
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

White-Box Cryptography
Analysis of White-Box AES Implementations

Yoni De Mulder

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering

February 2014

White-Box Cryptography

Analysis of White-Box AES Implementations

Yoni DE MULDER

Supervisory Committee:
Prof. dr. ir. Pierre Verbaeten, chair
Prof. dr. ir. Bart Preneel, supervisor
Prof. dr. ir. Vincent Rijmen
Prof. dr. ir. Frank Piessens
Dr. ir. Peter Roelse
(Irdeto B.V., The Netherlands)

Prof. dr. Lars Knudsen
(DTU, Denmark)

Prof. dr. ir. Koen De Bosschere
(Ghent University, Belgium)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

February 2014

© KU Leuven – Faculty of Engineering Science
Kasteelpark Arenberg 10, box 2452, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2014/7515/22
ISBN 978-94-6018-798-8

To my parents and my girlfriend.

Acknowledgements

When it comes to life,
the critical thing is whether you
take things for granted or
take them with gratitude.

– Gilbert Keith Chesterton

From the moment I started writing this doctoral thesis, which seems already
ages ago due to underestimating the writing process for which I was warned in
advance, I was looking forward to write these acknowledgements1 since I knew
this was going to be one of the last items on my todo list. However, now the
time finally has come, it seems much harder than first anticipated. It even seems
harder than writing the PhD text itself, since it is most likely the only part of
my thesis that will actually be read by ’many’ people. Therefore, it appears to
me the perfect opportunity to summarize my main research contributions. No
no, just kidding. But seriously, if you are planning to read this thesis, I should
probably already warn you that the PhD text is rather long. The reason is
that I had the impossible idea to write a reference book about white-box AES
implementations for all (read: all ten, which is probably already overestimated)
white-box cryptographers out there in the crypto world. Since secure white-box
implementations seem hard to achieve (read this thesis!), I assume that the life
expectancy of white-box cryptographers is not that high.

Pursuing a PhD and working towards the ecstasy of writing this doctoral thesis
have been made possible by a diverse mix of people who influenced me (both
professionally and personally) over the past six years. Therefore, I start by
thanking you all for your support, inspiration and guidance. However, some
people deserve some special attention, but don’t feel offended if your name is
not mentioned below because I didn’t want to make these acknowledgements
even longer than my PhD text.

1I thank Annemie Deiteren for proofreading these acknowledgements.

iii

iv ACKNOWLEDGEMENTS

First of all, I thank my supervisor Prof. Bart Preneel for giving me the
opportunity to start (and finish) a PhD at one of the most fascinating research
groups called COSIC, and for always finding funding to get me paid and to
let me travel abroad for international conferences or workshops. I also thank
him for giving me the enormous amount of freedom to perform research in my
own way, and for replying with his famous “Ok, Bart.” mails (my guess is that
he uses a hotkey for this, like F4). I am also very grateful that he carefully
proofread this thesis and provided me with numerous insightful comments.
Apart from approaching Bart as my supervisor, I always enjoy his interesting
and pleasant travel stories from all over the world, and his dry humor.

Next, I thank Prof. Vincent Rijmen, Prof. Frank Piessens, Dr. Peter Roelse,
Prof. Lars Knudsen and Prof. Koen De Bosschere for agreeing to act as a
jury member, for being (or trying to be) present at my preliminary defense at
the impossible hour of 8 in the morning, for asking me clever and challenging
questions during the defense, and for providing me with comments that improved
the quality of this thesis. I sincerely apologize for their ‘suffering’ while reading
through the more than 200 pages that I have produced ‘accidentally’. Further,
I thank Prof. Pierre Verbaeten for chairing the jury. The support of the KU
Leuven for financing my research is warmly appreciated.

More or less six years ago, I started my PhD journey at COSIC. When I
gradually got to know all the colleagues one by one, either by sharing offices
or by occasional chats in the hallways or at social events, it soon became clear
that ‘colleague’ is some kind of synonym for ‘friend’. Therefore, I thank many
(ex-)COSICs for the nice time we spent together: Filipe and Anthony for the
necessary and fair competition during the karting races; Begül and Nicky for
spending a sleepless night in Athens after missing our flight connection; Deniz,
Kerem, Qingju, Elmar, Atul and Sebastiaan for a pleasant working environment
while sharing offices; Gabriel, Elke and Andrey for all the fun we had during
the ECRYPT summer schools; Jan, Nessim and Nikos for the chaotic SoPro
meetings; and finally Stefaan, Dave, Roel P., Dries and Karel for being the
crew of the black-shirt-red-tie events and for jointly paying for our mistake by
letting Karel decide on the movies. A special thanks goes to Brecht Wyseur for
introducing me into the fascinating and magical world of white-box cryptography
and for guiding me during the first years of my PhD. This guidance was most
efficient by email since ‘West-Vlaams’ was and is still not supported by Google
translate in a text-to-speech manner.

I express my deep gratitude to Prof. Vincent Rijmen for always being there
when I needed him. Although not on paper, I consider Vincent as my second
supervisor for all his guidance and support I enjoyed over the past few years. Of
course every cryptographer knows Vincent as one of the designers of the famous
AES cipher deployed worldwide, but I got to know Vincent in person when I

ACKNOWLEDGEMENTS v

switched internal research subgroups at COSIC. Even though as a white-box
cryptographer I didn’t fit nicely into any of the subgroups, Vincent warmly
welcomed me at his symmetric-key group and gave me the feeling that I finally
found a group to which I belong. At COSIC, the door of his office is always
wide open. And when you knock on the door, he always makes time for you.
Further, I thank Vincent for his great sense of humor; I always enjoyed our
(technical) conversations with the necessary dose of laughter and his subtle
jokes during the symmetric-key group meetings. Finally and most importantly,
Vincent showed me that not only ‘colleague’, but also ‘supervisor’ is a synonym
for ‘friend’. Thank you for that!

The person who influenced my research the most, and moreover had a
tremendous positive impact on me as a researcher, is Dr. Peter Roelse. He was
my mentor during my research internship at the Irdeto company from May
2011 until February 2012 and is the well-deserved co-author of my two most
important publications. I gracefully thank him for his enriching guidance both
during as well as after the internship. Over the past years, I have learned a lot
from him and he has been truly inspirational to me. He influenced the way I
perform scientific research and improved my writing skills significantly (though
I still fail to write down only the essential part). Because of Peter, I now (try
to) pay more attention to details. Further, he broadened my knowledge with
numerous endless but fruitful discussions about white-box cryptography and
its purpose. Next, since humor is important to me, I knew immediately that
I would like Peter as a person because of his unique sense of humor. I don’t
think we ever had a discussion during which I laughed for less than 50% of the
time (?!, ok, maybe that’s an exaggeration), even if it was a serious technical
discussion. Finally, I thank Peter for always being honest with me and for never
beating around the bush when giving me feedback. So, for all of the above, I
could not have imagined a better mentor than Peter for my PhD.

COSIC would not be the place as it is today without its driving engines
underneath the hood. Therefore, I personally thank Péla Noë for being the best
secretary, not only in the world, but in the entire universe! She showed me that
‘secretary’ definitely is a synonym for ‘friend’. She was always unconditionally
prepared to help me. Her office was the one place in the building where you
could always go for answers to your questions and for a relaxing chat (and the
occasional gossip). I am also grateful to Elvira Wouters, Elsy Vermoesen and
Wim Devroye for taking care of the financial aspects, and to Saartje Verheyen
for organizing everything behind the scenes.

In particular, one of the ex-colleagues at COSIC deserves some special attention.
Some know him as the ‘Pin Master’, others as Dr. K., but his true name
will never be revealed! I cannot remember anymore how fast the transition
went from being a colleague to being a best friend, but I think it must have

vi ACKNOWLEDGEMENTS

approached the speed of light. As a colleague, he took me under his wing. At
some point in my PhD journey, Karel noticed that I was going through a phase
of severe demotivation. Without asking, he arranged the research internship
at Irdeto, where I met Peter who brought me back on track. For that, I am
eternally grateful to Karel; implicitly because of him, I can now write these
acknowledgements. As a best friend, he enriched my life in so many different
aspects. For example, I am now a fan of Guinness as well, or how Karel calls it:
“Glazen boterhammekes.” Recently I read the acknowledgements of his doctoral
thesis dating back to 2012, in which he thanks me, and I quote: “for letting me
(= Karel) win our games of squash for more than three years now (don’t worry
Yoni, the age difference and sports injuries will resolve that in the end).” Well,
Karel, I am still waiting!!! I also thank Karel for pointing out to me that I’ve
spent approximately 1% of my life on writing this thesis. But that is definitely
not the worst 1%. No, I’ve spent the worst 1% on writing a project deliverable
about VPAN, supervised by Karel, who sent me back to the writing table for
over half a year because the deliverable needed to have ‘meer vlees’.

I further warmly thank all my friends who have supported me throughout my
PhD journey, and especially at the end when I disappeared from the planet
Earth for almost half a year to write this thesis. So, a big thank you goes to
Jan, Heleen, Jonathan, Hanne, Dieter, Jasmien, Bart, Peter, Willemien and
others who I forgot to mention here. A special thank you goes to Eva because
of her motivational words: “Maakt dat f*cking doctoraat af!” Up to now, these
words are still hanging above my desk at home.

Now, I’ve finally arrived at those people who I carry in my heart the deepest.

I start by expressing my eternal gratitude to my parents. First of all, I thank
them for transferring all their moral values, wisdom and love to me what made
me the person I am today. Second, I thank them for all the opportunities they
gave me in life. Because of them, I could study for civil engineering, which led
me to pursue a PhD, which in its turn led me to write these acknowledgements
as one of the first pages of this doctoral thesis. I know they are (and always
have been) proud of me, with a current peak now that I finally became a Doctor
(the second in the family, though not of Medicine but in Engineering), but what
they don’t know is that I have been proud of them my entire life as well. They
are fascinating people and they will always be my role models in life. They
have the heart at the right place, they unconditionally believe in me, and I can
count on them not only in the good times, but more importantly also in the bad
times. Trust me, my PhD experience has been a crazy roller coaster ride with
lots of highs and lows. During the lows, there has been always one address to
which I could return for support, and that was home. Thank you for being such
great parents, and for creating such a warm place that I know as my home!

ACKNOWLEDGEMENTS vii

I know it is not customary to do so, but I also thank my parents’ dog Liesel
who has more nicknames than the number of people at COSIC. During the last
week of writing this thesis before submitting to the examination committee, my
parents were on holiday and I was dogsitting at home. Even though the writing
days were long and shifted more to the night time, she remained faithful to
sit next to me so I was never alone and always had someone to talk to. I will
reward the ‘Schmutse’ with ‘meaty sticks’, her favorite candy!

Further, I warmly thank the craziest sister in the world, which happens to be
my sister, Iris. Even though we don’t see each other so often because of busy
agendas, the bond that we share is for life and she is there for me when it
matters the most. I can tell by the little things. Normally I don’t get many text
messages, but I was very surprised with all the encouraging messages she sent
me before every important deadline during the final phase of my PhD. Thank
you for supporting me in your peculiar way!

I saved the best for last: my girlfriend, Marie-Laure, with whom I share all
tiny aspects of life. Her love, support and patience have been (and still are)
limitless. First of all, an enormous thank you for being as steady as a rock (I
know it is cliché to say, but it is the truth). Marie-Laure always had a listening
ear during my countless emotional glitches, and time after time she had the
perfect pep talk to put a smile on my face again. I consider being able to put a
smile on someone’s face regardless of the situation to be an extraordinary gift.
Now, since Marie-Laure has this gift, she truly is one out of 7 billion people!
Second, I gracefully thank Marie-Laure for giving me all the time I needed to
finish my PhD. There were many times I was busy and stressy, such as before
submission deadlines or when writing this thesis, during which she took care of
all household tasks but more importantly took care of me in a very thoughtful
and beloved way such as bringing me a hot chocolate before she went to sleep.
I can continue to give reasons why Marie-Laure is an amazing woman, but let’s
just say that I am very grateful that 7 years ago, she chose me to share her life
with. In my eyes, she is like a flower that blossoms into eternity.

Yoni De Mulder
Mortsel, February 2014

Abstract

Cryptographic algorithms are designed to protect data or communication in
the presence of an attacker. If these algorithms make use of a secret key, then
their security relies on the secrecy of the key. Hence, the primary objective
of an attacker typically is to extract the key. In a traditional black-box
environment, the attacker has only access to the inputs and outputs of a
cryptographic algorithm. However, due to the increasing demand to deploy
strong cryptographic algorithms within software applications that are executed
on untrusted open platforms owned and controlled by a possibly malicious party,
the black-box environment becomes inadequate. Therefore, a new realistic
white-box environment is introduced in which an attacker has complete access
to a software implementation of a cryptographic algorithm and furthermore has
full control over its execution environment. Real-world examples of a white-box
environment can be found in digital content protection systems such as Digital
Rights Management or Pay-TV systems, where key-instantiated cryptographic
algorithms are implemented on e.g. a smartphone, tablet or set-top box. The
extraction of the secret key would compromise the content protection.

White-box cryptography aims to protect the confidentiality of the secret key
of a cryptographic algorithm in a white-box environment. It is a technique
to construct software implementations of a cryptographic algorithm that are
sufficiently secure against a white-box attacker. In the academic literature, the
focus has been mainly on the design of white-box implementations of block
ciphers, an important subclass of symmetric-key cryptographic algorithms. In
2002, Chow, Eisen, Johnson and van Oorschot proposed the first published
white-box implementation of the Advanced Encryption Standard (AES), one of
the most prominent block ciphers at this time. However, two years later, Billet,
Gilbert and Ech-Chatbi presented an efficient attack on this implementation,
which motivated the design of three new white-box AES implementations
offering more resistance against key extraction: the ones by Bringer, Chabanne
and Dottax in 2006, by Xiao and Lai in 2009 and by Karroumi in 2010.

ix

x ABSTRACT

This doctoral thesis covers the design and analysis of white-box implementations
of block ciphers, where the main contributions address the analysis of white-
box AES implementations. Starting from the initial improvement of Billet
et al.’s attack proposed by Tolhuizen in 2012, we present several additional
improvements considerably reducing the overall work factor. Our improved
version leads to some useful observations with respect to the design choices
made in Chow et al.’s white-box AES implementation. Further, this doctoral
thesis describes the analysis of the three newly proposed white-box AES
implementations mentioned above. First, we show how to efficiently extract
equivalent keys out of Bringer et al.’s white-box AES implementation; these
equivalent keys yield functionally equivalent implementations. Second, we
present a practical cryptanalysis of the white-box AES implementation proposed
by Xiao and Lai. The cryptanalysis uses a modified variant of the linear
equivalence algorithm presented by Biryukov, De Cannière, Braeken and Preneel
as a building block. Additionally, we consider design generalizations of the Xiao-
Lai white-box AES implementation and their impact on our cryptanalytic result.
Third, we show that Karroumi’s white-box AES implementation belongs to the
class of white-box AES implementations specified by Chow et al. Consequently,
Karroumi’s implementation remains vulnerable to the attack it was designed to
resist, i.e., Billet et al.’s attack and our improved version of this attack.

Based on the cryptanalytic results presented in this doctoral thesis and outlined
above, it is shown that in early 2014 there does not exist a practical and
secure white-box AES implementation published in the academic literature,
even though AES is still considered to be a secure black-box block cipher.
However, at the end of this thesis we discuss a new design principle proposed
by Michiels and Gorissen that may lead to the construction of secure white-box
AES implementations. All white-box AES implementations appeared in the
academic literature so far are fixed-key; we present a new dynamic-key white-box
technique that allows to update the cryptographic key in a more secure way
than the known techniques.

Samenvatting

Cryptografische algoritmes beschermen data en communicatie in de aanwezigheid
van een aanvaller. Indien deze algoritmes gebruik maken van een geheime sleutel,
hangt hun veiligheid af van de geheimhouding van deze sleutel. Een aanvaller
heeft daarom meestal als doel het bekomen van de geheime sleutel. In een
traditionele black-box omgeving heeft de aanvaller slechts toegang tot de in-
en uitgangen van een cryptografisch algoritme. Er is een toenemende vraag
om cryptografische algoritmes te gebruiken in software applicaties die worden
uitgevoerd op onbetrouwbare platformen; deze platformen zijn in het bezit en
onder controle van een partij die slechte bedoelingen kan hebben. In het licht
hiervan schiet de veronderstelling van een black-box omgeving duidelijk te kort.
Daarom is er een nieuwe, meer realistische, white-box omgeving geïntroduceerd
waarin een aanvaller volledige toegang heeft tot een software implementatie
van een cryptografisch algoritme en bovendien ook volledige controle heeft over
het platform waarop de implementatie wordt uitgevoerd. Praktijkvoorbeelden
van een white-box omgeving kunnen gevonden worden bij digitale informatie
beschermingssystemen zoals bijvoorbeeld Digital Rights Management of Betaal-
TV systemen waarbij cryptografische algoritmes worden geïmplementeerd op
bijvoorbeeld een smartphone, tablet of set-top box. Het uitlekken van de geheime
sleutel zou leiden tot het teniet doen van de toegepaste beschermingstechniek.

White-box cryptografie richt zich op de geheimhouding van de sleutel van een
cryptografisch algoritme wanneer dit algoritme wordt uitgevoerd in een white-
box omgeving. In essentie is het een techniek om software implementaties van
cryptografische algoritmes te bekomen die voldoende weerstand bieden tegen
een white-box aanvaller. In de wetenschappelijke literatuur komen hoofdzakelijk
white-box implementaties van blokcijfers, een belangrijke subklasse van de
symmetrische sleutel cryptografische algoritmes, aan bod. In 2002 stelden Chow,
Eisen, Johnson and van Oorschot de eerst gepubliceerde white-box implementatie
van de Advanced Encryption Standard (AES) voor, waarbij AES één van de
meest vooraanstaande huidige blokcijfers is. Twee jaar later echter presenteerden
Biller, Gilbert en Ech-Chatbi een efficiënte aanval op deze implementatie. Dit

xi

xii SAMENVATTING

motiveerde de zoektocht naar nieuwe white-box AES implementaties die meer
weerstand bieden tegen sleutelextractie. In de wetenschappelijke literatuur
werden er drie systemen beschreven: de constructie van Bringer, Chabanne en
Dottax in 2006, van Xiao en Lai in 2009, en van Karroumi in 2010.

Dit doctoraat behandelt het ontwerp en de analyse van white-box implementaties
van blokcijfers, waarbij de belangrijkste bijdragen van toepassing zijn op het
gebied van het analyseren van white-box AES implementaties. Uitgaande
van de initiële verbetering van de aanval van Billet et al. voorgesteld door
Tolhuizen in 2012, geven wij enkele aanvullende verbeteringen aan, die leiden
tot een aanzienlijk vermindering van de totale werkfactor. Daarnaast leidt
onze verbeterde versie van de aanval tot enkele nuttige inzichten in verband
met de ontwerpstrategieën van de white-box AES implementatie van Chow
et al. Verder behandelt dit doctoraat in detail de analyse van de drie nieuwe
white-box AES implementaties uit de literatuur. Ten eerste tonen we aan hoe
equivalente sleutels op een efficiënte wijze kunnen onttrokken worden uit de
white-box AES implementatie van Bringer et al.; deze sleutels resulteren in
implementaties die functioneel equivalent zijn. Ten tweede beschrijven we een
praktische aanval op de white-box AES implementatie van Xiao en Lai, waarbij
we een aangepaste versie van het lineaire equivalentie-algoritme voorgesteld door
Biryukov, De Cannière, Braeken en Preneel gebruiken. Daarnaast beschouwen
we ook veralgemeningen van de Xiao-Lai white-box AES implementatie en de
impact ervan op ons resultaat. Ten derde tonen we aan dat Karroumi’s white-box
AES implementatie behoort tot de klasse van white-box AES implementaties
zoals gespecifiëerd door Chow et al. Daarom blijft Karroumi’s implementatie
kwetsbaar voor de aanval waarvoor hij specifiek ontworpen was tegen bestand
te zijn, namelijk de aanval van Billet et al. en onze verbeterde versie ervan.

De cryptanalytische resultaten bekomen in dit doctoraat tonen aan dat er begin
2014 geen enkele praktische en veilige white-box AES implementatie bestaat
gepubliceerd in de wetenschappelijke literatuur, ook al is AES nog steeds een
veilig black-box blokcijfer. Toch wordt er op het einde van dit proefschrift
een veelbelovende nieuwe ontwerpstrategie besproken, geïntroduceerd door
Michiels en Gorissen, die kan leiden tot de constructie van veilige white-box
AES implementaties. Alle huidige white-box AES implementaties gepubliceerd
in de wetenschappelijke literatuur zijn enkel gebaseerd op een vaste sleutel; wij
stellen een nieuwe dynamische sleutel white-box techniek voor, die toelaat om
de cryptografische sleutel te vernieuwen op een veiligere manier vergeleken met
de bestaande technieken.

Contents

I Introduction: from Black-Box to White-Box 1

1 Introduction: the Need for White-Box Cryptography? 3

1.1 White-Box Cryptography: a Use Case 6

1.1.1 Digital Rights Management 7

1.2 Outline and Contributions . 9

2 Design and Analysis of Block Ciphers: the Evolution 13

2.1 Defining Block Ciphers . 14

2.2 Block Cipher Design . 15

2.2.1 Confusion and Diffusion 16

2.2.2 Constructions . 17

2.3 Advanced Encryption Standard (AES) 18

2.3.1 Specification . 19

2.3.2 Standard Software Implementation 21

2.4 Security . 23

2.4.1 Perfect Security . 23

2.4.2 Computational Security 24

2.4.3 Kerckhoffs’ Assumption 25

2.4.4 Cryptanalyst’s Goal . 25

xiii

xiv CONTENTS

2.4.5 Attack Models . 26

2.4.6 The Unbounded White-Box Attacker 32

2.5 Cryptanalytic Techniques . 33

2.5.1 Black-Box Cryptanalysis 33

2.5.2 Grey-Box Cryptanalysis 42

2.5.3 White-Box Cryptanalysis 45

2.6 Conclusion . 51

II Design & Analysis of White-Box Implementations 53

3 Design and Analysis of White-Box AES Implementations 55

3.1 White-Box Cryptography . 56

3.1.1 Ideal White-Box Implementation 58

3.2 Initial Practical White-Box Techniques 59

3.3 White-Box AES Implementation 66

3.3.1 Lookup-Table Suitable Description of AES-128 66

3.3.2 White-Box AES-128 Implementation 67

3.3.3 Remark on the Use of Mixing Bijections 77

3.3.4 Extensions to AES-192 and AES-256 79

3.4 White-Box Security . 79

3.4.1 White-Box Attacker’s Goal 80

3.4.2 White-Box Security Objectives 82

3.4.3 White-Box Metrics . 82

3.5 Cryptanalytic Techniques . 85

3.5.1 Attacks on Weakened Variants 85

3.5.2 The BGE Attack . 89

3.5.3 An Attack Exploiting Internal Collisions 95

CONTENTS xv

3.5.4 Generic White-Box Attack of Michiels et al. 98

3.6 Conclusion and Outline of Part II 102

4 Revisiting the BGE Attack 105

4.1 Improving the BGE Attack . 106

4.1.1 Phases 1 and 2: Retrieve the round key bytes k̄(r,j)
i . . . 107

4.1.2 Phase 3: Retrieve the round key bytes k̄(r+1,j)
i 109

4.1.3 Phase 4: Extract the secret AES key 110

4.1.4 Phase 5: Extract the external encodings 112

4.1.5 Work Factor and Conclusion 116

4.2 Cryptanalysis of Karroumi’s White-Box AES Implementation . 117

4.2.1 Karroumi’s White-Box AES Implementation 117

4.2.2 Cryptanalysis . 121

4.3 Conclusion . 124

5 Cryptanalysis of the Xiao-Lai White-Box AES Implementation 125

5.1 The Xiao-Lai White-Box AES Implementation 125

5.2 Linear Equivalence Algorithm 130

5.3 Cryptanalysis . 132

5.3.1 Setup Phase . 132

5.3.2 Phase 1: Partially recover the input encodings 135

5.3.3 Phase 2: Find the desired linear equivalence (A,B)d . . 138

5.3.4 Phase 3: Extract the AES key and external encodings . 142

5.3.5 Work Factor . 143

5.4 The Generic Case . 143

5.4.1 Generic Cryptanalysis 144

5.4.2 Work Factor . 148

xvi CONTENTS

5.5 What about Other Types of Encodings? 149

5.5.1 Michiels et al.’s Generic White-Box Attack 151

5.6 Conclusion . 153

6 Cryptanalysis of Bringer et al.’s White-Box AES Implementation 155

6.1 Bringer et al.’s Novel White-Box Technique 156

6.2 Perturbated White-Box AES∗ Implementation 161

6.3 Cryptanalysis . 164

6.3.1 Setup Phase . 165

6.3.2 Phase 1: Analyze the final round 166

6.3.3 Phase 2: Analyze the penultimate round 171

6.3.4 Phase 3: Structurally decompose all rounds 174

6.3.5 Phase 4: Extract an equivalent key 176

6.3.6 Work Factor . 177

6.4 Conclusion . 178

7 State-of-the-Art and Q&A 179

7.1 State-of-the-Art of White-Box AES Implementations 179

7.1.1 Size and Performance 179

7.1.2 Cryptanalytic Results 184

7.2 Questions and Answers . 185

7.2.1 All white-box AES implementations in the academic
literature have been proven insecure. Now what? 185

7.2.2 All white-box implementations are fixed-key. What about
dynamic-key? . 189

7.3 Conclusion . 194

CONTENTS xvii

III Conclusion 197

8 Conclusions and Future Research 199

8.1 Summary of Results and Conclusions 199

8.2 Future Work . 203

IV Bibliography 205

Bibliography 207

List of Publications 217

List of Figures

1.1 Use case of white-box cryptography: a simplified DRM model . 7

2.1 Equivalent descriptions of AES-128 21

2.2 The evolution of the attack models 31

2.3 The multiset 3-round distinguisher of AES 40

2.4 Search keys in memory: the entropy attack 46

2.5 The S-box blanking attack . 49

3.1 Use case of external encodings: a simplified DRM model 65

3.2 Translating AES-128 into a series of lookup tables 70

3.3 The five types of encoded lookup tables of Chow et al.’s white-box
AES implementation . 75

3.4 Chow et al.’s white-box implementation of an AES subround . 76

3.5 Generic Type Ia and Type III tables of Chow et al.’s white-box
AES implementation . 78

3.6 Type II tables of Chow et al.’s white-box AES implementation
lacking the mixing bijections 85

3.7 Algebraic degree attack on a variant of Chow et al.’s white-box
AES implementation lacking the external encodings 88

3.8 The encoded AES subrounds of Chow et al.’s white-box AES
implementation . 90

xix

xx LIST OF FIGURES

3.9 Illustration of the generic Michiels et al.’s attack 100

4.1 Phase 3 of the improved BGE attack 110

4.2 The composition of the external encodings of Chow et al.’s white-
box AES implementation . 113

4.3 How to gain access to the external encodings of Chow et al.’s
white-box AES implementation 114

4.4 An encoded dual AES subround is an encoded AES subround . 123

5.1 The two types of encoded lookup tables of the Xiao-Lai white-box
AES implementation . 127

5.2 Overview of the Xiao-Lai white-box AES implementation . . . 129

5.3 Illustration how the linear equivalence (LE) algorithm works . . 131

5.4 Key-dependent vs. key-independent tables 133

5.5 Exploited vulnerability of the Xiao-Lai white-box AES imple-
mentation . 136

5.6 How to obtain leaked information about the secret encodings . 137

5.7 Recovery of the external output encoding of the Xiao-Lai white-
box AES implementation . 143

5.8 The encoded AES round functions of the Xiao-Lai white-box
AES implementation . 150

6.1 Bringer et al.’s perturbated white-box AES∗ implementation . . 160

6.2 Description of AES∗ . 162

6.3 Analysis of the final round of Bringer et al.’s white-box AES∗
implementation . 167

6.4 Partially extract the secret input encoding of the final round of
Bringer et al.’s white-box AES∗ implementation 170

6.5 Each equivalent key yields a functionally equivalent AES∗
implementation . 177

7.1 Variable encodings as a countermeasure against fixed encodings 187

LIST OF FIGURES xxi

7.2 Two dynamic-key white-box schemes applied to Chow et al.’s
white-box AES implementation 191

7.3 Our dynamic-key white-box scheme based on variable encodings 193

List of Tables

3.1 The amount of encoded nibble XOR tables appearing in Chow
et al.’s white-box AES implementation 74

3.2 Size and performance of Chow et al.’s white-box AES implemen-
tation . 77

3.3 Comparison of the size and performance of Chow et al.’s white-box
implementations of AES-128, AES-192 and AES-256 79

3.4 Comparison of the estimated overall work factor of the BGE
attack on Chow et al.’s white-box implementations of AES-128,
AES-192 and AES-256 . 95

5.1 Size and performance of the Xiao-Lai white-box AES implemen-
tation . 129

5.2 How to determine the correct guess of the functions in the generic
cryptanalysis of the Xiao-Lai white-box AES implementation . 146

7.1 Comparison of all white-box AES implementations with a
standard black-box software AES implementation with respect
to their size and performance 180

7.2 The cryptanalytic results on the three lookup-table-based white-
box AES implementations discussed in this thesis 184

xxiii

List of Symbols

General Notations

Fq the finite field with order q
Fnq the n-dimensional vector space over Fq
In the n-bit identity matrix over F2

0n×n the n× n zero matrix

AES-specific Notations

S the AES S-box (unless otherwise specified)

MC the 4× 4 circulant MixColumns matrix over F256

mci,j the coefficients of MC (indexed by i and j with 0 ≤ i, j ≤ 3)

SR the 128 × 128 non-singular matrix over F2 representing the
ShiftRows operation (unless otherwise specified)

sr the ShiftRows operation sr : {0, 1, 2, 3}×{0, 1, 2, 3} → {0, 1, 2, 3}
is defined by sr(i, j) = (j − i) mod 4

isr the ShiftRows operation sr : {0, 1, 2, 3}×{0, 1, 2, 3} → {0, 1, 2, 3}
is defined by sr(i, j) = (j + i) mod 4

xxv

xxvi LIST OF TABLES

Operators and Functions

x, y two n-bit words (for illustration purposes only)
X,Y two permutations on Fn2 (for illustration purposes only)

x‖y or the concatenation of the bit strings x and y (unless referred to as
a pair of n-bit words in the case of (x, y))(x, y)

Y ◦X Y ◦X : Fn2 → Fn2 is defined by Y ◦X(x) = Y
(
X(x)

)(
X,Y

) (
X,Y

)
: F2n

2 → F2n
2 is defined by

(
X,Y

)
(z) =

(
X(x), Y (y)

)
for

each 2n-bit word z = (x, y) with x, y ∈ Fn2 . In other words,
(
X,Y

)
is the diagonal mapping with components X and Y (unless referred
to as a pair of permutations on Fn2)

⊕ the bitwise addition modulo 2 (exclusive-OR operation or XOR)
and the addition operation in the AES polynomial representation
of F256

⊗ the multiplication operation in the AES polynomial representation
of F256

⊕l,⊗l the addition and multiplication operations in the polynomial
representation of F256 associated with one of the 30 irreducible
polynomials of degree 8 over F256 (indexed by l with 1 ≤ l ≤ 30)

⊕c ⊕c : Fn2 → Fn2 with c ∈ Fn2 is defined by ⊕c(x) = x⊕ c

〈z〉L, 〈z〉R the left and right nibble of the byte z in a graphical representation,
i.e., the left and right nibble contain the four more significant bits
and the four less significant bits within z, respectively, such that
z = 〈z〉L ‖ 〈z〉R

Part I

Introduction:
from Black-Box to White-Box

1

Chapter 1

Introduction: the Need for
White-Box Cryptography?

Our society has always been information centric. Already in the early days, it
was well understood that along with processing and exchanging information
also comes the importance of its security. In the beginning, information security
was primarily demanded by the government and the military as they dealt with
information that was confidential and sensitive by nature. For example, the
Roman emperor Julius Caesar is among other things still very well known for
the use of his famous Caesar cipher.

The demand for information security and the way how information is secured
have dramatically changed over the last decades. This is due to the penetration
of the personal computer in our living rooms and the success of the Internet
in the early 1990s; these phenomena caused a shift of the processing and
exchange of information to the digital domain. Furthermore, due to the vast
advancements in telecommunications, such as the growth of the Internet and
the rapidly expanding digital mobile/wireless networks, an enormous number of
parties all over the globe got interconnected through (mobile) communication
devices. Billions of end-users started to use their electronic devices (connected
to a network) for various tasks such as phone calls, e-mails, instant messaging
and online financial transactions. Furthermore, the interconnectivity of billions
of end-users made organizations aware of its enormous commercial value. Digital
entertainment services arose such as digital television and virtual multimedia
stores to purchase music or rent a movie. These trends as a result of the digital
information infrastructure started to play a significant role in our daily lives.

3

4 INTRODUCTION: THE NEED FOR WHITE-BOX CRYPTOGRAPHY?

Although interconnecting many different parties on a global scale clearly has
its advantages, it also has its disadvantages. For example, digital information
such as a bank transaction sent over a wireless connection is easy to intercept.
Furthermore, these parties can be either trusted, such as government officials
or legitimate organizations, or untrusted, such as end-users who may or may
not behave maliciously. Therefore, it has become crucial to protect digital
information. The science that studies this problem is called cryptology. Modern
cryptology shows that the need for information security is no longer restricted
to the government and the military.

The evolution of cryptology. Cryptology consists of two complementary
branches: cryptography and cryptanalysis. Cryptographers design methods
to protect information sent over an insecure communication channel, whereas
cryptanalysts analyze the strength of these methods. Close interaction between
both branches is important since the security of cryptographic methods often
depends on the results obtained through cryptanalysis during many years.

Cryptography is the art of designing cryptographic algorithms to protect data or
communication in the presence of an attacker (cf. Rivest [89]). The traditional
setting considered in cryptography is discussed in the following, although the
interpretation of “in the presence of an attacker” has strongly evolved over
time as explained later. Two parties, referred to as sender and receiver, wish
to exchange a confidential message over an insecure communication channel in
such a way that the message is unintelligible for any third party (called the
attacker) eavesdropping on the channel. In order to achieve this goal, both
parties execute a cryptographic algorithm using some secret information to
either transform (i.e., encrypt) the original message called the plaintext into
an unreadable form called the ciphertext (at the side of the sender) or recover
(i.e., decrypt) the plaintext from the ciphertext (at the side of the receiver).
So, instead of the original message, the ciphertext is transmitted from which
it is assumed to be impossible to recover the plaintext without knowing the
secret information. This secret information is called cryptographic keys. If the
cryptographic keys used for encryption and decryption are identical or can be
derived from each other through a simple transformation, one speaks about
symmetric-key cryptography. Throughout this doctoral thesis, symmetric-key
cryptographic algorithms with identical keys are considered.

Now, when designing cryptographic algorithms, it is crucial to estimate the
capabilities of the attacker as realistically as possible in the form of so-called
attack models. Until the late 1990s, modern cryptography assumed that the
end-points of the communication channel are trusted and that the cryptographic
algorithms are executed in a secure environment. In this traditional model,

INTRODUCTION: THE NEED FOR WHITE-BOX CRYPTOGRAPHY? 5

known as the black-box model, the attacker has at most access to input/output
behavior of the algorithm since he is only able to manipulate or eavesdrop on
the channel between the trusted parties. So, until the late 1990s, the main idea
was to employ a strong publicly known cryptographic algorithm on a trusted
platform and rely on the secrecy of the cryptographic key.

However, starting in the second half of the 1990s, the attack landscape changed
dramatically and the black-box model started to fall short. This was mainly
due to the breakthrough of the computer and (mobile) communication devices,
combined with the enormous success of the Internet and mobile networks
interconnecting billions of users. This way, cryptography-enabled applications
deployed on physically insecure devices (e.g., being susceptible to malware or
viruses) were brought closer to a very broad audience of end-users, who may
potentially behave maliciously. Therefore, the end-points of the communication
channel could no longer be assumed to be trusted (or can even be considered to
be the opponent) and naturally the traditional black-box assumption was no
longer satisfied. This led to a need for more realistic attack models capturing
the capabilities of more powerful attackers, as is explained in the following.

In practice, a cryptographic algorithm is implemented either in hardware or
software and is often executed on an untrusted open platform, i.e., the electronic
device on which the implementation is executed is in possession of and under
control of the end-user. As a result, the end-user has (limited) access to the
hardware/software implementation of the cryptographic algorithm, which clearly
exceeds the capabilities of the attacker in the black-box model. In the academic
literature, the shortcomings of the black-box model were highlighted by the
appearance of the so-called implementation attacks in 1996 (cf. Kocher [59]).
These attacks exploit implementation-specific information; if this information is
leaked unintentionally out of the cryptographic implementation during its
execution, one speaks about side-channel information. Examples of side-
channels are execution time and power consumption. The attack model
incorporating implementation-specific information is called the grey-box model.

However, in 2002, an even stronger attack model was introduced, called the white-
box attack context (cf. Chow et al. [23]) or simply white-box model. This model,
considered to be the strongest attack model from the perspective of the attacker,
focuses solely on the software implementation of cryptographic algorithms
executed on untrusted open platforms, i.e., platforms that are in possession of
and under control of a potentially hostile end-user (e.g., a laptop, smartphone,
tablet or set-top box). An attacker in the white-box model is assumed to
have full access to the software implementation as well as full control over its
execution environment. This allows the attacker for example to use debuggers
with breakpoint functionality in order to observe and manipulate intermediate
results of the implementation. Furthermore, the attacker is allowed to search

6 INTRODUCTION: THE NEED FOR WHITE-BOX CRYPTOGRAPHY?

the memory for stored keys (cf. Shamir and van Someren [97]), even after
cooling the memory in order to preserve its state (cf. Halderman et al. [48]). For
conventional cryptographic software implementations intended to be deployed
in the black-box model only, such capabilities of the attacker form a real threat.
Now, since it is often the case that all internal details about the cryptographic
algorithm are known except for the secret key, the way how it is implemented
in software becomes crucial. White-box cryptography focuses on this problem.

The existence of the more realistic grey-box and white-box attack models shows
that a secure cryptographic implementation (either in hardware or software) can
be considered as at least as important than the secure black-box properties of a
cryptographic algorithm since the attacker will always try to exploit the weakest
link in the security chain. If the attacker has access to the cryptographic
hardware or software, then this weakest link can be found in either weak
black-box design properties or weak implementation properties. Note that the
untrusted end-points of the communication channel assumed in the grey-box
and white-box models are not necessarily hostile end-users; for example, a
plausible scenario would be that the physical device of a legitimate end-user on
which the cryptographic algorithm is executed, is infected by malware.

1.1 White-Box Cryptography: a Use Case

White-box cryptography aims to construct software implementations of
cryptographic algorithms in such a way that they offer a sufficient level
of robustness against a white-box attacker. The part ‘a sufficient level of
robustness’ refers to protecting the confidentiality of the secret cryptographic
key, which is also the primary goal of white-box cryptography. Later in this
thesis, other white-box security goals are mentioned (see Sect. 3.4.2 for a
discussion). Ultimately, an attacker in the white-box model should not have any
advantage over an attacker in the black-box model with respect to extracting
the secret cryptographic key, i.e., either having full access to and full control
over the cryptographic software implementation or having solely access to the
input/output behaviour of the implementation should not make any difference.
Implementations obtained through the application of white-box cryptography
are called white-box implementations.

The frequent occurrence of the white-box model in the real world, and thus the
need for white-box cryptography, emanates from the ever increasing demand
to deploy strong cryptographic algorithms in software applications that are
executed on an untrusted open platform. As an illustration, we discuss the
deployment of white-box cryptography in Digital Rights Management.

WHITE-BOX CRYPTOGRAPHY: A USE CASE 7

1.1.1 Digital Rights Management

Due to the digital revolution starting in the 1990s, copying and (illegally)
distributing digital content has never been so easy. Therefore, content providers
needed new technologies to protect their digital assets and to control the access
and distribution of their copyright protected content. Such content protection
schemes are known as Digital Rights Management or DRM. As expected, DRM
can be found in many popular online digital multimedia (such as video, music,
ebooks, apps etc.) stores nowadays. As an example, refer to the online Apple
iTunes and iBooks Stores using Apple’s FairPlay DRM system. Although
Apple made music DRM free in 2009 [4], videos and ebooks purchased through
the iTunes and iBooks Store still use Apple’s FairPlay DRM system. Besides
Apple, there are many other companies using DRM technology as well, such as
Microsoft using Windows Media DRM for the Windows Media Player [76].

Remote Content Provider

m

License
Generator

Lic

EK

E0
kK

E0
k(K)

EK(m)

Trusted Media Player Application

License Verifier
YES NO

D0
k

D

player

mg

g�1

g(K)

Figure 1.1: Use case of white-box cryptography: a simplified DRM model.

Cryptography typically forms one of the basic building blocks to enforce a DRM
system. A simplified DRM model is depicted in Fig. 1.1, that serves merely as an
example to sketch an environment that can benefit from white-box cryptography
and is not intended to represent real-world deployed DRM architectures. This
simplified DRM model comprises two parties: the remote content provider and
the trusted media player (e.g., iTunes) executed on the end-user’s untrusted
platform (e.g., a PC). Here, it is assumed that the trusted media player is a
solely software based application.

Now, the remote content provider delivers the copyright protected media content
m to the authorized end-users in an encrypted form, consisting of the following
three items:

1. the encrypted media content EK(m), where EK(·) denotes a known
symmetric-key encryption algorithm E using the secret content key K;

2. the encrypted content key E′k(K), where E′k(·) denotes a (possibly
different) known symmetric-key encryption algorithm E′ using the secret

8 INTRODUCTION: THE NEED FOR WHITE-BOX CRYPTOGRAPHY?

end-user’s personal key k. The corresponding decryption algorithms of E
and E′ are denoted by D and D′, respectively;

3. the DRM license Lic, comprising the restrictions (conditions) under which
the end-user is allowed to access the digital content. Such a DRM license
can for example specify a limited time frame (e.g., for movie rentals), or
a maximum number of copies that can be made.

Typically, items 2 and 3 are sent simultaneously only upon request (i.e., purchase)
of the end-user, whereas item 1 is available for download. Upon receipt of the
above three items, the media player performs the following tasks. First, it
verifies through the DRM license whether the end-user is allowed to gain access
to the media content or not. After a positive confirmation (‘YES’), the media
player first decrypts the content key K using the end-user’s personal key k and
immediately applies an invertible encoding g to K, and then decrypts the media
content using K after first applying the inverse encoding g−1 to g(K).

Clearly, in the DRM setting (Fig. 1.1), the attacker (i.e., either a maliciously
behaving end-user or malware executed on the end-user’s device) steps out
of the traditional black-box model and complies with the white-box model;
he is in possession of and has control over the platform on which the media
player application is executed. The attacker has the incentive to circumvent
the restrictions posed by the DRM license. Being able to do so, a movie rental
becomes as it were a movie purchase. He may achieve his goal by successfully
performing one of the following three actions:

1. extract one of both decryption keys, i.e., either the content key K or the
end-user’s personal key k;

2. tamper with the license verifier code such that it always outputs ‘YES’;

3. intercept the media content m.

Countermeasures against the above mentioned attempts to bypass the DRM
system are given below:

1. ensure that the used cryptographic keys are never revealed in the code
implementing the media player application (either static or dynamic) or
in the memory of the device on which the application is executed;

2. make the license verifier code tamper-resistant such that reverse
engineering becomes a complex task and any attempt to modify the
code results in breaking the functionality of the media player;

OUTLINE AND CONTRIBUTIONS 9

3. fingerprint the media content that unambiguously identifies the end-user
such that a traitor (i.e., a malicious end-user illegally distributing his
media content) can be traced back.

With respect to the first countermeasure, this can be achieved by constructing
white-box implementations of both decryption algorithms to prevent decryption
key extraction. Observe that between both decryption algorithms, the content
key K only appears in an encoded form, i.e., g(K). In [73], Michiels and
Gorissen describe a technique to combine countermeasures 1 and 2. For a
discussion on the practical security aspects of DRM and the involvement of
white-box cryptography, refer to Schultz [95].

1.2 Outline and Contributions

This introductory chapter showed that there is a need for secure white-box
implementations of cryptographic algorithms in our modern information society
due to the digital revolution and the related demand for strong cryptographic
algorithms as building blocks of software applications executed on untrusted
platforms. The cryptographic algorithms performing symmetric-key encryption
or decryption are called ciphers. Depending on how they process the plaintext
or ciphertext, two classes can be identified: block ciphers and stream ciphers.
In the past decades, there have been two prominent block ciphers: the Data
Encryption Standard (DES) [68], standardized in 1977, and its successor the
Advanced Encryption Standard (AES) [69], standardized in 2001.

The remainder of this doctoral thesis is dedicated to the design and analysis of
white-box implementations of block ciphers, and in particular of white-box AES
implementations. Before describing the outline of this thesis, the state-of-the-art
of white-box implementations of block ciphers relevant to the results considered
in this thesis is briefly discussed.

State-of-the-Art of White-Box Implementations of Block Ciphers. In 2002,
Chow, Eisen, Johnson and van Oorschot introduced the research field of ‘white-
box cryptography’ [24, 23] and presented generic techniques to construct
practical white-box implementations of block ciphers; they applied their
techniques to both DES and AES and proposed an example white-box DES
implementation [24] and an example white-box AES implementation [23].
However, subsequent cryptanalytic results [51, 64, 105, 47, 13, 75] showed
that both white-box implementations are insecure by efficiently extracting the
embedded secret cryptographic key. One of the negative results by Billet,

10 INTRODUCTION: THE NEED FOR WHITE-BOX CRYPTOGRAPHY?

Gilbert and Ech-Chatbi [13], i.e., a practical attack on the white-box AES
implementation of Chow et al., acted as a trigger for research dedicated to
designing new white-box AES implementations to reinforce its white-box security.
This led to three new white-box AES designs published in the academic literature:
the ones by Bringer, Chabanne and Dottax in 2006 [20], by Xiao and Lai in
2009 [107] and by Karroumi in 2010 [53]. All three proposals were claimed to
be white-box secure by offering resistance against the attack of Billet et al.

For a brief overview about white-box cryptography and white-box implementa-
tions, refer to Joye [52], Michiels [70] or Wyseur [104]. For a detailed overview,
refer to Wyseur [103] or Muir [78].

Outline and Summary of Contributions. The outline and the main contribu-
tions presented in the different chapters of this thesis are summarized below.

Chapter 2: Design and Analysis of Block Ciphers: the Evolution. This chapter
discusses the most common design principles as well as the security of
block ciphers. With regard to the design of block ciphers, the specification
of the prominent and widely used Advanced Encryption Standard (AES)
is given, which is necessary for the description of the white-box AES
implementations in Chapters 3-6. With regard to the assessment of
the security of block ciphers, the evolution of the attack models and
their corresponding cryptanalytic techniques are discussed. This chapter
concludes with the observation that the most appropriate attack model
in which AES deployments should be considered, is the white-box model,
and that this poses a major challenge for designing secure software
implementations of AES (or of block ciphers in general). This challenge is
addressed by white-box cryptography, that is the subject of the following
chapters.

Chapter 3: Design and Analysis of White-Box Implementations. This chapter
elaborates on the objective of white-box cryptography, namely the con-
struction of secure software implementations of cryptographic algorithms
employed in the white-box model, and describes the generic white-box
techniques introduced by Chow et al. [24, 23] in 2002 to achieve this goal in
a practical manner. Further, this chapter elaborates in detail on the design
and analysis of the white-box AES implementation of Chow et al. [23].
With regard to the analysis part, the practical attack of Billet et al. [13]
(referred to as the BGE attack) and the generic white-box attack of
Michiels, Gorissen and Hollmann [75] are discussed. As mentioned before,
in response to these attacks, three new white-box AES implementations
appeared in the academic literature for which it was claimed that they
withstand the BGE attack.

OUTLINE AND CONTRIBUTIONS 11

Chapter 4: Revisiting the BGE Attack. Starting from the initial improvement
of the BGE attack presented by Tolhuizen in 2012 [101], in this chapter we
present several additional improvements of the BGE attack and show that
the original work factor of 230 can be reduced to 222 if Tolhuizen’s and
our improvements are combined. Additionally, we show that Karroumi’s
white-box AES implementation [53] belongs to the class of white-box AES
implementation specified by Chow et al. in [23]. As a result, Karroumi’s
implementation remains vulnerable to the attack it was designed to resist,
i.e., the BGE attack and our improved version.
The main part of this work was published in [36] (ePrint 2013/450)
and is joint work with Peter Roelse (Irdeto B.V., The Netherlands) and
Bart Preneel (KU Leuven, Belgium). This result also appeared in [63]
(SAC 2013) as part of a merged paper with Tancrède Lepoint (École
Normale Supérieure and CryptoExperts, France) and Matthieu Rivain
(CryptoExperts, France).

Chapter 5: Cryptanalysis of the Xiao-Lai White-Box AES Implementation.
In this chapter we present a practical attack on the white-box AES
implementation of Xiao and Lai [107]. Although Michiels et al.’s white-
box attack [75] can be applied to the Xiao-Lai implementation, the attack
is generic by nature and hence is not optimized, which results in a rather
large work factor (estimated at at least 249; note that Michiels et al.
do not provide a clean discussion on the overall work factor of their
attack). Therefore, we show how specific properties of both AES as
well as of the white-box implementation itself can be exploited in order
to obtain an optimized non-generic attack with a work factor of 232.
Additionally, we consider design generalizations of the Xiao-Lai white-box
AES implementation and investigate their impact on the work factor of
our cryptanalysis.
The main part of this work was published in [35] (SAC 2012) and is joint
work with Peter Roelse (Irdeto B.V., The Netherlands) and Bart Preneel
(KU Leuven, Belgium).

Chapter 6: Cryptanalysis of Bringer et al.’s Perturbated White-Box AES
Implementation. This chapter first describes the novel white-box technique
introduced by Bringer et al. in 2006 [20] as well as its application to both
AES and a variant of AES (denoted by AES∗). Next, we present a
practical attack on the white-box AES∗ implementation of Bringer et al.;
the attack extends naturally to Bringer et al.’s white-box implementation
of standard AES.
This work was published in [38] (INDOCRYPT 2010) and is joint work
with Brecht Wyseur (Nagravision S.A., Switzerland) and Bart Preneel
(KU Leuven, Belgium).

12 INTRODUCTION: THE NEED FOR WHITE-BOX CRYPTOGRAPHY?

Chapter 7: State-of-the-Art and Q&A. This chapter presents the state-of-the-
art of white-box AES implementations; first a comparison is given between
the size and performance of software AES implementations deployed in
the white-box and black-box model, and second the cryptanalytic results
of white-box AES implementations are summarized and conclusions are
drawn. Further, this chapter discusses a few directions for designing new
secure white-box AES implementations. Additionally, some techniques
are described to construct white-box implementations with the possibility
to update the cryptographic key. As part of this, we present a new
dynamic-key white-box technique different from the existing techniques.
This work was published in [91] (Patent 2013/139380) and is joint work
with Peter Roelse (Irdeto B.V., The Netherlands).

Chapter 8: Conclusions and Future Research.

Other results obtained during this doctoral research, that are not related to
white-box cryptography and thus not considered in this thesis, were published
in [34, 37]. A list of all publications can be found on p. 217.

Chapter 2

Design and Analysis of Block
Ciphers: the Evolution

The deployment of a cryptographic algorithm has the objective to achieve
security requirements that are application dependent. The requirements listed
below tend to be of general importance:

Confidentiality ensures that an attacker is unable to gain any information about
the content of the communication while listening to the communication
channel;

Entity authentication allows the identification of an entity such as a person, a
physical device or a software program;

Data authentication allows the detection of any unauthorized modification (by
an attacker with access to the communication channel) of the origin
and/or the content of the communication. Data authentication is in fact
a synonym for data integrity since it is considered hard to tamper with a
message without changing its origin.

Since the cryptographic algorithm is typically only a small but important part
of the application in which it is deployed, its success in achieving the above
security requirements not only depends on its obtained level of security, but
also on how the application itself is engineered. In this thesis, the focus is on
the security of (the implementation of) cryptographic algorithms under the
assumption that the application in which the algorithms are deployed contains
no ‘security’ weaknesses. In order to evaluate this security, it is crucial to take

13

14 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

into account the environment in which the application is deployed. This is
done by means of an attack model that is assumed to capture the capabilities
of an attacker as realistically as possible. In order to achieve a sufficient level
of security, (the implementation of) the cryptographic algorithm should be
properly designed with respect to the appropriate attack model.

The class of symmetric-key cryptographic algorithms covers those algorithms
in which all entities participating in the communication share the same secret
key material. The shared secret keys can be either identical or derived
from one another via a simple transformation. Within this class, one can
distinguish three different types of algorithms: block ciphers, stream ciphers
and message authentication code (MAC) algorithms. The speed at which
symmetric-key algorithms operate makes them a powerful tool for performing
encryption/decryption or authentication. This chapter focuses on the class of
block ciphers, which are widely deployed in many applications and thus can be
considered as a crucial cryptographic primitive. Furthermore, block ciphers can
be used as building blocks to construct stream ciphers and MAC algorithms;
however this topic falls out of the scope of this thesis.

This chapter presents a broad overview of the design and analysis of block
ciphers. Most inspiration for writing this introductory chapter comes from the
books published by Knudsen and Robshaw [58] and by Daemen and Rijmen [31].
First, the class of block ciphers is defined and it is explained what is meant by
an ideally designed block cipher. Next, the most common design principles are
discussed in order to obtain practical block cipher designs approximating the
ideal cipher. As an example, the design specification of a widely used block
cipher called the Advanced Encryption Standard (AES) is given. Second, it
is discussed when a practical block cipher is considered to be insecure. With
respect to the assessment of the security of a block cipher, the attack models
appearing in practice are discussed, as well as their evolution in time due to the
dramatic shift of applications in which block ciphers are deployed. Additionally,
the most common cryptanalytic techniques corresponding to the different attack
models are described. As the attack models only become more severe, and
hence the corresponding cryptanalytic techniques more powerful, this naturally
leads to the importance of white-box cryptography, which is discussed in detail
in the next chapter.

2.1 Defining Block Ciphers

A block cipher consists of a pair of cryptographic algorithms, one for encryption
and the other for decryption, that operates on blocks of data (i.e., fixed-length

BLOCK CIPHER DESIGN 15

bit strings). The class of block ciphers is defined as follows.

Definition 1 (Block cipher). An nb-bit block cipher E is a deterministic
function mapping an nb-bit plaintext block m onto an nb-bit ciphertext block c
under the action of an nk-bit secret key k:

E : Fnb
2 × Fnk

2 → Fnb
2 : (m, k) 7→ c = Ek(m) , (2.1)

where nb and nk denote the block size and key size of the block cipher, respectively.
The key-dependent mapping Ek(·) is a permutation on nb bits for each k ∈ Fnk

2 ,
and each different value of k results in a distinct permutation. In this way, a
block cipher E specifies a family BC of 2nk permutations on Fnb

2 , where 2nk

denotes the total number of possible key values.

Block ciphers are used to encrypt/decrypt nb-bit message blocks in order to
provide data confidentiality. The process of encryption is given by the nb-bit
bijective mapping Ek(·) defined by (2.1). The process of decryption is given by
the inverse mapping E−1

k (·) = Dk(·) instantiated with the same secret key k such
that it satisfies the correctness property: ∀m ∈ Fnb

2 ,∀k ∈ Fnk
2 : Dk

(
Ek(m)

)
= m.

Typical values for the block size nb are 64 or 128 bits.

There are (2nb)! ≈ (2nb/2)2nb distinct permutations on Fnb
2 , hence a practical

block cipher specifies only a small fraction of all permutations. The size and
composition of the specified family BC is completely determined by the key size
nk and the design of the block cipher, respectively. Ideally, a random element
of the set of all (2nb)! distinct permutations on Fnb

2 is assigned to each of the
2nk permutations Ek(·). This brings us to the concept of an ideal block cipher
(cf. Black [16]).

Definition 2 (Ideal block cipher [16]). A block cipher E is called ideal, if the
family BC of 2nk permutations on Fnb

2 specified by E is selected uniformly at
random from the set of all (2nb)! distinct permutations on Fnb

2 .

2.2 Block Cipher Design

The primary objective of a designer is to approximate ideal block ciphers, even
though the design of block ciphers is assumed to be highly structured. Such
structure within block ciphers is inevitable since it is impractical to store 2nk

truly randomly chosen permutations on Fnb
2 . However, even ideal block ciphers

(Def. 2) remain susceptible to a certain class of black-box attacks known as the
generic attacks, i.e., attacks that do not exploit the internal structure of the
block cipher. Section 2.5.1 elaborates on the various black-box attacks.

16 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

2.2.1 Confusion and Diffusion

Within the field of block cipher design, Shannon [99] laid in 1949 the foundation
by introducing the concepts of confusion and diffusion, concepts that up to
now are still widely considered in the process of designing new block ciphers.
The motivation behind these concepts was to hide the redundancy inherently
present in the plaintext. Both concepts can be described as follows:

Confusion captures the complex way in which the ciphertext bits depend on
the plaintext bits and key bits. The goal is to make this relationship as
complicated as possible such that it is hard (and preferably impossible)
to be exploited by an attack. Basic components achieving confusion are
non-linear substitution boxes (S-boxes) that are typically implemented as
lookup tables (see Def. 3 below). However, the storage requirement of
lookup tables (see Property 1 below) imposes a restriction on their input
size.

Diffusion captures the influence of each plaintext bit and each key bit on the
ciphertext bits. The goal is to make this influence as large as possible. The
block cipher should exhibit the property that flipping a single plaintext bit
or key bit results in flipping each ciphertext bit with probability 1

2 . This
propagation property is known as the avalanche effect. Basic components
achieving diffusion are (i) linear diffusion boxes (D-boxes) comprising wide
linear operations or (ii) permutations operating at bit-level or at the level
of bundles of bits (e.g., at byte-level), also referred to as bit transpositions
or bundle transpositions respectively. In contrast to the non-linear S-boxes,
there is no restriction on the input size of these diffusion components.

Typically, a strong block cipher contains a high degree of confusion and
diffusion; this requires a close interaction between the following three operations:
substitutions, linear operations and transpositions. Later, in Sect. 2.5.1, some
desirable properties of S-boxes and diffusion components are discussed with
respect to differential and linear cryptanalysis.

Definition 3 (Lookup table). A lookup table L mapping m bits to n bits is a
specific representation of any given function f : Fm2 → Fn2 , i.e., L is an array of
2m n-bit entries, denoted by L[i] for i = 0, 1, . . . , 2m − 1, with L[i] = f(bin(i))
where bin(i) ∈ Fm2 denotes the binary representation of i.

Property 1 (Storage requirement of a lookup table). A lookup table mapping
m bits to n bits requires a total of 2m · n bits of storage. As this amount is
exponential in the table’s input size m (measured in bits), the storage requirement
becomes quickly impractical for large m.

BLOCK CIPHER DESIGN 17

2.2.2 Constructions

The mix of non-linear substitutions and linear diffusion operations is a crucial
component of most block cipher designs. This mix can be obtained in various
ways such as the following two prominent and efficient constructions adopted
by many important block ciphers (e.g., DES [68], AES [69], Serpent [7], . . .):
Feistel ciphers and Substitution-Permutation Network (SPN) ciphers. Both
constructions belong to the class of iterative block ciphers, also known as product
ciphers, introduced by Shannon in [99]. A product cipher is a block cipher made
by iterating a fairly simple key-dependent round function many times. While a
single key-dependent round function acts as a weak block cipher, the iteration of
several round functions may result in a strong block cipher. A formal definition
is given in the following.

Definition 4 (Iterative block cipher/product cipher). An nb-bit block cipher
E is called an iterative block cipher with R rounds if for each key k ∈ Fnk

2 ,
the bijective mapping Ek on Fnb

2 comprises the iterative application of R key-
dependent round transformations E(r)

k(r) with 1 ≤ r ≤ R, i.e.,

Ek = E
(R)
k(R) ◦ · · · ◦ E

(2)
k(2) ◦ E

(1)
k(1) , (2.2)

where each key-dependent round transformation E(r)
k(r) is a permutation on Fnb

2
and where k(r) (1 ≤ r ≤ R) denotes the rth round key. All round keys are
derived from the secret key k through the application of the key scheduling
algorithm ks, defined as

ks : Fnk
2 → FnK

2 : k 7→ K = (k(1) ‖ k(2) ‖ · · · ‖ k(R)) , (2.3)

where K is called the expanded key and represents the concatenation of all round
keys and where nK denotes the length of K.

Within the class of iterative block ciphers (Def. 4), two (not distinct) subclasses
can be identified: the iterated block ciphers and the key-alternating block
ciphers. For iterated block ciphers, all key-dependent round transformations
are identical, i.e., E(r)

k(r) = Ek(r) (1 ≤ r ≤ R). For key-alternating block
ciphers, all key-dependent round transformations are a two-layered structure
consisting of a XOR with the round key followed by a key-independent round
transformation, i.e., E(r)

k(r) = E(r) ◦ ⊕k(r) (1 ≤ r ≤ R). The intersection of the
two subclasses determines the class of key-iterated block ciphers, which essentially
is defined as key-alternating block ciphers for which all key-independent round
transformations are identical, i.e., E(r)

k(r) = E ◦ ⊕k(r) (1 ≤ r ≤ R).

18 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

Substitution-Permutation Network (SPN) Ciphers. In the following, one
of the most widely accepted constructions to build iterative block ciphers is
described, i.e., the class of Substitution-Permutation Network (SPN) ciphers.
The description below is generic, hence deviations from it are most likely to
occur in modern block cipher designs.

Definition 5 (Substitution-Permutation Network (SPN) cipher). An nb-bit
SPN cipher with R rounds is an iterative block cipher where each key-dependent
round transformation E(r)

k(r) (1 ≤ r ≤ R) is a permutation on Fnb
2 and typically

consists of three layers (not necessarily in the following order): (i) the confusion
layer comprising (the parallel execution of) S-boxes, (ii) the diffusion layer
comprising D-boxes and/or (bit or bundle) transpositions, and (iii) the round
key k(r) addition layer.

For SPN ciphers, decryption is performed by inverting the encryption process
while taking the round keys in reversed order. As a consequence, each key-
dependent round transformation E

(r)
k(r) (1 ≤ r ≤ R) needs to be a bijective

mapping on Fnb
2 , which means that all layers defined in Def. 5 need to be

invertible as well. Because of the restriction on the input size of S-boxes due to
the storage requirement (Property 1, p. 16), the nb-bit confusion layer typically
consists of s mi-bit bijective S-boxes Si (i = 1, 2, . . . , s) (each representing a
permutation on Fmi

2) in parallel with
∑s
i=1mi = nb. The nb-bit diffusion layer

typically comprises a bijective affine/linear mapping on Fnb
2 combined with

a (bit or bundle) transposition. Note that (bit or bundle) transpositions are
invertible by definition.

