
1

Hardware Designer’s Guide to Fault Attacks
Duško Karaklajić, Jörn-Marc Schmidt∗ and Ingrid Verbauwhede, Fellow, IEEE

Abstract—Hardware designers invest a significant design ef-
fort when implementing computationally intensive cryptographic
algorithms onto constrained embedded devices to match the
computational demands of the algorithms with the stringent area,
power and energy budgets of the platforms.

When it comes to designs that are employed in potential
hostile environments, another challenge arises: the design has
to be resistant against attacks based on the physical properties
of the implementation, the so-called implementation attacks. This
creates an extra design concern for a hardware designer.

This paper gives an insight into the field of fault attacks and
countermeasures to help the designer to protect the design against
this type of implementation attacks. We analyze fault attacks
from different aspects and expose the mechanisms they employ
to reveal a secret parameter of a device. In addition, we classify
the existing countermeasures and discuss their effectiveness and
efficiency. The result of this work is a guide for selecting a set
of countermeasures which provides a sufficient security level to
meet the constraints of the embedded devices.

Index Terms—Embedded security, Fault attacks, Countermea-
sures, Classification.

I. INTRODUCTION

FAULT attacks are introduced by Boneh et al. in 1997 [1]
where a fault in a computation is used to attack an RSA

implementation using the Chinese Remainder Theorem (CRT).
That attack initiated the discovery of a considerable amount
of different types of fault attacks. As new types are constantly
being proposed and accumulated, designing a fault-attack se-
cure cryptosystem becomes increasingly difficult. Even though
there is a significant number of different countermeasures
against fault attacks presented in the literature, it is not
straightforward to select the proper set that can efficiently
protect a device. The selected countermeasures must meet two
main requirements: 1) the overhead they introduce must fit
in the available area and energy budget of a device, and 2)
they have to provide protection against all relevant attacks,
i.e., the attacks that are a threat for the device under analysis.
Furthermore, due to the huge variety of fault attacks, it is
difficult to determine the complete set of relevant threats. Since
there is no established strategy for securing a design against
fault attacks, a designer can easily overlook protection against
a relevant attack, thus lowering the security level of the device.
On the other hand, even though there is no general strategy

KU Leuven, ESAT/SCD-COSIC and IMINDS Kasteelpark Arenberg 10, B-
3001 Leuven-Heverlee, Belgium Email: firstname.lastname@esat.kuleuven.be

? Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria Email:
Joern-Marc.Schmidt@iaik.tugraz.at

This work was supported in part by the Research Council KU Leuven: GOA
TENSE (GOA/11/007), by the Flemish IMINDS projects, by the Flemish
Government, FWO G.0550.12N, by the Hercules Foundation AKUL/11/19,
by the European Commission through the ICT programmes under contract
ICT-2007-216676 ECRYPT II, and under contract ICT-SEC-2009-5-258754
(Tamper Resistant Sensor Node - TAMPRES)

that ensures security against fault attacks, it is possible to
determine certain directions in a design process which can
lead to a protected implementation. In order to achieve such
protection, a hardware designer should be able to answer the
following questions:
• What kind of fault attacks exist?
• Which of them are a threat for the specific design?
• Which set of countermeasures thwarts the possible at-

tacks?
• What is the cost and the effectiveness of the selected

countermeasures?
This paper provides an overview of existing fault attacks

and countermeasures, thus helping designers of cryptographic
devices to answer the questions above. We start by classifying
known fault attacks according to different criteria. Rather
than analyzing each specific attack, we extract the common
properties of all attacks and classify them into groups. By
analyzing the fault injection mechanisms, and their precision
and possible targets, the main principles the attacks employ
to reveal secret information out of a design are exposed. By
explaining the complete fault’s path from the fault injection
until the point when it is exploited to deduce the secret data,
we make it easy to understand how the fault attacks are used
to break cryptographic devices.

Based on the groups of attacks, the countermeasures against
them are classified. We analyze the protection mechanism they
use, their abstraction level and the part of a processor they
protect, thereby dividing the existing countermeasures into a
few categories. Also, we estimate their time and area overhead
and analyze their effectiveness against different classes of
attacks. The classification eases the selection of a set of coun-
termeasures that meets the constraints of embedded devices,
still providing an adequate security level. Finally, we analyze
the effectiveness of the existing countermeasures against fault
models enabled by advanced fault injection equipment and
discuss future directions of protection mechanisms.

II. FAULT ATTACKS

In this section the variety of fault attacks is introduced. We
explain how an injected fault propagates from the physical
transistor level where it is injected towards the higher abstrac-
tion levels. There it is exploited to derive secret information
from the faulty computations. Rather than analyzing specific
attacks, we focus on their general properties, such as precision,
targets and techniques they use to deduce secret information
from a faulty result. The classification of these properties is
the starting point for their prevention.

A. Physical Nature of Fault Injection
Since the first idea to exploit the occurrence of faults, vari-

ous methods to inject a fault in a device have been presented.



2

TCLK Tg

(a) A glitch in the clock signal. (b) The effect of a focused laser beam [2].

Fig. 1: Fault injection techniques.

We hereby give a brief overview of the most common fault
injection techniques and comment on their properties.

Under-powering and Power spikes. Tampering with the
power supply of a device is a low cost fault injection method.
A possible way to provoke a faulty behavior is the under-
powering of the device. Since there is no precise timing, the
faults provoked by such a method tend to occur uniformly
throughout the computations and the attacker must be able to
successfully discard the erroneous results caused by undesired
faults.

Another method to affect computations performed in the
device is the induction of precise high variations in a power
supply. Power spikes can cause a processor to skip or mis-
interpret an instruction, but also induce memory faults. For
instance, if a processor reads a memory location at the time
of a voltage spike, the wrong data may be gathered from
the memory bus. Further, this fault injection technique is
commonly exploited by the attackers who aim to tamper with
a program counter or a loop bound [3], [4], [5]. Both listed
fault injection techniques are easy to implement and require
an attacker to be able to access the power supply line of the
device.

Clock glitches. Devices that require an external clock
generation can be attacked by supplying a deviated clock
signal, i.e. a signal that contains one or several pulses much
shorter than normal. As depicted in Fig. 1a, the period of the
injected glitch, Tg, is significantly shorter than TCLK. Such
a glitch can cause a processor to execute the next instruction
before the previous one was finished or to store invalid data
in a memory location [3], [6]. In order to be able to induce
such faults, an adversary should have a direct control over the
clock line, which is typically the case when smart cards are
attacked. The devices that use an internal clock generator can
not be attacked by this method. Clock glitches are considered
to be the simplest fault injection methods and can be induced
by very cheap equipment, i.e., using low-end FPGA boards [7],
[5].

Temperature attacks. Since electronic devices function
correctly only in a certain temperature range, their exposure
to too high or too low temperatures can induce faults [8], [1],
[9]. This method is used to alter data stored in the memory,
but is hard to focus on a particular portion of data.

Optical attacks. Optical faults are induced by exposing a
decapsulated chip to a strong light source, e.g. a photo flash

or a laser beam [10]. As semiconductors and conductors are
inherently sensitive to laser ionization, it is possible to cause
a switch of transistors when exposed to a light pulse. Using
a focused laser beam, a single bit in a memory can be set or
reset. When attacking a chip, an adversary can target either
front side or back side of the chip (Fig. 1b). Even though
the transistors are located at the front side, it may be difficult
to reach them due to the metal layers placed on top. As an
alternative, the transistors may be affected from the back side
of the chip through the substrate, but a proper wavelength of
the laser beam that ensures sufficient penetration depth must
be used.

The optical fault injection technique is constantly advanc-
ing. The light spot size on a chip die is shrinking and is now
physically limited by the wavelength of the photons. A diode
based laser can achieve a spot size of about 6 × 1.4µm [2].
In addition, the triggering mechanism of laser stations keeps
improving so that it provides very accurate timing of the light
pulse and fast switching, which enables multi-glitching, i.e
injecting multiple precise faults in a short time period.

Electromagnetic (EM) fault injection. An external electro-
magnetic field can cause the malfunctioning of an encapsulated
chip or change memory content. It induces eddy currents on
the chip surface, which can cause a single bit fault [11]. A
very cheap but imprecise EM fault can be induced using a gas
lighter [12].

All described fault injection methods share the same prop-
erty: by manipulating the physical layer of a device, they cause
the transistors to switch abnormally. However, the properties
of the faults they induce are different. The first three methods
do not require expensive equipment, but their effect can hardly
be focused to a particular part of a device. On the other hand,
optical and EM methods can affect a very restricted area, but
require a more complex setup. The next section deals with the
basic fault properties in more details.

