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Preface

Pursuing a PhD has been one of the greatest challenges I have undertaken so
far. Fortunately enough, I was not alone in this venture and I owe thanks to
many people that helped me get to this point. More than that: it has been
a privilege to work under the auspices of three very talented researchers and
well respected supervisors. Their expertise and their patience shaped the PhD
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the guidance, the support and the feedback throughout my PhD.

None of the other supervisors will hold it against me that I especially mention
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she provided me with excellent guidance and helped me to achieve a nice result.
Collaborating with her contributed to the build-up of my confidence and when
later on she invited me to join the CODeS research group, to pursue a PhD,
I was easily convinced. As the subject of my work started to take form and
the direction of health care operations was taken, she brought me into contact
with several hospitals that would follow-up my work. She provided me with the
environment and the network of people to bring this work to a good end. For
all that and much more: thank you, Greet.

The advisory committee and examination committee played important roles
during the preparation of this PhD. I was always stressed to present my work
and my findings to you as I saw it as an examination. However, time and
again it proved to be an opportunity to interact and to improve my research.
Thank you Jeroen Beliën, Dirk Cattrysse, Bart Demoen and Stefan Nickel,
for accepting to partake in these committees. Thank you Jean Berlamont for
chairing the examination committee.

Hospital operations are a complex matter. Even more so, not always do theory
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and practice intertwine. The hospitals AZ Alma in Eeklo, AZ Sint-Lucas in
Gent, and UZ Leuven, the university hospital of Leuven, provided me with
essential insights into the admission processes, along with indispensable feedback.
The provision of data has been invaluable. Therefore, thank you Dirk Bernard,
Johan De Baere, Fritz Defloor, Rudy Maertens, André Orban, Marc Van der
Weyde, Annabell Verhaegen, from AZ Alma; Tine van Langenhove, from AZ
Sint-Lucas; Christian Lamote, Pierre Luysmans, Philip Monnens, Bart Smeets,
Jo Vandersmissen, Nancy Vansteenkiste from UZ Leuven.

I am also very thankful to IWT, the Flemish agency for Innovation through
Science and Technology, for the grant awarded to do this research. IWT provided
me with a stable income for the past four years and the necessary funding to
do research and to present my work abroad at numerous conferences.

Part of my research took place abroad, during a research visit to the Politecnico
di Torino, the polytechnic university of Turin, Italy from mid October 2012 to
mid December 2012. I am very grateful to Federico Della Croce for inviting me
to collaborate with him and his colleagues Fabio Salassa, Andrea Grosso and
Michele Garraffa. I would like to thank all of them for showing me the Italian
hospitality, the country’s amazing culture and not to forget, great coffee.

Working for the CODeS research group meant in the first place being part of a
young and enthusiastic group of researchers, passionate about combinatorial
optimization and computer science. Luckily enough, it was not all computer
science: video and board game nights, table soccer matches, team building
activities and countless lunches and coffee breaks with vivid discussions, they
were all part of the game. In no particular order: thank you Tony, Jannes,
Pieter, Joris K., Jan C., Tulio, David, Thomas S., Eline, Thomas V.d.B. and
Evert-Jan. Our colleagues of the MSEC research group were never far away
and often joined in on the discussions. Thank you Vincent, Jan V., Faysal,
Koen D., Laurens and Michiel. Quite a few people left us in the last five years
to pursue careers elsewhere. I hope they are all doing well. Thank you Peter,
Katja, Joris M., Jorn, Koen V., Wouter, Tim, Burak, Mustafa, Murat, Mike
and Sam. Special thanks go to my colleague Erik Van Achter, for reviewing
and correcting my English texts.

Last but not least, I would like to thank my family and friends for their continued
support. My parents have always been there for me, believing that I could do
it even when I was much more pessimistic. They were especially worried if “I
wasn’t working too hard” when I was writing this dissertation. Fortunately
enough, my wife Sarah made sure that I was getting a stable vitamin supply
(fresh fruit juices every day) to keep me going. Thank you Sarah for standing
by me and supporting me in every possible way for all these years. Especially
during the past half year when I spent far too little time with you when I was
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writing this dissertation. Often she would find me still working on my text well
past midnight, when I should have been getting a good night’s sleep beside her.
However, this may have been a good training for what’s to come, as we are
expecting our first child to start keeping us awake from late April 2015 onwards.

Wim Vancroonenburg,
Ghent, January 2015.





Abstract

The present dissertation focuses on developing operational decision support
models and algorithms for hospital admission planning and scheduling. The
aim is to increase efficient usage of key hospital resources by supporting human
planners at hospital admission offices with automated tools for their daily and
weekly decision making. Three planning processes concerned with admission
scheduling of patients are considered: assignment of admitted patients to
hospital rooms, determination of admission dates for elective surgical patients,
and scheduling surgical cases in operating rooms.

The planning process of assigning patients to hospital rooms and wards is the
subject of two studies. Firstly, a reactive and an anticipatory decision support
model are presented for daily decision making on patient-to-room assignments.
It is shown that the anticipatory model is better than the reactive model under
various conditions. The reactive model can be seen as an idealized version
of current hospital practices, implying that current decision making can be
improved and efficient usage of a diverse set of hospital rooms can be increased.
Secondly, the Red-Blue transportation problem (Red-Blue TP) is introduced as
an abstraction of the patient-to-room assignment problem. A complexity and
computational study on the Red-Blue TP provide insights into the difficulty of
patient-to-room assignment planning under a gender separation policy.

The third and fourth studies concentrate on the admission scheduling process
and operating theatre scheduling process for surgical patients. For the admission
scheduling process, the aim is to support human planners in determining when
patients should be admitted such that expected operating theatre costs and
patient waiting time are minimized, while considering limited bed availability.
A stochastic optimization model and a heuristic algorithm are presented, that
serve as the basis for developing admission scheduling strategies. It is shown
that, when given sufficient planning flexibility, stochastic optimization models
may improve on deterministic decision models by considering the variance in
bed usage and operating theatre usage. However, this improved performance is
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vi ABSTRACT

at the expense of patient friendliness, quality of care and throughput.

Finally, for the operating theatre scheduling process, a general and flexible
decision support model is presented capturing many considerations encountered
in practice. It aims to support human planners in determining a schedule for
performing surgical cases in the operating theatre while considering a variety of
resources by means of a generalized resource model. Additionally, the model’s
objectives are to increase throughput and the efficient usage of the operating
theatre and its resources. A heuristic algorithm is developed to solve the model
which scales well with problem size.



Beknopte samenvatting

Deze verhandeling beschrijft de ontwikkeling van beslissingsondersteunende
modellen en algoritmen voor opnameplanning in ziekenhuizen op een operationeel
beslissingsniveau. Het beoogt de inzetting van de meest cruciale ziekenhuismidde-
len efficiënter te maken, door menselijke opnameplanners in hun dagelijkse taken
te ondersteunen met geautomatiseerde tools. In dit werk worden drie processen
beschouwd: het toewijzen van opgenomen patiënten aan ziekenhuiskamers en
afdelingen, het toekennen van opnamedata aan electieve chirurgische patiënten,
en het inplannen van chirurgische ingrepen in het operatiekwartier.

Het proces waarin patiënten worden toegewezen aan ziekenhuiskamers wordt
beschouwd in de eerste twee studies van deze verhandeling. In de eerste
studie worden een reactief en een anticipatief beslissingsondersteunend model
opgesteld voor het dagelijks toewijzen van patiënten aan ziekenhuiskamers. Een
computationele studie toont aan dat het anticipatieve model beter presteert
dan het reactieve, en dat dit blijft gelden in verschillende omstandigheden.
Dit impliceert dat het huidige plannen verbeterd kan worden, aangezien het
reactieve model als een geïdealiseerde versie van de huidige planningsaanpak
gezien kan worden. In een tweede studie wordt het Rood-Blauw transport
probleem geïntroduceerd als abstractie van het kamertoewijzingsprobleem. Aan
de hand van een studie van de complexiteit, alsook aan de hand van een
computationele studie, worden inzichten verworven betreffende de moeilijkheid
van kamertoewijzingsproblemen waarbij een genderrestrictie van toepassing is.

De laatste twee studies van de verhandeling hebben betrekking op het
bepalen van opnamedata en het inplannen van chirurgische ingrepen voor
chirurgische patiënten. In de opnameplanningsstudie is het doel om
opnameplanners te ondersteunen in het bepalen van opnamedata voor electieve,
chirurgische patiënten zodanig dat kosten in het operatiekwartier alsook
patiëntwachttijden kunnen worden geminimaliseerd. Hierbij moet echter
ook rekening worden gehouden met de beschikbare bedcapaciteit. Een
stochastisch optimalisatiemodel en een heuristisch algoritme worden beschreven
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voor dit probleem, die verder dienen voor de ontwikkeling van verschillende
opnameplanningsaanpakken. In een rekenexperiment wordt aangetoond dat,
indien de aanpak voldoende beslissingsvrijheid heeft, een stochastisch model
een meerwaarde biedt omdat het de variantie in bedbezetting en in bezetting
van het operatiekwartier beter kan inschatten. Echter, deze meerwaarde komt
ten koste van de patiënt, die op korte termijn kan opgeroepen worden voor de
opname en mogelijk langer moet wachten op de opname.

In de laatste studie van de verhandeling komt het planningsproces van
het operatiekwartier aan bod. Hiervoor wordt een algemeen en flexibel
beslissingsmodel ontwikkeld dat vele in de praktijk voorkomende aspecten in acht
neemt. Ook hier is het doel planners van het opnamekwartier te ondersteunen
bij hun dagelijkse taak van het inplannen van chirurgische ingrepen, waarbij
rekening moet worden gehouden met de beschikbaarheid van verschillende
actoren en middelen. Om de diversiteit van deze middelen te vatten wordt
een veralgemeend resource model voorgesteld. Het beslissingsmodel beoogt de
reguliere benutting van het operatiekwartier te verhogen en de middelen van het
operatiekwartier zo goed mogelijk in te zetten. Hiertoe wordt een heuristisch
algoritme ontwikkeld dat goed schaalt met de probleemgrootte.
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DRG Diagnosis related group

ED Emergency department

GDP Gross domestic product

ICU Intensive care unit
IP Integer programming

LAHC Late Acceptance Hill Climbing
LOS Length of stay
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Chapter 1

Introduction

1.1 Motivation and scope

Health care systems are facing incredible challenges. Over the past decades,
globally rising expenditures on health care have forced governments to re-
evaluate health care funding. In Belgium for example, health care spending
accounted for 8.5% of the gross domestic product (GDP) in 2002; in 2012, it
already accounted for 10.9% and it is still expected to increase [58]. To reduce
public spending on health care, budgetary pressure on hospitals has increased
significantly. At the same time, demand for hospital services has increased, due
to e.g. population ageing [24]. Hospitals are expected to perform more with
less resources. Hospital managers are thus constantly looking into new ways to
increase efficiency, whilst maintaining a high level of care.

Operations research and management science (OR/MS) as fields of study have
identified ample opportunities in health care systems to support decision making
and to improve efficiency. An increasing volume of literature on the subject
bears testimony of these opportunities. A recent overview of the literature on
OR/MS applied to health care services is given by Hulshof et al. [40]. Over 400
studies are cited, and the majority have only been published in the last decade.
Hulshof et al. present a taxonomy that classifies studies on two axes. On the
horizontal axis, studies are classified according to the health care service(s) they
apply to. Services that have been considered are: ambulatory care services,
emergency care services, surgical care services, inpatient care services, home
care services and residential care services. On the vertical axis, studies are
classified according to the level of detail and the time horizon of the decision
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making, ranging from strategic decision making that impacts over a long term,
to tactical decision making over a medium term, to offline and online operational
decision making on the short resp. real-time term.

Clearly, the application possibilities for OR/MS techniques in health care and
hospitals are broad. It is far beyond the scope of the present dissertation to
cover all. Rather, this dissertation zooms in on one fundamental process that
impacts hospital operations: the admission of patients. It is the very process of
admitting, and treating, patients that is an essential service of any hospital and
that generates revenue, costs and profit. Considerable resources, infrastructure
and staff are dedicated to providing this service and their efficiency is key in
order to keep operating costs under control. A great deal of planning, and the
consideration of several resources, is necessary in order to achieve this goal.

Within the taxonomy of Hulshof et al. [40], the admission process can generally
be located in the inpatient care services category, as by definition an inpatient
is an admitted or hospitalized (staying for minimum 1 night) patient. The
primary resources that are under consideration are hospital wards, care units,
their bed capacity and personnel. However, the admission process also touches
other service categories such as surgical care services, as surgery is a major
causal factor for patient admission.
With respect to the vertical decision levels, admission planning decisions are
made on all levels. At the highest, strategic decision and planning level, capacity
(e.g. infrastructure, beds, personnel) is allocated to different medical services
and disciplines based on case-mix decision making and projections of demand
and possible profit. At the tactical decision level, the organization of the capacity
allotted to different medical services is handled for the mid term. Well studied
examples are the decision on personnel rosters that meet staffing requirements
for the upcoming month(s) and the development of admission control schemes
that aim for timely access for patient groups and maximal occupancy, whilst
cancellations and misplacements are minimized. Finally, at the operational
decision level, decisions are made on what individual patient admissions are
planned, and what tasks personnel must perform. More important, with respect
to admissions, the decision is made on when individual patients are admitted,
but also where (in which ward and room).