An advantage of SPN ciphers is that they tend to have good diffusion
properties since the diffusion layer typically operates on all nb bits of the
state simultaneously. Depending on the choice of the diffusion operations, full
diffusion can already be achieved after two rounds (e.g., for AES). The concept
of full diffusion is described in Sect. 2.5.1.

Example. The Advanced Encryption Standard or AES [69] abbreviated is a
128-bit key-iterated SPN block cipher. A detailed description of AES is given
in the next section, i.e., Sect. 2.3.

2.3 Advanced Encryption Standard (AES)

Let us start by sketching the historical context of the AES. In 1973, the National
Bureau of Standards (NBS), now called the National Institute of Standards and
Technology (NIST), issued a request for proposals for a block cipher that can be

ADVANCED ENCRYPTION STANDARD (AES) 19

used for the protection of sensitive government data. This led to the adoption
of the Data Encryption Standard (DES), developed by IBM and the NSA and
published in FIPS 46 [68] in 1977. However, due to the increasing computational
power and the various cryptanalytic results (e.g., linear cryptanalysis [66] – see
Sect. 2.5.1), it was believed that the DES key size of 56 bits became too small to
provide a sufficiently high level of security in many applications. Additionally,
the rather slow software performance of DES became unacceptable for many
software applications. Therefore, in 1997, NIST issued a call for proposals
for a new block cipher, i.e., the Advanced Encryption Standard (AES) as the
successor of DES. In 2000, the block cipher Rijndael [28, 31], designed by
Daemen and Rijmen, with a fixed block size of 128 bits and a variable key size of
128, 192 or 256 bits was selected as the AES and was published in FIPS 197 [69]
in 2001. The lifespan of AES is expected to last for another 20 to 30 years.

2.3.1 Specification

The Advanced Encryption Standard (AES), published in FIPS 197 [69], is a
128-bit key-iterated SPN block cipher supporting three different key sizes, i.e.,
128, 192, or 256 bits, denoted by AES-128, AES-192 or AES-256, respectively.
In general, AES consists of R rounds and has R+ 1 128-bit round keys that are
derived from the secret AES key using the AES key scheduling algorithm; R
depends on the key size, i.e., R = 10, 12 or 14 in the case of AES-128, AES-192
or AES-256, respectively. Each AES round and the operations within a round
update a 16-byte state; the initial and final state are the AES plaintext and
ciphertext, respectively. An AES state is represented by the conventional 4× 4
byte array [statei,j]0≤i,j≤3, called the state array.

AES can be described elegantly by interpreting the bytes of the state as elements
of the finite field F256, and by defining AES operations as mappings over this
field. In the remainder of this thesis, the specific polynomial representation of
the field elements of F256 as defined in [69] is referred to as the AES polynomial
representation. Now, an AES round comprises the following operations:

SubBytes applies the AES S-box to every byte of the state. AES uses one fixed
S-box, denoted by S, which is a non-linear bijective mapping from 8 bits
to 8 bits, defined as S(x) = A(x−1) with A a fixed bijective affine mapping
on F8

2. The inversion x−1 is computed in F256, with 00−1 = 00. The AES
S-box has been very carefully designed; e.g., it has a high algebraic degree
(exploited by the algebraic degree attack discussed in Sect. 3.5.1) and very
good linear/differential lower bounds.

20 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

ShiftRows applies a circular shift to the left by i byte positions to each row i
of the state array for 0 ≤ i ≤ 3. Observe that the row indexed by i = 0
remains invariant. With respect to the ShiftRows operation, the function
sr(i, j) : {0, 1, 2, 3}× {0, 1, 2, 3} → {0, 1, 2, 3} is introduced that is defined
as sr(i, j) = (j − i) mod 4 such that

statei,j
ShiftRows−−−−−−→ statei,sr(i,j) for 0 ≤ i, j ≤ 3 .

MixColumns is a linear operation on F16
256 that applies 4 instances of

the MixColumns operation in parallel to the 16-byte state. The
MixColumns operation itself is represented by an invertible 4× 4 circulant
matrix MC over F256. The 16 entries of MC = [mci,j]0≤i,j≤3 are called the
MixColumns coefficients mci,j ; they are elements of the set {01, 02, 03}.
To update the state, each column j of the state array is interpreted as a
4× 1 vector over F256 and multiplied by MC for 0 ≤ j ≤ 3:

state0,j
state1,j
state2,j
state3,j

← MC·


state0,j
state1,j
state2,j
state3,j

 with MC =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 , (2.4)

for j = 0, 1, 2, 3. Throughout this thesis, it is assumed to be clear from the
context whether the MixColumns operation refers to the linear operation
on F16

256 or the 4× 4 matrix MC over F256.

AddRoundKey is a bitwise addition modulo two (i.e., XOR) of a 128-bit round
key k(r) (1 ≤ r ≤ R+ 1), represented by a 4× 4 byte array [k(r,j)

i]0≤i,j≤3,
and the state array.

In accordance to the SPN structure, the confusion layer comprises the SubBytes
step, and the diffusion layer consists of the combination of ShiftRows and
MixColumns. As a result of the wide trail strategy (see Sect. 2.5.1, p. 39), the
diffusion layer has been designed carefully such that it achieves ‘full diffusion’
after only two rounds.

Figure 2.1a depicts the conventional description of AES-128, which consists of
10 rounds and has 11 128-bit round keys k(r) (1 ≤ r ≤ 11). There are several
equivalent ways to describe AES-128 by defining the boundaries between rounds
in different ways, one of which is depicted in Fig. 2.1b where k̂(r) for 1 ≤ r ≤ 10
is the result of applying ShiftRows to k(r). As is discussed in Chapter 3, the
alternative description (Fig. 2.1b) is used as a reference for white-box AES-128
implementations. Observe that (i) a pre-whitening AddRoundKey step (k(1)) is
performed before the first round in the conventional description (Fig. 2.1a), and

ADVANCED ENCRYPTION STANDARD (AES) 21

a post-whitening AddRoundKey step (k(11)) is performed after the final round in
the alternative description (Fig. 2.1b), and (ii) the MixColumns step is omitted
in the final round. The pre/post-whitening step prevents the ‘peeling-off’ of
parts of the first/final round, whereas the omission of the MixColumns step
ensures a certain symmetry between AES encryption and decryption.

state ← plaintext
state ← AddRoundKey(state,k(1))
for r = 1 to 9 do

state ← SubBytes(state)
state ← ShiftRows(state)
state ← MixColumns(state)
state ← AddRoundKey(state,k(r+1))

end for
state ← SubBytes(state)
state ← ShiftRows(state)
state ← AddRoundKey(state,k11)
ciphertext ← state

(a) Conventional description of AES-128.

state ← plaintext
for r = 1 to 9 do

state ← ShiftRows(state)
state ← AddRoundKey(state,k̂(r))
state ← SubBytes(state)
state ← MixColumns(state)

end for
state ← ShiftRows(state)
state ← AddRoundKey(state,k̂(10))
state ← SubBytes(state)
state ← AddRoundKey(state,k(11))
ciphertext ← state

(b) Alternative description of AES-128.

Figure 2.1: Equivalent descriptions of AES-128.

As white-box AES implementations typically do not implement the AES key
scheduling algorithm, the description of this algorithm is not required. For
details about the AES key scheduling algorithm, refer to FIPS 197 [69]. However,
note that the AES key scheduling algorithm is invertible, and in the case of
AES-128, it has the property that the 128-bit AES key can be computed if one
of the round keys is known. In fact, the first round key k(1) is equal to the AES
key in the case of AES-128.

2.3.2 Standard Software Implementation

One of the requirements during the AES competition was that the AES
candidates should have a high performance in both hardware and software. This
requirement was met by Rijndael, which eventually became AES. In [31], Daemen
and Rijmen presented efficient AES implementations for various platforms. Here,
the focus is on the performance-oriented software implementation on 32-bit
(or higher) processors, the one that is used most often in practice (e.g., in
OpenSSL [82] – see the aes_core.c file in “openssl-1.0.1e/crypto/aes/”).

As pointed out in [31, p. 56], very fast implementations on processors with word
length 32 can be obtained by merging SubBytes and MixColumns together

22 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

into a single set of four lookup tables. Observe that in the alternative
‘implementation-friendly’ description of AES-128 (Fig. 2.1b) both steps are
already adjacent in the round function which simplifies the merger. Concerning
the MixColumns operation, the 4 × 4 matrix MC can be split into four 4 × 1
submatrices over F256: MCl is defined as column l of MC for l = 0, 1, 2, 3. Using
this notation, the MixColumns matrix-vector multiplication (2.4) is decomposed
into a XOR of four 32-bit values and is given by

state0,j
state1,j
state2,j
state3,j

← 3⊕
l=0

MCl · statel,j for j = 0, 1, 2, 3 . (2.5)

By taking the SubBytes step, which precedes the MixColumns step, into
account, (2.5) becomes

state0,j
state1,j
state2,j
state3,j

← 3⊕
l=0

MCl · S(statel,j) for j = 0, 1, 2, 3 , (2.6)

where S denotes the AES S-box. Now, SubBytes and MixColumns are merged
together by constructing four SMCl (l = 0, 1, 2, 3) lookup tables, each table
mapping 8 bits to 32 bits and composing both the AES S-box and a quarter of
the MixColumns operation: SMCl = MCl ◦ S for l = 0, 1, 2, 3. Note that in [31],
these tables are denoted by Tl (l = 0, 1, 2, 3).

With the alternative description of AES-128 depicted in Fig. 2.1b, very fast
implementations can be obtained as follows: (i) ShiftRows is implemented
simply by means of a byte transposition, i.e., appropriately shifting the bytes,
(ii) AddRoundKey of a 128-bit round key is implemented as four 32-bit XOR
operations, and (iii) SubBytes and MixColumns are implemented by means of
16 table lookups (using the SMCl tables) and 12 32-bit XOR operations:

state0,j
state1,j
state2,j
state3,j

← 3⊕
l=0

SMCl(statel,j) for j = 0, 1, 2, 3 . (2.7)

Observe that in the final round, the MixColumns step is omitted. One option is to
implement the AES S-box as an additional lookup table mapping 8 bits to 8 bits.
However, each SMCl table already implicitly implements the AES S-box since
each MixColumns submatrix MCl contains exactly two MixColumns coefficients
equal to 01. Hence, the AES S-box can be extracted out of any of the SMCl
(l = 0, 1, 2, 3) tables by considering the appropriate eight output bits.

SECURITY 23

This standard software AES implementation is referred to as the lookup-
table-based AES implementation by Daemen and Rijmen in [31]. The total
implementation size equals 4 kB, which corresponds to the size required to store
the four SMCl (l = 0, 1, 2, 3) lookup tables (Property 1, p. 16): each SMCl table
requires 28 · 32 bits (= 1 kB) of storage space. As is discussed in Chapter 3, a
somewhat similar lookup-table-based AES implementation as the one described
above is used as a starting point to construct white-box AES implementations.

2.4 Security

During the process of designing a new block cipher, the desired security level
needs to be taken into account. Below, different levels of security are highlighted.
As it turns out, the achieved security of block ciphers is often evaluated by
considering their corresponding state-of-the-art cryptanalytic results, which
depends on a certain security notion comprising the following two factors: (i)
the goal of the cryptanalyst and (ii) the attack model that represents the hostile
environment in which the block cipher is deployed (based on the application in
which it is used). Both factors, and more specifically the evolution of attack
models over time, are discussed at the end of this section.

2.4.1 Perfect Security

The highest level of security is called perfect security, introduced by Shannon [99]
and defined in the following.

Definition 6 (Perfect security). A cipher is called perfectly secure if the
ciphertext does not reveal any information about the plaintext, or in other
words, if the plaintext and the ciphertext are statistically independent.

Perfect security is also often called unconditional security against unbounded
adversaries, where an unbounded adversary refers to an attacker having access
to an unlimited amount of computing power. Shannon showed that the Vernam
cipher [102] (also known as one-time pad1) provides perfect security if the secret
key is randomly chosen and only used once. Furthermore, he proved that in
order to achieve perfect security, the entropy of the key needs to be at least as
high as the entropy of the plaintext, which implies that the key needs to be at
least as long as the plaintext and may never be reused again.

1The Vernam cipher, first described by Miller [77] in 1882 and later in 1917 (re)invented
by Vernam, is a stream cipher with the following simple encryption scheme: ci = mi ⊕ ki,
where mi, ki and ci denote the ith bit of the plaintext, key and ciphertext respectively.

24 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

In the field of block ciphers, perfect security is approached by ideal block
ciphers (see Def. 2). However, as mentioned earlier, even implementing an ideal
block cipher is impractical since it requires the storage of 2nk randomly chosen
permutations on Fnb

2 . As a result, practical block ciphers approximate ideal
block ciphers while being highly structured, and thus containing less entropy.
Therefore, practical block ciphers can achieve at most computational security.

2.4.2 Computational Security

Instead of assuming unbounded adversaries as is the case for perfect security, in
practice, it makes more sense to assume bounded adversaries, i.e., attackers who
have access to only a limited amount of computational resources. This brings
us to the concept of computational security.

Definition 7 (Computational security). A block cipher E using an nk-bit
secret key is called computationally secure if there exist no attacks on E with a
complexity less than the one of an exhaustive key search, i.e., 2nk .

In the above definition, the complexity of an attack refers to the combination
of the time (i.e, the work factor), memory (i.e., the storage requirement and
the amount of memory accesses) and data (i.e., the type and amount of data)
complexities required during the offline (i.e., precomputation) and online phase
of the attack. It is crucial to consider all three different complexities since they
all determine the actual cost, and hence the (im)practicality, of an attack. The
generic black-box attack exhaustive key search, which is used as a reference in
Def. 7, is described in Sect. 2.5.1.

However, as Def. 7 implicitly suggests, it is hard to evaluate (or even stronger,
to prove) the (computational) security of a block cipher. Therefore it is common
practice to consider a well-defined subset of all existing attacks and to make the
proper design choices of the block cipher to resist this subset of attacks. For
example, with regard to resistance against differential and linear cryptanalysis
(discussed on p. 39), this often involves the provable lower bounds on the
probabilities of differential/linear characteristics of certain components (e.g.,
S-boxes) and the differential/linear properties of a multiple round structure
(e.g., the number of active S-boxes) of block ciphers.

At the end, the most convincing argument concerning the security of a block
cipher relates to the concept of ad hoc security: a cipher is said to be ad hoc
secure if no successful attacks (i.e., better than exhaustive key search) have been
found by cryptanalysts for many years after the publication of the specification
of the cipher. Making the design specification of a block cipher public falls
under Kerckhoffs’ assumption, which is discussed in the next section.

SECURITY 25

2.4.3 Kerckhoffs’ Assumption

In 1883, Kerckhoffs [54] stated six principles that should be met by well designed
military ciphers at that time. The second principle, which is now known as
Kerckhoffs’ assumption or Kerckhoffs’ principle, is still of great importance
nowadays and is quoted in the following:

“Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi.” [54]

With the above quote, Kerckhoffs stated that a cryptographic algorithm should
remain secure even if everything about the algorithm is known except for the
secret key. In other words, the security of the algorithm should rely solely
on the secrecy of the key and not on the secrecy of the specification of the
algorithm itself. It should be emphasized that Kerckhoffs never made a statement
about either ‘publish the specification’ or ‘keep the specification confidential’.
Therefore, it is best practice to always design a cryptographic algorithm (such
as a block cipher) under the assumption that its specification is known to the
attacker (e.g., if the attacker figures out how the algorithm works) and thus
without relying on the secrecy of the design. After that, it remains the choice
of the designer to either publish the specification or keep it confidential.

The former case (i.e., a public specification) might be interesting if a block
cipher design lacks any security proofs such that it can gain trust through ad
hoc security (Sect. 2.4.2). The first block cipher with a full public specification
was Lucifer, the predecessor of DES. Now, also AES has a publicly known
specification; moreover, given its simple algebraic structure, it was a target of
many cryptanalysts during many years and will remain in the spotlights for years
to come. The latter case (i.e., a confidential specification) creates an additional
challenge that the attacker is facing, namely extracting the specification.

2.4.4 Cryptanalyst’s Goal

As explained in Def. 7, a block cipher is called computationally insecure once
a successful attack has been found with a complexity less than that of an
exhaustive key search. In order to complement Def. 7, a ‘successful attack’
should be defined. Depending on the application in which the cipher is deployed,
an attacker can be satisfied with various cryptanalytic results. A classification
of the outcome of an attack [58, p. 7-8] is given below:

Total break: the full recovery of the nk-bit secret key k;

26 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

Global deduction: the construction of an algorithm functionally equivalent
to Ek (or Dk) without the knowledge of the secret key k;

Local deduction: the retrieval of Ek(m) (or Dk(c)) for some plaintext m (or
ciphertext c) without the knowledge of the secret key k;

Distinguishability: the ability to distinguish between (i) the permutation Ek
specified by the block cipher E for a randomly chosen secret key k and
(ii) a randomly chosen permutation on Fnb

2 . Here, it is assumed that the
distinguisher does not know the secret key k.

The order of the above classification is hierarchical, i.e., the successful execution
of an attack ensures the successful execution of all subsequent attacks. Note
that the inability to successfully execute the ‘distinguishability attack’ relates
to the definition of ideal block ciphers (Def. 2).

Now, depending on the goal of the cryptanalyst, a successful attack does
not necessarily imply the full recovery of the secret key. For example, as
is discussed later in Sect. 3.4 in the context of white-box security, inverting
the cryptographic algorithm (i.e., global deduction) can pose a serious threat
without ever recovering the actual secret key. A detailed discussion of the above
classification with respect to white-box cryptography (i.e., the objective of a
white-box attacker) is given in Chapter. 3 (Sect. 3.4.1).

2.4.5 Attack Models

Attack models specify the capabilities of the attacker (i.e., the cryptanalyst) in
order to attempt breaking a block cipher while achieving his goal, i.e., finding
an attack with a complexity less than the one of exhaustive key search. Such
attacks are also referred to as shortcut attacks. The existence of attack models
formulating the hostile environment in which a block cipher will be deployed, is
crucial when it comes down to designing a new block cipher or an implementation
(hardware and/or software) of an existing block cipher with respect to assessing
its security level.

Below, the three main attack models are discussed and a comparison (related
to their evolution over time) is given at the end of this section.

Black-Box Model

The black-box model is the model assumed in traditional cryptography. In this
attack model, the authorized end-users of the communication channel (i.e., the

SECURITY 27

sender and the receiver(s)) are assumed to be trusted. Where this assumption
was valid in the earlier years of cryptography, the wide range of applications in
which cryptographic primitives are deployed nowadays clearly shows that the
black-box model is inadequate.

The black-box model is the most conservative model in which the information
available to the attacker is solely restricted to the input/output behavior of the
block cipher, where the input corresponds to the plaintext and secret key, and
the output corresponds to the ciphertext (in the case of encryption). According
to which information (i.e., input and/or output) is available to the attacker, and
to which operations (i.e., read and/or (adaptively) write) the attacker is allowed
to perform on this information, a classification of black-box attack models is
given below:

Ciphertext-only: the attacker has only read access to the ciphertext. This is
considered to be the default and also weakest attack scenario such that
failure to resist attacks within this model implies particularly insecure
block cipher designs.

Known plaintext: the attacker has read access to plaintext/ciphertext pairs.
Linear cryptanalysis (cf. Matsui [65]) belongs to this class of attack models.

Chosen plaintext: the attacker has write access to the plaintext and read
access to the corresponding ciphertext. Choosing specific forms of
plaintexts is a crucial requirement of differential cryptanalysis (cf. Biham
and Shamir [8]).

Chosen ciphertext: the attacker has write access to the ciphertext and read
access to the corresponding plaintext. This attack model requires that
the attacker has (limited) access to the decryption routine.

Adaptively chosen plaintext/ciphertext: similar to the ‘chosen variants’
above, with the difference that the attacker is able to depend his choice
on intermediate results obtained during the attack.

The above classification is not complete. First, every possible combination of
the above mentioned classes results in a valid attack model. Second, as the
secret key is part of the input of a block cipher, there exist other attack models
such as known key and chosen key (cf. Knudsen and Rijmen [57]) that are of
typical interest for block cipher based hash function designs where the key is
either known to the attacker or to some extent under the attacker’s control.

28 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

Grey-Box Model

In reality, cryptographic primitives such as block ciphers are always implemented
either in hardware or software on physical devices. In the black-box model, it is
assumed that these implementations behave as ideal black boxes, preventing any
observation or tampering of internal operations/data. Hence, the capabilities
of the attacker are restricted to observing the input/output behavior of the
cryptographic primitives, which together with the knowledge of the (possibly)
public specification often results in rather complex attacks with a high
computational cost.

However, in practice, the assumption of ideal black boxes is unrealistic. This led
to the introduction of a more realistic attack model, i.e., the grey-box model, that
no longer assumes that the end-points of the communication channel are trusted
(as was the case in the black-box model). In the grey-box model, (limited)
access to the implementation belongs to the capabilities of the attacker, such
that the information available to the attacker is, apart from the information
available in the black-box model, further expanded by implementation-specific
information that typically is (weakly) correlated to the cryptographic key.
Attacks focusing on the implementation of cryptographic algorithms rather than
on the algorithms themselves are referred to as implementation attacks, and
can be categorized by the following two classes:

Intrusive nature: this relates to the fact whether the attacker tampers
with the behavior of the system containing the implementation of the
cryptographic primitive or not. Hence, the following distinction can be
made: (i) active attacks that involve tampering by for example altering
the environmental conditions (e.g., heat) and (ii) passive attacks that
involve no tampering and are restricted to just observing.

Invasive nature: this relates to the fact whether the attacker tampers with
the device of the cryptographic system in order to gain (direct) access
to internal components or not. Depending on the degree of tampering,
one can distinguish the following three attacks: (i) invasive attacks that
involve direct access to the internal components of the cryptographic
system, (ii) semi-invasive attacks that involve access to the system only
through the authorized surface and (iii) non-invasive attacks that are
limited to the externally available information (which is unintentionally
leaked/emitted), i.e., the device remains unaltered.

In general, the subclass of passive non-invasive implementation attacks poses a
serious threat to the security of cryptographic devices since they are undetectable
and tend to be of low cost. This subclass is formed by the so-called side-channel

SECURITY 29

analysis (SCA) attacks. The implementation-specific information exploited by
SCA attacks is called the side-channel information and refers to additional
information that is leaked/emitted out of a real-world implementation through
unintended side-channels during its execution. Examples of side-channels are
execution time, power consumption and electromagnetic radiation. SCA attacks
were introduced by Kocher [59] in 1996.

According to how the obtained side-channel information (referred to as side-
channel trace(s)) is analyzed, the following distinction can be made: simple
and differential SCA attacks. In the case of simple SCA attacks, only one
side-channel trace is measured and the attack relies on the correlation between
the executed implementation-specific instructions and the side-channel output.
In the case of differential SCA attacks, multiple side-channel traces are measured
for different input data and the attack exploits the data-dependencies in the
obtained side-channel traces based on statistical analysis. Additionally, a
distinction can be made between profiled and non-profiled SCA attacks. Profiled
SCA attacks contain an a priori profiling phase during which the attacker
has full control over a training device that is equal or similar to the attacked
physical cryptographic implementation (i.e., the target device). This allows
the attacker to gather side-channel traces corresponding to known or chosen
inputs and/or keys of the training device in the profiling phase, which later
can be used during the actual SCA attack on the target device. An example
of a profiled SCA attack is the template attack, introduced by Chari, Rao and
Rohatgi [22] in 2002.

White-Box Model

The grey-box model as discussed above is the most severe attack model when it
comes down to hardware implementations of cryptosystems, i.e., the attacker
is allowed to tamper with the physical device in order to obtain some useful
key-correlated side-channel information. However, with respect to software
implementations, the model becomes significantly weaker as the attacker is
only allowed to have access to the implementation through side-channels such
as execution time (see the cache timing attacks discussed in Sect. 2.5.2). In
practice, as indicated by the use case treated in Sect. 1.1, the extent to which
the attacker has access to software implementations is often much more severe:
i.e., in real world applications, software implementations are executed in an
untrusted environment and hence are much more vulnerable than merely the
unintentional leakage of side-channel information. As a consequence, in 2002, a
new ‘realistic’ attack model was introduced by Chow, Eisen, Johnson and van
Oorschot [24, 23] under the name of the white-box attack context.

30 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

Definition 8 (White-box attack context [23, p. 4]). The white-box attack context
(WBAC) captures the strongest capabilities of an attacker in the scenario of the
execution of software implementations of cryptosystems in a hostile environment.
The WBAC assumes that:

1. fully-privileged attack software shares a host with cryptographic software,
having complete access to the implementation of algorithms;

2. dynamic execution (with instantiated cryptographic keys) can be observed;

3. internal details of cryptographic algorithms are both completely visible and
alterable at will.

To summarize, in the white-box attack context, also referred to as the white-box
model, the end-users are considered to be untrusted as within the grey-box
model, and moreover are assumed to have (i) full access to the cryptographic
software implementation and (ii) full control over its execution platform. As a
result, examples of what an attacker is allowed to perform on cryptographic
software in the white-box model are the following:

- static analysis by means of disassemblers or decompilers: the attacker is
allowed to reverse-engineer the software implementation and adaptively
alter parts of it to his advantage, i.e., tampering with the software;

- dynamic analysis by means of debuggers with breakpoint functionality:
the attacker can observe any intermediate result and alter it at will, i.e.,
injecting well-chosen faults. He is also allowed to start/stop executing the
software at any given point;

- search in memory for cryptographic keys.

The list above is not complete, however, it contains the most common capabilities
exploited by an attacker in the white-box model (i.e., a white-box attacker).

Within the field of software protection techniques, the white-box model is also
known as the malicious host attack model (cf. Sander and Tschudin [94, 93]).
Clearly, with respect to software implementations, the white-box model can be
considered as a worst case attack model from the perspective of the designer.
However, note that a white-box attacker is assumed to have only access to
the cryptographic software, and hence not to the software generating the
cryptographic software (also known as the white-box (WB) generator). If the
attacker also has access to the WB generator, then he steps out of the white-box
model; this is an example of an even more severe (maybe not practical) attacker.

SECURITY 31

Comparison Between Attack Models

The biggest change between attack models is determined by the lack of trust in
the end-users, which takes place at the transition from the black box model to the
grey-box/white-box model. While the mathematical strength of a cryptographic
primitive is central to the black-box model, its implementation comes into
play in the grey-box model (mainly hardware) and the white-box model (solely
software). When going through all three different attack models, i.e., from
black-box to grey-box to white-box, it is clear that the threat only increases in
accordance to the increasing amount of information available to the attacker
(Fig. 2.2). In fact, all models build upon each other in the order mentioned
above, e.g., a white-box attacker complies to the grey-box and black-box models.
As a consequence, there exists a certain duality concerning the security within
the different attack models, where the black-box model is assumed to be the
weakest attack model, and the white-box model to be the strongest attack model
(here and below, the terms ‘weaker’, ‘weakest’, ‘stronger’ and ‘strongest’ are
from the perspective of the attacker):

1. Insecurity within an attack model implies insecurity within all stronger
attack models as well, but not necessarily in the weaker attack models;

2. Security within an attack model implies security within all weaker attack
models as well, but not necessarily in the stronger attack models.

As an example, this thesis shows that in early 2014 there exists no secure
white-box AES implementation in the academic literature, however, AES is still
considered to be a black-box secure block cipher.

Dk(·)Ek(·)

m/c

c/m

ad
ve

rs
ar

y

m/c

c/m

ad
ve

rs
ar

y

injecting
faults

- power
- time
- EM
- ...

Dk(·)
Ek(·)

m/c

c/m

ad
ve

rs
ar

y

- debug
- reverse engineer
- inspect memory

Dk(·)
Ek(·)

- inject faults
- alter implementation

black-box model grey-box model white-box model

weakest strongestincreasing security threat

Figure 2.2: The evolution of the attack models.

The shift in attack models is largely caused by the era of the computer and
communication devices, i.e., by the fact that cryptography-based applications on

32 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

physically (insecure) devices have been brought closer to a very broad audience
of end-users, hence also to potentially hostile end-users. Take for example the
DRM setting where the end-user is considered to be the opponent. Interestingly,
this shift is reflected in the times at which the various attack models have been
introduced: the black-box model roughly since the beginning of cryptology, the
grey-box model since 1996 and the white-box model since 2002. Note that these
introduction times refer to their first appearance in the literature, and that it is
likely that the various attack models already existed in practice in advance.

2.4.6 The Unbounded White-Box Attacker

Recall from Sect. 2.4.2 that the overall complexity of an attack could be divided
into time, memory and data complexities. In the black-box and grey-box model,
all three different types of complexity play a crucial role in determining the
overall complexity (i.e., the practicality) of a black-box or grey-box attack. In
particular, concerning the data complexity given by the amount and type of
data (i.e., the number of known or (adaptively) chosen plaintexts/ciphertexts)
required for the attack, the black-box or grey-box attacker is typically bounded
by the number of queries he can make in order to collect the necessary data
due to limited access to (the implementation of) the cryptographic algorithm.
Often this results in a bottleneck with respect to the practicality of an attack.
As is discussed in Sect. 2.5.1 (see the example on p. 38), even though the linear
and differential attacks on DES show its computational insecurity, the attacks
are still considered to be theoretic since the data complexity is impractical.

However, since a white-box attacker is in possession and in full control of the
cryptographic software implementation, the number of queries he can make to
the implementation is unbounded (though in practice this number is still limited
by time and available storage). Similar reasoning can be found in the case
of profiled SCA attacks, where the grey-box attacker is assumed to be in full
control of a training device during the profiling phase. Furthermore, the white-
box attacker is not solely restricted to the input/output of the cryptographic
algorithm (i.e., the plaintext and ciphertext), but he can observe, alter or inject
any intermediate result in the cryptographic software implementation as well.

Complexity of a white-box attack. Because of the above reasoning, the way
how the overall complexity of a black-box or grey-box attack is determined
becomes less relevant in the context of white-box attacks. First, due to the
fact that the white-box attacker can compute at will and is not bounded in the
number of queries he can make, data complexity is not meaningful anymore.
Second, as will become clear in Part II of this thesis, white-box attacks tend to

CRYPTANALYTIC TECHNIQUES 33

have negligible memory complexities. As a result, the overall complexity of a
white-box attack is determined by its time complexity, which is referred to as
the work factor in the remainder of this thesis.

2.5 Cryptanalytic Techniques

This section describes the most common cryptanalytic techniques used within
the three different attack models discussed in Sect. 2.4.5.

2.5.1 Black-Box Cryptanalysis

Two different classes of black-box attacks can be distinguished: (i) the generic
attacks that only exploit the core properties of the cipher such as the block and
key size, and (ii) the non-generic attacks that exploit additionally the internal
structure/specification of the block cipher. As mentioned earlier, the former
class of attacks can be mounted against ideal block ciphers. Below, a selection
of the most common black-box attacks is highlighted.

Generic Attacks

Exhaustive key search. The exhaustive key search attack, also known as the
brute force attack, simply consists of testing all possible values of the secret
key. This ‘key test’ can be performed in the ciphertext-only setting which relies
on redundancy (i.e., a biased statistical distribution) in the plaintext in order
to identify the correct key. However, in order to avoid the reliance on this
plaintext redundancy, a known plaintext/ciphertext pair in the known plaintext
setting is preferred (from the perspective of the attacker). The ‘time’ complexity
(i.e., the work factor) of the brute-force attack to retrieve an nk-bit secret key
equals about 2nk encryption operations, where the computation cost of the key
scheduling algorithm (if applicable) should be taken into account. If more than
one key is given as output for the original plaintext/ciphertext pair, the attack
needs to be repeated for additional plaintext/ciphertext pairs. Optimizations
are possible through the parallelization of the exhaustive key search.

Dictionary attack. Related to the exhaustive key search attack is the
dictionary attack. Where the former is executed in the time domain, the
latter is executed in the memory domain. The dictionary attack is a chosen-
plaintext attack: in order to identify the correct key, the ciphertext of a chosen

34 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

plaintext is matched against a lookup table that stores the encryption of the
chosen plaintext under all possible values of the secret key. When ignoring the
cost of the offline phase (i.e., building the lookup table), for an nb-bit block
cipher using an nk-bit secret key, the memory requirement is given by 2nk · nb
bits, whereas the ‘time’ complexity equals only one single table lookup.

Time-memory trade-off attack. Between the above two extreme attacks, i.e.,
the ‘time-based’ brute force attack and the ‘memory-based’ dictionary attack,
lies the time-memory trade-off attack proposed by Hellman [49]. The main idea
behind this chosen-plaintext attack is to break down the entire key space into a
collection of smaller sets and to perform the exhaustive search over these sets.
Again, when ignoring the cost of the offline phase, the time-memory trade-off
attack requires 2nk·2/3 encryption operations and 2nk·2/3+1 · nk bits of memory.
In fact, many different time-memory trade-offs are possible.

Code book attack. Some generic attacks such as the code book attack exploit
the block size of the cipher instead of the key size. A code book corresponds to
a table storing the ciphertexts for all 2nb possible plaintexts encrypted using
the same key. Hence, given such a table representing the code book, an attacker
can easily decrypt any ciphertext by means of one single table lookup. Hence,
for an nb-bit block cipher, the ‘time’ complexity is only one single table lookup,
whereas the memory requirement is given by 2nb · nb bits.

Example. As the block cipher DES [68] is a 64-bit iterated non-key-alternating
Feistel block cipher using a 56-bit secret key, the exhaustive key search attack
requires 256 encryption operations. Although originally generic attacks were
not considered as a serious threat, they gained significant interest with respect
to DES due to (i) the increasingly growth of computation power and (ii) the
relatively short key size of 56 bits. In 1998, the Electronic Frontier Foundation
(EFF) [41] built a machine, called the Deep Crack, that performs a successful
brute force attack on DES in about 56 hours. In 2009, SciEngines [96] introduced
the RIVYERA computing-architecture (the successor of the COPACOBANA
machine) that is able to exhaustively find a DES key in less than a single day.

Countermeasure against generic attacks. Because of the independence of
the design specification of the block cipher, the single countermeasure is to
increase the key space and message space. The length (measured in bits) of the
secret key depends on the security level demanded by the containing application.
When consulting the yearly ECRYPT II report of 2011-2012 [67, Table 7.4], a
length of 80 or 128 bits offers sufficient security against a wide range of attackers.
If long-term security is required, a key length of 256 bits is advised.

CRYPTANALYTIC TECHNIQUES 35

Non-generic Attacks

At this point, it is assumed that both the key and block size have been carefully
chosen such that generic attacks are far from practical. Hence the next step
is to exploit specific design characteristics (i.e., the internal structure) of the
block cipher. Therefore, such attacks, classified as non-generic, do not apply
straightforward to any block cipher. An exception to this rule is the so-called
meet-in-the-middle (MITM) attack, which is a generic time-memory trade-off
attack and is typically applied to block ciphers comprising multiple (double or
triple) encryption using independent keys.

Typically, non-generic attacks comprise the following two phases:

Phase I concerns the construction of an s-round distinguisher, i.e., a pattern
over s rounds that holds true with a relatively high probability. As
mentioned before in Sect. 2.2, the designer’s goal is to ensure that the
highly structured block cipher E approximates an ideal block cipher
(Def. 2), i.e., the key-dependent permutation Ek(·) for a randomly chosen
key k should be indistinguishable from a random permutation. Conversely,
the attacker’s goal is to identify an s-round distinguisher that enables
him to distinguish the s-round reduced version of Ek(·) from a random
permutation.

Phase II concerns the recovery of round key(s). An s-round distinguisher allows
an attacker to attack an s+ 1 or s+ 2-round (reduced) version of the key-
instantiated block cipher by either appending a first round or final round
or both before and/or after the distinguisher. Next, given a sufficient
amount of plaintext/ciphertext pairs, the attacker is able to identify (parts
of) the first/final round key(s) as follows: (i) guess the involved round key
bits, (ii) (partially) encrypt (or decrypt) the plaintexts (or corresponding
ciphertexts), and (iii) verify whether the s-round distinguisher holds true
for that particular guess. Once (parts) of the round key(s) have been
recovered, the attacker may obtain the actual secret key.

For an R-round block cipher, one speaks of a full-round attack if s+ 1 = R (or
s+ 2 = R). Otherwise, it is called a reduced-round attack.

If a full-round non-generic attack improves the exhaustive key search attack, i.e.,
it has a lower complexity, one speaks about a shortcut attack. The existence of
shortcut attacks implies the computational insecurity of a block cipher (Def. 7).
However, a distinction should be made between practical and theoretical shortcut
attacks. In line with the desirable key size discussed above, the upper bound
on the complexity of shortcut attacks is given by 280 or 2128, depending on the

36 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

amount of computational resources available to the addressed attacker. Very
loosely speaking, this can be considered as the boundary between practical and
theoretical.

Differential cryptanalysis. Differential cryptanalysis is a chosen-plaintext
attack, and was introduced by Biham and Shamir [8] in 1990. As turned
out later by analyzing the design of DES, the attack was already identified by
the designers of DES in the mid 1970s. Over the years, differential cryptanalysis
has been shown to be a very powerful cryptanalytic technique for symmetric-key
cryptographic primitives.

In a nutshell, differential cryptanalysis keeps track of the probabilistic behavior
of a difference through multiple rounds of a block cipher. Assuming that the key
addition operation of the block cipher is given by the bitwise addition modulo
two (or XOR operation), which typically is the case for many common block
ciphers, then a difference between two bit strings X and X ′ of equal length is
defined as ∆X = ∆(X,X ′) = X ⊕X ′.

Now, the s-round distinguisher exploited by differential cryptanalysis is an
s-round differential (introduced by Lai, Massey and Murphy in [61] and defined
below) that holds true with a high probability, i.e., a probability significantly
higher than the random difference probability 1/2n where n typically denotes
the block size.

Definition 9 (Differential [61]). An s-round differential is a pair of differences
(α, β), where the input difference α is the chosen plaintext difference so that
∆P = ∆(P, P ′) = α, and where the output difference β is the expected difference
between the partially encrypted plaintexts P, P ′ after s rounds, denoted by Cs, C ′s
respectively, so that ∆Cs = ∆(Cs, C ′s) = β. The probability of the differential
is given by the conditional probability Pr

(
∆Cs = β | ∆P = α

)
, which is taken

over the entire plaintext space and key space.

Typically, the complexity of a (successful) differential attack is expressed in the
number of chosen plaintext pairs (P, P ′) with ∆(P, P ′) = α required to identify
the correct key. This number is inversely proportional to the probability of
the differential (α, β). As a consequence, the higher this probability and thus
the better the differential, the lower the complexity becomes. Calculating the
probability of an s-round differential is likely to be a complex task, however,
a good approximation is given by Lai, Massey and Murphy in [61] under the
following two assumptions: (i) the block cipher is a Markov cipher (Def. 10)
with independent and uniformly random round keys, and (ii) the hypothesis of
stochastic equivalence (Def. 11).

CRYPTANALYTIC TECHNIQUES 37

Definition 10 (Markov cipher [61]). An iterated cipher with round function
Cr = Ek(r)(Cr−1) is a Markov cipher, with respect to the defined difference, if

Pr
(
∆Cr = β | ∆Cr−1 = α,Cr−1 = γ

)
is independent of γ for all α and β when the round key k(r) is chosen uniformly
at random, where ∆Cr−1 and ∆Cr denote the input and output differences of
the round function.

Definition 11 (Hypothesis of stochastic equivalence [61]). For virtually all
high probability s-round differentials (α, β)

Pr
P

(
∆Cs = β | ∆P = α, k = k′

)
≈ Pr

P,K

(
∆Cs = β | ∆P = α

)
holds for a substantial fraction of the key values k′, where P and K denote the
plaintext space and key space, respectively.

Although the above hypothesis is a plausible assumption for many ciphers,
there also exist ciphers for which the hypothesis does not seem to hold. Take
for example the so-called plateau characteristics introduced by Daemen and
Rijmen [32] where the probability of differential trails is key-dependent in a
highly structured way, i.e., it can only take two different values (one of which is
zero). Such plateau characteristics should be taken into account when analyzing
the resistance against differential cryptanalysis.

Linear cryptanalysis. Linear cryptanalysis is a known-plaintext attack. It was
introduced by Matsui [65] in 1993, although a precursor to linear cryptanalysis
was already proposed by Tardy-Corfdir and Gilbert [100] in 1991. When
compared to differential cryptanalysis, linear cryptanalysis tends to be a less
powerful and versatile cryptanalytic technique. However, observe that there is a
strong analogy between the description of differential and linear cryptanalysis.

While differential cryptanalysis keeps track of the probabilistic behavior of
a difference through a reduced s-round variant of a block cipher, linear
cryptanalysis focuses on the probability of linear relations between plaintext
bits and partially encrypted (after s rounds) plaintext bits. Linear relations are
described by means of linear masks (or simply masks) which define a specific
linear combination of bits; they make use of the scalar product over F2 (denoted
by •). With regard to the probability p of linear relations, two quantities are
introduced: (i) the bias ε defined as ε = p− 1

2 , and (ii) the correlation c defined
as c = 2p− 1 = 2ε. Typically, the absolute value or magnitude of the bias or
correlation are considered, with the objective to have 0 < |ε| ≤ 1

2 or 0 < |c| ≤ 1
with |ε| or |c| as large as possible.

38 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

Now, the s-round distinguisher exploited by linear cryptanalysis is an s-round
linear hull (introduced by Nyberg [81] and defined below) with a significantly
high bias |ε| or correlation |c|.

Definition 12 (Linear hull [81]). An s-round linear hull is a pair of masks
(α, β), where the input mask α defines a specific linear combination of the
plaintext bits (i.e., α •P), and where the output mask β defines a specific linear
combination of the bits of the partially encrypted plaintext Cs after s rounds
(i.e., β •Cs). The probability p of the linear hull is given by Pr

(
α •P = β •Cs

)
,

which is taken over the entire plaintext space and key space. The corresponding
bias and correlation are given by ε = p− 1

2 and c = 2p− 1, respectively.

Typically, the complexity of a (successful) linear attack is expressed in the
number of known plaintext/ciphertext pairs, which is inversely proportional
to the square of the bias (or correlation) of the linear hull (α, β). Observe
that a linear hull with a higher bias (or correlation) is desirable as it lowers
the complexity. Under the same two assumptions as mentioned in the case of
differential cryptanalysis, i.e., (i) Markov cipher with independent and uniformly
random round keys and (ii) the hypothesis of stochastic equivalence, the bias
(or correlation) of a linear hull can be approximated using the piling-up lemma.

Example. In 1992, Biham and Shamir presented a differential cryptanalysis [9]
that could break the full 16-round DES cipher with a total of 247 chosen plaintext
pairs and a work factor of 247. In 1994, Matsui [66] was able to break DES
using linear cryptanalysis with a total of 243 known plaintext/ciphertext pairs
and a work factor of 243. Although both attacks show an improvement over an
exhaustive key search when comparing their corresponding work factors, the
attacks are still considered to be theoretical since it is impractical to obtain either
247 chosen plaintext pairs or 243 known plaintext/ciphertext pairs. Therefore,
in practice, exhaustive key search is still the best attack on DES, especially
when parallelizing the key search (e.g., RIVYERA [96]).

Countermeasure against differential & linear cryptanalysis. The goal
of the designer of a block cipher is to ensure that there exist no high-probability
differentials or no high-bias linear hulls. Suppose that the non-affine (with
respect to the XOR operation) layer of an iterated SPN block cipher is given
by the parallel execution of S-boxes. Next, an S-box is called active if it has
a non-zero input difference or a non-zero output mask, otherwise it is called
inactive. Since the affine layer, the key addition layer and the inactive S-boxes
either all propagate a difference with probability 1 or all contain input-output
linear relations with bias |ε| = 1

2 , it is clear that only the active S-boxes influence
the probability of a differential or the bias of a linear hull. As is captured by

CRYPTANALYTIC TECHNIQUES 39

the wide trail design strategy [30], invented by Daemen and Rijmen and used in
the design of Square [27] and AES [69], the following two factors play a crucial
role in designing block ciphers resistant to differential and linear cryptanalysis:

1. minimize (a) the maximum difference propagation probability and (b) the
maximum bias of input-output masks of the S-boxes;

2. maximize the minimal number of active S-boxes involved in any possible
differential or linear hull. Technically speaking, this involves trails.

The first item can be achieved by carefully designing/choosing the S-boxes. The
second item can be achieved by designing linear/affine layers with very good
diffusion properties such that the output of an active S-box in round r affects as
many S-boxes in round r + 1 as possible. Closely related to this is the concept
of full diffusion, i.e., the case when the output of an active S-box in round r
makes all S-boxes in round r + s active; for example, in the case of AES, full
diffusion is achieved after two rounds (s = 2).

Multiset attacks. The fundamentals of the multiset attack were initiated
by the Square attack (described below), proposed by Daemen, Knudsen and
Rijmen [27]. Multiset attacks are chosen-plaintext attacks; they are at some
abstract level comparable with differential cryptanalysis: i.e., instead of
observing the probabilistic behavior of a chosen difference between a pair of
plaintexts, one observes the deterministic behavior of a chosen set of plaintexts
consisting of a concatenation of multisets each with their own property. As a
result, the s-round distinguisher exploited by a multiset attack has a probability
of one. Furthermore, multiset attacks exploit the overall structure of a reduced
round version of a block cipher (i.e., how the different components mutually
interconnect), and are independent of specific characteristics of the components
as is the case for differential and linear cryptanalysis. Mainly, multiset attacks
apply to highly structured block ciphers with respect to m-bit words: e.g., the
design of AES is highly byte-oriented (m = 8).

At its core, a multiset attack consists of two phases:

Phase I: decompose the plaintext blocks into a concatenation of m-bit words
that are aligned with the internal structure of the block cipher. Next,
assign to each m-bit word of the plaintext a multiset of m-bit values with a
specific property. A multiset is a set where each value can appear multiple
times (expressed as its multiplicity). Some multiset properties are the
following: C (constant – only one single value with arbitrary multiplicity),
P (permutation – all possible 2m distinct values with multiplicity 1),

40 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

E (even – each value has an even multiplicity) and B (balanced – the XOR
of all values (taking into account their multiplicity) equals 0). Observe
that some properties automatically imply others, but not vice versa (e.g.,
P,E → B).

Phase II: build a deterministic s-round distinguisher as follows: given the set
of chosen plaintexts as a composition of multisets with mixed properties
(carefully chosen by the attacker), partially encrypt this set through the
reduced s-round version and keep track of the transformation of the
multisets induced by the internal structure of the various rounds. These
transformations follow certain multiset propagation rules, which are listed
in [15, Lemma 1-2].

For a detailed description of the multiset attack, refer to Biryukov and
Shamir [15]. Below, two applications of a multiset attack are highlighted,
where the Square attack can be considered as the initial multiset attack (as
mentioned above).

Example 1 – Square attack [27]. As its name suggests, the attack was discov-
ered during the design of the Square [27] block cipher. Since AES is a successor
of Square, and thus inherited many properties of Square, the Square attack also
applies to AES. The 3-round multiset distinguisher depicted in Fig. 2.3 allows
an attacker to break 6 out of 10 rounds of AES-128 with a work factor of 272

encryption operations. Later, Ferguson et al. [43] reduced the work factor to
only 244 by identifying a very closely related 4-round multiset distinguisher. In
both cases, the distinguishers are key-independent and exploit the bijectiveness
of the AES S-box and the byte-oriented diffusion properties of ShiftRows and
MixColumns.

P C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

P C

C

C

C

C

C

C

C

C

C

C

C

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

SubBytes
ShiftRows

MixColumns
AddRoundkey

SubBytes
ShiftRows

MixColumns
AddRoundkey

SubBytes
ShiftRows

MixColumns
AddRoundkey

Figure 2.3: The deterministic 3-round distinguisher (with respect to AES) based
on the multiset properties P (permutation), C (constant) and B (balanced).

In [23], Chow et al. use the first step of Ferguson et al.’s extended 4-round
Square distinguisher to point out weaknesses in the design of a white-box AES
implementation. This is discussed in Chapter 3 (Sect. 3.5.1).

CRYPTANALYTIC TECHNIQUES 41

Example 2 – Structural cryptanalysis of SASAS [15]. The multiset attack pre-
sented by Biryukov and Shamir in [15] successfully attacks an n-bit bijective
five-layered structure S3A2S2A1S1, where each Si (i = 1, 2, 3) denotes a layer
of k non-linear m-bit bijective S-boxes in parallel with n = k ·m and each Ai
(i = 1, 2) denotes an n-bit invertible affine transformation over F2. Apart from
the knowledge of this general structure, it is assumed that all components are
key-dependent and hence are kept secret, which led to the name of structural
cryptanalysis. The attack relies on a 4-layer multiset distinguisher.

An interesting fact about this attack is that it finds equivalent representations of
all involved components in the 5-layered structure, or in other words equivalent
keys, that yield the same plaintext to ciphertext mapping as the original
structure. Hence the attack succeeds without obtaining the actual key-dependent
specifications of the S-boxes and the affine transformations. As described in
Chapter 6, a similar result is obtained in the cryptanalysis of a white-box AES
implementation, i.e., a set of equivalent keys is retrieved that yield functionally
equivalent implementations.

Algebraic attacks. Within the field of symmetric-key cryptography, and in
particular block ciphers, algebraic cryptanalysis is a fairly recent black-box
cryptanalytic technique; the work by Courtois and Pieprzyk [25] drew attention
to the use of algebraic attacks. The main idea is to represent a block cipher as
an overdefined system of multivariate non-linear algebraic equations in the bits
(or m-bit words) of the plaintext, ciphertext and secret key, where the latter act
as the unknowns. Solving this system with potentially a relative small amount
of plaintext/ciphertext pairs would eventually yield the secret key. However,
algebraic cryptanalysis has not yet been proven as a successful or powerful
technique. The main obstacle is that the algebraic equations tend to be of a
high algebraic degree introduced by the non-linear components of the cipher
and/or the combination of operations over different fields (e.g., the fields F2
and F256 for AES).

Due to the algebra-friendly design of AES, attempts have been made to represent
AES by a structured and sparse overdefined system of multivariate quadratic
equations over either F2 (see Courtois and Pieprzyk [25]) or F256 (see Murphy
and Robshaw [79]). Working over F256 is tempting since all operations of AES
were designed with the finite field F256 in mind, except for the F2-linear operation
involved in the AES S-box in order to preclude the algebraic simplicity. In a
different attempt by Ferguson, Schroeppel and Whiting [44], AES is described
by one big equation over F256 in a form similar to that of ‘continued fractions’.

Another interesting approach of algebraic cryptanalysis is the investigation of
dual ciphers, which were introduced by Barkan and Biham in [3].

42 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

Definition 13 (Dual ciphers [3]). Two ciphers E and E∆ are called dual
ciphers if they are isomorphic, i.e., if there exist fixed invertible transformations
f , g and h such that

∀m, k f
(
Ek(m)

)
= E∆

g(k)
(
h(m)

)
,

where m and k denote the plaintext block and the secret key, respectively.

The main motivations for considering dual ciphers are (i) to improve
cryptanalysis of the cipher, i.e., the dual ciphers may exhibit interesting
linear/differential characteristics, and (ii) to improve implementations of the
cipher, i.e., to increase its performance and/or to reduce its memory footprint.
In [3], Barkan et al. identified a set of 240 dual AES ciphers, which is listed
in The Book of Rijndaels [2]. In [14], Biryukov, De Cannière, Braeken and
Preneel extend this set to a total of 61 200 dual AES ciphers based on the
affine self-equivalences of the AES S-box. In Chapter 4, we present an efficient
cryptanalysis of a dual-cipher-based white-box AES implementation.

Up to now, the above mentioned approaches to algebraically cryptanalyze the
full AES have not formed any threat to the security of AES. The main reason is
that the algebraic equations become quite complex after a sufficient number of
rounds. However, as is discussed later in Chapters 3-4, algebraic cryptanalysis
has been proven successful in the white-box setting by efficiently attacking a
white-box AES implementation. The advantage an attacker has in the white-box
attack context is the ability to access encoded reduced round variants (such
as a single isolated round) of a block cipher, which significantly simplifies the
algebraic equations.

2.5.2 Grey-Box Cryptanalysis

When introducing the grey-box attack model in Sect. 2.4.5, one can notice that
a cryptographic primitive can be approached from two different points of view:
(i) it can be seen as an abstract mathematical model, i.e., a key-dependent
function transforming plaintexts into ciphertexts, and (ii) it is implemented in
either hardware or software within a physical device executing the cryptographic
primitive. The black-box cryptanalytic techniques discussed in the previous
section assume the first point of view, while implementation attacks (also known
as grey-box attacks) take the second point of view as a starting point. Grey-box
cryptanalytic techniques exploit physical implementation-specific characteristics
in order to break the cryptographic primitive. Although implementation attacks
are not as general as black-box attacks as they rely on physical aspects specific
to the implementation, they are considered to be a serious threat and are most
often very powerful attacks.

CRYPTANALYTIC TECHNIQUES 43

Within the field of grey-box cryptanalysis, the first scientific publication of
an implementation attack appeared in 1996 by Kocher [59]; he proposed a
side-channel analysis attack called the timing attack. Below, a brief overview is
given of some of the foundational grey-box cryptanalytic techniques.

Timing analysis. Timing attacks belong to the class of passive non-invasive
attacks. They were introduced by Kocher [59] in 1996, where he considered
the execution time of particular public-key cryptographic algorithms (e.g.,
RSA [90]). Due to performance optimizations, computations often occur in
the form of conditional statements and hence execute in non-constant time.
If these computations (and more specifically the branch selections) are key-
dependent (e.g., the conditional repeated square-and-multiply implementation
for modular exponentiation), variations in the overall execution time may leak
key information which can result in key recovery. This is referred to as branch
timing attacks.

In [59], Kocher also discussed the application of timing attacks with respect
to symmetric-key cryptographic algorithms such as block ciphers. Although
conditional statements typically do not occur, lookups in tables stored in memory
can cause time variations due to cache/RAM hits, i.e., cache and RAM have
different latencies with respect to memory access. This leaks information about
which table lookups have been performed, which may be correlated with sensitive
key information. This is referred to as cache timing attacks. As an example,
cache-based software side-channel attacks (e.g., by Bernstein [6] or by Osvik,
Shamir and Tromer [83]) have been presented against the lookup-table-based
software implementation of AES (Sect. 2.3.2). In [5], Benadjila, Billet and
Francfort show that countermeasures against such attacks are in fact closely
related to lookup-table-based white-box AES implementations.

Power analysis. Another type of passive non-invasive attacks are the power
analysis attacks discovered by Kocher, Jaffe and Jun [60] in 1999. A distinction
is made between simple power analysis (SPA) and differential power analysis
(DPA) attacks. SPA attacks make use of only one single power consumption trace;
they exploit key-dependent operations each with different power consumption
traces according to the key value. Typically, SPA is a successful technique
in attacking public-key cryptographic algorithms where the key-dependent
operations involve conditional statements (e.g., RSA – see above). On the other
hand, DPA attacks are based on the statistical analysis of a large set of power
consumption traces accompanied by the corresponding plaintexts/ciphertexts.
The success of a DPA attack relies on the dependency of the power traces on
part of an internal state of the cryptographic algorithm. Where SPA attacks

44 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

depend strongly on the knowledge of the implementation, this is not the case
for DPA attacks which makes them more powerful.

At the second advanced encryption standard (AES) candidate conference in
March 1999, many results appeared concerning the vulnerabilities and possible
countermeasures of smartcard implementations of the AES candidates (e.g.,
by Chari et al. [21] and by Daemen and Rijmen [29]) and their key scheduling
algorithm (see Biham and Shamir [11]) against timing and power analysis
attacks. Also after the selection of Rijndael as the new AES in 2001, the
research on secure smartcard implementations of AES remained very active.

Closely related to the power analysis attacks are the electromagnetic analysis
(EMA) attacks, proposed by Quisquater and Samyde [87] and Gandolfi, Mourtel
and Olivier [45] in 2001. These attacks use electromagnetic emanation as a
side-channel and hence can be helpful if power is not available as a side-channel.

Fault analysis. In 1997, Boneh, DeMillo and Lipton [18] announced the fault
analysis attack, that exploits faults/errors occurring during the computation of
particular public-key cryptographic primitives (e.g., RSA). Such faults, referred
to as computational faults, are often induced by intentionally manipulating the
environment of the hardware/software implementation in a semi-invasive way
and can be categorized as follows: (i) transient faults by for example altering
the power supply voltage or the working frequency, and (ii) persistent faults by
for example cutting a wire or destroying a memory cell/register by means of a
laser beam. Because of the manipulation of the behavior of the implementation,
fault analysis attacks are classified as active attacks.

Biham and Shamir [10] introduced a fault analysis attack that, in contrast
to Boneh et al.’s attack, is applicable to a wide range of symmetric-key
cryptographic algorithms (such as block ciphers), namely the differential fault
analysis (DFA) attack. In its essence, the attack analyzes the difference between
outputs obtained through both the normal and abnormal computation of the
block cipher, given the same input in both cases. The abnormal behavior
is caused by injecting computational faults (at bit or byte level) in one of
the last rounds of the cipher. In [10], the authors emphasize the strength
of a DFA attack by extracting the full DES key with only very few pairs of
(correct,faulty) ciphertexts. While Biham and Shamir [10] focused on Feistel
structured block ciphers, Piret and Quisquater [85] showed that DFA attacks
can also be successful against SPN block ciphers, with a practical application
to AES. The feasibility of DFA attacks (or fault analysis attacks in general)
in practice depends on how close the assumed fault model resembles reality,
where a fault model captures the capabilities of an attacker with respect to (the
accuracy of) injecting faults.

CRYPTANALYTIC TECHNIQUES 45

2.5.3 White-Box Cryptanalysis

This thesis covers cryptanalytic techniques within the white-box attack model.
The entire Part II is dedicated to both the design and analysis of white-box
implementations. Before diving into this topic, this section emphasizes the
importance of constructing secure software implementations of a cryptosystem
when employed in the white-box model. This is done by discussing two powerful
and efficient attacks against naive software implementations of cryptographic
algorithms with an embedded cryptographic key, where naive implementations
refer to those used in the traditional black-box model (i.e., under the assumption
of trusted end-users). Take the standard software implementation of AES (see
Sect. 2.3.2) as an example of a naive implementation. Both attacks also clearly
indicate the strength of the capabilities of a white-box attacker, which is typically
underestimated.

Entropy attack. In 1999, Shamir and van Someren [97] considered the problem
of efficiently locating cryptographic keys in large quantities of data stored in
memory. Their motivation was the so-called lunchtime attack, where the attacker
gains access to the memory (e.g., the hard disk) of the computer while the
authorized user is away for lunch. This memory may contain the software
implementation of a cryptographic algorithm with an embedded secret key. The
attack for locating the embedded key relies on the (significant) difference in
entropy2 between the secret key and the structured design of the cryptographic
algorithm:

Key = high entropy: the strength of cryptographic keys relies on their unpre-
dictability, hence it is assumed that they are chosen randomly out of the
entire key space. As a consequence, the section of the memory containing
the secret key has high entropy.

Algorithm = low entropy: the section of the memory containing the binary of
the cryptographic algorithm consists of a set of instructions implementing
the well structured algorithm, hence it is likely to have significant less
entropy than the section storing the cryptographic key.

Visually, sections with high entropy look noisy, while sections with low entropy
look structured. An example is given in Fig. 2.4 which depicts a binary
representation of a memory storing (part of) the implementation of an RSA
signature verification algorithm. By visually inspecting Fig. 2.4, one can easily

2In 1948, Shannon [98] introduced the concept entropy in the information theoretic world.
The Shannon entropy is used as a metric to measure the uncertainty or unpredictability of
data. Entropy is said to increase with a higher degree of uncertainty of the data.

46 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

6

the code au thent ica t ion system. The middle sect ion of the image conta ins
the signa ture ver ifica t ion key and it is visibly more noisy than the sur round-
ing da ta .

While visua l inspect ion of the program da ta a llows us to loca te the keys
in a body of da ta , it is ra ther slow and labour in tensive. We can ach ieve the
same resu lt by more mechanica l means.

3.2 Identifying keys by measuring entropy
Since we know tha t key da ta has more en t ropy than non-key da ta , one way
to loca te a key is to divide the da t a in to small sect ions, measure the en t ropy
of each sect ion and display the loca t ions where there is par t icu la r ly h igh en-
t ropy.

While get t ing a t rue measure of en t ropy is a complex task, in pract ice the
ent ropy of most program code is so low tha t a t rue measu re is not needed. In
our exper iments we found tha t examining a sliding window of 64 bytes of
da ta and count ing how many unique byte va lues were used gave a good
enough measu re of en t ropy. Throughout the fir st body of code we worked on
the average window of da ta conta ined ju st under 30 unique va lues (with a
standa rd devia t ion of close to 10). The windows which covered the key da ta
averaged 60 unique byte va lues; a fu ll 3 devia t ions from the mean . In a body
of 300 kilobytes of da ta on ly 23 windows had a ‘score’ grea ter than 50 and of
these 20 were consecut ive and cor responded to the loca t ion of the key da ta .

In the genera l case, where we a re faced with loca t ing a key of length v bit s
in a body of code made up of u bit s we can find the a reas of h ighest en t ropy
with a complexity of order u , since our method does not depend on the key
and can be per formed using only linea r passes of the da ta . Clear ly the
success of th is sta t ist ica l method depends on the na tu re of the program
concerned.

Figure 1 Key information (in the middle of the figure) looks more noisy than the rest of the
data

high entropylow entropy low entropy

Figure 2.4: Visual identification of the location of cryptographic keys stored in
memory based on the difference in entropy (source: [97]).

locate the RSA signature verification key. A more generic approach is the
application of a sliding window over the memory, where in each iteration the
entropy is calculated for the current window. Windows with unusually high
entropy most likely indicate the location of the key.