B. Basic Fault Properties
A set of properties of an injected fault used to characterize

an attack is called a fault model. It reflects a physical event–
fault injection into a mathematical model. The following list
describes the basic properties of fault injection. They can differ
in the ability to control the location and the time precision, in
the effect, in the number of affected bits, and in the duration
of the effect [13], [14], [15].



3

Controllability over the fault location can be characterized
as precise control, loose control or no control. An attacker
is assumed to have precise control if he/she is able to affect
a single specific bit of a specific variable. On the other hand,
loose control assumes that it is possible to target a specific
variable, but not its specific part. Finally, an attacker has no
control over the fault location if he/she affects a variable at
random.

Similarly, controllability over the fault timing can be
classified as no control, loose control or precise control. An
adversary which has precise control over the fault timing can
affect a specific variable at a specific point in time. With loose
control over the fault timing, an attacker is able to target a
set of operations or clock cycles, but not a specific one. The
controllability over the fault timing is of particular significance
when embedded software implementations on microcontrollers
are attacked since skipping of specified instructions is often
required in that case.

By the number of affected bits, faults are classified
as single bit faults, word-size faults and variable-size faults.
The actual word size is dependent on the architecture of the
target processor and typically is 8, 16, 32 or 64 bits.

The effect of a fault is determined by its manifestation in
the chip and four types can be distinguished: stuck-at fault, bit
flip fault, set/reset fault and random fault.

Considering the duration of the injected fault we differen-
tiate between transient, permanent and destructive faults. The
effect of a transient fault lasts for a limited period of time,
after which the correct value of a variable is present again.
An example of such a fault is affecting a variable while being
transfered via a bus. It is assumed that a transient fault only
affects one request of the target variable, while all the further
requests result in the correct value again. On the other hand,
permanent faults affect the target variable until it is explicitly
overwritten, e.g. affecting a variable while being stored in
memory. Finally, destructive faults damage the physical layer
of a chip, causing a number of bits to be fixed at a specific
value. An example of such faults are stuck-at faults in logic
or memory, and this kind of fault cannot be reversed.

Another type of faults enabled by using SRAM-based
FPGAs is called remanent faults. They are achieved by in-
jecting an error in a configuration memory of the FPGA, thus
changing the architecture of a design. By their duration, they
are placed between the permanent and destructive faults and
rely on the re-configurability of FPGAs.

C. Fault Targets
This section highlights the parts of a generic processor

that are common targets of fault attacks. A generic processor
consists of the following high level components: an I/O part
which provides an interface with external components; a mem-
ory module for storing system parameters and intermediate
results, as well as data and instruction processing modules (see
Fig. 2). Attacks can be classified according to the following
four main components of a processor: inputs, data part, storage
and control part.

Attacks on input parameters. Depending on the device
and its use, it may be possible to trigger very precise faults by

Data	
  Path	
  
Processing	
  

Unit	
  

Interconnect	
  
Unit	
  

Memory 
Management 

Unit 

Instruction 
Processing 

Unit 

I/O	
  

Fig. 2: Components of a generic processor

manipulating the input parameters [16], [17], [18], [19], [20],
[21]. This is possible if the adversary can choose the input for
the computation to some extent, and if the implementation fails
to check whether the input is valid. Since a cryptographic core
is usually only a part of a bigger design, the input parameters
are not necessarily supplied from the I/O part, but can also be
read from a non-volatile memory.

Attacks on data processing part. A device can be dis-
turbed while performing a computation, which will cause an
erroneous intermediate or final result [22], [23], [24], [25], [1],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36].
Note that the same effect can be caused if a fault is injected
while the result is transferred via a bus, or even when it is
stored in registers/memory.

Attacks on storage part. Since data storage parts usually
occupy a significant part of a chip area and they have a
regular structure, they are easily distinguishable from the other
components. For this reason, they are a common target for fault
injection. Errors in volatile storage can be exploited to alter
the intermediate results of computations, while tampering with
the non-volatile memory can affect the system parameters.

Attacks on instruction processing part. Attacking the
program flow instead of computations is an effective attack
method which targets the control part of a device instead of the
datapath [37], [13], [38]. This includes making the processor
skip and misinterpret certain instructions.

One desired effect of an injected fault can be obtained
by targeting different processors parts. For instance, if an
attacker aims to alter an intermediate result of a computation,
he/she can achieve it either by affecting an actual computation
or a result itself when stored in memory. Her/his choice is
determined by the available fault injection equipment and by
the required fault properties, but also by the way in which an
injected fault is exploited to leak secret information from the
device. The different ways to benefit from a faulty behavior
is explained in the next section.

D. Exploitation of the Injected Faults

Faults are injected in the physical layer of a device, but
they are manifested on a higher abstraction level that involves
operations on sensitive data like encryption schemes and
digital signatures. At this abstraction level, the results of
faulty computations are exploited to leak information about
the secret parameter. Without going into details about every
specific attack, this section deals with the general principles
used in exploiting the effects of an injected fault to break



4

a cryptographic system. In order to make the discussion
easier to understand, the general methods are supported by
representative examples of the existing attacks. We distinguish
four classes:

Algorithm specific attacks. Security of public-key systems
is commonly based on a mathematical problem which is
assumed to be computationally hard to solve. For instance,
Elliptic Curve Cryptography (ECC) is based on the elliptic
curve discrete-logarithm problem (ECDLP) [39], while RSA
makes use of the problem of large integer factorization [40].
In order to circumvent solving the hard problem directly, an
adversary can try to inject a fault in the computation and
transform the problem into an easily solvable one. The kind of
fault that is injected and the way to exploit it depends on the
algorithm. Hence, we denote such attacks as algorithm specific
attacks.

A prominent example of such an attack is the manipula-
tion of the input parameters of an ECC-based system: by
choosing an invalid base point, the computation of a scalar
multiplication is shifted from the original curve to a weak one,
where ECDLP is easy to solve and the secret scalar can be
recovered [41]. A similar effect can be achieved by supplying
wrong parameters for the curve [41]. Similarly, a fault that sets
a few bits of a secret nonce to a known value in the Digital
Signature Algorithm (DSA) scheme can be exploited to leak
the whole key using a small number of faulty signatures [24].
Furthermore, by tampering with the loop bound which is used
as a parameter in some pairing algorithms [42], it is possible
to leak a secret point.

Differential fault analysis (DFA). Differential fault analy-
sis exploits differential information between correct and faulty
ciphertexts to retrieve the secret key. An attacker first collects
several fault-free ciphertexts and then several faulty ones
that are generated from the same secret key and plaintext.
Afterwards, a technique from cryptoanalysis, the differential
cryptanalysis, is applied to construct and solve differential
fault equations in order to deduce bits of the secret key. In
contrast to a classical differential attack, where characteristics
of the cipher have to be analyzed to find appropriate inputs
and outputs, the differential fault analysis manipulates the
computation to obtain required outputs. Differential Fault
Attacks were first introduced for symmetric ciphers in [43],
which initiated a discovery of a considerable amount of
DFA techniques that can be applied to various symmetric
key primitives [44], [45], but they are also a threat to PKC
algorithms [31].

A similar technique based on collecting several faulty
plaintext-ciphertext pairs, and obtaining collisions in the ci-
phertexts, is exploited in [46] to derive information about a
secret parameter. The difference between the correct and faulty
outputs can also be used to characterize a device. In Fault
Sensitivity Analysis (FSA), an attacker can deduce information
about the secret parameter by correlating derived character-
istics with precomputed ones that depend on estimated key
bytes [47].

Tampering with the program flow. Instead of relying on
faults in the processed data, attacks can also target the program
flow [27], [28], [35], [36]. If a fault is injected in the program

counter of a processor, it can cause an instruction to be skipped
or misinterpreted, or executed multiple times. For example,
it is possible to leak a secret exponent by skipping certain
instructions of an exponentiation algorithm [28]. In addition,
tampering with the loop counter or a branch mechanism may
lead to the recovery of a pairing scheme’s secret point [35] or
reduce the number of rounds of a symmetric cipher [43]. Those
attacks can also be employed in combination with other attacks
to skip the final check of countermeasures. For example, if a
device is protected by a validity check before the result is
output, an attacker can inject a fault to skip this check [30].