Figure 1.1 shows a general scheme of the admission process and patient
flow. The admission process generally considers three types of admission
flows: planned or elective admissions, unplanned patients entering through the
emergency department (ED), and finally outpatients requiring admission. The
first major flow is the ‘normal’ flow of patients, having previously visited a
physician or specialist and who were called in for admission or had a booked
admission to undergo a treatment. The second major flow is the emergency
flow of patients, who entered the hospital through the ED and, after triage and
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Figure 1.1: Scheme of the admission process and patient flow applicable to
patients requiring surgery. (A),(B),(C): points considered for operational
decision support. A: admission planning for elective surgical patients; B:
Patient-to-room assignment planning; C: Operating theatre scheduling.

application of primary care, were determined to be admitted to the hospital. The
third, rather minor, flow is that of outpatients. Outpatients are those patients
that have undergone treatment in the hospital’s ambulatory facilities (i.e. for
treatments not requiring an overnight stay). Due to a longer than expected
recovery process, or complications, these patients are sometimes admitted for
further recovery or treatment (and thus become inpatients).

Upon admission, any of these patient types requires a bed to stay in and is
admitted to a room. Typically, this will be in a nursing ward, but for severe cases
an intensive care unit (ICU) is used. During the hospitalization, a patient may
be transferred between several wards and care units depending on availability
and medical requirements, before the patient ultimately exits the hospital (by
discharge, referral, or regrettably, by death).
Figure 1.1 also shows the interaction with the operating theatre (OT)1. As
noted by van Oostrum et al. [74], as high as 60% of hospital admissions may be
surgery related. The OT is a key resource in any hospital and is considered to
be the largest cost and revenue center [13]. Therefore, one cannot disregard the
OT when looking at the admission process.

1In this dissertation the term ‘operating theatre’ is used to denote the general unit where
surgeries are performed, comprising several operating rooms and supporting facilities.
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This dissertation focuses on the development of computational models and
algorithms that may provide decision support for the admission process at the
operational decision level. Three points of decision support are considered, shown
in Figure 1.1 by points (A), (B) and (C). In (A), the operational scheduling of
hospital admissions is considered, determining when elective patients should be
admitted. Two key capacity-constrained resources are considered: the available
number of beds in nursing wards, and the available operating theatre capacity.
In (B), the operational planning of patient-to-room assignment is considered.
Rather than assigning patients to wards, this planning process considers to what
rooms patients are admitted, in order to maximize patient care and comfort.
Finally in (C), the operational scheduling of the operating theatre is considered.
This scheduling process is more fine grained, determining daily schedules for
the operating theatre such that a given set of surgeries can be performed within
availabilities of the OT and all related resources (surgical team, equipment).

The main research questions for these applications are: Can these processes be
planned more efficiently using decision support models and algorithms? and
How does this impact the quality-of-care?

1.2 Structure of the dissertation

The dissertation builds on the results of four studies that were made on the
processes described in the previous section. The sequence in which they are
presented follows the chronology in which these studies were performed.

Chapter 2 starts with the discussion on the patient-to-room assignment (PA)
planning process. The PA process has had the focus at the onset of this doctoral
study due to earlier work of the author in which the PA process is studied in
an offline decision making setting. In the present study, it is studied in an
online decision making setting. The main discussion is on the comparison of two
planning approaches: a reactive approach that only considers new admissions
on a day-by-day basis, and an anticipative approach that also considers future,
but planned, arrivals. A computational study shows that the latter is clearly
beneficial, and computationally tractable.

Chapter 3 focuses on the computational complexity of the PA problem, and in
particular on the gender separation policy. At the onset of the PA problem study,
the complexity status of the problem was still open. This chapter abstracts the
PA problem to a transportation problem in which a partitioning of the supply
nodes into two sets is considered, and between which exclusionary constraints
are imposed. This abstract problem serves as the basis for a complexity study,
the formulation of different mixed integer programming models and a study
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of approximation algorithms for a maximization variant. A key result is the
resolution of the PA complexity status, being NP-Hard.

Chapter 4 discusses a robust admission scheduling model for elective surgical
patients in an online scheduling setting. The model considers a chance
constrained bed usage formulation to constrain the risk of bed shortages in
surgical wards. A sample average approximation of this stochastic model is
presented, that is solved by a local search approach. This approximation model
is used in different admission scheduling strategies, that are compared with
each other and with other scheduling strategies in a computational study.

Chapter 5 provides an insight into operating theatre scheduling. A rich multi-day
surgical case scheduling problem is presented that considers generalized resource
constraints and desiderata from the surgical staff. The aim is to schedule as
many surgical cases in as few operating theatres as possible, within regular
operating theatre opening hours and under limited resource availability. The
problem description and data were provided in the context of an IWT research
project with a software company developing a software solution for operating
theatre planning and scheduling. A heuristic algorithm is presented to solve
this rich problem formulation and it is tested on a set of real-world data. The
results are compared to surgical plans made by manual planners. The final
goal of this study is the inclusion of the algorithm into the company’s software
application.

Finally, Chapter 6 summarizes the main contributions of this dissertation and
gives some directions for future research.





Chapter 2

Patient-to-room assignment
planning in an online setting

Every day, many patients are admitted to hospitals to undergo medical
diagnosing, testing and treatment. Their admission was either planned
beforehand or was the result of a request for admission from the emergency
department or from ambulatory care services. Either way, upon admission every
patient requires a room and a bed to stay in until treated, and to recover after
treatment. The task of bed managers at the admission office, or possible nursing
staff at nursing wards, is to determine to which wards and to which rooms and
beds these patients are admitted. Different criteria are considered and it is
difficult to find the best arrangement.

This chapter discusses the patient-to-room assignment planning process in such
a daily planning setting. To this end, an extension of the patient assignment
(PA) problem formulation as defined by [21] and further formalized by [15] is
proposed, for which two online mixed integer linear programming-models are
developed. The first model targets the optimal assignment for newly arrived
patients, whereas the second also considers future, but planned, arrivals. Both
models are compared on an existing set of benchmark instances from the PA
planning problem, which serves as the basic problem setting. These instances are
then extended with additional parameters to study the effect of uncertainty on
the patients’ length of stay, as well as the effect of the percentage of emergency
patients. The results show that the second model provides better results under
all conditions, while still being computationally tractable. Moreover, the results
show that pro-actively transferring patients from one room to another is not
necessarily beneficial.

7
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This chapter is a minor adaptation of W. Vancroonenburg, P. De Causmaecker,
and G. Vanden Berghe. A study of decision support models for online patient-
to-room assignment planning. Annals of Operations Research, 2013. doi:
10.1007/s10479-013-1478-1 . Available online. [78]

2.1 Introduction

Rooms and beds belong to the critical assets of any hospital since they account
for a considerable part of a hospital’s infrastructure. A large amount of financial
resources are invested in equipping them with medical apparatus to facilitate
patient care. Moreover, they also represent the place where most patients will
spend the largest part of their stay, as they recover from surgery or treatment,
wait for examinations to take place, etc. In order to improve their comfort,
patients are offered a choice between double bed rooms, single bed rooms, luxury
rooms with private showers, and other conveniences. As a result, many hospitals
provide a large variety of rooms in terms of capacity, medical apparatus and
amenities. Assigning patients to rooms and meeting their medical requirements
and personal preferences can therefore be challenging, necessitating an efficient
plan for making such assignments.

Bed managers at admission offices aim at finding assignments that strike
a balance between patients’ preferences and comfort, and patients’ clinical
conditions and the resulting required room facilities. However, the availability
of rooms and equipment needs to be considered, as well as hospital policies,
organisation and standards, complicating decision making. A lack of overview
on occupied beds and the uncertainty on how long patients will stay in the
hospital, further complicate the matter.
For example, patients are preferably admitted to a room and bed in a ward
that is managed by the medical discipline the patient’s pathology belongs to.
However, due to high occupancy at this unit a bed may not be available, thus
requiring the patient to be admitted elsewhere. In addition, many hospitals
employ a gender separation policy, prohibiting male and female patients to be
assigned to the same room at the same time. Therefore, a male patient may still
be admitted in a different unit even if there is availability, if all available rooms
are already partially occupied by female patients. On the other hand, these
female patients may be transferred and grouped in a room, thus freeing a room
for admitting a male patient. However, patient transfers also require nursing
staff to move patients (and their belongings) and adds to their workload. Such
trade-offs occur frequently and must be dealt with swiftly.

Demeester et al. [21] defined and studied the patient assignment (PA) problem in
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the context just described. They consider a set of patients, each with individual
characteristics, who arrive at a hospital over a certain period of time. The
hospital comprises a set of rooms, each with a given capacity and characteristics.
The problem is to find an effective assignment of patients to rooms, satisfying
room capacity restrictions. Moreover, a perceived cost is associated with each
patient-to-room assignment relating to the appropriateness of this assignment
(which may also depend on the assignment of other patients). The objective is
to minimize the total cost of these assignments. This chapter focuses on the
PA problem.

2.1.1 Related work

The PA problem considered by Demeester et al. [21] comprises an assignment
problem that occurs at the operational level of hospital admission offices. It
assumes that patients have already been attributed an admission date, a decision
that is made as part of either an advance scheduling process (see Chapters 4
and 5) during operational surgery scheduling, or an appointment/treatment
scheduling process when no surgery is required. Demeester et al. introduced
the PA problem – only recently – to the academic community as a challenging
combinatorial optimization problem. In a follow up paper, Bilgin et al. [7]
presented a new hyper-heuristic algorithm to the PA problem, providing new
benchmark instances and reporting test results. Vancroonenburg et al. [79]
showed that the PA problem is NP-hard. This work is covered in Chapter 3.

The PA problem was also studied by Ceschia and Schaerf [15], who developed
a Simulated Annealing algorithm that improves on the best known results by
Bilgin et al. [7] for the benchmark instances. Lower bounds for these instances
are provided as well. Interestingly, Ceschia and Schaerf argue that the problem
definition only assumes patients that are planned in advance (elective patients),
and that it does not capture the dynamics of uncertainty on patient arrivals
and departures. An extension to the problem definition is proposed where
patient admission and discharge dates are revealed a few days before they occur
(denoted as the forecast level). To this end, Ceschia and Schaerf developed a
dynamic version of their algorithm that can be used for day-to-day scheduling.
The performance of this algorithm is analysed under an increasingly larger
forecast level. Ceschia and Schaerf [16] continued their efforts in developing a
dynamic version of the PA problem formulation, also considering registration
dates, the possibility of delaying patients, and minimizing the risk of room
overcrowding.
Range et al. [65] presented a column generation approach to the PA problem.
They were able to find tighter lower bounds for the benchmark instances than
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those presented by Ceschia and Schaerf [15]. In addition, their approach is able
to find new best known solutions.

Other related studies have also studied patient-to-room assignment problems,
though not specifically the formulation by Demeester et al. [21]. Mazier et al.
[55] presented a real-time patient assignment method, assigning both elective
patients and incoming patients from the emergency department. Their aim
was to reduce waiting time of emergency patients to admission to a ward
bed, without disrupting inpatient stays too much. A simulation study shows
that they reached their goal, reducing the number of patient transfers and
having a low waiting time. Furthermore, they compared a to-room assignment
formulation with a to-ward assignment formulation, showing that the latter is
computationally more tractable.
Thomas et al. [72] presented a comprehensive decision support system for
hospital-wide patient-to-bed assignments. This support system considers all
aspects mentioned above, as well as staffing considerations (specifically, nurse-
to-patient ratios). Interestingly, it does not consider patients’ length of stay.
Thomas et al. showed that their support system was effective in automatically
providing bed assignments to more than 90% of the bed requests, and a reduction
in waiting time was observed for emergency department patients to be assigned a
ward bed. Validation with bed management staff confirmed that the automated
bed assignments were satisfactory.

With respect to patient admission scheduling (i.e. also considering determination
of the admission date), problem settings and decision support systems
considering bed/room assignment issues, such as gender separation policies,
room preferences, have received – recently – increasing attention in literature.
Bachouch et al. [2] presented a hospital bed management problem where patient
admissions are scheduled, considering no-mixed gender rooms, isolation of
contagious patients in single rooms or alone in double rooms, incompatibilities
between pathologies, etc. Bachouch et al. developed a mixed integer
programming formulation of the problem and applied both free and commercially
available solvers.
Schmidt et al. [67] presented an admission scheduling approach that considers
the availability of room preferences as well as the distinction between rooms for
male and female patients. The problem is studied in a dynamic setting, with
consideration of adaptable length of stay estimates. An integer programming
model of the problem is presented and an exact approach is compared with
heuristic strategies in a simulation study.