Interestingly, Shamir and van Someren understood already back in 1999 the
importance and difficulty of secure software implementations executed in an
untrusted environment:

“If computer programs must be operated in an hostile environment,
they need to have some form of protection. While it is relatively
easy to build tamper resistant hardware, it is much harder to protect
computer software.” [97]

Now, someone may wonder: “Does the entropy/lunchtime attack really pose a
threat in the real world?”. Sadly, the answer is ‘yes’. This has been shown in 2008
by Halderman et al. [48] who presented the so-called cold boot attacks on powered
- though locked - computers with the objective to extract hard disk encryption
keys out of DRAM memory images. They show that, although volatile memory
(such as DRAM) is assumed to lose its stored information rapidly if the power
is removed, the DRAM remanence can be increased dramatically by severely
cooling the DRAM modules. Hence by rebooting (or cut the power + boot)
a locked computer while keeping the DRAM modules cooled, they were able
to obtain the DRAM memory images and search for the encryption keys in
it. Their method for locating keys in memory images differs from the entropy
method proposed by Shamir and van Someren; for example, in the case of a
secret symmetric key k, they look for sequences in the memory closely related
to the expanded key K (obtained from k through the key schedule) and exploit
properties of the key schedule to correct for bit errors. This method can be

CRYPTANALYTIC TECHNIQUES 47

justified since often the expanded key K instead of the secret key k is stored
for performance reasons.

Countermeasures against the entropy attack. In [97], Shamir and van
Someren proposed countermeasures in order to resist the entropy attack. Their
idea was to ensure that the entropy density is uniformly distributed over the
entire implementation, such that monitoring the difference in entropy does not
yield any information about the location of the key. This can be achieved by
the following two complementary techniques:

Lower the entropy density of the key: a trivial solution is to lower the entropy
of the cryptographic key. However, this results in less random keys which
triggers even worse security threats. A non-trivial solution is to spread
the key over the entire implementation such that its otherwise local high
entropy causes the global entropy density to increase. Shamir et al. already
pointed out that the best way to achieve this goal is to fix the key value and
to implement a key-instantiated cryptographic algorithm in an optimized
way. Moreover, they made the following observation:

“Furthermore if the optimization process is thorough, it will
likely be extremely hard to change the key without replacing the
entire section of code which uses that key.” [97]

As is discussed in Chapter 7, this observation is very closely related to the
fact why constructing dynamic-key white-box implementations seems an
even more difficult task to achieve than constructing fixed-key white-box
implementations.

Increase the entropy of the algorithm: one way to achieve this goal is to
introduce randomness within the structure of the algorithm while
preserving its overall functionality.

The two countermeasures above should not be seen separately, but as a
coherent whole. Remarkably, they form the basis of the techniques presented
by Chow, Eisen, Johnson and van Oorschot [24, 23] in order to obtain software
implementations secure within the white-box attack context.

S-box blanking attack. In 2006, Kerins and Kursawe [55] present a powerful
attack against simple software implementations of block ciphers. In contrast
to the entropy attack that exploits the high entropy property of cryptographic
keys, Kerins et al.’s attack focuses on the low entropy (i.e., structured) part of
the implementation. In [55], the authors considered both Feistel and SPN block

48 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

ciphers, though in the following only the SPN ciphers are discussed. In order
for the attack to be successful, both the SPN block cipher (Def. 5) as well as
its software implementation need to satisfy the following requirements:

- regardless of the boundaries of the round functions, the last three
operations are (i) the confusion layer S consisting of the parallel execution
of S-boxes, (ii) the diffusion layer D comprising a linear function (or the
identity function if it is not applicable), and (iii) the final round key k(R)

addition layer (see Fig. 2.5). The third operation can either be part of
the final round (e.g., AES [69]), or is performed after the final round as a
post-whitening operation (e.g., PRESENT [17]);

- the S-boxes (in particular the ones involved in the final round) are static
and key-independent, i.e., they are included in the public specification of
the cipher;

- the implementation is simple, i.e., the attacker is able to alter the definition
of the S-boxes without affecting any key material.

The assumed attacker has more capabilities than in the entropy attack, i.e., the
attacker is allowed to adaptively alter the implementation after performing a
static analysis by means of reverse-engineering tools such as disassemblers or
decompilers.

The workflow of Kerins et al.’s attack, referred to as the S-box blanking attack,
is as follows. First, with the knowledge of the definition of the S-boxes, the
attacker identifies the location of the (final round) S-box(es) within the software
binary using static analysis tools. Typically, S-boxes are implemented as lookup
tables. Second, all entries of the ‘S-box’ lookup tables are set to zero. This
operation is called S-box blanking. Now, a single execution of the modified block
cipher implementation for any given input reveals the final round key k(R). If
the round keys are derived from the secret key through the use of a reversible
key scheduling algorithm, the retrieval of k(R) eventually leads to the recovery
of the secret key as well. The attack is depicted in Fig. 2.5.

Observe that the S-box blanking attack is very well suited for attacking simple
software implementations of AES. An example of such a simple implementation
is the lookup-table-based implementation for processors with word-length 32
bits proposed by Daemen and Rijmen (Sect. 2.3.2). Blanking the four SMCl
(l = 0, 1, 2, 3) tables, which contain the AES S-box, results in the recovery of
the secret 128-bit key of AES-128.

CRYPTANALYTIC TECHNIQUES 49

S

D

x

D

x

0
S-box blanking

k(R) k(R)

k(R) � D
�
S(x)

�
k(R)

Figure 2.5: Blanking the final round S-boxes reveals the final round key k(R).

Countermeasures against the S-box blanking attack. In [55], Kerins and
Kursawe proposed a number of countermeasures in order to preclude the S-box
blanking attack:

Prevention of localizing the S-boxes: the most straightforward countermeasure
to achieve this goal is to make the S-boxes key-dependent. However, one
should be careful when altering the definition of S-boxes in standardized
block ciphers as this change may introduce unexpected vulnerabilities,
such as for example a low algebraic degree or bad linear/differential
properties. Another countermeasure may be to implement S-boxes in
a less straightforward way by means of S-box masking techniques or
dynamically generation of the S-box during the execution of the program.
The use of key-dependent S-boxes is considered by Bringer, Chabanne and
Dottax [20] in an attempt to construct a secure white-box implementation
of a variant of AES. In Chapter 6, a cryptanalysis of this implementation
is presented.

Integrity verification of the software binary: a different approach is to prevent
an attacker from tampering with the software, i.e., overwriting the S-
boxes. For example, only if the checksum over the binary validates, the
code is executed. Much research has already been conducted in the field
of Software Tamper Resistance (STR). In [73], Michiels and Gorissen
proposed an application of white-box cryptography that enforces tamper
resistant software: the program code (e.g., the license verification code in
a DRM setting) is given a dual interpretation, i.e., it is both (i) executable
code and (ii) part of a white-box implementation. Tampering with one of
them breaks the code of the other and renders it unusable.

50 DESIGN AND ANALYSIS OF BLOCK CIPHERS: THE EVOLUTION

Modification of key usage/generation: the S-box blanking attack as discussed
in [55] only recovers the final/post-whitening round key k(R). Hence,
for independent round keys, the attack fails. Depending on the
implementation, the attack may still be successful if the attacker is allowed
to perform dynamic analysis with breakpoint functionality. Next, in the
scenario of a double round key (k(R)

1 and k
(R)
2) addition as the final

operation of the cipher, the attacker would only obtain k(R)
1 ⊕ k(R)

2 .

Reduced round attacks. As described in Sect. 2.5.1, the non-generic black-box
attacks rely on reduced round distinguishers. Although a distinguisher that is
insufficient to attack a full-round block cipher poses no real threat in the black-
box model, it does in the white-box model. Typically, in the white-box setting,
an attacker is able to access the reduced round versions of a block cipher in an
encoded form. Even stronger, the white-box attacker often has access to encoded
single round functions. Hence reduced (or even single) round distinguishers
can be exploited by attacks against white-box implementations of block ciphers.
For example, differential cryptanalytic techniques (see Link and Neumann [64],
Wyseur et al. [105] and Goubin et al. [47]) have been proven successful by
efficiently attacking Chow et al.’s white-box DES implementation [24].

As was stated before, although algebraic attacks have not (yet) been successful in
attacking full-round block ciphers in the black-box model, they pose a real threat
in the white-box model because of the same reason mentioned above; encoded
reduced (or single) round versions of a block cipher vastly simplify the algebraic
equations. For example, consider the algebraic attacks by Billet et al. [13]
and Michiels et al. [75] on Chow et al.’s white-box AES implementation [23].
Chapters 3 and 4 elaborate on these attacks.

Grey-box cryptanalytic techniques (Sect. 2.5.2) should be taken into account
as well. To some extent, DFA attacks can be seen as a form of differential
cryptanalysis applied to a reduced s-round version of a block cipher, where most
often 1 ≤ s ≤ 3 as it is assumed (by the fault model) that the computational
faults can be injected in one of the last rounds. Such attacks gain significant value
in the white-box attack context. Whereas faults are injected probabilistically
in the grey-box model, they can be injected deterministically in the white-box
model. For example, consider the differential fault analysis attack by Jacob,
Boneh and Felten [51] on Chow et al.’s white-box DES implementation [24]; in
this attack, faults are injected in the input of the encoded final round of DES.

To conclude, one will notice that many white-box cryptanalytic techniques
described in Part II find their origin in either the black-box and/or grey-box
cryptanalytic techniques.

CONCLUSION 51

2.6 Conclusion

The primary goal when designing block ciphers is to approximate ideal block
ciphers and hence to obtain a black-box secure cipher. However, in real-world
applications, block ciphers are implemented in either hardware or software on
physical devices. If the end-users of the communication channel who are in
possession of these cryptographic physical devices can no longer be assumed to
be trusted, the attacker no longer complies to the black-box model and thus the
attack scenario changes drastically. The existence of grey-box and white-box
cryptanalytic techniques shows that a black-box secure block cipher does not
automatically lead to secure hardware/software implementations. In view of this
additional threat, it clearly is insufficient to solely focus attention on designing
block ciphers close to be ideal. As it turns out, an attacker will always look for
the weakest link in the security chain in order to break the block cipher, hence
a secure implementation plays an equally important role. This has been shown
by the fairly simple entropy attack and S-box blanking attack with regard to
software implementations of block ciphers employed in the white-box model.

As a consequence, a natural question is: “Are there techniques to construct
software implementations of block ciphers that offer a sufficient level of
robustness against an attacker in the white-box model?” The answer may
be found in white-box cryptography, to which the second part of this thesis
is dedicated. In particular, Part II elaborates on the design and analysis of
white-box AES implementations.

Part II

Design and Analysis of
White-Box Implementations

53

Chapter 3

Design and Analysis of
White-Box Implementations
AES-128 as a Case Study

From Part I of this thesis it follows that it is crucial to implement a cryptographic
primitive, such as a block cipher, with respect to the attack model in which it
will be deployed. Especially since the introduction of the realistic grey-box and
white-box attack models. An attacker within these attack models is considerably
more powerful than a black-box attacker, i.e., instead of having only oracle
access (i.e., input-output behavior) to the block cipher, the attacker furthermore
has (limited) access to the hardware/software implementation of the block
cipher. Hence, in the grey-box and white-box models, the attacker mainly
focuses on weak implementation designs instead of weak cipher designs (in
the case of a public specification of the block cipher). The research domain
that specializes in developing secure software implementations of cryptographic
primitives employed in the white-box model is called white-box cryptography.
The resulting implementations are referred to as white-box implementations.

This chapter first elaborates on the objective of white-box cryptography and how
this objective can be achieved in a practical manner with regard to block ciphers
(both the encryption and decryption routine) by presenting a broad overview
of the generic white-box techniques proposed by Chow, Eisen, Johnson and
van Oorschot [23, 24] in 2002. Further, it describes in detail the first published
white-box AES implementation presented by Chow et al. [23]. Second, this
chapter elaborates on when a white-box implementation is insecure, followed by a

55

56 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

complete overview of the analysis of Chow et al.’s white-box AES implementation.
Finally, the concluding remarks outline an introduction to the following chapters.

3.1 White-Box Cryptography

White-box cryptography is a fairly recent research domain; it was introduced
by Chow, Eisen, Johnson and van Oorschot [23] in 2002. Its existence emanates
from the ever increasing demand to deploy strong cryptographic algorithms
within software applications that are executed in an untrusted, possibly hostile,
environment. In such an environment, referred to as the white-box environment,
it is assumed that the attacker is in possession of the hardware/software of
the cryptographic primitive, and furthermore has full access to its software
implementation and full control over its execution platform. The powerful
capabilities of an attacker in the white-box environment, referred to as a white-
box attacker, are encapsulated by the white-box attack context [23] (see Def. 8 on
p. 30). Although the white-box attack context is the worst case attack model
with respect to cryptographic software (here, the term ‘worst case’ is from the
perspective of the designer of the cryptographic software), the use case discussed
in Chapter 1 illustrates that it is at the same time also a realistic attack model.

White-box cryptography aims at protecting the software implementation of
cryptographic primitives when executed in a white-box environment. The
objective is to provide a sufficient level of robustness against a white-box
attacker. What is meant by this robustness against a white-box attacker? When
is a software implementation of a cryptographic primitive considered to be
secure within the white-box attack context? The following statement should
provide a preliminary answer.

Definition 14 (White-box cryptography). White-box cryptography is a
technique that aims at transforming a cryptographic primitive into a func-
tionally equivalent software implementation in such a way that the software
implementation behaves as a “virtual black box”, i.e., a white-box attacker who
has full access to the software implementation as well as full control over its
execution environment has no additional advantage over a black-box attacker
restricted to oracle access to the implementation in order to achieve his goal
(i.e., total break or global deduction). In the foregoing, both adversaries are
assumed to be computationally bounded.

Note that Def. 14 is similar to the one given by Wyseur in his doctoral thesis [103,
p. 36, Def. 3]. Recall from Sect. 2.4 that the assessment of the security of (the
implementation of) a cryptographic primitive is based on a security notion,
which comprises the following two factors: (i) the attack model and (ii) the

WHITE-BOX CRYPTOGRAPHY 57

attacker’s goal. Observe that both factors are present in Def. 14. First, a white-
box and black-box attacker refer to an attacker in the white-box and black-box
model, respectively. Recall from Sect. 2.4.6 that the number of queries is always
bounded in the black-box model, but not in the white-box model. Second, the
attacker tries to achieve his goal, where typically two different goals (out of the
hierarchical classification given in Sect. 2.4.4) play a crucial role in the field of
white-box cryptography, i.e., total break (i.e., key recovery) and global deduction.
Section 3.4 elaborates in detail on the achievement of both goals within the
white-box environment.

With regard to Def. 14, it is interesting to make the following two observations.

1) The white-box model is forced into the black-box model. As mentioned
in the introduction of the grey-box attack model in Sect. 2.4.5 on p. 28, the
traditional black-box model assumes that any implementation of a cryptographic
primitive behaves as an ideal black box (referred to as a virtual black box in
Def. 14). Hence white-box cryptography strives to ensure that the white-box
model does not provide any additional advantage over the black-box model.

2) White-box cryptography is a ‘special’ obfuscation technique. Note that
Def. 14 closely resembles the informal definition of an obfuscator of programs
introduced by Barak et al. [1]:

Definition 15 (Program obfuscation [1]). Program obfuscation is a technique
that aims at transforming a program P into a functionally equivalent obfuscated
program O(P) behaving as a virtual black box (called the virtual black-box
property (VBBP)), i.e., anything that can be efficiently learned from O(P) could
also have been efficiently learned when given only oracle access to P .

Under this resemblance, white-box cryptography can be considered as a ‘special’
kind of obfuscation technique. The emphasis should definitely be placed on
‘special’ as the programs that should be obfuscated into virtual black boxes are
cryptographic primitives whose specifications are often publicly known with
the exception of the secret key information. Therefore, the primary goal of
“white-box obfuscation” is not hiding the functionality of the program, but
keeping the key information secret. As pointed out by Yamauchi et al. [108], one
should be very careful when applying conventional obfuscation techniques in
order to hide a secret (i.e., the cryptographic key) in a public known algorithm.

To build further on the observation that white-box cryptography can be
considered as a special kind of obfuscation technique, a quote by Chow et
al. [23] is given in the following:

58 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

“When the attacker has internal information about a cryptographic
implementation, choice of implementation is the sole remaining line
of defense. Choice of implementation is precisely what is pursued in
white-box cryptography.” [23]

The software implementations obtained as a result of the application of white-
box cryptography on cryptographic algorithms are referred to as a white-box
implementations. Up to early 2014, in the academic literature, the focus of
white-box cryptography is mainly on the design of white-box implementations
of block ciphers. The white-box implementations covered in this chapter are
solely based on lookup tables (see Def. 3 on p. 16). The storage requirement of
lookup tables (see Property 1 on p. 16) is of great significance with respect to
the practicality of white-box implementations. As a straightforward example,
the ideal white-box implementation is discussed below.

3.1.1 Ideal White-Box Implementation

As indicated in [23] by Chow et al., the ideal but at the same time also the
most impractical white-box implementation is to represent a key-instantiated
nb-bit block cipher E by means of a single lookup table mapping LE nb bits to
nb bits. In particular, LE represents the entire code book of E, i.e., the table
stores the ciphertexts for all 2nb possible plaintexts encrypted using the same
fixed secret key. Interestingly, it is also this lookup table that is used in the
generic code book black-box attack (see Sect. 2.5.1, p. 34).

The reason why this implementation achieves perfect white-box security (with
respect to key extraction), which corresponds to achieving black-box security
within the white-box environment, is straightforward: the lookup table LE
behaves as an ideal black box, i.e., it maps plaintexts directly to ciphertexts.
However, the storage requirement of such an ideal lookup table implementation
is given by 2nb · nb bits and hence becomes impractical/unrealistic for common
values of the block size nb. As an example, a lookup table representing the
codebook of a key-instantiated AES-128 cipher would require 4.95 · 1027 TB
of storage space! It should be mentioned that although the ideal white-box
implementation prevents key-extraction, it allows global deduction, i.e., the
implementation itself is functionally equivalent to the key-instantiated block
cipher. However, due to the impractical aspect of the implementation, this
becomes irrelevant.

The following section elaborates in detail on the white-box techniques proposed
by Chow, Eisen, Johnson and van Oorschot [23, 24] in order to obtain practical
white-box implementations of block ciphers.

INITIAL PRACTICAL WHITE-BOX TECHNIQUES 59

3.2 Initial Practical White-Box Techniques

In [23, 24], Chow et al. present generic techniques that can be used to design
practical white-box implementations of a symmetric cryptographic algorithm
(in particular a block cipher). The presented techniques can be applied to both
Feistel and SPN block ciphers. The main objective is to resist key extraction in
a white-box environment, however, as is discussed in Sect. 3.4, some applications
demand that additional ‘stronger’ security requirements need to be satisfied.

In general, the generic white-box techniques of Chow et al. comprise the following
two phases, which can be applied to both the encryption as well as the decryption
routine of a block cipher:

Phase 1 writes the block cipher, instantiated with a fixed key, as a series of
practical (i.e., small storage requirement) lookup tables.

Phase 2 applies secret invertible white-box encodings (both F2-affine and non-
affine functions) to the input and output of all tables. These white-box
encodings are pairwise annihilating between successive lookup tables in
order to preserve the overall functionality of the block cipher.

The descriptions given below provide detailed information about each phase. In
the following, it is assumed that the entire specification of the block cipher is
publicly known with the exception of the embedded secret key.

Phase 1: Translating the description of the block cipher into a series of
lookup tables

The first phase translates the description of a key-instantiated block cipher into
a functionally equivalent network of lookup tables by merging several steps
of the round function. As mentioned in the description of the design of block
ciphers (see Sect. 2.2), the round function of a block cipher typically consists of
the following three operations: (A) a key addition operation, (B) a ‘confusion’
operation consisting of the parallel execution of non-linear S-boxes, and (C)
a ‘diffusion’ operation consisting of wide linear/affine mappings. Below, the
following two techniques [23, 24] are described: (i) partial evaluation merges
operations A and B, and (ii) matrix partitioning handles the lookup table
representation of operation C.

Partial evaluation. Assume that the S-box operation directly follows the key
addition, which is common in the design of many widespread block ciphers

60 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

such as DES and AES. Further, let S denote a non-linear m-to-n bit S-box
and let k ∈ Fm2 . As the embedded secret key is fixed, the key addition can
be treated as a constant operation and hence can be pre-evaluated, i.e., the
function ⊕k(x) = x ⊕ k can be evaluated for all values of x. Next, both the
addition by k and the S-box are merged into the key-dependent mapping

T : Fm2 → Fn2 : x 7→ T (x) = S(x⊕ k) . (3.1)

The mapping T is represented by a key-dependent lookup table, referred to as
a T-box, mapping m bits to n bits.

Matrix partitioning. For wide linear/affine mappings, where ‘wide’ refers to
an input size of the mapping larger than 16 bits, it quickly becomes impractical
(see Property 1) to represent the mapping by a single lookup table. Therefore,
the matrix-vector multiplication is decomposed into an exclusive-OR network
of smaller lookup tables by partitioning the matrix and input/output vectors
accordingly. This is illustrated in the following, where an affine mapping is
defined as y = L · x ⊕ c with y, c ∈ Fan2 , L ∈ Fan×bm2 and x ∈ Fbm2 . Based on
the partitioning 

y1

...
ya

 =


L1,1 · · · L1,b

...
. . .

...
La,1 · · · La,b

 ·
 x1

...
xb

⊕
 c1...
ca

 ,

where yi, ci ∈ Fn2 , Li,j ∈ Fn×m2 and xj ∈ Fm2 for 1 ≤ i ≤ a and 1 ≤ j ≤ b, the
partitioned output y = (y1, y2, . . . , ya) can be calculated by

yi =
(b−1⊕
j=1

Li,j · xj︸ ︷︷ ︸
Li,j

)
⊕ Li,b · xb ⊕ ci︸ ︷︷ ︸

Li,b

for i = 1, 2, . . . , a , (3.2)

where each exclusive-OR operates on n bits. Now, by representing the addends
of the summation (3.2) by lookup tables Li,j (1 ≤ i ≤ a and 1 ≤ j ≤ b − 1)
and Li,b (1 ≤ i ≤ a) mapping m bits to n bits, the expression y = L · x ⊕ c
is represented by an exclusive-OR network of a · b smaller lookup tables; each
table has a storage requirement of 2m · n bits. As we discuss in Phase 2 below,
at some point the XOR operations need to be represented by lookup tables as
well. As these operations take two n-bit values as input in order to produce
one n-bit value as output, the input size of the lookup table is given by 2n bits.
Because of Property 1, this poses a restriction on n. Typically, if n is a multiple
of 4, i.e. n = n′ · 4, the XOR operation on n bits is replaced by the parallel
execution of n′ XOR operations on 4 bits (i.e., on nibbles), where each nibble

INITIAL PRACTICAL WHITE-BOX TECHNIQUES 61

XOR operation is represented by a lookup table L⊕ mapping 8 bits to 4 bits,
defined as follows: L⊕(x, y) = x⊕ y with x, y ∈ F4

2.

By applying both techniques described above, one can translate the description
of any Feistel or SPN block cipher into a network of interconnected lookup
tables. Note that this phase is not generic, i.e., the above techniques should be
considered as an indication only and, depending on the description of the block
cipher, variations may occur in order to meet additional requirements.

Phase 2: Applying secret invertible white-box encodings

The second phase concerns the injection of randomness into the lookup-
table implementation obtained in Phase 1. This phase is necessary as the
implementation obtained in Phase 1 provides no protection with respect to
key extraction. As an example, given access to a T-box as defined in (3.1),
the attacker can extract the embedded key by calculating k = S−1(T (0)

)
. In

order to prevent an attacker from extracting any key information out of the
key-dependent lookup tables, secret invertible white-box encodings are applied
to the input and output of all lookup tables. This brings us to the definition of
encoded lookup tables.

Definition 16 (Encoded lookup table [24, Def. 1]). Let L denote a lookup table
mapping m bits to n bits, and let f and g denote random bijective mappings on
the vector space Fm2 and Fn2 , respectively. Then L′ is called the encoded version
of L if it is is defined as L′ = g ◦L◦f−1, where f−1 is called the input encoding
and g is called the output encoding.

In order to maintain the overall functionality of the lookup-table implementation
representing the block cipher, the output and input encodings of successive
lookup tables should be pairwise annihilating. This way, an input encoding can
also be referred to as an input decoding as it decodes the encoded output of the
preceding lookup table. This is referred to as networked encoding in [24, 23].

Definition 17 (Networked encoding [24, Def. 3]). A networked encoding for
computing LY ◦ LX (where LX and LY denote the lookup tables representing
the transformations X and Y , respectively) in an encoded form is given by

L′Y ◦ L′X = (h ◦ LY ◦ g−1) ◦ (g ◦ LX ◦ f−1) = h ◦ (LY ◦ LX) ◦ f−1 ,

where L′X and L′Y denote the encoded versions of LX and LY , respectively.
Note that the output encoding g of L′X and the input encoding g−1 of L′Y are
pairwise annihilating.

62 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

Due to Property 1 and the pairwise annihilating property of the white-box
encodings between the output and input of successive lookup tables, restrictions
are posed on the choice of the encodings f and g in Def. 16, i.e., typically
they cannot be chosen as random permutations on Fm2 and Fn2 , respectively.
Each invertible white-box encoding should be decomposed into its affine and
non-affine component as different rules apply to both. The affine component
achieves diffusion in the intermediate values of the white-box implementation,
whereas the non-affine component achieves confusion.

Affine component. As discussed in Phase 1 above, the matrix partitioning
technique ensures that ‘wide’ affine mappings (and their inverses) can be
represented by a XOR network of small lookup tables. Naturally, this also
applies to the affine component of the white-box encodings. As a result, there
are no restrictions on the size of the vector space over F2 upon which the affine
mappings operate. Therefore, the affine component of f or g (denoted by F or
G, respectively) may be any bijective affine mapping on Fm2 or Fn2 , respectively.

In order to achieve good diffusion, Chow et al. [24, 23] consider a specific class of
bijective affine mappings, i.e., the class of mixing bijections; a mixing bijection
is a bijective affine mapping that attempts to maximize the dependency of each
output bit on all input bits (also referred to as the avalanche effect). Therefore,
Chow et al. recommend to select n×n non-singular matrices over F2 with 4× 4
submatrices of full rank as the F2-linear part of n-bit mixing bijections (under
the assumption that n is a multiple of 4). The dimension of these submatrices
are in line with the typical dimension of the non-affine components of the
white-box encodings (see below) in order to maximize diffusion. Ways how to
construct such non-singular matrices are proposed by Xiao and Zhou [106] and
by Muir [78].

Special attention should be given when encoding the output of the lookup tables
involved in a XOR network, i.e., the affine component of the white-box encodings
should be chosen carefully. To illustrate this, consider the XOR network of
lookup tables given by y =

⊕b
j=1 Lj(xj) (see (3.2) as an example): by encoding

the output of each table Lj by the bijective affine mapping Gj(x) = L(x)⊕ cj
for 1 ≤ j ≤ b, respectively, with c =

⊕b
j=1 cj , one gets

G(y) =
b⊕
j=1

Gj
(
Lj(xj)

)
with G(y) = L(y)⊕ c . (3.3)

Hence by carefully selecting the affine encodings Gj (1 ≤ j ≤ b), the affine
encoding G is carried through the XOR operations as it were. Furthermore,
each XOR operation can be executed on encoded date, i.e., no representation
by lookup tables is necessary.

INITIAL PRACTICAL WHITE-BOX TECHNIQUES 63

Non-affine component. In contrast to affine mappings, there exists no
technique to represent ‘wide’ non-affine permutations (and their inverses) by a
network of small lookup tables. As a result, the size of the vector space over F2
upon which the non-affine permutations operate depends on the input size of
the subsequent lookup table(s) or on the output size of the preceding lookup
table(s). Typically, as discussed below, the non-affine component of f or g
is a concatenation of random non-affine permutations on F4

2 (if m and n are
multiples of 4).

As mentioned above, if the white-box encodings consist solely of an affine
component, the XOR operations can be executed on encoded data by carefully
selecting the affine encodings (see (3.3)). However, once the white-box encodings
comprise a non-affine component as well, the encodings can no longer be
carried through the XOR operation, i.e., the non-affine component needs to be
annihilated before performing the XOR operation. Hence, each XOR operation
needs to be represented by means of encoded lookup tables. As discussed in
Phase 1, a XOR operation on n bits (assuming that n = n′ · 4) is replaced
by n′ parallel nibble XOR operations (each represented by a lookup table
L⊕ mapping 8 bits to 4 bits). As the 8-bit input of L⊕ is a concatenation
of two different 4-bit inputs, the encoded version of L⊕ is defined as L′⊕ =
g ◦ L⊕ ◦ (f−1

1 , f−1
2) where g, f1 and f2 are random non-affine permutations on

F4
2. This lookup-table representation of XOR operations typically causes a

bottleneck on the composition of the non-affine component of the white-box
encodings, as explained in the following.

Summary: affine and non-affine components of encodings. In table-based
white-box implementations, it is common that L′⊕ tables precede and succeed
an encoded table L′ = g ◦L◦ f−1 since XOR operations occur frequently due to
the application of matrix partitioning on ‘wide’ linear/affine mappings (which
are either part of the block cipher’s specification or the affine component of
white-box encodings). In that case, the composition of the white-box encodings
f and g of L′ is given by

f =
(
f1, f2, . . . , fm′

)
◦ F with m = m′ · 4 ,

g =
(
g1, g2, . . . , gn′

)
◦ G with n = n′ · 4 ,

where fi (1 ≤ i ≤ m′) and gi (1 ≤ i ≤ n′) are random non-affine permutations
on F4

2, and where F and G denote random mixing bijections on Fm2 and Fn2 ,
respectively. Observe that the affine component of the white-box encodings
is applied to the input and output of each lookup table before the non-affine
component. More generally, depending on the lookup tables preceding and
succeeding L′, the non-affine components fi and gi may be random non-affine
permutations with varying dimensions. However, as the storage requirement of

64 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

a lookup table with m > 16 quickly becomes impractical, the dimension of the
non-affine permutations is most likely to be upper bounded by 16. The above
is captured by concatenated encoding and I/O-blocked encoding in [24, 23].

As a final remark, it is interesting to note that the application of non-affine
encodings to all lookup tables results in the fact that each linear/affine mapping
occurring in the description of the block cipher becomes non-linear/non-affine
in the white-box implementation. This is referred to as de-linearization.

External encodings. It is common practice in white-box cryptography to
implement an encoded version E′k of a key-instantiated block cipher Ek. In
such an encoded version, invertible white-box encodings are applied to the
boundaries of the block cipher, i.e., to the plaintext and ciphertext, such that

E′k = OUT ◦ Ek ◦ IN−1 , (3.4)

where the encodings IN and OUT are referred to as external encodings. As a
consequence, E′k takes as input an encoded plaintext IN(P) and outputs the
encoded ciphertext OUT(C) where C = Ek(P). Ideally, if Ek is an nb-bit block
cipher, the external encodings are random permutations on Fnb

2 . However, as
such permutations cannot be implemented efficiently by a single lookup table,
instead the external encodings are typically selected as random bijective affine
mappings (mixing bijections) on Fnb

2 . Next, the matrix partitioning technique
(see Phase 1) allows the external encodings to be implemented as a XOR
network of small lookup tables, which eventually is de-linearized by applying
(the concatenation of) pairwise annihilating random non-affine permutations
on F4

2 to all lookup tables (due to the encoded nibble XOR tables L′⊕). As is
the case for all white-box encodings, the external encodings are kept secret in a
white-box implementation.

The motivation behind the use of external encodings is two-fold (see Wyseur [103,
Sect. 3.2.3]) and can be summarized as follows:

Prevent code lifting: this reflects the original motivation as presented by Chow
et al. in [24, 23]. If the white-box implementation is functionally equivalent
to the standard decryption routine Dk of a key-instantiated block cipher
(i.e., no external encodings are applied), one might question the relevance
of extracting the embedded key as the attacker is already in possession of
the software (i.e., the white-box implementation) mapping the original
ciphertext to the corresponding plaintext. Extracting pieces of code and
using it in an isolated manner is referred to as code lifting. In order
to prevent code lifting, Chow et al. proposed to apply secret invertible
external encodings to the boundaries of the block ciphers. These external

INITIAL PRACTICAL WHITE-BOX TECHNIQUES 65

encodings appear as pairwise annihilating transformations such that they
need to be applied to the plaintext and removed from the ciphertext
elsewhere outside the white-box implementation (e.g., on a remote server
or on the user’s playback device). Hence, the white-box implementation
becomes useless in an isolated setting outside its containing application.
Another solution to prevent code lifting is the technique called node
locking (cf. Michiels [70]), which limits the correct execution of the white-
box implementation to one user’s device. This technique relies on the
ability to include an arbitrary bit string (in the form of an arbitrary set
of lookup tables) in a white-box implementation in such a way that (i)
the implementation’s functionality is preserved, and (ii) the attacker is
unable to remove or modify the included bit string without affecting the
implementation’s functionality (see Michiels and Gorissen [73]). The bit
string used for node locking can be a unique hardware identifier of the
user’s device.

Increase the protection of the outer rounds’ white-box implementation: if no ex-
ternal encodings are applied, the lookup tables at the boundaries of
the white-box implementation are only partially encoded, i.e., the first
lookup tables are unencoded at their input and the final lookup tables are
unencoded at their output. Therefore, these particular lookup tables form
a primary target for cryptanalysis. From another perspective, the white-
box attacker is typically able to isolate the white-box implementation
of the first and final round and furthermore is able to observe and
adaptively choose the plaintext and ciphertext, which makes the white-box
implementation of the outer rounds more vulnerable to cryptanalysis. The
application of external encodings may provide a solution for the above
weaknesses of the white-box implementation.

Remote Content Provider

Ek INm

License
Generator

User’s Playback Device

IN
�
Ek(m)

�
k Lic

IN
�
Ek(m)

�

Lic License Verifier

IN�1 OUTDk

YES

D0
k

NO

player
OUT�1

OUT(m)

Figure 3.1: Use case of external encodings: a simplified DRM model.

Although the use of external encodings clearly has its advantages (as pointed
out above), it also has the following main disadvantage: the white-box
implementation is functionally equivalent to the encoded block cipher E′k
instead of the standard block cipher Ek, i.e., the input and output is provided
in an encoded form. Depending on the application in which the white-box

66 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

implementation is deployed, the use of external encodings can be justified or not.
For example, in the DRM setting (Fig. 3.1) where the white-box implementation
is functionally equivalent to the encoded decryption routineD′k = OUT◦Dk◦IN−1,
the external encoding IN is applied at the side of the remote content provider,
whereas the external encoding OUT is annihilated on the user’s content player.

3.3 White-Box AES Implementation

Chow et al. apply their generic white-box techniques to DES [68] and AES-
128 [69] in order to define an example white-box DES implementation [24] and
an example white-box AES-128 implementation [23]. The doctoral thesis by
Wyseur [103, Chapter 3] provides a comprehensive overview of the design of
Chow et al.’s white-box DES implementation [24] and the cryptanalytic results
on this implementation [51, 64, 105, 47]. This section elaborates on Chow et al.’s
white-box AES-128 implementation [23]. The cryptanalytic techniques on the
white-box AES implementation are presented in Sect. 3.5.

3.3.1 Lookup-Table Suitable Description of AES-128

Recall from Sect. 2.3.1 that there are several equivalent ways to describe AES-
128. As pointed out by Muir [78], the alternative description depicted in
Fig. 2.1b (p. 21) is particularly suitable for converting AES-128 into a network
of lookup tables. The main reason for this is that the steps AddRoundKey,
SubBytes and MixColumns are adjacent in the round function which simplifies
the merger of these steps into lookup tables.

AES subrounds. In order to support the description of the white-box AES
implementations (as the one in this section) and the cryptanalytic techniques on
the implementations (see Sect. 3.5 and Chapter 4), the mappings in the following
definition are introduced for rounds 1 ≤ r ≤ 9. These mappings take advantage
of the fact that the steps AddRoundKey, SubBytes and MixColumns are adjacent,
and of the fact that the MixColumns step comprises the parallel application of
four instances of the MixColumns matrix operation. In the following text, ⊕
and ⊗ denote the addition and multiplication operations in the AES polynomial
representation of F256, respectively.

Definition 18 (AES subround). Let xi, yi ∈ F256 for 0 ≤ i ≤ 3 be represented
using the AES polynomial representation. The mapping AES(r,j) : F4

256 →
F4

256 for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3, called an AES subround, is defined by

WHITE-BOX AES IMPLEMENTATION 67

(y0, y1, y2, y3) = AES(r,j)(x0, x1, x2, x3) with

yi = mci,0 ⊗ S
(
x0 ⊕ k̂(r,j)

0
)
⊕mci,1 ⊗ S

(
x1 ⊕ k̂(r,j)

1
)
⊕

mci,2 ⊗ S
(
x2 ⊕ k̂(r,j)

2
)
⊕mci,3 ⊗ S

(
x3 ⊕ k̂(r,j)

3
)
,

for 0 ≤ i ≤ 3. Recall from Sect. 2.3.1 that mci,j (0 ≤ i, j ≤ 3) denote the
MixColumns coefficients.

Observe that an AES subround consists of the key additions, the S-box
operations and the MixColumns operation in an AES round that are associated
with a single MixColumns matrix operation, and that each AES round r with
1 ≤ r ≤ 9 comprises four AES subrounds in parallel. The subrounds are indexed
by j in Def. 18, and it is assumed that the four subrounds in a round are
numbered left to right. The bytes k̂(r,j)

i for 0 ≤ i, j ≤ 3 are the 16 bytes of the
AES round key of round r.

Based on these AES subround mappings, the alternative description of AES-128
(Fig. 2.1b) for rounds 1 ≤ r ≤ 9 is now given as follows:

for r = 1 to 9 do
state ← ShiftRows(state)
for j = 0 to 3 do

[statei,j]0≤i≤3 ← AES(r,j)([statei,j]0≤i≤3
)

end for
end for

3.3.2 White-Box AES-128 Implementation

In 2013, to celebrate the tenth anniversary of the initial white-box cryptography
papers by Chow et al., Muir [78] presented a clear in-depth tutorial on how
Chow et al.’s white-box AES implementation is constructed, with more details
than in the original paper [23]. The tutorial by Muir is used as a guideline to
describe white-box AES-128 in the following. Now, recall from Sect. 3.2 that
the process of generating a white-box implementation comprises two phases;
each phase is described in detail below.

Phase 1: Translating AES-128 into a series of lookup tables

First, by means of partial evaluation, the AddRoundKey and SubBytes operations
of the round function are composed, resulting in 16 8-bit bijective key-dependent

68 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

lookup tables for each round. In the following, such a table is referred to as a
T-box. By adopting the notations of the round keys introduced in the alternative
description of AES-128, these T-boxes are defined as

T
(r,j)
i (x) = S(x⊕ k̂(r,j)

i) for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9 ,

T
(10,j)
i (x) = S(x⊕ k̂(10,j)

i)⊕ k(11,j)
i for 0 ≤ i, j ≤ 3 .

Observe that the 16 T-boxes of the final round incorporate the bytes of two
round keys, i.e., the final round key k̂(10) and the post-whitening key k(11).

Second, by means of matrix partitioning, the 4 × 4 matrix MC over F256
representing the MixColumns operation is split into four 4 × 1 submatrices
over F256: MCi is defined as column i of MC for i = 0, 1, 2, 3. Using this notation,
the MixColumns matrix-vector multiplication is decomposed into a XOR of four
32-bit values, given by

state0,j
state1,j
state2,j
state3,j

← 3⊕
i=0

MCi · statei,j for j = 0, 1, 2, 3 . (3.5)

For rounds 1 ≤ r ≤ 9, the T-boxes and MixColumns operation are then merged
together by constructing 16 TMC(r,j)

i (0 ≤ i, j ≤ 3) lookup tables per round, each
table mapping 8 bits to 32 bits and composed as

TMC(r,j)
i = MCi ◦ T (r,j)

i for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9 .

Observe that these tables merge the adjacent AddRoundKey, SubBytes and
MixColumns steps of the AES round function for 1 ≤ r ≤ 9. For the final round,
the AddRoundKey and SubBytes steps are already merged by means of the 16 key-
dependent T-boxes T (10,j)

i (0 ≤ i, j ≤ 3). Concerning the ShiftRows operation
at the beginning of each round function, it can be incorporated into the data-flow
of the implementation (i.e., providing shifted inputs to the tables) as it is only
a permutation on the indices of the bytes of the AES state.

At this point, almost the entire alternative description of AES-128 is converted
into a network of lookup tables, with the exception of the 32-bit XOR operations
which are due to the matrix-vector multiplication decomposition of MC (see (3.5))
for rounds 1 ≤ r ≤ 9. To illustrate this, observe that each AES subround AES(r,j)

(0 ≤ j ≤ 3 and 1 ≤ r ≤ 9) can now be computed as

(y0, y1, y2, y3) = AES(r,j)(x0, x1, x2, x3) =
3⊕
i=0

TMC(r,j)
i (xi) .

WHITE-BOX AES IMPLEMENTATION 69

Now, recall from Sect. 3.2 (Phase 1) that each 32-bit XOR operation can be
represented by 8 nibble XOR tables L⊕ in parallel. As a result, AES-128 can be
completely translated into a series of lookup tables; the resulting lookup-table
implementation of AES-128 is described in Fig. 3.2a. Figure 3.2b depicts the
implementation of an AES subround for 0 ≤ j ≤ 3 and 1 ≤ r ≤ 9 comprising
solely lookup tables.

Note that the standard software AES-128 implementation described in Sect. 2.3.2
(referred to as implementation A) relates to the lookup-table implementation of
AES-128 as depicted in Fig. 3.2 (referred to as implementation B). While
implementation A only merges the SubBytes and MixColumns operations
by means of matrix partitioning, implementation B additionally merges the
AddRoundKey operation (with fixed key) as well by means of partial evaluation.
This results in the following lookup tables for both implementations:

Implementation A: SMCi = MCi ◦ S (0 ≤ i ≤ 3)
Implementation B: TMC(r,j)

i = MCi ◦ T (r,j)
i (0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9)

T
(10,j)
i (0 ≤ i, j ≤ 3)

Observe that by embedding the fixed round key bytes into the lookup tables,
the number of lookup tables increases from 4 8-to-32 bit tables to 144 8-to-32 bit
tables and 16 8-to-8 bit tables (disregarding the nibble XOR tables L⊕).

Phase 2: Applying secret invertible white-box encodings

The lookup-table implementation of AES-128 obtained in Phase 1 provides no
protection with respect to key extraction in a white-box environment. In such
an environment, the attacker has access to the 16 TMC(1,j)

i (0 ≤ i, j ≤ 3) tables
of the first round, defined as

TMC(1,j)
i = MCi ◦ T (1,j)

i = MCi ◦ S ◦ k̂(1,j)
i for 0 ≤ i, j ≤ 3 .

By exploiting the fact that MC is a F2-linear operation and that S(52) = 00, the
8-bit value xi,j for which TMC(1,j)

i (xi,j) = 0 is given by xi,j = k̂
(1,j)
i ⊕ 52. This

enables the attacker to compute

k̂
(1,j)
i = xi,j ⊕ 52 for 0 ≤ i, j ≤ 3 .

Recall that for AES-128, the first round key equals the actual 128-bit AES key,
hence the attacker can easily extract the AES key.

As pointed out by Muir [78], the key-dependent lookup tables, i.e., the tables
TMC(r,j)

i (0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9) and T (10,j)
i (0 ≤ i, j ≤ 3), can be considered

70 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

state ← plaintext
for r = 1 to 9 do

state ← ShiftRows(state)
for j = 0 to 3 do

[statei,j]0≤i≤3 ←
⊕3

i=0 TMC(r,j)
i (statei,j)

where each
⊕

= L⊕ ‖ L⊕ ‖ L⊕ ‖ L⊕ ‖ L⊕ ‖ L⊕ ‖ L⊕ ‖ L⊕
end for

end for
state ← ShiftRows(state)
for j = 0 to 3 do

for i = 0 to 3 do
statei,j ← T

(10,j)
i (statei,j)

end for
end for
ciphertext ← state

(a) Description of AES-128 as a network of lookup tables.

MC0

8 8 8

4 4 4 4 4 4 4 4

4 4

L� L� L� L� L� L� L� L�

4 4 4 4 4 4 4 4

L� L� L� L� L� L� L� L�

4 4 4 4 4 4 4 4

L� L� L� L� L� L� L� L�

4 4 4 4 4 4 4 4

MC1 MC2 MC3

8

T
(r,j)
0 T

(r,j)
1 T

(r,j)
2 T

(r,j)
3

TMC
(r,j)
0 TMC

(r,j)
1 TMC

(r,j)
2 TMC

(r,j)
3

state0,j state1,j state2,j state3,j

state0,j state1,j state2,j state3,j

(b) Lookup-table implementation of an AES subround for 0 ≤ j ≤ 3 and 1 ≤ r ≤ 9.

Figure 3.2: Translating AES-128 into a series of lookup tables.

WHITE-BOX AES IMPLEMENTATION 71

as miniature block ciphers. Hence, to prevent an attacker from extracting the
AES round keys from these key-dependent tables, both F2-linear (achieving
diffusion) and non-linear (achieving confusion) secret invertible white-box
encodings are applied to the input and output of all lookup tables. Note that in
Sect. 3.2 (Phase 2), the more general distinction was made between F2-affine and
non-affine encodings; however, since the constant vector of the affine mappings
can be included in the non-affine mappings, both distinctions come down to
the same. Now, when applying Phase 2 to the lookup-table implementation of
AES-128 obtained in Phase 1, the resulting white-box AES-128 implementation
consists of five different types of encoded lookup tables [23].

Below, each of the five types of encoded lookup tables is carefully described. It
should be noted that this description only discusses how the F2-linear (external)
input and output white-box encodings (i.e., F2-linear mixing bijections) are
applied. Non-linear encodings, typically in the form of single or concatenated
random non-linear permutations on F4

2 (exceptions are highlighted in the
description below), need to be applied afterwards in addition to the linear
encodings to the input and output of all lookup tables. These non-linear
input and output encodings are pairwise annihilating between successive lookup
tables; the data-flow of the white-box implementation determines which pairs
of non-linear nibble permutations are pairwise annihilating.

In the following, it is assumed that an encoded version of the key-instantiated
AES-128 cipher is implemented, i.e., (see (3.4) on p. 64)

AES′k = OUT ◦ AESk ◦ IN−1 ,

where AESk denotes the key-instantiated AES-128 cipher and where the external
encodings IN and OUT are randomly and uniformly selected linear mixing
bijections on F128

2 . Both external encodings are kept secret in the white-box
implementation.

Type II. This type of lookup table concerns rounds 1 ≤ r ≤ 9 and encodes
the key-dependent tables TMC(r,j)

i (0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9) to prevent an
attacker from extracting the AES round keys from these tables:

The input of each TMC(r,j)
i table is encoded by (the inverse of) an 8-bit mixing

bijection
(
L

(r,j)
i

)−1 (represented by a non-singular 8× 8 matrix over F2);

The output of each TMC(r,j)
i table is encoded by a 32-bit mixing bijection R(r,j)

(represented by a non-singular 32 × 32 matrix over F2). Observe that
R(r,j) lacks the index i as this encoding is required to be the same for all
four TMC(r,j)

i (0 ≤ i ≤ 3) tables associated with each j.

72 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

The resulting encoded TMC(r,j)
i tables are denoted by L-II(r,j)

i (0 ≤ i, j ≤ 3 and
1 ≤ r ≤ 9), and map 8 bits to 32 bits. The composition of the L-II(r,j)

i tables
is depicted in Fig. 3.3c.

Type Ib. This type of lookup table concerns the final round and encodes the
key-dependent final round T-boxes T (10,j)

i (0 ≤ i, j ≤ 3) to prevent an attacker
from extracting the embedded AES round keys:

The input of each T-box T (10,j)
i is encoded by (the inverse of) an 8-bit mixing

bijection
(
L

(10,j)
i

)−1 (represented by a non-singular 8× 8 matrix over F2);

The output of all T-boxes T (10,j)
i equals the ciphertext, hence the output is

encoded by the external output white-box encoding OUT. As mentioned
above, the external encoding OUT is a 128-bit mixing bijection, represented
by a non-singular 128 × 128 matrix over F2. By means of matrix
partitioning, this matrix is split into 16 128 × 8 submatrices OUTl
(l = 0, 1, . . . , 15) such that the matrix-vector multiplication is decomposed
into a XOR of 16 128-bit values. The output of each T-box T (10,j)

i is then
encoded by the corresponding submatrix OUT4j+i for 0 ≤ i, j ≤ 3.

The resulting encoded T (10,j)
i tables are denoted by L-Ib(10,j)

i (0 ≤ i, j ≤ 3),
and map 8 bits to 128 bits. The composition of the L-Ib(10,j)

i tables is depicted
in Fig. 3.3b.

Type Ia. This type of lookup table annihilates the external input white-box
encoding IN (by means of taking its inverse IN−1) and introduces the 16 8-bit
mixing bijections L(1,j)

i (0 ≤ i, j ≤ 3) to form annihilating pairs with the linear
input encodings of the 16 L-II(1,j)

i (0 ≤ i, j ≤ 3) tables of the first round, while
accounting for the ShiftRows operation at the beginning of the first round.

First, by means of matrix partitioning, the 128×128 matrix over F2 representing
the 128-bit mixing bijection IN−1 is split into 16 128 × 8 submatrices IN−1

l

(l = 0, 1, . . . , 15) such that the matrix-vector multiplication is decomposed into
a XOR of 16 128-bit values. Second, the 16 8-bit mixing bijections L(1,sr(i,j))

i

(0 ≤ i, j ≤ 3) are concatenated to form the 128-bit mixing bijection

L(1) =
(
L

(1,sr(0,0))
0 , L

(1,sr(1,0))
1 , L

(1,sr(2,0))
2 , L

(1,sr(3,0))
3 ,

. . . , L
(1,sr(0,3))
0 , L

(1,sr(1,3))
1 , L

(1,sr(2,3))
2 , L

(1,sr(3,3))
3

)
, (3.6)

WHITE-BOX AES IMPLEMENTATION 73

where the ShiftRows function sr(i, j) was introduced in Sect. 2.3.1 (p. 19).
Next, IN−1 and L(1) are composed as

L(1) ◦ IN−1
4j+i for 0 ≤ i, j ≤ 3 . (3.7)

Representing each function defined by (3.7) by a lookup table results in 16
L-Ia(1,j)

i (0 ≤ i, j ≤ 3) tables, each mapping 8 bits to 128 bits. The composition
of the L-Ia(1,j)

i tables is depicted in Fig. 3.3a. Observe that the non-linear input
encoding is a random non-linear permutation on F8

2 instead of a concatenation
of two random non-linear permutations on F4

2. The reason why there is no
restriction on the dimension of the non-linear input encoding is the fact that
there are no encoded nibble XOR tables (which typically pose the restriction)
preceding the L-Ia(1,j)

i tables.

Type III. This type of lookup table handles the compatibility of the applied
white-box encodings between consecutive AES rounds r and r+ 1 for 1 ≤ r ≤ 9.
This comes down to annihilating the four 32-bit mixing bijections R(r,j) of
round r (0 ≤ j ≤ 3) by taking their inverses and introducing the 16 8-bit mixing
bijections L(r+1,j)

i (0 ≤ i, j ≤ 3) to form annihilating pairs with the linear
input encodings of the 16 L-II(r+1,j)

i (0 ≤ i, j ≤ 3) tables of round r + 1, while
accounting for the ShiftRows operation at the beginning of round r + 1.

For each j with 0 ≤ j ≤ 3, do the following. First, by means of matrix
partitioning, the 32× 32 matrix over F2 representing the 32-bit mixing bijection(
R(r,j))−1 is split into four 32 × 8 submatrices

(
R(r,j))−1

i
(i = 0, 1, 2, 3) such

that the matrix-vector multiplication is decomposed into a XOR of four 32-bit
values. Second, the four 8-bit mixing bijections L(r+1,sr(i,j))

i (0 ≤ i ≤ 3) are
concatenated to form the 32-bit mixing bijection

L(r+1,j) =
(
L

(r+1,sr(0,j))
0 , L

(r+1,sr(1,j))
1 , L

(r+1,sr(2,j))
2 , L

(r+1,sr(3,j))
3

)
. (3.8)

Next,
(
R(r,j))−1 and L(r+1,j) are composed as

L(r+1,j) ◦
(
R(r,j))−1

i
for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9 . (3.9)

Representing each function defined by (3.9) by a lookup table results in 16
L-III(r,j)

i (0 ≤ i, j ≤ 3) tables per round (1 ≤ r ≤ 9), each mapping 8 bits to
32 bits. The composition of the L-III(r,j)

i tables is depicted in Fig. 3.3d.

74 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

Table 3.1: The amount of encoded nibble XOR tables appearing in Chow et
al.’s white-box AES-128 implementation.

32-bit XOR operations⊕3
i=0 L-II(r,j)

i (xi,j) (0 ≤ j ≤ 3 and 1 ≤ r ≤ 9) 3 · 4 · 9 · 8⊕3
i=0 L-III(r,j)

i (xi,j) (0 ≤ j ≤ 3 and 1 ≤ r ≤ 9) 3 · 4 · 9 · 8
128-bit XOR operations⊕3

i,j=0 L-Ia(1,j)
i (xi,j) 15 · 32⊕3

i,j=0 L-Ib(10,j)
i (xi,j) 15 · 32

Total number of encoded nibble XOR tables 2688

Type IV. This type of lookup table handles the XOR operations (both 32-bit
and 128-bit) needed due to the decomposition of the matrix-vector multiplication
of the MixColumns matrix MC, the 32-bit mixing bijections

(
R(r,j))−1 (0 ≤ j ≤ 3

and 1 ≤ r ≤ 9), and the 128-bit mixing bijections IN and OUT. As pointed out
in Sect. 3.2 (Phase 2), each 32-bit or 128-bit XOR operation is represented by 8
or 32 encoded nibble XOR tables L′⊕ in parallel, respectively. As a result, the
Type IV tables, denoted by L-IV, correspond to L′⊕. The composition of the
L-IV tables, each mapping 8 bits to 4 bits, is depicted in Fig. 3.3e.

The total number of encoded nibble XOR tables appearing in Chow et al.’s white-
box AES-128 implementation is summarized in Table 3.1, where it is highlighted
how many 32-bit or 128-bit XOR operations need to be performed. Although
each encoded nibble XOR table L-IV internally computes the same result, i.e.,
the XOR of two different nibble inputs, the application of encodings at their
input and output (which are different for each L-IV table with an overwhelming
probability) ensures that all 2688 L-IV tables are different. However, one still
might suggest to implement only a single L-IV table. This concerns the re-use
of lookup tables, which is briefly discussed in Chapter 7.

ShiftRows operation. As already mentioned in Phase 1, the ShiftRows oper-
ation at the beginning of each round function is never implemented explicitly,
but rather implicitly by including it into the data-flow of the white-box
implementation (i.e., providing shifted inputs to the tables) and by accounting
for ShiftRows when composing encodings together (e.g., (3.6) and (3.8)).

Summary. In order to provide more intuition on how the lookup tables are
deployed in the white-box AES-128 implementation, an example white-box
implementation of an AES subround for 0 ≤ j ≤ 3 and 1 ≤ r ≤ 9 is depicted in

WHITE-BOX AES IMPLEMENTATION 75

8

4 4 4 4

4 44 4

4 4 4 4

4 4 4 4

4 4

4 4

8

...

32 times

L-Ib(10,j)
i

T
(10,j)
i

OUT4j+i

�
L

(10,j)
i

��1

(a) Type Ia: external input encoding IN�1. (b) Type Ib: encoded T
(10,j)
i tables.

8

32

4 4 4 4 4 4 4 4

4 4 4 4 4 44 4

4 4

4 4

T
(r,j)
i

MCi

�
L

(r,j)
i

��1

TMC
(r,j)
i

R(r,j)

L-II(r,j)
i

32

4 4 4 4 4 4 4 4

4 4 4 4 4 44 4

4 4

4 4L-III(r,j)
i

�
R(r,j)

��1

i

L(r+1,j)

(d) Type III: compatibility of encodings
between consecutive rounds.

44

44

L�
44

L-IV

(e) Type IV: encoded nibble XOR tables.(c) Type II: encoded TMC
(r,j)
i tables.

4 4 4 4

4 44 4

4 4 4 4

4 4 4 4

8

...

32 times

8

8

128

L(1)

L-Ia(1,j)
i

IN�1
4j+i

Figure 3.3: Five different types of encoded lookup tables of Chow et al.’s white-
box AES-128 implementation (the grey boxes indicate the non-linear bijective
encodings).

76 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

TMC
(r,j)
2 TMC

(r,j)
3T

(r,j)
2

T
(r,j)
3

MC2 MC3

L-II(r,j)
2 L-II(r,j)

3

�
L

(r,j)
2

��1 �
L

(r,j)
3

��1

4 4

4 4

4 4

4 4

8 8

32

4 4 4 4 4 4 4 4

R(r,j)

32

4 4 4 4 4 4 4 4

TMC
(r,j)
0 T

(r,j)
0

MC0

L-II(r,j)
0

�
L

(r,j)
0

��1

4 4

4 4

8

32

4 4 4 4 4 4 4 4

R(r,j)

TMC
(r,j)
1 T

(r,j)
1

MC1

L-II(r,j)
1

�
L

(r,j)
1

��1

4 4

4 4

8

32

4 4 4 4 4 4 4 4

R(r,j) R(r,j)

L-IVL� L� L� L� L� L�L� L�

4 4 4 4 4 44 4 4 4 4 4 4 44 4 4 4 4 4 4 44 4 4 4 4 4 4 44 4

L� L� L� L� L� L� L� L�

L�L� L�L� L� L� L� L�

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

32

4 4 4 4 4 4 4 4

L(r+1,j)

32

4 4 4 4 4 4 4 4

L(r+1,j)

32

4 4 4 4 4 4 4 4

L(r+1,j)

32

4 4 4 4 4 4 4 4

L(r+1,j)

�
R(r,j)

��1

0

�
R(r,j)

��1

1

�
R(r,j)

��1

2

�
R(r,j)

��1

3

L-III(r,j)
0 L-III(r,j)

1 L-III(r,j)
2 L-III(r,j)

3

L-IVL� L� L� L� L� L�L� L�

4 4 4 4 4 44 4 4 4 4 4 4 44 4 4 4 4 4 4 44 4 4 4 4 4 4 44 4

L� L� L� L� L� L� L� L�

L�L� L�L� L� L� L� L�

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

L
(r,j)
0 (state0,j) L

(r,j)
1 (state1,j) L

(r,j)
2 (state2,j) L

(r,j)
3 (state3,j)

L
(r+1,sr(0,j))
0 (state0,j) L

(r+1,sr(1,j))
1 (state1,j) L

(r+1,sr(2,j))
2 (state2,j) L

(r+1,sr(3,j))
3 (state3,j)

Figure 3.4: Chow et al.’s white-box implementation of an AES subround for
0 ≤ j ≤ 3 and 1 ≤ r ≤ 9 (the grey boxes indicate the non-linear bijective
encodings).

WHITE-BOX AES IMPLEMENTATION 77

Table 3.2: Overall size and performance of Chow et al.’s white-box AES-128
implementation.

Size Performance
Lookup Table Total Size # of

Type Size Table Lookups
144 L-II(r,j)

i (8-to-32 bit) 144 kB

752 kB 3008
144 L-III(r,j)

i (8-to-32 bit) 144 kB
16 L-Ia(1,j)

i (8-to-128 bit) 64 kB
16 L-Ib(10,j)

i (8-to-128 bit) 64 kB
2688 L-IV (8-to-4 bit) 336 kB

Fig. 3.4. It is interesting to compare this implementation (which is assumed to
provide protection against key-extraction) with the unprotected version depicted
in Fig. 3.2b. As one notes that due to the introduction of the 32-bit output
mixing bijection R(r,j), the number of tables has been doubled; the second
(additional) part ensures that the white-box encodings between consecutive
rounds form annihilating pairs.

Table 3.2 gives an overview of the size and performance (expressed in the
number of table lookups) of Chow et al.’s white-box AES-128 implementation
as specified in [23]. Note that the storage requirement of the encoded nibble
XOR tables L-IV accounts for ≈ 45% of the total implementation size, while its
impact on the overall performance is even more significant, i.e., 2688 out of 3008
(≈ 89%) table lookups. As mentioned later (see Chapter 7), the re-use of lookup
tables can provide a significant reduction of the implementation size of the XOR
operations, however, most likely this introduces security threats. In Chapter 7,
a comparison is given with the standard software implementation of AES-128
(see Sect. 2.3.2) as well as with other white-box AES-128 implementation (see
the following chapters).

3.3.3 Remark on the Use of Mixing Bijections

The F2-linear part of the white-box encodings (i.e., the mixing bijections)
introduces diffusion in the intermediate results of the white-box AES-128
implementation. In the following, wide mixing bijections refer to mixing
bijections that apply to more than one byte of the AES state simultaneously.
As mentioned before, in order to preserve the overall functionality of AES-128,
all white-box encodings are pairwise annihilating between successive lookup
tables. However, although not explicitly mentioned by Chow et al. [23], instead

78 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

of annihilating the wide mixing bijections completely, they can be annihilated
up to a secret permutation on the indices of the involved bytes. These unknown
permutations add confusion to the white-box implementation. In order to
maintain the functionality of AES-128, the unknown permutations are accounted
for in the data-flow of the white-box implementation. Hence, the additional
confusion can be implemented without increasing the size and without decreasing
the performance of the white-box implementation. In some sense, it seems
natural that the mixing bijections are only annihilated up to some unknown
permutations, as otherwise (if they are cancelled completely) their added value
would have been questionable.

In the case of Chow et al.’s white-box AES-128 implementation, the relevant
wide mixing bijections are (i) the 32-bit mixing bijections R(r,j) (0 ≤ j ≤ 3 and
1 ≤ r ≤ 9) and (ii) the 128-bit external input mixing bijection IN. Annihilating
the former up to the secret permutations Π(r,j) : (F8

2)4 → (F8
2)4 (0 ≤ j ≤ 3 and

1 ≤ r ≤ 9) and the latter up to the secret permutation Π(IN) : (F8
2)16 → (F8

2)16

results in the following confusion included in the white-box implementation:
a randomization of the order of the subrounds in an AES round and of the
order of the bytes within each subround. The compositions of the Type Ia and
Type III tables incorporating these secret permutations are depicted in Fig. 3.5.

32

4 4 4 4 4 4 4 4

4 4 4 4 4 44 4

4 4

4 4L-III(r,j)
i

�
R(r,j)

��1

i

L(r+1,j)

32

⇧(r,j)

4 4 4 4

4 44 4

4 4 4 4

4 4 4 4

8

...

32 times

8

8

128

L(1)

128

⇧(IN)

IN�1
4j+i

L-Ia(1,j)
i

Figure 3.5: Generic Type Ia and Type III tables of Chow et al.’s white-box AES-
128 implementation (the grey boxes indicate the non-linear bijective encodings).