Safe-error attacks. Another important class of fault anal-
ysis is safe-error attacks. They make use of a fault that,
depending on they key, has or has no effect on the output
result of the computation. In contrast to other attacks, a
safe-error attack does not require a faulty output to derive
information. It only uses information whether an error occurs
in the output or not. Thus, it is possible to apply such
an attack independent of the countermeasures that ensure a
correct output of the computation. There are two types of
safe-error attacks: computational, called C safe-error attacks,
and memory, or M safe-error attacks. The C-type attack [13]
induces any temporary random computational fault in an
Arithmetic Logic Unit (ALU) of a device. Its objectives are
dummy operations, which are usually introduced to achieve
Simple Power Analysis (SPA) resistance. An adversary that
induces transient faults in the ALU or the memory obtains the
information whether the fault hits a dummy operation or not.
Hence, if the position of dummy operations is key dependent,
the adversary leaks information about the secret key with
each injected fault. While the C safe-error attack exploits the
weakness of an algorithm, the M safe-error attack employs a
possible safe error in the implementation. The basic method
of an M safe-error is key-dependent clearing of some memory
blocks. Safe-error attacks are successfully mounted on both
public-key [13], [30] and symmetric-key cryptosystems [48].

E. Feasibility of the Attacks

The considerations above show that an adversary can exploit
an injected fault in several ways. However, each attack has dif-
ferent fault property requirements in order to be implemented
in practice. Table I specifies the required fault properties for
different classes of attacks. Some of them have strict demands
in space/time controllability or fault effect. On the other hand,
some can be implemented using various fault models, which is
marked with multiple possibilities in the table. This leaves an
attacker with the opportunity to choose a weaker fault model
at the cost of increased post-processing time.

In addition to choosing an appropriate fault model, an
attacker has another degree of freedom: to choose a part of a
processor in which an error is injected. Table II lists different
classes of fault attack and marks the processors parts that
can be targeted for their practical implementation. Note that
some attacks allow an adversary to choose a target for the
fault injection among different processor parts. The presented
tables show that, given a specific fault attack described as
a mathematical model, an adversary has the flexibility to



5

TABLE I: Feasibility of Fault Attacks

Fault Attack Requirements
Space Time #Bits Effect Duration

Algorithm Specific Attack SC/LC SC/LC B/W/V F/S PF/TF
DFA LC LC B/W R TF

Attacks on Program Flow SC/LC SC B/W/V F/S PF/TF
Safe-Error Attacks SC/LC SC B/W/V R TF

LC: Loose Control PF : Permanent Fault
SC: Strong Control TF : Transient Fault
B: Bit S: Set
W : Word R: Randomize
V : Variable F : Flip

TABLE II: Targets of Fault Attacks

Attack Target
Inputs Datapath Memory Control

Alg. Specific
√ √ √ √

DFA X
√ √

X
Control X X

√ √

Safe-Error X
√ √ √

choose among different parts of a cryptographic processor,
as well as among different fault models that can provide the
implementation of the attack. It is usually determined by the
available fault injection equipment and by the architecture of
the device under attack. In any case, an attacker needs only
one successful attack to break a device, while a designer must
foresee all possible threats. The next section discusses ways to
protect implementations against fault attacks, and comments
on their effectiveness and efficiency.

III. COUNTERMEASURES AGAINST FAULT ATTACKS

Deployment of novel and improved fault attacks drives the
evolution of countermeasures. Since there exist no generic
countermeasures which can prevent all attacks, the combina-
tion of different techniques is required to achieve a sufficient
security level. As countermeasures come at a price, they are
chosen to provide a good trade-off between hardware and
performance costs and security level. In practice, countermea-
sures are intended to make an attack sufficiently expensive,
not impossible, still keeping a protected design cost-effective
and performing [2].

There are two major principles for protection of a crypto-
graphic device against fault attacks, as shown in Fig. 3. First,
a device can be protected by hardware countermeasures which
are specifically constructed to prevent a certain type of fault
injection. A prominent example of such countermeasures are
passive and active shields. Passive shields are metal layers
that cover a part of or the entire chip, thus preventing an
optical fault injection or probing attacks [49]. An active shield
consists of a wire mesh that runs signals over the chip surface
and detects any interruption on a wire. Furthermore, a chip
can be equipped with light sensors and anomalous frequency
detectors which detect optical fault injection and glitches in
the clock signal. The main drawback of the hardware counter-
measures is their cost. In addition, since such protection aims

Design Driven 

Fault Detection Inherent Protection 

Input 
Parameters 

Processing 
Part 

Program 
Flow 

Parallel & Redundant 
Computations 

Algorithm Specific 
Properties 

Blinding 

Countermeasures against FA 

Hardware 

Fig. 3: A Classification Tree of Countermeasures against Fault
Attacks.

at preventing a specific method of fault injection, it does not
provide long term protection, as novel fault injection methods
are frequently developed.

The focus of this paper is on the second approach, which
aims at protecting a cryptographic algorithm and its imple-
mentation so that an injected fault is detected or so that a
design is inherently protected against fault attacks. This type
of countermeasure is defined as design driven in the text below.

There are two main principles used to construct design
driven countermeasures: (1) employing redundancy to check
whether the computation was tampered with, i.e. incorporate a
fault check which detects and reports a fault, or (2) design the
implementation to be inherently prone to attacks. Although
the second method leads to a more efficient protection, it
prevents only a limited set of attacks. Therefore, it is necessary
to combine it with a fault detection mechanism in order to
provide complete protection. Further, a fault can be detected
in different parts of a processor: input part, processing part
(memory + datapath), or in the program flow (Fig. 2). Finally,
an actual fault detection mechanism can be implemented in
different ways, as shown in the last stage of the classification
tree in Fig. 3. Moreover, the listed countermeasures can be
applied on different abstraction levels, which influences the
effectiveness against certain attacks.

The rest of this section discusses the application of fault
detection on each possible abstraction level and explains in



6

detail the countermeasure classes listed in the classification
tree. Furthermore, we discuss their effectiveness against dif-
ferent classes of fault attacks and give an estimation of the
performance overhead they introduce.

A. Abstraction Level of Countermeasures

If a protection against fault attacks is addressed only when a
design is finished, it usually leads to an inefficient and incom-
plete protection. Instead, the security should be incorporated
in a design process and implemented with the rest of the
system. Fig. 4 visualizes different abstractions levels that exist
when a hardware module capable of running a cryptographic
protocol is designed. The highest abstraction level deals with

Fig. 4: Abstraction Levels in Cryptographic Hardware Design
Process.

a cryptographic protocol, e.g. authentication protocol, and
specifies all the operations required for its execution. A
cryptographic protocol is based on cryptographic primitives,
such as encryption, decryption, or digital signing [50]. Passing
through the arithmetic, register-transfer level (RTL) and logic
level, the design process reaches the physical, transistor layer.
Each abstraction level provides an opportunity for the designer
to apply specific performance optimization techniques, leading
to fast, small, or low energy solutions [51], [52].

Similarly, countermeasures which detect faults can be in-
corporated in a design process and implemented on any layer.
Since there is no countermeasure that protects against all fault
attacks, parallel protection mechanisms are often required on
different abstraction levels to achieve sound protection:

Protocol level. On the protocol layer, it is possible to design
the usage of cryptographic primitives in a way that certain
fault attacks are not possible any more. A prominent example
is the so-called fresh re-keying, where a new key is generated
for each run of the encryption, making differential attacks
impossible [53].

Cryptographic primitive level. In order to protect a cryp-
tographic primitive, the result of the algorithm can be verified
before outputting it. For example, a DSA implementation can
check whether the result is fault-free by verifying the signature
with the public key before outputting it [54]. Further, the
fact that encryption and decryption algorithms often use the
same datapath, is exploited to check the correctness of the
computations. It is possible to detect faults in the encryption

process by decrypting the obtained ciphertext and comparing
it to the original plaintext.

Algorithm level. In public key cryptography, the primitives
are often based on modular exponentiation or scalar mul-
tiplication (ECC, RSA). Depending on the algorithm used,
different fault detection methods can be applied, e.g. in case of
the Montgomery powering ladder (MPL), a consistency check
at the end is an efficient way to detect errors [55].

Arithmetic level. Each cryptographic algorithm is based on
arithmetic and/or logical operations. In many secure proces-
sors, these operations already contain some type of protection.
This can be achieved e.g. by redundant parallel computations
or by means of error detection codes [56].

Circuit level. A design can also be protected at circuit level.
Often, a special logic style is used to detect faults. For instance,
an unused state in dual-rail logic can be employed to detect
faults [57].