In a more general consideration of related work, the PA problem where patient
transfers are not allowed, is related to the interval scheduling problem: patients
can be represented by fixed length intervals (i.e. jobs with fixed start and end
time) that need to be assigned to a machine (a room) for ‘processing’. The
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PA problem comprises required jobs and non-identical machines with different
capacities, the goal being to find a minimum-cost schedule subject to side-
constraints. In a dynamic context, it constitutes an online interval scheduling
problem with uncertainty on the interval lengths. In the case where patients are
allowed to be transferred from one room to another, the problem can be seen as
an interval scheduling problem which permits pre-emption of jobs. Kolen et al.
[46] provide a review on the subject of (online) interval scheduling problems.
However, a critical difference with the interval scheduling problem is that the
PA problem also includes costs which are directly related to sets of patients
being assigned to the same room (gender conflicts, see Section 2.2), in contrast
to the costs related to a single patient-room assignment. This already makes the
problem hard (see Chapter 3), for a single time-unit instance (which effectively
drops the notion of intervals).

2.1.2 Contribution

The present study was motivated by the work in [15]. This study complements
the work by Ceschia and Schaerf [16], who discuss the PA problem in a dynamic
context. We similarly define a new extension to the PA problem in a dynamic
context. To this end, registration dates for each patient are added to the problem
definition signalling a patient’s possible future arrival time. This contrasts with
the approach of defining an absolute forecast level [15], which assumes that all
patient arrivals within the forecast level are known. Such an approach does not
allow accurate modelling of emergency patients.

Moreover, the present study makes a more general assumption on the patients’
length of stay (LOS). Only the availability of an estimate on each patients’ LOS
is assumed, which in practice is often the case (either by historical data, or the
physician’s estimate). However, this requires to make adjustments to previous
decisions when patients outstay their estimated LOS (and thus room-assignment
collisions occur). This contrasts with the work by Ceschia and Schaerf [16], who
model this issue as a static overcrowd risk that should be avoided. The effect
of replanning patients on the solution quality is not considered. The question
remains how to address this, should it occur. In our study, special care is taken
to accommodate this specific decision process.

This dynamic version of the problem is modelled and solved using Integer Linear
Programming (ILP). The performance of this approach is discussed and the
effect of the percentage of emergency cases and the accuracy of the LOS estimate
is studied. It is shown that taking into account information on future, but
registered, arrivals allows for improved decision making, even in the presence of
emergency arrivals and inaccurate LOS estimates.
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2.2 Problem definition

2.2.1 Patient-to-room assignment in a static context

The PA problem as described by Demeester et al. [21] considers a set of patients
P that each need to be assigned to one of a set of hospital rooms R over
a certain planning horizon H = {1, . . . , T} (typically over 1-2 weeks). Each
room r ∈ R has a given capacity, denoted by c(r). Each patient p ∈ P is
attributed an arrival time a(p) and a departure time dd(p), with the time
interval Hp = {t ∈ H : a(p) ≤ t < dd(p)} representing the patient’s stay in the
hospital. The length of the patient’s stay, dd(p) − a(p) = |Hp|, is denoted as
los(p).

The problem is to find an assignment σ : P ×H 7→ R of patients to rooms, for
each time unit of their stay, that minimizes a certain cost w(σ) related to these
assignments. This cost w(σ) consists of three parts:

• Total patient/room assignment cost: each patient/room combination can
be judged based on different criteria:

– Is the unit in which the room is located suited for treating the
patient’s pathology (i.e. does it have the right specialism)?

– Does the patient’s age violate any age restriction imposed in certain
units (e.g. paediatric and geriatric units).

– Is the room suitably equipped for treating the patient’s pathology?
– Does the room meet the patient’s room preferences (e.g. is it a single

room, if requested)
– Does the patient need to be quarantined in a single room?
– . . .

Demeester et al. define several of these considerations that each are
penalized (with specific weights for each criterion) in the objective function.
Ceschia and Schaerf [15] note that all of these penalties can be ‘compiled’
in a penalty-matrix c(p, r) (lower is better). This approach was adopted in
this study. Therefore, the goal is to minimize the sum of these assignment
costs, where each individual cost is weighted by the LOS of a patient.

Min w1(σ) =
∑
p∈P

∑
t∈Hp

los(p) · c(p, σ(p, t)) (2.1)
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• The total number of gender conflicts: one penalty that cannot be modelled
by the penalty matrix c(p, r) is the gender separation constraint. This
constraint states that in some rooms (which are denoted ‘dependent’ by
Demeester et al., denoted RDEP ⊆ R), either male or female patients may
be admitted; however, no male and female patient should be admitted
to the same room at the same time. Therefore, the goal is to avoid such
gender conflicts:

Min w2(σ) =
∑

r∈RDEP

T∑
t=1

Conflictσrt (2.2)

with:

Conflictσrt = min( |p ∈ Pσrt : p is male|,

|p ∈ Pσrt : p is female|) (2.3)

denoting the minimum number of patients that must be moved in order
to solve the gender conflict, and:

Pσrt = {p ∈ P : a(p) ≤ t < dd(p), σ(p, t) = r} (2.4)

denoting the set of patients assigned to room r at time t by assignment σ.

• The total number of patient transfers: The PA problem formulation also
allows patients to be transferred from one room r to another room r′

during their stay, if this is beneficial or necessary. Examples where this
may be the case are: upgrading a female patient if all available rooms are
partially occupied by male patients, downgrading a patient from a single
bed room to a double bed room when another patient needs isolation, etc.
Transfers also cause grievances for patients and additional workload for
the nursing staff. Thus, transfers from one room r to another r′ should
also be minimized:

Min w3(σ) =
∑
p∈P

∑
t∈Hp\{a(p)}

Transferσpt (2.5)

with

Transferσpt =
{

1 if σ(p, t− 1) 6= σ(p, t),
0 otherwise.

(2.6)

The complete objective can then be expressed as follows:

Min w(σ) = w1(σ) + wG · w2(σ) + wTr · w3(σ) (2.7)
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with wG, wTr weights denoting the relative importance of gender conflicts and
transfers. Finally, the assignment σ should respect the room capacities at all
times, i.e. :

∀t = 1, . . . , T, r ∈ R : |Pσrt| ≤ c(r) (2.8)

2.2.2 Extension to an online, dynamic context

In practice, the arrivals and departures of patients are gradually revealed
over the planning horizon. The present contribution therefore extends the
problem definition to account for these dynamics. Each patient p is attributed a
registration date r(p), at which point the patient becomes known to the system,
and an expected departure date, ed(p), which is an estimate of the patient’s
departure date. The actual departure date of the patient, dd(p), however
remains hidden until it has passed.

The dynamic problem definition requires a new problem to be solved at each
t′ ∈ H (i.e. at the start of each day) where the following information is available:

• Pt′ : the set of patients with r(p) = t′, i.e. the patients that are registered
at time t′. At this point, only a(p) and ed(p) are known for each patient
p ∈ Pt′ , dd(p) remains hidden.

• DPt′ : the set of patients with dd(p) = t′, i.e. the patients that leave the
hospital at time t′.

as well as the information in P1, P2, . . . , Pt′−1 and DP1, DP2, . . . , DPt′−1. Let
At′ denote the set of patients that arrived at t′, i.e. :

At′ = {p ∈ P : a(p) = t′} (2.9)

The goal of the problem is to find at each time t′ an assignment

σt′ :

 t′⋃
i=1

Ai

× {1, . . . , t′} 7→ R (2.10)

that maps each arrived patient p (i.e. all p for which a(p) ≤ t′) to a hospital
room r, for each time unit of their individual stay up till t′. Obviously, the
assignment σt′ should still respect room capacity at all times. The following
condition should also hold:

∀p ∈

t′−1⋃
i=1

Ai

 , t ∈ [a(p), t′ − 1[: σt′(p, t) = σt′−1(p, t) (2.11)
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i.e. the new assignment σ′t should respect decisions made at times 1, . . . , t′ − 1.

The assignment σT denotes the solution at the end of the planning horizon. It
contains all the patients’ assignments within that period. The solution quality
can be assessed by computing w(σT ), which is again the sum of patient-to-room
assignment costs, gender conflicts over the entire planning horizon, and finally
patient transfer penalties. It is interesting to compare this value with the quality
obtained for the static variant of the problem, which assumes that each patient’s
departure date is fixed in advance. Any lower bound for the static version is a
lower bound for the dynamic problem, and thus is an indication of what can be
achieved when all information is known a priori.

2.3 Optimization models

We developed two models for the dynamic PA planning problem that correspond
with the decision that must be made at time t′, that is: give a new assignment
of patients to rooms considering the current situation.

The first model is modelled after current practice, namely the assignment
decision is made shortly before patient arrival and only current room availability
is considered. The model tries to find the optimal assignment for the patients
who arrived at t′. Moreover, it uses the estimate of the newly arrived patients’
LOS. If any admitted patient stays longer than expected (i.e. ed(p) ≤ t′ and
p 6∈ DP1, DP2, . . . DPt′), it is assumed that the patient stays at least one time
unit longer.

The second model builds on the previous model by also considering all registered
patients at each t′, therefore anticipating future occupancy and room demand.
This approach can be seen as an online algorithm with lookahead: the model
is aware of future arrivals. Dunke [23] studies online optimization with
lookahead, providing a modelling framework and presenting both theoretical
and experimental results on different case studies. Dunke concludes that
an overall positive effect can be observed when lookahead is introduced for
online algorithms. However, this effect is also dependent on key problem
characteristics such as: the allowance to take advantage of lookahead; the
degree of freedom for the online algorithm; the possibility of making bad
decisions; the performance quality gap between online and offline (post-hoc)
algorithms. Such characteristics will be studied in the computational study in
Section 2.4.

Both models are implemented as Mixed Integer Linear Programming models.
They are described in Sections 2.3.1 and 2.3.2. In order to simplify the
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description, the following notation will be used:

• Pt′ =
⋃t′
i=1 Pi\

⋃t′
i=1DPi, the set of all registered patients, that have not

yet left the hospital, up to (and including) t′,

• At′ =
⋃t′
i=1Ai\

⋃t′
i=1DPi, the set of all arrived patients, that have not

yet left the hospital, up to (and including) t′,

• superscript M , F , restrict a set of patients P to either males or females
respectively,

• elos(p) = max (ed(p), t′ + 1) − max (a(p), t′), the remaining, expected
length of stay of patient p as it is known at decision time t′. If the
patient’s stay has exceeded his or her expected departure date ed(p), he
or she is expected to stay at least one time unit longer.

• APtt′ = {p ∈ At′ : t′ ≤ t < max (ed(p), t′ + 1)}, the set of arrived
patients that are expected to be present at time t (t ≥ t′),

• PPtt′ = {p ∈ Pt′ : t′ ≤ t < max (ed(p), t′ + 1)}, the set of registered
patients that are expected to be present at time t (t ≥ t′).

• Transfert′pr =
{

1 if σt′−1(p) 6= r (i.e. patient p is moved on day t′),
0 otherwise.

• MaxCliquet′(P ), the set of subsets of P, whose intervals, starting from
t′, form maximal cliques in the corresponding interval graph. We refer to
Section 2.3.1 for more information.

2.3.1 Model 1: reactive assignments

The decision variables are defined as follows:

xp,r =
{

1 if patient p is assigned to room r,
0 otherwise.

(2.12)

vr,t = the number of gender conflicts in room r at time t (2.13)

yr,t =


1 if the number of male patients assigned to room r

at time t is larger than or equal to the number of
female patients,

0 otherwise.

(2.14)
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The optimization problem is then modelled as follows:

Min
∑
p∈At′

∑
r∈R

(elos(p) · c(p, r) + wTr · Transfert′pr) · xp,r

+
∑

r∈RDEP

T∑
t=t′

wG · vr,t (2.15)

subject to:∑
r∈R

xp,r = 1 ∀p ∈ At′ (2.16)

∑
p∈Pc

xp,r ≤ c(r) ∀r ∈ R,Pc ∈MaxCliquest′(At′) (2.17)

∑
p∈APM

tt′

xp,r ≥ vr,t ∀r ∈ RDEP , t = t′, . . . , T (2.18)

∑
p∈APF

tt′

xp,r ≥ vr,t ∀r ∈ RDEP , t = t′, . . . , T (2.19)

∑
p∈APM

tt′

xp,r ≤ vr,t + c(r) · yr,t ∀r ∈ RDEP , t = t′, . . . , T (2.20)

∑
p∈APF

tt′

xp,r ≤ vr,t + c(r) · (1− yr,t) ∀r ∈ RDEP , t = t′, . . . , T (2.21)

xp,r ∈ {0, 1} ∀p ∈ At′ , r ∈ R

vr,t ≥ 0 ∀r ∈ RDEP , t = t′, . . . , T

yr,t ∈ {0, 1} ∀r ∈ RDEP , t = t′, . . . , T

The model describes an assignment problem minimizing the expected cost of the
newly arrived patients (Expression 2.15). Constraint (2.16) specifies that each
arrived patient has to be assigned to a room, while constraint (2.17) expresses
that room capacity should be respected for all maximal cliques in the interval
graph corresponding to At′ (see below for more information). Constraints
(2.18), (2.19), (2.20), and (2.21) relate the variables vr,t and yr,t, forcing vr,t to
take on the expected value of the minimum number of either males or females
in room r at time t.
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P3

P2

P1

t1 2 3 4 5 ...