WHITE-BOX SECURITY 79

Table 3.3: Comparison of the overall size and performance of Chow et al.’s
white-box implementations of AES-128, AES-192 and AES-256.

AES-k Size Performance
(# of table lookups)

AES-128 752 kB 3008
AES-192 864 kB 3456
AES-256 976 kB 3904

3.3.4 Extensions to AES-192 and AES-256

Disregarding the AES key scheduling algorithm, the only differences between
AES with different key sizes are the number R of rounds and the number R+ 1
of 128-bit round keys. Since the value of R depends on the key size, R = 10, 12
or 14 in the case of AES-128, AES-192 or AES-256, respectively. The AES key
scheduling is typically not implemented in the white-box environment (as is also
the case for Chow et al.’s white-box AES implementation [23]), i.e., it is assumed
that all round keys are directly provided instead of the secret AES key out of
which the round keys need to be derived. As a consequence, the techniques
presented in Sects. 3.3.1-3.3.3 in order to obtain an example white-box AES-128
implementation can be applied to AES-192 and AES-256 in a straightforward
way to obtain example white-box AES-192 and AES-256 implementations,
respectively. Table 3.3 lists the storage requirement and performance (expressed
in the number of required table lookups) of the white-box implementations
(obtained using Chow et al.’s generic white-box techniques) of AES for all three
different key size.

3.4 White-Box Security

In order to assess the security of (the implementation of) a block cipher, a specific
security notion needs to be taken into account comprising the following two
factors: the attacker’s model and the cryptanalyst’s goal (see Sect. 2.4). This also
applies to white-box cryptography that involves the software implementations of
key-instantiated block ciphers (for the fixed-key scenario). The white-box attack
model specifying the capabilities of an attacker in the white-box environment has
already been extensively described in Sect. 2.4.5 on p. 29. This section focuses
on the objectives of a white-box attacker, that are derived from the classification
given in Sect. 2.4.4. As is discussed below, although key-extraction is most
often the primary goal, other ‘stronger’ objectives may be of interest depending
on the application in which the white-box implementation is deployed.

80 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

3.4.1 White-Box Attacker’s Goal

Section 2.4.4 provides a hierarchical classification of the attacker’s goals with
respect to black-box security (i.e., an attacker complying to the black-box
model). However, an attacker complying to the white-box model has more
powerful capabilities in addition to a black-box attacker resulting in different
interpretations of some existing attacker’s goals as well as the introduction of
new security requirements for white-box implementations.

With regard to white-box cryptography, two main attacker’s goals play a crucial
role: total break and global deduction. Below, the achievement of both goals
within the white-box environment is discussed.

Total break. As total break concerns the full recovery of the secret key material,
it is crucial to determine what this ‘secret key material’ includes. Recall that
it is common practice in white-box cryptography to implement an encoded
version E′k of an nb-bit block cipher Ek instantiated with the secret key k, i.e.,
E′k = OUT ◦ Ek ◦ IN−1 where the external encodings IN and OUT are bijective
mappings on Fnb

2 and are kept secret (see Sect. 3.2 on p. 64). Therefore the
resulting white-box implementation is functionally equivalent to E′k instead of
Ek, and takes the encoded plaintext IN(P) as input and outputs the encoded
ciphertext OUT(C). With respect to this, next to the secret key k, a white-box
key (WBK) is defined that comprises both the secret key k and the bijective
mappings of the external encodings. Taking the above into account, two different
but related definitions of total break with respect to white-box implementations
are presented below; these definitions are used throughout this thesis.
Definition 19 (Secret key recovery (KR)). A white-box implementation of a
key-instantiated block cipher Ek (or Dk) is called KR-insecure if an attacker
extracts the secret key k and furthermore has access to the plaintext P .

Total break defined as KR-insecurity is typically the primary objective of a
white-box attacker. The extraction of the secret key k enables the attacker
to construct a standard encryption/decryption algorithm instantiated with k.
Naturally, if the white-box implementation lacks the application of external
encodings, this also allows him to gain access to the plaintext P . However,
if the white-box implementation comprises external encodings, the attacker
additionally needs access to one of the intermediate states of the block cipher
(i.e., the input or output of one of the intermediate rounds) in order to gain
access to the plaintext P . Discussion may arise to whether or not it is already
sufficient for a white-box attacker to have solely access to the plaintext P
without extracting the secret key k. Note that this already closely leans towards
global deduction.

WHITE-BOX SECURITY 81

The following definition of total break is only meaningful if the white-box
implementation includes the application of bijective external encodings.

Definition 20 (White-box key recovery (WBKR)). A white-box implementation
of an encoded version of a key-instantiated block cipher Ek (or Dk) is called
WBKR-insecure if the attacker extracts the secret key k and the inverse mappings
of the applied external encodings.

Observe that WBKR-insecurity can only be achieved if the applied external
encodings are bijective (hence this is a necessary condition on the external
encodings). As is shown later, KR-insecurity already allows the attacker to
recover the external encodings (if applicable) partially, i.e., only in one way.
Hence, if the external encodings are invertible, additional work is required in
order to obtain their inverse mappings as well resulting in the WBKR-insecurity.
So, naturally, WBKR-insecurity implies KR-insecurity. Consequently, KR-
security implies WBKR-security. To summarize:

KR-security ⇒ WBKR-security
KR-insecurity ⇐ WBKR-insecurity

Note that in the case of white-box implementations, equivalent keys (either
secret keys or white-box keys) may exist that yield functionally equivalent
implementations. Hence, in a broader sense, one should speak about equivalent
secret key recovery or equivalent white-box key recovery. In Chapter 6, it is
shown how equivalent keys are extracted from a white-box AES implementation.

Global deduction. Recall from Sect. 2.4.4 that global deduction corresponds
to constructing an algorithm that is functionally equivalent to Ek (or Dk)
without ever recovering the actual secret key k. This goal becomes particularly
interesting in the white-box environment since a white-box attacker is assumed
to be in possession of the white-box implementation (without external encodings)
that is functionally equivalent to Ek (or Dk). Observe that this relates to the
concept of code-lifting mentioned earlier. Recall that Chow et al. [23] proposed
the application of external encodings in order to preclude code lifting.

Closely related to global deduction is the goal of inverting the white-box
implementation: given an implementation functionally equivalent to Ek (or E′k),
construct an implementation functionally equivalent to Dk (or D′k) without the
knowledge of the secret key or the white-box key.

82 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

3.4.2 White-Box Security Objectives

The primary objective of white-box cryptography (Def. 14) is to provide
protection against total break; this is referred to as unbreakability by Delerablée,
Lepoint, Paillier and Rivain [39]. In particular, this comes down to achieving
KR-security, which is as indicated above a stronger security requirement than
WBKR-security. However, Wyseur [103] and Delerablée et al. [39] question the
meaningfulness of unbreakability if code-lifting poses a threat.

Next, depending on the application in which a white-box implementation is
deployed, there also exist other security objectives (refer to Delerablée et al. [39]
for a discussion on these security requirements):

One-wayness provides protection against inverting the white-box implemen-
tation. A typical scenario in which one-wayness is required is when a
symmetric-key encryption scheme is converted into an asymmetric-key
encryption scheme based on white-box cryptography (cf. Joye [52]): the
white-box implementation functionally equivalent to Ek (or E′k) acts as the
public key, while the secret key k (or the white-box key) acts as the private
key. Observe that KR-insecurity implies breaking the one-wayness of a
white-box implementation without external encodings, and that WBKR-
insecurity implies breaking the one-wayness of a white-box implementation
with invertible external encodings. In those scenarios, one-wayness is a
stronger security requirement than unbreakability since a one-way white-
box implementation implies KR-security or WBKR-security.

Incompressibility prevents the construction of a functionally equivalent imple-
mentation with a significantly smaller memory footprint. The idea behind
incompressibility is to discourage attackers to illegally distribute their
white-box implementations due to its (large) size.

Traceability relates to the ability to make white-box implementations traceable
in order to identify traitors, where a traitor refers to a user illegally
distributing his implementation. As pointed out by Michiels [70], relying on
the ability to include an arbitrary bit string in a white-box implementation
without affecting its functionality and ensuring the integrity of the included
string (i.e., resistant against removal or modification), one may include a
unique string unambiguously identifying each user.

3.4.3 White-Box Metrics

Security metrics make an effort in quantifying the obtained level of security of
a cryptographic primitive. In [24, 23], Chow et al. introduced a few metrics

WHITE-BOX SECURITY 83

that try to measure the achieved level of white-box security for lookup-table-
based white-box implementations of key-instantiated block ciphers: white-box
diversity, white-box ambiguity and local security. Below, each of these white-box
metrics is discussed with their application to Chow et al.’s white-box AES-128
implementation [23].

White-box diversity and ambiguity. White-box diversity (WB-div) counts in
how many distinct ways a particular unencoded lookup table can be encoded by
randomly and independently chosen permutations (either F2-linear, F2-affine
or non-linear/non-affine). For key-dependent lookup tables, the variation of
the embedded key-material needs to be taken into account. On the other hand,
white-box ambiguity (WB-amb) captures in how many distinct ways a specific
encoded lookup table can be interpreted in terms of composition. Both metrics
are closely related by the expression

WB-amb(L′) = WB-div(L′)
of distinct tables of L′ .

These metrics applied above to the level of lookup tables themselves, can
also be applied to the level of table-based white-box implementations of a
given key-instantiated block cipher, for which both metrics translate into the
following: WB-div counts in how many distinct ways a functionally equivalent
implementation can be constructed, whereas WB-amb relates to the number of
interpretations of distinct candidate keys associated to the same implementation,
among which an attacker needs to disambiguate. It should be mentioned
that calculating the white-box diversity and ambiguity for entire white-box
implementations is a very complex task to complete since relations within the
network of encoded lookup tables (such as pairwise annihilating encodings) need
to be taken into account.

Local security. In addition to the white-box metrics diversity and ambiguity,
Chow et al. also introduced the term local security in [24]. To some extent, local
security relates to white-box ambiguity with regard to encoded key-dependent
lookup tables.

Definition 21 (Local security [24]). Let L′ denote an encoded key-dependent
lookup table mapping m bits to n bits; L′ is defined as L′ = g ◦ Lk ◦ f where
k, f and g denote the embedded nk-bit secret key, the m-bit input encoding
(bijective mapping on Fm2) and the n-bit output encoding (bijective mapping on
Fn2), respectively. Then L′ is called locally secure if, for each possible key value
k′ ∈ Fnk

2 with k′ 6= k, there exists a pair of encodings (f ′, g′) 6= (f, g) such that
the table entries of L′ remain invariant, i.e., L′ = g′ ◦ Lk′ ◦ f ′.

84 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

Observe that there exists a close resemblance between (i) the definition of local
security with respect to lookup tables (see Def. 21), and (ii) the definition
of ideal block ciphers (see Def. 2). That is, a key-instantiated nb-bit block
cipher is called ideal if it is indistinguishable from a random permutation on
nb bits, i.e., any key value is equally probable. The same reasoning holds for
lookup tables, where a key-dependent lookup table is called locally secure if it
is indistinguishable from a lookup table instantiated by any other key value.

Example. As pointed out by Chow et al. [23] and Muir [78], the encoded key-
dependent Type II tables L-II(r,j)

i (0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9) occurring in
Chow et al.’s white-box AES-128 implementation are locally secure: although the
non-linear encodings are constructed as concatenated non-linear permutations on
F4

2 such that they are randomly chosen out of all (24!)2 possible input encodings
and all (24!)8 possible output encodings (instead of all possible permutations
on F8

2 and F32
2 , respectively), it can be shown that for each possible value

of the embedded key byte k̂(r,j)
i (28 in total), the encodings can be chosen

in such a way that the resulting L-II(r,j)
i table remains invariant. Hence it

becomes impossible for an attacker to extract the embedded key byte k̂(r,j)
i by

solely observing the L-II(r,j)
i table. The same reasoning holds for the encoded

key-dependent Type Ib tables L-Ib(10,j)
i (0 ≤ i, j ≤ 3) as well.

However, although the Type II tables L-II(r,j)
i (0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9)

are locally secure with regard to the embedded key byte k̂(r,j)
i , other useful

information may leak such as the definition of the output encodings if the
composition of the tables lacks the application of mixing bijections (see the
S-box frequency attack in Sect. 3.5.1).

Conclusion. Although the outcome of the various white-box metrics applied
to Chow et al.’s white-box AES-128 implementation sounds promising, the
cryptanalytic result presented in Sect. 3.5.2 shows the KR-insecurity (and later
in Chapter 4 the WBKR-insecurity) of Chow et al.’s implementation up to a very
practical level. As a result, the white-box metrics fail in capturing the achieved
level of white-box security. It is shown that even though inspecting single
isolated locally secure key-dependent lookup tables (local inspection) does not
yield any key information, inspecting a composition of multiple lookup tables
(global inspection) may reveal crucial information about the secret white-box
encodings, which in turn makes it possible to mount a practical attack in order
to extract the secret cryptographic key.

CRYPTANALYTIC TECHNIQUES 85

3.5 Cryptanalytic Techniques

3.5.1 Attacks on Weakened Variants

This section describes attacks on weakened variants of Chow et al.’s white-box
AES-128 implementation and thereby justifies certain design choices made by
Chow et al. [23] in order to improve the security.

S-box frequency attack. This attack highlights the importance of the diffusion
effect introduced by the mixing bijections at the input and output of key-
dependent lookup tables. In the following, suppose that the key-dependent
Type II tables L-II(r,j)

i (0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9) of Chow et al.’s white-
box AES-128 implementation were input and output encoded only by means
of concatenated random non-linear permutations on F4

2 (i.e., they lack the
application of mixing bijections). This setting is depicted in Fig. 3.6. As is
shown by Chow et al. [23], and subsequently by Muir [78] in a generic context,
the output encodings can be fully retrieved by performing a frequency analysis
on the AES S-box. Below, a simplified version of the attack is described; for
details, refer to [23, 78].

L-II(r,j)
i

T
(r,j)
i

MCi4 4

44

f�1
1

f�1
0

hk̂(r,j)
i iL

hk̂(r,j)
i iR

4

4

S
8

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

g0;0 g1;0 g0;1 g1;1 g0;2 g1;2 g0;3 g1;3

Figure 3.6: Weakened Type II tables of Chow et al.’s white-box AES-128
implementation lacking the input and output mixing bijections and their
corresponding diffusion effect.

In the following, it is assumed that there exists no ambiguity about the order
of the output nibbles of each L-II(r,j)

i table (Fig. 3.6), i.e., the attacker knows
which pair of output nibbles is associated with which coefficient of the embedded
MixColumns submatrix MCi. Hence, for each L-II(r,j)

i table, the attacker has
access to the four 8-bit bijective mappings(

g0;l, g1;l
)
◦ ⊗mcl

◦ T (r,j)
i ◦

(
f−1

0 , f−1
1
)

for 0 ≤ l ≤ 3 , (3.10)

86 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

where f−1
0 , f−1

1 denote the two nibble input encodings, and g0;l, g1;l (0 ≤ l ≤ 3)
denote the eight nibble output encodings. The MixColumns coefficients mcl are
elements of the set {01, 02, 03}. Rewriting (3.10) by including the embedded
secret round key byte k̂(r,j)

i into the input encodings results in the mappings

Ul =
(
g0;l, g1;l

)
◦ ⊗mcl

◦ S ◦
(
⊕〈k̂(r,j)

i
〉L ◦f

−1
0 ,⊕〈k̂(r,j)

i
〉R ◦ f

−1
1
)

=
(
g0;l, g1;l

)
◦ Sl ◦

(
f ′−1

0 , f ′−1
1
)

for 0 ≤ l ≤ 3 , (3.11)

where 〈x〉L and 〈x〉R denote the left and right nibble of x ∈ F8
2, respectively.

As Ul and Sl (0 ≤ l ≤ 3) are bijective mappings on F8
2, they can each be

represented by a 16× 16 byte array where the rows and columns are indexed
by the left and right nibble of the input bytes, respectively. Next, for each byte
entry of the array, a so-called cell frequency signature is computed:

Definition 22 (Cell frequency signature [23]). Let L denote an n × n array
of byte entries L(r, c) where 0 ≤ r ≤ n − 1 (and 0 ≤ c ≤ n − 1) denote the
row (and column) index. The cell frequency signature of an entry L(r, c) is
the 64-digit string concatenating the 16-digit nibble-count sequences (i.e., the
sequence of the occurrence frequencies of each possible nibble value (0-F)) sorted
in descending order of (i) the row r left nibbles, (ii) the row r right nibbles, (iii)
the column c left nibbles, and (iv) the column c right nibbles.

For example, the cell frequency signature of the first entry of the array
representing the AES S-box S (i.e., entry S(0, 0)) is given by

4421111110000000431111111110000032222211100000004222211110000000 .

Now, the following two observations can be made with regard to each Ul mapping
and its associated Sl mapping (see (3.11)) for 0 ≤ l ≤ 3:

1. the nibble input encoding f ′−1
0 (and f ′−1

1) permutes the order of the rows
(and columns) of the array representing Sl;

2. the nibble output encoding g0;l (and g1;l) encodes the left (and right)
nibble of each byte entry Sl(r, c) with 0 ≤ r, c ≤ 15. Observe that although
this affects the value of the nibbles, the cell frequency signatures remain
invariant (due to the sorting in descending order).

The two observations above imply that all entries of the arrays representing Ul
and the associated Sl share the exact same cell frequency signatures, though
at different locations in the arrays. Hence, based on finding collisions between

CRYPTANALYTIC TECHNIQUES 87

cell frequency signatures (abbreviated by fs), one can identify matching entries
between the arrays representing Ul and Sl, i.e.,

fs
(
Ul(r′, c′)

)
= fs

(
Sl(r, c)

)
where (r′, c′) =

(
f ′−1

0 , f ′−1
1
)
(r, c) .

Further, the relation between matching entries is given by

Ul(r′, c′) =
(
g0;l, g1;l

)(
Sl(r, c)

)
.

As a consequence, by going over all matching entries, the attacker is able to fully
retrieve the key-dependent nibble input encodings f ′−1

0 , f ′−1
1 and the nibble

output encodings g0;l, g1;l (0 ≤ l ≤ 3). Finally, after the recovery of the nibble
output encodings of all L-II(r,j)

i tables (0 ≤ i, j ≤ 3) of a given round 1 ≤ r ≤ 8
and due to the lack of the Type III tables (as they handled the mixing bijections),
the attacker is able to retrieve the round key bytes of round r + 1. For details,
refer to Chow et al. [23].

In [78], Muir presents a generic version of the S-box frequency attack in which
it is assumed that there exists ambiguity about the order of the output nibbles
of each L-II(r,j)

i table, i.e., which output nibbles are associated with which
MixColumns coefficient and which are left and right output nibbles.

Algebraic degree attack. This attack highlights the importance of the appli-
cation of external encodings in order to protect the white-box implementation
of the outer rounds. In the following, assume a weakened white-box AES-128
implementation that is functionally equivalent to the standard AES-128 cipher
(i.e., no external encodings are applied). In this scenario, the input of all
Type II tables L-II(1,j)

i (0 ≤ i, j ≤ 3) of the first round remains unencoded;
furthermore, the white-box implementation lacks the Type Ia tables. In the
white-box environment, the attacker is able to compose the Type II and Type III
tables associated with the first round as depicted in Fig. 3.7 such that he
obtains access to the four output encoded AES subrounds f̂ (1,j) : F4

256 → (F8
2)4

(0 ≤ j ≤ 3) of the first round (disregarding the secret permutations left behind
after the annihilation of the mixing bijections), defined by

f̂ (1,j) =
(
Q

(1,j)
0 , Q

(1,j)
1 , Q

(1,j)
2 , Q

(1,j)
3

)
◦ AES(1,j) for 0 ≤ j ≤ 3 ,

where each 8-bit bijective output encoding Q(1,j)
i (0 ≤ i, j ≤ 3) is composed out

of an 8-bit mixing bijection and a concatenation of two non-linear permutation
on F4

2.

In [23], Chow et al. showed how to extract the secret round key bytes from
each mapping f̂ (1,j) (0 ≤ j ≤ 3) based on the first step of the extended Square

88 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

(=

� � � �

S S S S

8 8 8 8

8 8 8 8

0 0 0

k � S�1(x)

algebraic
degree ≤ 3?

k̂
(1,j)
0 k̂

(1,j)
1 k̂

(1,j)
2 k̂

(1,j)
3

MC
Q

(1,j)
3Q

(1,j)
2Q

(1,j)
1Q

(1,j)
0

L-III(1,j)
0 L-III(1,j)

1 L-III(1,j)
2 L-III(1,j)

3

L-II(1,j)
3L-II(1,j)

2
L-II(1,j)

1L-II(1,j)
0

8x L-IV 8x L-IV
8x L-IV

8x L-IV 8x L-IV
8x L-IV

A
E
S
(1

,j
)

f̂
(1

,j
)

Figure 3.7: Algebraic degree attack on the first round of a weakened variant of
Chow et al.’s white-box AES-128 implementation without external encodings.

attack (see Sect. 2.5.1 on p. 40) with a work factor of 232. However, the
method described below extracts the round key bytes with a lower work factor
based on the algebraic degree of Boolean functions (to quote Knudsen and
Robshaw [58, p. 188]: “the algebraic degree gives a measure of how many input
bits might simultaneously have an impact on the value of the output”). The
attack discussed below, referred to as the algebraic degree attack, is presented
by Lepoint et al. [63] as part of a collision-based attack on the white-box AES
implementation of Chow et al. (Sect. 3.5.3).

By composition (i.e., a combination of a bijective linear mapping on F8
2 and

a concatenation of two non-linear permutations on F4
2), each output encoding

Q
(1,j)
i (0 ≤ i, j ≤ 3) has an algebraic degree of at most 3. This property

can be exploited as follows to extract the key bytes from each mapping f̂ (1,j)

(0 ≤ j ≤ 3). To find a round key byte, say k̂(1,j)
0 , fix the other three input bytes

to f̂ (1,j) (e.g., to zero), search over all possible 28 values of the key byte k and
verify if the 8-bit bijective mapping

gk(x) = f̂
(1,j)
0

(
k ⊕ S−1(x), 0, 0, 0

)
has an algebraic degree of at most 3, where f̂ (1,j)

0 denotes the first coordinate
function of f̂ (1,j) (i.e., only consider the first output byte). If gk(x) has an
algebraic degree of at most 3, then k̂(1,j)

0 = k. Repeat this for all other round
key bytes. This methodology is depicted in Fig. 3.7.

The correctness of the method above relies on the fact that the mapping
S
(
c⊕ S−1(x)

)
has an algebraic degree greater than 3 for all non-zero values of

c with an overwhelming probability. A method to verify if a bijective mapping
on F8

2 has an algebraic degree of at most 3 is provided by [63, Lemma 2]. The

CRYPTANALYTIC TECHNIQUES 89

expected work factor to extract all first round key bytes is given by 4 ·4 ·27 = 211

and is expressed in the number of times one needs to verify the algebraic degree
of a bijective mapping on F8

2.

3.5.2 The BGE Attack

In 2004, two years after the publication of Chow et al.’s white-box AES-128
implementation [23], Billet, Gilbert and Ech-Chatbi [13] presented an algebraic
attack (referred to as the BGE attack in the following) on this implementation.
The BGE attack successfully extracts the embedded 128-bit AES key with a
work factor of 230, making it a practical attack; the attack can be executed
in just a few minutes on a modern PC. As a result, the white-box AES-128
implementation of Chow et al. is secret key recovery (KR)-insecure. Observe
that this differs from WBKR-insecurity since this additionally requires the
extraction of the external encodings by means of the components of their
bijective mappings, which is not covered by [13]. However, Chapter 4 presents
improvements to the BGE attack as well as an efficient method to extract the
external encodings from Chow et al.’s implementation. This result shows that
Chow et al.’s white-box AES implementation is WBKR-insecure as well.

Encoded AES Subrounds

In the following text, P (r,j)
i and Q(r,j)

i for 0 ≤ i ≤ 3 denote bijective mappings
on F8

2 and are referred to as input and output encodings, respectively. As
mentioned before, these encodings are generated randomly and are kept secret
in a white-box implementation. In particular, in the case of Chow et al.’s
white-box AES implementation [23], the composition of the encodings P (r,j)

i

and Q(r,j)
i (0 ≤ i ≤ 3) is a combination of a bijective linear mapping on F8

2 (i.e.,
an 8-bit mixing bijection) and a concatenation of two non-linear permutations
on F4

2. With slight abuse of notation, an input to an AES subround AES(r,j)

(Def. 18) is considered to be an element of F4
256 using the AES polynomial

representation in the following definition, and an output of AES(r,j) is considered
to be an element of (F8

2)4. Further, in the following definition the permutations
Π(r,j)
i : (F8

2)4 → (F8
2)4 (i = 1, 2) for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3 permute the order

of the input bytes and output bytes of an AES subround, respectively, and
π(r) : {0, 1, 2, 3} → {0, 1, 2, 3} for 1 ≤ r ≤ 9 permutes the order of the four AES
subrounds within an AES round. These permutations are randomly chosen and
kept secret in a white-box implementation.

90 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

8x L-IV 8x L-IV
8x L-IV

8x L-IV 8x L-IV
8x L-IV

L-II(r,j)
0 L-II(r,j)

1 L-II(r,j)
2 L-II(r,j)

3

L-III(r,j)
3L-III(r,j)

2L-III(r,j)
1L-III(r,j)

0

MC

k̄
(r,j)
0

� � � �

S S S S

P
(r,j)
0 P

(r,j)
1 P

(r,j)
2 P

(r,j)
3

Q
(r,j)
3Q

(r,j)
2Q

(r,j)
1Q

(r,j)
0

⇧
(r,j)
1

⇧
(r,j)
2

8 8 8 8

8 8 8 8

k̄
(r,j)
1 k̄

(r,j)
2 k̄

(r,j)
3

M
C
(r

,j
)

A
E
S
(r

,j
)

AES(r,j)
enc

(b)(a)

x0 x1 x2 x3

y0 y1 y2 y3

T
(r

,j
)

i
Figure 3.8: Composing Type II, Type III and Type IV tables of Chow et al.’s
white-box AES implementation (fig (a)) in order to obtain the encoded AES
subrounds AES(r,j)

enc (1 ≤ r ≤ 9 and 0 ≤ j ≤ 3) (fig (b)).

Definition 23 (Encoded AES subround). The mapping AES(r,j)
enc : (F8

2)4 → (F8
2)4

for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3, called an encoded AES subround, is defined by

AES(r,j)
enc = (Q(r,j)

0 , Q
(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3) ◦

AES(r,j) ◦ (P (r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3) ,

where the mapping AES(r,j) is defined by

Π(r,j)
2 ◦ AES(r,π(r)(j)) ◦Π(r,j)

1 = MC(r,j) ◦ (S, S, S, S) ◦ ⊕[k̄(r,j)
i

]0≤i≤3
,

with [k̄(r,j)
i]0≤i≤3 = (Π(r,j)

1)−1([k̂(r,π(r)(j))
i]0≤i≤3

)
and MC(r,j) = Π(r,j)

2 ◦ MC ◦Π(r,j)
1 .

Billet et al. [13] showed in their cryptanalysis of Chow et al.’s white-box AES
implementation [23] that for rounds 1 ≤ r ≤ 9, it is possible to compose
Type II and Type III tables as depicted in Fig. 3.4 (and schematically depicted
in Fig. 3.8a) such that a white-box attacker has access to the encoded AES
subrounds AES(r,j)

enc (0 ≤ j ≤ 3) of each round r with 1 ≤ r ≤ 9 (Def. 23),
depicted in Fig. 3.8b.

Recall from Sect. 3.3.3 that, even though the permutations in Def. 23 are not
explicitly specified in [23], they are implicitly included in the 32-bit and 128-bit

CRYPTANALYTIC TECHNIQUES 91

wide mixing bijections. In a practical white-box AES implementation (e.g.,
Chow et al.’s white-box AES implementation [23]), each wide mixing bijection
is annihilated up to a secret permutation on the indices of the involved bytes.
This assumption was also made in the BGE attack [13].

As mentioned before, in Chow et al.’s white-box AES implementation, the output
encodings Q(r−1,j)

i and input encodings P (r,j)
i for 0 ≤ i, j ≤ 3 of successive AES

rounds are pairwise annihilating to maintain the functionality of AES. The data-
flow of the white-box implementation between successive AES rounds r− 1 and
r (which accounts for the ShiftRows step at the beginning for round r as well as
for the secret permutations induced by the wide mixing bijections) determines
the 16 pairs of output/input encodings which are pairwise annihilating.

BGE Attack

As indicated above, the attacker has access to the encoded AES subrounds
AES(r,j)

enc (Fig. 3.8b) for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3. In the following, let
(x0, x1, x2, x3) ∈ (F8

2)4 denote the input of AES(r,j)
enc ; further, let yi : (F8

2)4 → F8
2

for 0 ≤ i ≤ 3 denote the coordinate functions of AES(r,j)
enc such that AES(r,j)

enc =
(y0, y1, y2, y3), defined as

yi(x0, x1, x2, x3) = Q
(r,j)
i

(3⊕
l=0

mc
(r,j)
i,l ⊗ T

(r,j)
l

(
P

(r,j)
l (xl)

))
, (3.12)

for 0 ≤ i ≤ 3, where mc(r,j)i,l (0 ≤ i, l ≤ 3) denote the coefficients of the
‘permuted’ MixColumns matrix MC(r,j) and T (r,j)

l = S ◦ ⊕
k̄

(r,j)
l

for 0 ≤ l ≤ 3.

Next, the BGE attack [13] comprises the following three phases: Phases 1 and 2
retrieve the bytes of the AES round key associated with round r for some r
with 2 ≤ r ≤ 9, and Phase 3 determines the correct order of the round key
bytes and extracts the 128-bit AES key. Each phase is described below. For
detailed information about the BGE attack, refer to [13].

The methodology of Phase 1 of the BGE attack is of independent interest (as
stated in [13]). In [75], Michiels et al. present a generalization of Phase 1 with
regard to white-box implementations of a specific class of key-instantiated block
ciphers. This is discussed in Sect. 3.5.4.

Phase 1. The first phase retrieves the encodings Q(r,j)
i (0 ≤ i ≤ 3) up to

an affine part for each encoded AES subround j (0 ≤ j ≤ 3). Because of the

92 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

pairwise annihilating property of the encodings between successive rounds, the
encodings P (r,j)

i (0 ≤ i, j ≤ 3) can be retrieved up to an affine part by applying
the same technique to the encoded AES subrounds of the previous round.

The removal of the non-affine component of the output encodings Q(r,j)
i (0 ≤

i ≤ 3) is done as follows. If one fixes the input bytes (x1, x2, x3) of AES(r,j)
enc

(Fig 3.8b) to some constant values (c1, c2, c3) ∈ (F8
2)3, then (3.12) becomes

yi(x0, c1, c2, c3) = Q
(r,j)
i

(
mc

(r,j)
i,0 ⊗ T (r,j)

0
(
P

(r,j)
0 (x0)

)
⊕ βc1,c2,c3

i

)
, (3.13)

for 0 ≤ i ≤ 3, where the constant βc1,c2,c3
i ∈ F8

2 is dependent on the constant
values c1, c2, c3. Now, let yc1,c2,c3

i : F8
2 → F8

2 denote the bijective mapping on F8
2

defined by (3.13) for 0 ≤ i ≤ 3. Each mapping yc1,c2,c3
i is entirely determined

by a lookup table that is constructed by varying x0 over F8
2 and storing the

corresponding output values.

Next, varying x3 over F8
2 while keeping (x1, x2) fixed to (c1, c2) results in the

fact that βc1,c2,x3
i takes all 28 values in F8

2 as well. For each x3 ∈ F8
2, the 8-bit

bijective mapping yc1,c2,x3
i is entirely known by means of a lookup table mapping

8 bits to 8 bits. The inverse mapping (yc1,c2,x3
i)−1 is obtained by inverting the

corresponding lookup table. Now, by composing yc1,c2,c3
i and (yc1,c2,x3

i)−1, one
gets the following set of 28 bijective mappings on F8

2 for 0 ≤ i ≤ 3:

Si = {yc1,c2,c3
i ◦ (yc1,c2,x3

i)−1} =
{
Q

(r,j)
i ◦ ⊕β ◦

(
Q

(r,j)
i

)−1
}
, (3.14)

where β = βc1,c2,c3
i ⊕ βc1,c2,x3

i takes all 28 values in F8
2 by varying x3 over F8

2.
Each of the 28 bijective mappings (one for each possible β value) within each
set Si for 0 ≤ i ≤ 3 is completely determined by a lookup table.

Given each set Si (0 ≤ i ≤ 3) as defined in (3.14), Billet et al. (see [13, Theorem
1]) are able to compute the non-affine component of the white-box output
encodings Q(r,j)

i (0 ≤ i ≤ 3), denoted by Q̃
(r,j)
i , such that there exists an

unknown affine mapping Q̂(r,j)
i so that Q̃(r,j)

i = Q
(r,j)
i ◦ Q̂(r,j)

i . As a result, all
encodings Q(r,j)

i (0 ≤ i ≤ 3) in Fig 3.8b can be made affine (still unknown) by
composing them with the corresponding Q̃(r,j)

i as follows:(
Q̃

(r,j)
i

)−1 ◦Q(r,j)
i =

(
Q̂

(r,j)
i

)−1 ◦
(
Q

(r,j)
i

)−1 ◦Q(r,j)
i =

(
Q̂

(r,j)
i

)−1
.

Phase 2. The second phase assumes that all encodings of an encoded AES
round are affine mappings (as the other parts have been retrieved in Phase 1).
Phase 2 first retrieves the affine encodings Q(r,j)

i (0 ≤ i ≤ 3) for each encoded
AES subround AES(r,j)

enc (0 ≤ j ≤ 3). During this process, the key-dependent

CRYPTANALYTIC TECHNIQUES 93

affine mappings P̃ (r,j)
i (x) = P

(r,j)
i (x)⊕ k̄(r,j)

i (0 ≤ i, j ≤ 3) are obtained as well.
As in Phase 1, the affine encodings P (r,j)

i (0 ≤ i, j ≤ 3) are retrieved by applying
the same technique to the encoded AES subrounds of the previous round. This
enables the attacker to compute the round key bytes k̄(r,j)

i = P̃
(r,j)
i (0)⊕P (r,j)

i (0)
for 0 ≤ i, j ≤ 3.

Phase 3. After Phases 1 and 2, the values of the round key bytes k̄(r,j)
i

(0 ≤ i, j ≤ 3) of round r with 2 ≤ r ≤ 8 are known. However, the order of
the round key bytes associated with each subround and the order of the four
subrounds are still unknown. Therefore, Billet et al. [13] proposed a third phase
that (i) retrieves the round key bytes of round r + 1 as well by the application
of Phases 1 and 2, and (ii) uses the fact that the round key bytes of rounds
r and r + 1 are related to each other via both the data-flow of the white-box
implementation and the AES key scheduling algorithm to determine the correct
order of the round key bytes. Note that Billet et al. [13] does not provide an
explicit description of such a method. However, in [36], we presented an efficient
method for Phase 3 of the BGE attack, which is described in Chapter 4. Finally,
assuming that the AES variant with a 128-bit key is used, the attacker can use
the property of the AES key scheduling algorithm that the AES key can be
computed if one of the round keys is known.

Work factor of the BGE attack. In [13], Billet et al. claim that the work
factor associated with the three phases of the BGE attack is around 230. Below,
the work factor of each phase is listed; a detailed explanation along with
improvements is presented in Chapter 4.

Phase 1 3 · 4 · 4 · 224 < 230

Phase 2 3 · 4 · 4 · 215 · 28 < 229

Phase 3 no work factor given
Total work factor 230

Apart from extracting the secret AES key k, the BGE attack also enables an
attacker to gain access to the plaintext P as explained in following. After
Phases 2 and 3, the input encodings P (r,j)

i (0 ≤ i, j ≤ 3) of the encoded round
r with 2 ≤ r ≤ 8 as well as their correct order are fully retrieved, which allows
the attacker to have access the unencoded 16-byte input of the AES round r,
denoted by STATE(r). Combined with the ability to construct a standard AES
decryption algorithm instantiated with the extracted key k, the attacker can
partially decrypt STATE(r) to obtain the plaintext P . This is explained into more
detail in Chapter 4. As a work factor of 230 clearly shows the practicality of the
BGE attack, the white-box AES implementation of Chow et al. is KR-insecure.

94 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

Vulnerabilities Exploited by the BGE Attack

In order for the BGE attack to be successful, certain vulnerabilities of Chow et
al.’s white-box AES implementation have been exploited. These vulnerabilities
are weaknesses of the white-box AES design that are available to an attacker in
the white-box setting, and which the attacker can use to his advantage to mount
an efficient white-box attack. Three main vulnerabilities can be identified which
relate to certain properties of the white-box implementation and to the internal
structure of AES. The identification of these vulnerabilities is used as a starting
point in generalizing the BGE attack (see Sect. 3.5.4).

Vulnerability 1. In Chow et al.’s white-box AES implementation [23], for
each byte statei,j (0 ≤ i, j ≤ 3) of the input state of a standard AES round
r (1 ≤ r ≤ 10), the attacker has access to an encoded version g

(r,j)
i

(
statei,j

)
of statei,j. Each encoding g

(r,j)
i is a secret fixed bijective mapping on F8

2,
composed of a mixing bijection on F8

2 together with two concatenated non-linear
permutations on F4

2.

Vulnerability 1 states that the attacker is able to observe the 16 input and
output bytes of AES rounds 1 ≤ r ≤ 9 in a fixed encoded form.

Vulnerability 2. In Chow et al.’s white-box AES implementation [23], for each
encoded AES subround AES(r,j)

enc (1 ≤ r ≤ 9 and 0 ≤ j ≤ 3), the attacker has
access to the following four bijective mappings on F8

2 for 0 ≤ i ≤ 3 (hence 16
mappings in total), where ci ∈ F8

2 (0 ≤ i ≤ 3) denote constant values:

yc1,c2,c3
i : F8

2 → F8
2 : x0 7→ yi(x0, c1, c2, c3) ,

yc0,c2,c3
i : F8

2 → F8
2 : x1 7→ yi(c0, x1, c2, c3) ,

yc0,c1,c3
i : F8

2 → F8
2 : x2 7→ yi(c0, c1, x2, c3) ,

yc0,c1,c2
i : F8

2 → F8
2 : x3 7→ yi(c0, c1, c2, x3) .

Recall that (x0, x1, x2, x3) ∈ (F8
2)4 denotes the input of AES(r,j)

enc and that yi
(0 ≤ i ≤ 3) denote the coordinate functions of AES(r,j)

enc . Each bijective mapping
on F8

2 is determined by means of a lookup table.

Vulnerability 2 is the result of combining Vulnerability 1 with the inherent byte-
oriented structure of each AES subround AES(r,j) (Def. 18), i.e., the fact that
AddRoundKey and SubBytes are bijective byte operations and MixColumns is
represented by a 4× 4 circulant MDS (Maximum Distance Separable) matrix
over F256. The BGE attack mainly exploits Vulnerability 2; e.g., it enables the
attacker to successfully build the sets (3.14), which in fact only requires two
out of four bijective mappings for each i (0 ≤ i ≤ 3).

CRYPTANALYTIC TECHNIQUES 95

Table 3.4: Comparison of the estimated overall work factor of the BGE attack
on Chow et al.’s white-box implementations of AES-128, AES-192 and AES-256.

AES-k Work factor of the
BGE attack

AES-128 230

AES-192 230

AES-256 231

Vulnerability 3. The specification of AES is publicly known up to the secret
key; this includes the AES S-box and the MixColumns coefficients.

BGE Attack on White-Box AES-192 and AES-256 Implementations?

In the following, it is assumed that the white-box AES-192 and AES-256
implementations are obtained in the same way as Chow et al.’s white-box AES-
128 implementation [23] (see Sect. 3.3.4). As a consequence, the attacker has
access to the encoded AES subrounds AES(r,j)

enc for 0 ≤ i ≤ 3 and 1 ≤ r < R,
where R = 12 for AES-192 and R = 14 for AES-256. Hence Phases 1 and 2
of the BGE attack can be applied to retrieve the round key bytes associated
with round r for some r with 2 ≤ r < R. As described in Phase 3 of the
BGE attack, due to the ambiguity about the order of the round key bytes, the
round key bytes of consecutive rounds need to be retrieved which are related
to each other via both the data-flow of the white-box implementation and the
AES key scheduling algorithm to determine the correct of the round key bytes.
Now, the AES key schedule [69, 31] is an iterative algorithm and involves nK
successive 128-bit round keys at each iteration, where nK = 2 for AES-128,
nK = 3 for AES-192 and nK = 4 for AES-256. As a result, Phase 3 of the BGE
attack requires that the round key bytes of three or four consecutive rounds
are retrieved in the case of AES-192 or AES-256, respectively. The estimated
overall work factors of the BGE attack are listed in Table. 3.4. Observe that
the BGE attack has similar overall work factors for the three variants of AES.

3.5.3 An Attack Exploiting Internal Collisions

Lepoint and Rivain [62, 63] proposed a new attack on the white-box AES
implementation of Chow et al. by exploiting collisions in the output bytes of the
four encoded AES subrounds of the first round. This attack, referred to as the
collision attack in the following, extracts the embedded AES key with a work
factor of 222. However, unlike the BGE attack, it is assumed that the attacker

96 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

knows the order of the bytes of the intermediate AES results in the white-box
implementation. Consequently, the collision attack assumes a composition of
the encoded AES subrounds lacking the secret byte permutations, given by the
following definition.

Definition 24 (Encoded AES subround without byte permutations). The
mapping f (r,j) : (F8

2)4 → (F8
2)4 for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3, called an encoded

AES subround without byte permutations, is defined by

f (r,j) = (Q(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3) ◦ AES(r,j) ◦ (P (r,j)

0 , P
(r,j)
1 , P

(r,j)
2 , P

(r,j)
3) ,

As mentioned above, the collision attack considers the four encoded AES
subrounds of the first round, given by f (1,j) for 0 ≤ j ≤ 3. For each f (1,j),
let f (1,j)

i denote the i-th coordinate function of f (1,j) (i.e., only consider the
i-th output byte) for i = 0, 1, 2, 3 such that f (1,j) =

(
f

(1,j)
0 , f

(1,j)
1 , f

(1,j)
2 , f

(1,j)
3

)
.

Further, in [63], the 8-bit bijective mappings S(1,j)
i defined as S(1,j)

i (x) =
S
(
k̂

(1,j)
i ⊕ P (1,j)

i (x)
)
(0 ≤ i, j ≤ 3) are introduced such that

f (1,j) =
(
Q

(1,j)
0 , Q

(1,j)
1 , Q

(1,j)
2 , Q

(1,j)
3

)
◦ MC ◦

(
S

(1,j)
0 , S

(1,j)
1 , S

(1,j)
2 , S

(1,j)
3

)
,

for 0 ≤ j ≤ 3. The collision attack as described in [62, 63] comprises the
following two phases:

Phase 1. The first phase retrieves the functions S(1,j)
i (0 ≤ i, j ≤ 3) by

exploiting collisions in the output bytes of f (1,j) (0 ≤ j ≤ 3), i.e., collisions in
the output of the coordinate functions f (1,j)

i (0 ≤ i, j ≤ 3). Due to the fact that
the secret output encodings Q(1,j)

i (0 ≤ i, j ≤ 3) are fixed bijective mappings on
F8

2, a collision in the encoded output byte Q(1,j)
i (x) corresponds with a collision

in the unencoded output byte x as well. For example, by looking for a collision
of the form f

(1,j)
0 (α, 0, 0, 0) = f

(1,j)
0 (0, β, 0, 0), one can rewrite the equation as

Q
(1,j)
0

(
02⊗ S(1,j)

0 (α)⊕ 03⊗ S(1,j)
1 (0)⊕ c

)
=

Q
(1,j)
0

(
02⊗ S(1,j)

0 (0)⊕ 03⊗ S(1,j)
1 (β)⊕ c

)
,

where c = S
(1,j)
2 (0)⊕ S(1,j)

3 (0), that eventually yields

02⊗ S(1,j)
0 (α)⊕ 03⊗ S(1,j)

1 (0) = 02⊗ S(1,j)
0 (0)⊕ 03⊗ S(1,j)

1 (β) . (3.15)

Due to the bijectiveness of the S(1,j)
i functions, there exists a total of 256

pairs (α, β) satisfying (3.15), among which the trivial solution (α, β) = (0, 0).

CRYPTANALYTIC TECHNIQUES 97

In [63, Sect. 4.1], it is discussed how to extract the functions S(1,j)
0 and S(1,j)

1
by exploitng collisions of the form

f
(1,j)
i (α, 0, 0, 0) = f

(1,j)
i (0, β, 0, 0)

for i = 0, 1, 2, 3. With the knowledge of S(1,j)
0 , the functions S(1,j)

2 and S(1,j)
3

can then be found similarly by exploiting collision of the form

f
(1,j)
i (α, 0, 0, 0) = f

(1,j)
i (0, 0, β, 0) and f

(1,j)
i (α, 0, 0, 0) = f

(1,j)
i (0, 0, 0, β)

for i = 0, 1, 2, 3, respectively. By repeating this process for all four subrounds,
i.e., for j = 0, 1, 2, 3, all functions S(1,j)

i (0 ≤ i, j ≤ 3) can be extracted.

Phase 2. The second phase extracts the round key bytes k̂(2,j)
i (0 ≤ i, j ≤ 3)

of the second round. Observe that due to the fact that it is assumed that
the attacker knows the order of the bytes of the intermediate AES results in
the white-box implementation, it suffices to extract only a single round key
since there exists no ambiguity about the order of the round key bytes. And,
as mentioned before, the secret key of AES-128 can be computed from the
knowledge of a single round key.

After Phase 1, all S(1,j)
i (0 ≤ i, j ≤ 3) functions are retrieved. This allows the

attacker to obtain all secret output encodings Q(1,j)
i (0 ≤ i, j ≤ 3) of the first

round by computing(
Q

(1,j)
0 , Q

(1,j)
1 , Q

(1,j)
2 , Q

(1,j)
3

)
= f (1,j) ◦

(
S

(1,j)
0 , S

(1,j)
1 , S

(1,j)
2 , S

(1,j)
3

)−1 ◦ MC−1 ,

for 0 ≤ j ≤ 3. Further, since the output encodings Q(1,j)
i of the first round

and the input encodings P (2,j)
i of the second round for 0 ≤ i, j ≤ 3 are

pairwise annihilating, all input encodings P (2,j)
i (0 ≤ i ≤ 3) of the encoded

AES subrounds f (2,j) (0 ≤ j ≤ 3) can be removed. The resulting mappings
f̂ (2,j) : (F8

2)4 → (F8
2)4 are given by

f̂ (2,j) =
(
Q

(2,j)
0 , Q

(2,j)
1 , Q

(2,j)
2 , Q

(2,j)
3

)
◦ AES(2,j) ,

for 0 ≤ j ≤ 3. Next, in order to extract the round key bytes k̂(2,j)
i (0 ≤ i ≤ 3)

from each mapping f̂ (2,j) (0 ≤ j ≤ 3), the same technique is used as in the
algebraic degree attack (Sect. 3.5.1, p. 87), i.e., by exploiting the fact that each
output encoding Q(2,j)

i has an algebraic degree of at most 4. E.g., in order to
extract the round key byte k̂(2,j)

0 , verify whether the 8-bit bijective mapping

gk(x) = f̂
(2,j)
0

(
k ⊕ S−1(x), 0, 0, 0

)
has an algebraic degree of at most 4 for each possible guess k ∈ F8

2, where f̂
(2,j)
0

denotes the first coordinate function of f̂ (2,j). For details, refer to [63, Sect. 4.2].

98 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

Work factor of the collision attack. In [63, Sect. 4.3], Lepoint and Rivain
argue that the work factor of the collision attack is dominated by the work
factor of Phase 1 and is given by 222. In [62], Lepoint and Rivain claim to
have extended their attack to the generic case, i.e., assuming that the order
of the bytes of the intermediate AES results in the white-box implementation
are secretly randomized. For details about the (generic) collision attack, refer
to [62, 63].

3.5.4 Generic White-Box Attack of Michiels et al.

The BGE attack [13] was specifically designed for cryptanalyzing the white-
box AES implementation of Chow et al. [23]. Throughout the attack,
specific properties of AES are exploited such as the AES S-box and the
MixColumns coefficients (see Vulnerability 3), hence the attack cannot be
extended trivially to other SPN block ciphers. However, as already pointed
out by Billet et al. [13], the technique of Phase 1 of the BGE attack (i.e.,
the removal of the non-affine component of the secret white-box encodings) is
of independent interest and may be applied to lookup-table-based white-box
implementations of other SPN block ciphers if some requirements on both the
white-box implementation and the cipher itself are met. This has been covered
in [75], where Michiels, Gorissen and Hollmann present an algebraic attack
on white-box implementations of a generic class of SPN block ciphers. The
primary goal of Michiels et al.’s attack is the secret key recovery (KR, and not
WBKR), as was also the case for the BGE attack. Below, before describing the
actual attack, first the specifications of the generic class of SPN ciphers and
the properties of their white-box implementations are discussed that need to be
satisfied in order for the attack to succeed.

Generic Class of SPN Block Ciphers

The generic class of SPN ciphers (Def. 5) considered by Michiels et al. [75] is
the family of key-alternating Substitution-Linear Transformation (SLT) ciphers
as defined by the following definition.

Definition 25 (Substitution-Linear Transformation (SLT) cipher [75, Def. 1]).
A cipher is called an n-bit SLT cipher if it comprises R rounds with R ≥ 1,
where each round 1 ≤ r ≤ R is a bijective mapping on Fn2 operating on s input
words xi ∈ Fm2 (1 ≤ i ≤ s) in parallel with n = s · m, and consists of the
following three consecutive operations: (i) a XOR with a round key k(r) ∈ Fn2 ,
(ii) the confusion layer comprising s (different) S-boxes S(r)

i (1 ≤ i ≤ s) in
parallel where each S-box S(r)

i is defined as a non-linear bijective mapping on

CRYPTANALYTIC TECHNIQUES 99

Fm2 , (iii) the diffusion layer comprising an n×n non-singular matrix M (r) over
F2. Apart from the secret round keys, all other components are included in the
cipher’s specification.

Observe that many common block ciphers satisfy Def. 25, such as AES [69] and
Serpent [7] (one of the five AES finalists). Additionally to Def. 25, Michiels et
al. state a mild but necessary condition on the diffusion layer, which is captured
by the following property.
Property 2 (Double surjective mappings [75, Def. 3]). Let (z1, z2, . . . , zs) and
(y1, y2, . . . , ys) with zi, yi ∈ Fm2 (1 ≤ i ≤ s) and n = s ·m denote the n-bit input
and output of the n×n non-singular diffusion matrix M (r) over F2, respectively.
Now, for each output word yj ∈ Fm2 (1 ≤ j ≤ s), there exists two disjoint subsets
Uj , Vj of input words zi such that the mappings defined by Uj 7→ yj and Vj 7→ yj
through M (r) (while fixing the uninvolved input words to a constant) are both
surjective on Fm2 .

As mentioned by Michiels et al. [75], Property 2 is met by any n × n MDS
matrix over F2. Furthermore, MDS matrices are preferably selected as diffusion
matrices in block cipher designs because of their good diffusion properties. Note
that AES satisfies Def. 25 combined with Property 2.

White-box Implementations of SLT Ciphers

Concerning the white-box implementations of the family of SLT ciphers defined
by Def. 25 and Property 2, Michiels et al. [75] discuss certain properties that
are necessary for the attack to succeed.
Property 3. In the white-box implementation, for each input word xi ∈ Fm2
(1 ≤ i ≤ s) of each round 1 ≤ r ≤ R, the attacker has access to an encoded
version f

(r)
i (xi) of xi. Each encoding f (r)

i is a fixed random permutation on
Fm2 and kept secret in the white-box implementation.

Property 4. For each fixed encoded output word f (r+1)
j (yj) ∈ Fm2 (1 ≤ j ≤ s)

of each round 1 ≤ r < R, there exists two disjoint subsets U j , V j of fixed encoded
input words f (r)

i (xi) such that the mappings defined by U j 7→ f
(r+1)
j (yj) and

V j 7→ f
(r+1)
j (yj) through the white-box implementation of round r (while fixing

the uninvolved encoded input words to a constant) are both surjective on Fm2 .
These surjective mappings on Fm2 can be made bijective by [75, Theorem 1].

Observe that Property 4 is a result from combining Def. 25 and Properties 2
and 3. Hence, the disjoint subsets U j , V j of Property 4 relate to the disjoint
subsets Uj , Vj of Property 2, as is depicted in Fig. 3.9.

100 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

S
(r)
1

S
(r)
2

S(r)
s

...
...

�
k
(r)
1

�
k
(r)
2

�
k
(r)
s

...
...

x1

x2

xs zs

z2

z1
�
f

(r)
1

��1

�
f

(r)
2

��1

�
f (r)

s

��1f (r)
s (xs)

f
(r)
2 (x2)

f
(r)
1 (x1)

...
...

m

m

m

Uj

VjV j

U j

M (r) y1

ys

f
(r+1)
1

f (r+1)
s

m

m

m
f (r+1)

s (ys)

f
(r+1)
1 (y1)

yj f
(r+1)
j f

(r+1)
j (yj)

...
...

fixed encoded SLT cipher round function

Figure 3.9: Illustration of Michiels et al.’s attack: the existence of double
surjective mappings on Fm2 in the white-box implementation of an SLT cipher.

Note that Properties 2 and 3 correspond to generalizations of Vulnerabilities 1
and 2 (identified in Sect. 3.5.2 with regard to the BGE attack), respectively.
Therefore, these properties ensure that a generalized version of Phase 1 of the
BGE attack can be mounted against the white-box implementations.

Michiels et al.’s Attack

For the family of SLT ciphers defined by Def. 25 and Property 2, whose lookup-
table-based white-box implementations (obtained by for example applying the
generic white-box techniques of Chow et al. described in Sect. 3.2) satisfy
Property 3 and consequentially also Property 4, Michiels et al. [75] presented
an algebraic attack enabling an attacker to extract the n-bit round key k(r)

of any round 1 < r < R, that eventually yields the secret embedded n-
bit cryptographic key through the application of the inverse key scheduling
algorithm (if applicable). The attack consists of three phases, which are briefly
highlighted below. Note that unlike the BGE attack, Michiels et al.’s attack
assumes that the order of the m-bit words of the intermediate results in the
white-box implementation is known to the attacker (see [75, Property 1]).
Additionally, the attack assumes that the cipher’s specification is publicly
known. For detailed information about Michiels et al.’s attack, refer to [75].

The following three phases need to be applied to any round r with 1 < r < R

of the white-box implementation, where
(
f

(r)
1 (x1), f (r)

2 (x2), . . . , f (r)
s (xs)

)
and(

f
(r+1)
1 (y1), f (r+1)

2 (y2), . . . , f (r+1)
s (ys)

)
denote the n-bit input and output of the

fixed encoded round function, respectively (see Fig. 3.9).

CRYPTANALYTIC TECHNIQUES 101

Phase 1. The first phase retrieves the input encodings
(
f

(r)
i

)−1 and output
encodings f (r+1)

i (1 ≤ i ≤ s) up to an affine part. This phase is a generalization
of Phase 1 of the BGE attack, i.e., the following sets of 2m bijective mappings
on Fm2 are constructed for 1 ≤ i ≤ s:

Si = {f (r+1)
i ◦ ⊕β ◦

(
f

(r+1)
i

)−1 | β ∈ Fm2 } , (3.16)

where each of the 2m bijective mappings within each set Si for 1 ≤ i ≤ s is
completely determined by a lookup table. Property 4 enables the construction
of these sets Si. Next, given the sets Si (3.16), the attacker can obtain f (r+1)

i

(1 ≤ i ≤ s) up to an unknown affine component by applying the following
generalized version of [13, Theorem 1].

Theorem 1 (Generalized version of [13, Theorem 1]). Given a set of functions
S = {Q ◦ ⊕β ◦Q−1 | β ∈ Fm2 } given by values, where Q is a permutation of Fm2
and ⊕β is the translation by β in Fm2 , one can construct a particular solution
Q̃ such that there exists an affine mapping A so that Q̃ = Q ◦A.

Phase 2. The second phase assumes that all encodings of the encoded round
function are affine mappings (as the other parts have been retrieved in Phase 1).
Phase 2 transforms the affine encoded round function into a Substitution-Affine
Transformation (SAT) cipher (see [75, Def. 4]) round function, defined as a
two-layered n-bit bijective mapping ε(r) ◦ Q(r) where ε(r) is a bijective affine
mapping on Fn2 and Q(r) comprises s key-dependent m-bit bijective non-linear
lookup tables Q(r)

i (1 ≤ i ≤ s) in parallel. Both layers are separately accessible
to the attacker.

Phase 3. The third phase extracts the n-bit round key k(r). By comparing the
affine encoded round function with the SAT cipher round function constructed
during Phase 2, the only non-affine components are given by the s key-
independent m-bit S-boxes S(r)

i (included in the public cipher’s specification)
in the former and by the s key-dependent m-bit S-boxes Q(r)

i in the latter.
This brings us to the fact that there exists an affine equivalence between Q(r)

i

and S
(r)
i for 1 ≤ i ≤ s, i.e., Q(r)

i = B
(r)
i ◦ S

(r)
i ◦ A

(r)
i , where (A(r)

i , B
(r)
i) is a

pair of bijective affine mappings on Fm2 . Furthermore, A(r)
i is dependent on

k
(r)
i , i.e., the i-th m-bit word of the round key k(r). Finally, the algorithm

given by [75, Fig. 1] enables the attacker to extract the n-bit round key k(r):
the presented algorithm is based on the affine equivalence algorithm (AE) for
S-boxes proposed by Biryukov et al. in [14], and on the Linear Equivalence
algorithm for matrices (LEPM – [75, Def. 6]).

102 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

Work factor of Michiels et al.’s attack. Although the work factor of Phase 1
was originally estimated at 2 · s · 23m by Michiels et al. [75], the improvement by
Tolhuizen [101] (discussed in Chapter 4) reduces this cost to only 2·s·(3+4m)·2m.
However, as the work factor of Phase 3 depends on the specification of the
chosen SLT cipher (i.e., the S-boxes and diffusion operators), Michiels et al.
made no statements with regard to the overall work factor.

Generalizing Even Further

Note that Phase 1 of both the BGE attack as well as Michiels et al.’s attack
(i.e., the removal of the non-affine component of the white-box encodings) can
be further generalized.
Definition 26 (Double Surjective (DS) function). Let us define the function
f : U × V → Fm2 : (x1, x2) 7→ y = f(x1, x2). Then f is called a Double
Surjective (DS) function if the following two mappings are surjections on Fm2
for any constant (c1, c2) ∈ U × V :

f c1 : V → Fm2 : x2 7→ y = f(c1, x2) ,
f c2 : U → Fm2 : x1 7→ y = f(x1, c2) .

Theorem 2. If, for a given white-box implementation, the attacker has access
to a fixed encoded DS function f ′ defined as f ′ = b ◦ f ◦ (a−1

1 , a−1
2) where f is a

DS function given by Def. 26, where a1, a2 are secret fixed bijective white-box
encodings (random permutations) applied to the inputs x1, x2, respectively, and
where b is a secret fixed bijective white-box encoding (random permutation)
applied to the output y, then he is able to remove the non-affine component of
the output encoding b.

Although the above theorem has been applied only at the level of encoded round
functions in both the BGE attack [13] as well as Michiels et al.’s attack [75], it
can be applied to any lookup table or composition of lookup tables implementing
a fixed encoded DS function in the white-box implementation. This has been
illustrated by Wyseur [103, Sect. 3.6.2] by applying the above theorem to the
encoded nibble XOR tables. Such tables, referred to as the Type IV tables
(Fig. 3.3e), occur frequently in Chow et al.’s white-box AES implementation [23].

3.6 Conclusion and Outline of Part II

This chapter elaborated in detail on the design and analysis of practical lookup-
table-based white-box AES implementations as specified by Chow et al. in [23].

CONCLUSION AND OUTLINE OF PART II 103

With respect to the analysis part, this chapter introduced two related definitions
of a total break of white-box implementations: secret key recovery (KR - Def. 19)
and white-box key recovery (WBKR - Def. 20). These definitions are used
throughout this thesis. The practical BGE attack [13] showed the KR-insecurity
of Chow et al.’s white-box AES implementation by successfully extracting the
embedded secret AES key with a work factor of 230. Further, generalizations
of the BGE attack have been discussed that can be applied to white-box
implementations (obtained by the generic white-box techniques of Chow et al.)
of key-instantiated block ciphers if some specific (but mild) conditions are met
on both the specification of the cipher as well as its white-box implementation.
These negative results triggered research on designing new white-box AES
implementations offering resistance against all known white-box attacks (i.e.,
the BGE attack and Michiels et al.’s attack). This led to the following three
proposals of new white-box AES implementations.

1. Bringer et al.’s perturbated white-box AES implementation [20].
In 2006, Bringer, Chabanne and Dottax [20] presented a novel white-box
technique based on perturbations. The idea behind the novel technique
is to hide the algebraic structure of AES by injecting faults in the round
function computations that will only be corrected for at the end (i.e., in the
final round). Furthermore, the obtained white-box AES implementation
is represented by a system of polynomial equations over F256 instead of a
network of encoded lookup tables.

2. The Xiao-Lai white-box AES implementation [107].
In 2009, Xiao and Lai [107] proposed a new lookup-table-based white-box
AES implementation by applying the generic white-box techniques of
Chow et al. in a very specific way: (i) all secret white-box encodings are
solely F2-linear and (ii) the secret white-box encodings operate on at least
two bytes simultaneously.

3. Karroumi’s dual white-box AES implementation [53].
In 2010, Karroumi [53] proposed a new lookup-table-based white-box AES
implementation based on the same idea of Bringer et al., i.e., to hide
the algebraic structure of AES. Karroumi’s approach in doing so is first
to generate a dual AES cipher from a key-instantiated AES cipher and
second to apply the white-box techniques as presented by Chow et al.
in [23] to the dual AES cipher.

Although all new proposals above were claimed to be resistant against the
BGE attack, and hence were claimed to be white-box secure, the new research
contributions presented in the following chapters show otherwise. In particular,
Chapters 4 and 5 show the WBKR-insecurity of Karroumi’s white-box AES

104 DESIGN AND ANALYSIS OF WHITE-BOX AES IMPLEMENTATIONS

implementation and the Xiao-Lai white-box AES implementation, respectively,
and Chapter 6 shows the KR-insecurity (WBKR-insecurity is not applicable
due to the lack of external encodings) of Bringer et al.’s perturbated white-box
AES implementation. Additionally, Chapter 4 presents several improvements
to the BGE attack and shows that its overall work factor can be reduced to 222

when all improvements are implemented.