B. Fault Detection Mechanisms

A fault detection is the basis for most of the existing
countermeasures against fault attacks. They incorporate a fault
detection mechanism which detects and reports an error, thus
preventing an erroneous result to be observed by an attacker.
In what follows, we describe how fault detection mechanisms
are used to protect basic parts of a generic processor: input,
processing, and the control part1.

1) Protection of Input Parameters: In some protocols, an
adversary is allowed to supply parameters that are used for the
computation later on. If an implementation misses to check
whether these parameters are valid, the adversary can choose
bogus inputs to attack the system [41].

If the inputs are not supplied externally, the system pa-
rameters are typically stored in non-volatile memory and are
transferred to RAM for the computations. These parameters
can also be targeted for attack, as errors that occur either in
public or secret parameters can be exploited to reveal secret
information. Since such errors can be injected even before
traditional countermeasures that protect the integrity of an
algorithm can take effect, the validity of input parameters must
be explicitly checked before being used for computations. A
common way of implementing such checks is by adding a
Cyclic Redundancy Check (CRC) to each system parameter.
After a parameter is read for a computation, its CRC is
computed and compared to the one stored in non-volatile
memory.

Error detection probability of the CRC is proportional to the
amount of added redundancy. However, increased redundancy
introduces additional hardware overhead, since more memory
is required for its storage. Moreover, a module that computes
CRCs has to be implemented. Therefore, the amount of
redundancy is usually a result of a trade-off between the
desired security level and the available hardware resources.

1The protection of memory is distributed over the protection of input
and system parameters, which are stored in a non-volatile memory and the
protection of a processing part, which detects errors in the intermediate results,
typically stored in RAM or the register file.



7

2) Protection of the Processing Part: The processing part
of a device is harder to protect than the parameters, since static
codes are not sufficient. A fault injected in a device during the
processing time may enable leakage of sensitive information.
Furthermore, there is a big variety of attacks like modifying
registers, disturbing the computation of the ALU, or modifying
the program flow to miss instructions. In order to prevent such
attacks, two methods have been proven effective: 1) parallel
or redundant computations, and 2) checking algorithm-specific
properties. In addition, techniques that aim at the prevention
of side-channel attacks, such as blinding [58], [59], can make
fault attacks more difficult.

Parallel and redundant computations. Concurrent error
detection (CED) is a common mechanism used to prevent
fault-based cryptoanalysis. It is based on introducing redun-
dancy to check the correctness of a computation. A straight-
forward way to implement CED is to compute the same oper-
ation twice, either in parallel or consecutively. However, these
methods introduce an overhead of at least 100% [60]. Methods
that provide protection at a lower costs are parity-preserving
logic [61], [62], [63] or arithmetic residue codes [64]. Parity
preserving logic is an effective way to detect faults in sym-
metric ciphers [65], [66], [67].

Another efficient way to implement time redundancy- based
CED involves encrypting data twice (encrypting and de-
crypting) and comparing the results. Such schemes can be
optimized to reduce the time overhead [68] and they are a
common protection for symmetric ciphers. For instance, the
duplication can be applied on operation, round or full cipher
level, as explained in [69]. For a detailed overview of the
protection methods for symmetric ciphers, we refer the reader
to [70].

Furthermore, algorithms themselves can be extended by
redundancy to detect manipulations [71], [60], [72], [73], [64],
[48], [74], [75]. Often, a homomorphic mapping of the data
to a smaller set can be found. Hence, the algorithm can be
performed on both representations, and it can be checked that
the output corresponds to the smaller representation before
outputting data. For example, in addition to the original elliptic
curve, a curve of a smaller order is used to define a larger
combined curve, which allows for checking the final result of
the ECC computations efficiently [33]. Shamir [76] proposed
a similar method for RSA implementations. The basic idea is
to extend the field by a small modulus and compute the RSA
in the enlarged group as well as in the group defined by the
small modulus2.

Checking algorithm specific properties. Some crypto-
graphic algorithms already contain redundancy by construc-
tion, and that can be used for fault detection [31], [77], [78],
[41], [79], [55], [80], [81], [82], [83]. For instance, checking
if the result of a scalar multiplication still belongs to the
original curve is a common fault detection method in the
ECC implementations. Another widely exploited protection of
the MPL [84] based exponentiation is checking a coherency
between the intermediate variables in the algorithm. Checking

2Note that if the computation is based on CRT, both groups can be enlarged
by the same small prime and compared afterwards. This reduces the required
overhead.

if the difference between two intermediate points is exactly
one base point is an efficient fault detection for ECC [85],
[86]. Similarly, the coherence between the two intermediates
can be used to detect faults in RSA implementations.

Blinding. An alternative to specific countermeasures that
can help to complicate possible attacks is called blinding.
It was introduced to prevent side-channel attacks but can
also thwart fault attacks that require a precise fault injection
since the variables are randomized. Blinding an exponent
or a message can be applied to achieve side-channel and
fault attack-resistant exponentiation algorithms, using a single
countermeasure [58], [59].

Generally speaking, if an algorithm already provides spe-
cific properties that can be employed for checking, such a
countermeasure introduces less hardware overhead compared
to the parallel and redundant computations. However, the latter
provide more generic solutions, since they do not depend on
a specific algorithm.

3) Protection of Program Flow: In addition to the data, an
adversary can also target the program flow (see Section II-D).
The main idea is to exploit the faults that allow the selective
execution of instructions in a program. A possible way to
protect the integrity of a program flow is by calculating and
checking its fingerprint using An+B codes [87], [88]. Namely,
these codes provide a signature, which can be precomputed
and verified to detect tampering with data or program flow.

C. Inherent Protection Mechanisms
In addition to fault detection mechanisms which report an

injected fault, there exists a small set of countermeasures
which are based on an intrinsic protection. Such counter-
measures do not prevent the output of the erroneous result,
but ensure that it does not leak any information about the
secret parameter [89]. These methods do not need to be
countermeasures in the classical sense; for example, choosing
the parameters of an elliptic curve so that the curve has a
strong twist prevents attacks that rely on moving the com-
putation to the twist [34]. Hence, this set of attacks can
be prevented without any overhead by choosing the curve
parameters carefully. Similarly, storing a base point of an ECC
cryptosystem in non-volatile memory instead of supplying it
as an input parameter prevents an attacker in mounting fault
sensitivity analysis (FSA) [47].

Further, a careful selection of the exponentiation algorithm
can provide a protection against some attacks. For instance, in
addition to high performance exponentiation, the MPL with
no y coordinate provides a protection against sign change
attack [33].

A very careful implementation is required to prevent safe-
error attacks since they are based on a different principle.
Compared to other fault attacks, they do not require a faulty
output; the information regarding whether an error has oc-
curred or not is enough. Hence, checking whether a result is
correct is not enough to thwart such attacks. An efficient way
to protect a design against both C and M safe-error attacks, is
a proper selection of the exponentiation algorithm combined
with an implementation flow that ensures security against these
attacks [32], [90], [91].



8

IV. EFFECTIVENESS AND COST OF THE
COUNTERMEASURES

The previous considerations show that in the last decade
many different proposals on how to protect implementations
against fault attacks have been published. Each solution
thwarts a specific set of attacks with a limited probability
and comes with a certain overhead. In order to achieve sound
protection of a design, a combination of several methods have
to be employed. For selecting this set, a hardware designer
should be aware of the possible attacks that are feasible in
the intended use-case of the device. Based on the attacks that
have to be prevented and the available margin in terms of
costs, the designer can select an appropriate set of protection
mechanisms.

Table III depicts the effectiveness of the mechanisms against
different classes of fault attacks. It can be noticed that most

TABLE III: Effectiveness of the Countermeasures

Fault Attacks
Protection Alg. Specific DFA SEA Control

Inputs Datapath
Parallel & Redundant X

√ √
X

√

Alg. Specific Check X
√ √

?
√

?
√

Protection of Inputs
√

X X X X
Inherent Protection ?

√ √ √ √
X

√
: a countermeasure thwarts an attack.

?
√

: a countermeasure is effective in some special cases.
X: a countermeasure can not thwart an attack.

of the existing protection mechanisms aim to thwart the
attacks on the processing part, algorithm specific attacks and
differential fault attacks. On the other hand, the choice of
countermeasures against the attacks on input parameters and
safe-error attacks is very limited. If choosing an appropri-
ate input parameter can not implicitly thwart an attack, the
parameter must be explicitly checked before being used for
computations. Similarly, there is no general method which
provides the resistance against safe-error attacks. A device
must be designed in such way that it provides an inherent
resistance to these attacks.