P4

P5

0

Figure 2.1: An example showing five patient intervals (patient stays) for which
the capacity should be enforced. Implementing capacity constraints for this
situation can be done more efficiently by generating a constraint for the max-
clique of the corresponding interval graph, rather than imposing a capacity
constraint for t = 1, 2, . . . , 6.

Using maximal cliques for room capacity

At any given time t, the room capacity constraint needs to be respected.
A straightforward way to implement this constraint is to add the following
expression to the model:∑

p∈APtt′

xp,r ≤ c(r) ∀r ∈ R, t = t′, . . . , T (2.22)

However, this is a fairly inefficient way of implementing this constraint as the
following example shows. Consider the patient intervals (patient stays) shown
in Figure 2.1. For any given room r with capacity c(r), the following constraints
would be imposed using formulation (2.22):

x1,r + x2,r + x3,r ≤ c(r) t = 0 (2.23)

x1,r + x2,r + x3,r ≤ c(r) t = 1 (2.24)

x2,r + x3,r + x4,r ≤ c(r) t = 2 (2.25)

x2,r + x4,r + x5,r ≤ c(r) t = 3 (2.26)

x4,r + x5,r ≤ c(r) t = 4 (2.27)

x4,r ≤ c(r) t = 5 (2.28)
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P1

P2

P3

P4

P5

Figure 2.2: The interval graph corresponding to the intervals in Figure 2.1.

It is clear that (2.23)-(2.24) are identical, and (2.27) and (2.28) are already
implied by (2.26). A more efficient way of implementing this constraint would
be as follows:

1. Construct an interval graph based on the intervals from a given subset of
patients P ′. An interval graph is a graph G(V,E) where each vertex v ∈ V
corresponds to an interval (in this case the interval of a patient p ∈ P ′).
The edge set is given by E = {{v1, v2}|v1, v2 ∈ V ∧ v1 overlaps v2}, i.e.
there is an edge between two vertices v1, v2 if their corresponding intervals
overlap. Figure 2.2 shows the interval graph corresponding to the example
in Figure 2.1.

2. Enumerate all maximal cliques from this interval graph. A clique C is
a subset of vertices (C ⊆ V ), such that ∀vi, vj ∈ C ⇒ {vi, vj} ∈ E,
i.e. a clique is a subset of nodes which are pairwise directly connected.
The maximal cliques of G are all cliques C for which C ∪ {v′}, with
v′ ∈ V \C, does not form a clique. That is, maximal cliques1 are cliques of
maximal cardinality and can not be expanded by adding any node from
V not in C. The maximal cliques of the interval graph in Figure 2.2 are
{p1, p2, p3},{p2, p3, p4} and {p2, p4, p5}.

3. For each room r ∈ R, and each maximal clique Pc (corresponding to a
clique C in the interval graph), construct a capacity constraint:∑

p∈Pc

xp,r ≤ c(r) (2.29)

1Note that the notion of a maximal clique differs from a maximum clique. A maximum
clique is the largest cardinality clique that can be found in a graph.
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In the example, the following constraints are constructed:

x1,r + x2,r + x3,r ≤ c(r) for clique {p1, p2, p3} (2.30)

x2,r + x3,r + x4,r ≤ c(r) for clique {p2, p3, p4} (2.31)

x2,r + x4,r + x5,r ≤ c(r) for clique {p2, p4, p5} (2.32)

which are identical to resp. (2.23), (2.25) and (2.26)

Consider these maximal cliques to correspond with the maximal subsets of
patients from P ′ present in the hospital at any given time. Thus, to enforce
that room capacity is respected, it is sufficient to enforce that for each of these
subsets no more than c(r) patients may be assigned to a room r, ∀r ∈ R. As
these cliques are maximal, any smaller clique of these patients that may be
present at a later time, is already implied by the constraint for the maximal
clique.

Enumerating the maximal cliques of an interval graph can be done in polynomial
time. Krishnamoorthy et al. [47] describe such an algorithm, which is the
algorithm that was implemented for this work. We truncate the start of the
intervals, corresponding to patients in P ′, such that the decision time t′ is the
smallest time considered. That is:

∀p ∈ P ′ : H ′p = {t ∈ H : max (a(p), t′) ≤ t < dd(p)} (2.33)

In this way, the capacity constraint is checked only from t′ onwards, and thus
ensures that the resulting constraints properly allow transfers of patients.

The maximal clique model requires fewer constraints than the former one. We
compared the two formulations (with and without the maximal clique version
of the capacity constraint) of this model on a set of instances, based on instance
5 of the test set (refer to Section 2.4.1 for more details on the experimental
setup). In this setting, the total number of constraints generated by the model
(for solving the first decision problem, at t′ = 0) was reduced from 5939 to 4885
(averaged over 300 models generated), a reduction by 17.7 %.

2.3.2 Model 2: anticipatory assignments

The second model defines the same decision variables as Model 1, but it differs
in the set of patients for which they are defined. The xp,r variables are defined
for all arrived patients At′ in the first model, whereas they are defined for all
registered patients Pt′ in the new model. Another difference is that patients



OPTIMIZATION MODELS 21

can be assigned to a dummy room, denoted as ⊥. Only registered patients
who have not arrived (p ∈ Pt′\At′) are allowed in this dummy room, so as to
ensure feasibility of the model under an expected, future undercapacity. These
assignments are attributed a high cost c(p,⊥) in such a way that the model
gives priority to a real assignment for each future arrival. Finally, the model
also does not require that the assignment for registered, not-arrived patients
takes on an integer value. Therefore, the model takes into account a lower
bound on the assignment cost for these patients, which speeds up calculations
while still allowing for an informed decision on the current assignments.

The model is defined as follows:

Min
∑
p∈Pt′

∑
r∈R∪⊥

(elos(p) · c(p, r) + wTr · Transfert′pr) · xp,r

+
∑

r∈RDEP

T∑
t=t′

wG · vr,t (2.34)

subject to:∑
r∈R∪⊥

xp,r = 1 ∀p ∈ Pt′ (2.35)

∑
p∈Pc

xp,r ≤ c(r) ∀r ∈ R,Pc ∈MaxCliquest′(Pt′) (2.36)

∑
p∈PPM

tt′

xp,r ≥ vr,t ∀r ∈ RDEP , t = t′, . . . , T (2.37)

∑
p∈PPF

tt′

xp,r ≥ vr,t ∀r ∈ RDEP , t = t′, . . . , T (2.38)

∑
p∈PPM

tt′

xp,r ≤ vr,t + c(r) · yr,t ∀r ∈ RDEP , t = t′, . . . , T (2.39)

∑
p∈PPF

tt′

xp,r ≤ vr,t + c(r) · (1− yr,t) ∀r ∈ RDEP , t = t′, . . . , T (2.40)

xp,⊥ = 0 ∀p ∈ At′ (2.41)

xp,r ∈ {0, 1} ∀p ∈ At′ , r ∈ R∪ ⊥

0 ≤ xp,r ≤ 1 ∀p ∈ Pt′\At′ , r ∈ R∪ ⊥
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vr,t ≥ 0 ∀r ∈ RDEP , t = t′, . . . , T

yr,t ∈ {0, 1} ∀r ∈ RDEP , t = t′, . . . , T

The objective of the model, expression (2.34), is again to minimize the
total assignment cost, including minimizing any possible dummy assignments.
Constraints (2.35) specify that each arrived and registered patient should be
assigned to one room, allowing for dummy assignments for future arrivals.
Constraints (2.36) - (2.40) are similar to their counterparts in Model 1, this
time also considering future arrivals. Constraint (2.41) ensures that arrived
patients are not assigned to dummy rooms.

2.4 Computational study

2.4.1 Experimental setup

The anticipative model distinguishes itself from the reactive model by including
lookahead. However, this lookahead is not complete: urgent admissions and
patient departures are not known beforehand. In addition, a first-come first-
served admission policy is not necessarily in effect. An elective patient that
registered later than another patient may still be admitted earlier than that
patient. Therefore, the possibility of adverse effects (bad decisions) when
planning anticipatively is real.

To thoroughly test the reactive model and the anticipative model, the following
problem factors were considered:

• Accuracy of the length of stay estimate: the length of stay estimate
determines how well we can estimate the assignment cost (c(p, r) · los(p))
of patients. The worse the estimate is, the higher the chance of making
bad decisions.

• Emergency versus planned cases: if more patients are admitted without
an earlier registration (i.e. admissions from the emergency department),
flexibility is reduced and the chance of making bad decisions is higher.

• Occupancy: if occupancy is high, flexibility of assigning patients to rooms
will be reduced.

In addition, we investigated whether or not allowing patient transfers in the
model has a large impact on the final solution quality of the algorithms.
Therefore, two versions of both the reactive model (Model 1) and the anticipatory
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instance |P | |R|
∑
r∈R c(r) avg. occupancy (%) |H|

1 652 98 286 59.69 14
5 587 102 325 49.32 14
8 895 148 441 43.90 21
10 1575 104 308 47.76 56

Table 2.1: Problem characteristics of the instances.

model (Model 2) were tested: one version corresponds to the previously described
models (see Section 2.3) that allow transfers, whereas the second version does not
allow transfers. The latter implies that the second model fixes the assignment
of a patient after arrival, or mathematically:

∀p ∈ At′−1 ∩At′ , r = σt′−1(p)⇒ xp,r = 1 (2.42)

For the purpose of experimentation, a subset of the benchmark instances for the
static PA problem was used (available from the patient admission scheduling
website [20]). The instances served as the basic problem setting to test these
models, which were then extended to test for the above mentioned factors.

The instances were extended to the dynamic problem by adding a random
registration date r(p) and an expected departure date ed(p) for each patient
p over the planning horizon. We refer to Table 2.1 for the characteristics of
these instances. The weights c(p, r) are based on the decision rules (is a patient
assigned to a department with the correct specialism, are their room preferences
met, etc.) discussed by Demeester et al. [21] and detailed by Demeester [20].
The weights wG and wTr are set to 5.0 and 11.0, corresponding to the weights
used by Demeester et al. However, note that in the implementation/testing
of the model, these weights have been multiplied by 10 in order to obtain an
integer representation, rather than a decimal representation (Demeester et al.
use weights with accuracy up to 1 decimal place).

The procedure for enriching the instances is as follows:

• ed(p) is selected uniformly from the interval [dd(p)− acc, dd(p) + acc] for
each patient individually. If ed(p) <= a(p), then it is set to ed(p) = a(p)+1.
We investigated the effect of acc, i.e. the effect of the accuracy of the
expected departure date estimate.

• r(p) is either selected uniformly from the interval [a(p)− T, a(p)− 1] for
planned patients, or is set to a(p) for emergency patients. We investigated
the effect of the percentage (denoted em) emergency versus planned cases.
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Both models (and both the transfer and non-transfer versions) were tested on all
combinations of the factors acc (LOS estimate) and em (percentage emergency
cases), with acc ranging from 0 time units (perfect estimate) to 5 time units
(a poor estimate) and em ∈ {0, 0.25, 0.50, 0.75, 1.0}. All tests were performed
on 10 randomized instances for each specified combination of the mentioned
factors.

The effect of increasing occupancy was tested by randomly removing beds
(uniformly selected) from the instances in order to increase the projected average
occupancy. This procedure is similar to what is done in [15]. Feasibility is
maintained by limiting the peak occupancy to 100% (i.e. bed capacity remains
at least equal to the size of the maximum clique of the interval graph of patient
intervals). For studying the effect of increasing occupancy, the lower bound on
the offline problem solution was calculated for every occupancy setting since it
increases as beds are removed from the instance. This lower bound is calculated
by solving the linear relaxation of the MILP formulation of the instance. In the
figures discussed in the following section, this lower bound is denoted as LB.