Chapter 4

Revisiting the BGE Attack

In 2004, Billet et al. [13] presented a practical attack called the BGE attack
(Sect. 3.5.2) on the white-box AES implementation of Chow et al. [23], efficiently
extracting its embedded AES key with a work factor of 230. As a result, Chow
et al.’s implementation was proven to be KR-insecure, which is the primary
objective of a white-box attacker. In response to this cryptanalytic result, in
2010, Karroumi [53] presented a new white-box AES implementation that is
designed to withstand the BGE attack. In order to do so, Karroumi uses the
concept of dual ciphers [3, 2, 88, 14] and the white-box techniques of Chow et
al. to design his new white-box AES implementation. In [53], Karroumi argues
that the additional secrecy introduced by the dual cipher increases the work
factor of the BGE attack to 293.

In this chapter, we present the following two research contributions, which we
presented in [36] and in [63] with Lepoint and Rivain as part of a merged paper:

1. Starting from Tolhuizen’s improvement [101] of the first phase of the
BGE attack, we present several improvements of the other phases. As a
consequence, the work factor of the original BGE attack can be reduced to
222 when Tolhuizen’s improvement and all our improvements are combined.
Additionally, we propose an efficient method to extract the bijective
external encodings from Chow et al.’s white-box AES implementation.
This method causes the work factor of the improved BGE attack to slightly
increase to 223. This result, which is covered in Sect. 4.1, shows that the
white-box AES implementation of Chow et al. is WBKR-insecure. But
recall that the original BGE attack already showed the KR-insecurity of
Chow et al.’s implementation with a practical work factor.

105

106 REVISITING THE BGE ATTACK

2. Second, we show that Karroumi’s white-box AES implementation [53]
belongs to the class of white-box AES implementations specified by Chow
et al. in [23]. As a consequence, Karroumi’s implementation is vulnerable
to the attack (i.e., the BGE attack and our improved version of this attack)
it was designed to resist. This result is covered in Sect. 4.2.

Recall from Sect. 3.5.2 that the original BGE attack was described by means
of three phases. This chapter builds on that description. Consequently, the
notation used throughout this chapter corresponds to the one introduced in
Sect. 3.5.2; for instance, an encoded AES subround refers to the mapping defined
by Def. 23. For details about the BGE attack, refer to [13]. This chapter assumes
throughout and without loss of generality that AES-128 is used.

4.1 Improving the BGE Attack

In 2012, Tolhuizen [101] proposed an improvement of the most time-consuming
phase of the BGE attack (i.e., Phase 1), reducing the work factor of this phase
to approximately 219. If the improvement of Tolhuizen is implemented, then
the work factor of the BGE attack is dominated by the other phases of the
BGE attack, and equals 229. In this section we present several improvements to
the other phases of the BGE attack:

1. A method to reduce the work factor of Phase 2 of the BGE attack;

2. An efficient method to retrieve the round key bytes of round r + 1 after
the round key bytes of round r are extracted;

3. An efficient method to determine the correct order of the round key bytes,
given the round key bytes of two consecutive rounds.

As the work factors of Phases 1 and 2 of the BGE attack are reduced by
Tolhuizen’s improvement and the first improvement above, respectively, it is
now important to have an efficient method for Phase 3 of the BGE attack as
well, as otherwise the work factor of this phase could dominate the overall work
factor. The second and third improvements above comprise such a method for
Phase 3. It will be shown that Tolhuizen’s improvement of Phase 1 of the BGE
attack and the above improvements of the other phases reduce the work factor
of the BGE attack to 222. In addition to the above improvements, we also
present the following method that is not included in the original BGE attack:

4. An efficient method to extract the invertible external encodings.

IMPROVING THE BGE ATTACK 107

As will be shown, the work factor of this method causes the work factor of the
improved BGE attack to slightly increase to 223.

The improved BGE attack comprises five (instead of three) phases. Each phase
is carefully described in the following.

4.1.1 Phases 1 and 2: Retrieve the round key bytes k̄
(r,j)
i

(0 ≤ i, j ≤ 3) associated with round r (2 ≤ r ≤ 8).

The first two phases are the ones of the BGE attack [13] (Sect. 3.5.2) using
Tolhuizen’s improvement, and retrieve the round key bytes k̄(r,j)

i for 0 ≤ i, j ≤ 3
associated with round r for some r with 2 ≤ r ≤ 8.

Work factor of Phase 1. Tolhuizen’s improvement [101] reduces the work
factor of Phase 1 to around 2 · 4 · 4 · (35 · 28) < 219. The first three factors
(i.e., 2 · 4 · 4) denote the number of encodings involved in Phase 1, i.e., four
encodings for each of the four subrounds for each of the two consecutive rounds.
The fourth factor (i.e., 35 · 28) denotes the work factor required to retrieve one
encoding up to an unknown affine part using Tolhuizen’s method.

Work factor of Phase 2. The expected work factor F of the second phase as
described in [13] is given by

F ≈ 2 · 4 · 4 · 215 · 28 = 228 ,

and is measured in the number of evaluations of mappings on F8
2. The evaluations

are required to determine if a mapping on F8
2 is affine. The mappings f that

need to be tested for being affine are listed in [13, Proposition 3]. Each f is
associated with a secret encoding P (r,j)

i (0 ≤ i, j ≤ 3) of a round r. As Phase 2
needs to be applied to two consecutive rounds, this involves a total of 2 · 4 · 4
mappings (which corresponds to the first three factors in F). The mappings f
are permutations on F8

2 and have the structure

f = S−1 ◦Q−1
(c,d) ◦Q ◦ S ◦ ⊕k ◦ P , (4.1)

where S denotes the AES S-box mapping (viewed as a permutation on F8
2), k

denotes a key byte, P and Q denote bijective affine mappings on F8
2, and Q−1

(c,d)
denotes a bijective affine mapping on F8

2 for each pair (c, d) ∈ F2
256. Furthermore,

Q−1
(c,d) = Q−1 for one specific pair (c, d) ∈ F2

256. An affine test is performed for
each possible pair (c, d) ∈ F2

256 until the corresponding mapping f is affine. The

108 REVISITING THE BGE ATTACK

expected number of pairs for which the test is performed equals approximately
215, which is the fourth factor in F . The fifth factor in F , i.e., 28, is associated
with the test used in [13].

Instead of the test used in [13], which requires 2n evaluations to determine if
f : Fn2 → Fn2 is affine, we use the following algorithm (under the assumption that
n ≥ 2) to reduce the expected number of evaluations. If ei (1 ≤ i ≤ n) denotes
the i-th unit vector in Fn2 , then the algorithm first verifies if the equation

f(e1 ⊕ e2) = f(0)⊕ f(e1)⊕ f(e2) (4.2)

holds true. If this equation does not hold true, then the algorithm terminates
with “f is not affine”. Observe that the algorithm requires four evaluations
of f in this case. If (4.2) holds true, then the algorithm applies the method
used in [13] to determine if f is affine (with the only difference that f is not
re-evaluated for the four input values 0, e1, e2 and e1 ⊕ e2). In this case 2n
evaluations of f are required.

To show the correctness of this algorithm (called the affine test in the following),
it is sufficient to show that an affine mapping always satisfies (4.2). If f is affine,
then f(x) = A(x) ⊕ b for some A ∈ Fn×n2 and some b ∈ Fn2 . It follows that
f(0)⊕ f(e1)⊕ f(e2) = b⊕A(e1)⊕ b⊕A(e2)⊕ b = A(e1 ⊕ e2)⊕ b = f(e1 ⊕ e2).

Lemma 1. If f is a random permutation on Fn2 and if E(n) denotes the
expected number of evaluations of f required by the algorithm described above,
then E(n) < 5.

Proof. Let p(n) denote the probability that (4.2) holds true for a random
permutation. To determine p(n), note that f(0), f(e1), f(e2) and f(e1⊕ e2) are
four distinct elements of Fn2 if f is a permutation. From this it follows that
f(0)⊕f(e1)⊕f(e2) and f(e1⊕e2) are both elements of Fn2 \{f(0), f(e1), f(e2)}.
Further, as f is a random permutation, f(e1⊕e2) is a random element of this set.
Hence, p(n) = 1/(2n − 3) and E(n) = 4(1− p) + 2np = 4 + (2n − 4)/(2n − 3) <
5.

Under the assumption that f in (4.1) behaves as a random permutation on F8
2

for every incorrect guess for (c, d), the expected work factor of the affine test
is reduced from 28 to approximately five evaluations if f is not affine and the
work factor is 28 if f is affine. This implies that the fifth factor in F is reduced
to approximately five. That is, the expected work factor of Phase 2 of the BGE
attack is now approximately 2 · 4 · 4 · 215 · 5 ≈ 222.

IMPROVING THE BGE ATTACK 109

4.1.2 Phase 3: Retrieve the round key bytes k̄
(r+1,j)
i (0 ≤ i, j

≤ 3) associated with round r + 1.

As mentioned in the description of the third phase of the original BGE attack in
Sect. 3.5.2, Billet et al. [13] obtain the round key bytes of round r+1 by applying
Phases 1 and 2 to round r+ 1 as well. Here, we present a more efficient method
based on the affine test described above. The method comprises the following
three steps for each encoded AES subround AES(r+1,j)

enc (0 ≤ j ≤ 3) associated
with round r + 1 to retrieve the round key bytes k̄(r+1,j)

i (0 ≤ i, j ≤ 3):

Step 3.1 applies Phase 1 (using Tolhuizen’s improvement [101]) to round r + 1
in order to retrieve the encodings Q(r+1,j)

i (0 ≤ i ≤ 3) up to an affine part.

Step 3.2 first removes the non-affine part of the output encodings as recovered
in Step 3.1 from the encoded AES subround. Next, Step 3.2 removes the input
encodings P (r+1,j)

i (0 ≤ i ≤ 3) from the encoded AES subround (observe that
the inverses of these input encodings were obtained in Phases 1 and 2). The
resulting mapping f (r+1,j) : (F8

2)4 → (F8
2)4 is given by

f (r+1,j) =
(
Q̂

(r+1,j)
0 , Q̂

(r+1,j)
1 , Q̂

(r+1,j)
2 , Q̂

(r+1,j)
3

)
◦ AES(r+1,j)

,

where Q̂(r+1,j)
i (0 ≤ i ≤ 3) are affine output encodings.

Step 3.3 retrieves the round key bytes k̄(r+1,j)
i (0 ≤ i ≤ 3). To find a key byte,

say k̄(r+1,j)
0 , fix the other three input bytes to f (r+1,j) (e.g., to zero), search

over all possible 28 values of the key byte k and verify whether

gk(x) = f (r+1,j)(k ⊕ S−1(x), 0, 0, 0
)

is affine using the test described above. If gk(x) is affine, then k̄
(r+1,j)
0 = k.

Repeat this for k̄(r+1,j)
i (i = 1, 2, 3). This step is illustrated in Fig. 4.1.

The correctness of Step 3.3 uses the fact that the mapping S
(
c ⊕ S−1(x)

)
is

non-affine for all non-zero values of c. This has already been proven in [13,
proof of Proposition 3].

Work factor of Phase 3. The work factor of Step 3.3 equals 4 · 4 · 27 · 5 ≈ 213,
where 4 · 4 denotes the number of round key bytes, 27 denotes the expected
number of key values for which the affine test is performed and 5 denotes the
expected number of evaluations of the affine test if gk is not affine. The work
factor of Step 3.1 is 4 · 4 · (35 · 28) < 218, where the first two factors denote the
number of output encodings involved in Step 3.1. As a result, the work factor
of Phase 3 is dominated by Step 3.1 and is less than 218.

110 REVISITING THE BGE ATTACK

8 8 8 8

� � � �
8 8 8 8

0 0 0k � S�1(x)

S S S S

affine ?

MC
⇧

(r+1,j)
1

⇧
(r+1,j)
2

k̄
(r+1,j)
0 k̄

(r+1,j)
1 k̄

(r+1,j)
2 k̄

(r+1,j)
3

bQ(r+1,j)
0

bQ(r+1,j)
1

bQ(r+1,j)
2

bQ(r+1,j)
3

A
E
S
(r

+
1
,j

)

f
(r

+
1
,j

)

Figure 4.1: Phase 3 of the improved BGE attack: retrieve round key byte
k̄

(r+1,j)
0 .

4.1.3 Phase 4: Determine the correct order of the round key
bytes and extract the secret AES key.

After Phases 1-3, the values of the round key bytes of two consecutive rounds
r and r + 1 are known. However, for each round, the order of the round key
bytes of each subround and the order of the four subrounds are still unknown.
Notice that there are still (4!)5 ≈ 223 possibilities for the round key if only the
bytes of that round key are considered. In [13], Billet et al. indicated how the
correct order can be determined given the “shuffled” round key bytes of rounds
r and r + 1. However, [13] does not contain an explicit description of such a
method. As the work factor of the first three phases equals 222, it is desirable
to have a method to determine the correct order of the round key bytes with a
work factor that is less than 222. Below we present such a method, comprising
the following three steps:

Step 4.1 retrieves MC(r,j) associated with each encoded AES subround AES(r,j)
enc

(0 ≤ j ≤ 3) of round r. Recall that the encodings P (r,j)
i and Q(r,j)

i (0 ≤ i, j ≤ 3)
were obtained in Phases 1 and 2. Together with the knowledge of the round
key bytes k̄(r,j)

i (0 ≤ i, j ≤ 3), compute

MC(r,j) =
(
Q

(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3

)−1 ◦ AES(r,j)
enc ◦(

P
(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3

)−1 ◦ ⊕[k̄(r,j)
i

]0≤i≤3
◦ (S, S, S, S)−1 ,

IMPROVING THE BGE ATTACK 111

for j = 0, 1, 2, 3.

Step 4.2 : for each MC(r,j) (0 ≤ j ≤ 3), compute permutations Π1,Π2 : (F8
2)4 →

(F8
2)4 such that

MC(r,j) = Π2 ◦ MC ◦Π1 . (4.3)

Let (Π(1),Π(2)) denote the pairs of permutations for which MC remains invariant,
i.e., MC = Π(2) ◦ MC ◦ Π(1). It is easily verified that there are exactly four
such pairs. The four permutations Π(1) are the four different circular shifts
on the indices of a 4-byte vector, and Π(2) = (Π(1))−1 for each of these pairs.
This implies that there are also exactly four different pairs of permutations
satisfying (4.3), given by (

Π(1) ◦Π1 , Π2 ◦Π(2)) . (4.4)

As a consequence, finding one pair of permutation matrices satisfying (4.3)
suffices to find the remaining three as well. Notice that exactly one of these four
pairs of permutations equals the pair (Π(r,j)

1 ,Π(r,j)
2) of the encoded subround

(see also Def. 23); in other words, one of these pairs is the correct pair.

After this, the order of the round key bytes associated with each subround is
known up to an uncertainty of four possibilities (circular shifts). Observe that
the order of the four subrounds is still unknown.

Step 4.3 determines the correct order of the round key bytes. For each of the
possible orderings of the four AES subrounds of round r and the round key
bytes within these subrounds (as determined in Step 4.2), obtain a candidate
for the (r + 1)th round key using the following two methods: (i) the AES key
scheduling algorithm and (ii) the data-flow of the white-box AES implementation
between the encoded subrounds of rounds r and r + 1. Notice that once an
order of the round key bytes of round r is selected, the order of the round
key bytes of round r + 1 can be determined using the corresponding pair of
permutations (4.4) of each of the subrounds of round r and the data-flow of the
white-box implementation. With overwhelming probability, only one ordering of
round key bytes of round r results in the same (r+ 1)th round key; this ordering
corresponds to the correct round key of round r. Finally, use the property of
the AES key scheduling algorithm that the AES key can be computed if one of
the round keys is known.

Work factor of Phase 4. A naive approach yields an expected work factor
of (4!)2 ≈ 29 for Step 4.2 by searching over all possible pairs of permutations.
Step 4.2 reduces the number of possible orderings of the round key bytes from
223 to 44 · 4! < 213 (where the first and second factor denote the possible
orderings of round key bytes within each subround and of the four subrounds,

112 REVISITING THE BGE ATTACK

respectively), which equals the work factor of Step 4.3. As a result, the overall
work factor of Phase 4 is dominated by the work factor of Step 4.3 and hence is
less than 213.

4.1.4 Phase 5: Extract the external encodings.

After Phases 1-4, the embedded secret AES key is successfully extracted from
the white-box AES implementation of Chow et al., showing its KR-insecurity.
Below we present an efficient method to retrieve the external encodings as well
by extracting their corresponding bijective mappings on F128

2 . As a consequence,
Chow et al.’s white-box AES implementation becomes WBKR-insecure. This
result complements the original BGE attack since [13] does not provide such
a method. The presented method has a work factor of less than 222 which is
desirable since the work factor of the first four phases equals 222.

Defining the External Encodings

First, the composition of the external encodings should be well-defined. From
the compositions of the Type Ia (Fig. 3.3a) and Type Ib (Fig. 3.3b) tables of
Chow et al.’s white-box AES implementation follows that

1. the bijective mapping IN−1
ext : F128

2 → F128
2 , called the external input

encoding, is composed of the concatenation of the 16 bijective non-linear
mappings on F8

2 at the input of the 16 L-Ia(1,j)
i (0 ≤ i, j ≤ 3) tables

followed by the 128-bit linear mixing bijection IN−1;

2. the bijective mapping OUText : F128
2 → F128

2 , called the external output
encoding, is composed of the 128-bit mixing bijection OUT followed by the
concatenation of the 32 bijective non-linear mappings on F4

2 at the output
of the 32 encoded nibble XOR tables at the tail of the XOR lookup-table
network; recall that this XOR table network implements the 15 128-bit
XOR operations needed due to the matrix partitioning of OUT.

The composition of the external encodings is depicted in Fig. 4.2, where (ini)−1

(0 ≤ i ≤ 15) denote the 16 bijective non-linear mappings on F8
2 of IN−1

ext and
outi (0 ≤ i ≤ 31) denote the 32 bijective non-linear mappings on F4

2 of OUText.

Note that in Chapter 3, the external encodings were often referred to as
comprising solely the 128-bit linear mixing bijections IN−1 and OUT. However,
observe that the white-box implementation of these mixing bijections resulted
in the additional applications of the non-linear white-box encodings.

IMPROVING THE BGE ATTACK 113

8 8 8

(in0)
�1 (in1)

�1 (in15)
�1

IN�1

IN�1
ext ...

128 4 4 4

128

...out0 out1 out31

OUT
OUText

(a) External input encoding IN−1
ext

8 8 8

(in0)
�1 (in1)

�1 (in15)
�1

IN�1

IN�1
ext ...

128 4 4 4

128

...out0 out1 out31

OUT
OUText

(b) External output encoding OUText

Figure 4.2: The composition of the external input and output encodings of the
white-box AES implementation of Chow et al.

Retrieving the External Encodings

After Phases 1-4, the following two observations can be made:

1. After Phase 2, the input encodings P (r,j)
i (0 ≤ i, j ≤ 3) of the encoded

round r with 2 ≤ r ≤ 8 of the white-box AES implementation are fully
retrieved. Further, a round key byte of round r is associated to each P (r,j)

i ;
this one-to-one relation is known to the attacker through the white-box
implementation. Since the correct order of the round key bytes of round
r is determined in Phase 4, the attacker has access to the unencoded
16-byte AES state at the input of round r, denoted by STATE(r).

2. After Phase 4, the secret AES key k is retrieved. This enables the
attacker to construct a standard AES encryption or decryption algorithm
instantiated with k (denoted by AESk or

(
AESk

)−1, respectively) mapping
unencoded plaintexts P to unencoded ciphertexts C or vice versa.

In the following, let the mapping AESk : F16
256 → F16

256 be defined as AESk = AES2
k◦

AES1
k, where AES1

k denotes the first r− 1 rounds of AESk mapping an unencoded
plaintext P to STATE(r), and where AES2

k denotes the last 10− (r − 1) rounds
of AESk mapping STATE(r) to the unencoded ciphertext C. Consequently, the
mapping

(
AESk

)−1 : F16
256 → F16

256 is defined as
(
AESk

)−1 =
(
AES1

k

)−1 ◦
(
AES2

k

)−1.

Now, given the above two observations, the attacker has access to the bijective
mappings

(
AES1

k

)−1 : F16
256 → F16

256 and
(
AES2

k

)−1 : F16
256 → F16

256 as defined above,
but also to the following two bijective mappings, each indicated in Fig. 4.3:

WBAES1
k : F128

2 → F16
256 : WBAES1

k = AES1
k ◦ IN−1

ext ,
WBAES2

k : F16
256 → F128

2 : WBAES2
k = OUText ◦ AES2

k .

114 REVISITING THE BGE ATTACK

Next, by composing the above mappings in the following specific ways (Fig. 4.3),
the attacker has access to the external encodings

IN−1
ext =

(
AES1

k

)−1 ◦ WBAES1
k and OUText = WBAES2

k ◦
(
AES2

k

)−1
. (4.5)

However, observe from (4.5) that the attacker has no access to the inverse
mappings of the external encodings since this requires the white-box AES
implementation of Chow et al. to be invertible (which is not the case because
of the specific composition of the network of encoded lookup tables).

STATE
(r)

IN�1
ext

OUText

INext(P)

OUText(C)

STATE
(r)

C

P

WBAES1
k

WBAES2
k

�
AES1

k

��1

�
AES2

k

��1

Figure 4.3: The way how the attacker gains access to the external encodings in
the white-box AES implementation of Chow et al.

So after Phases 1-4, it is clear that the attacker has only partially retrieved the
external encodings (i.e., only in one way). In order to fully retrieve the external
encodings, he needs to find their bijective components separately (Fig. 4.2). Due
to the specific composition of the external encodings, equivalent components
will be retrieved; equivalent in the sense that their composition nevertheless
yields the actual external input and output encodings. Below, we present a
method how to extract these equivalent components. The method exploits the
ability to have access to the mappings defined by (4.5).

External input encoding. Recall from Fig. 4.2a that the composition of the
external input encoding is given by a two-layered structure IN−1

ext = L ◦ S: (i)
the S layer consists of 16 lookup tables Si in parallel representing the 16 8-bit
bijective non-linear mappings (ini)−1 for 0 ≤ i ≤ 15, and (ii) the L layer
consists of the 128-bit mixing bijection IN−1. The method to retrieve equivalent
components originates from the SASAS structural cryptanalysis (cf. Biryukov
and Shamir [15]) and is explained below.

IMPROVING THE BGE ATTACK 115

First, an equivalent representation of the L layer is obtained by repeating the
following for each S-box Si (0 ≤ i ≤ 15): (i) vary the input to Si over all
28 possible values while fixing the input to the other S-boxes Sj (j 6= i) to
some constant, (ii) store the corresponding 28 128-bit output values of IN−1

ext,
select one of these values and XOR it to all 28 values in order to obtain the
8-dimensional linear subspace generated by all possible outputs from Si, and
(iii) use Gaussian elimination to obtain a basis for this 8-dimensional linear
subspace. In total, 16 8-dimensional linear subspaces are obtained that together
form the equivalent representation of L, denoted by L′. The 128-bit bijective
linear mapping L′ can be easily inverted.

Second, an equivalent representation of the remaining S layer is obtained. Each
equivalent lookup table S′i (0 ≤ i ≤ 15) can be constructed by calculating

(y0, y1, . . . , y15) = (L′)−1(IN−1
ext(x, x, . . . , x︸ ︷︷ ︸

16 times

)
)

for all 28 possible values of x ∈ F8
2, and storing yi = S′i(x) for 0 ≤ i ≤ 15. Each

table S′i (0 ≤ i ≤ 15) mapping 8 bits to 8 bits can be easily inverted.

This implies that the 128-bit bijective mapping IN−1
ext can be fully recovered by

means of its invertible equivalent components S′i (0 ≤ i ≤ 15) and L′ such that

IN−1
ext = L′ ◦

(
S′0, S

′
1, . . . , S

′
15
)

,
INext =

(
(S′0)−1, (S′1)−1, . . . , (S′15)−1) ◦ (L′)−1 .

External output encoding. Recall that the 32 4-bit bijective non-linear
mappings outi (0 ≤ i ≤ 31) of OUText (Fig. 4.2b) correspond with the non-
linear output encodings of 32 encoded nibble XOR tables. Further, recall from
Sect. 3.5.4 (p. 102) that the non-affine component of the output encoding of each
encoded nibble XOR table can be retrieved (see also Wyseur [103, Sect. 3.6.2]).

As a result, the attacker is able to compute the non-affine component of each
outi (0 ≤ i ≤ 31), denoted by õuti, such that õuti = outi ◦ ôuti for some
unknown bijective affine mapping ôuti (see Theorem 1, p. 101). Each mapping
õuti (0 ≤ i ≤ 31) is determined by means of a lookup table mapping 4 bits to 4
bits, and hence can easily be inverted. The remaining part of OUText, given by

ÔUText =
(
(õut0)−1, (õut1)−1, . . . , (õut31)−1) ◦ OUText

=
(
(ôut0)−1, (ôut1)−1, . . . , (ôut31)−1) ◦ OUT ,

is a bijective affine mapping on F128
2 that can be easily retrieved and inverted.

116 REVISITING THE BGE ATTACK

This implies that the 128-bit bijective mapping OUText can be fully recovered
by means of its invertible equivalent components õuti (0 ≤ i ≤ 31) and ÔUText
such that

OUText =
(
õut0, õut1, . . . , õut31

)
◦ ÔUText ,

OUT−1
ext = ÔUT

−1
ext ◦

(
(õut0)−1, (õut1)−1, . . . , (õut31)−1) .

Work factor of Phase 5. The work factor required to extract the external
input encoding is given by

16 · (28 + 83)︸ ︷︷ ︸
retrieving L′

+ 28 + 1283︸ ︷︷ ︸
retrieving S′i

≈ 221 ,

where the dominant work factor 1283 refers to the expected work factor required
to invert L′ using Guass-Jordan elimination. The work factor required to extract
the external output encoding is given by

32 · 19 · 24︸ ︷︷ ︸
retrieving õuti

+ 129︸︷︷︸
retrieving ÔUText

≈ 213 ,

using Tolhuizen’s improvement [101]. As a result, the overall work factor of
Phase 5 is dominated by the work factor required to extract the external input
encoding and hence is approximately 221.

4.1.5 Work Factor and Conclusion

The work factor of the improved BGE attack (Phases 1-4) is dominated by the
work factor of the second phase and equals 222.

Phase 1 2 · 4 · 4 · (35 · 28) < 219

Phase 2 2 · 4 · 4 · 215 · 5 ≈ 222

Phase 3 4 · 4 · (35 · 28) < 218

Phase 4 44 · 4! < 213

Total work factor 222

Now, by including the method to extract the bijective mappings defining the
external encodings (i.e., Phase 5), the work factor of the improved BGE attack is
slightly increased to 223. As a work factor of 223 clearly indicates the practicality
of the attack, the white-box implementation of Chow et al. is WBKR-insecure.
Observe that the original BGE attack [13] already indicated the KR-insecurity
of Chow et al.’s white-box AES implementation.

CRYPTANALYSIS OF KARROUMI’S WHITE-BOX AES IMPLEMENTATION 117

Note that the uncertainty in the order of the round key bytes results in the need
to retrieve key bytes of two consecutive rounds. This affects the work factor of
the original BGE attack. In the improved BGE attack this is no longer the case,
as the work factors of the phases that determine the correct order (i.e. Phases 3
and 4) are negligible compared to the work factor of Phase 2. A consequence of
Tolhuizen’s improvement is that the use of non-affine white-box encodings has
a negligible impact on the overall work factor of the improved BGE attack.

4.2 Cryptanalysis of Karroumi’s White-Box AES
Implementation

This section shows that Karroumi’s [53] and Chow et al.’s [23] white-box
AES implementations are the same so that Karroumi’s white-box AES
implementation remains vulnerable to the attack it was designed to resist,
i.e., the BGE attack [13] of which an improved version is presented in Sect. 4.1.
Note that this observation was independently made by us [36], by Lepoint and
Rivain [62] and by Klinec [56].

4.2.1 Karroumi’s White-Box AES Implementation

Karroumi’s method to generate a white-box AES implementation [53] can be
divided into the following two phases:

Phase 1 generates a dual AES cipher from a key-instantiated AES cipher.

Phase 2 applies the white-box techniques presented by Chow et al. in [23]
(Sect. 3.3) to the dual AES cipher.

Below, aspects of these phases that are relevant to the cryptanalysis presented
in Sect. 4.2.2 are described. In the following, the alternative description of
AES-128 (Fig. 2.1b) is assumed.

Phase 1: Dual AES cipher

In this section we give a description of the set of dual AES ciphers used by
Karroumi in [53]. First, we define a dual AES subround. The following notation
is used: mα : F256 → F256 with α ∈ F∗256 is defined by mα(x) = α ⊗ x, and
ft : F256 → F256 defined by ft(x) = x2t for 0 ≤ t ≤ 7 are the automorphisms

118 REVISITING THE BGE ATTACK

of F256 over F2. Further, Rl : F256 → F256 are the isomorphisms mapping
elements in the AES polynomial representation (as specified in FIPS 197 [69])
to field elements in one of the polynomial representations of F256. There are
30 irreducible polynomials of degree 8 over F2, each one resulting in a unique
polynomial representation of F256 (one of these representations being the AES
polynomial representation), hence in total there are 30 distinct isomorphisms
Rl (1 ≤ l ≤ 30). The addition and multiplication operations in the polynomial
representation associated with Rl are denoted by ⊕l and ⊗l, respectively (⊕l
and ⊗l being equal to ⊕ and ⊗ for exactly one value of l with 1 ≤ l ≤ 30).
Finally, the definition of a dual AES subround uses a set of mappings, denoted
by T , and defined by

T = {Rl ◦mα ◦ ft | 1 ≤ l ≤ 30, α ∈ F∗256 and 0 ≤ t ≤ 7} .

Observe that an element of T maps elements in the AES polynomial
representation to elements in one of the 30 polynomial representations of F256.
Note that the set T with |T | = 61 200 was identified by Biryukov, De Cannière,
Braeken and Preneel in [14].

Definition 27 (Dual AES subround). Let ∆r,j ∈ T with ∆r,j = Rl ◦mα ◦ ft
for some triplet (l, α, t) with 1 ≤ l ≤ 30, α ∈ F∗256 and 0 ≤ t ≤ 7, and let
δr,j = Rl ◦ ft. Further, let vi, wi ∈ F256 for 0 ≤ i ≤ 3 be represented using
the polynomial representation associated with Rl. The mapping AES(r,j,∆r,j) :
F4

256 → F4
256 for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3, called a dual AES subround, is

defined by (w0, w1, w2, w3) = AES(r,j,∆r,j)(v0, v1, v2, v3) with

wi = δr,j(mci,0)⊗l ∆r,j ◦ S ◦∆−1
r,j

(
v0 ⊕l ∆r,j(k̂(r,j)

0)
)

⊕l δr,j(mci,1)⊗l ∆r,j ◦ S ◦∆−1
r,j

(
v1 ⊕l ∆r,j(k̂(r,j)

1)
)

⊕l δr,j(mci,2)⊗l ∆r,j ◦ S ◦∆−1
r,j

(
v2 ⊕l ∆r,j(k̂(r,j)

2)
)

⊕l δr,j(mci,3)⊗l ∆r,j ◦ S ◦∆−1
r,j

(
v3 ⊕l ∆r,j(k̂(r,j)

3)
)
,

for 0 ≤ i ≤ 3.

The following lemma presents a property that is required to show that a dual
AES cipher maintains the functionality of AES. As the lemma is also used in
the cryptanalysis presented in Sect. 4.2.2, and as a formal proof of this property
is omitted in [14] and [53], we include a proof as well.

Lemma 2. If ∆r,j ∈ T , then

AES(r,j,∆r,j) ◦ (∆r,j ,∆r,j ,∆r,j ,∆r,j) = (∆r,j ,∆r,j ,∆r,j ,∆r,j) ◦ AES(r,j) ,

for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3.

CRYPTANALYSIS OF KARROUMI’S WHITE-BOX AES IMPLEMENTATION 119

Proof. Let xi for 0 ≤ i ≤ 3 be elements of F256 using the AES polynomial
representation, let wi for 0 ≤ i ≤ 3 be elements of F256 using the polynomial
representation associated with Rl (assuming that ∆r,j = Rl ◦mα ◦ ft), and let

(w0, w1, w2, w3) = AES(r,j,∆r,j) ◦ (∆r,j ,∆r,j ,∆r,j ,∆r,j)(x0, x1, x2, x3) .

Substituting vi = ∆r,j(xi) for 0 ≤ i ≤ 3 in the equation in Def. 27 yields

wi =
3⊕
l

z=0

δr,j(mci,z)⊗l ∆r,j ◦ S ◦∆−1
r,j

(
∆r,j(xz)⊕l ∆r,j(k̂(r,j)

z)
)
,

for 0 ≤ i ≤ 3. Next, observe that

∆r,j(a)⊕l ∆r,j(b) = Rl ◦mα ◦ ft(a)⊕l Rl ◦mα ◦ ft(b)
= Rl(mα ◦ ft(a)⊕mα ◦ ft(b))
= Rl(mα(ft(a)⊕ ft(b))
= Rl(mα(ft(a⊕ b))) = ∆r,j(a⊕ b)

for all a, b ∈ F256; the second equality holds true since Rl is an isomorphism,
the third equality holds true as α(a⊕ b) = α(a)⊕ α(b) for all a, b ∈ F256 and
all α ∈ F∗256, and the fourth equality holds true since ft is an automorphism. It
follows that

wi =
3⊕
l

z=0

δr,j(mci,z)⊗l ∆r,j ◦ S
(
xz ⊕ k̂(r,j)

z

)
,

for 0 ≤ i ≤ 3. Next, note that

δr,j(a)⊗l ∆r,j(b) = Rl ◦ ft(a)⊗l Rl ◦mα ◦ ft(b)
= Rl(ft(a)⊗mα ◦ ft(b))
= Rl(mα(ft(a⊗ b))) = ∆r,j(a⊗ b)

for all a, b ∈ F256; the second equality holds true since Rl is an isomorphism
and the third equality uses the fact that a2t ⊗ αb2t = α(ab)2t for all a, b ∈ F256
and all α ∈ F∗256. It follows that

wi =
3⊕
l

z=0

∆r,j

(
mci,z ⊗ S

(
xz ⊕ k̂(r,j)

z

))
,

for 0 ≤ i ≤ 3. From this, ∆r,j(a) ⊕l ∆r,j(b) = ∆r,j(a ⊕ b) for all a, b ∈ F256,
and the definition of yi in Def. 18 (AES subround), it follows that wi = ∆r,j(yi)
for 0 ≤ i ≤ 3.

120 REVISITING THE BGE ATTACK

The dual AES rounds used by Karroumi [53] are obtained by performing the
following two steps for 1 ≤ r ≤ 9:

Step 1.1 assigns a randomly chosen ∆r,j ∈ T to each AES subround AES(r,j)

(1 ≤ r ≤ 9 and 0 ≤ j ≤ 3). Based on ∆r,j , the corresponding dual AES
subround AES(r,j,∆r,j) is implemented as specified by Def. 27:

- each instance of an AES S-box is replaced by ∆r,j ◦ S ◦∆−1
r,j ;

- the round key bytes k̂(r,j)
i and MixColumns coefficients mci,z are replaced

by ∆r,j

(
k̂

(r,j)
i

)
and δr,j(mci,z) (with δr,j defined as in Def. 27), respectively,

for 1 ≤ r ≤ 9 and 0 ≤ i, j, z ≤ 3;

- the operations ⊕l and ⊗l depend on the polynomial representation
associated with the mapping Rl (assuming that ∆r,j = Rl ◦mα ◦ ft).

The mappings ∆r,j and δr,j (and as a result the implementation of the dual
cipher) are kept secret.

Step 1.2 ensures that the functionality of AES is maintained by including an
additional operation (referred to as ChangeDualState) between the ShiftRows
and AddRoundKey operations of round r for 1 ≤ r ≤ 9. If the inverse
ShiftRows operation is defined by the mapping isr(i, j) = (j + i) mod 4 for
0 ≤ i, j ≤ 3, then the ChangeDualState operation of round r applies the
mapping C(r,j)

i : F256 → F256 to the byte of the state associated with the i-th
input byte of AES(r,j,∆r,j) for 0 ≤ i, j ≤ 3, defined by

C
(1,j)
i = ∆1,j and C

(r,j)
i = ∆r,j ◦∆−1

r−1,isr(i,j) if 2 ≤ r ≤ 9 .

Observe that for 2 ≤ r ≤ 9, C(r,j)
i maps elements from F256 using the

polynomial representation associated with ∆r−1,isr(i,j) to elements of F256
using the polynomial representation associated with ∆r,j .

Karroumi presents two different but equivalent methods (from a security point
of view) in [53] to perform the ChangeDualState operation, and specifies the
white-box AES implementation using one of these methods. Here we use the
specification as in [53]; the cryptanalysis can easily be adapted if the other
method is used.

Phase 2: Apply the white-box techniques of Chow et al.

The following description of Karroumi’s white-box AES implementation is
equivalent to the description in [53]:

CRYPTANALYSIS OF KARROUMI’S WHITE-BOX AES IMPLEMENTATION 121

Step 2.1 applies the techniques of Chow et al. to write the dual AES cipher
(with a fixed key) obtained in Phase 1 as a series of lookup tables. In particular,
the dual AES key addition operations and the dual S-box operations are merged
into key-dependent bijective mappings T (r,j,∆r,j)

i for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9.
These mappings are referred to as dual T-boxes and are defined by

T
(r,j,∆r,j)
i = ∆r,j ◦ S ◦∆−1

r,j ◦ ⊕∆r,j(k̂(r,j)
i

) ◦ C
(r,j)
i ,

where each dual T-box mapping is implemented as a lookup table mapping 8
input bits to 8 output bits. Recall that C(r,j)

i are the mappings defining the
ChangeDualState operation. Next, write the other part of the dual AES cipher
as a series of lookup tables as indicated by Chow et al. in [23] (described in
Sect. 3.3.2 – Phase 1). The number and types of tables (including the tables
representing the dual T-boxes) and the data-flow between tables are the same as
in the lookup table implementation of AES in [23]. The only difference is that
the values of the table entries of the dual AES implementation are likely to be
different from the values of the corresponding entries in the AES implementation
in [23] due to the dual version of the AES operations.

Step 2.2 applies the white-box encoding techniques of Chow et al. in [23]
(described in Sect. 3.3.2 – Phase 2) to this lookup table implementation of dual
AES. As these white-box encoding techniques do not depend on the values of
the table entries, the number and types of white-box tables, and the data-flow
of Karroumi’s white-box AES implementation are the same as in the white-box
AES implementation of Chow et al. in [23].

In [53], Karroumi argues that the secrecy of the mappings ∆r,j (and δr,j),
randomly selected from the set T and used to generate the dual cipher, increases
the work factor of the BGE attack to 293.

4.2.2 Cryptanalysis

This section shows that Karroumi’s white-box AES implementation [53] is
insecure. Recall that Karroumi’s white-box AES implementation uses the
same number and types of white-box tables, and that the data-flow of the
implementation is the same as in Chow et al.’s white-box AES implementation
in [23]. As a result, the techniques of Billet et al. can be applied directly to
compose lookup tables in Karroumi’s implementation to obtain access to the
encoded dual AES subrounds (instead of the encoded AES subrounds (Def. 23,
p. 89) in the case of Chow et al.’s implementation) for rounds 1 ≤ r ≤ 9. In the
following definition, A(r,j)

i and B(r,j)
i for 0 ≤ i ≤ 3 denote bijective mappings (or

encodings) on F8
2, and the permutations Π(r,j)

1 ,Π(r,j)
2 and π(r) are defined as in

122 REVISITING THE BGE ATTACK

Def. 23. Furthermore, π(r,j)
1 : {0, 1, 2, 3} → {0, 1, 2, 3} denotes the permutation

on the indices of a 4-byte vector as a result of the application of Π(r,j)
1 . With

respect to these permutations, we introduce the following two notations:

i′ =
(
π

(r,j)
1

)−1(i) and j′ = π(r)(j) for 1 ≤ r ≤ 9 and 0 ≤ i, j ≤ 3 .

Further, with slight abuse of notation, an output of A(r,j)
i is considered to

be an element of F256 using the polynomial representation associated with
the mapping Rl as defined by ∆r−1,isr(i′,j′), and an output of AES(r,j,∆r,j) is
considered to be an element of (F8

2)4.

Definition 28 (Encoded dual AES subround). The mapping AES(r,j,∆r,j)
enc :

(F8
2)4 → (F8

2)4 for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3, called an encoded dual AES
subround, is defined by

AES(r,j,∆r,j)
enc = (B(r,j)

0 , B
(r,j)
1 , B

(r,j)
2 , B

(r,j)
3) ◦ AES(r,j,∆r,j) ◦

(A(r,j)
0 , A

(r,j)
1 , A

(r,j)
2 , A

(r,j)
3) , (4.6)

where the mapping AES(r,j,∆r,j) is defined by

Π(r,j)
2 ◦ AES(r,j′,∆r,j′) ◦ (C(r,j′)

0 , C
(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3) ◦Π(r,j)

1 . (4.7)

The next lemma shows that an encoded dual AES subround can be represented
by an encoded AES subround (Def. 23) using the same key bytes:

Lemma 3. An encoded dual AES subround AES(r,j,∆r,j)
enc is an encoded AES

subround AES(r,j)
enc as in Def. 23 with

P
(1,j)
i = A

(1,j)
i and P

(r,j)
i = ∆−1

r−1,isr(i′,j′) ◦A
(r,j)
i if 2 ≤ r ≤ 9 ,

and
Q

(r,j)
i = B

(r,j)
i ◦∆r,j′ ,

for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9.

Proof. The proof is given for the case 2 ≤ r ≤ 9 (Fig. 4.4); similar reasoning
applies to the case r = 1. From the definition of the ChangeDualState operation
(see Step 1.2 of Phase 1 of Karroumi’s implementation) it follows that

(C(r,j′)
0 , C

(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3) = (∆r,j′ ,∆r,j′ ,∆r,j′ ,∆r,j′) ◦

(∆−1
r−1,isr(0,j′),∆

−1
r−1,isr(1,j′),∆

−1
r−1,isr(2,j′),∆

−1
r−1,isr(3,j′)) if 2 ≤ r ≤ 9 ,

CRYPTANALYSIS OF KARROUMI’S WHITE-BOX AES IMPLEMENTATION 123

A
(r,j)
0

A
(r,j)
1

A
(r,j)
2

A
(r,j)
3

B
(r,j)
0

B
(r,j)
1

B
(r,j)
2

B
(r,j)
3

⇧
(r,j)
1 ⇧

(r,j)
2

C
(r,j0)
0

C
(r,j0)
1

C
(r,j0)
2

C
(r,j0)
3

AES(r,j0,�r,j0)AES(r,j,�r,j)
enc

A
(r,j)
0

A
(r,j)
1

A
(r,j)
2

A
(r,j)
3

B
(r,j)
0

B
(r,j)
1

B
(r,j)
2

B
(r,j)
3

⇧
(r,j)
1 ⇧

(r,j)
2

AES(r,j0,�r,j0)

��1
r�1,isr(0,j0)

��1
r�1,isr(1,j0)

��1
r�1,isr(2,j0)

��1
r�1,isr(3,j0)

�r,j0

�r,j0

�r,j0

�r,j0

A
(r,j)
0

A
(r,j)
1

A
(r,j)
2

A
(r,j)
3

B
(r,j)
0

B
(r,j)
1

B
(r,j)
2

B
(r,j)
3

⇧
(r,j)
1 ⇧

(r,j)
2

��1
r�1,isr(0,j0)

��1
r�1,isr(1,j0)

��1
r�1,isr(2,j0)

��1
r�1,isr(3,j0)

�r,j0

�r,j0

�r,j0

�r,j0

AES(r,j0)

A
(r,j)
0

A
(r,j)
1

A
(r,j)
2

A
(r,j)
3

B
(r,j)
0

B
(r,j)
1

B
(r,j)
2

B
(r,j)
3

⇧
(r,j)
1 ⇧

(r,j)
2

�r,j0

�r,j0

�r,j0

�r,j0

AES(r,j0)

��1
r�1,isr(00,j0)

��1
r�1,isr(10,j0)

��1
r�1,isr(20,j0)

��1
r�1,isr(30,j0)

AES(r,j)
enc

(Definition of ChangeDualState)

(Lemma 2)=

(Swap permutations)

P
(r,j)
i

(0  i  3) (0  i  3)Q
(r,j)
i

Figure 4.4: An encoded dual AES subround is an encoded AES subround.

124 REVISITING THE BGE ATTACK

for 0 ≤ j ≤ 3. Substituting the above expression for the ChangeDualState
operation in (4.7) and applying Lemma 2 gives

AES(r,j,∆r,j) = Π(r,j)
2 ◦ (∆r,j′ ,∆r,j′ ,∆r,j′ ,∆r,j′) ◦ AES(r,j′) ◦

(∆−1
r−1,isr(0,j′),∆

−1
r−1,isr(1,j′),∆

−1
r−1,isr(2,j′),∆

−1
r−1,isr(3,j′)) ◦Π(r,j)

1 .

Observe that Π(r,j)
2 and (∆r,j′ ,∆r,j′ ,∆r,j′ ,∆r,j′) commute and thus can be

swapped. By applying the equation

(∆−1
r−1,isr(0,j′),∆

−1
r−1,isr(1,j′),∆

−1
r−1,isr(2,j′),∆

−1
r−1,isr(3,j′)) ◦Π(r,j)

1 =

Π(r,j)
1 ◦ (∆−1

r−1,isr(0′,j′),∆
−1
r−1,isr(1′,j′),∆

−1
r−1,isr(2′,j′),∆

−1
r−1,isr(3′,j′)) ,

one gets the result of Lemma 3.

From the discussion above it follows that Karroumi’s white-box AES
implementation and the white-box AES implementation of Chow et al. are
the same. As a consequence, Karroumi’s white-box AES implementation is
vulnerable to the attack it was designed to resist.

4.3 Conclusion

The BGE attack [13] on the white-box AES implementation of Chow et al.
extracts the AES key from such an implementation with a work factor of 230.
Taking Tolhuizen’s improvement of the most time-consuming phase of the BGE
attack as the starting point, we have presented several improvements of the
other phases of the BGE attack. When all improvements are combined, the
work factor of the original BGE attack is reduced to 222. Additionally, we have
proposed a method to extract the external encodings as well, which slightly
increased the overall work factor to 223. Unlike the original BGE attack, the
use of non-affine white-box encodings and the randomization in the order of the
bytes of the intermediate AES results in the white-box implementation have a
negligible contribution to the overall work factor of our improved BGE attack.

Karroumi’s white-box AES implementation [53] was designed to withstand the
BGE attack. We have shown that Karroumi’s implementation in fact belongs
to the class of white-box AES implementations specified by Chow et al. in [23].
As a result, Karroumi’s white-box AES implementation remains vulnerable to
the BGE attack and our improved version of this attack.

Chapter 5

Cryptanalysis of the Xiao-Lai
White-Box AES Implementation

In 2009, Xiao and Lai [107] proposed a new white-box AES implementation that
is claimed to be resistant against the BGE attack [13]. However, the white-box
attack of Michiels et al. [75] can still be applied to their implementation. But,
due to its generic nature, Michiels et al.’s attack is not optimized with regard
to the Xiao-Lai white-box AES implementation (i.e., it has an estimated work
factor of at least 249), so there is room for improvement.

In this chapter, we present a practical attack on the white-box AES
implementation of Xiao and Lai. This research was published in [35]. We show
how properties of AES as well as of the Xiao-Lai white-box implementation
itself can be exploited in order to obtain a practical non-generic attack. The
presented cryptanalysis efficiently extracts the embedded AES key together with
the external encodings from the Xiao-Lai white-box AES implementation with a
work factor of 232. A modified variant of the linear equivalence (LE) algorithm
presented by Biryukov et al. [14] is used as a building block. Additionally, we
consider design generalizations of the Xiao-Lai white-box AES implementation
and discuss their impact on the work factor of our cryptanalysis.

5.1 The Xiao-Lai White-Box AES Implementation

The approach of Xiao and Lai [107] in designing a secure white-box AES
implementation (i.e., resistant to the BGE attack) differs from Karroumi’s

125

126 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

white-box AES design (Sect. 4.2.1) in the following ways:

- Karroumi introduced secrecy in the description of AES by means of generating
a dual AES cipher and keeping the randomly chosen ‘dual’ transformations
secret. Next, he applied the white-box techniques of Chow et al. in the same
way as specified in [23] to the dual AES cipher.

- Xiao and Lai use the same description of AES (Fig. 2.1b, p. 21) as the one
used by Chow et al., however, they apply the white-box techniques of Chow
et al. in a specific way different from the one specified in [23]. The differences
are listed in the following:

1. all secret white-box encodings are solely F2-linear. As a result, all XOR
operations are executed on encoded data, i.e., they are not represented
as a network of encoded nibble XOR tables;

2. the secret white-box encodings operate on at least two bytes
simultaneously instead of at least four bits (in the case of non-linear
encodings) or at least a byte (in the case of linear encodings) in [23];

3. the ShiftRows operation is implemented explicitly as a matrix-vector
multiplication instead of implicitly including it into the data-flow of the
white-box implementation as in [23].

Recall from Sect. 3.2 that the process of constructing a white-box implementation
using the generic white-box techniques of Chow et al. comprises two phases. The
two corresponding phases of the Xiao-Lai white-box AES implementation [107]
are described below, given the alternative description of AES (Fig. 2.1b, p. 21).
This chapter assumes throughout and without loss of generality that AES-128
is used.

Phase 1 and 2: Translate AES into a series of lookup tables and apply
secret bijective F2-linear white-box encodings

First, as was also the case for Chow et al.’s white-box AES implementation
(Sect. 3.3.2), the AddRoundKey and SubBytes operations of all AES rounds
(1 ≤ r ≤ 10) are composed, resulting in 16 8-bit bijective T-boxes for each
round. The T-boxes are defined as

T
(r,j)
i (x) = S(x⊕ k̂(r,j)

i) for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9 ,

T
(10,j)
i (x) = S(x⊕ k̂(10,j)

i)⊕ k(11,j)
i for 0 ≤ i, j ≤ 3 .

Second, concerning the MixColumns operation of rounds 1 ≤ r ≤ 9, the 4× 4
matrix MC over F256 is split into two 4× 2 submatrices over F256: MC0 is defined

THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION 127

as the first two columns of MC and MC1 is defined as the remaining two columns
of MC. Using this notation, the MixColumns matrix-vector multiplication is
decomposed into a XOR of two 32-bit values and is given by

state0,j
state1,j
state2,j
state3,j

← MC0 ·
(

state0,j
state1,j

)
⊕ MC1 ·

(
state2,j
state3,j

)
for j = 0, 1, 2, 3 .

The reason for this split into two submatrices is the fact that all F2-linear
white-box encodings will operate on at least two bytes simultaneously (see
below). Recall from Sect. 3.3.2 that for the white-box AES implementation of
Chow et al., MC was split into four submatrices since the F2-linear encodings
operated on at least a byte and the non-linear encodings on at least a nibble.

16
8

32 32

dTMC
(r,j)
i

�
L

(r,j)
i

��1
R(r,j)MCi

T
(r,j)
2i

T
(r,j)
2i+1

8

8

8

dT
(10,j)
i

�
L

(10,j)
i

��1
R

(10,j)
i

T
(10,j)
2i+1

T
(10,j)
2i16

8
32

8

8

8

(a) Composition of T-boxes and MixColumns
operation for rounds 1 ≤ r ≤ 9.

16
8

32 32

dTMC
(r,j)
i

�
L

(r,j)
i

��1
R(r,j)MCi

T
(r,j)
2i

T
(r,j)
2i+1

8

8

8

dT
(10,j)
i

�
L

(10,j)
i

��1
R

(10,j)
i

T
(10,j)
2i+1

T
(10,j)
2i16

8
32

8

8

8

(b) Composition of final round T-boxes.

Figure 5.1: Two different types of encoded lookup tables of the Xiao-Lai white-
box AES implementation.

For rounds 1 ≤ r ≤ 9, the T-boxes and MixColumns operation are composed as
depicted in Fig. 5.1a. Observe that this results in eight lookup tables per round,
each table mapping 16 bits to 32 bits. To prevent an attacker from extracting
the AES round keys from these tables, each table is composed with two secret
white-box encodings

(
L

(r,j)
i

)−1 and R(r,j) as depicted in Fig. 5.1a:

The input of each table is encoded by a 16-bit linear mixing bijection
(
L

(r,j)
i

)−1

(represented by a non-singular 16× 16 matrix over F2);

The output of each table is encoded by a 32-bit linear mixing bijection R(r,j)

(represented by a non-singular 32× 32 matrix over F2).

The resulting tables are referred to as dTMC(r,j)
i (i = 0, 1 and j = 0, 1, 2, 3) in

the following, and map 16 bits to 32 bits. Observe that R(r,j) lacks the index i
as this encoding is required to be the same for both dTMC(r,j)

i (i = 0, 1) tables
associated with each j.

128 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

For the final round (r = 10), the composition (Fig. 5.1b) is slightly different due
to the omission of the MixColumns operation. Here, instead of the matrix MC, the
output white-box encoding R(10,j) (represented by a non-singular 32×32 binary
matrix) is split into two 32× 16 submatrices over F2: R(10,j)

0 is defined as the
first 16 columns of R(10,j) and R(10,j)

1 contains the remaining 16 columns. The
resulting final round tables are referred to as dT(10,j)

i (i = 0, 1 and j = 0, 1, 2, 3),
each mapping 16 bits to 32 bits.

Third, a 128× 128 non-singular matrix M (r) over F2 is associated with each
round r (2 ≤ r ≤ 10). If SR denotes the 128× 128 non-singular matrix over F2
representing the ShiftRows operation, then the matrix M (r) is defined by

M (r) =
(
L

(r,0)
0 , L

(r,0)
1 , L

(r,1)
0 , L

(r,1)
1 , L

(r,2)
0 , L

(r,2)
1 , L

(r,3)
0 , L

(r,3)
1

)
◦ SR ◦((

R(r−1,0))−1
,
(
R(r−1,1))−1

,
(
R(r−1,2))−1

,
(
R(r−1,3))−1

)
,

for r = 2, 3, . . . , 10.

Fourth, external secret white-box encodings are applied at the boundaries of the
AES cipher as in Chow et al.’s white-box AES implementation [23], i.e. before
the first round (plaintext) and after the final round (ciphertext). The input
and output external encodings are defined as 128-bit linear mixing bijections
IN−1 and OUT, respectively, each encoding being represented by a non-singular
128 × 128 matrix over F2. Next, associated to the first and final round, the
non-singular 128× 128 matrices M (1) and M (11) over F2 are defined by

M (1) =
(
L

(1,0)
0 , L

(1,0)
1 , L

(1,1)
0 , L

(1,1)
1 , L

(1,2)
0 , L

(1,2)
1 , L

(1,3)
0 , L

(1,3)
1

)
◦ SR ◦ IN−1 ,

M (11) = OUT ◦
((
R(10,0))−1

,
(
R(10,1))−1

,
(
R(10,2))−1

,
(
R(10,3))−1

)
,

respectively.

Summary. Using these notations and definitions, the structure of the Xiao-
Lai white-box AES implementation is depicted in Fig. 5.2. In the white-box
implementation, the operations M (r) (1 ≤ r ≤ 10) and M (11) are implemented
as matrix-vector multiplications over F2 and the operations dTMC(r,j)

i (1 ≤ r ≤ 9)
and dT(10,j)

i for i = 0, 1 and j = 0, 1, 2, 3 are implemented as lookup tables.
Note that the output of two tables, which corresponds to the linearly encoded
output of MC0 and MC1, is added modulo two (i.e., XOR’ed) in the white-box
implementation. Observe that the white-box AES implementation is functionally
equivalent to an encoded version of AES due to the application of the external
encodings IN−1 and OUT.

THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION 129

32

32

32

32

32

32

32

32

round r (1 ≤ r ≤ 9)

128

32

32

32

32

round 10

128...
M (1)

32

32 ⊕
32

32 ⊕

32

32 ⊕

32

32 ⊕

16

16

16

16

16

16

16

16

dTMC(,)

dTMC(,)

dTMC(,)

dTMC(,)

dTMC(,)

dTMC(,)

dTMC(,)

dTMC(,)

0
r 0

1
r 0

0
r 1

1
r 1

0
r 2

1
r 2

0
r 3

1
r 3

M (r)

16

16

16

16

16

16

16

16

32

32 ⊕
32

32 ⊕

32

32 ⊕

32

32 ⊕

32

32

32

32

dT(10,)
0

0

dT(10,)
1

0

dT(10,)
0

1

dT(10,)
1

1

dT(10,)
0

2

dT(10,)
1

2

dT(10,)
0

3

dT(10,)
1

3

M (10)
M (11)

IN(P)

OUT(C)

or

Figure 5.2: The Xiao-Lai white-box AES implementation.

Table 5.1: Overall size and performance of the Xiao-Lai white-box AES
implementation.

Size
Lookup Table / Binary Matrix Total Size# Type Size

72 dTMC(r,j)
i (16-to-32 bit) 18 432 kB

20 502 kB8 dT(10,j)
i (16-to-32 bit) 2048 kB

11 M (r),M (11) (128× 128) 22 kB
Performance

of Table Lookups # of XORs # of Matrix Mult.
80 40 11

Table 5.1 gives an overview of the size and performance of the Xiao-Lai
white-box AES implementation as specified in [107]. The performance is
expressed in the number of table lookups, 32-bit XOR operations and matrix-
vector multiplications over F2. Observe that the total implementation size is
significantly increased when compared to the white-box AES implementation of
Chow et al., i.e., 20 502 kB versus 752 kB. This is mainly caused by the 16-bit
input size of all encoded lookup tables occurring in the Xiao-Lai white-box
AES implementation; this has a noticeable impact on the implementation size
since the storage requirement of a lookup table is exponential in its input size
(Property 1, p. 16). On the positive side, the number of table lookups has
significantly decreased, i.e., 80 versus 3008, because the XOR operations can
be executed on encoded data (as a result of solely F2-linear encodings) and

130 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

hence need not be implemented as a network of encoded nibble XOR tables;
a second reason is that each lookup table involves two bytes of the AES state
simultaneously. As is discussed later in Chapter 7, the Xiao-Lai white-box AES
implementation has the best performance of all white-box AES implementations
considered in this thesis, and can moreover compete with the performance of
the standard black-box software AES implementation (Sect. 2.3.2).

In [107], Xiao and Lai argue that their white-box AES implementation is
resistant against the BGE attack [13]; their argument is highlighted in Sect. 5.5.
However, they did not consider the generic white-box attack of Michiels et al.
(Sect. 3.5.4), and as is explained in Sect. 5.5.1, this attack can be applied to
their implementation. But, due to its generic nature, Michiels et al.’s attack
is not optimized to cryptanalyze the Xiao-Lai white-box AES implementation
(i.e., the preliminary estimation of the corresponding work factor is rather large,
namely at least 249). Therefore, in Sect. 5.3, we present a practical non-generic
attack on the Xiao-Lai white-box AES implementation by exploiting specific
properties of both AES as well as the white-box implementation itself; the
attack has a work factor of 232 which shows a drastic improvement over Michiels
et al.’s attack. This optimization leads to the fact that our attack only requires a
modified version of the linear equivalence (LE) algorithm for S-boxes presented
by Biryukov et al. in [14], whereas Michiels et al.’s attack requires the more
complex affine equivalence (AE) algorithm for S-boxes [14] combined with a
linear equivalence algorithm for matrices (LEPM) [75, Def. 6].

5.2 Linear Equivalence Algorithm

This section describes aspects of the linear equivalence algorithm (LE) proposed
by Biryukov et al. [14] that are relevant to the cryptanalysis of the Xiao-Lai
white-box AES implementation presented in Sect. 5.3.

Definition 29 (Linear equivalence of S-boxes). Two permutations on n bits
(or S-boxes) S1 and S2 are called linearly equivalent if a pair of linear mappings
(A,B) from n to n bits exists such that S2 = B ◦ S1 ◦A.

A pair (A,B) as in this definition is referred to as a linear equivalence. Notice
that both linear mappings A and B of a linear equivalence are bijective. If
S1 = S2, then the linear equivalences are referred to as linear self-equivalences.

The linear equivalence problem is: given two n-bit bijective S-boxes S1 and S2,
determine if S1 and S2 are linearly equivalent. An algorithm for solving the
linear equivalence problem is presented in [14] and is referred to as the linear
equivalence algorithm (LE). The inputs to the algorithm are S1 and S2, and the

LINEAR EQUIVALENCE ALGORITHM 131

output is either a linear equivalence (A,B) if S1 and S2 are linearly equivalent,
or a message that such a linear equivalence does not exist. For an in-depth
description of LE, refer to Biryukov et al. [14]. Below a variant of LE where
it is assumed that both given S-boxes map 0 to itself, i.e., S1(0) = S2(0) = 0,
is briefly described. This variant of LE is used as a building block for the
cryptanalysis presented in Sect. 5.3.

S2

S1A? B?

=

S�1
2

S�1
1

y1 � y2

y3 =x3

linear combination

lin
ea

r c
om

bi
na

tio
n

x1, x2 y1, y2
S1

S2

guess B?

A?

A⇤(x1), A
⇤(x2) B⇤(y1), B

⇤(y2)

A⇤(x3)
B⇤(y3) =

B⇤(y1) � B⇤(y2)

Figure 5.3: Illustration how the linear equivalence (LE) algorithm works.

To quote De Cannière [33, p. 76]: “The idea of LE is to guess the linear mapping
A for as few input points as possible, and then use the linearity of the mappings
A and B to follow the implications of these guesses as far as possible.” Now,
if S1(0) = S2(0) = 0, it is necessary to guess the mapping A for at least two
distinct randomly selected point x1 6= 0 and x2 6= 0 in order to start LE, i.e.,
guess the values of A(x1) and A(x2). Based on these two initial guesses and the
linearity of A and B (that are searched), candidates for the linear mappings
A and B are incrementally built as far as possible; these candidate mappings
are denoted by A∗ and B∗ in the following. The initial guesses A∗(xi) for the
points xi (i = 1, 2) provide knowledge about B∗ by computing yi = S1(A∗(xi))
and B∗(yi) = S2(xi), which in turn provides possibly new information about A∗
by computing the images of the linear combinations of yi and B∗(yi) through
S−1

1 and S−1
2 , respectively. This process is applied iteratively, where in each

step of the process the linearity of the partially determined candidate mappings
A∗ and B∗ is verified by a Gaussian elimination. Figure 5.3 illustrates this
iterative process. If neither for A∗ nor for B∗ a set of n linearly independent
inputs and outputs is obtained (and no linear inconsistencies occurred so far), it
is necessary to guess the mapping A (or B) for an additional (not yet covered)
point in order to continue LE.