In addition to effectiveness, a designer should have an esti-
mation of the overhead that a certain class of countermeasures
introduces before selecting it. Table IV gives an estimation
of the area overhead and the throughput reduction introduced
by different classes of countermeasures. Please note that the
overhead of the specific countermeasures inside a class varies
depending on the algorithm that should be protected and the
required security level. For details on the specific countermea-
sures, we refer the reader to overviews given in [65], [92].
As expected, Table IV exposes the countermeasures based

TABLE IV: Cost Estimation of the Countermeasures

Cost
Countermeasure Area Throughput

Parallel Redundant Modules > 50% ≈ 0%
Repetition ≈ 0% 50%

Protection of Input Params < 10% < 10%
Algorithm Specific Check < 30% < 30%

Inherent Protection - -

on repetition and parallel computations as the most costly
ones. If implemented naively, they introduce an overhead of
100% [85]. In practice, they exploit some algorithm-specific
properties so that the overhad is reduced [61], [62], [63],
[64]. Such kind of protection is typical for symmetric ciphers
that share the datapath for encryption and decryption. Using
pipelining, the repeated computation is done in parallel with
the original one, thus reducing the time overhead [93].

Next, algorithm specific checks typically introduce low
overhead, but it can vary depending on the protection capabil-
ities and the specific deployment in the system. For instance,
if the protection requires redundant memory locations, its
area overhead can be up to 30% [78]. On the other hand, if
the existing memory and datapath can be re-used, the area
overhead can be as low as 1% [94]. The introduced time
overhead mainly depends on the frequency of the counter-
measure’s activation. For example, if an error detection is
activated only at the end of the algorithm, the time overhead
could be less then 1% [95], [78], [94]. On the other hand, if a
concurrent error detection is required, which implies the fault
detection after each round of the algorithm, the time overhead
is significantly increased [78].

Finally, the inherent protection mechanisms are the most
efficient ones. As they are based on the proper selection of
algorithms and system parameters, they introduce no area
and time overhead. However, due to the limited number of
the attacks they thwart, they must be accompanied by other
countermeasures in order to provide a complete protection.

The comparative tables in this section show that only a
proper combination of countermeasures against fault attacks
can result in a secure design. While a design itself can
be protected on different abstraction levels, the validity of
the input parameters and the integrity of a program flow
must be addressed separately. The precise overhead that a
countermeasure introduces and the probability of detecting
a specific attack are tightly coupled with the design, and
are often subject of trade-offs. They have to be addressed
separately for every concrete application.

A. Future Directions

Taking into account the inventiveness of attackers and ever
increasing technical capabilities of the fault injection equip-
ment, it woud be interesting to analyze the effectiveness of
the countermeasures against such advanced adversarial model.
To do so, we split the analysis into two parts: to tackle the
problem of novel fault exploitations mechanisms, we first
discuss the effectiveness of different classes of countermea-
sures against an emerging class of implementation attacks
that combine the side-channel and fault analysis (combined
attacks). Then, to address the problem of using advanced
fault injection equipment, we examine the effectiveness of the
countermeasures when an adversary is able to induce multiple
precise faults. Finally, we discuss possible future research
directions for securing designs against fault attacks.

Combined attacks combine the fault injection and side-
channels, such as power consumption or electromagnetic radi-
ation, to observe the effect of the injected fault. These attacks



9

are mounted on both public key [96], [97] and symmetric
key cryptographic algorithms [98], [99]. Combined attacks
exploit the fact that the injected error’s effect exists from the
moment the error is triggered and not only at the end of the
computation. Therefore, they could be successfully applied
despite fault detection at the end of the algorithm since all
the necessary information are obtained through a side-channel
during the execution. Obviously, the class of countermeasures
that is based on fault detection at the end of algorithm
(Section III) is not effective in this case. Instead, a protection
that immediately detects a fault, such as concurrent error
detection, must be employed [78]. Also, the countermeasures
originally proposed to thwart side-channel attacks, such as
blinding or infective computation [80], [100], could be used.

Another aspect of an advanced attacker model is the em-
ployment of high end fault injection equipment. Analyzing
up-to-date fault injection techniques [2], [101], it can be
concluded that they are advancing mainly in the following two
aspects: 1) a triggering mechanism that enables the precise
control over the fault’s timing and 2) fast switching lasers,
such as a diode laser, that can inject multiple faults in a very
short time period3. Please note that we do not analyze the fault
model in which an attacker is able to set/rest a single bit at
will since we do not consider it to be practical. Even though
the laser spot size is shrinking, so does the CMOS feature
size, thus limiting the space precision of the fault injection.

In order to analyze how different classes of countermeasures
deal with the presented fault injection advances, we construct
Table V. It indicates that precise single faults that can be

TABLE V: Effectiveness of the Countermeasures against the
Advanced Fault Model.

Faults
Countermeasure Single Multiple

Protection of Input Params
√? √

Parallel Redundant Modules
√? X

Repetition
√? X

Algorithm Specific Check
√ √

Inherent Protection
√ √

√
: a countermeasure is still effective.√?: a countermeasure is effective in some special cases.

X: a countermeasure is not effective.

injected in a specified point of time, i.e. a part of a clock cycle,
are a threat to the countermeasures that check the integrity
of input parameters since they can alter a variable after its
check is being performed. Similarly, parallel and redundant
computations that tend to protect arithmetic modules, such
as adders and multipliers, can be defeated in a similar way.
On the other hand, if parallel and redundant computations are
coupled with the algorithm-specific properties [33], [76] or
if the algorithm-specific checks are employed, precise single
faults are not effective. Since these countermeasures detect
faults at the end of the algorithm, an adversary can not make
use of a fault injected after the check.

3Approximately, a fault can be injected on every 40 nS [2]

Next, precise multiple faults seem to be the biggest threat
to countermeasures based on parallel and redundant compu-
tations. If an attacker can inject two faults in a chosen time
moment, he can cause the same error twice, thus making it
undetectable. Further, if an attacker is able to induce two
simultaneous faults, the probability of causing the same errors
is even higher. The other classes of countermeasures are
resistant to multiplie fault attacks, even though the error
detection probability could be decreased in some particular
cases.

The analysis above shows that the effectiveness of the
countermeasures against fault attacks is time-limited and they
have to be re-evaluated regularly. Even though there are some
attempts to make a formal model for fault attacks, provable
security against these attacks is not settled yet. Another
research direction is a hardware security assurance: a process
of identifying and fixing vulnerabilities in a design before
it is released. So far, there exist two distinct approaches to
this problem. The first one tries to give general guidelines
for secure hardware development [51], [102], [52], [103],
[89] while the other one aims at ensuring that a device is
secure against particular attacks before it is released [90],
[91], [104]. We believe that a combination of the general
theoretical approach and the modeling based on the experience
in protecting cryptographic devices against particular attacks
could lead to a solution that provides a sufficient security level
at the minimal cost.

V. CONCLUSION

In order to construct a fault-attack resistant embedded
device, a hardware designer has to understand their threat in
the first place. Even though there is a huge variety of fault
attacks, we showed that they all share common properties. We
classified the attacks and expose the mechanisms they employ
to reveal sensitive information by extracting these properties.
Moreover, we explained how an injected fault propagates form
the physical layer to the protocol layer and highlighted the
parts of a generic processor which are sensitive to faults.
Hence, we provide an orientation to hardware designers for
determining which attacks are a threat for their specific de-
signs.

Furthermore, we analyzed possible ways to protect a device
and explained methods to thwart fault attacks. It turns out
that security against fault attacks must be incorporated in an
early stage of the design process and has to be addressed on
different abstraction levels. We showed possible ways to pro-
tect different parts of a generic processor and evaluated their
effectiveness against various attacks. Finally, we estimated
time and area overhead of each class of countermeasures, thus
making it easier for a hardware designer to select the set of
countermeasures that meets the performance constraints, still
providing a sufficient level of security.

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance
of Checking Cryptographic Protocols for Faults,” in 16th Annual
International Conference on Theory and Application of Cryptographic
Techniques, ser. EUROCRYPT 1997, Berlin, Heidelberg, 1997, pp. 37–
51.



10

[2] J. Van Woudenberg, M. Witteman, and F. Menarini, “Practical Optical
Fault Injection on Secure Microcontrollers,” in Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC 2011), Sept. 2011,
pp. 91–99.