The ILP models have been implemented using CPLEX 12.4 with a free academic
license.The computations were conducted on the infrastructure of the VSC -
Flemish Supercomputer Center, funded by the Hercules foundation and the
Flemish Government - department EWI. All experiments were performed on
computers equipped with an 8 core, 2.8 GHz Xeon X5560 (Nehalem) processor,
and 24 GB of ram memory, running a GNU/Linux operating system. The
supporting code was implemented in Java 1.7. The CPLEX 12.4 solver was
configured to use only one processing thread, enabling us to test up to 8
instances in parallel on one machine, reducing computation time. In total, 9
machines from the Flemish Supercomputer Center were used for these tests,
reducing the total computation time (wall-clock time) 72-fold. The overall
average computation time (over all instances/experiments) for a complete run
of one instance was 4.80 minutes, with a maximum computation time of 227.15
minutes. Although powerful computer resources were used for these computer
tests, the single core performance of such a machine (used for one complete run
of an instance) is comparable to a high-end desktop computer available in 2009.
Similar computation times can thus be expected on recent consumer hardware.
All results and graphics were processed with the R software environment for
statistical computing [64].
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2.4.2 Results and discussion

Emergency versus planned cases, and the effect of the LOS estimate

Figure 2.3 shows the effect of an increasing percentage of emergencies on the
value w(σT ), the value of the solution obtained at the end of the planning horizon.
This has been averaged over all runs and parameter settings of the LOS estimate.
The results show that the anticipatory models (Model 2) consistently outperform
the reactive models (Model 1), for all problem instances: for each setting of the
parameter em, the cost value w(σT ) is lower for the anticipatory models than
for the reactive models. In the limit for increasing percentage of emergencies,
the result of the anticipatory models converge to those of the reactive models.
Obviously, in the case of 100% emergencies, no future arrivals can be planned
and the anticipatory models reduce to the reactive models. Due to an excessive
computation time, the setting em = 0% is not shown for instances 5, 8 and 10.
To avoid complicating interpretation of the results, no time limit was set to
ensure the models are solved to optimality at each t′.

Instance 1 (Figure 2.3, topleft), shows a clear advantage to allow transfers
in the reactive model, while there is no clear advantage to allow them in
the anticipatory models. For instance 5, 8 and 10, the results lie differently.
Although the anticipatory models still outperform the reactive models, the
reactive model that does allow transfers now clearly performs worse than the
version that does not. Although seemingly counter intuitive, namely allowing
more flexibility causing a worse performance, this can be explained by the
dynamics of the problem. For example, consider that at time t′ it might appear
beneficial to transfer one or several patients in order to obtain a better overall
bed assignment. Then, at time t′ + ∆t some patients not known at time t′
might arrive who now obtain a much poorer assignment due to the assignments
made at time t. Thus, both the transfer cost at time t′ is incurred, as well as
the assignment cost at time t′ + ∆t.

Figure 2.4 shows the average number of occurrences of transfers in σT for an
increasing percentage of emergencies, for instances 1 and 5. It is clear that
transfers do occur when enabling them in the models. The anticipatory model
clearly avoids transfers more than the reactive model, as it has more information
on the planned arrivals.

Figure 2.5 shows the effect of the models’ performance under increasingly
poorer LOS estimates, for instances 1, 5, 8 and 10. The results show that
the performance of both the reactive models (Model 1) and the anticipatory
models (Model 2) deteriorates for an increasingly poorer LOS estimate, while
the anticipatory models always outperform the reactive models. This result is
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Figure 2.3: Model performance for increasing percentage of emergencies.
Results are shown for instances 1 (topleft), 5 (topright), 8 (bottomleft) and 10
(bottomright).
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Figure 2.4: Average # transfers for increasing percentage of emergencies. Results
are shown for instances 1 (left) and 5 (right).

expected, as an increasing inaccuracy of the LOS estimate causes inaccurate
weighing of the patient assignments and thus generates suboptimal solutions.

Furthermore, the graphs show a more erratic behaviour, which appears unrelated
to the percentage of emergencies. The reason for this behaviour is that a decision
(both for the anticipatory and reactive models) may turn out good or bad when
patients depart earlier or later than estimated. However, the overall trend is a
decreasing performance for all models.

Another important factor that also needs to be considered is the execution
time required to solve the assignment problem at each t′. Figure 2.6 shows the
average execution time for the different models, with respect to the percentage of
emergency arrivals. It is clear that the anticipatory models require more time to
solve the problem at each t′, and this difference becomes larger as the percentage
of emergencies decreases. This is of course expected, because the anticipatory
models require more variables as the number of elective patients increases.
Furthermore, it is clear that the models which do allow patient transfers require
more computation time. Not allowing patient transfers constrains the model a
lot more (resulting in many variables being removed in the MIP solver presolve
phase). We can also report several outliers, in terms of execution time, for
the anticipatory models, where the MIP solver would take a very long time
(exceeding 1 hour of computation time for solving the MIP at a specific t′).
However, this always occurs at time t′ = 0 and for em = 0%, which is the
initial decision problem and the case of no emergencies. In this case, a great
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Figure 2.5: Model performance for an increasingly poorer LOS estimate.
Results are shown for instances 1 (topleft), 5 (topright), 8 (bottomleft) and 10
(bottomright).
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Figure 2.6: Average execution time for increasing percentage of emergencies.
Results are shown for instances 1 (topleft), 5 (topright), 8 (bottomleft) and 10
(bottomright).
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number of patients are taken into account (all patients registered before t′ = 0),
often more than half of the patients considered over the complete time horizon.
For subsequent t′, the execution time is much lower, as the MIP solver can
make use of the previous solution for a warm start (i.e. in this case MIP solver
heuristics can quickly produce a very good initial feasible incumbent, which
often speeds up the branch-and-bound phase of the search). This is clearly
shown in Figure 2.7, which compares the execution time with respect to the
percentage of emergency arrivals, for t′ = 0 (left) and t′ = 1, (right).
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Figure 2.7: Average execution time for increasing percentage of emergencies at
t′ = 0, (left) and at t′ = 1 (right). Results shown for instance 1.

Effect of increasing occupancy

The effect of an increasing occupancy was tested by artificially forcing a higher,
average occupancy in instances 1 and 5, ranging from 59% to 77% for instance 1
and from 49% to 67% for instance 5. Both instances reach a peak occupancy of
100%. Again, all combinations of factors were tested 10 times to reduce random
effects. The following results report on the averages of those 10 runs.

Figure 2.8 shows the effect of an increasing occupancy on the performance of
both models, under an increasing percentage of emergencies (from left-to-right,
top-to-bottom) for instance 1. It is clear that both models perform worse
under an increasing occupancy. However, the lower bounds of the instances also
increase as beds are removed from the instances. Thus, the relative performance
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of the models compared to the lower bound does not change, indicating that
occupancy does not have an effect on the relative behaviour of both models.

2.5 Conclusion

The contribution of this chapter is a study of the patient assignment problem
as defined by Demeester et al. [21], in a dynamic setting. The work extends
the existing patient assignment problem definition from an offline setting to an
online one. The problem formulation accounts for the dynamics of daily patient
arrivals, including emergency patients, and explicitly models patients’ length of
stay as an estimate. This definition clearly maps more closely to the current
practice of hospital admissions, where often only 50 percent of the patients are
electively planned and patients’ LOS are not known a priori.

Two mixed integer linear programming models were developed that model
decision making when new patients arrive: one that is modelled after current
practice, namely assigning patients to rooms as they arrive; and one that also
accounts for planned arrivals. The first model improves on current practice
by also considering the expected LOS of patients, therefore enabling proper
weighing of patient assignments. Furthermore, this model is solved to optimality
(with respect to the data provided), whereas in practice, hospital admission
officers employ rule-of-thumb heuristics, and often do not account for the LOS
of patients, leading to suboptimal solutions. The second model also accounts
for future, but planned, arrivals in order to weigh patient assignments even
better. It does so by including a lower bound on the future arrivals, based on a
relaxed assignment of the corresponding patient intervals.

Experimental results showed that the second model yields a better global result
than the first model, because it considers more available information on future
arrivals. In addition, this model can still be solved in a reasonable amount of
time using a commercial solver in most practical cases (percentage of emergencies
larger than 25 percent). Experimentation with the percentage of emergency
patients, poorer LOS estimates and an increasing hospital occupancy indicate
that this behaviour does not change under these conditions, advocating the use
of the anticipatory model over the reactive one independently of the various
factors considered. Lastly, allowing patients to be transferred from one room
to another is not necessarily beneficial both in terms of computation time and
computational result.
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Figure 2.8: Model performance for an increasingly higher occupancy rate, under
different levels of emergency vs planned patients. Results are shown for instance
1 with a perfect estimate.



Chapter 3

Computational complexity of
patient-to-room assignment
planning

One research question that has remained open with respect to the PA problem
is whether or not the problem is difficult from a computational complexity
point of view. Ceschia and Schaerf [15] showed that when no transfers costs are
considered (i.e. patients can be rearranged every day) and no gender separation
policy is imposed, the problem decomposes into single day sub-problems, that
each reduce to an assignment problem. Therefore, in such a setting the PA
problem can be solved by applying a polynomial time algorithm (e.g. the
Hungarian method [48]). However, inclusion of the gender constraint in, e.g.
an integer programming formulation changes the situation, resulting in a non-
integer relaxation. The question then arises as to what the influence of the
gender constraint is on the computational complexity of the problem.

This chapter defines the Red-Blue Transportation Problem (Red-Blue TP), a
generalization of the transportation problem where supply nodes are partitioned
into two sets and so-called exclusionary constraints are imposed between the
two sets. The Red-Blue TP serves as an abstraction of the patient-to-room
assignment problem restricted to just a single-day planning horizon, with
exclusionary side constraints modelling gender separation. The problem’s
complexity is established, and two integer programming formulations are
presented and compared. Furthermore, a maximization variant of Red-
Blue TP is presented, for which we propose constant-factor approximation

33
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algorithms. Finally, a computational experiment on the performance of
the integer programming formulations and the approximation algorithms is
presented, that studies the problem size, the partitioning of the supply nodes,
and the density of the problem.

This chapter is a minor adaptation of W. Vancroonenburg, F. Della Croce,
D. Goossens, and F.C.R. Spieksma. The Red-Blue transportation problem.
European Journal of Operational Research, 237(3):814–823, 2014. doi:
10.1016/j.ejor.2014.02.055. [79]

3.1 Introduction

Consider the well-known Transportation Problem (TP): given is a set of supply
nodes S, each with supply ai (i ∈ S), a set of demand nodes D, each with
demand bj (j ∈ D), with

∑
i∈S ai =

∑
j∈D bj , and a bipartite graph (S ∪D,E),

with a given cost cij for each edge (i, j) ∈ E, where E is not necessarily complete.
The question is how to send the flow from supply nodes to the demand nodes
such that the total flow cost is minimum. The TP is easily formulated as an
integer programming problem. Define the decision variables xij as the amount
of supply that node i sends to node j. The formulation is then:

Min
∑

(i,j)∈E

cij · xij (3.1)

subject to: ∑
(i,j)∈E

xij = ai ∀i ∈ S (3.2)

∑
(i,j)∈E

xij = bj ∀j ∈ D (3.3)

xij ∈ N ∀(i, j) ∈ E (3.4)

In this chapter, the problem is generalized by associating a colour, either red
or blue, to each supply node. Thus, the set of supply nodes is partitioned into
two sets R (red) and B (blue) such that S = R ∪ B, and R ∩ B = ∅. The
additional requirement is that the set of supply nodes that actually supply a
demand node should all have the same colour. In other words, a demand node
is only allowed to receive flow from supply nodes that are either all red or all
blue. These constraints are referred to as colour constraints. Obviously, the
resulting problem is a generalization of the transportation problem since, if all
supply nodes have the same colour, the TP arises. From now on, this problem
is denoted as the Red-Blue Transportation Problem (Red-Blue TP).
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It is straightforward to relate the Red-Blue TP to a special case of the patient-to-
room assignment problem, namely in a static, single day setting. Each patient is
represented as a supply node with ai = 1, with gender determining the colour of
the supply node; either red or blue. Each room is represented as a demand node
where the capacity of the room is represented by bj , and the “appropriateness”
of assigning patient i to room j is captured by cost cij . Finally, the colour
constraints correspond to a gender separation policy.

Although the definition of the Red-Blue TP is motivated by the patient-to-room
assignment problem, it is not hard to think of other practical applications. For
instance, imagine a situation where a number of goods need to be transported
from a port to a warehouse. Several trucks are available for transportation,
each driving according to a schedule that fixes the departure times at the port.
Depending on delivery deadlines, some truck assignments are more suitable
for particular goods than others. A Red-Blue TP instance arises if the goods
can be divided into two types that cannot be assigned to the same truck, for
instance because of incompatibilities of content (e.g. hazardous materials),
ownership (e.g. rivaling business companies that are unwilling to have their
goods transported on the same truck), or size [11]. Another application involves
transportation of football fans to a match using public railways: when assigning
fans to trains, no fans of the opposing teams should be on the same train, to
avoid hooliganism [68]. In Section 3.4, further applications of a maximization
variant of Red-Blue TP are mentioned.