If n linearly independent inputs and n linearly independent outputs to A∗ are
obtained, then a candidate for A (here also denoted by A∗ for the sake of clarity)
can be computed. Similar reasoning applies to B. Now, the correctness of the
candidate linear equivalence (A∗, B∗) can be tested by verifying the relation
S2 = B∗ ◦ S1 ◦ A∗ for all possible inputs. If no candidate linear equivalence

132 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

is found (due to linear inconsistencies occurred during the process), or if the
candidate linear equivalence is incorrect, then the process is repeated with
a different guess for A(x1) and/or for A(x2), and/or for any of the possibly
additional guesses made during the execution of LE.

The original linear equivalence algorithm (LE) exits after finding one single
linear equivalence, which already proves that both given S-boxes S1 and S2
are linearly equivalent. However, by running LE over all possible guesses, i.e.,
both initial guesses as well as the possibly additional guesses made during the
execution of LE, also other linear equivalences (A,B) can be found. The work
factor of this variant is at least n3 · 22n, i.e., a Gaussian elimination (n3) for
each possible pair of initial guesses (22n).

5.3 Cryptanalysis

This section presents a practical (non-generic) attack on the Xiao-Lai white-box
AES implementation [107], efficiently extracting the embedded AES key and the
external encodings with a work factor of 232. The cryptanalysis uses the linear
equivalence algorithm (LE) as a building block; LE is described in Sect. 5.2.
Additionally, the cryptanalysis exploits the internal structure of AES and the
composition of the white-box implementation.

Assumption 1. The cryptanalysis assumes that the order of the bytes of the
intermediate results (states) of AES in the white-box implementation is known
to the attacker. As a result, it suffices to extract one single round key that
yields the AES key through the invertible AES key scheduling algorithm. The
generic case in which the order of the bytes of the intermediate AES results is
randomized in the white-box implementation is discussed in Sect. 5.4.

5.3.1 Setup Phase

The cryptanalysis focuses on extracting the 128-bit first round key k̂(1) contained
within the eight key-dependent 16-to-32 bit lookup tables dTMC(1,j)

i (i = 0, 1 and
j = 0, 1, 2, 3) of the first round. Each table dTMC(1,j)

i (Fig. 5.4a) is defined by

dTMC(1,j)
i = R(1,j) ◦ MCi ◦ (S, S) ◦ ⊕(

k̂
(1,j)
2i
‖k̂(1,j)

2i+1

) ◦ (L(1,j)
i

)−1
, (5.1)

where (S, S) denotes the 16-bit bijective S-box comprising two AES S-boxes in
parallel. Given (5.1), the attacker knows that both S-boxes S1 = (S, S) and

CRYPTANALYSIS 133

S2 = dTMC(1,j)
i are affine equivalent by the affine equivalence

(A,B) =
(
⊕(

k̂
(1,j)
2i
‖k̂(1,j)

2i+1

) ◦(L(1,j)
i

)−1
, R(1,j) ◦ MCi

)
such that S2 = B ◦ S1 ◦A. Note that only A is affine where the constant part
equals the key-material contained within dTMC(1,j)

i . Hence by making dTMC(1,j)
i

key-independent (see Lemma 4), we can reduce the problem to finding linear
instead of affine equivalences (where the latter is the case for the generic Michiels
et al.’s attack), for which we apply the linear equivalence algorithm (LE).

8

8

S

S

8

8

M

M

8

8

16 �
L

(r,j)
i

��1 32 32
R(r,j)MCi

dTMC
(1,j)
i

k̂
(1,j)
2i

k̂
(1,j)
2i+1

8

8

8

8

16 �
L

(r,j)
i

��1 32 32
R(r,j)MCi

dTMC
(1,j)
i

S

S

S

S

u0

u1

S(u0)

S(u1)
x 2 S(i,j)

l

�
L

(r,j)
i

��1 ⌦
(mc

(i)
l,1)

�1 � ⌦mc
(i)
l,0

f
(i,j)
l

IN -1

AESk

OUT
WBAESk

IN
AES�1

k

ei (1  i  128)

yi (1  i  128)

(a) Key-material (k̂(1,j)
2i and k̂

(1,j)
2i+1)

8

8

S

S

8

8

M

M

8

8

16 �
L

(r,j)
i

��1 32 32
R(r,j)MCi

dTMC
(1,j)
i

k̂
(1,j)
2i

k̂
(1,j)
2i+1

8

8

8

8

16 �
L

(r,j)
i

��1 32 32
R(r,j)MCi

dTMC
(1,j)
i

S

S

S

S

u0

u1

S(u0)

S(u1)
x 2 S(i,j)

l

�
L

(r,j)
i

��1 ⌦
(mc

(i)
l,1)

�1 � ⌦mc
(i)
l,0

f
(i,j)
l

IN -1

AESk

OUT
WBAESk

IN
AES�1

k

ei (1  i  128)

yi (1  i  128)

(b) No key-material

Figure 5.4: Key-dependent table dTMC(1,j)
i vs. key-independent table dTMC(1,j)

i .

Lemma 4. Given the key-dependent 16-to-32 bit lookup table dTMC(1,j)
i (defined

by (5.1) and depicted in Fig. 5.4a), let xi,j be the 16-bit value such that
dTMC(1,j)

i (xi,j) = 0, and let dTMC(1,j)
i be defined as dTMC(1,j)

i = dTMC(1,j)
i ◦ ⊕xi,j

.
If S is defined as the 8-bit bijective S-box S = S ◦⊕52 where S denotes the AES
S-box, then

dTMC(1,j)
i = R(1,j) ◦ MCi ◦ (S, S) ◦

(
L

(1,j)
i

)−1
, (5.2)

where (S, S) denotes the 16-bit bijective S-box comprising two S-boxes S in
parallel. The key-independent 16-to-32 bit lookup table dTMC(1,j)

i is depicted in
Fig. 5.4b.

Proof. Given the fact that dTMC(1,j)
i is encoded merely by linear input and

output encodings
(
L

(1,j)
i

)−1 and R(1,j) (see (5.1)) and that S(52) = 0, the
16-bit value xi,j for which dTMC(1,j)

i (xi,j) = 0 is given by

xi,j = L
(1,j)
i

((
k̂

(1,j)
2i ⊕ 52

)
‖
(
k̂

(1,j)
2i+1 ⊕ 52

))
, (5.3)

In the rare case that xi,j = 0, it immediately follows that both first round key
bytes k̂(1,j)

2i and k̂(1,j)
2i+1 are equal to 52. Now, based on xi,j , one can construct

134 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

the key-independent 16-to-32 bit lookup table dTMC(1,j)
i as follows:

dTMC(1,j)
i = dTMC(1,j)

i ◦ ⊕xi,j

= R(1,j) ◦ MCi ◦ (S, S) ◦ ⊕(
k̂

(1,j)
2i
‖k̂(1,j)

2i+1

) ◦ ⊕(L(1,j)
i

)−1(xi,j) ◦
(
L

(1,j)
i

)−1

= R(1,j) ◦ MCi ◦ (S, S) ◦ ⊕(52‖52) ◦
(
L

(1,j)
i

)−1

= R(1,j) ◦ MCi ◦ (S, S) ◦
(
L

(1,j)
i

)−1
.

Note that the obtained key-independent tables dTMC(1,j)
i (i = 0, 1 and j =

0, 1, 2, 3) defined by (5.2) map 0 to itself, i.e., dTMC(1,j)
i (0) = 0. This follows

from the fact that the 8-bit bijective S-box S maps 0 to itself as well.

Linear equivalence algorithm (LE). By applying LE to the 16-bit bijective
S-box S1 = (S, S) and the key-independent 16-to-32 bit lookup table S2 =
dTMC(1,j)

i obtained through Lemma 4, a total of 128 linear equivalences

(A,B) =
(
As ◦

(
L

(1,j)
i

)−1
, R(1,j) ◦ MCi ◦Bs

)
can be found, where (As, Bs) denote the 128 linear self-equivalences of (S, S)
(see Property 5 below), such that

dTMC(1,j)
i = R(1,j) ◦ MCi ◦ (S, S) ◦

(
L

(1,j)
i

)−1

= R(1,j) ◦ MCi ◦Bs ◦ (S, S) ◦As ◦
(
L

(1,j)
i

)−1

= B ◦ (S, S) ◦A .

Property 5 (Linear self-equivalences of (S, S)). Let the AES S-box S be defined
as S(x) = A(x−1) where A is a bijective affine mapping on F8

2 and x−1 denotes
the inverse of x in F256 as defined in FIPS 197 [69] with 00 −1 = 00, and let the
8-bit bijective S-box S be defined as S = S ◦ ⊕52. Further, let mc : F256 → F256
with c ∈ F∗256 be defined by mc(x) = c ⊗ x, and let ft : F256 → F256 be the
automorphisms of F256 over F2 defined by ft(x) = x2t for 0 ≤ t ≤ 7. If Φl

denotes the set of exactly #l = 8 linear self-equivalences (α, β) of S such that
S = β ◦ S ◦ α and is defined by

Φl =
{

(α = mc ◦ ft, β = A ◦ f−1
t ◦mc ◦A−1) | (t, c) ∈ Sl

}
with

Sl = {(0, 01), (1, 05), (2, 13), (3, 60), (4, 55), (5, f6), (6, b2), (7, 66)} ,

CRYPTANALYSIS 135

then the 16-bit bijective S-box comprising two identical S-boxes S in parallel, i.e.
(S, S), has 2 ·#2

l = 128 linear self-equivalences denoted by the pair of 16-bit
bijective linear mappings (As, Bs) such that (S, S) = Bs ◦ (S, S) ◦As, with the
following diagonal structure:

As =
(

α1 08×8
08×8 α2

)
, Bs =

(
β1 08×8

08×8 β2

)
or

As =
(

08×8 α1
α2 08×8

)
, Bs =

(
08×8 β2
β1 08×8

)
,

where both (α1, β1), (α2, β2) ∈ Φl and where 08×8 denotes the 8× 8 zero matrix.
We applied the linear equivalence algorithm (implemented in C++) to S1 = S2 =
(S, S) and found exactly these 128 linear self-equivalences.

Since in this case both S-boxes S1 = (S, S) and S2 = dTMC(1,j)
i map 0 to itself,

recall from Sect. 5.2 that at least two initial 16-bit guesses A(xn) for two distinct
points xn 6= 0 (n = 1, 2) of A are necessary to execute LE, and hence the work
factor becomes at least 244, i.e., n3 ·22n for n = 16. Furthermore, the attacker is
only interested in one single linear equivalence, referred to as the desired linear
equivalence in the following, and denoted by

(A,B)d =
((
L

(1,j)
i

)−1
, R(1,j) ◦ MCi

)
.

Observe that the desired linear equivalence corresponds to the one with the
linear self-equivalence (As, Bs) = (I16, I16), where I16 denotes the 16-bit identity
matrix over F2. The attacker’s goal is to recover (A,B)d since it contains the
secret linear input encoding

(
L

(1,j)
i

)−1 that allows him to extract both first
round key bytes k̂(1,j)

2i and k̂(1,j)
2i+1 out of the 16-bit value xi,j given by (5.3).

Our Goal. Below, we present a way how to modify the linear equivalence
algorithm when applied to S1 = (S, S) and S2 = dTMC(1,j)

i such that only the
single desired linear equivalence (A,B)d is given as output. At the same time,
the work factor decreases as well. This modification exploits both the internal
structure of AES as well as the composition of the white-box implementation.

5.3.2 Phase 1: Obtain leaked information about the linear
input encoding (L

(1,j)
i)−1.

Due to the inherent structure of the Xiao-Lai white-box AES implementation,
partial information about the linear input encoding

(
L

(1,j)
i

)−1 of the key-

136 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

independent tables dTMC(1,j)
i of the first round is leaked. In Phase 2, this leaked

information is used to modify the linear equivalence algorithm in order to
achieve the goal described above.

S

S

u0

u1

x 16
8

8

8

8

8

8

8

8

8

8

MCi

�
L

(r,j)
i

��1

?
= 00

?
= 00

?
= 00

?
= 00

Figure 5.5: Exploited vulnerability of the Xiao-Lai white-box AES
implementation: verify if each of the four output bytes of MCi equals 00.

For each linear input encoding
(
L

(1,j)
i

)−1 (i = 0, 1 and j = 0, 1, 2, 3), this
leaked information comprises four sets of 28 16-bit encoded values x for which
the underlying unencoded bytes u0, u1 (i.e.,

(
L

(1,j)
i

)−1(x) = u0‖u1) share a
known 8-bit bijective function. This information is leaked out of the white-box
implementation because the attacker can separately monitor whether or not
each of the four output bytes of the submatrix MCi contained within dTMC(1,j)

i

(Fig. 5.4b) equals 00. Figure 5.5 illustrates this fact. In the following, we
describe how the attacker obtains this ability in the Xiao-Lai white-box AES
implementation and how this enables him to retrieve leaked information about(
L

(1,j)
i

)−1 of each dTMC(1,j)
i table for i = 0, 1 and j = 0, 1, 2, 3.

First, one builds an implementation that only consists of the single key-
independent table dTMC(1,j)

i followed by the matrix multiplication over F2 with
M (2). This implementation is depicted in detail in Fig. 5.6 for (i, j) = (0, 2),
where the internal states U, V and Y are indicated as well: the 2-byte state
U = (u0, u1) corresponds to the 2-byte input to (S, S) and the 4-byte state
V = (v0, v1, v2, v3) corresponds to the 4-byte output of MCi. Hence, the relation
between U and V is given by

mcil,0 ⊗ S(u0)⊕mcil,1 ⊗ S(u1) = vl for l = 0, 1, 2, 3 ,

where the pair of bytes (mcil,0,mcil,1) corresponds to the MixColumns coefficients
on row l of MCi for l = 0, 1, 2, 3, i.e., (mcil,0,mcil,1) ∈ SMC with

SMC = {(02, 03), (01, 02), (01, 01), (03, 01)} .

Then, the 16-byte input to M (2) is given by all zeros except for the output
of the dTMC(1,j)

i table. This is illustrated in our example (Fig. 5.6). This

CRYPTANALYSIS 137

16 16 16 16 16 16 16 16

venc
0venc

1venc
2 venc

30 0 0 0

n n n ncolumn 0 column 1 column 2 column 3

output

0 0 0 0 0 0 0 0 v0 v1 v2 v3 0 0 0 0

ShiftRows (SR)
0 0 v2 0 0 v1 0 0 v0 0 0 0 0 0 0 v3

n
State Y

State SR(Y)

u0 u1

S S
MC0

v0 v1 v2 v3

32

16n
0 0 0 State V

State U

32 32

x

�
L

(1,2)
0

��1

R(1,2)

�
R(1,3)

��1�
R(1,2)

��1�
R(1,1)

��1�
R(1,0)

��1

L
(2,0)
0 L

(2,0)
1 L

(2,1)
1L

(2,1)
0 L

(2,2)
0 L

(2,2)
1 L

(2,3)
1L

(2,3)
0

dTMC
(1,2)
0

M (2)

Figure 5.6: Implementation associated with dTMC(1,j)
i for (i, j) = (0, 2):

identifying the four values vencl (l = 0, 1, 2, 3) in order to build the sets S(i,j)
l .

ensures that the corresponding values of the state Y remain zero except for
the 4-byte state V (which corresponds to the unencoded output of dTMC(1,j)

i).
The ShiftRows operation ensures that the four bytes vl (l = 0, 1, 2, 3) of V are
spread over all four columns of the internal (AES) state SR(Y), which are then
each encoded by a different linear encoding, i.e., vl is encoded by L(2,sr(l,j))

bl/2c for
l = 0, 1, 2, 3. Recall from Sect. 2.3.1 that the function sr(l, j) = (j − l) mod 4
defines the ShiftRows operation. Hence the output state (i.e., the output of
M (2)) contains four 16-bit 0-values, whereas the other four 16-bit output values
vencl (l = 0, 1, 2, 3) each correspond to one of the four bytes vl of V in a linearly
encoded form. Therefore, if vencl = 0, then the associated byte vl = 00 as well,
such that we have a known 8-bit bijective function f

(i,j)
l between the bytes

u0, u1 of U , which is defined by

u1 = f
(i,j)
l (u0) with f (i,j)

l = S
−1 ◦ ⊗(mci

l,1)−1 ◦ ⊗mci
l,0
◦ S . (5.4)

This function follows out of the equation mcil,0 ⊗ S(u0)⊕mcil,1 ⊗ S(u1) = 00.

Now, for the linear input encoding
(
L

(1,j)
i

)−1 of dTMC(1,j)
i , four sets S(i,j)

l

(l = 0, 1, 2, 3) are built as follows. First associate one of the four values vencl

with each set S(i,j)
l . Then, for each set S(i,j)

l , store the 16-bit value x, given as
input to dTMC(1,j)

i , for which the associated output value vencl = 0. Do this for

138 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

all x ∈ F16
2 . As a result, each set S(i,j)

l is composed of 28 16-bit encoded values
x for which the underlying unencoded bytes u0, u1 share the known bijective
function f (i,j)

l given by (5.4):

S(i,j)
l =

{
x ∈ F16

2 |
(
L

(1,j)
i

)−1(x) = u0‖u1 ∧ u1 = f
(i,j)
l (u0)

}
, (5.5)

with |S(i,j)
l | = 28. So with each set S(i,j)

l (l = 0, 1, 2, 3), a known bijective
function f (i,j)

l is associated.

5.3.3 Phase 2: Find the desired linear equivalence (A, B)d

and retrieve the linear input encoding (L
(1,j)
i)−1.

After Phase 1, four sets S(i,j)
l (l = 0, 1, 2, 3) defined by (5.5) are obtained,

associated with the secret linear input encoding
(
L

(1,j)
i

)−1 of each dTMC(1,j)
i

table (i = 0, 1 and j = 0, 1, 2, 3) of the first round. For each element x ∈ S(i,j)
l ,

the underlying unencoded bytes u0, u1 share a specific known bijective function
f

(i,j)
l given by (5.4). Now, by exploiting this leaked information about

(
L

(1,j)
i

)−1,
we present an efficient algorithm for computing the desired linear equivalence

(A,B)d =
((
L

(1,j)
i

)−1
, R(1,j) ◦ MCi

)
.

This enables the attacker to obtain the secret linear input encoding A =(
L

(1,j)
i

)−1 of dTMC(1,j)
i , which also corresponds to the input encoding of dTMC(1,j)

i .

Algorithm for Finding the Desired Linear Equivalence (A,B)d

Since A =
(
L

(1,j)
i

)−1 in the desired linear equivalence, we exploit the leaked
information about

(
L

(1,j)
i

)−1 obtained in Phase 1 in order to make the two initial
guesses A(xn) for two distinct points xn 6= 0 (n = 1, 2) of A. Only two out of four
sets S(i,j)

l are considered, i.e., those where the pair of MixColumns coefficients
(mcil,0,mcil,1) of the associated function f (i,j)

l equals (01, 02) or (02, 03). We
choose one of both sets and simply denote it by S. Below we elaborate on
which of the four sets S(i,j)

l (l = 0, 1, 2, 3) are most suitable to be used in the
algorithm.

Now, select two distinct points xn 6= 0 (n = 1, 2) out of the chosen set,
i.e., xn ∈ S. Based on definition (5.5) of S, these points are defined as
xn = L

(1,j)
i

(
un‖f(un)

)
for some unknown distinct 8-bit values un ∈ F8

2 \ {0},

CRYPTANALYSIS 139

where f denotes the known function associated with S. Now, based on this
knowledge and the fact that we want to find A =

(
L

(1,j)
i

)−1, the two initial
guesses A(xn) are made as follows: A(xn) = an‖f(an) for all an ∈ F8

2 \ {0}
(n = 1, 2). Hence, even if A(xn) is a 16-bit value, we only need to guess the
8-bit value an such that the total number of guesses becomes 216 (i.e. 2 2n

2 with
n = 16). For each possible pair of initial guesses

(
A(xn) = an‖f(an)

)
n=1,2, LE

is executed on S1 = (S, S) and S2 = dTMC(1,j)
i . All found linear equivalences

are stored in the set SLE.

It is assumed that at least (A,B)d ∈ SLE, which occurs when an = un for
n = 1, 2. It is possible that additional linear equivalences (A,B) =

(
As ◦(

L
(1,j)
i

)−1
, R(1,j) ◦ MCi ◦ Bs

)
with As 6= I16 can be found as well such that

|SLE| > 1. In that case, the procedure needs to be repeated for two new distinct
points x∗n 6= 0 (n = 1, 2) out of the chosen set S that are also distinct from
the original chosen points xn 6= 0 (n = 1, 2). This results in a second set
S∗LE. Assuming that all possible linear equivalences between S1 = (S, S) and
S2 = dTMC(1,j)

i are given by (A,B) =
(
As ◦

(
L

(1,j)
i

)−1
, R(1,j) ◦ MCi ◦Bs

)
where

the pair (As, Bs) denotes the linear self-equivalences of (S, S), it can be shown
that for both considered sets, it is impossible that a linear equivalence with
As 6= I16 is given as output during both executions of the procedure (see below
under ‘Choice of Set S’). Hence taking the intersection of both sets SLE and
S∗LE results in the desired linear equivalence (A,B)d.

Algorithm 1 gives a detailed description of the whole procedure. It has a work
factor of 229, i.e., 2 · n3 · 2 2n

2 for n = 16.

Implementation. Algorithm 1 has been implemented in C++ and tests have
been conducted on an Intel Core2 Quad @ 3.00 GHz. For the tests, we chose the
set S(i,j)

l where (mcil,0,mcil,1) = (02, 03). We ran the implementation 3000 times
in total, each time for different randomly chosen encodings

(
L

(1,j)
i

)−1 and R(1,j).
Only four times the procedure ‘search-LE’ needed to be repeated since two
linear equivalences were found during the first execution. The implementation
always succeeded in finding the single desired linear equivalence (A,B)d, which
required on average approximately one minute. It should be noted that the
implementation was not optimized for speed, hence improvements are possible.
The implementation also showed that each pair of initial guesses as defined
above were sufficient in order to execute LE, i.e., no additional guesses were
required.

140 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

Algorithm 1 Finding the desired linear equivalence (A,B)d
Input: S1 = (S, S), S2 = dTMC(1,j)

i , S, f
Output: (A,B)d
1: select two distinct points x1, x2 ∈ S with xn 6= 0 (n = 1, 2)
2: call search-LE(x1, x2, f, S1, S2) → SLE
3: if |SLE| > 1 then
4: select two distinct points x∗1, x∗2 ∈ S with x∗n 6= 0 and x∗n 6= xm for n = 1, 2

and m = 1, 2
5: call search-LE(x∗1, x∗2, f, S1, S2) → S∗LE
6: SLE ← SLE ∩ S∗LE
7: end if
8: return SLE

where Procedure search-LE:
Input: x1, x2, f, S1, S2
Output: SLE

1: SLE ← ∅
2: for all a1 ∈ F8

2 \ {0} do
3: A(x1)← a1‖f(a1)
4: for all a2 ∈ F8

2 \ {0} do
5: A(x2)← a2‖f(a2)
6: call LE on S1 and S2 with initial guesses A(x1), A(x2)→ SLE
7: end for
8: end for

Choice of Set S

Here, we elaborate on the fact that not all four sets S(i,j)
l (l = 0, 1, 2, 3) are

equally suitable to be used in Algorithm 1. To each of the four sets S(i,j)
l

(l = 0, 1, 2, 3), a pair of MixColumns coefficients (mcil,0,mcil,1) ∈ SMC (see (5.3.2))
of the associated function f

(i,j)
l is related. Let us denote this relation by

S(i,j)
l ↔ (mcil,0,mcil,1).

S(i,j)
l ↔ (01, 01): the associated function f (i,j)

l is the identity function such
that the pair of initial guesses becomes

(
A(xn) = an‖an

)
n=1,2 with an ∈ F8

2\{0}.
When executing LE on S1 = (S, S) and S2 = dTMC(1,j)

i for any such pair, we only
find at most eight linearly independent inputs and output to A (or B). This can
be explained by the fact that linear combinations of an‖an (or of S(an)‖S(an))
span at most an 8-dimensional space. In order to continue executing LE, an

CRYPTANALYSIS 141

additional guess for a new point x of A (or B) is required which increases the
work factor. Hence we avoid using this set.

S(i,j)
l ↔ {(01, 02), (02, 03), (03, 01)}: computer simulations show that all

three remaining sets can be used in Algorithm 1 without requiring an additional
guess during the execution of LE. However, in the worst case scenario, using
the set S(i,j)

l ↔ (03, 01) requires that the procedure ‘search-LE’ needs to be
executed four times in total in order to find the single desired linear equivalence
(A,B)d, instead of at most two times for the sets S(i,j)

l ↔ (01, 02) or S(i,j)
l ↔

(02, 03). This can be explained as follows.

The procedure ‘search-LE’ needs to be repeated if the returned set SLE
contains additional linear equivalences different from (A,B)d, i.e., (A,B) =(
As ◦

(
L

(1,j)
i

)−1
, R(1,j) ◦ MCi ◦Bs

)
with As 6= I16. Given that the chosen points

xn ∈ S(i,j)
l (n = 1, 2) are defined by

(
L

(1,j)
i

)−1(xn) = un‖f (i,j)
l (un), then

(A,B)d is found when an = un (n = 1, 2) such that the pair of initial guesses
becomes

(
A(xn) = un‖f (i,j)

l (un)
)
n=1,2. In order to find an additional linear

equivalence with As 6= I16, there must exist two distinct values an ∈ F8
2 \ {0}

for n = 1, 2 such that the initial guesses become

A(xn) =
(
an ‖ f (i,j)

l (an)
)

= As ·
(
un ‖ f (i,j)

l (un)
)
, (5.6)

for n = 1, 2. Now, in order for the same additional linear equivalence to appear
during two executions of the procedure ‘search-LE’, and given that the newly
chosen points x∗n ∈ S

(i,j)
l (n = 1, 2) are defined by

(
L

(1,j)
i

)−1(x∗n) = u∗n‖f il (u∗n),
there must exist two additional distinct values a∗n ∈ F8

2 \ {0} for n = 1, 2 such
that the initial guesses become

A(x∗n) =
(
a∗n ‖ f

(i,j)
l (a∗n)

)
= As ·

(
u∗n ‖ f

(i,j)
l (u∗n)

)
, (5.7)

for n = 1, 2. Hence in total four distinct values an, a∗n ∈ F8
2 \ {0} for n = 1, 2

must exist that satisfy the requirements (5.6)-(5.7), where in both requirements
As is the same. We can reduce this problem to the following problem statement:

Problem Statement 1. Given x ∈ F8
2 \ {0}, does there exist a y ∈ F8

2 \ {0}
with x 6= y such that

(
x ‖ f (i,j)

l (x)
)

= As ·
(
y ‖ f (i,j)

l (y)
)
where As 6= I16?

For the sets S(i,j)
l ↔ {(01, 02), (02, 03)} and its associated functions f (i,j)

l ,
there are at most three distinct x values for each possible As 6= I16 that
satisfy the above problem statement. This ensures that it is impossible for an
additional linear equivalence with As 6= I16 to appear during two executions

142 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

of the procedure ‘search-LE’ such that (A,B)d can always be filtered out by
repeating the procedure ‘search-LE’ if |SLE| > 1 after the first execution.

However, for the set S(i,j)
l ↔ (03, 01) and its associated function f (i,j)

l , there
are at most six distinct x values for each possible As 6= I16 that satisfy the above
problem statement. This means that in the worst case scenario, an additional
linear equivalence with As 6= I16 can appear during three executions of the
procedure ‘search-LE’ such that the procedure needs to be repeated four times
in order to filter out (A,B)d. This increases the work factor, hence we discard
this set.

5.3.4 Phase 3: Extract the embedded AES key and the
external encodings.

After Phases 1-2, the linear input encodings
(
L

(1,j)
i

)−1 of all dTMC(1,j)
i tables

(i = 0, 1 and j = 0, 1, 2, 3) of the first round are retrieved.

Extract the embedded AES key. Given the 16-bit value xi,j defined by
dTMC(1,j)

i (xi,j) = 0 (see (5.3)), the attacker can extract both first round key
bytes k̂(1,j)

2i and k̂(1,j)
2i+1 associated with each dTMC(1,j)

i table by computing

k̂
(1,j)
2i ‖ k̂(1,j)

2i+1 =
(
L

(1,j)
i

)−1(xi,j)⊕
(
52 ‖ 52

)
.

By doing so for each dTMC(1,j)
i (i = 0, 1 and j = 0, 1, 2, 3) and taking into account

the data-flow of the white-box implementation of the first round, the attacker
is able to retrieve the first round key k̂(1), which after applying the inverse
ShiftRows operation to it, results in the actual first round key k(1). Recall
from Sect. 2.3.1 that for AES-128, k(1) corresponds to the AES key k.

Extract the external encodings. The external 128-bit linear input encoding
IN−1 can be extracted from the 128× 128 binary matrix M (1) by computing

IN−1 = SR−1 ◦
((
L

(1,0)
0

)−1
,
(
L

(1,0)
1

)−1
,
(
L

(1,1)
0

)−1
,
(
L

(1,1)
1

)−1
,

(
L

(1,2)
0

)−1
,
(
L

(1,2)
1

)−1
,
(
L

(1,3)
0

)−1
,
(
L

(1,3)
1

)−1
)
◦M (1) .

The external 128-bit linear output encoding OUT can be extracted once both
the AES key k and IN−1 have been recovered. If ei (1 ≤ i ≤ 128) denotes

THE GENERIC CASE 143

the i-th unit vector in F128
2 , then calculate for unit vector ei the 128-bit value

yi = WBAESk
(
IN
(
AES−1

k (ei)
))
, where WBAESk denotes the given white-box

AES implementation defined by WBAESk = OUT ◦ AESk ◦ IN−1 and AES−1
k

denotes the inverse standard AES implementation, both instantiated with the
AES key k:

yi = OUT(AESk(IN−1︸ ︷︷ ︸
WBAESk

(IN(AES−1
k (ei))))) = OUT(ei) .

The above has been illustrated in Fig. 5.7. Observe that yi corresponds to the
image of ei under the external 128-bit linear output encoding OUT. Hence OUT
is completely defined by calculating all pairs (ei, yi) for 1 ≤ i ≤ 128.

8

8

S

S

8

8

M

M

8

8

16 �
L

(r,j)
i

��1 32 32
R(r,j)MCi

dTMC
(1,j)
i

k̂
(1,j)
2i

k̂
(1,j)
2i+1

8

8

8

8

16 �
L

(r,j)
i

��1 32 32
R(r,j)MCi

dTMC
(1,j)
i

S

S

S

S

u0

u1

S(u0)

S(u1)
x 2 S(i,j)

l

�
L

(r,j)
i

��1 ⌦
(mc

(i)
l,1)

�1 � ⌦mc
(i)
l,0

f
(i,j)
l

IN -1

AESk

OUT
WBAESk

IN
AES�1

k

ei (1  i  128)

yi (1  i  128)

Figure 5.7: Recovery of the external output encoding of the Xiao-Lai white-box
AES implementation.

5.3.5 Work Factor

The overall work factor of the cryptanalysis of the Xiao-Lai white-box AES
implementation is dominated by the execution of Algorithm 1 in order to obtain
the linear input encodings

(
L

(1,j)
i

)−1 of all eight dTMC(1,j)
i tables (i = 0, 1 and

j = 0, 1, 2, 3) of the first round. The algorithm has a work factor of about 229.
Thus, executing the algorithm on S1 = (S, S) and S2 = dTMC(1,j)

i for i = 0, 1
and j = 0, 1, 2, 3 leads to an overall work factor of about 8 · 229 = 232.

5.4 The Generic Case

The cryptanalysis presented in Sect. 5.3 was based on Assumption 1, which
stated that the order of the bytes of the intermediate results in the white-box
implementation is known to the attacker. However, although not specified
in [107] by Xiao and Lai, one can use a randomization of the order of the

144 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

subrounds in an AES round and in the order of the bytes within each subround
to add confusion to the implementation. This can be implemented in the
same manner as explained in Sect. 3.3.3 for the white-box implementation of
Chow et al., i.e., by annihilating each wide mixing bijection up to an unknown
permutation on the indices of the involved bytes and accounting for the unknown
permutations in the data-flow of the implementation. In the case of the Xiao-Lai
white-box AES implementation, this involves all mixing bijections as they all
operate on at least two bytes simultaneously. As a result, this randomization
can be implemented ‘for free’, i.e., without increasing the size and without
decreasing the performance of the white-box implementation.

Assumption 2. In the generic case, it is assumed that the order of the four
subrounds in an AES round as well as the order of the four bytes within each
subround are randomized and that this randomization is kept secret.

Assumption 2 complicates the cryptanalysis presented in Sect. 5.3. Below,
we elaborate on these complications and provide a generic version of our
cryptanalysis taking into account Assumption 2.

5.4.1 Generic Cryptanalysis

This section elaborates on the impact of Assumption 2 on each phase of the
cryptanalysis presented in Sect. 5.3 resulting in a generic cryptanalysis.

Setup Phase and Phase 1

The setup phase is independent of the secret randomization and hence remains
the same, i.e., the eight dTMC(1,j)

i tables (i = 0, 1 and j = 0, 1, 2, 3) can still
be made key-independent based on Lemma 4. With regard to Phase 1, the
attacker is still able to construct four sets S(i,j)

l (l = 0, 1, 2, 3) as defined by (5.5)
comprising leaked information for each linear input encoding

(
L

(1,j)
i

)−1 for
i = 0, 1 and j = 0, 1, 2, 3; however, the associated function f

(i,j)
l with each

set S(i,j)
l is no longer known due to the secret randomization. Instead, the

associated function can be any element of the known set

Sf =
{
f = S

−1 ◦ ⊗mc−1
1
◦ ⊗mc0 ◦ S

∣∣∣ (mc0,mc1) ∈ S∗MC

}
with

S∗MC = {(01, 02), (02, 03), (03, 01), (01, 01), (01, 03), (03, 02), (02, 01)} .

The set S∗MC comprises all possible pairs formed out of the four MixColumns co-
efficients appearing on each row of the 4 × 4 matrix MC, i.e., out of the set

THE GENERIC CASE 145

{01, 01, 02, 03}. Since two MixColumns coefficients are equal to 01 for AES
encryption, we have that |S∗MC| = 7 and as a result also |Sf | = 7.

Phase 2

The second phase retrieves the secret linear input encodings
(
L

(1,j)
i

)−1 for i = 0, 1
and j = 0, 1, 2, 3. Originally, this was achieved by using Algorithm 1 of Phase 2
(i.e., the algorithm for finding the desired linear equivalence (A,B)d) which
required as inputs one of the four sets S(i,j)

l (l = 0, 1, 2, 3) and its associated
function f (i,j)

l . However, as mentioned above, f (i,j)
l is unknown in the generic

case and thus we need to guess f̃ (i,j)
l ∈ Sf . Now, the question remains: “can

we filter out the incorrect guesses of f̃ (i,j)
l 6= f

(i,j)
l and obtain (A,B)d?”. This

is discussed in the following, where S(i,j) = {S(i,j)
0 ,S(i,j)

1 ,S(i,j)
2 ,S(i,j)

3 }.

First, randomly select a set S ∈ S(i,j) without knowing the associated function
f . Given that the chosen two distinct points xn ∈ S (n = 1, 2) are defined by(
L

(1,j)
i

)−1(xn) = un‖f(un), Algorithm 1 finds a linear equivalence if there exist
two distinct values an ∈ F8

2 \ {0} for n = 1, 2 such that the initial guesses for A
become

A(xn) =
(
an‖f̃(an)

)
= As ·

(
un‖f(un)

)
for n = 1, 2 ,

for some guess of f̃ ∈ Sf and for some As (see Property 5). This problem can
be reduced to the following problem statement:

Problem Statement 2. Given x ∈ F8
2 \ {0}, does there exist a y ∈ F8

2 \ {0}
such that (

x‖f̃(x)
)

= As ·
(
y‖f(y)

)
, (5.8)

for any As (see Property 5) and for any pair of functions (f, f̃) ∈ Sf × Sf?

Table 5.2 (left entries if applicable) lists the maximum number of x-values for
which there exists a y satisfying (5.8) for each possible As and for any pair
(f, f̃). As a result of a certain symmetry within the set Sf and As, the entries
of 255 in Table 5.2 on both ‘diagonals’ can be explained by the following:

1. If f̃ = f and As = I16, where I16 denotes the 16-bit identity matrix
over F2, then (5.8) becomes

(
x‖f(x)

)
=
(
y‖f(y)

)
such that for each

x ∈ F8
2 \ {0} there exist a y satisfying the equation, i.e., y = x. This is

considered to be the trivial case; if we guess f correctly, then at least the
desired linear equivalence (A,B)d with A =

(
L

(1,j)
i

)−1 is given as output.

146 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

Table 5.2: For any pair of functions (f, f̃) ∈ Sf × Sf listing the maximum
number of x ∈ F8

2 \ {0} for which there exists a y ∈ F8
2 \ {0} satisfying (5.8)

taken over all possible As.

H
HHHHf

f̃ (01, 02) (02, 03) (03, 01) (01, 03) (03, 02) (02, 01)

(01, 02) 255 3 6 4 4 6 255 3
(02, 03) 4 255 3 4 4 255 3 4
(03, 01) 4 5 255 6 255 6 5 4
(01, 01) 3 4 3 3 4 3
(01, 03) 4 5 255 6 255 6 5 4
(03, 02) 4 255 3 4 4 255 3 4
(02, 01) 255 3 6 4 4 6 255 3

2. If f̃ = f−1 and As =
(

08×8 I8
I8 08×8

)
, where 08×8 denotes the 8 × 8

zero matrix and I8 denotes the 8-bit identity matrix over F2, then (5.8)
becomes

(
x‖f−1(x)

)
=
(
f(y)‖y

)
such that for each x ∈ F8

2\{0} there exist
a y satisfying the equation, i.e., y = f−1(x). Hence, if we guess the inverse
of f , then at least the linear equivalence (A,B) with A = As ·

(
L

(1,j)
i

)−1 is
given as output where As is as specified above. Let us denote this specific
linear equivalence by (A,B)′d in the following.

Excluding the above two cases results in the right entries (if applicable) of
Table 5.2. This shows that there are at most six distinct x-values for each
possible As and for any pair (f, f̃) (excluding the above cases) for which there
exists a y satisfying (5.8). Observe that the grey-colored entries correspond
to the cases discussed in Sect. 5.3.3 to determine the best choice of the set S
selected out of S(i,j) in order to execute Algorithm 1.

Note that in Table 5.2 the identity function I8 (i.e., the function with
(mc0,mc1) = (01, 01)) is left out as a possible guess for f̃ . The reason for
this omission is that the identity function requires additional guesses during the
execution of LE, which is undesirable since it increases the work factor. This
was already discussed in Sect. 5.3.3.

Generic algorithm for finding (A, B)d and (A, B)′d. Here, we present a
generic algorithm for finding the linear equivalences (A,B)d and (A,B)′d that
eventually yield the secret linear input encoding

(
L

(1,j)
i

)−1. From Table 5.2 and
the above observations it follows that if LE is repeated four times for a certain
chosen set S ∈ S(i,j) and for all six guesses of f̃ ∈ Sf \ {I8} we get either

THE GENERIC CASE 147

1. no solutions which shows that the chosen set is S ↔ (01, 01). In this
case we need to chose a different set S∗ ∈ S(i,j) and repeat the whole
procedure for this new set;

2. exactly two solutions, i.e., (A,B)d and (A,B)′d, out of which we can easily
filter out the linear input encoding

(
L

(1,j)
i

)−1 as explained below.

The reason for repeating LE four times is to exclude additional linear
equivalences except for (A,B)d and (A,B)′d. From Table 5.2 it follows that such
additional linear equivalences can only occur during at most three executions of
LE. Note that it is only required to repeat LE four times if at least one linear
equivalence is found during the first execution of LE.

Algorithm 2 gives a detailed description of the whole procedure for finding
both linear equivalences (A,B)d and (A,B)′d contained within the returned set
S(A,B). Although the attacker cannot distinguish both elements in S(A,B), he
knows that both A’s of the found pairs of linear equivalences have the form

A1 =
(
L

(1,j)
i

)−1 and A2 = C ·
(
L

(1,j)
i

)−1 with C =
(

08×8 I8
I8 08×8

)
,

or vice versa. Hence by verifying whether A1 ·A−1
2 or A2 ·A−1

1 equals C, the
attacker is able to retrieve the secret linear input encoding

(
L

(1,j)
i

)−1.

Phase 3

After the setup phase and Phases 1-2, the attacker retrieved all encodings(
L

(1,j)
i

)−1 (i = 0, 1 and j = 0, 1, 2, 3) of the first round. This enables him
to extract the round key bytes of the first round as described in Sect. 5.3.4.
However, due to the secret randomization, there exists an ambiguity about the
order of the round key bytes. Therefore, as was done in the BGE attack, the
attacker needs to extract the round key bytes of the second round as well. This
can be achieved by repeating the setup phase and Phases 1-2 for the second
round. Observe that the generic cryptanalysis presented above can be applied
to any two consecutive rounds r and r + 1 for some value of r with 1 ≤ r ≤ 8
and is not restricted to the first two rounds.

After that, the values of the round key bytes of two consecutive rounds are
known, though with an unknown order of the round key bytes associated with
each subround and an unknown order of the four subrounds. Phase 4 of the
improved BGE attack (Sect. 4.1.3) provides an efficient method to determine
the correct order of the round key bytes and to extract the secret AES key.

148 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

Algorithm 2 Finding the linear equivalences (A,B)d and (A,B)′d
Input: S1 = (S, S), S2 = dTMC(1,j)

i , S(i,j), Sf \ {I8}
Output: (A,B)d and (A,B)′d
1: choose S ∈ S(i,j)

2: S(A,B) ← ∅
3: for all f̃ ∈ Sf \ {I8} do
4: select 8 distinct points x(i)

n ∈ S with x(i)
n 6= 0 for n = 1, 2 and 0 ≤ i ≤ 3

5: call search-LE
(
x

(0)
1 , x

(0)
2 ,f̃ ,S1,S2

)
→ SLE

6: if |SLE| > 0 then
7: for i = 1 to 3 do
8: call search-LE

(
x

(i)
1 , x

(i)
2 ,f̃ ,S1,S2

)
→ S∗LE

9: SLE ← SLE ∩ S∗LE
10: end for
11: end if
12: S(A,B) ← S(A,B) ∪ SLE
13: end for
14: if |S(A,B)| = ∅ then
15: choose S∗ ∈ S(i,j) with S 6= S∗
16: repeat steps 3–13 with the set S∗
17: end if
18: return S(A,B)

where Procedure search-LE is as specified in Algorithm 1.

With regard to the external encodings IN−1 and OUT, both bijective linear
mappings on F128

2 , it suffices to say that the attacker is in possession of the
AES key (such that he can construct a standard AES encryption/decryption
routine instantiated with the extracted key) and furthermore can observe a
plain intermediate AES result that gives him access to the raw plaintext and
ciphertext. This enables the attacker to determine the image of the external
encodings for each i-th unit vector ei in F128

2 .

5.4.2 Work Factor

The overall work factor of the generic cryptanalysis is dominated by the execution
of Algorithm 2 to obtain the eight secret linear input encodings of two consecutive
rounds. As a result, the work factor is upper bounded by 2 · 8 · 2 · 6 · 4 · 228 < 238,
where the first two factors 2·8 denote the number of secret linear input encodings,
the third factor 2 refers to the case when the chosen set S ↔ (01, 01), the fourth
factor 6 refers to the number of guesses for f̃ and the last two factors 4 · 228

WHAT ABOUT OTHER TYPES OF ENCODINGS? 149

indicate the maximum number of executions of LE and the work factor of LE,
respectively.

5.5 What about Other Types of Encodings?

In this section, we discuss the scenario in which the F2-linear white-box encodings
of the Xiao-Lai white-box AES implementation are replaced by either F2-affine
or non-affine encodings. Since the cryptanalysis presented in Sect. 5.3 (of which
a generic version is presented in Sect. 5.4) heavily relies on the linearity of the
encodings (i.e., the fact that the encodings map zero to itself), the attack is no
longer applicable in the case of non-linear encodings (either affine or non-affine).

In the following, we show that even though the Xiao-Lai white-box AES
implementation is claimed to be resistant against the BGE attack [13], the
generic white-box attack of Michiels et al. [75] can be applied to it, regardless
of the type of used encodings. The corresponding work factor is also discussed.

Encoded AES round function. In the original Xiao-Lai white-box AES
implementation [107], the attacker has access to the encoded AES round
functions for rounds 1 ≤ r ≤ 9 by composing the following three operations
as depicted in Fig. 5.8a: (i) the eight key-dependent dTMC(r,j)

i (i = 0, 1 and
j = 0, 1, 2, 3) lookup tables associated with round r, (ii) four 32-bit XOR
operations, and (iii) the matrix-vector multiplication over F2 by the 128× 128
non-singular binary matrix M (r+1). Such an encoded AES round function,
denoted by AES(r)

enc (1 ≤ r ≤ 9) and depicted in Fig. 5.8b, has the following
properties:

1. the input encodings
(
L

(r,j)
i

)−1 and output encodings L(r+1,j)
i operate on

two bytes of the AES state simultaneously;

2. the ShiftRows operation is explicitly present in the composition of the
encoded AES round functions such that each 16-bit encoded output word
depends on two output bytes coming from two different AES subrounds
(this is illustrated in Fig. 5.8b).

As a result, the bijective mappings listed in Vulnerability 2 exploited by the
BGE attack (p. 94) are no longer accessible to the attacker. With this argument,
Xiao and Lai [107] claim that their white-box AES implementation is resistant
against the BGE attack.

150 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

⊕

dTMC
(r,0)
0 dTMC

(r,0)
1 dTMC

(r,1)
1dTMC

(r,1)
0 dTMC

(r,2)
0 dTMC

(r,2)
1 dTMC

(r,3)
1dTMC

(r,3)
0

M (r+1)

⊕ ⊕ ⊕

(a) Composition of operations of the Xiao-Lai white-box AES implementation.

x0,0 x0,1 x1,1x1,0 x1,2x0,2 x0,3 x1,3

16 16 16 16 16 16 16 16
�
L

(r,0)
0

��1 �
L

(r,0)
1

��1 �
L

(r,1)
1

��1�
L

(r,1)
0

��1 �
L

(r,2)
0

��1 �
L

(r,2)
1

��1 �
L

(r,3)
1

��1�
L

(r,3)
0

��1

�k(r)

(S, S) (S, S) (S, S) (S, S) (S, S) (S, S) (S, S) (S, S)

MC MC MC MC

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

SR

y0,0 y1,0 y1,1y0,1 y0,2 y1,2 y1,3y0,3

16 16 16 16 16 16 16 16
L

(r+1,0)
0 L

(r+1,0)
1 L

(r+1,1)
1L

(r+1,1)
0 L

(r+1,2)
0 L

(r+1,2)
1 L

(r+1,3)
1L

(r+1,3)
0

L
(r+1,3)
0 (y0,3) L

(r+1,3)
1 (y1,3)L

(r+1,2)
1 (y1,2)L

(r+1,2)
0 (y0,2)L

(r+1,1)
0 (y0,1) L

(r+1,1)
1 (y1,1)L

(r+1,0)
1 (y1,0)L

(r+1,0)
0 (y0,0)

�
L

(r,0)
0

��1
(x0,0)

�
L

(r,1)
0

��1
(x0,1)

�
L

(r,2)
0

��1
(x0,2)

�
L

(r,3)
0

��1
(x0,3)

�
L

(r,3)
1

��1
(x1,3)

�
L

(r,2)
1

��1
(x1,2)

�
L

(r,1)
1

��1
(x1,1)

�
L

(r,0)
1

��1
(x1,0)

1 2

AES(r)
enc

AES(r)

(b) Encoded AES round function for rounds 1 ≤ r ≤ 9.

Figure 5.8: Composition of operations of the Xiao-Lai white-box AES
implementation [107] in order to obtain access to the encoded AES round
functions for rounds 1 ≤ r ≤ 9.

The encodings
(
L

(r,j)
i

)−1 and L(r+1,j)
i (i = 0, 1 and j = 0, 1, 2, 3) of AES(r)

enc are
solely F2-linear in the original Xiao-Lai white-box AES implementation [107].
However, in the following it is assumed that each encoding can be any random
bijective mapping on F16

2 . How this assumption affects the composition or
construction of the white-box implementation is briefly discussed in the following,
where naturally the original Xiao-Lai white-box AES implementation specified
in [107] covers the case where the encodings are F2-linear. In the case that the
encodings are F2-affine, the composition of the white-box implementation stays
almost identical with the only difference that the operations M (r) (1 ≤ r ≤ 10)
and M (11) are now affine, i.e., they comprise a 128× 128 non-singular binary
matrix and a 128-bit constant vector. As a result, the Xiao-Lai white-box
AES implementation with linear or affine encodings has almost identical overall
implementation size and performance. Finally, in the case that the encodings
are non-affine, all 32-bit XOR operations and the operations M (r) (1 ≤ r ≤ 10)

WHAT ABOUT OTHER TYPES OF ENCODINGS? 151

and M (11) need to be implemented as a network of lookup tables, which will
have a significant impact on both the implementation size and performance.
However, as is explained in the following section, the latter case (i.e., non-affine
encodings) does not provide a higher level of white-box security when compared
with the case of affine encodings and hence can be disregarded.

5.5.1 Michiels et al.’s Generic White-Box Attack

Recall from Sect. 3.5.4 that Michiels et al. [75] developed an algebraic attack
on white-box implementations of a generic class of SLT ciphers (Def. 25) if
some requirements on the diffusion operator of the SLT cipher (Property 2)
and on the white-box implementation (Properties 3 and 4) are satisfied. In the
following, we show that the encoded AES round functions AES(r)

enc (1 ≤ r ≤ 9) of
the Xiao-Lai white-box AES implementation (Fig. 5.8b) meet all the necessary
requirements of Michiels et al.’s cryptanalysis.

1. Satisfying Def. 25 and Property 2. Each AES round function, denoted
by AES(r) (1 ≤ r ≤ 9), is a bijective function on (F16

2)8 mapping the 128-
bit input (x0,0, x1,0, x0,1, x1,1, x0,2, x1,2, x0,3, x1,3) onto the 128-bit output
(y0,0, y1,0, y0,1, y1,1, y0,2, y1,2, y0,3, y1,3), where xi,j , yi,j ∈ F16

2 for i = 0, 1
and j = 0, 1, 2, 3. It comprises the following three consecutive operations:

a) a XOR with a 128-bit round key k(r);
b) the confusion layer consisting of eight 16-bit bijective S-boxes (S, S)

in parallel where (S, S) is defined as two AES S-boxes S in parallel;
c) the diffusion layer represented by the 128×128 binary matrix D(r) =

SR◦(MC, MC, MC, MC) where SR and MC denote the 128×128 non-singular
binary matrix representing ShiftRows and the 32× 32 non-singular
binary matrix representing MixColumns, respectively.

All components are included in the cipher’s specification expect for the
secret round key k(r). Furthermore, since each MC is a 4× 4 MDS matrix
over F256 and SR represents a byte transposition, the diffusion layer satisfies
Property 2 as illustrated in Fig. 5.8b: e.g., given the disjoint sets of input
words U = {x0,2, x0,3} and V = {x1,2, x1,3}, then the mappings U 7→ y0,2
and V 7→ y0,2 through D(r) (while fixing the uninvolved input words to a
constant) are surjective on F16

2 .

2. Satisfying Properties 3 and 4. For each input word xi,j and output word
yi,j (i = 0, 1 and j = 0, 1, 2, 3) of AES(r) (1 ≤ r ≤ 9), the attacker has
access to their fixed encoded versions

(
L

(r,j)
i

)−1(xi,j) and L(r+1,j)
i (yi,j)

152 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

(i = 0, 1 and j = 0, 1, 2, 3) since he has access the encoded AES round
functions AES(r)

enc (1 ≤ r ≤ 9) as explained above. This satisfies Property 3.
As a result, Property 4 is met as well.

This concludes that Michiels et al.’s generic white-box attack can be applied
to the Xiao-Lai white-box AES implementation, regardless of the type of
the encodings (i.e., either F2-linear, F2-affine or non-affine). Although this
observation on its own is interesting, it remains to be seen whether this leads
to a practical attack since the required work factor can become large, especially
when keeping in mind that the attack is generic. In the following an estimation
of the overall work factor of Michiels et al.’s attack on the Xiao-Lai white-box
AES implementation with non-affine encodings is given; note that Michiels et
al. [75] do not provide a clean discussion on the work factor of their generic
attack. As assumed in [75, Property 1], Assumption 1 applies such that it
suffices to extract a single AES round key k(r) by applying the three phases
of Michiels et al.’s attack to any encoded AES round function AES(r)

enc for some
value of r with 3 ≤ r ≤ 9. Note that all encodings of AES(r)

enc are affine after
Phase 1, hence Phase 1 is redundant in the case of the Xiao-Lai white-box AES
implementation with solely linear or affine encodings.

Estimating the work factor of Michiels et al.’s attack. The work factor of
the first phase is given by 3 · 8 ·

(
8 + 16 · 216 + (3 + 4 · 16) · 216) ≈ 227, where 3 · 8

denotes the number of involved output encodings, 8 + 16 · 216 refers to the work
factor required to identify two bijective mappings on F16

2 , and (3 + 4 · 16) · 216

is the work factor of Tolhuizen’s method [101] in order to remove the non-affine
part of the encodings.

The work factor of the second phase is given by 2 · (8 · 216 + 8 · 1283) ≈ 225

where 8 · 216 equals the work factor to transform the affine encoded AES round
function into eight tables mapping 16 bits to 128 bits and 8 · 1283 equals the
work factor to transform the obtained tables into a generic SAT cipher (see [75,
Def. 4]) round function (using the Gauss-Jordan elimination).

With regard to the third phase, the work factor required to execute the affine
equivalence algorithm (AE) is given by 2 · 8 · 244 = 248, where 2 · 8 denotes the
number of times that AE needs to be executed, and 244 equals the work factor
of AE (using n3 as the work factor to perform Gaussian elimination on an n×n
binary matrix). The work factor of LEPM is at least 8 · (2 ·20402)2 ≈ 249, where
2 · 20402 denotes the number of affine self-equivalences of the 16-bit bijective
S-box (S, S) given by Property 6 below. However, it remains unclear how many
candidates for the round key k(r) are given as output of the algorithm presented

CONCLUSION 153

in [75, Fig. 1], therefore the only statement that can be made is that the overall
work factor of Phase 3 is at least 249.

As a result, the estimated overall work factor of Michiels et al.’s attack is
dominated by the work factor of Phase 3 and thus is at least 249. As mentioned
before, the use of non-affine encodings has a negligible impact on the overall work
factor of Michiels et al.’s attack, i.e., the work factor of Phase 1 is significantly
less than the work factor of Phase 3. Consequently, the Xiao-Lai white-box AES
implementations with affine or non-affine encodings have the same white-box
security. But, recall that these results were obtained under Assumption 1.
Hence it remains an open question to what extent Assumption 2 has an impact
on the overall work factor of Michiels et al.’s attack.

Property 6 (Affine self-equivalences of (S, S)). Let Φa denote the set of exactly
2040 affine self-equivalences (α, β) of the AES S-box S as defined by Biryukov et
al. [14, Sect. 5.1] such that S = β ◦ S ◦ α, then the 16-bit bijective S-box (S, S)
comprising two identical AES S-boxes S in parallel has at least 2 · 20402 affine
self-equivalences denoted by the pair of 16-bit bijective affine mappings (As, Bs)
such that (S, S) = Bs ◦ (S, S) ◦As, with the following diagonal structure:

As =
(

α1 08×8
08×8 α2

)
, Bs =

(
β1 08×8

08×8 β2

)
or

As =
(

08×8 α1
α2 08×8

)
, Bs =

(
08×8 β2
β1 08×8

)
,

where both (α1, β1), (α2, β2) ∈ Φa and where 08×8 denotes the 8× 8 zero matrix.

5.6 Conclusion

We have presented in detail a practical attack on the white-box AES
implementation of Xiao and Lai [107]. The cryptanalysis exploits both
specific properties of AES as well as the composition of the white-box AES
implementation (such as the linearity of the secret white-box encodings). It uses
a modified variant of the linear equivalence algorithm presented by Biryukov
et al. [14], which is built by exploiting information leaked from the white-box
implementation. The attack efficiently extracts the AES key from the Xiao-Lai
white-box AES implementation with a work factor of about 232. In addition to
extracting the AES key, which is the main goal in the cryptanalysis of white-box
implementations, our cryptanalysis is also able to recover the external input

154 CRYPTANALYSIS OF THE XIAO-LAI WHITE-BOX AES IMPLEMENTATION

and output encodings. As a result, the Xiao-Lai white-box AES implementation
is proven to be WBKR-insecure. Crucial parts of the cryptanalysis have been
implemented in C++ and verified by computer experiments. The implementation
furthermore shows that both the 128-bit AES key as well as the external
encodings can be extracted from the white-box implementation in just a few
minutes on a modern PC.

We have also presented an attack on a generic version of the original Xiao-Lai
white-box AES implementation; in the generic case, it is assumed that the
order of the bytes of intermediate AES results is randomized in the white-box
implementation. This randomization, which can be implemented ‘for free’,
causes the work factor to increase to 238 but nevertheless it remains practical.

Furthermore, we have shown that the Xiao-Lai white-box AES implementation
with any type of encodings (either linear, affine or non-affine) satisfies all
necessary requirements in order to apply Michiels et al.’s attack [75]. However,
due to its generic nature, Michiels et al.’s attack is not optimized (i.e., it does not
exploit specific properties of AES or the white-box implementation itself) and
has a rather large estimated work factor of at least 249. Since the use of non-affine
encodings has a negligible impact on the overall work factor (due to Tolhuizen’s
improvement), the work factor is the same for the Xiao-Lai implementation with
either linear, affine or non-affine encodings. However, for the linear case (which
corresponds with the original white-box AES implementation specified by Xiao
and Lai in [107]), we presented an optimized practical attack with a work factor
of 232. Now, with regard to the Xiao-Lai white-box AES implementation with
affine encodings, there are still two open questions: (i) To what extent can
Michiels et al.’s attack be optimized by exploiting specific properties of AES and
the white-box implementation?, and (ii) What is the impact on the overall work
factor of Michiels et al.’s attack when the bytes of intermediate AES results are
randomized in the white-box implementation?

Chapter 6

Cryptanalysis of Bringer et
al.’s Perturbated White-Box
AES Implementation

In response to the BGE attack [13] and Michiels et al.’s attack [75] on the
white-box AES implementation of Chow et al. [23], Bringer, Chabanne and
Dottax [20] proposed in 2006 a novel white-box strategy that strongly differs
from the typical lookup-table-based white-box technique of Chow et al. The
novel technique comprises the injection of well-controlled faults (so-called
perturbations) in the round function computations that are only canceled out in
the final round with a high probability. Each round of the obtained perturbated
white-box implementation is represented by a system of multivariate polynomial
equations over a finite field instead of a network of encoded lookup tables.
In [20], Bringer et al. apply their novel technique to a variant of AES-128 with
non-standard key-dependent S-boxes, referred to as the Advanced Encryption
Standard without standard S-boxes and denoted by AES∗ (observe that the
notation AEw/oS is used in [20]). The resulting implementation is referred to
as the perturbated white-box AES∗ implementation.

In this chapter, we present an efficient cryptanalysis of the perturbated white-
box AES∗ implementation. This research was published in [38]. We show how
a set of equivalent keys can be extracted from the perturbated white-box AES∗
implementation; each equivalent key yields an invertible implementation that
is functionally equivalent to the original AES∗. The presented cryptanalysis
extends naturally to perturbated white-box AES implementations.

155

156 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

6.1 Bringer et al.’s Novel White-Box Technique

In 2003, Billet and Gilbert [12] proposed a traceable block cipher by constructing
many user-specific functionally equivalent implementations of the same instance
of an ‘iterated block cipher’ based on the commutativity of the underlying
building blocks. The security of the building blocks of the proposed traceable
cipher relies on the practical difficulty of the linear variant of the Isomorphisms
of Polynomials (IP) problem with two secrets (cf. Patarin [84]). However, in
2006, Faugère and Perret [42] presented an efficient equivalence algorithm for
solving IP; they solved the challenge proposed by Billet and Gilbert as the basic
building block of their traceable cipher in less than a second [42]. Based on the
idea proposed by Ding [40] to introduce perturbations to reinforce an IP-based
cryptosystem, Bringer, Chabanne and Dottax [19] reinforced the traceable block
cipher of Billet and Gilbert. Based on a similar approach, Bringer, Chabanne
and Dottax [20] proposed a perturbated white-box AES implementation. In the
following, the novel white-box technique based on perturbations by Bringer et
al. is described when applied to iterated block ciphers.

As mentioned in the introductory part of this chapter, the white-box techniques
of Binger et al. [20] and of Chow et al. [24, 23], both comprising two phases,
differ significantly. Their differences are briefly highlighted below. For a detailed
description of the generic white-box techniques of Chow et al., refer to Sect. 3.2.
In the following, the novel technique of Bringer et al. is described.

Bringer et al.’s technique Chow et al.’s technique
Phase 1 Represent each round function

of the block cipher as a system
of multivariate polynomial equa-
tions over a finite field.

Represent the block cipher
as a series of lookup tables
by merging several steps of
the round functions.

Phase 2 Extend each round function with
a system of perturbation and
random polynomial equations and
apply annihilating linear encod-
ings between successive rounds to
mix all systems together.

Apply secret invertible white-
box encodings to the input
and output of all lookup
tables in a pairwise an-
nihilating manner between
successive tables.

In a nutshell, the second phase of Bringer et al.’s novel white-box technique
comprises the following three steps:

Step 1: Extend each round function with a system of perturbation equations as
follows. Perturbations are introduced in the first round, which are carried
through all intermediate rounds and are canceled out in the final round

BRINGER ET AL.’S NOVEL WHITE-BOX TECHNIQUE 157

with a high probability. In other words, a well-controlled fault is injected
in the first round that will only be corrected for in the final round. In order
to guarantee the overall functionality of the block cipher, it is necessary to
implement four instances in parallel with correlated perturbation functions
such that a majority vote can distinguish the correct output.