[3] O. Kömmerling and M. G. Kuhn, “Design Principles for Tamper-
resistant Smartcard Processors,” in Proceedings of the USENIX Work-
shop on Smartcard Technology. Berkeley, CA, USA: USENIX
Association, 1999, pp. 2–2.

[4] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert,
“Fault Attacks on RSA with CRT: Concrete Results and Practical
Countermeasures,” 2002.

[5] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An In-depth and Black-
box Characterization of the Effects of Clock Glitches on 8-bit MCUs,”
in Workshop on Fault Diagnosis and Tolerance in Cryptography, ser.
FDTC 2011. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 105–114.

[6] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan,
“The Sorcerer’s Apprentice Guide to Fault Attacks,” Proceedings of
the IEEE, vol. 94, no. 2, pp. 370–382, Feb. 2006.

[7] S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “An On-chip
Glitchy Clock Generator for Testing Fault Injection Attacks,” Journal
of Cryptographic Engineering, vol. 1, pp. 265–270, 2011.

[8] I. Peterson, “Chinks in Digital Armor: Exploiting Faults to Break
Smart-card Cryptosystems,” Science News, vol. 151, pp. 78–79, 1997.

[9] S. Skorobogatov, “Low Temperature Data Remanence in Static
RAM,” University of Cambridge, Computer Laboratory, Tech.
Rep. UCAM-CL-TR-536, Jun. 2002. [Online]. Available: http:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf

[10] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in International Workshop on Cryptographic Hardware and
Embedded Systems -CHES 2002, 2002, pp. 2–12.

[11] J.-J. Quisquater and D. Samyde, “Eddy current for Magnetic Analysis
with Active Sensor,” in Esmart 2002, Nice, France, Sept. 2002.

[12] J.-M. Schmidt and M. Hutter, “Optical and EM Fault-Attacks on CRT-
based RSA: Concrete Results,” in Austrochip 2007, 15th Austrian
Workhop on Microelectronics, 11 October 2007, Graz, Austria, Pro-
ceedings, J. W. Karl C. Posch, Ed. Verlag der Technischen Universität
Graz, 2007, pp. 61–67.

[13] S.-M. Yen and M. Joye, “Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis,” IEEE Transactions on Computers,
vol. 49, pp. 967–970, September 2000.

[14] S.-M. Yen, S. Kim, S. Lim, and S. Moon, “A Countermeasure against
One Physical Cryptanalysis May Benefit Another Attack,” in Proceed-
ings of the 4th International Conference on Information Security and
Cryptology, ser. ICISC 2001. London, UK: Springer-Verlag, 2002,
pp. 414–427.

[15] M. Otto, “Fault Attacks and Countermeasures,” Ph.D. dissertation,
University of Paderborn, 2005.

[16] M. Kara-Ivaniov, E. Iceland, and A. Kipnis, “Attacks on Authentication
and Signature Schemes Involving Corruption of Public Key (Modu-
lus),” in Workshop on Fault Diagnosis and Tolerance in Cryptography,
(FDTC 2008). IEEE Computer Society, 2008, pp. 108–115.

[17] C. Kim, P. Bulens, C. Petit, and J.-J. Quisquater, “Fault Attacks on
Public Key Elements: Application to DLP-Based Schemes,” in Public
Key Infrastructure, ser. Lecture Notes in Computer Science, S. Mjlsnes,
S. Mauw, and S. Katsikas, Eds. Springer Berlin / Heidelberg, 2008,
vol. 5057, pp. 182–195.

[18] A. Berzati, C. Canovas-Dumas, and L. Goubin, “Public Key Perturba-
tion of Randomized RSA Implementations,” in International Workshop
on Cryptographic Hardware and Embedded Systems, CHES 2010, ser.
Lecture Notes in Computer Science, S. Mangard and F.-X. Standaert,
Eds. Springer Berlin / Heidelberg, 2010, vol. 6225, pp. 306–319.

[19] A. Berzati, C. Canovas, J.-G. Dumas, and L. Goubin, “Fault Attacks
on RSA Public Keys: Left-To-Right Implementations Are Also Vul-
nerable,” in Topics in Cryptology CT-RSA 2009, ser. Lecture Notes
in Computer Science, M. Fischlin, Ed. Springer Berlin / Heidelberg,
2009, vol. 5473, pp. 414–428.

[20] J.-P. Seifert, “On Authenticated Computing and RSA-based Authenti-
cation,” in Proceedings of the 12th ACM conference on Computer and
communications security, ser. CCS 2005. ACM, 2005, pp. 122–127.

[21] E. Brier, B. Chevallier-Mames, M. Ciet, and C. Clavier, “Why One
Should Also Secure RSA Public Key Elements,” in International Work-
shop on Cryptographic Hardware and Embedded Systems, CHES 2006,
ser. Lecture Notes in Computer Science, L. Goubin and M. Matsui, Eds.
Springer Berlin / Heidelberg, 2006, vol. 4249, pp. 324–338.

[22] J. Carrijo, R. Tonicelli, and A. C. A. Nascimento, “A Fault Analytic
Method against HB+,” IEICE Transactions, pp. 855–859, 2010.

[23] N. A. Howgrave-Graham and N. P. Smart, “Lattice Attacks on Digital
Signature Schemes,” Des. Codes Cryptography, vol. 23, pp. 283–290,
July 2001.

[24] D. Naccache, P. Q. NguyŁn, and M. Tunstall, “Experimenting with
Faults, Lattices and the DSA,” in Public Key Cryptography PKC 2005,
volume 3386 of Lecture Notes in Computer Science. Springer-Verlag,
2005, pp. 16–28.

[25] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-based Attack of RSA
Authentication,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, march 2010, pp. 855–860.

[26] M. Joye, J.-J. Quisquater, F. Bao, and R. Deng, “RSA-type Signatures
in the Presence of Transient Faults,” in Crytography and Coding, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
1997, pp. 155–160.

[27] J. Schmidt and M. Medwed, “A Fault Attack on ECDSA,” in Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC 2009).
IEEE, Sept. 2009, pp. 93 –99.

[28] J.-M. Schmidt and C. Herbst, “A Practical Fault Attack on Square
and Multiply,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography, (FDTC 2008). IEEE, Aug. 2008, pp. 53–58.

[29] D. Wagner, “Cryptanalysis of a Provably Secure CRT-RSA Algorithm,”
in Proceedings of the 11th ACM conference on Computer and Com-
munications Security, ser. CCS 2004. ACM, 2004, pp. 92–97.

[30] C. Kim, J. Shin, J.-J. Quisquater, and P. Lee, “Safe-Error Attack on
SPA-FA Resistant Exponentiations Using a HW Modular Multiplier,”
in Information Security and Cryptology - ICISC 2007, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2007, vol.
4817, pp. 273–281.

[31] I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on
Elliptic Curve Cryptosystems,” in Proceedings of the 20th Annual
International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO 2000. Springer-Verlag, 2000, pp. 131–146.

[32] M. Joye and S.-M. Yen, “The Montgomery Powering Ladder,” in
International Workshop on Cryptographic Hardware and Embedded
Systems, ser. CHES 2002. Springer-Verlag, 2003, pp. 291–302.

[33] J. Blömer, M. Otto, and J.-P. Seifert, “Sign Change Fault Attacks
on Elliptic Curve Cryptosystems,” in Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC 2006), ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2006, vol. 4236, pp.
36–52.

[34] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette, “Fault Attack on
Elliptic Curve Montgomery Ladder Implementation,” in Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC 2008). IEEE
Computer Society, 2008, pp. 92–98.

[35] D. Page and F. Vercauteren, “A Fault Attack on Pairing-Based Cryp-
tography,” IEEE Transactions on Computers, vol. 55, no. 9, pp. 1075–
1080, Sept. 2006.

[36] J.-M. Schmidt and M. Medwed, “Fault Attacks on the Montgomery
Powering Ladder,” in International Conference on Information, Secu-
rity and Cryptology - ICISC 2010, ser. Lecture Notes in Computer
Science, K.-H. Rhee and D. Nyang, Eds. Springer, 2010, to appear.

[37] S.-M. Yen, S. Moon, and J.-C. Ha, “Hardware Fault Attack on RSA
with CRT Revisited,” in Information Security and Cryptology ICISC
2002, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2003, vol. 2587, pp. 374–388.

[38] J. Waddle and D. Wagner, “Fault Attacks on Dual-rail Encoded
Systems,” in 21st Annual Computer Security Applications Conference,
Dec. 2005, pp. 10–494.

[39] H. Cohen, G. Frey, and R. Avanzi, Handbook of Elliptic and Hyperel-
liptic Curve Cryptography. Chapman Hall/CRC, Boca Raton, 2006
.