3.1.1 Related work

The Red-Blue transportation problem is a natural generalization of a classic
problem in operations research. In the literature, several generalizations of the
transportation problem have been described. The most well-known is probably
the transshipment problem, in which the underlying graph does not need to be
bipartite and so-called transferring nodes, which have no net supply or demand,
may exist (see e.g. [59]). The min-cost flow problem is a further generalization
of the transshipment problem, introducing capacities on the arcs. In the fixed-
charge transportation problem [38], a fixed cost may be incurred for every arc
in the transportation network that is used. Numerous other generalizations of
the transportation problem have been presented, for instance to solve spatial
economic equilibrium problems [50], and aircraft routing problems [27], or even
to deal with wartime conditions where distances from some sources to some
destinations are no longer definite (i.e. the grey transportation problem, see
[3]).

One generalized transportation problem is particularly related to the Red-Blue
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transportation problem, namely the Transportation Problem with Exclusionary
Side Constraints (TPESC). Although the name TPESC was coined by Sun [71],
it was in fact introduced by Cao [10]. The phenomenon that not every set of
supply nodes is allowed to send flow to a demand node, is something that TPESC
and Red-Blue TP have in common. In TPESC, for each demand node j ∈ D,
a set of pairs of supply nodes is given, denoted by Fj = {{i1, i2}|i1, i2 ∈ S}.
The problem is to send the flow from supply to demand nodes at minimum
cost, such that each demand node j ∈ D only receives supply from at most one
supply node for each pair of supply nodes present in Fj .

It is not hard to see that Red-Blue TP is a special case of TPESC. Goossens and
Spieksma [32] show that TPESC is NP-hard, and becomes pseudo-polynomially
solvable if the number of supply nodes is fixed. Furthermore, these authors study
TPESC with identical exclusionary sets: they provide a pseudo-polynomial
algorithm for the case with two demand nodes, and prove NP-hardness for the
case with three demand nodes.

Another problem related to Red-Blue TP is the so-called Maximum Flow problem
with Conflict Graph (MFCG), a problem studied by Pferschy and Schauer [62].
In the MFCG a directed graph with capacitated arcs, a source, and a sink are
given. In addition, pairs of arcs (from the directed graph) are given; for some
pairs of arcs the constraint is that at most one arc of the pair can carry flow (a
negative disjunctive constraint), for other pairs of arcs the constraint is that
at least one arc of the pair must carry flow (a positive disjunctive constraint).
Pferschy and Schauer [62] show that the problem of finding a maximum flow in
a network under these disjunctive constraints is (strongly) NP-hard; even more
they show that no polynomial time constant-factor approximation algorithm
can exist (unless P=NP).

Observe that Red-Blue TP is a special case of MFCG; indeed, consider some
demand j ∈ D. Now, by having negative disjunctive constraints for each pair of
arcs that consist of one arc emanating from a red supply node to node j, and
one arc emanating from a blue supply node to node j, an instance of Red-Blue
TP arises. Note that for our special case it is possible to find polynomial time
constant factor approximation algorithms (see Section 3.4).

3.2 Complexity of Red-Blue TP

As a general statement of the complexity of Red-Blue TP, we provide the
following theorem.
Theorem 1. Red-Blue TP is NP-hard, even if ai = 1 ∀i ∈ S, and bj = 3
∀j ∈ D.
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Proof. We prove Theorem 1 by showing that the EXACT-3-COVER (X3C)
problem can be reduced to the decision version of Red-Blue TP. The decision
version of Red-Blue TP, denoted Red-Blue TPD, concerns the question: does
there exist a solution that sends all flow from the supply nodes to the demand
nodes while satisfying demand, and while satisfying the colour constraints, i.e.
does there exist a feasible flow? X3C has been shown to be NP-complete [see
e.g. 29], and is defined as follows:

Input: A set X with |X| = 3q and a collection C of 3-element subsets (i.e.,
triples) of X, with |C| = k.

Question: Does there exist a cover in C that covers X exactly, i.e. a sub-
collection C ′ ⊆ C such that every xi ∈ X is contained in exactly one
Cj ∈ C ′?

Any instance of X3C (with |C| > q) can be reduced to Red-Blue TPD as follows.
Associate with each element xi ∈ X a blue supply node i with ai = 1. Associate
with each triple Cj a demand node j with bj = 3. Construct edges from supply
to demand nodes corresponding to the membership relations (i.e. supply node
xi is connected to demand node Cj ⇔ xi ∈ Cj). Add 3(k− q) red supply nodes
with ai = 1 that are connected to all demand nodes. Observe that total supply
equals total demand. The question is: does there exist a feasible flow in this
instance of Red-Blue TPD?

Next, it is shown that a yes-answer to the X3C instance directly corresponds to
a yes-answer to the corresponding Red-Blue TP instance, and vice versa.

First, consider an X3C instance that is feasible, and thus has an exact cover
C ′ ⊆ C. Then, each demand node corresponding to a Cj ∈ C ′ can be supplied
by the blue supply nodes corresponding to the xi ∈ Cj , and the remaining
demand nodes can be supplied by the red supply nodes. Thus, the corresponding
Red-Blue TPD instance is also feasible.

Next, consider any feasible solution to the Red-Blue TPD instance. Each
demand node is supplied by either three red supply nodes or by three blue
supply nodes. Moreover, there must exist q demand nodes each supplied by
three blue supply nodes. These triples of blue supply nodes correspond to the
triples in X3C that form a feasible solution.

Notice that the above reduction can be generalized to show that Red-Blue TP
with bj = k is at least as hard as Exact Cover by k-sets.

If a cost of zero is put on the edges described in the above proof, and some
edges are added with a cost strictly larger than zero (corresponding to xi /∈ Cj),
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a polynomial time algorithm with a constant performance ratio for Red-Blue
TP would find a zero cost solution if one exists, and hence would be able to
distinguish between the yes-instances and the no-instances of X3C. Therefore,
the following corollary holds:

Corollary 1. There is no polynomial time constant-factor approximation
algorithm for Red-Blue TP, even if ai = 1 ∀i ∈ S, and bj = 3 ∀j ∈ D,
unless P = NP .

Since the problem setting where, in addition to ai = 1, also bj = 1 reduces to
the assignment problem, the only setting for which the complexity is left open
is the case where bj = 2.

The special case of Red-Blue TP on a complete bipartite graph also has relevance.
Relating back to the patient-to-room assignment problem, patients can also
be assigned to unsuitable rooms if necessary, when all other rooms are at
capacity. Therefore, the assignment graph is, in this case, complete. The
following theorem shows that this does not make the problem easy, even when
all edge-costs are equal.

Theorem 2. Red-Blue TP is NP-hard, even if G is a complete bipartite graph,
all edge-costs are equal and there are only 2 supply nodes with equal supply.

Proof. We prove Theorem 2 by showing that PARTITION can be reduced to
Red-Blue TPD. PARTITION has been shown to be NP-Complete [see e.g. 29]
and is defined as follows:

Input: A set of integers X = {x1, x2, . . . , xn} with
∑n
i=1 xi = q

Question: Does there exist a partition of X into {X1, X2} such that∑
xi∈X1

xi =
∑
xj∈X2

xj

The reduction is as follows. Construct a demand node for each xi ∈ X with
bj = xi. Next, construct a blue and a red supply node, each with a supply of
q
2 . Set up edges between each supply/demand node pair so that the resulting
bipartite graph is complete. Observe that total supply equals total demand by
construction. The question is: does there exist a feasible assignment?

Consider a feasible PARTITION instance with a partition {X1, X2} of X such
that

∑
xi∈X1

xi =
∑
xj∈X2

xj = q
2 . It is clear that the corresponding Red-Blue

TPD instance is also feasible by supplying each demand node xi ∈ X1 by the
blue node and each demand node xj ∈ X2 by the red one.
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Next, consider that the Red-Blue TPD instance is feasible. In any feasible
solution, a demand node x ∈ X will be entirely supplied by either the blue
supply node or the red supply node. Since total supply equals total demand, it
must be so that in any feasible solution the sum of the demand nodes supplied
by blue (red) supply nodes is equal to q

2 . Therefore, it must be so that when:

X1 ={x ∈ X|corresponding demand node is supplied by the blue supply node}

X2 ={x ∈ X|corresponding demand node is supplied by the red supply node}

then: ∑
xi∈X1

xi =
∑
xj∈X2

xj = q

2

Thus the corresponding PARTITION instance is also feasible.

Finally, consider the special case of Red-Blue TP where the number of demand
nodes is fixed, but the capacity of the demand nodes is still part of the input.
In this case, the following lemma holds:

Lemma 1. If |D| is fixed, Red-Blue TP is solvable in polynomial time.

Proof. Red-Blue TP can be seen as a colouring problem, where the demand
nodes are to be coloured either blue or red in such a way that all blue (red)
supply nodes can be assigned to blue (red) demand nodes. Given a colouring of
demand nodes, the feasibility of Red-Blue TP can be determined by solving two
transportation problems: the TP on the blue subgraph, and the problem on
the red subgraph. If there are |D| demand nodes, then there are 2|D| possible
colourings of the demand nodes. Thus by solving 2 × 2|D| transportation
problems, the feasibility of Red-Blue TP can be determined. Moreover, if a
feasible solution exists, this algorithm finds an optimal solution. Since the
TP can be solved in polynomial time, this enumeration can be done in time
polynomial in the number of supply nodes.

3.3 Integer models

Two integer programming formulations are presented for Red-Blue TP and it is
shown that Formulation 2 is stronger than Formulation 1. Please refer to Table
3.1 for details on the notation.
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Notation Description
S set of supply nodes,
D set of demand nodes,
Sj set of supply nodes that can supply demand node j ∈ D,
Di set of demand nodes that can be supplied by node i ∈ S,
ai supply of node i ∈ S,
bj demand of node j ∈ D,
R (B) set of red (blue) supply nodes, S = R ∪B,
Rj (Bj) set of red (blue) nodes that can supply demand node j ∈ D,
cij the cost of sending one unit of supply from node i to demand

node j.

Table 3.1: Notation for describing the Red-Blue TP formulations.

Formulation 1 The decision variables are defined as follows:

xij = amount of supply that node i sends to node j

yj =
{

1 if demand node j is supplied by red nodes,
0 otherwise

Red-Blue TP is modelled as follows:

Min
∑
i∈S

∑
j∈Di

cij · xij (3.5)

subject to: ∑
j∈Di

xij = ai ∀i ∈ S (3.6)

∑
i∈Rj

xij = bj · yj ∀j ∈ D (3.7)

∑
i∈Bj

xij = bj · (1− yj) ∀j ∈ D (3.8)

xij ∈ N ∀i ∈ S, j ∈ Di (3.9)

yj ∈ {0, 1} ∀j ∈ D (3.10)

The objective function minimizes the total cost of sending supply to demand
nodes j. Constraints (3.6) ensure that each supply node i sends its supply ai to
its appropriate demand nodes Di. Constraints (3.7) and (3.8) ensure that each
demand node j receives bj units of supply from either red or blue supply nodes.
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The decision variables xij are defined for all feasible (i, j) pairs in Expression
(3.9). The LP-relaxation of (3.5)-(3.10) arises when we replace (3.9) and (3.10)
by xij > 0,∀i ∈ S, j ∈ Di, and 0 6 yj 6 1,∀j ∈ D. The corresponding objective
function value is denoted by VLP1.

Formulation 2 The second formulation corresponds to the integer model
described by Sun [71]. It uses the same decision variables xij as Formulation 1,
but also uses decision variables yij that are defined as follows:

yij =
{

1 if node i supplies node j,
0 otherwise

Red-Blue TP is modelled as follows:

Min
∑
i∈S

∑
j∈Di

cij · xij (3.11)

subject to: ∑
j∈Di

xij = ai ∀i ∈ S (3.12)

∑
i∈Sj

xij = bj ∀j ∈ D (3.13)

xij ≤ min (ai, bj) · yij ∀i ∈ S, j ∈ Di (3.14)

yij + ykj ≤ 1 ∀i ∈ B, k ∈ R, j ∈ Di ∩Dk (3.15)

xij ∈ N, yij ∈ {0, 1} ∀i ∈ S, j ∈ Di (3.16)

The objective function is the same as in Formulation 1, minimizing total cost.
Constraints (3.12) ensure that each supply node i sends its supply ai to its
appropriate demand nodes Di, while constraint (3.13) ensures that bj units of
supply are sent to demand node j. Constraints (3.14) express that yij takes the
value 1, when xij > 0. Constraints (3.15) ensure that no red and blue supply
node i and k supply the same demand node j.

The LP-relaxation of (3.11)-(3.16) arises when (3.16) is replaced by xij > 0, 0 6
yij 6 1,∀i ∈ S, j ∈ Di. The corresponding objective function value is denoted
by VLP2.

Theorem 3. VLP1 6 VLP2, namely Formulation 2 is stronger than Formulation
1.
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Figure 3.1: A complete bipartite graph with R = {i1, i2} and B = {i3}; ai1 = 2,
ai2 = 1, ai3 = 2, bj1 = 1, bj2 = 3, and bj3 = 1. Drawn edges have cost cij = 0,
other (not drawn) edges have cij = 1.