Step 2: Further extend each round function (except for the final round) with a
system of random equations in order to mask all internal round operations.
After Steps 1-2, perturbated round functions are obtained.

Step 3: Apply annihilating linear encodings between successive perturbated
round functions and represent each encoded perturbated round function
as a system of multivariate polynomial equations over a finite field.

The idea behind the introduction of perturbations is to hide the algebraic
structure of the round functions of the block cipher from the attacker in order
to preclude the direct application of algebraic attacks. Furthermore, carrying
the introduced perturbations through all rounds ensures that all rounds are
strongly interleaved with one another and that all intermediate values between
successive rounds are ‘false’ (i.e., different from their original value).

Bringer et al.’s perturbation white-box technique. Provided with the general
description given above, a more in-depth description of Bringer et al.’s method
is given below. For details, refer to Bringer et al. [20].

First some notation is introduced. Let L denote the finite field F2q with
q ∈ N∗. Let E be an R-round iterated block cipher mapping a plaintext
P = (p0, p1, . . . , pn−1) onto a ciphertext C = (c0, c1, . . . , cn−1) with pi, ci ∈ L
(0 ≤ i ≤ n− 1) such that C = E(P). Further, let E(r) denote the r-th round of
E and let Y (r) = (y(r)

0 , y
(r)
1 , . . . , y

(r)
n−1) with y(r)

i ∈ L (0 ≤ i ≤ n− 1) denote the
output of E(r) for 1 ≤ r ≤ R such that

Y (1) = E(1)(P) for the first round ,
Y (r) = E(r)(Y (r−1)) for rounds 2 ≤ r ≤ R with Y (R) = C .

Phase 1: Represent each round function of E as a system of n multivariate
polynomial equations in n variables over L. For the sake of clarity, the
system of equations representing the r-th round is also denoted by E(r).

Phase 2: Extend each E(r) with a system of perturbation and random
equations and encode the resulting perturbated round function:

158 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

Step 2.1: a perturbation initialization system Φ is included in the first round
and comprises s polynomial equations in n variables over L. The system
Φ takes as input the plaintext P and outputs either a predefined value
(ϕ1, ϕ2, . . . , ϕs) with ϕi ∈ L (1 ≤ i ≤ s) or a random value otherwise. In
particular, Φ is defined as

Φ(P) =
(
0̃(P)⊕ ϕ1, 0̃(P)⊕ ϕ2, . . . , 0̃(P)⊕ ϕs

)
,

where 0̃(·) denotes a polynomial in n variables over L that ‘often’ vanishes,
i.e., the 0̃-polynomial outputs zero for a well chosen subset of the plaintext
space P = Fq·n2 and a random value for the complement of the chosen
subset. This is discussed later in more detail (see ‘Majority vote’ on p. 159).
For the construction of 0̃-polynomials, refer to Bringer et al. [19, 20].
The value of Φ(P) is carried through all intermediate rounds 1 < r < R
such that all intermediate values are perturbated and all rounds are closely
linked. Finally, a perturbation cancellation system OΦ is included in the
final round and comprises n polynomial equations in s variables over L.
The system OΦ takes as input the value of Φ(P) and either vanishes if
Φ(P) = (ϕ1, ϕ2, . . . , ϕs), i.e.,

OΦ(ϕ1, ϕ2, . . . , ϕs) = 0 ,

or outputs a random value if Φ(P) 6= (ϕ1, ϕ2, . . . , ϕs). The value of
OΦ
(
Φ(P)

)
is XOR-ed to the ciphertext C.

Step 2.2: a random system Ran(r) is included in all rounds except for the final
round and comprises t polynomial equations in either n variables (for the
first round) or n + s + t variables (for rounds 2 ≤ r < R) over L. The
system Ran(r) takes as input the plaintext P (for the first round) or the
output of the preceding encoded perturbated round (for rounds 2 ≤ r < R
– see later) and outputs a random value for any given input. Such random
systems mask all internal operations such as the original round functions
and the added perturbations.

After Steps 2.1-2.2, the so-called perturbated round functions are obtained,
denoted by Ẽ(r), consisting of the parallel composition of the original round
functions E(r) together with the perturbation and random systems. As a result,
each perturbated round function maps n+ s+ t input words in L onto n+ s+ t
output words in L, except for the input of the first round and the output of the
final round which remain the original plaintext and ciphertext, respectively.

Step 2.3: secret bijective linear input and output encodings (denoted by(
M (r−1))−1 and M (r), respectively) are applied to each perturbated

BRINGER ET AL.’S NOVEL WHITE-BOX TECHNIQUE 159

round function Ẽ(r) (1 ≤ r ≤ R) with the exception of the input of the
first round and the output of the final round that remain unencoded. In
other words, no external encodings are applied. Each invertible linear
encodingM (r) (1 ≤ r < R) is represented by a non-singular N×N matrix
over L with N = n+ s+ t.

After Step 2.3, the so-called encoded perturbated round functions are obtained,
denoted by E(r) (1 ≤ r ≤ R) and defined as

E
(1) = M (1) ◦

(
E(1) , Φ , Ran(1)) for the first round ,

E
(r) = M (r) ◦

(
E(r) , Is , Ran(r)) ◦ (M (r−1))−1 for rounds 1 < r < R ,

E
(R) =

⊕
◦
(
E(R) , OΦ

)
◦
(
M (R−1))−1 for the final round ,

where Is denotes the s×s identity matrix over L. Bringer et al. [20] claim that the
presence of the secret linear encodings and the extra perturbation and random
systems make it harder to recover any secret information from the original
round functions E(r). The input and output of E(r) are denoted by Z(r−1) and
Z(r), respectively. Observe that Z(0) = P and Z(R) = C ⊕OΦ

(
Φ(P)

)
.

Figure 6.1a depicts an overview of Bringer et al.’s novel white-box technique
based on perturbations. Each encoded perturbated round function E(r) (1 ≤
r ≤ R) is represented by a system of N (or n if r = R) multivariate polynomial
equations in N (or n if r = 1) variables over L, where N = n+ s+ t. This leads
to a polynomial-based perturbated white-box implementation.

Majority vote: obtaining the correct result. Due to the introduction of the
perturbation in the first round through the system Φ, there is a probability
that the output of the final round Z(R) is incorrect, i.e., Z(R) 6= C. Recall
that Z(R) = C ⊕OΦ

(
Φ(P)

)
, thus if Φ(P) 6= (ϕ1, ϕ2, . . . , ϕs) then OΦ

(
Φ(P)

)
6=

0. In order to obtain the correct ciphertext for any given plaintext, four
correlated instances of the perturbated white-box implementation in parallel
are generated. Each instance contains a correlated perturbation initialization
system Φ, constructed as follows. Subdivide the plaintext space P twice into
two sets of similar size, i.e.,

P = P1 ∪ P1 = P2 ∪ P2 ,

and construct four correlated 0̃-polynomials (0̃1, 01, 0̃2, 02) such that

∀P ∈ Pk : 0̃k(P) = 0 and ∀P ∈ Pk : 0k(P) = 0 for k = 1, 2 .

160 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

E(1) � Ran(1)

P

M (1)

n s t

n + s + t

n

Z(1)

Y (1) �(P)

E
(1)

(a) AddRoundKey
(b) SubBytes
(c) ShiftRows
(d) MixColumns

k(1)

{S
(1)
0 , S

(1)
1 , . . . , S

(1)
15 }

E(1)

Ran(r)IsE(r)

�
M (r�1)

��1

E
(r)

n + s + t

n s t�(P)

Z(r�1)

Z(r)

n s �(P)

Y (r)

Y (r�1)

M (r)

n + s + t

for r from 2 to 9
(a) AddRoundKey
(b) SubBytes
(c) ShiftRows
(d) MixColumns

{S
(r)
0 , S

(r)
1 , . . . , S

(r)
15 }

k(r)

E(r)

�
M (9)

��1

n

n + s + t
Z(9)

Z(10)

E(10) O�

n n

n s �(P)Y (9)

C O�

�
�(P)

�

E
(10)

k(10)(a) AddRoundKey
(b) SubBytes
(c) ShiftRows
(d) AddRoundKey k(11)

{S
(10)
0 , S

(10)
1 , . . . , S

(10)
15 }

E(10)

(a) Overview of Bringer et al.’s
novel white-box technique based on
perturbations when applied to an
iterated block cipher.

E(1) � Ran(1)

P

M (1)

n s t

n + s + t

n

Z(1)

Y (1) �(P)

E
(1)

(a) AddRoundKey
(b) SubBytes
(c) ShiftRows
(d) MixColumns

k(1)

{S
(1)
0 , S

(1)
1 , . . . , S

(1)
15 }

E(1)

Ran(r)IsE(r)

�
M (r�1)

��1

E
(r)

n + s + t

n s t�(P)

Z(r�1)

Z(r)

n s �(P)

Y (r)

Y (r�1)

M (r)

n + s + t

for r from 2 to 9
(a) AddRoundKey
(b) SubBytes
(c) ShiftRows
(d) MixColumns

{S
(r)
0 , S

(r)
1 , . . . , S

(r)
15 }

k(r)

E(r)

�
M (9)

��1

n

n + s + t
Z(9)

Z(10)

E(10) O�

n n

n s �(P)Y (9)

C O�

�
�(P)

�

E
(10)

k(10)(a) AddRoundKey
(b) SubBytes
(c) ShiftRows
(d) AddRoundKey k(11)

{S
(10)
0 , S

(10)
1 , . . . , S

(10)
15 }

E(10)

(b) Original AES∗ round functions.

Figure 6.1: Perturbated white-box AES∗ implementation: (n, s, t) = (16, 4, 23).

PERTURBATED WHITE-BOX AES∗ IMPLEMENTATION 161

Based on these four correlated 0̃-polynomials, construct four correlated
perturbation initialization systems:

Φ1(P) =
(
0̃1(P)⊕ ϕ1, 0̃1(P)⊕ ϕ2, . . . , 0̃1(P)⊕ ϕs

)
Φ1(P) =

(
01(P)⊕ ϕ1, 01(P)⊕ ϕ2, . . . , 01(P)⊕ ϕs

)
Φ2(P) =

(
0̃2(P)⊕ ϕ1, 0̃2(P)⊕ ϕ2, . . . , 0̃2(P)⊕ ϕs

)
Φ2(P) =

(
02(P)⊕ ϕ1, 02(P)⊕ ϕ2, . . . , 02(P)⊕ ϕs

)
.

For any given plaintext P ∈ P, exactly two of the systems above output the
predefined value (ϕ1, ϕ2, . . . , ϕs) while the other two output two different random
values with an overwhelming probability. As a result, exactly two instances
of the perturbated white-box implementation output the correct ciphertext C
while the other two instances output two different random values. A majority
vote can then be used to distinguish the correct result.

6.2 Perturbated White-Box AES∗ Implementation

In [20], Bringer et al. apply their novel white-box technique to a variant of
AES-128 in which all S-boxes are non-standard (i.e., different from the standard
AES S-box) and key-dependent. Recall that this variant is called the Advanced
Encryption Standard without standard S-boxes and is referred to as AES∗. In
the following, it is assumed that the AES∗ state is represented by the 16-byte
vector [STATEl]0≤l≤15 instead of the conventional 4×4 byte array [statei,j]0≤i,j≤3.
The relation between both representations is given by

STATE4j+i = statei,j for 0 ≤ i, j ≤ 3 .

The AES∗ Block Cipher

AES∗ is identical to AES-128 (Sect. 2.3.1) except for the SubBytes operation.
While AES-128 uses a single publicly known 8-bit bijective non-linaer S-box (i.e.,
the AES S-box S) and applies it to each byte of the AES state for all 10 rounds,
AES∗ uses 160 different 8-bit bijective non-linear S-boxes S(r)

i (0 ≤ i ≤ 15 and
1 ≤ r ≤ 10). Furthermore, all 160 S-boxes of AES∗ are non-standard (i.e.,
S

(r)
i 6= S for 0 ≤ i ≤ 15 and 1 ≤ r ≤ 10) and key-dependent. As a result, the

secret key of AES∗ comprises the 11 128-bit AES round keys (considering the
expanded key) as well as the 160 key-dependent S-boxes. The size of the secret
AES∗ key equals 11 · 128 + 160 · 28 · 8 = 329 088 bits under the assumption that
each S-box is represented by a lookup table mapping 8 bits to 8 bits.

The description of AES∗ used to obtain a perturbated white-box implementation
is depicted in Fig. 6.2. Compared with the lookup-table suitable description

162 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

of AES-128 (Fig. 2.1b), it is no longer required to bundle the AddRoundKey,
SubBytes and MixColumns steps together in order to simplify their merging
into lookup tables, since each AES∗ round will now be represented by a system
of multivariate polynomials as is explained below.

state ← plaintext
for r = 1 to 9 do

state ← AddRoundKey(state,k(r))
state ← SubBytes(state,{S(r)

0 , S
(r)
1 , . . . , S

(r)
15 })

state ← ShiftRows(state)
state ← MixColumns(state)

end for
state ← AddRoundKey(state,k(10))
state ← SubBytes(state,{S(10)

0 , S
(10)
1 , . . . , S

(10)
15 })

state ← ShiftRows(state)
state ← AddRoundKey(state,k11)
ciphertext ← state

Figure 6.2: Description of AES∗.

Applying Bringer et al.’s White-Box Technique to AES∗

First, Phase 1 represents each AES∗ round function by a system E(r) of 16
multivariate polynomial equations over F256; each system E(r) (1 ≤ r ≤ 10)
is defined over 16 variables in F256. It is assumed that the finite field F256 is
as defined in FIPS 197 [69]. The choice of F256 seems natural since AES (and
hence AES∗ as well) was designed with the field F256 in mind.

Second, Phase 2 constructs the encoded perturbated round functions E(r)

(1 ≤ r ≤ 10). For this purpose, s = 4 and t = 23 such that N = n + s + t =
16 + 4 + 23 = 43. As a result, each mapping E(r) (1 ≤ r < 10) is represented
by a system of 43 multivariate polynomials over F256; the final round E(10) by
a system of 16 multivariate polynomials over F256. Each system is defined over
43 variables, except for the first round that is defined over the 16 bytes of the
plaintext P . These extra equations and variables originate from the extension
of the AES∗ round functions with a perturbation system Φ of four polynomials
over F256 and a random system Ran(r) of 23 polynomials over F256.

As mentioned before in Step 2.3 of Phase 2, secret pairwise annihilating linear
input and output encodings M (r) are applied between successive perturbated
round functions to ensure that all systems are interleaved to make analysis
hard: e.g., to prevent an attacker from distnguishing the perturbation/random

PERTURBATED WHITE-BOX AES∗ IMPLEMENTATION 163

system from the original round function. The encodings M (r) (1 ≤ r ≤ 9) are
represented by non-singular 43× 43 diagonal block matrices over F256 and are
constructed as

M (r) = π(r) ◦


A

(r)
1

A
(r)
2

. . .
A

(r)
7

B(r)

 ◦ σ
(r) for 1 ≤ r ≤ 9 ,

where

- A(r)
i (1 ≤ i ≤ 7) are random non-singular 5× 5 matrices over F256 of which

the inverses have exactly two non-zero coefficients in F256 on each row;

- B(r) is a random non-singular 8× 8 matrices over F256 of which the inverse
has at least 7 non-zero coefficients in F256 on each row;

- π(r) : (F256)43 → (F256)43 is a random permutation on the order of the 43
output bytes of

(
A

(r)
1 , A

(r)
2 , . . . , A

(r)
7 , B(r));

- σ(r) : (F256)43 → (F256)43 is a random permutation on the order of the 43
input bytes of M (r) defined such that the A(r)

i (1 ≤ i ≤ 7) matrices mix the
16 polynomials of the original round system E(r) with 19 polynomials of
the random system Ran(r), whereas B(r) mixes the four polynomials of the
perturbation system Φ (or I4) with the remaining four polynomials of the
random system Ran(r).

For the determination of the constraints on the matrices and permutations,
refer to Bringer et al. [20]. The cryptanalysis presented in Sect. 6.3 exploits
these characteristics of the linear encodings M (r) (1 ≤ r ≤ 9).

Summary. The perturbated white-box AES∗ implementation consists of four
instances in parallel, each based on a correlated perturbation initialization
system such that a majority vote can reveal the correct result. Each instance
consists of 10 encoded perturbated round functions E(r) (1 ≤ r ≤ 10). Figure 6.1
depicts an overview of one instance of the white-box AES∗ implementation.

Assuming standard AES instead of AES∗, i.e., assuming that all 160 secret
S-boxes of AES∗ are in fact the known AES S-box, the implementation size
of each instance equals ≈ 142 MB such that the overall implementation size
of the perturbated white-box AES implementation is given by ≈ 568 MB

164 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

(cf. Bringer et al. [20]). Note that the implementation size with respect to AES∗
depends on the polynomial representation of the chosen S-boxes, thus different
S-boxes may result in an increase or decrease of the overall implementation size.

6.3 Cryptanalysis

In this section, we present a cryptanalysis of the perturbated white-box AES∗
implementation. The goal of the attack is to extract the secret AES∗ key
comprising the 11 128-bit AES round keys and the 160 key-dependent 8-bit
bijective non-linear S-boxes. Instead of retrieving the actual secret key, the
attack extracts a set of equivalent keys; each equivalent key comprises 160
8-bit bijective S-boxes that allows the attacker to contruct a simpler (in terms
of storage requirement) and invertible implementation that is functionally
equivalent to the original AES∗ block cipher.

Since the cryptanalysis exploits the characteristics of the secret linear encodings
between successive rounds, we start by elaborating on these encodings.

Inverse linear encodings. With regard to the inverse linear encodings(
M (r−1))−1 (2 ≤ r ≤ 10), the following two observations can be made:

1. The 35-byte output of the
(
A

(r−1)
i

)−1 (1 ≤ i ≤ 7) matrices contains the
16-byte input Y (r−1) of the round function E(r). Further, recall that each
row of the

(
A

(r−1)
i

)−1 (1 ≤ i ≤ 7) matrices contains exactly two non-zero
coefficients in F256. As a result, each input byte y(r−1)

i (i = 0, 1, . . . , 15) of
E(r) is a linear combination in F256 of exactly two bytes of the 43-byte input
Z(r−1) of the encoded perturbated round function E(r).

2. The 8-byte output of
(
B(r−1))−1 contains the 4-byte perturbation value Φ(P)

(initialized in the first round) that is carried through all intermediate rounds.
Further, recall that each row of

(
B(r−1))−1 contains at least 7 non-zero

coefficients in F256. As a result, Φ(P) depends on at least 7 (and most likely
8) bytes of Z(r−1).

The first 16 rows of
(
M (r−1))−1, denoted by

(
M (r−1))−1

[0−15], generate the
16-byte input Y (r−1) of the original round function E(r), i.e.,

Y (r−1) =
(
M (r−1))−1

[0−15]

(
Z(r−1)) ,

CRYPTANALYSIS 165

and thus each row of
(
M (r−1))−1

[0−15] contains exactly two non-zero coefficients
in F256 according to the first observation.

Brief overview of the cryptanalysis. During the attack, it is shown how the
secret linear encodings can be eliminated from the encoded perturbated round
functions and how the extra systems (i.e., the perturbation and random systems)
can be distinguished from the implementation. The cryptanalysis comprises the
following four phases preceded by an initial setup phase:

Phase 1 distinguishes the perturbation cancellation system OΦ from the final
AES∗ round function E(10) and recovers the secret linear input encoding(
M (9))−1 up to an unknown constant diagonal mapping such that the
linear equivalent input of the final round E(10) can be observed.

Phase 2 eliminates the MixColumns operation from the penultimate AES∗ round
function E(9) such that the unknown coefficients of the diagonal mapping
of the linear equivalent output of E(9) can be included in the 16 secret
S-boxes S(9)

i (0 ≤ i ≤ 15).

Phase 3 structurally decomposes all remaining rounds; this includes the retrieval
of all secret linear encodings up to an unknown constant diagonal mapping
and the elimination of the MixColumns operation within all rounds.

Phase 4 finally extracts 160 linear equivalent key-dependent S-boxes that yield
a functionally equivalent implementation.

Observe that not all information of the secret 160 S-boxes and linear encodings
can be extracted since there are many equivalent keys that yield the same white-
box implementation. Indeed, the input/output of an S-box can be multiplied
by a fixed constant which is compensated for in the adjacent linear encoding.
Therefore, at best an equivalent key can be extracted.

6.3.1 Setup Phase

Encrypt a randomly chosen plaintext P with the four correlated instances
of the perturbated white-box AES∗ implementations and select one of both
instances that result into the correct ciphertext (using the majority vote). For
that instance, store the 16-byte plaintext P , the 16-byte ciphertext C and all
43-byte intermediate states Z(r) (1 ≤ r ≤ 9) which are clearly accessible in the
white-box attack context.

166 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

6.3.2 Phase 1: Analyze the final round

The first phase is applied to the encoded perturbated final round function E(10)

and extracts the first 16 rows of the secret linear input encoding
(
M (9))−1 up to

an unknown 16× 16 diagonal matrix Λ(9) over F256. This enables the attacker
to observe the linear equivalent input Λ(9)(Y (9)) of the original final round
E(10). Each step of Phase 1 is described below in detail.

Step 1.1: Find the pair of bytes in Z(9) associated with each byte of Y (9)

As mentioned above, due to the specific characteristics of the secret linear input
encoding

(
M (9))−1, each input byte y(9)

i (0 ≤ i ≤ 15) of the original final round
E(10) is a linear combination in F256 of exactly two bytes of the 43-byte input
Z(9) of the encoded perturbated final round E(10). In the following, the pair of
bytes of Z(9) associated with y(9)

i is denoted by
(
z

(9)
i1
, z

(9)
i2

)
for i = 0, 1, . . . , 15.

Below, we present a method to identify these pairs of bytes.

In particular, the method obtains the following sets:

S(9)
i (0 ≤ i ≤ 15): the set containing the pair of indices (i1, i2) indicating the

bytes
(
z

(9)
i1
, z

(9)
i2

)
associated with each ciphertext byte ci (0 ≤ i ≤ 15).

Due to the omission of the MixColumns operation in the final round, each
output byte of E(10) depends on a single input byte. As a result, the
sets S(9)

i can easily be assigned to the corresponding input bytes y(9)
i

(0 ≤ i ≤ 15) by applying the inverse ShiftRows operation;

SΦ: the set containing the indices of the bytes of Z(9) that affect the 4-byte
input Φ(P) of OΦ. Recall that Φ(P) depends on at least 7 (and most
likely 8) bytes of Z(9) due to specific characteristics of

(
M (9))−1 such that

the set SΦ contains either 7 or 8 indices.

The method described below exploits certain capabilities of an attacker in the
white-box attack context such as having access to the system of polynomials
representing E

(10) and the ability to manipulate (e.g., injecting faults) the
internal state Z(9). Hence, he can freely choose to modify bytes of Z(9) and
observe the corresponding output Z(10) of E(10). In a nutshell, the method
identifies those bytes of Z(9) that affect each output byte z(10)

i (0 ≤ i ≤ 15)
of E(10). Recall that the 16-byte output Z(10) of E(10) is defined as Z(10) =
C⊕OΦ

(
Φ(P)

)
, therefore it is crucial that an attacker can distinguish the output

CRYPTANALYSIS 167

of the perturbation cancellation system OΦ from the ciphertext C in order to
construct the sets defined above. This is achieved by the following two steps,
which need to be repeated for each byte z(9)

l (0 ≤ l ≤ 42) of Z(9) one at a time:

Step 1.1.1: Make z(9)
l active by injecting a fault δ ∈ F256\{0}, i.e, z̄(9)

l = z
(9)
l ⊕δ,

and keep all remaining 42 bytes of Z(9) fixed to their initial value. The
modified 43-byte value is denoted by Z(9);

Step 1.1.2: Compute E(10)(
Z

(9)) and compare its output Z(10) with the stored
ciphertext C, i.e., count the number F of active output bytes z(10)

i .

If


1) F = 0 , then do nothing .

2) 0 < F ≤ 5 , then assign l to each set S(9)
i associated with

the active output bytes z(10)
i .

3) F > 5 , then assign l to the set SΦ .

�
M (9)

��1

Z(10)

E(10) O�

�(P)Y (9)

C O�

�
�(P)

�

E
(10)

Z
(9)

z
(9)
l = z

(9)
l � �

1

2 3

Figure 6.3: The effect of an active byte z̄(9)
l on the bytes of the output Z(10).

The three different cases that occur in Step 1.1.2 are explained in the following
(Fig. 6.3). In the case that the active byte z̄(9)

l only affects the input of the
random system of polynomials – which has been discarded in E(10) – the number
of affected output bytes is zero [case (1)]. In the case that the active byte
z̄

(9)
l affects the input Y (9) of E(10) through one of the

(
A

(9)
i

)−1 matrices, the
maximum number of affected input bytes of E(10) equals five since

(
A

(9)
i

)−1 are
5×5 non-singular matrices over F256. This naturally translates to a maximum of

168 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

five affected ciphertext bytes due to the omission of the MixColumns operation
in E(10) and accordingly to a maximum of five affected output bytes in Z(10)

[case (2)]. So the case there are more than five affected output bytes in Z(10)

only occurs when the active byte z̄(9)
l influences the input Φ(P) of OΦ through(

B(9))−1, which causes the output of OΦ to change in more than five bytes with
a high probability [case (3)]. However, with a very low probability, only five
or less bytes are affected in the output of OΦ which introduces a false positive.
Such a false positive corresponds to the incorrect assignment of l to the sets
S(9)
i instead of the set SΦ. The presence of false positives is discussed below.

The probability of false positives. Recall from the setup phase (Sect. 6.3.1)
that we selected an instance for which the randomly chosen plaintext resulted
in the correct ciphertext. As a result, the 4-byte input Φ(P) of OΦ equals the
predefined value (ϕ1, ϕ2, ϕ3, ϕ4) such that OΦ outputs zero and thus cancels
the introduced perturbation. However, in case (3) described above, the active
byte z̄(9)

l modifies the predefined value (ϕ1, ϕ2, ϕ3, ϕ4) such that OΦ outputs
a 16-byte random value. This random value is XOR’ed with the ciphertext C
resulting in the 16-byte output Z(10). Hence, the probability that the number
of affected output bytes in Z(10) is five or less is given by

5∑
i=1

(
16
i

)
(1/28)16−i(1− 1/28)i ≈ 1/276 ≈ 0 .

This also corresponds with the probability that false positives occur. Now,
recall that the input of OΦ can be affected by either 7 or 8 different bytes of
Z(9). Hence, the probability that no false positives occur is given by

Prob(no false positives) ≈ (1− 1/276)a ≈ 1 with a = 7 or 8 .

As a result, with a probability of almost one, the sets S(9)
i (0 ≤ i ≤ 15) contain

exactly the pair of indices (i1, i2) indicating bytes
(
z

(9)
i1
, z

(9)
i2

)
associated with

y
(9)
i , and the set SΦ contains the 7 or 8 indices indicating the bytes of Z(9)

affecting the input of OΦ. The ‘very unlikely’ scenario in which false positives
do occur, is discussed in [38, Appendix A.1].

Remark 1 (Circumventing the perturbations). Observe that the obtained set SΦ

allows an attacker to circumvent the introduced perturbations. Indeed, by keeping
the 7 or 8 bytes of Z(9) identified by SΦ fixed to their original value ensures
that the 4-byte input Φ(P) of OΦ remains unmodified, i.e. (ϕ1, ϕ2, ϕ3, ϕ4). As
a consequence, the output of OΦ remains zero and hence the attacker always
obtains the correct ciphertext Z(10) = C for any given plaintext.

CRYPTANALYSIS 169

Step 1.2: Partially extract the secret linear input encoding
(
M (9))−1

The second step of Phase 1 leads to the following result. The details of Step 1.2
are described below.
Result 1. Given the sets S(9)

i (0 ≤ i ≤ 15) and the capability to detect collisions
in each input byte of the original final round E(10), then the attacker is able to
retrieve the 16× 43 matrix G(9) over F256 defined as

G(9) = Λ(9) ◦
(
M (9))−1

[0−15] with Λ(9) = diag(α(9)
0 , α

(9)
1 , . . . , α

(9)
15) ,

where diag(·) denotes a diagonal matrix.

After Step 1.1, the attacker has identified the pair of bytes
(
z

(9)
i1
, z

(9)
i2

)
of Z(9)

(based on the pair of indices (i1, i2) contained in S(9)
i) associated with each

input byte y(9)
i (0 ≤ i ≤ 15) of E(10) for which there exists an unknown linear

combination in F256 such that

ai ⊗ z(9)
i1
⊕ bi ⊗ z(9)

i2
= y

(9)
i with ai, bi ∈ F256 \ {0} ,

where both constants ai, bi are secret. Recall that ⊕ and ⊗ denote the addition
and multiplication in F256 as specified in FIPS 197 [69]. Further, recall that the
constants ai, bi are the only non-zero coefficients on row i of the secret linear
input encoding

(
M (9))−1 for i = 0, 1, . . . , 15. Step 1.2 retrieves both secret

constants ai, bi up to an unknown factor α(9)
i ∈ F256 \ {0} that enables the

attacker to observe the linear equivalent input byte α(9)
i ⊗y

(9)
i for i = 0, 1, . . . , 15.

In order to achieve this, Step 1.2 exploits collisions in the ciphertext byte ci
that naturally translates to collisions in the corresponding input byte y(9)

i since
there is a one-to-one relation between input and output bytes for the final round
E(10). Recall from Remark 1 that the attacker has access to the ciphertext for
any modified value of Z(9) as long as the 7 or 8 bytes of Z(9) identified by SΦ

remain unchanged.

Now, the following two steps need to be repeated for i = 0, 1, . . . , 15 (Fig. 6.4):

Step 1.2.1: Let
(
z

(9)
i1
, z

(9)
i2

)
denote the initial stored values for the pair of bytes

associated with y
(9)
i . Next, find a new pair of values

(
z̄

(9)
i1
, z̄

(9)
i2

)
that

yield a collision in y(9)
i by fixing z̄(9)

i1
= z

(9)
i1
⊕ 01 and vary z̄(9)

i2
over all

28 possible values until a collision is detected in the ciphertext byte ci
corresponding to y(9)

i . As a result, the attacker obtains

ai ⊗ z(9)
i1
⊕ bi ⊗ z(9)

i2
= y

(9)
i and

ai ⊗
(
z

(9)
i1
⊕ 01

)
⊕ bi ⊗ z̄(9)

i2
= y

(9)
i ,

170 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

from which it follows that ai = εi ⊗ bi with εi = z
(9)
i2
⊕ z̄(9)

i2
.

Step 1.2.2: By exploiting the relation between ai and bi obtained in Step 1.2.1,
we get

εi ⊗ z(9)
i1
⊕ 01⊗ z(9)

i2
= α

(9)
i ⊗ y

(9)
i with α

(9)
i = b−1

i ,

where α(9)
i is still unknown. Hence, only the linear equivalent input byte

α
(9)
i ⊗ y

(9)
i can be recovered.

�
M (9)

��1

E(10) O�

Y (9)

C

E
(10)

z
(9)
i1

z
(9)
i2

z
(9)
i1

� 01 z
(9)
i2

collision?

?

Z(9)

('1, '2, '3, '4)

O�('1, '2, '3, '4)

= 0

C

Figure 6.4: Finding collisions in a ciphertext byte c for two different pairs of
bytes of Z(9) associated with c.

After Steps 1.2.1 and 1.2.2, the attacker is able to obtain an expression of
the first 16 rows of

(
M (9))−1 up to a 16 × 16 diagonal matrix Λ(9) over F256

containing the unknown coefficients α(9)
i (0 ≤ i ≤ 15) on its diagonal, i.e., he

recovers the 16× 43 matrix G(9) over F256 defined as

G(9) = Λ(9) ◦
(
M (9))−1

[0−15] .

The i-th row of G(9) is all 00’s except for the values εi and 01 in the columns
i1 and i2, respectively, where the pair of indices (i1, i2) are in the set S(9)

i for
0 ≤ i ≤ 15. As a result, the attacker is able to observe the linear equivalent
input Λ(9)(Y (9)) of E(10) by computing

Λ(9)(Y (9)) = G(9)(Z(9)) .

CRYPTANALYSIS 171

6.3.3 Phase 2: Eliminate the MixColumns step from the
penultimate round

After Phase 1, the attacker has access to the linear equivalent input Λ(9)(Y (9)) of
the original final round E(10) that naturally corresponds to the linear equivalent
output of the original preceding (penultimate) round E(9). As a result, the
attacker has access to the mapping e(9) : F43

256 → F16
256, defined as

e(9) = G(9) ◦ E(9)

= Λ(9) ◦ MixColumns ◦ ShiftRows ◦
(
S

(9)
0 , . . . , S

(9)
15
)
◦
⊕
k(9)

◦
(
M (8))−1

[0−15] .

The mapping e(9) takes as input the 43-byte value Z(8) and outputs the 16-byte
value Λ(9)(Y (9)). Recall that the round key k(9) as well as the 16 different
S-boxes S(9)

i (0 ≤ i ≤ 15) are part of the secret AES∗ key.

The objective of the second phase of the cryptanalysis is to include the unknown
coefficients α(9)

i (0 ≤ i ≤ 15) on the diagonal of Λ(9) in the secret S-boxes(
S

(9)
0 , . . . , S

(9)
15
)
. This can be achieved by eliminating the MixColumns operation

from the penultimate round E(9). However, this is not a trivial task since the
MixColumns operation is an invertible linear transformation that operates on
four bytes of the AES state simultaneously. This section addresses this problem
and presents the following result.

Result 2. With black-box access to the mapping e(9), the attacker is able to
find an invertible linear mapping F (9) : F16

256 → F16
256 such that MixColumns and

Λ̃(9) = F (9) ◦ Λ(9) commute. As a result, the mapping e(9) is transformed into
the mapping ẽ(9) : F43

256 → F16
256 defined as

ẽ(9) = F (9) ◦ e(9)

= MixColumns ◦ Λ̃(9) ◦ ShiftRows ◦
(
S

(9)
0 , . . . , S

(9)
15
)
◦
⊕
k(9)

◦
(
M (8))−1

[0−15] .

Observe that MixColumns becomes the final operation and thus can be eliminated.
Furthermore, since ShiftRows is just a byte transposition (i.e., a permutation
on byte level), the unknown diagonal entries (bytes) of Λ̃(9) can be included in
the secret S-boxes.

Recall from Sect. 2.3.1 that MixColumns applies four instances of the
MixColumns operation in parallel; it is represented by a 16× 16 non-singular
block diagonal matrix over F256 defined as (MC, MC, MC, MC), where MC denotes

172 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

the 4× 4 non-singular matrix over F256 representing the MixColumns operation.
Hence, the only way to let Λ(9) and MixColumns commute is to ensure that the
four diagonal entries of Λ(9) associated with each MixColumns operation are
identical, i.e., multiplication with a diagonal matrix with all the same elements
is a commutative operation in the group of square matrices.

More specifically, in accordance with the matrix (MC, MC, MC, MC), the 16 × 16
diagonal matrix Λ(9) can be partitioned into four 4× 4 diagonal submatrices
Λ(9)
i (0 ≤ i ≤ 3) such that Λ(9) is defined as the block diagonal matrix

(Λ(9)
0 ,Λ(9)

1 ,Λ(9)
2 ,Λ(9)

3). Each submatrix Λ(9)
i (0 ≤ i ≤ 3) is defined as

Λ(9)
i = diag(α(9)

4i , α
(9)
4i+1, α

(9)
4i+2, α

(9)
4i+3) .

Below, we present a method that finds a linear transformation fi such that

fi ◦ Λ(9)
i = Λ̃(9)

i = diag(α(9)
4i , α

(9)
4i , α

(9)
4i , α

(9)
4i) ,

for 0 ≤ i ≤ 3. As a result, Λ̃(9)
i ◦ MC = MC ◦ Λ̃(9)

i from which follows that

(f0, f1, f2, f3) ◦ Λ(9) ◦ MixColumns = (Λ̃(9)
0 , Λ̃(9)

1 , Λ̃(9)
2 , Λ̃(9)

3) ◦ (MC, MC, MC, MC)

= (MC, MC, MC, MC) ◦ (Λ̃(9)
0 , Λ̃(9)

1 , Λ̃(9)
2 , Λ̃(9)

3)

= MixColumns ◦ Λ̃(9) .

Hence the mapping ẽ(9) = F (9) ◦ e(9) with F (9) = (f0, f1, f2, f3). This concludes
the algorithm for Result 2.

Method for finding fi for 0 ≤ i ≤ 3. In the following, let the four parallel
MixColumns operations be numbered from left to right such that MCi denotes
the i-th MixColumns operation for 0 ≤ i ≤ 3. Recall that Z(8) and Λ(9)(Y (9))
denote the 43-byte input and 16-byte output of the mapping e(9). Now, the
method starts by constructing the following sets:

Si (0 ≤ i ≤ 3): the set containing the indices of the bytes of Z(8) that affect
the 4-byte input of the i-th MixColumns operation MCi.

Each set Si (0 ≤ i ≤ 3) is constructed by making each byte of Z(8) one at a
time active and observe the corresponding active output bytes in Λ(9)(Y (9)).
Due to the specific characteristics of the partially secret linear input encoding(
M (8))−1

[0−15], i.e., each row contains exactly two non-zero elements in F256,

CRYPTANALYSIS 173

making one of the bytes of Z(8) identified by Si active results in making one or
two out of four input bytes of MCi active in most cases.

Next, repeat the following steps for each MixColumns operation MCi (0 ≤ i ≤ 3):

Step 2.1: Given the unmodified 43-byte value of Z(8), compute e(9)(Z(8)) and
store that part of the output that is associated with MCi. Denote the
stored 4-byte value by Yi, given by

Yi =
(
α

(9)
4i ⊗ y

(9)
4i , α

(9)
4i+1 ⊗ y

(9)
4i+1, α

(9)
4i+2 ⊗ y

(9)
4i+2, α

(9)
4i+3 ⊗ y

(9)
4i+3

)
.

Step 2.2: Make one of the bytes of Z(8) identified by Si active and denote the
modified 43-byte value by Z(8). Compute e(9)(Z(8)) and store that part of
the output that is associated with MCi. Denote the stored 4-byte value by
Y i. By exploiting that the branch number of the MixColumns operation is
equal to five, the case that less than three bytes between Yi and Y i have
become active can be discarded since this indicates that at least three out
of four input bytes of MCi have become active. In that case, go to Step 2.4.

Step 2.3: Given the pair of 4-byte values (Yi, Y i) associated with the output of
MCi, apply the 4× 4 matrix D over F256 defined as

D = MC−1 ◦ diag(01, a, b, c)

to both values (Yi, Y i) for each possible triplet (a, b, c) ∈ (F256 \ {0})3. In
other words, keep α(9)

4i fixed to its original value while varying the other
three coefficients α(9)

4i+1, α
(9)
4i+2, α

(9)
4i+3 each over F256 \ {0} and invert the

MixColumns operation. Next, for each possible triplet (a, b, c), count the
number #(a,b,c) of active bytes between D(Yi) and D(Y i) and construct
the set

T =
{

(a, b, c) | #(a,b,c) = 1 ∨#(a,b,c) = 2
}
.

Step 2.4: Repeat Steps 2.2-2.3 for each byte of Z(8) identified by Si one at a
time.

Step 2.5: After Steps 2.1-2.4, a set T is constructed for each modified byte in
Z(8) identified by Si. Next, take these sets T pairwise together and derive
their intersections. Since the size of Si is at most eight (i.e., two bytes of
Z(8) are associated with each of the four input bytes of MCi), we get at
most a total of

(8
2
)

= 28 intersections. Finally, select the triplet (a, b, c)
that appears most often in all intersections and denote this triplet by
(A,B,C). For (A,B,C) then holds that

(A⊗ α(9)
4i+1, B ⊗ α

(9)
4i+2, C ⊗ α

(9)
4i+3) = (α(9)

4i , α
(9)
4i , α

(9)
4i)

174 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

with overwhelming probability. The linear transformation fi is then
defined as

fi = diag(01, A,B,C) .

To elaborate on the method described above, we discuss the following two cases
that can be distinguished after making one of the bytes of Z(8) identified by Si
active:

1. the ‘most likely’ case: one or two out of four input bytes of MCi have become
active. The constructed set T obtained in Step 2.3 is then considered
to be a valid set and contains (A,B,C) since the triplet (A,B,C) would
result in #(a,b,c) = 1 or 2 which is considered in the construction of T . In
fact, the triplet (A,B,C) is contained within all valid sets.

2. the ‘less likely’ case: at least three out of four input bytes of MCi have
become active and the case has not been discarded in Step 2.2. The
constructed set T obtained in Step 2.3 is then considered to be an invalid
set since it cannot contain (A,B,C), i.e., the triplet (A,B,C) would result
in #(a,b,c) = 3 or 4 which is discarded in the construction of T .

As a result, only the intersections between valid sets contain (A,B,C) during
the execution of Step 2.5.

Implementation. The method described above to find fi (0 ≤ i ≤ 3) has been
successfully implemented in C++ and confirmed by computer experiments. The
computer experiments showed that each set T obtained in Step 2.3 contains
either 1510 of 1530 triplets (a, b, c). Considering the size of the search space
(i.e., (28 − 1)3), each set T contains a fraction (i.e., less than 0.01%) of all
possible triplets. Further, the implementation always succeeded in finding the
single correct triplet (A,B,C) by taking pairwise intersections of all sets T .

6.3.4 Phase 3: Structurally decompose all rounds

The third phase fully structurally decomposes the perturbated white-box AES∗
implementation; this involves the recovery of all secret linear encodings up to an
unknown diagonal mapping that can be included in the key-dependent S-boxes.
This is achieved by means of the following main result.

Result 3. With black-box access to the mapping ẽ(r) : F43
256 → F16

256 defined as

ẽ(r) = MixColumns ◦ Λ̃(r) ◦ ShiftRows ◦
(
S

(r)
i

)
0≤i≤15 ◦

⊕
k(r)

◦
(
M (r−1))−1

[0−15] ,

CRYPTANALYSIS 175

where Λ̃(r) is an unknown 16 × 16 diagonal matrix over F256, the attacker
is able to retrieve the partially secret linear input encoding

(
M (r−1))−1

[0−15]
up to an unknown 16 × 16 diagonal matrix Λ̃(r−1) over F256. Furthermore,
MixColumns and Λ̃(r−1) commute. This allows the attacker to obtain access to
the mapping ẽ(r−1) : F43

256 → F16
256 (or F16

256 → F16
256 if r = 2) defined as

ẽ(r−1) = Λ̃(r−1) ◦
(
M (r−1))−1

[0−15] ◦ E
(r−1)

,

whose composition is given by

MixColumns ◦ Λ̃(r−1) ◦ ShiftRows ◦
(
S

(r−1)
i

)
0≤i≤15 ◦

⊕
k(r−1)

◦
(
M (r−2))−1

[0−15] ,

for 2 ≤ r ≤ 9, where
(
M (r−2))−1

[0−15] is omitted if r = 2.

Observe that Result 3 is recursive by nature, i.e., it can be applied to rounds
2 ≤ r ≤ 9 one at a time from the bottom up. Hence, the starting point of the
recursion is the mapping ẽ(9) to which the adverary already has access after
Phases 1 and 2 (see Result 2).

The algorithm that leads to Result 3 consists of the following steps:

Step 3.1: The construction of the sets S(r−1)
i (0 ≤ i ≤ 15) containing the indices

indicating the pair of bytes of Z(r−1) associated with each input byte
y

(r−1)
i (0 ≤ i ≤ 15) of the original round function E(r).

Step 3.2: The retrieval of the 16× 43 matrix G(r−1) over F256 defined as

G(r−1) = Λ(r−1) ◦
(
M (r−1))−1

[0−15] ,

where Λ(r−1) = diag(α(r−1)
0 , α

(r−1)
1 , . . . , α

(r−1)
15). This is identical to

Result 1, but then applied to the general case r. Now, the attacker
has access to the mapping e(r−1) defined as e(r−1) = G(r−1) ◦ E(r−1).

Step 3.3: The retrieval of the invertible linear mapping F (r−1) : F16
256 → F16

256
such that MixColumns and Λ̃(r−1) = F (r−1) ◦ Λ(r−1) commute. This is
identical to Result 2, but then applied to the general case r. Now, the
attacker has access to the mapping ẽ(r−1) defined as

ẽ(r−1) = F (r−1) ◦ e(r−1) = Λ̃(r−1) ◦
(
M (r−1))−1

[0−15] ◦ E
(r−1)

.

This concludes the algorithm to achieve Result 3.

176 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

For a detailed description of the steps above, refer to us [38, Appendix A.2].
Note that the methodology of Steps 3.2 and 3.3 is almost identical to the
descriptions given for Phase 1 (Step 1.2) and Phase 2, but then applied to
the general case r. Observe that the diffusion effect of MixColumns can be
eliminated by applying the inverse MixColumns operation to the output of ẽ(r).
As a result, there is a one-to-one relation between input and output bytes for
E(r) such that an active input byte (through the corresponding active output
byte – necessary for Step 3.1) or collision in an input byte (through a collision
in the corresponding output byte – necessary for Step 3.2) can be observed.
Further, note that Step 3.3 is significantly simpler if r = 2 since the first round
lacks a secret linear input encoding.

6.3.5 Phase 4: Extract an equivalent key

After Phases 1-3, the attacker can observe the linear equivalent input and output
of each original round function E(r) (1 ≤ r ≤ 10), denoted by

Λ̃(r)(Y (r)) and Λ̃(r−1)(Y (r−1)) ,
respectively, with the exception of the plaintext and ciphertext for the first
and final round, respectively. Hence, the attacker has access to the mappings
Ê(r) : F16

256 → F16
256 defined as

Ê(1) = MixColumns ◦ ShiftRows ◦ Λ̃(1)
sr ◦

(
S

(1)
i

)
0≤i≤15 ◦ ⊕k(1) ,

Ê(r) = MixColumns ◦ ShiftRows ◦ Λ̃(r)
sr ◦

(
S

(r)
i

)
0≤i≤15 ◦ ⊕k(r) ◦

(
Λ̃(r−1))−1

,

Ê(10) = ShiftRows ◦ ⊕
k

(11)
sr
◦
(
S

(10)
i

)
0≤i≤15 ◦ ⊕k(10) ◦

(
Λ̃(9))−1

,

with k
(11)
sr = SR−1(k(11)) and Λ̃(r)

sr = SR−1 ◦ Λ̃(r) ◦ SR for 1 ≤ r ≤ 9, where
the mapping SR : F16

256 → F16
256 denotes the permutation defining ShiftRows.

Furthermore, observe that

Ê(10) ◦ Ê(9) ◦ · · · ◦ Ê(1) = E(10) ◦ E(9) ◦ · · · ◦ E(1) .

Next, since ShiftRows and MixColumns are known to the attacker, he can
eliminate these operations at the output of the mappings Ê(r) (1 ≤ r ≤ 10) by
applying their inverses. All remaining operations can be merged into 16 8-bit
bijective S-boxes Ŝ(r)

i (0 ≤ i ≤ 15) in parallel per round 1 ≤ r ≤ 10, defined as

Ŝ
(1)
i = ⊗

λ
(1)
sr−1(i)

◦ S(1)
i ◦ ⊕k(1)

i

for 0 ≤ i ≤ 15 ,

Ŝ
(r)
i = ⊗

λ
(r)
sr−1(i)

◦ S(r)
i ◦ ⊕k(r)

i

◦ ⊗(
λ

(r−1)
i

)−1 for 0 ≤ i ≤ 15 and 2 ≤ r ≤ 9 ,

Ŝ
(10)
i = ⊕

k
(11)
sr−1(i)

◦ S(10)
i ◦ ⊕

k
(10)
i

◦ ⊗(
λ

(9)
i

)−1 for 0 ≤ i ≤ 15 ,

CRYPTANALYSIS 177

where λri denotes the i-th diagonal element of Λ̃(r) and sr−1 : {0, 1, . . . , 15} →
{0, 1, . . . , 15} denotes the permutation on the indices of a 16-byte vector as a
result of the application of the inverse ShiftRows operation SR−1. Observe
that these S-boxes are equivalent to the original key-dependent S-boxes S(r)

i .
The set containing the 160 S-boxes {Ŝ(r)

i }0≤i≤15;1≤r≤10 forms the equivalent
secret key. This equivalent key allows the attacker to construct a simpler (in
terms of storage requirement) and invertible implementation (Fig. 6.5) that
is functionally equivalent to the original AES∗ block cipher, i.e., the mapping
from plaintexts onto ciphertexts is identical. The size of this implementation
is given by the storage requirement of all 160 S-boxes Ŝ(r)

i (0 ≤ i ≤ 15 and
1 ≤ r ≤ 10) and hence equals 160 · 28 · 8 bits or 40 kB.

Ŝ
(1)
0 Ŝ

(1)
1 Ŝ

(1)
15

· · ·

ShiftRows
MixColumns

Ŝ
(r)
15Ŝ

(r)
0 Ŝ

(r)
1

· · ·

ShiftRows
MixColumns

Ŝ
(10)
15Ŝ

(10)
1Ŝ

(10)
0

· · ·

ShiftRows

Ê(1)

Ê(10)

Ê(r)

(2  r  9)

...

...

Ê(10) � Ê(9) � · · · � Ê(1)

E(10) � E(9) � · · · � E(1)

=

Figure 6.5: Each equivalent key Ŝ(r)
i (0 ≤ i ≤ 15 and 1 ≤ r ≤ 10) yields a

functionally equivalent AES∗ implementation.

6.3.6 Work Factor

The work factor of the attack on the perturbated white-box AES∗ implemen-
tation is expressed in the number of evaluations of the system of multivariate
polynomial equations over F256 representing the encoded perturbated round
functions E(r) (1 ≤ r ≤ 10). Other computations in the attack are assumed to
have a negligible work factor when compared to the system evaluations and

178 CRYPTANALYSIS OF BRINGER ET AL.’S WHITE-BOX AES IMPLEMENTATION

thus are discarded for the sake of simplicity. The work factor of each phase of
the cryptanalysis is listed below.

Setup Phase 4 · 10
Phase 1 43 + 16 · 28

Phase 2 43 + 4 · 8
Phase 3 8 · (43 + 16 · 28) + 7 · (43 + 4 · 8) + 4 · 4
Phase 4 10 · 16 · 28

Total work factor 78 867 ≈ 216

The overall work factor of the cryptanalysis is dominated by the work factors
of Phase 3 and 4 and equals 78 867 ≈ 216 evaluations.

6.4 Conclusion

In response to the proven insecurity of the white-box AES implementation
of Chow et al., Bringer et al. [20] proposed a novel white-box technique and
applied their technique to AES∗, a variant of AES-128 in which all 160 S-boxes
are different and key-dependent, resulting in a perturbated white-box AES∗
implementation. In this chapter, we presented an attack on the perturbated
white-box AES∗ implementation. The work factor is given by ≈ 216 and is
expressed in the number of evaluations of systems of multivariate polynomials
over F256. Naturally, the presented cryptanalysis also applies to a perturbated
white-box AES implementation.

The presented attack extracts an equivalent key comprising a set of 160 8-bit
bijective S-boxes. Many equivalent keys are possible: each equivalent key
can be used to construct an implementation that is functionally equivalent
to the standard AES∗, i.e., both have identical plaintext/ciphertext behavior.
Each functionally equivalent implementation has a size of 40 kB. Furthermore,
the obtained implementation is invertible (in contrast to the white-box
implementation). Note that similar results are obtained in the SASAS
cryptanalysis by Biryukov and Shamir [15], i.e., equivalent keys comprising
equivalent representations of all key-dependent operations are extracted that
yield the same plaintext to ciphertext mapping as the original SASAS cipher.

Although the presented cryptanalysis is specific to the particular composition of
the white-box implementation, some methods are of independent interest such
as the second phase. Since the cryptanalysis exploits the diffusion operators
(ShiftRows and MixColumns) of AES as well as the specific properties of the
secret linear encodings, countermeasures against the attack include modifying
these specifications such as making the diffusion operator key-dependent.

Chapter 7

State-of-the-Art and Q&A

This chapter presents the state-of-the-art of lookup-table-based white-box AES
implementations published in the academic literature. Both their size and
performance as well as their level of white-box security are discussed.

Further, this chapter addresses some questions with regard to the design of
new white-box AES implementations. First, a promising technique proposed by
Michiels and Gorissen [74] is discussed that may lead to secure white-box AES
implementations. Second, two dynamic-key white-box techniques proposed by
Michiels [71, 72] are described that allow to update the cryptographic key of
white-box implementations. As a contribution to the latter, we present a new
dynamic-key white-box technique, published in [91], that allows to update the
key in a more secure way than all known techniques.

7.1 State-of-the-Art

Up to now, three different lookup-table-based white-box AES implementations
have been discussed: the ones of Chow et al. [23] (Chapter 3), of Karroumi [53]
(Chapter 4) and of Xiao and Lai [107] (Chapter 5).

7.1.1 Size and Performance

Table 7.1 presents an overview of the size and performance of these three
white-box AES implementations. The performance is not measured in the

179

180 STATE-OF-THE-ART AND Q&A

Ta
bl
e
7.
1:

W
hi
te
-b
ox

A
E
S
im

pl
em

en
ta
tio

ns
sh
ow

an
in
cr
ea
se
d
im

pl
em

en
ta
tio

n
siz

e
an

d
a
de

cr
ea
se
d
pe

rf
or
m
an

ce
(e
xc
ep

tio
n
is

th
e
X
ia
o-
La

ii
m
pl
em

en
ta
tio

n)
w
he

n
co
m
pa

re
d
w
ith

a
st
an

da
rd

A
ES

im
pl
em

en
ta
tio

n.
T
hi
s
tr
ad

e-
off

ne
ed

s
to

be
co
ns
id
er
ed

w
he

n
de

sig
ni
ng

se
cu

re
A
ES

im
pl
em

en
ta
tio

ns
in

th
e
w
hi
te
-b
ox

se
tt
in
g.

Im
pl
em

en
ta
ti
on

Si
ze

P
er
fo
rm

an
ce

(#
an

d
ty
pe

of
op

er
at
io
ns
)

Lo
ok

up
Ta

bl
e
/
B
in
ar
y
M
at
rix

To
ta
lS

iz
e

Ta
bl
e

X
O
R

M
at
rix

#
T
yp

e
Si
ze

Lo
ok

up
M
ul
t.

St
an

da
rd

A
ES

Im
pl
em

en
ta
tio

n

D
ae
m
en

an
d
R
ijm

en
[3
1]

4
SM

C i
(8

-t
o-

32
bi

t)
4
kB

4
kB

16
0

15
2

–

W
hi
te
-B

ox
A
ES

Im
pl
em

en
ta
tio

ns

1.
C
ho

w
,E

ise
n,

Jo
hn

so
n

an
d
va
n
O
or
sc
ho

t
[2
3]

2.
K
ar
ro
um

i[
53
]

14
4
L

-I
I(r

,j
)

i
(8

-t
o-

32
bi

t)
14
4
kB

75
2
kB

30
08

–
–

14
4
L

-I
II

(r
,j

)
i

(8
-t

o-
32

bi
t)

14
4
kB

16
L

-I
a(1

,j
)

i
(8

-t
o-

12
8

bi
t)

64
kB

16
L

-I
b(1

0,
j
)

i
(8

-t
o-

12
8

bi
t)

64
kB

26
88

L
-I

V
(8

-t
o-

4
bi

t)
33
6
kB

3.
X
ia
o
an

d
La

i[
10
7]

72
dT

MC
(r
,j

)
i

(1
6-

to
-3

2
bi

t)
18

43
2
kB

20
50
2
kB

80
40

11
8

dT
(1

0,
j
)

i
(1

6-
to

-3
2

bi
t)

20
48

kB
11

M
(r

) ,
M

(1
1)

(1
28
×

12
8)

22
kB

STATE-OF-THE-ART OF WHITE-BOX AES IMPLEMENTATIONS 181

conventional unit ‘cycles/byte’, but instead is measured in the number and
type of performed operations. A distinction is made between three different
types of operations: (i) table lookups, (ii) 32-bit XOR operations, and (iii)
matrix-vector multiplications over F2. Additionally, the standard black-box
AES implementation proposed by Daemen and Rijmen [31] for processors with
word lengths 32 bits or higher (Sect. 2.3.2) is given as a reference. It should be
noted that the size of real-world implementations may slightly differ from the
values listed in Table 7.1 because of the additional code required to determine
the data-flow of the implementation. Interpreting Table 7.1 gives rise to the
following observations.

Reuse of lookup tables. Observe that the total number of lookup tables equals
the total number of table lookups for all three white-box AES implementations.
This implies that none of the lookup tables are reused. However, the reuse
of tables may lead to a significant reduction in the total implementation size
while leaving the performance (i.e., the number of table lookups) unchanged.
As one might expect, only key-independent lookup tables are eligible for reuse
since they do not contain any unique secret key-material. However, it might
be possible to convert key-dependent tables into key-independent tables by
including the secret key into other parts of the white-box implementation, as
explained below for the Xiao-Lai white-box AES implementation.

With regard to Chow et al.’s white-box AES implementation (recall that Kar-
roumi’s implementation belongs to the class of white-box AES implementations
specified by Chow et al.), Plasmans described the reuse of lookup tables of this
implementation in [86, Sect. 6.5]. There are three types of key-independent
lookup tables, i.e., Types Ia, III and IV. For the detailed description of each
type, refer to Sect. 3.3.2 and Fig. 3.3. For each type of key-independent tables,
it is discussed below to what extent they can be reused.

Type Ia. Recall that the non-singular 128 × 128 matrix IN−1 over F2
representing the bijective external input encoding was partitioned into
16 128 × 8 submatrices IN−1

l (0 ≤ l ≤ 15), where each IN−1
l contains

the columns of IN−1 indexed from 8l to 8l + 7. Further, recall that each
L-Ia(1,j)

i (0 ≤ i, j ≤ 3) table implements IN−1
4j+i. As a result, the Type Ia

tables are not suitable for reuse as this would imply that the external
input encoding is non-bijective.

Type III. Recall that each set of four Type III tables, given by

S(r,j) = {L-III(r,j)
0 ,L-III(r,j)

1 ,L-III(r,j)
2 ,L-III(r,j)

3 }

182 STATE-OF-THE-ART AND Q&A

for 0 ≤ j ≤ 3 and 1 ≤ r ≤ 9, implements the 32 × 32 binary matrix
L(r+1,j) ◦

(
R(r,j))−1 annihilating the output encodings of round r and

introducing the input encodings of round r + 1. By keeping L(r+1,j) ◦(
R(r,j))−1 the same for 0 ≤ j ≤ 3 and 1 ≤ r ≤ 9, one needs only a single
set of four Type III tables, i.e.,

S = {L-III0,L-III1,L-III2,L-III3} .

As a consequence, the implementation size of the Type III tables is reduced
from 144 kB to only 4 kB.

Type IV. The 2688 encoded nibble XOR tables L-IV account for ≈ 45% of
the total implementation size. Therefore, these tables are particularly
suitable for reuse since it can result in a significant reduction of the
implementation size. In the most extreme case, all 2688 L-IV tables are
replaced by one single L-IV table. As a result, the cost of implementing
the XOR operations is reduced from 336 kB to only 128 bytes.

Taking into account the above suggestions with regard to the reuse of tables,
the total implementation size of the white-box AES implementation of Chow et
al. becomes ≈ 276 kB, or in other words only ≈ 37% of its original size.

Next, let us consider the Xiao-Lai white-box AES implementation (for a detailed
description, refer to Sect. 5.1). At first sight, this implementation is not eligible
for the reuse of lookup tables since all tables are key-dependent. However, these
tables can be made key-independent by including the key addition operation
into the neighboring 128 × 128 binary matrices M (r) (1 ≤ r ≤ 11), which
then become affine instead of solely linear. The resulting key-independent
lookup tables can then be replaced by two dTMCi (i = 0, 1) tables, one for
each MixColumns submatrix MCi (i = 0, 1), and only one dT table. Taking
into account these suggestions with regard to the reuse of tables, the total
implementation size of the Xiao-Lai white-box AES implementation becomes
≈ 790 kB, or in other words only ≈ 4% of its original size.

The risk of reusing lookup tables. Even though the reuse of lookup tables
is a tempting technique to bring down the implementation cost of white-box
implementations, the main disadvantage is that it is inherently associated with
the reuse of the involved secret white-box encodings. Furthermore, the reuse
of tables combined with the data-flow of the white-box implementation (i.e.,
the relation between tables) can reveal weak spots in the implementation; these
weak spots can for example be repeating patterns (due to the reuse of white-box
encodings) in components of the white-box implementation. The weak spots
can then be used as starting points for attacks. Hence, the reuse of lookup

STATE-OF-THE-ART OF WHITE-BOX AES IMPLEMENTATIONS 183

tables (and of white-box encodings) can pose a real threat to the achieved
level of white-box security since the entropy of the white-box implementation
decreases. Therefore, it should always be the priority to first design a secure
white-box implementation, and then investigate to what extent lookup tables
can be reused without compromising the achieved level of white-box security.

The cost of white-box security. Recall from Chapter 2 (Sect. 2.5.3) that the
standard black-box software AES implementation is vulnerable to the S-box
blanking attack when employed in the white-box model and thus provides no
white-box security. Hence, it is clear that the black-box implementation is
not intended to be deployed in the white-box attack context. On the other
hand, specifically designed white-box AES implementations, such as the three
lookup-table-based implementations listed in Table 7.1, are assumed to offer a
sufficient level of robustness against a white-box attacker. Observe that this
typically comes at a significant cost: i.e., the white-box implementations show
an increased implementation size and a decreased performance when compared
with the standard black-box implementation. For example, in the case of the
white-box AES implementation of Chow et al., the increase in size is about 188x
whereas the decrease in performance is estimated at 55x (cf. Chow et al. [23]).
There is one exception to this rule, and that is the Xiao-Lai white-box AES
implementation that clearly shows a good performance; in fact, its performance
even competes with the performance of the black-box implementation.

Depending on the requirements of a given application, one takes the most
secure white-box implementation satisfying the requirements. As the available
memory only increases over time, the increased implementation size of white-
box implementations becomes less of an issue. From that perspective, the
Xiao-Lai white-box AES implementation becomes a viable option since it has a
good performance in spite of its large implementation size. Furthermore, as is
discussed in the next section, it also has the highest level of white-box security
of the white-box AES implementations considered in this thesis.

Below, some suggestions are highlighted in order to reduce the cost of lookup-
table-based white-box implementations:

1. Reuse key-independent lookup tables as explained above in order to reduce
the overall implementation size. Be aware that this possibly affects the
white-box security.