[40] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems,” Communications of
the ACM, vol. 21, pp. 120–126, February 1978.

[41] M. Ciet and M. Joye, “Elliptic Curve Cryptosystems in the Presence of
Permanent and Transient Faults,” Designs, Codes and Cryptography,
vol. 36, pp. 33–43, 2005.

[42] I. Duursma and H.-S. Lee, “Tate Pairing Implementation for Hyper-
elliptic Curves,” in Advances in Cryptology -ASIACRYPT 2003, ser.
Lecture Notes in Computer Science, C.-S. Laih, Ed. Springer Berlin
/ Heidelberg, 2003, vol. 2894, pp. 111–123.

[43] E. Biham and A. Shamir, “Differential Fault Analysis of Secret key
Cryptosystems,” in Advances in Cryptology CRYPTO 1997, ser.
Lecture Notes in Computer Science, B. Kaliski, Ed. Springer Berlin
/ Heidelberg, 1997, vol. 1294, pp. 513–525.

[44] C. Giraud, “Differential fault analysis of the advanced encryption
standard,” in Fault Analysis in Cryptography, ser. Information Security



11

and Cryptography, M. Joye and M. Tunstall, Eds. Springer Berlin
Heidelberg, 2012, pp. 55–72.

[45] M. Rivain, “Differential Fault Analysis of DES,” in Fault Analysis in
Cryptography, ser. Information Security and Cryptography, M. Joye
and M. Tunstall, Eds. Springer Berlin Heidelberg, 2012, pp. 37–54.

[46] J. Blömer and V. Krummel, “Fault Based Collision Attacks on AES,”
in Fault Diagnosis and Tolerance in Cryptography, ser. Lecture Notes
in Computer Science, L. Breveglieri, I. Koren, D. Naccache, and J.-
P. Seifert, Eds. Springer Berlin / Heidelberg, 2006, vol. 4236, pp.
106–120.

[47] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and
K. Ohta, “Fault sensitivity analysis,” in International Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2010, ser.
Lecture Notes in Computer Science, S. Mangard and F.-X. Standaert,
Eds. Springer Berlin / Heidelberg, 2010, vol. 6225, pp. 320–334.

[48] J. Blömer and J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced
Encryption Standard (AES),” in Financial Cryptography, ser. Lecture
Notes in Computer Science, R. Wright, Ed. Springer Berlin /
Heidelberg, 2003, vol. 2742, pp. 162–181.

[49] H. Handschuh, P. Paillier, and J. Stern, “Probing Attacks On Tamper-
Resistant Devices,” in Cryptographic Hardware and Embedded Sys-
tems, ser. Lecture Notes in Computer Science, C. KoC and C. Paar,
Eds. Springer Berlin / Heidelberg, 1999, vol. 1717, pp. 727–727.

[50] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1997.

[51] P. Schaumont and I. Verbauwhede, “Domain-specific codesign for
embedded security,” IEEE Transactions on Computers, vol. 36, no. 4,
pp. 68 – 74, april 2003.

[52] I. Verbauwhede and P. Schaumont, “Design Methods for Security
and Trust,” in Design, Automation and Test in Europe (DATE 2007).
NICE,FR: IEEE, 2007, pp. 1–6.

[53] M. Medwed, F.-X. Standaert, J. Groschdl, and F. Regazzoni, “Fresh
Re-keying: Security against Side-Channel and Fault Attacks for Low-
Cost Devices,” in Progress in Cryptology AFRICACRYPT 2010, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2010, vol. 6055, pp. 279–296.

[54] B. KaliskiJr and M. Robshaw, “Comments on Some New Attacks on
Cryptographic Devices,” RSA Laboratories’ Bulletin no.5, 1997.

[55] C. Giraud, “An RSA Implementation Resistant to Fault Attacks and
to Simple Power Analysis,” IEEE Transactions on Computers, vol. 55,
no. 9, pp. 1116–1120, sept. 2006.

[56] M. Medwed and J.-M. Schmidt, “Coding Schemes for Arithmetic and
Logic Operations - How Robust Are They?” in Information Security
Applications, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2009, pp. 51–65.

[57] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving Smart Card Security using Self-timed Circuits,” in Tech-
nology, Fourth AciD-WG Workshop, Grenoble, ISBN, 2002, pp. 211–
218.

[58] G. Fumaroli and D. Vigilant, “Blinded Fault Resistant Exponentia-
tion,” in International Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 2006), ser. Lecture Notes in Computer Science,
L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert, Eds. Springer
Berlin / Heidelberg, 2006, vol. 4236, pp. 62–70.

[59] A. Boscher, H. Handschuh, and E. Trichina, “Blinded Fault Resistant
Exponentiation Revisited,” in Workshop on Fault Diagnosis and Toler-
ance in Cryptography (FDTC 2009). IEEE, Sept. 2009, pp. 3–9.

[60] A. Dominguez-Oviedo and M. Hasan, “Error Detection and Fault
Tolerance in ECSM Using Input Randomization,” IEEE Transactions
on Dependable and Secure Computing, vol. 6, no. 3, pp. 175–187,
july-sept. 2009.

[61] G. G. Langdon and C. K. Tang, “Concurrent Error Detection for
Group Look-ahead Binary Adders,” IBM Journal of Research and
Development, vol. 14, no. 5, pp. 563–573, Sep. 1970.

[62] S. Fenn, M. Gossel, M. Benaissa, and D. Taylor, “On-Line Error
Detection for Bit-Serial Multipliers in GF(2m),” Journal of Electronic
Testing, vol. 13, pp. 29–40, 1998.

[63] B. Ansari and I. Verbauwhede, “A Hybrid Scheme for Concurrent
Error Detection of Multiplication over Finite Fields,” in International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT
2010), Oct. 2010, pp. 399–407.

[64] G. Gaubatz, B. Sunar, and M. G. Karpovsky, “Non-linear Residue
Codes for Robust Public-key Arithmetic,” in Workshop on Fault
Tolerance and Diagnosis in Cryptography (FTDC 2006). Springer,
2006, pp. 173–184.

[65] T. G. Malkin, F.-X. Standaert, and M. Yung, “A Comparative
Cost/Security Analysis of Fault Attack Countermeasures,” in Proceed-
ings of the Third international conference on Fault Diagnosis and
Tolerance in Cryptography, ser. FDTC 2006. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 159–172.

[66] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error
Analysis and Detection Procedures for a Hardware Implementation of
the Advanced Encryption Standard,” IEEE Trans. Comput., vol. 52,
no. 4, pp. 492–505, Apr. 2003.

[67] G. Bertoni, L. Breveglieri, I. Koren, and P. Maistri, “An Efficient
Hardware-based Fault Diagnosis Scheme for AES: Performances and
Cost,” in International Symposium on Defect and Fault Tolerance in
VLSI System, oct. 2004, pp. 130–138.

[68] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent Error Detection
Schemes for Fault-based Side-channel Cryptanalysis of Symmetric
Block Ciphers,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 12, pp. 1509–1517, Dec.
2002.

[69] ——, “Fault-based Side-channel Cryptanalysis Tolerant Rijndael Sym-
metric Block Cipher Architecture,” in IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, 2001, pp. 427 –435.

[70] J.-M. Schmidt and M. Medwed, “Countermeasures for Symmetric Key
Ciphers,” in Fault Analysis in Cryptography, ser. Information Security
and Cryptography, M. Joye and M. Tunstall, Eds. Springer Berlin
Heidelberg, 2012, pp. 73–87.

[71] R. Stern, N. Joshi, K. Wu, and R. Karri, “Register Transfer Level
Concurrent Error Detection in Elliptic Curve Crypto Implementations,”
in Workshop on Fault Diagnosis and Tolerance in Cryptography,
(FDTC 2007). IEEE, sept. 2007, pp. 112–119.

[72] J. Francq, J.-B. Rigaud, P. Manet, A. Tria, and A. Tisserand, “Error
Detection for Borrow-Save Adders Dedicated to ECC Unit,” in Work-
shop on Fault Diagnosis and Tolerance in Cryptography, (FDTC 2008).
IEEE, Aug. 2008, pp. 77–86.

[73] E. Ozturk, G. Gaubatz, and B. Sunar, “Tate Pairing with Strong
Fault Resiliency,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography, (FDTC 2007), vol. IEEE, sept. 2007, pp. 103–111.