Proof. For any instance, take an optimal LP-solution of Formulation 2 (x2,y2)
with its value denoted VLP2. A feasible LP-solution of Formulation 1 can be
constructed by setting x1 = x2 and yj =

∑
i∈Rj

xij/bj ,∀j ∈ D. It is easy to
verify that this is a feasible solution for the LP-relaxation of (3.5)-(3.10) with
value VLP2.

Consider the following example showing that Formulation 2 can be better than
Formulation 1. Given the complete bipartite graph G(S∪D,E) with S = R∪B,
R = {i1, i2}, B = {i3}, D = {j1, j2, j3} and E = S ×D. Also, ai1 = ai3 = 2,
ai2 = 1, bj1 = bj3 = 1, and bj2 = 3. All drawn edges in Figure 3.1 have cij = 0,
all other edges (not drawn) have cij = 1.

The LP-relaxation of Formulation 1 has an optimal value VLP1 = 0 (Figure
3.2a), whereas the LP-relaxation of Formulation 2 has an optimal value VLP2 = 1
(Figure 3.2b). Thus, there are instances for which Formulation 2 is better than
Formulation 1.

Notice that the example in Figure 3.1 also shows that the LP-relaxation of
Formulation 1 can be arbitrarily bad compared to the integer optimum. That is
also true for Formulation 2: in Figure 3.3a we give an instance with R = {i1},
B = {i2} where all drawn edges have cost cij = 0, all other edges (not drawn)
have cij = 1. Also, ai1 = ai2 = 2, bj1 = bj3 = 1, and bj2 = 2. This instance has
no integer solution with value 0, whereas the LP-relaxation of Formulation 2
allows a solution with value VLP2 = 0 (Figure 3.3b).



INTEGER MODELS 43

i1

i2

i3

j1

j2

j3

1

1

1

1

1

Xij

Yj1=1

Yj2=2/3

Yj3=0

(a) Formulation 1. VLP 1 = 0
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Figure 3.2: Relaxation of Formulation 1 (left) and Formulation 2 (right). The
dashed edge shows that the LP-relaxation of Formulation 2 uses an edge with
cost ci3,j1 = 1, resulting in an LP-relaxation value VLP2 = 1.
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(a) Formulation 1.
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(b) Formulation 2.

Figure 3.3: Example on which Formulation 2 performs arbitrarily bad. A
complete bipartite graph, with R = {i1} and B = {i2}; ai1 = ai2 = 2,
bj1 = bj3 = 1, and bj2 = 2. Drawn edges have cost cij = 0, all other edges (not
drawn) have cij = 1. An integer optimum with value 0 does not exist, however,
the LP-relaxation of Formulation 2 has an optimal value of VLP2 = 0 (right).
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3.4 The maximization variant of Red-Blue TP

In this section, the following variant of Red-Blue TP is considered: the objective
function is modified to maximization, with pij denoting the profit gained from
supplying one unit to demand node j from supply node i. Moreover, we do
not insist on sending all flow. This variant of the problem is referred to as
Max-Red-Blue TP. In this setting, the patient assignment problem can be seen
as assigning as many patients as possible (weighted by e.g. their contribution
margin, that may be higher when assigned to a single bed room) to rooms.

An IP-formulation of the maximization variant (corresponding to Formulation
1) is as follows:

Max
∑
i∈S

∑
j∈Di

pij · xij (3.17)

subject to: ∑
j∈Di

xij ≤ ai ∀i ∈ S (3.18)

∑
i∈Rj

xij ≤ bj · yj ∀j ∈ D (3.19)

∑
i∈Bj

xij ≤ bj · (1− yj) ∀j ∈ D (3.20)

xij ∈ N ∀i ∈ S, j ∈ Di (3.21)

yj ∈ {0, 1} ∀j ∈ D (3.22)

Observe that the LP-relaxation of (3.17)-(3.22) can be found by solving a
transportation problem, consisting of (3.17), (3.18),

∑
i∈Rj∪Bj

xij 6 bj ,∀j ∈ D,
and xij > 0,∀i ∈ S, j ∈ Di. We denote the value of this formulation by V maxLP1 .
This formulation only uses the x-variables; a feasible solution for the y-variables
is given by yj =

∑
i∈Rj

xij/bj ,∀j ∈ D.

It is straightforward to show that Max-Red-Blue TP is NP-hard. Feasibility of
Red-Blue TP can be determined by constructing a Max-Red-Blue TP instance
with the same bipartite graph and edge profits pij equal to 1. If the Max-
Red-Blue TP admits a solution with flow profit equal to

∑
i∈S ai, then the

corresponding Red-Blue TP instance is feasible (since all flow can be sent,
considering colour constraints).

The Max-Red-Blue TP setting is interesting to study with respect to
approximation, as it does not suffer from the feasibility issue. Indeed, in
this setting the 0-vector is always a feasible, be it the worst possible, solution.
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In what follows, three approximation algorithms for Max-Red-Blue TP are
presented; the final subsection deals with a number of generalizations of Max-
Red-Blue TP.

3.4.1 Algorithm 1: MAX-RB

Consider the algorithm described below. It consists of solving two transportation
problems and next selecting the best of the two corresponding solutions.

Algorithm 1 MAX-RB
1: Solve a TP on the subgraph induced by R ∪ D (the red subgraph), and

solve a TP on the subgraph induced by B ∪D (the blue subgraph). The
respective solution values are denoted by V (R) and V (B).

2: Return the solution vector for which max (V (R), V (B)) is attained.

Despite its simplicity, the resulting solution vector cannot be arbitrarily bad.

Theorem 4. The approximation ratio of MAX-RB is 1
2 and this bound is tight.

Proof.

max (V (R), V (B)) > 1
2(V (R) + V (B)) (3.23)

>
1
2OPT. (3.24)

with OPT denoting the value of an optimal solution to the Max-Red-Blue TP
problem. The first inequality is trivial, the second follows from the observation
that V (R) + V (B) is the value of an optimal solution to a relaxed version of
the problem, namely one where the demands are doubled (i.e. bi := 2bi), and
where no colour constraints are present.

Finally, it is shown that the bound is tight. Consider the example in Figure
3.4. For this instance, MAX-RB may find V (R) = V (B) = 2. However, clearly
OPT = 4.

3.4.2 Algorithm 2: TP+R

The algorithm described below (Algorithm 2) consists of solving three
transportation problems, one of which corresponds to solving the LP-relaxation
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i1

i2

i3

j1

j2

1

1

1

2

2

i41

Figure 3.4: A complete bipartite graph with R = {i1, i2} and B = {i3, i4};
ai1 = ai2 = ai3 = ai4 = 1, and bj1 = bj2 = 2. Drawn edges have profit pij = 1,
other (not drawn) edges have pij = 0.

of (3.17)-(3.22). The algorithm solves the transportation problem on the entire
graph. Next it heuristically determines for each demand node j whether it
should be supplied by either red or blue supply nodes by evaluating which
partial flow (red or blue) is most profitable in the current TP solution. Finally
the algorithm solves the TP on the red and blue sub-graphs (induced by R∪DR

and B ∪DB) to determine the maximum profit flow.

Algorithm 2 TP+R
1: Solve the LP-relaxation of (3.17)-(3.22). Call the resulting solution vector
x∗ij . Set DR = DB = ∅.

2: for all j ∈ D do
3: if

∑
i∈Rj

pijx
∗
ij >

∑
i∈Bj

pijx
∗
ij then

4: DR := DR ∪ {j}
5: else
6: DB := DB ∪ {j}
7: end if
8: end for
9: Solve two TPs, one on the subgraph induced by R∪DR, and one on B∪DB

and construct the overall solution with value V (TP +R).

Theorem 5. The approximation ratio of TP+R is 1
2 and this bound is tight.

Proof. Let V (B ∪DB) and V (R ∪DR) denote the value of solving the TP on
the subgraph induced by B ∪ DB and on the subgraph induced by R ∪ DR
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respectively. Then:

V (TP +R) = V (B ∪DB) + V (R ∪DR) ≥
∑
j∈DB

∑
i∈Bj

pijx
∗
ij +

∑
j∈DR

∑
i∈Rj

pijx
∗
ij

(3.25)
This inequality holds since x∗ij restricted to j ∈ DB, i ∈ Bj (or j ∈ DR,
i ∈ Rj) is a feasible solution to the transportation problem solved in line 9 of
Algorithm 2. Hence, an optimal solution to that TP has a value at least as
large as

∑
j∈DB

∑
i∈Bj

pijx
∗
ij .

Define vj =
∑
i∈Sj

pijx
∗
ij for each j ∈ D. Observe that V maxLP1 =

∑
j∈D vj .

By construction of the sets DR and DB , it is such that for each j ∈ DR:

∑
i∈Rj

pijx
∗
ij ≥

1
2

∑
i∈Rj

pijx
∗
ij +

∑
i∈Bj

pijx
∗
ij

 = 1
2vj (3.26)

and for each j ∈ DB :

∑
i∈Bj

pijx
∗
ij ≥

1
2

∑
i∈Rj

pijx
∗
ij +

∑
i∈Bj

pijx
∗
ij

 = 1
2vj (3.27)

Thus: ∑
j∈DB

∑
i∈Bj

pijx
∗
ij +

∑
j∈DR

∑
i∈Rj

pijx
∗
ij ≥

∑
j∈DB

1
2vj +

∑
j∈DR

1
2vj =

1
2
∑
j∈D

vj = 1
2V

max
LP1 ≥

1
2OPT. (3.28)

Finally, it is shown that the bound is tight. Consider again the example in
Figure 3.4. In this example, the worst case optimal solution vector to the TP
(note that there are several optimal solution vectors) is:

x∗12 = x∗21 = x∗32 = x∗41 = 1, x∗11 = x∗22 = x∗31 = x∗42 = 0. (3.29)

Thus: ∑
i∈R1

pi1x
∗
i1 =

∑
i∈B1

pi1x
∗
i1 = 1, and (3.30)

∑
i∈R2

pi2x
∗
i2 =

∑
i∈B2

pi2x
∗
i2 = 1. (3.31)



48 COMPUTATIONAL COMPLEXITY OF PATIENT-TO-ROOM ASSIGNMENT PLANNING

Therefore, the worst case colouring is:

DR = {1, 2}, DB = ∅. (3.32)

Thus, solving the TPs on the subgraphs leads to:

V (TP +R) = V (B ∪DB) + V (R ∪DR) = 0 + 2 = 2. (3.33)

Recall from the previous that OPT = 4.

Corollary 2. V maxLP1 ≤ 2 ·OPT .

Proof. This follows from the above since it is actually shown that V (TP +R) ≥
1
2V

max
LP1 . Since OPT ≥ V (TP +R), the bound follows.

3.4.3 Algorithm 3: Iterated TP+R

In this variation of TP+R, colours for demand nodes are determined one by
one, depending on which colour contributes most to the objective function value
in that demand node. Each time a demand node is coloured, the TP is solved
again taking this decision into account. This algorithm is denoted as Iterated
TP+R (ITP+R).

Algorithm 3 Iterated TP+R
1: Set DR = DB = ∅.
2: Solve a TP based on profits pij . Call the resulting solution vector x∗ij .
3: Find jR = argmaxj∈D\(DR∪DB)

∑
i∈Rj

pijx
∗
ij and jB =

argmaxj∈D\(DR∪DB)
∑
i∈Bj

pijx
∗
ij .

4: if
∑
i∈R pijR

x∗ijR
>
∑
i∈B pijB

x∗ijB
then

5: set BjR
:= ∅ and DR := DR ∪ {jR}

6: else
7: set RjB

:= ∅ and DB := DB ∪ {jB}
8: end if
9: Go to line 2 until DR ∪DB = D.
10: Solve two TPs, one on the subgraph induced by R∪DR, and one on B∪DB ,

and get the overall solution value V (ITP +R).

Notice that Iterated TP+R consists of solving |D|+ 2 transportation problems.
Although in a practical sense, this results in a good performance (see Section 3.5),
from a worst-case point of view, this computational effort does not pay off.

