML

The access control language XACML [34] is the de facto standard for attribute-
based access control policies. In order to reuse existing XACML infrastructure
for privacy-friendly credential-based access control, we briefly describe how CARL
can be integrated into XACML.

First, we define a number of new XML elements that can occur inside an
XACML <Rule> to make XACML credential-aware. Each own, reveal, sign, and
consume line in CARL is translated into a corresponding <Own>, <Reveal>, <Sign>,
and <Spend> element in the XACML <Rule>. The schema of these new elements
is such that they encode in a structured way all arguments on the corresponding
lines in a CARL policy. Each <Own> element has an attribute CredentialId

containing a URI by which this credential can be referred to within this <Rule>.
Finally, the formula φ is encoded within the standard XACML <Condition>

element using built-in data types and functions [34, Appendix A], but we extend
the <AttributeDesignator> element with an extra attribute CredentialId to
indicate from which credential the attribute should be taken.

Second, we make a number of architectural changes to make XACML privacy-
friendly. Namely, standard XACML does not provide a mechanism for conveying
an access control policy to the user since it does not assume that the policy is
known by the user. This is against the idea of privacy-aware access control where
a user provides only the credentials/attributes necessary for fulfilling a particular
policy. A possible way of conveying a policy to the user would be to embed the
policy in XACML’s <StatusMessage> element that is optionally contained in an
XACML access response.

In order to solve the architectural issue, a server could run a modified
XACML policy decision point (PDP) that in case an access request is denied and
the applicable XACML policy contains a CSL specification in its <Condition>

element, it returns these CSL requirements embedded in the <StatusMessage>

of the negative access response. In order for a user to learn the policy for a
specific resource, she makes a request without providing any attributes whereupon
the PDP will respond with the negative response that contains the CSL policy.
Knowing that policy, the user can provide only the attributes necessary for this
particular policy.
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