[74] S. Liu, B. King, and W. Wang, “A CRT-RSA Algorithm Secure against
Hardware Fault Attacks,” in International Symposium on Dependable,
Autonomic and Secure Computing. IEEE, 29 2006-oct. 1 2006, pp.
51–60.

[75] M. Joye and S.-M. Yen, “Secure Evaluation of Modular Functions,”
pp. 227–229, 2001.

[76] A. Shamir, “Method and Apparatus for Protecting Public Key Schemes
from Timing and Fault Attack,” November 1999.

[77] N. Ebeid and R. Lambert, “Securing the Elliptic Curve Montgomery
Ladder against Fault Attacks,” in Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC 2009). IEEE, Sept. 2009, pp. 46–
50.

[78] K. Ma and K. Wu, “LOEDAR: A Low Cost Error Detection and
Recovery Scheme for ECC,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, march 2011, pp. 1–6.

[79] A. Boscher, R. Naciri, and E. Prouff, “CRT RSA Algorithm Protected
Against Fault Attacks,” in Information Security Theory and Practices.
Smart Cards, Mobile and Ubiquitous Computing Systems, ser. Lecture
Notes in Computer Science, D. Sauveron, K. Markantonakis, A. Bilas,
and J.-J. Quisquater, Eds. Springer Berlin / Heidelberg, 2007, vol.
4462, pp. 229–243.

[80] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “RSA Speedup with
Chinese Remainder Theorem Immune Against Hardware Fault Crypt-
analysis,” IEEE Transactions on Computers, vol. 52, no. 4, pp. 461–
472, april 2003.

[81] C. H. Kim and J.-J. Quisquater, “How can we Overcome both Side
Channel Analysis and Fault Attacks on RSA-CRT?” in Workshop on
Fault Diagnosis and Tolerance in Cryptography, (FDTC 2007). IEEE,
sept. 2007, pp. 21–29.

[82] M. Rivain, “Securing RSA against Fault Analysis by Double Addition
Chain Exponentiation,” in Proceedings of the The Cryptographers’
Track at the RSA Conference 2009 on Topics in Cryptology, ser. CT-
RSA 2009. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 459–480.

[83] D. Vigilant, “RSA with CRT: A New Cost-Effective Solution to Thwart
Fault Attacks,” in International Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2008, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2008, vol. 5154, pp. 130–145.

[84] P. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of
Factorization,” Mathematics of Computation, vol. 48, no. 177, pp. 243–
264, 1987.



12

[85] A. Dominguez-Oviedo, “On Fault-based Attacks and Countermeasures
for Elliptic Curve Cryptosystems,” Ph.D. dissertation, University of
Waterloo, Canada, 2008.

[86] D. Karaklajic, J. Fan, J.-M. Schmidt, and I. Verbauwhede, “Low-cost
Fault Detection Method for ECC using Montgomery Powering Ladder,”
in Design, Automation and Test in Europe Conference Exhibition
(DATE), 2011, March 2011, pp. 1–6.

[87] I. Proudler, “Idempotent AN codes,” in Colloquium on Signal Process-
ing Applications of Finite Field Mathematics. IEEE, Jun 1989, pp.
1–5.

[88] M. Medwed and J.-M. Schmidt, “Generic Fault Countermeasure Pro-
viding Data and Program Flow Integrity,” in Workshop on Fault
Diagnosis and Tolerance in Cryptography, (FDTC 2008). IEEE, aug.
2008, pp. 68–73.

[89] S. Guilley, L. Sauvage, J.-L. Danger, and N. Selmane, “Fault Injec-
tion Resilience,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 2010). IEEE, Aug. 2010, pp. 51 –65.

[90] D. Karaklajić, J. Fan, and I. Verbauwhede, “Systematic Security
Evaluation Method Against C Safe-error Attacks,” in International
Symposium on Hardware-Oriented Security and Trust (HOST 2011).
IEEE, June 2011, pp. 63–66.

[91] ——, “Systematic M Safe-error Detection in Hardware Implementa-
tions of Cryptographic Algorithms,” in International Symposium on
Hardware-Oriented Security and Trust (HOST 2012). IEEE, June
2012, pp. 96–101.

[92] P. Maistri, “Countermeasures against Fault Attacks: the Good, the
Bad, and the Ugly,” in IEEE International On-Line Testing Symposium
(IOLTS), July 2011, pp. 134 –137.

[93] A. Satoh, T. Sugawara, N. Homma, and T. Aoki, “High-Performance
Concurrent Error Detection Scheme for AES Hardware,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems,
ser. CHES 2008. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 100–
112.

[94] D. Karaklajić, J. Fan, J.-M. Schmidt, and I. Verbauwhede, “Low-cost
Fault Detection Method for ECC using Montgomery Powering Ladder,”
in Design, Automation & Test in Europe (DATE 2011). IEEE, March
2011, pp. 1–6.

[95] E. Wenger and M. Hutter, “A Hardware Processor supporting Elliptic
Curve Cryptography for less than 9 kGEs,” in Proceedings of the
International conference on Smart Card Research and Advanced Ap-
plications, ser. CARDIS 2011. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 182–198.

[96] F. Amiel, K. Villegas, B. Feix, and L. Marcel, “Passive and Active
Combined Attacks: Combining Fault Attacks and Side Channel Anal-
ysis,” Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC 2010), pp. 92–102, 2007.

[97] J. Fan, B. Gierlichs, and F. Vercauteren, “To Infinity and Beyond:
Combined Attack on ECC using Points of Low Order,” in International
Workshop on Cryptographic Hardware and Embedded Systems, ser.
CHES 2011. Springer-Verlag, 2011, pp. 143–159.

[98] T. Roche, V. Lomné, and K. Khalfallah, “Combined Fault and Side-
channel Attack on Protected Implementations of AES,” in Proceedings
of International conference on Smart Card Research and Advanced
Applications, ser. CARDIS 2011. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 65–83.

[99] C. Clavier, B. Feix, G. Gagnerot, and M. Roussellet, “Passive and
Active Combined Attacks on AES Combining Fault Attacks and Side
Channel Analysis,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 2010). IEEE, Aug. 2010, pp. 10–19.

[100] J. Blömer, M. Otto, and J.-P. Seifert, “A New CRT-RSA Algorithm
Secure Against Bellcore Attacks,” in Proceedings of the 10th ACM
conference on Computer and communications security, ser. CCS 2003.
ACM, 2003, pp. 311–320.

[101] E. Trichina and R. Korkikyan, “Multi Fault Laser Attacks on Protected
CRT-RSA,” Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), vol. 0, pp. 75–86, 2010.

[102] D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede, “Securing
Embedded Systems,” IEEE Security & Privacy, vol. 4, no. 2, pp. 40–
49, 2006.

[103] H. Khattri, N. Mangipudi, and S. Mandujano, “HSDL: A Security
Development Lifecycle for Hardware Technologies,” in IEEE Inter-
national Symposium on Hardware-Oriented Security and Trust (HOST
2012), June 2012, pp. 116–121.

[104] T. Sugawara, T. Suzuki, and T. Katashita, “Circuit Simulation for
Fault Sensitivity Analysis and its Application to Cryptographic LSI,” in
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC
2012). IEEE, Sept. 2012.

Duško Karaklajić graduated in electrical engineering from University of
Belgrade in 2008. He is currently pursuing the Ph.D. degree from the
Electrical Engineering Department, KU Leuven, Belgium. He is a member
of COSIC Research Group and his main research interest is physical security
of embedded systems with the emphasis on fault attacks and countermeasures.

Jörn-Marc Schmidt studied Computer Science at the University of
Mannheim, Germany, with concentration on Cryptography and received his
diploma (corresponds to master) in 2006. In 2007, he became member of the
VLSI and Security group at the IAIK, where he was working on theory and
practice of fault attacks. Jörn-Marc received his PhD degree in October 2009
from Graz University of Technology, Austria. Since 2010, he leads the Secure
Entities for Smart Environments (SEnSE)-Group at IAIK.

Ingrid Verbauwhede received the Ph.D. degree from KU Leuven, Belgium, in
1991. She is currently a Professor at the KU Leuven and an adjunct professor
at UCLA, CA. She joined the COSIC research group in 2003 where she
leads the embedded security research group. She was a post-doctoral visiting
researcher and lecturer at University of California at Berkeley and worked
for TCSI and Atmel in Berkeley, CA. She is a member of the Royal Flemish
Academy of Belgium for Science and the Arts. Her main interest is in the
design and design methods for secure embedded circuits and systems. For a
complete list of her publications and patents, please visit www.cosic.be.