2. Use solely F2-linear or F2-affine secret white-box encodings such that XOR
operations can be executed on encoded data (e.g., the Xiao-Lai white-box
AES implementation) and do not need to be represented as a network of
encoded nibble XOR tables. Observe that for Chow et al.’s white-box AES

184 STATE-OF-THE-ART AND Q&A

Table 7.2: The cryptanalytic results on the three lookup-table-based white-box
AES implementations discussed in this thesis.

White-Box AES Impl. Cryptanalysis Work Factor

1. Chow, Eisen, Johnson
and van Oorschot [23]

2. Karroumi [53]

BGE attack [13] 230

us [36, 63] (Chapter 4) 222

3. Xiao and Lai [107] us [35] (Chapter 5) 232

- generic linear version us (Chapter 5) 238

- affine/non-affine version Michiels et al.’s attack [75] at least 249

implementation, the implementation of all XOR operations by means of 2688
encoded nibble XOR tables accounts for ≈ 45% of the total implementation
size and for ≈ 89% of the overall performance. Hence the use of linear
or affine encodings can significantly improve the performance of white-box
implementations.

3. Increase the input size of lookup tables such that more operations can be
merged into tables. This results in a decrease in the number of table lookups,
however, the downside is the exponential increase in implementation size.
Take as an example the Xiao-Lai white-box AES implementation where the
input size of all lookup tables is 16 bits.

Even though the three lookup-table-based white-box AES implementations in
Table 7.1 were specifically designed to withstand secret key extraction, they all
have been shown to be white-box insecure as is discussed in the next section.

7.1.2 Cryptanalytic Results

Table 7.2 summarizes the cryptanalytic results discussed in Chapters 3, 4
and 5. Observe that most presented attacks have a practical work factor,
i.e., they efficiently extract the embedded secret AES key together with the
external encodings, such that the corresponding white-box AES implementation
is proven white-box insecure (in fact WBKR-insecure). The only lookup-table-
based white-box AES implementation still offering some resistance against a
white-box attacker is the one of Xiao and Lai, but with other type of encodings
(i.e., affine or non-affine) instead of linear ones (Sect. 5.5). We only consider the

QUESTIONS AND ANSWERS 185

affine variant, as this is the only variant that shows implementation size and
performance comparable to the original Xiao-Lai white-box AES implementation.
But recall from the conclusion of Chapter 5 that there are still two open questions
(i.e., optimization and randomization) with regard to this affine variant in order
to fully assess its white-box security.

7.2 Questions and Answers

This section discusses (as a series of questions and answers) some aspects of
white-box AES implementations that have not yet been addressed in this thesis.

7.2.1 All white-box AES implementations in the academic
literature have been proven insecure. Now what?

The primary goal when designing new white-box AES implementations is to
ensure that the new design is resistant against all known white-box attacks. This
involves (i) identifying the vulnerabilities of the various existing white-box AES
implementations that have been exploited by the existing white-box attacks,
and (ii) providing countermeasures that avoid the known vulnerabilities and
thus preclude the attacks. For Chow et al.’s white-box AES implementation,
the vulnerabilities exploited by the BGE attack have already been discussed in
Sect. 3.5.2 on p 94. Now, with regard to all white-box AES implementations
considered in this thesis, the main vulnerabilities exploited by all known white-
box attacks are the following:

1. The intermediate results of the white-box AES implementations are encoded
using fixed secret bijective white-box encodings. The term ‘fixed’ refers to the
fact that the encodings are invariant for different executions of the white-box
implementation with different input data.

2. The entire specification of AES is publicly known except for the secret key.
As a result, specific properties of the AES S-box or the diffusion operator
(i.e., ShiftRows and MixColumns) can be exploited.

Countermeasures to avoid the second vulnerability is to hide the algebraic
structure of AES without actually altering the specification of AES. For examples,
refer to the perturbation white-box technique of Bringer et al. [20] or to the
application of dual AES ciphers by Karroumi [53]. Despite their effort of hiding
the algebraic structure of AES through either introducing perturbations (i.e.,
well-defined faults) or keeping the dual transformations secret, we showed in

186 STATE-OF-THE-ART AND Q&A

Chapters 4 and 6 that these attempts failed in designing secure white-box AES
implementations. Below, a technique to avoid the first vulnerability is discussed.

Variable White-Box Encodings

In [74], Michiels and Gorissen introduced the concept of variable white-box
encodings; it is a technique belonging to the class of countermeasures that
focuses on avoiding the first vulnerability (i.e., the fixed encodings). The main
idea is that the intermediate results of the white-box AES implementation are
variably encoded in such a way that different executions of the implementation
with different input data yield different encodings applied to the intermediate
results. In the following, the concept of variable encodings is explained with
regard to a white-box AES implementation as a result of the application of the
generic white-box techniques of Chow et al. However, note that the technique
of variable encodings is not restricted to white-box AES implementations. For
detailed information, refer to Michiels and Gorissen [74].

Recall that the generic white-box techniques of Chow et al. comprised two phases:
the first phase merged several steps of the round functions in order to form
lookup tables, after which the second phase applied fixed encodings to the input
and output of these lookup tables. Further, recall that the AddRoundKey and
SubBytes steps were typically merged into the so-called 8-bit bijective key-
dependent T-boxes; a T-box was defined as T (x) = S(x⊕ k), where S denotes
the AES S-box and k denotes a secret round key byte. As such, the lookup tables
occurring in a table-based white-box AES implementation can be categorized
into the following two classes: T-boxes and non-T-boxes. Below, it is explained
how variable encodings can be applied to both classes of lookup tables, where
it is assumed that all lookup tables map 8 bits to 8 bits.

Variable encodings of non-T-boxes. Let x and y denote the input and output
of a non-T-box nT , respectively. Then both x and y can be variably encoded
by specifying a set of secret white-box encodings defined as

Λ = {λj | 1 ≤ j ≤ n, τj is a secret bijective affine mapping on F8
2} and

Σ = {σj | 1 ≤ j ≤ n, µi is a secret bijective affine mapping on F8
2} ,

associated with the input and output, respectively. Next, select an element
indexed by j out of both sets and apply it to both x and y in order to obtain the
variably encoded input λj(x) and variably encoded output σj(y). By making
the index j dependent on intermediate results of AES, one obtains variable
white-box encodings that are very likely to change between different executions

QUESTIONS AND ANSWERS 187

nT

nT 0
��1

j 2 ⇤�1

�j 2 ⌃

�j(x)

�j

�
nT (x)

�

j

L�1

T

R

=
L�1

T

R

T 0

T 0

�j

�
L(x)

�

�j

�
R
�
T (x)

��

�j

��1
j

�j

�
R
�
T (x)

��

�j

�
L(x)

�

(a) Variable encodings of non-T-boxes. (b) Variable encodings of T-boxes
based on the affine self-equivalences.

Figure 7.1: Variable encodings as a countermeasure to avoid fixed encodings.

of the white-box implementation with different input data. For details about
the handling of the index j of the variable encodings, refer to Michiels and
Gorissen [74].

Now, a variably encoded non-T-box, denoted by nT ′, is defined as

nT ′ : F8
2 × {1, 2, . . . , n} → F8

2 : nT ′(z, j) = σj ◦ nT ◦ λ−1
j (z) ,

where λj ∈ Λ and σj ∈ Σ. The lookup table implementing such a variably
encoded non-T-box takes as input the variably encoded input byte λj(x) and
the index j of the variable encoding λj applied to x, and outputs the variably
encoded output byte σj(y) (Fig. 7.1a). The index j needs to be given explicitly
as input such that the corresponding variable input encoding can be annihilated
and the corresponding variable output encoding can be applied. Therefore, for
practical reasons concerning the storage requirement of lookup tables, the index
j is typically kept small, e.g., 4 bits.

Variable encodings of T-boxes. In the case of T-boxes, the application of
variable encodings is based on the affine self-equivalences of the AES S-box, as is
explained in the following. Recall that a T-box T was defined as T (x) = S(x⊕k).
Next, the input and output of the T-box are assumed to be encoded by secret
8-bit bijective affine mappings L and R, respectively, in order to prevent an
attacker from extracting the embedded secret key information. This results
in the encoded T-box T ′, defined as T ′ = R ◦ T ◦ L−1 and implemented as a
lookup table mapping 8 bits to 8 bits.

188 STATE-OF-THE-ART AND Q&A

In [14], Biryukov et al. showed that the 8-bit bijective AES S-box S has exactly
2040 different affine self-equivalences; each affine self-equivalence is defined as
a pair (α, β) of bijective affine mappings on F8

2 such that S = β ◦ S ◦ α−1.
Now, based on the set of affine self-equivalences of S, given by ΦS = {(α, β) |
β ◦ S ◦ α−1 = S} with |ΦS | = 2040, a set of affine self-equivalences of T ′ can be
derived, given by

ΦT ′ = {(γ, δ) = (L ◦ ⊕k ◦ α ◦ ⊕k ◦ L−1, R ◦ β ◦R−1) | (α, β) ∈ ΦS} (7.1)

with |ΦT ′ | = |ΦS | = 2040, such that δ ◦ T ′ ◦ γ−1 = T ′, i.e.,

δ ◦ T ′ ◦ γ−1 = δ ◦R ◦ T ◦ L−1 ◦ γ−1 = δ ◦R ◦ S ◦ ⊕k ◦ L−1 ◦ γ−1

= R ◦ β ◦R−1 ◦R ◦ S ◦ ⊕k ◦ L−1 ◦ L ◦ ⊕k ◦ α−1 ◦ ⊕k ◦ L−1

= R ◦ β ◦ S ◦ α−1 ◦ ⊕k ◦ L−1 = R ◦ S ◦ ⊕k ◦ L−1 = T ′ .

In [74], Michiels and Gorissen explain how this set ΦT ′ of affine self-equivalences
of T ′ can be used to apply variable encodings to the input and output of T ′.
Observe that the output of T ′ equals δj

(
R
(
T (x)

))
if the input equals γj

(
L(x)

)
for any affine self-equivalence pair (γj , δj) ∈ ΦT ′ , i.e.,

T ′
(
γj
(
L(x)

))
= δj

(
T ′
(
γ−1
j

(
γj
(
L(x)

))))
= δj

(
T ′
(
L(x)

))
= δj

(
R
(
T (x)

))
,

although the variable encodings γj and δj are not explicitly implemented at the
input and output of T ′, respectively (Fig. 7.1b). As a result, a variable encoding
can be applied to the input and output of T ′ using only one instance of T ′, i.e., it
is not required to give the index j as input to the lookup table implementing T ′,
which is in contrast to the lookup tables implementing the variably encoded non-
T-boxes (Fig. 7.1). Hence, an encoded T-box also corresponds with a variably
encoded T-box since the variable encodings (i.e., the affine self-equivalences)
are handled implicitly through the encoded T-box. Since |ΦT ′ | = 2040, a total
of 2040 different variable encodings can be applied. And, as explained above
in the case of non-T-boxes, by making the index j dependent on intermediate
results of AES, the applied variable encodings are very likely to change during
different executions of the white-box AES implementation with different inputs.

Finally, as a comparison with solely fixed encodings, suppose that the input
x to a T-box T is identical in two different executions of the same white-box
implementation. Then in the scenario of fixed encodings, the encoded input
L(x) of the encoded T-box T ′ is identical as well. However, in the scenario of
variable encodings, the encoded input γj

(
L(x)

)
of T ′ is likely to be different

since the index j depends on intermediate results which may have been different.
In [74], Michiels and Gorissen explain how the use of variable encodings may
prevent the BGE attack [13] and Michiels et al.’s attack [75], and hence how it
may result in a secure white-box AES implementation.

QUESTIONS AND ANSWERS 189

7.2.2 All white-box implementations are fixed-key. What
about dynamic-key?

All white-box AES implementations discussed so far are fixed-key. As Shamir and
van Someren already pointed out back in 1999 [97], fixed-key variants are most
likely to result in more robust solutions. In that scenario, the key can be handled
as a constant, and can be baked inside the implementations in a much more
efficient and optimized way. But what about dynamic-key implementations?
Some applications in which white-box cryptography is deployed require the
ability to update the cryptographic key by means of a key-update message. The
naive approach would be to update the entire white-box implementation; that
is, replace it with a new implementation instantiated with the updated key.
The semi-naive approach would be to update only the key-dependent part (e.g.,
replacing the key-dependent lookup tables) of the white-box implementation
(cf. Gorissen et al. [46]). However, in both approaches, the size of the key-update
message (referred to as the key-update size in the following) is rather large;
for example, in the case of Chow et al.’s white-box AES implementation, the
key-update size is given by 752 kB (naive approach) or 208 kB (semi-naive). For
some applications (e.g., pay-TV systems with many end-users), the distribution
of a large key-update message is impractical due to restrictions on the available
bandwidth. Hence, for those applications, it is the primary goal to keep the
key-update size as small as possible.

Optimal key-update size. So far, the white-box implementations of block
ciphers published in the academic literature lack the key scheduling algorithm.
As a result, in order to update the secret key of a white-box implementation,
it is required to provide the expanded key comprising the set of all round keys.
Therefore, the smallest key-update size is given by the size of the expanded key
and is referred to as the optimal key-update size, where the term ‘optimal’ is
used with respect to the lack of the key scheduling algorithm. For example, in
the case of AES-128, AES-192 or AES-256, the optimal key-update sizes are
176 bytes, 208 bytes or 240 bytes, respectively.

Dynamic-Key White-Box Schemes with Optimal Key-Update Size

In [71, 72], Michiels proposed two schemes for dynamic-key white-box
implementations with optimal key-update size are proposed. In both schemes,
it is assumed that the standard dynamic-key white-box implementation is
instantiated with the secret key k. In order to update the key, the offset ∆ (or
difference) between the original key k and the updated key k̂, i.e., ∆ = k ⊕ k̂,

190 STATE-OF-THE-ART AND Q&A

needs to be given as input. Both schemes introduce this offset in different ways.
In scheme A [71], the dynamic-key white-box implementation already includes
all possible offsets such that the key-update message (a selection string) selects
the correct offset by specifying the correct data-flow. The relation between
the selection string and the selected offset may be any fixed secret bijective
encoding. In scheme B [72], the key-update message comprises the encoded
version of the key-offset, where the applied encoding is secret and fixed. For
detailed information, refer to Michiels [71, 72]. Observe that it is also possible
to make the standard dynamic-key white-box implementation key-less such that
the key-update messages do not comprise key-offsets but rather comprise the
actual (updated) key.

Figure 7.2 depicts the application of both schemes to the white-box AES
implementation of Chow et al. [23] in order to obtain a dynamic-key version.
Recall that the Type II and Ib tables are key-dependent. The examples in
Fig. 7.2 focus on updating the round key bytes k(r,j)

i contained within the
Type II tables L-II(r,j)

i (0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9). In scheme A (Fig. 7.2b),
each round key byte offset is considered as the concatenation of its left and
right nibble. For each nibble offset, all possible 24 values are included in a set
of 24 encoded nibble offset XOR tables preceding the L-II(r,j)

i lookup table. For
each set, the key-update message contains a 4-bit index selecting one of the 24

tables corresponding with the correct nibble offset. In scheme B (Fig. 7.2c), the
key-update message comprises a fixed encoded byte offset for each round key
byte k(r,j)

i ; the encoded offset is then XOR’ed with the fixed encoded input of
the L-II(r,j)

i table. Each 8-bit XOR is implemented as the parallel execution of
two encoded nibble XOR tables. For both schemes, observe that the key-update
size equals the size of the expanded key, and hence is optimal.

Disadvantage. A disadvantage of both schemes discussed above is that the
offset associated with each round key byte of the expanded key is encoded in a
fixed way. Hence, the encodings remain invariant for different key updates such
that the attacker can identify which key-offsets of specific round key bytes are
preserved. Since each AES expanded key has an average number of 208 round
key bytes and since each round key byte can take only 256 different values, the
probability that at least one round key byte is preserved during a key update is
given by 1− (1− 1/28)208 ≈ 56% and thus is high. The ability of identifying
which round key bytes remained identical when performing a key update is
an undesirable property since it reduces the entropy of the updated key if the
attacker has compromised the AES expanded key that needed to be updated.
To overcome this disadvantage, we presented a new dynamic-key white-box
scheme [91] with a close to optimal key-update size based on variable encodings.

QUESTIONS AND ANSWERS 191

(a) Relevant part of the fixed-key white-box AES implementation of Chow et al. for
updating the round key bytes of the type II tables.

44

44
L�

44

44

44
L�

44

L-IV

= x

4

4

L-II(r,j)
i

8
S

8

4 4 4 4 4 4 4 4

4 4 4 4 4 44 4

�
L

(r,j)
i

��1 8
4

4

k
(r,j)
i

R(r,j) � MCi

(b) Relevant part of the dynamic-key white-box AES implementation of Chow et al.
for updating the round key bytes of the type II tables based on scheme A.

4
44

44
L�

4 4

4
44

44

L�
4 4

24

24

hL(r,j)
i (�)iL

hL(r,j)
i (�)iR

= x �� = x � k
(r,j)
i � k̂

(r,j)
i

key-update message
4

4

L-II(r,j)
i

8
S

8

4 4 4 4 4 4 4 4

4 4 4 4 4 44 4

�
L

(r,j)
i

��1 8
4

4

k
(r,j)
i

R(r,j) � MCi

(c) Relevant part of the dynamic-key white-box AES implementation of Chow et al.
for updating the round key bytes of the type II tables based on scheme B.

= key-update message

= x �� = x � k
(r,j)
i � k̂

(r,j)
i

L�
44

4 4

44

f�1
1

f�1
0

L�
44

L-IV

4 4

44
g�1
0

g�1
1

(f0, g0)
�
L

(r,j)
i (x)

�

(f1, g1)
�
L

(r,j)
i (�)

�

4

4

L-II(r,j)
i

8
S

8

4 4 4 4 4 4 4 4

4 4 4 4 4 44 4

�
L

(r,j)
i

��1 8
4

4

k
(r,j)
i

R(r,j) � MCi

Figure 7.2: Two dynamic-key white-box schemes with optimal key-update size
applied to the white-box AES implementation of Chow et al.

192 STATE-OF-THE-ART AND Q&A

Dynamic-Key White-Box Scheme based on Variable Encodings

In our solution [91], a set of secret white-box encodings is assigned to each round
key byte of the expanded key. When updating the key, and hence computing
the offset for each round key byte, an encoding is chosen out of the sets
associated with each round key byte and the selected encoding is applied to the
corresponding round key byte offset. If an offset remains identical for different
key updates, different encodings need to be selected out of the set associated
with that particular offset. This way, the attacker is unable to distinguish
identical round key bytes between different updates. In this new dynamic-key
white-box scheme, the key-update message comprises the variably encoded
key-offsets and the corresponding indices of the applied variable encodings. For
dynamic-key implementations of AES-128, AES-192 or AES-256 using 4-bit
indices (i.e., sets of 24 secret encodings are associated with each round key byte),
the key-update size becomes 264 bytes, 312 bytes or 360 bytes, respectively,
which is close to optimal. Further, in order to provide sufficient security and not
to undermine the effect of the variable encodings, our new solution assumes a
white-box implementation in which all intermediate results are variably encoded
as well, either by user-defined sets of encodings (for non T-boxes) or by the
affine self-equivalences of a T-box (as explained in Sect. 7.2.1). For a complete
description of our solution, refer to us [91].

Figure 7.3 depicts an example of the application of our new key updating scheme
to a white-box AES implementation. The table T ′ represents an encoded T-box
defined as T ′ = R ◦ T ◦ L−1 with T = S ◦ ⊕k, where S and k denote the AES
S-box and a round key byte, respectively; the function F computes the XOR
of an intermediate data byte x and a round key byte offset ∆ = k ⊕ k̂ in an
encoded way, where k̂ denotes the updated round key byte. The four inputs to
F are (i) the variably encoded key-offset µi(∆), (ii) the index i of the variable
encoding µi applied to ∆, (iii) the variably encoded data byte τj(x), and (iv)
the index j of the variable encoding τj applied to x. The variable encodings µi
and τj are selected from the sets

{µi | 1 ≤ i ≤ n, µi is a secret bijective affine mapping on F8
2} and

{τj | 1 ≤ j ≤ n, τj is a secret bijective affine mapping on F8
2} ,

respectively. For practical reasons (storage restrictions), the cardinality n of the
sets is typically set to 24 such that i and j are 4-bit indices. The two outputs
of F are (i) the variably encoded input γl

(
L(x⊕∆)

)
to T ′, and (ii) the index

l of the applied variable encoding γl. Recall from Sect. 7.2.1 that the pair
(γ, δ) denotes the variable encodings of T ′ based on its affine self-equivalences
(see (7.1)). The index l depends on both indices i and j, i.e., l = g(i, j) for some
secret function g. For details about the implementation of F , refer to us [91].

QUESTIONS AND ANSWERS 193

F�

⌧j(x) j µi(k � k̂)

µi(�) =

i

L�1

T

R

T 0

�k

S

�l

�
L(x ��)

�

l = g(i, j)�l

�
R
�
T (x ��)

��

= �l

�
R
�
S(x � k̂)

��

Figure 7.3: Dynamic-key white-box scheme based on variable encodings [91].

Possible Threat to Dynamic-Key White-Box Implementations

Recall that in fixed-key white-box implementations, the secret round keys are
treated as constants and hence can be included in the white-box implementation
in an optimized way. However, in dynamic-key white-box implementations,
the secret round keys become variables and are most likely harder to hide.
Furthermore, an additional interface (i.e., the input for the key-update message)
is required to update the embedded secret key. In the white-box attack context,
this interface is assumed to be accessible by the attacker who might try to
exploit (partially) known-key attacks as explained in the following. Take for
example the case where the same fixed encoding, or the same set of variable
encodings, is used for all round key bytes. In that particular case, the attacker
can for example modify the key-update message (given as input to the dynamic-
key white-box implementation) in such a way that all round key bytes of the
expanded key are identical, though still unknown because of the secret encoding.
In this way, the attacker can reduce the entropy of the key of the white-box
implementation to only 8 bits, which may lead to efficient white-box attacks
extracting the single round key byte. By repeating the above technique for all
bytes of one round key, the attacker can retrieve the secret key.

Also, if the white-box implementation has already been broken, then performing
a key update will typically not provide a solution to correct the security breach

194 STATE-OF-THE-ART AND Q&A

since the attacker is most likely able to compromise the updated key as well.
As an example, take both schemes depicted in Fig. 7.2 when applied to the
white-box AES implementation of Chow et al.; both dynamic-key schemes
remain vulnerable to the BGE attack.

7.3 Conclusion

This chapter presented an overview of the state-of-the-art of lookup-table-based
white-box AES implementations published in the academic literature. By
comparing the size and performance of AES implementations in the black-box
and white-box settings, it is clear that the cost of white-box security typically
corresponds with an increased implementation size and a performance slowdown.
An exception to the rule of performance slowdown is given by the Xiao-Lai
white-box AES implementation. Depending on the requirements of a given
application, one takes the most secure white-box implementation satisfying
the requirements. Over time, the increased implementation size of white-box
implementations will become less of a problem since the available memory only
increases. Nevertheless, in this chapter, we also presented some methods to
reduce the white-box cost; take for example the reuse of lookup tables, although
such reuse may weaken the white-box implementation since it is associated with
the reuse of secret white-box encodings.

Despite the cost (i.e., large implementation size and performance slowdown)
introduced by the various white-box techniques, the cryptanalytic results on
all table-based white-box AES implementations published in the academic
literature showed that none of them can be considered as white-box secure.
In fact, most attacks have a practical work factor. The best white-box AES
implementation according to the results obtained in this thesis is the variant
of the Xiao-Lai white-box AES implementation with affine encodings instead
of linear encodings. Here, the term ‘best’ refers to both the achieved level of
white-box security as well as the performance of the implementation.

With respect to designing new secure white-box AES implementations, some
indications were highlighted; the vulnerabilities of the existing implementations
exploited by the currently known white-box attacks have been identified and
possible countermeasures to avoid these vulnerabilities have been discussed.
One promising technique is the use of so-called variable white-box encodings;
these encodings are no longer fixed and vary depending on intermediate results
of AES such that different executions of the white-box AES implementation
with different input data results in different encodings.

CONCLUSION 195

Further, this chapter presented various techniques to obtain dynamic-key white-
box implementations. In particular, two schemes based on fixed encodings with
an optimal key-update size (i.e., equal to the size of the expanded key in the
case of the lack of the key scheduling algorithm) are described. However, the use
of fixed encodings allows the attacker to distinguish identical round key bytes
between different key updates. Therefore, we presented a new dynamic-key
scheme based on variable encodings with an almost optimal key-update size.

Part III

Conclusion

197

Chapter 8

Conclusions and Future
Research

This doctoral thesis dealt with the design and analysis of white-box AES
implementations. With regard to the analysis part, our main research
contributions were covered by Chapters 4, 5 and 6. With regard to the design
part, our contribution is presented in Chapter 7 (as part of Sect. 7.2.2).

8.1 Summary of Results and Conclusions

Chapters 1 and 2 showed that the attack models have evolved over time due to
increasing demand for strong cryptographic algorithms implemented in software
and executed on open platforms such as a PC, smartphone, tablet or set-top
box. Since these platforms are owned and controlled by a possibly malicious
party, there was a need for a new attack model as the conventional black-box
model and even the grey-box model were no longer satisfied. In 2002, Chow et
al. introduced the white-box model in which an attacker is assumed to have full
access to the software implementation of a cryptographic algorithm (such as a
block cipher) as well as full control over its execution environment. Chapter 1
showed that the white-box model is not only the strongest attack model (from
the perspective of the attacker), but furthermore is also very realistic since it
occurs in real-world applications such as Digital Rights Management. Further,
Chapter 2 highlighted that widely used block ciphers that were designed for
security in the black-box model are highly insecure in the white-box model. That
is, strong black-box security properties does not prevent a white-box attacker

199

200 CONCLUSIONS AND FUTURE RESEARCH

from exploiting weak implementation properties. This was demonstrated by
the fairly simple entropy attack (of Shamir and van Someren [97]) and the
S-box blanking attack (of Kerins and Kursawe [55]) with regard to the black-box
software implementations of block ciphers deployed in the white-box model.

Main conclusion for Part I (Chapters 1 and 2). Nowadays, it is
insufficient to solely focus on the black-box security of block ciphers. Secure
implementations (either in hardware or software) of block ciphers are at least
as important, and a secure black-box block cipher does not guarantee a secure
implementation. Hence there is a need for white-box cryptography that provides
techniques to construct secure software implementations of cryptographic
algorithms specifically tailored to the white-box model.

White-box cryptography was introduced in Chapter 3, the main part of which
was dedicated to the design and analysis of the first published white-box
AES implementation of Chow et al. (published in 2002 [23]). The negative
result of Billet et al. [13], efficiently breaking this first published white-box
AES implementation, triggered research to design new secure white-box AES
implementations. The following three proposals appeared in the academic
literature: the construction of Bringer et al. in 2006 [20] based on a new white-
box technique (i.e., different from the technique of Chow et al.), of Xiao and
Lai in 2009 [107] based on applying the white-box technique of Chow et al. in
a specific way, and of Karroumi in 2010 [53] based on the application of dual
AES ciphers. For all three proposals, their designers claimed that they were
resistant against Billet et al.’s attack.

However, in this thesis, we showed that none of the above newly proposed
white-box AES implementations provides a sufficient level of white-box security.
We have done this by either presenting a new efficient attack, or by showing
that the implementation remained vulnerable to Billet et al.’s attack.

In Chapter 4 we showed that Karroumi’s white-box AES implementation belongs
to the class of white-box AES implementations as originally specified by Chow
et al. Consequently, Karroumi’s implementation remains vulnerable to Billet
et al.’s attack. With regard to Billet et al.’s attack itself, we presented several
improvements in addition to the initial improvement proposed by Tolhuizen
in 2012 [101]. The combination of the improvements significantly reduced the
overall work factor of the attack. An interesting remark is that unlike the
original attack of Billet et al., the use of non-affine white-box encodings and
the (secret) randomization in the order of the bytes of the intermediate AES
results in the white-box implementation have a negligible impact on the overall
work factor of our improved version of the attack.

SUMMARY OF RESULTS AND CONCLUSIONS 201

In Chapter 5, we presented a practical attack on the Xiao-Lai white-box AES
implementation. The attack exploits specific properties of AES as well as leaked
information (from the white-box implementation) about the secret encodings.
The attack uses a modified variant of the linear equivalence algorithm proposed
by Biryukov et al. [14] as a building block. Additionally, we considered design
generalizations of the Xiao-Lai white-box AES implementation and investigated
their impact on our attack. We showed that the Xiao-Lai white-box AES
implementation with affine (instead of linear) encodings provides the highest
level of white-box security with respect to all white-box AES implementations
considered in this thesis.

In Chapter 6 we presented an efficient attack on the white-box AES
implementation of Bringer et al. Instead of the original secret key, our attack
extracts an equivalent key, i.e., both the original and the equivalent key yield
functionally equivalent implementations.

In Chapter 7, all white-box AES implementations are compared with the
conventional black-box software AES implementation (i.e., the lookup-table-
based AES implementation proposed by Daemen and Rijmen [31] for processors
with word lengths of 32-bits or more) with respect to their size and performance.
This comparison showed that the cost of white-box security typically corresponds
with an increased implementation size and a performance slowdown. However,
the latter was less applicable to the Xiao-Lai white-box AES implementation
with either linear or affine white-box encodings. We also presented some
techniques to reduce the size and performance costs. They should be applied
with caution as they may weaken the white-box implementation.

Further, Chapter 7 also focused on the design aspects of white-box AES
implementations. First, a promising technique, introduced by Michiels and
Gorissen [74], is described. This technique is based on the application of so-
called variable white-box encodings, i.e., encodings that vary between different
executions of the white-box implementation with different input data. Second,
several techniques were discussed for dynamic-key white-box implementations.
In particular, we proposed a new dynamic-key white-box scheme with a small
key-update size based on variable encodings. In our solution, it is hard for the
attacker to distinguish identical round key bytes between different key updates.

Main conclusions for Part II (Chapters 3 to 7). We have shown that
in early 2014, despite the typical ‘significant’ white-box cost, there does not
exist a practical and secure white-box AES implementation published in the
academic literature, even if AES is still considered to be a secure black-box block
cipher. The best (i.e., providing the best white-box security and having the best
performance) implementation according to our results obtained in Chapter 5

202 CONCLUSIONS AND FUTURE RESEARCH

is the Xiao-Lai white-box AES implementation with affine encodings. This
naturally leads to the following two core questions within white-box cryptography:

1) – Do we need new ‘white-box friendly’ block ciphers, i.e., design
new block ciphers with the white-box model in mind?

AES was designed with black-box security in mind. Michiels et al. [75] showed
that some design principles that offer good protection against black-box attacks
(e.g., the MDS property of the diffusion operator) can introduce weak spots
for white-box attacks. Hence, it might be interesting to define new ‘white-box
friendly’ design principles of block ciphers. As the white-box model includes the
black-box model, these new design principles will also lead to secure black-box
ciphers. Preliminary thoughts on new white-box design principles of block
ciphers are listed in Sect. 8.2. However, the freedom to use a new block cipher
depends on compatibility requirements with existing block ciphers at either the
remote or client side.

First, if compatibility is not required, then one has the freedom to design a new
block cipher with white-box security in mind. Moreover, if one is not required to
rely on existing block ciphers, why still stick to block ciphers? As we discussed
in Chapter 3, typically an encoded version of a block cipher was implemented.
Hence, if the white-box security relies on the application of external encodings,
what is then the added value of the block cipher itself? In the fixed-key scenario,
why not just choose randomly a permutation on n bits that can be efficiently
implemented and keep this permutation secret?

Second, if compatibility is required, then the following question becomes relevant.

2) – Do we need new white-box techniques to construct secure white-
box implementations of existing secure black-box block ciphers?

As mentioned above, if one is limited to using existing block ciphers, then
either the existing white-box techniques need to be revised, or new white-box
techniques need to be developed. The revision of the existing techniques is
necessary since, even though their current applications failed in achieving secure
white-box implementations (e.g., Chow et al.’s, Xiao-Lai and Bringer et al.’s
white-box AES implementations), they might still provide a sufficient level of
white-box security if applied in a specific way. In the case of Chow et al.’s
technique, examples are to build larger lookup tables by merging more steps
of the round function or to use only affine encodings since Tolhuizen’s method
showed that the use of non-affine encodings typically has a negligible impact on
the overall work factor of a white-box attack. In line with this, we showed that
Chow et al.’s technique still provides some white-box security for the Xiao-Lai

FUTURE WORK 203

white-box AES implementation with affine encodings (see above). With regard
to developing new techniques, as mentioned before, a promising new white-box
technique based on variable encodings has already been presented by Michiels
and Gorissen in a patent application.

All white-box techniques published in the academic literature are solely focused
on constructing fixed-key white-box implementations. However, there are many
applications in the real world that may benefit from the ability to update the
key. E.g., if the key of an application can be expected to leak from another part
(i.e., not the white-box implementation) of the application, then a white-box
implementation that allows to update the key can be used to resolve the security
breach. Hence, when developing new white-box techniques, the primary focus
should be on designing dynamic-key white-box implementations straightaway.
But since dynamic-key will never be more secure than fixed-key, i.e., a fixed-key
implementation can be derived from a dynamic-key implementation by fixing
the key, the development of dynamic-key white-box techniques can be considered
as a great challenge.

Further, it might also be beneficial to develop new white-box techniques that are
capable of securely implementing existing block ciphers without the application
of external encodings. This way, the designer is free to choose whether to
include external encodings (either at the input or at the output or at both).

Main conclusion of this doctoral thesis. It is clear that in early 2014,
all white-box AES implementations published in the academic literature have
been broken. Still, there are many proprietary white-box AES implementations
offered by companies specialized in white-box cryptography (e.g., Irdeto [50],
Nagra [80], whiteCryption [26], SafeNet [92], . . .). However, as there is still no
(published) breakthrough with regard to secure white-box techniques, the field of
white-box cryptography remains in its infancy and there is still a lot to cover.

8.2 Future Work

In this section, we suggest some directions for future research.

Investigate the white-box security of the Xiao-Lai white-box AES implemen-
tation with affine encodings. According to our results obtained in Chapter 5,
the Xiao-Lai white-box AES implementation with affine (instead of linear)
encodings offers not only good performance but also the highest level of white-
box security with respect to all white-box AES implementations considered in

204 CONCLUSIONS AND FUTURE RESEARCH

this thesis. Naively applying the generic attack of Michiels et al. showed an
estimated work factor of at least 249. However, since the attack is generic, it
might be interesting to investigate to what extent the exploitation of specific
properties of AES and the composition of the white-box implementation may
affect its work factor. In other words, does there exist a non-generic attack
with a reduced work factor? Additionally, since Michiels et al.’s attack assumes
that the order of the bytes of the intermediate AES results in the Xiao-Lai
implementation is known to the attacker, it might be interesting to investigate
how a (secret) randomization of this order, which can be implemented ‘for free’,
affects the work factor of the attack.

Develop secure white-box design principles of block ciphers and novel white-
box techniques. As mentioned before, in order to obtain positive results within
white-box cryptography, it might be interesting to develop either new ‘white-
box friendly’ design principles of block ciphers or novel dynamic-key white-box
techniques resulting in secure white-box implementations of existing or new
block ciphers. For our discussion on this, refer to Sect. 8.1.

Based on the specific block cipher design properties exploited by the white-box
attacks discussed in this thesis, we list the following suggestions towards new
design principles that may preclude these attacks:

1. independent round keys or a non-invertible key scheduling algorithm: this
prevents the attacker from recovering the secret key if he can extract a
round key;

2. make more parts of the block cipher key-dependent, which can for example
either be derived from the secret key or be specified separately: this
prevents the attacker from exploiting specific properties of for example
the diffusion operator;

3. use ‘wide’ non-sparse diffusion operators, where ‘wide’ refers to the block
size of the cipher in order to increase the diffusion created in single round
functions.

It should be noted however, that introducing such (and other) new design
principles may interfere with the black-box security properties of the resulting
block-cipher.

Part IV

Bibliography

205

Bibliography

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2001.

[2] E. Barkan and E. Biham. The book of Rijndaels. IACR Cryptology ePrint
Archive, 2002:158, 2002.

[3] E. Barkan and E. Biham. In how many ways can you write Rijndael?
In Y. Zheng, editor, ASIACRYPT, volume 2501 of Lecture Notes in
Computer Science, pages 160–175. Springer, 2002.

[4] BBC News. Apple to end music restrictions, 2009. http://news.bbc.co.
uk/2/hi/technology/7813527.stm.

[5] R. Benadjila, O. Billet, and S. Francfort. DRM to counter side-channel
attacks? In M. Yung, A. Kiayias, and A.-R. Sadeghi, editors, Digital
Rights Management Workshop, pages 23–32. ACM, 2007.

[6] D. J. Bernstein. Cache-timing attacks on AES. Preprint, 2005. http:
//cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[7] E. Biham, R. J. Anderson, and L. R. Knudsen. Serpent: A new block
cipher proposal. In S. Vaudenay, editor, FSE, volume 1372 of Lecture
Notes in Computer Science, pages 222–238. Springer, 1998.

[8] E. Biham and A. Shamir. Differential cryptanalysis of DES-like
cryptosystems. In A. Menezes and S. A. Vanstone, editors, CRYPTO,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer,
1990.

[9] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round
DES. In E. F. Brickell, editor, CRYPTO, volume 740 of Lecture Notes in
Computer Science, pages 487–496. Springer, 1992.

207

http://news.bbc.co.uk/2/hi/technology/7813527.stm
http://news.bbc.co.uk/2/hi/technology/7813527.stm
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

208 BIBLIOGRAPHY

[10] E. Biham and A. Shamir. Differential fault analysis of secret key
cryptosystems. In B. S. J. Kaliski, editor, CRYPTO, volume 1294 of
Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

[11] E. Biham and A. Shamir. Power analysis of the key scheduling of the AES
candidates. In Proceedings of the Second Advanced Encryption Standard
(AES) Candidate Conference, pages 115–121, 1999.

[12] O. Billet and H. Gilbert. A traceable block cipher. In C.-S. Laih, editor,
ASIACRYPT, volume 2894 of Lecture Notes in Computer Science, pages
331–346. Springer, 2003.

[13] O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box
AES implementation. In H. Handschuh and M. A. Hasan, editors, Selected
Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science,
pages 227–240. Springer, 2004.

[14] A. Biryukov, C. De Cannière, A. Braeken, and B. Preneel. A toolbox
for cryptanalysis: Linear and affine equivalence algorithms. In E. Biham,
editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science,
pages 33–50. Springer, 2003.

[15] A. Biryukov and A. Shamir. Structural cryptanalysis of SASAS. J.
Cryptology, 23(4):505–518, 2010.

[16] J. Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-
based hash function. In M. J. B. Robshaw, editor, FSE, volume 4047 of
Lecture Notes in Computer Science, pages 328–340. Springer, 2006.

[17] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight
block cipher. In P. Paillier and I. Verbauwhede, editors, CHES, volume
4727 of Lecture Notes in Computer Science, pages 450–466. Springer,
2007.

[18] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology, 14(2):101–
119, 2001.

[19] J. Bringer, H. Chabanne, and E. Dottax. Perturbing and protecting
a traceable block cipher. In H. Leitold and E. P. Markatos, editors,
Communications and Multimedia Security, volume 4237 of Lecture Notes
in Computer Science, pages 109–119. Springer, 2006.

[20] J. Bringer, H. Chabanne, and E. Dottax. White box cryptography:
Another attempt. Cryptology ePrint Archive, Report 2006/468, 2006.
http://eprint.iacr.org/2006/468.pdf.

http://eprint.iacr.org/2006/468.pdf

BIBLIOGRAPHY 209

[21] S. Chari, C. Jutla, J. R. Rao, and P. Rohatgi. A cautionary note regarding
evaluation of AES candidates on smart-cards. In Proceedings of the Second
Advanced Encryption Standard (AES) Candidate Conference, pages 133–
147, 1999.

[22] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. J. Kaliski,
Ç. K. Koç, and C. Paar, editors, CHES, volume 2523 of Lecture Notes in
Computer Science, pages 13–28. Springer, 2002.

[23] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-box
cryptography and an AES implementation. In K. Nyberg and H. M. Heys,
editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in
Computer Science, pages 250–270. Springer, 2002.

[24] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box
DES implementation for DRM applications. In J. Feigenbaum, editor,
Digital Rights Management Workshop, volume 2696 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2002.

[25] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with
overdefined systems of equations. In Y. Zheng, editor, ASIACRYPT,
volume 2501 of Lecture Notes in Computer Science, pages 267–287.
Springer, 2002.

[26] Cryptanium Inc. Homepage (whiteCryption). https://www.cryptanium.
com/.

[27] J. Daemen, L. R. Knudsen, and V. Rijmen. The block cipher Square.
In E. Biham, editor, FSE, volume 1267 of Lecture Notes in Computer
Science, pages 149–165. Springer, 1997.

[28] J. Daemen and V. Rijmen. AES proposal: Rijndael. In First Advanced
Encryption Standard (AES) Conference, 1998.

[29] J. Daemen and V. Rijmen. Resistance against implementation attacks: A
comparative study of the AES proposals. In Proceedings of the Second
Advanced Encryption Standard (AES) Candidate Conference, pages 122–
132, 1999.

[30] J. Daemen and V. Rijmen. The wide trail design strategy. In B. Honary,
editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science,
pages 222–238. Springer, 2001.

[31] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer,
2002.

https://www.cryptanium.com/
https://www.cryptanium.com/

210 BIBLIOGRAPHY

[32] J. Daemen and V. Rijmen. Plateau characteristics. IET Information
Security, 1(1):11–17, 2007.

[33] C. De Cannière. Analysis and Design of Symmetric Encryption Algorithms.
PhD thesis, Katholieke Universiteit Leuven, 2007. Bart Preneel
(promotor).

[34] Y. De Mulder, G. Danezis, L. Batina, and B. Preneel. Identification via
location-profiling in GSM networks. In V. Atluri and M. Winslett, editors,
WPES, pages 23–32. ACM, 2008.

[35] Y. De Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai
white-box AES implementation. In L. R. Knudsen and H. Wu, editors,
Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer
Science, pages 34–49. Springer, 2012.

[36] Y. De Mulder, P. Roelse, and B. Preneel. Revisiting the BGE attack on
a white-box AES implementation. Cryptology ePrint Archive, Report
2013/450, 2013. http://eprint.iacr.org/2013/450.pdf.

[37] Y. De Mulder, K. Wouters, and B. Preneel. A privacy-preserving ID-based
group key agreement scheme applied in VPAN. In I. Cerná, T. Gyimóthy,
J. Hromkovic, K. G. Jeffery, R. Královic, M. Vukolic, and S. Wolf, editors,
SOFSEM, volume 6543 of Lecture Notes in Computer Science, pages
214–225. Springer, 2011.

[38] Y. De Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a perturbated
white-box AES implementation. In G. Gong and K. C. Gupta, editors,
INDOCRYPT, volume 6498 of Lecture Notes in Computer Science, pages
292–310. Springer, 2010.

[39] C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box security
notions for symmetric encryption schemes. In T. Lange, K. Lauter, and
P. Lisonek, editors, Selected Areas in Cryptography, Lecture Notes in
Computer Science. Springer, 2013.

[40] J. Ding. A new variant of the Matsumoto-Imai cryptosystem through
perturbation. In F. Bao, R. H. Deng, and J. Zhou, editors, Public Key
Cryptography, volume 2947 of Lecture Notes in Computer Science, pages
305–318. Springer, 2004.

[41] Electronic Frontier Foundation. Cracking DES: Secrets of Encryption
Research, Wiretap Politics & Chip Design. O’Reilly Press, 1998.

[42] J.-C. Faugère and L. Perret. Polynomial equivalence problems:
Algorithmic and theoretical aspects. In S. Vaudenay, editor,

http://eprint.iacr.org/2013/450.pdf

BIBLIOGRAPHY 211

EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages
30–47. Springer, 2006.

[43] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and
D. Whiting. Improved cryptanalysis of Rijndael. In B. Schneier, editor,
FSE, volume 1978 of Lecture Notes in Computer Science, pages 213–230.
Springer, 2000.

[44] N. Ferguson, R. Schroeppel, and D. Whiting. A simple algebraic
representation of Rijndael. In S. Vaudenay and A. M. Youssef, editors,
Selected Areas in Cryptography, volume 2259 of Lecture Notes in Computer
Science, pages 103–111. Springer, 2001.

[45] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis:
Concrete results. In Çetin Kaya Koç, D. Naccache, and C. Paar, editors,
CHES, volume 2162 of Lecture Notes in Computer Science, pages 251–261.
Springer, 2001.

[46] P. Gorissen, W. Michiels, and M. Bijsterveld. Updating cryptographic
key data. WO 2010142612, 2008.

[47] L. Goubin, J.-M. Masereel, and M. Quisquater. Cryptanalysis of white
box DES implementations. In C. M. Adams, A. Miri, and M. J. Wiener,
editors, Selected Areas in Cryptography, volume 4876 of Lecture Notes in
Computer Science, pages 278–295. Springer, 2007.

[48] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we
remember: Cold boot attacks on encryption keys. In P. C. van Oorschot,
editor, USENIX Security Symposium, pages 45–60. USENIX Association,
2008.

[49] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE
Transactions on Information Theory, 26(4):401–406, 1980.

[50] Irdeto Inc. Homepage. http://irdeto.com/.

[51] M. Jacob, D. Boneh, and E. W. Felten. Attacking an obfuscated cipher
by injecting faults. In J. Feigenbaum, editor, Digital Rights Management
Workshop, volume 2696 of Lecture Notes in Computer Science, pages
16–31. Springer, 2002.

[52] M. Joye. On white-box cryptography. In A. Elçi, S. B. Örs, and B. Preneel,
editors, Security of Information and Networks (SIN 2007), pages 7–12.
Trafford Publishing, 2008.

http://irdeto.com/

212 BIBLIOGRAPHY

[53] M. Karroumi. Protecting white-box AES with dual ciphers. In K. H. Rhee
and D. Nyang, editors, ICISC, volume 6829 of Lecture Notes in Computer
Science, pages 278–291. Springer, 2010.

[54] A. Kerckhoffs. La cryptographie militaire (“military cryptography”).
Journal des Sciences Militaires, IX:5–38, January 1883.

[55] T. Kerins and K. Kursawe. A cautionary note on weak implementations
of block ciphers. In 1st Benelux Workshop on Information and System
Security (WISSec 2006), page 12, Antwerp, BE, 2006.

[56] D. Klinec. White-box attack resistant cryptography. Master’s thesis,
Masaryk University, Faculty of Informatics, 2013. Petr Švenda (advisor).

[57] L. R. Knudsen and V. Rijmen. Known-key distinguishers for some block
ciphers. In K. Kurosawa, editor, ASIACRYPT, volume 4833 of Lecture
Notes in Computer Science, pages 315–324. Springer, 2007.

[58] L. R. Knudsen and M. J. B. Robshaw. The block cipher companion.
Information security and cryptography. Springer-Verlag Berlin Heidelberg,
2011.

[59] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In N. Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[60] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J.
Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[61] X. Lai, J. L. Massey, and S. Murphy. Markov ciphers and differentail
cryptanalysis. In D. W. Davies, editor, EUROCRYPT, volume 547 of
Lecture Notes in Computer Science, pages 17–38. Springer, 1991.

[62] T. Lepoint and M. Rivain. Another nail in the coffin of white-box AES
implementations. Cryptology ePrint Archive, Report 2013/455, 2013.
http://eprint.iacr.org/2013/455.pdf.

[63] T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, and B. Preneel. Two
attacks on a white-box AES implementation. In T. Lange, K. Lauter,
and P. Lisonek, editors, Selected Areas in Cryptography, Lecture Notes in
Computer Science. Springer, 2013.

[64] H. E. Link and W. D. Neumann. Clarifying obfuscation: Improving
the security of white-box DES. In Information Technology: Coding and
Computing (ITCC 2005), Volume 1, pages 679–684. IEEE Computer
Society, 2005.

http://eprint.iacr.org/2013/455.pdf

BIBLIOGRAPHY 213

[65] M. Matsui. Linear cryptoanalysis method for DES cipher. In T. Helleseth,
editor, EUROCRYPT, volume 765 of Lecture Notes in Computer Science,
pages 386–397. Springer, 1993.

[66] M. Matsui. The first experimental cryptanalysis of the Data Encryption
Standard. In Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes
in Computer Science, pages 1–11. Springer, 1994.

[67] ECRYPT II. Yearly report on algorithms and keysizes (2011-2012).
Deliverable D.SPA.20 Revision 1.0, September 2012. http://www.ecrypt.
eu.org/documents/D.SPA.20.pdf.

[68] National Institute of Standards and Technology. Data Encryption Stan-
dard. Federal Information Processing Standard (FIPS), Publication 46,
U.S. Department of Commerce, Washington D.C., January 1977.

[69] National Institute of Standards and Technology. Advanced Encryption
Standard. Federal Information Processing Standard (FIPS), Publication
197, U.S. Department of Commerce, Washington D.C., November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[70] W. Michiels. Opportunities in white-box cryptography. IEEE Security &
Privacy, 8(1):64–67, 2010.

[71] W. Michiels. White-box cryptographic system with configurable key using
block selection. WO 2010146140, 2010.

[72] W. Michiels. White-box cryptographic system with configurable key using
intermediate data modification. WO 2010146139, 2010.

[73] W. Michiels and P. Gorissen. Mechanism for software tamper resistance:
an application of white-box cryptography. In M. Yung, A. Kiayias, and
A.-R. Sadeghi, editors, Digital Rights Management Workshop, pages 82–89.
ACM, 2007.

[74] W. Michiels and P. Gorissen. White-box cryptography system with input
dependent encodings. WO 2010102960, 2010.

[75] W. Michiels, P. Gorissen, and H. D. L. Hollmann. Cryptanalysis of a
generic class of white-box implementations. In R. M. Avanzi, L. Keliher,
and F. Sica, editors, Selected Areas in Cryptography, volume 5381 of
Lecture Notes in Computer Science, pages 414–428. Springer, 2008.

[76] Microsoft Windows. Windows Media Player DRM: frequently asked
questions. http://windows.microsoft.com/en-us/windows-vista/
windows-media-player-drm-frequently-asked-questions.

http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://windows.microsoft.com/en-us/windows-vista/windows-media-player-drm-frequently-asked-questions
http://windows.microsoft.com/en-us/windows-vista/windows-media-player-drm-frequently-asked-questions

214 BIBLIOGRAPHY

[77] F. Miller. Telegraphic code to insure privacy and secrecy in the
transmission of telegrams. Charles M. Cornwell, New York, 1882.

[78] J. Muir. A tutorial on white-box AES. In E. Kranakis, editor, Advances
in Network Analysis and its Applications, volume 18 of Mathematics in
Industry, pages 209–229. Springer Berlin Heidelberg, 2013.

[79] S. Murphy and M. J. B. Robshaw. Essential algebraic structure within
the AES. In M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2002.

[80] Nagra Kudelski Group. Homepage. http://www.nagra.com/cms/.

[81] K. Nyberg. Linear approximation of block ciphers. In A. D. Santis, editor,
EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages
439–444. Springer, 1994.

[82] OpenSSL. OpenSSL 1.0.1e, February 2013. http://www.openssl.org.

[83] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and
countermeasures: The case of AES. In D. Pointcheval, editor, CT-RSA,
volume 3860 of Lecture Notes in Computer Science, pages 1–20. Springer,
2006.

[84] J. Patarin. Hidden fields equations (HFE) and isomorphisms of
polynomials (IP): Two new families of asymmetric algorithms. In U. M.
Maurer, editor, EUROCRYPT, volume 1070 of Lecture Notes in Computer
Science, pages 33–48. Springer, 1996.

[85] G. Piret and J.-J. Quisquater. A differential fault attack technique against
SPN structures, with application to the AES and KHAZAD. In C. D.
Walter, Çetin Kaya Koç, and C. Paar, editors, CHES, volume 2779 of
Lecture Notes in Computer Science, pages 77–88. Springer, 2003.

[86] M. Plasmans. White-box cryptography for digital content protection.
Master’s thesis, Technische Universiteit Eindhoven, May 2005. http:
//alexandria.tue.nl/extra2/afstversl/wsk-i/plasmans2005.pdf.

[87] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In I. Attali and T. P.
Jensen, editors, E-smart, volume 2140 of Lecture Notes in Computer
Science, pages 200–210. Springer, 2001.

[88] H. Raddum. More dual Rijndaels. In H. Dobbertin, V. Rijmen, and
A. Sowa, editors, AES Conference, volume 3373 of Lecture Notes in
Computer Science, pages 142–147. Springer, 2004.

http://www.nagra.com/cms/
http://www.openssl.org
http://alexandria.tue.nl/extra2/afstversl/wsk-i/plasmans2005.pdf
http://alexandria.tue.nl/extra2/afstversl/wsk-i/plasmans2005.pdf

BIBLIOGRAPHY 215

[89] R. L. Rivest. Cryptography. In Handbook of Theoretical Computer Science,
Volume A: Algorithms and Complexity (A), pages 717–755. 1990.

[90] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[91] P. Roelse and Y. De Mulder. Updating key information. WO 2013139380,
2013.

[92] SafeNet Inc. Homepage. http://www.safenet-inc.com/.

[93] T. Sander and C. F. Tschudin. Protecting mobile agents against malicious
hosts. In G. Vigna, editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 44–60. Springer, 1998.

[94] T. Sander and C. F. Tschudin. Towards mobile cryptography. In IEEE
Symposium on Security and Privacy, pages 215–224. IEEE Computer
Society, 1998.

[95] R. Schultz. The many facades of DRM. MISC HS 5 magazine, pages 58–
64, April 2012. http://www.whiteboxcrypto.com/files/2012_MISC_
DRM.pdf.

[96] SciEngines. Break DES in less than a single day, 2009. http://www.
sciengines.com/company/news-a-events/74-des-in-1-day.html.

[97] A. Shamir and N. van Someren. Playing "hide and seek" with stored keys.
In M. K. Franklin, editor, Financial Cryptography, volume 1648 of Lecture
Notes in Computer Science, pages 118–124. Springer, 1999.

[98] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(4):379–423, 623–656, 1948.

[99] C. E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28(4):656–715, 1949.

[100] A. Tardy-Corfdir and H. Gilbert. A known plaintext attack of FEAL-4
and FEAL-6. In J. Feigenbaum, editor, CRYPTO, volume 576 of Lecture
Notes in Computer Science, pages 172–181. Springer, 1991.

[101] L. Tolhuizen. Improved Cryptanalysis of an AES implementation. 33rd
WIC Symposium on Information Theory in the Benelux, 2012.

[102] G. S. Vernam. Cipher printing telegraph systems for secret wire and
radio telegraphic communications. Journal of the American Institute of
Electrical Engineers, 55:109–115, 1926.

http://www.safenet-inc.com/
http://www.whiteboxcrypto.com/files/2012_MISC_DRM.pdf
http://www.whiteboxcrypto.com/files/2012_MISC_DRM.pdf
http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html
http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html

216 BIBLIOGRAPHY

[103] B. Wyseur. White-Box Cryptography. PhD thesis, Katholieke Universiteit
Leuven, 2009. Bart Preneel (promotor).

[104] B. Wyseur. White-box cryptography: Hiding keys in software. MISC
HS 5 magazine, pages 65–72, April 2012. http://www.whiteboxcrypto.
com/files/2012_misc.pdf.

[105] B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of
white-box DES implementations with arbitrary external encodings. In
C. M. Adams, A. Miri, and M. J. Wiener, editors, Selected Areas in
Cryptography, volume 4876 of Lecture Notes in Computer Science, pages
264–277. Springer, 2007.

[106] J. Xiao and Y. Zhou. Generating large non-singular matrices over an
arbitrary field with blocks of full rank. IACR Cryptology ePrint Archive,
2002:96, 2002.

[107] Y. Xiao and X. Lai. A secure implementation of white-box AES. In 2nd
International Conference on Computer Science and its Applications (CSA
2009), pages 1–6. IEEE, 2009.

[108] H. Yamauchi, A. Monden, M. Nakamura, H. Tamada, Y. Kanzaki, and K.-
i. Matsumoto. A goal-oriented approach to software obfuscation. IJCSNS
International Journal of Computer Science and Network Security, 8(9):59–
71, 2008.

http://www.whiteboxcrypto.com/files/2012_misc.pdf
http://www.whiteboxcrypto.com/files/2012_misc.pdf

List of Publications

International Articles

1. T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, and B. Preneel. Two
attacks on a white-box AES implementation. In T. Lange, K. Lauter
and P. Lisonek, editors, Selected Areas in Cryptography, 20th Annual
International Workshop, SAC 2013, Lecture Notes in Computer Science.
Springer, 2013, to appear. (merged paper)

2. Y. De Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai
white-box AES implementation. In L. R. Knudsen and H. Wu, editors,
Selected Areas in Cryptography, 19th Annual International Workshop, SAC
2012, volume 7707 of Lecture Notes in Computer Science, pages 34–49.
Springer, 2012.

3. Y. De Mulder, K. Wouters, and B. Preneel. A privacy-preserving ID-based
group key agreement scheme applied in VPAN. In I. Cerná, T. Gyimóthy,
J. Hromkovic, K. G. Jeffery, R. Královic, M. Vukolic, and S. Wolf, editors,
37th Conference on Current Trends in Theory and Practice of Informatics,
SOFSEM 2011, volume 6543 of Lecture Notes in Computer Science, pages
214–225. Springer, 2011.

4. Y. De Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a perturbated
white-box AES implementation. In G. Gong and K. C. Gupta, editors,
INDOCRYPT 2010, volume 6498 of Lecture Notes in Computer Science,
pages 292–310. Springer, 2010.

5. Y. De Mulder, G. Danezis, L. Batina, and B. Preneel. Identification via
location-profiling in GSM networks. In V. Atluri and M. Winslett, editors,
7th ACM Workshop on Privacy in the Electronic Society, WPES 2008,
pages 23–32. ACM, 2008.

217

218 LIST OF PUBLICATIONS

National Articles

6. Y. De Mulder, J. Cappaert, N. Kisserli, N. Mavrogiannopoulos, and
B. Preneel. Perturbated functions: a new approach to obfuscation
and diversity. In 2010th Benelux Workshop on Information and System
Security, WISSec 2010, 11 pages, 2010.

7. Y. De Mulder, K. Wouters, and B. Preneel. Anonymous ID-based group
key agreement scheme applied in Virtual Private Ad Hoc Networks. In
3rd Benelux Workshop on Information and System Security, WISSec 2008,
14 pages, 2008.

Patent

8. P. Roelse and Y. De Mulder. Updating key information. WO 2013139380,
2013.

Others

9. Y. De Mulder, P. Roelse, and B. Preneel. Revisiting the BGE attack
on a white-box AES implementation. Cryptology ePrint Archive,
Report 2013/450, 2013. http://eprint.iacr.org/2013/450.pdf.

http://eprint.iacr.org/2013/450.pdf

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING (ESAT)

COMPUTER SECURITY AND INDUSTRIAL CRYPTOGRAPHY (COSIC)
Kasteelpark Arenberg 10, box 2452

B-3001 Heverlee

	I Introduction: from Black-Box to White-Box
	Introduction: the Need for White-Box Cryptography?
	White-Box Cryptography: a Use Case
	Digital Rights Management

	Outline and Contributions

	Design and Analysis of Block Ciphers: the Evolution
	Defining Block Ciphers
	Block Cipher Design
	Confusion and Diffusion
	Constructions

	Advanced Encryption Standard (AES)
	Specification
	Standard Software Implementation

	Security
	Perfect Security
	Computational Security
	Kerckhoffs' Assumption
	Cryptanalyst's Goal
	Attack Models
	The Unbounded White-Box Attacker

	Cryptanalytic Techniques
	Black-Box Cryptanalysis
	Grey-Box Cryptanalysis
	White-Box Cryptanalysis

	Conclusion

	II Design & Analysis of White-Box Implementations
	Design and Analysis of White-Box AES Implementations
	White-Box Cryptography
	Ideal White-Box Implementation

	Initial Practical White-Box Techniques
	White-Box AES Implementation
	Lookup-Table Suitable Description of AES-128
	White-Box AES-128 Implementation
	Remark on the Use of Mixing Bijections
	Extensions to AES-192 and AES-256

	White-Box Security
	White-Box Attacker's Goal
	White-Box Security Objectives
	White-Box Metrics

	Cryptanalytic Techniques
	Attacks on Weakened Variants
	The BGE Attack
	An Attack Exploiting Internal Collisions
	Generic White-Box Attack of Michiels et al.

	Conclusion and Outline of Part II

	Revisiting the BGE Attack
	Improving the BGE Attack
	Phases 1 and 2: Retrieve the round key bytes (r,j)i
	Phase 3: Retrieve the round key bytes (r+1,j)i
	Phase 4: Extract the secret AES key
	Phase 5: Extract the external encodings
	Work Factor and Conclusion

	Cryptanalysis of Karroumi's White-Box AES Implementation
	Karroumi's White-Box AES Implementation
	Cryptanalysis

	Conclusion

	Cryptanalysis of the Xiao-Lai White-Box AES Implementation
	The Xiao-Lai White-Box AES Implementation
	Linear Equivalence Algorithm
	Cryptanalysis
	Setup Phase
	Phase 1: Partially recover the input encodings
	Phase 2: Find the desired linear equivalence (A,B)d
	Phase 3: Extract the AES key and external encodings
	Work Factor

	The Generic Case
	Generic Cryptanalysis
	Work Factor

	What about Other Types of Encodings?
	Michiels et al.'s Generic White-Box Attack

	Conclusion

	Cryptanalysis of Bringer et al.'s White-Box AES Implementation
	Bringer et al.'s Novel White-Box Technique
	Perturbated White-Box AES* Implementation
	Cryptanalysis
	Setup Phase
	Phase 1: Analyze the final round
	Phase 2: Analyze the penultimate round
	Phase 3: Structurally decompose all rounds
	Phase 4: Extract an equivalent key
	Work Factor

	Conclusion

	State-of-the-Art and Q&A
	State-of-the-Art of White-Box AES Implementations
	Size and Performance
	Cryptanalytic Results

	Questions and Answers
	All white-box AES implementations in the academic literature have been proven insecure. Now what?
	All white-box implementations are fixed-key. What about dynamic-key?

	Conclusion

	III Conclusion
	Conclusions and Future Research
	Summary of Results and Conclusions
	Future Work

	IV Bibliography
	Bibliography
	List of Publications