Theorem 6. The approximation ratio of Iterated TP+R is at most 1
2 .
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Proof. For the example in Figure 3.4, the worst case optimal solution vector to
the TP (note that there are several optimal solution vectors) is:

x∗12 = x∗21 = x∗32 = x∗41 = 1, x∗11 = x∗22 = x∗31 = x∗42 = 0. (3.34)

Thus, after the first iteration of the algorithm:∑
i∈R1

pijx
∗
i1 =

∑
i∈B1

pij1x
∗
i1 = 1, (3.35)

∑
i∈R2

pi2x
∗
i2 =

∑
i∈B2

pi2x
∗
i2 = 1. (3.36)

Consider that we set DR = {2}. Solving the TP again, the optimal solution
vector is:

x∗12 = x∗21 = x∗41 = 1, x∗11 = x∗22 = x∗31 = x∗32 = x∗42 = 0. (3.37)

Thus: ∑
i∈R1

pi1x
∗
i1 =

∑
i∈B1

pi1x
∗
i1 = 1, (3.38)

∑
i∈R2

pi2x
∗
i2 = 1,

∑
i∈B2

pi2x
∗
i2 = 0. (3.39)

And finally, DR = {1, 2} and DB = ∅. Solving the TPs on the subgraphs results
in:

V (ITP +R) = V (B ∪DB) + V (R ∪DR) = 0 + 2 = 2. (3.40)
Again, recall that OPT = 4. Thus:

V (ITP +R)
OPT

= 1
2 (3.41)

3.4.4 Generalizations of Max-Red-Blue TP

In this section, a number of generalizations of Max-Red-Blue TP are discussed.
One generalization arises when capacities are placed on the edges, i.e. for each
edge, the flow transported over it cannot exceed the capacity of the edge. With
a small modification (solving capacitated transportation problems on the red
and the blue subgraph), the MAX-RB algorithm will produce a feasible solution
to this problem. Moreover, MAX-RB still has a tight approximation ratio of 1

2 ,
since the arguments used in Theorem 4 remain valid.
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In another generalization, any topology of the underlying graph is allowed. The
graph no longer needs to be bipartite; supply nodes, as well as demand nodes,
can be joined by an edge. Transferring nodes (i.e. nodes with zero net supply
or demand), are allowed as well. The goal is to find a profit-maximizing way to
send flow from supply nodes to demand nodes, such that each demand node
receives its flow from supply nodes that are either all red or all blue. The
MAX-RB algorithm can be adapted as follows: solve an uncapacitated min-cost
flow problem on the red (blue) subgraph, i.e. we set the supply of the blue (red)
nodes equal to zero, and return the solution vector that results in the highest
solution value. Also for this generalization, a tight approximation ratio of 1

2
holds.

In a third generalization, it is no longer imposed that R ∩B = ∅, instead the
existence of supply nodes that are both red and blue is allowed. These nodes are
denoted colourful. The colour constraints imply that a demand node can receive
supply from either red nodes and colourful nodes, or blue nodes and colourful
nodes. Of course, if all supply nodes are colourful, a TP arises. Again, it is easy
to see that the MAX-RB keeps its approximation ratio of 1

2 ; the transportation
problem on the red subgraph, as well as the one on the blue subgraph, now
include the colourful supply nodes.

Finally, Max-Red-Blue TP can be generalized to a K-colour variant. In this
case, a weighted bipartite graph G(S ∪D,E) is given with C1, C2, . . . , CK ⊆ S,⋃K
k=1 Ck = S and Ck1 ∩ Ck2 = ∅ for any 1 ≤ k1 < k2 ≤ K, with E ⊆ S ×D.

The problem is to find a maximum weighted flow from S to D with respect to
supply and demand constraints, and the additional constraint that no two nodes
i1 ∈ Ck1 , i2 ∈ Ck2 , 1 ≤ k1 < k2 ≤ K can send flow to the same demand node
j ∈ D. The MAX-RB algorithm can be generalized to this setting, by solving
transportation problems on the subgraphs induced by Ck ∪D, for each colour
k. Also, the TP+R algorithm can be generalized to this setting by solving
a transportation problem and next identifying which colour gives the largest
profit to each demand node. The proofs in Theorem 4 and 5 can trivially be
generalized to show that both algorithms guarantee an approximation ratio of
at least 1

K . However, the approximation ratio of the generalization of Iterated
TP+R to this K-colour setting remains open.

The following example shows that the bound 1
K is tight for both algorithms.

Consider a complete bipartite graph C1 = {1, . . . ,K}, C2 = {K + 1, . . . , 2K},
. . ., CK = {(K − 1)K + 1, . . . ,K2} and D = {1, . . . ,K}. All supply nodes have
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ai = 1, all demand nodes have bj = K. Let:

1 =



1 1
2 1
...

...
j 1
...

...
K 1


, ej =



1 0
2 0
...

...
j 1
...

...
K 0


. (3.42)

Then the profit matrix is:

(pij) =


1 eK−1 · · · e2 e1

eK 1 · · · e2 e1
. . .

eK eK−1 · · · 1 e1
eK eK−1 · · · e2 1

 (3.43)

Observe that the optimum value equals K2, which is achieved by sending all
supply from the nodes in Ck to demand node k, k = 1, . . . ,K. Further, observe
that, when applying the generalization of MAX-RB, or the generalization of
TP+R, it may happen that the supply of the nodes in each Ck (1 ≤ k ≤ K) is
distributed over the K demand nodes, leading to a value of K.

3.5 Computational study

3.5.1 Experimental setup

We have studied the behaviour of the proposed formulations and approximation
algorithms with respect to the following problem characteristics:

• PS: the problem size (|S|+ |D|),

• PR: the proportion of red supply nodes ( |R||S| ),

• DEN: the density of the graph ( |E|
|S|×|D| ).

To this purpose, a set of test instances was generated according to a full
factorial design with the characteristics described in Table 3.2. The procedure
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Parameter Value
PS = |S|+ |D|, with |S| = |D| {50, 100, 150, 200, 250, 300, 350, 400}
PR = |R|

|S| {0, 0.1, 0.2, 0.3, 0.4, 0.5}
DEN = |E|

|S|×|D| {0.25, 0.5, 0.75, 1.0}
Smax 50
Cmax 20

Table 3.2: Characteristics of the generated test instances.

for generating these instances is described in Appendix A.1. The instances are
available online (see [76]). Note that for this set of instances |S| = |D|. Thus,
this experimental setup does not study the effect of the ratio of supply nodes
to demand nodes.

For Red-Blue TP, the tightness of the LP-relaxations of Formulations 1 and 2
was tested and compared, as well as the average computation times for each
formulation and its linear relaxation. Due to the instance generation procedure,
infeasible instances may be generated for which no solution to the integer
formulations or the LP-relaxations exists. Thus, the results on these instances
are not considered in the forthcoming discussion and table (the number of
feasible instances is included in the table).

For the maximization version, Max-Red-Blue TP, the performance of the
approximation algorithms, MAX-RB, TP+R and Iterated TP+R, is compared
with respect to the integer optimum of Formulation 1. In this setting, feasibility
is not an issue as the 0-vector is always a feasible solution.

This experimental setup has been coded in the C++ programming language
and was compiled with the GNU Compiler Collection (GCC) 4.6.3. The
IP-formulations and the LP-relaxation of Formulation 2 were implemented
and solved with IBM CPLEX 12.5, using the network simplex algorithm.
The LP-formulation of Formulation 1 was implemented as a minimum-cost
flow problem, and was implemented and solved with the network simplex
algorithm in LEMON 1.3 (Library for Efficient Modeling and Optimization
in Networks) from the COIN-OR initiative. The approximation algorithms
MAX-RB, TP+R and Iterated TP+R also make use of a minimum-cost flow
problem implementation in LEMON 1.3 for solving the transportation problem
on the respective (sub)graphs.

All tests were done on a workstation computer equipped with two eight-core
Intel Xeon 2670 2.6 GHz processors and 128 GB of main memory (RAM), which
was running a Linux-based operating system. The MIP solver was configured
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to use only one processing thread, so this system was used to solve up to 16
instances in parallel (limiting the MIP solver to 8 GB of memory for each
instance).

3.5.2 Results and discussion

Formulation 1 vs Formulation 2

The effect of increasing the problem size (PS) from 50 to 400 nodes is summarized
in Table 3.3 for Red-Blue TP. For each setting of PS, the results are averaged
over all feasible instances of 240 instances; 10 instances for each of the parameter
settings of PR and DEN. It is clear that the computation time of both models
increases as the problem size grows, and that the difference in computation
time between the two formulations also increases, indicating that Formulation
2 scales worse than Formulation 1. This is expected, as Formulation 2 has
a quadratic number of y variables for each source/destination pair, whereas
Formulation 1 only has a y variable for each destination node. Furthermore,
the exclusionary constraints are also quadratic in number for Formulation 2,
whereas they are linear in number for Formulation 1.

For both formulations, the LP-relaxation becomes tighter as the problem size
increases; i.e. the gap, defined as VIP−VLP

VIP
, decreases. Of course, then the

difference between the LP-relaxations of both formulations also becomes smaller
as the problem size grows. A possible explanation for this observation is that
the impact of a single colour constraint decreases when more nodes (or more
edges) are present.

The proportion of red vs blue nodes (PR) has a clear impact on the performance
of both formulations, shown in Table 3.3. For each setting of PS, the results
are averaged over all feasible instances of 320 instances; 10 instances for each of
the parameter settings of PS and DEN). It shows that for Red-Blue TP the LP
relaxation of Formulation 2 is tighter than Formulation 1, and the difference
between the two formulations’ tightness increases as the percentage of red nodes
grows to 50%. However, as this percentage increases, the computation time
for both formulations also increases, and quicker for Formulation 2 than for
Formulation 1. At 0% red nodes, both models reduce to the Transportation
Problem, and the linear relaxation equals the integer optimum.

Finally, the effect of varying the density of the underlying graph (DEN), from
25% to 100% is also summarized in Table 3.3. For each setting of DEN, the
results are averaged over all feasible instances of 480 instances; 10 instances
for each of the parameter settings of PS and PR. It is clear that as the density
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grows to 100%, the gap between the integer optimum and the LP-relaxation of
Formulation 1 and 2 decreases. Notice that computation times for Formulation
1 seem to be highest for a 50% density. For Formulation 2, the density for which
computation times are highest, is larger, which can be explained by the fact
that the number of constraints is directly dependent on the number of edges.
Furthermore, the difference between the gap of Formulation 1 and Formulation
2 becomes smaller as the density increases. Thus, the benefit of the stronger
LP-relaxation of Formulation 2 again reduces as the density grows to 100%.

It is clear that although Formulation 2 has a tighter LP-relaxation than
Formulation 1, this difference decreases as all factors considered (problem size,
percentage red nodes, density) grow. Furthermore, in all cases the computation
time increases much faster for Formulation 2 than for Formulation 1. This
results in a large amount of computation time when trying to find an integer
optimum using Formulation 2. Table 3.3 reports the number of instances that
timed out after 3600 seconds (these are counted as 3600 seconds in the averages).
It shows that for PS > 200 nodes increasingly more instances cannot be solved
in less than 1 hour, and in fact (not reported in the table) some instances cannot
be solved to optimality in less than 24h. It is also clear that this is highly
related to the ratio red/blue nodes. Therefore, we advocate using Formulation
1 over Formulation 2 in all cases.

We can also report the same effects concerning the problem size, proportion of
red nodes, and the density for the maximization version of Red-Blue TP. Given
that the results show basically the same effects, the corresponding table is not
shown.

The approximation algorithms

The computational results for the approximation algorithms are summarized
in Table 3.4, showing the relative gap between the heuristic result and the
integer optimum, as well as the computation time, while the problem size, the
percentage of red nodes, and the density of the network increase.

Overall, the gap with the integer optimum is considerably smaller for the ITP+R
heuristic (again, with an exception for the special case where all supply nodes
have the same colour) than both MAX-RB and TP+R. MAX-RB, obviously
being the most naive algorithm, performs worst of all and almost reaches its
worst case behaviour on instances where the percentage of red nodes is equal to
50%. Note that none of these heuristics dominates any of the other heuristics.
For each of the heuristics, instances were found for which it outperforms the
others.
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Clearly, for ITP+R the number of transportation problems that need to be
solved increases with the number of demand nodes. Therefore, its computation
time increases faster than with TP+R, where only three transportation problems
need to be solved, irrespective of the problem size.

3.6 Conclusion

The Red-Blue TP is a very natural generalization of the transportation problem,
namely where supply nodes receive one of two colours, and demand nodes
cannot receive flow from supply nodes with different colours. The problem
definition was introduced to study the computational complexity of patient-to-
room assignments under a gender separation policy. The complexity status of
the problem was shown to be NP-hard, and it is shown that a constant-factor
approximation is not likely to exist, even in a number of special cases. Relating
back to the patient-to-room assignment problem, it is clear that the gender
separation constraint by itself is sufficient to make the problem difficult (from a
computational complexity point of view).

Two IP formulations for the problem were presented: although it is shown that
one formulation is strictly stronger than the other, experimental results show
that the stronger formulation requires increasingly more computation time than
the weaker formulation, as the problem size, the percentage of red nodes, or
the density of the graph increase.

Furthermore, a maximization variant of Red-Blue TP was introduced and its
approximability was studied. Three algorithms were developed, two of which
guarantee an approximation ratio of 1

2 . Computational experiments show that
Iterated TP+R achieves the best approximation on most instances, at the
expense of considerable computation times. Finally, a number of generalizations
of Max-Red-Blue TP were discussed, including a variant with K colours.
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Chapter 4

Robust surgery admission
scheduling in an online
setting

The PA problem that has been the focus of the previous two chapters is
essentially concerned with a spatial decision: the problem is to determine where
patients will stay during their hospitalization. As discussed, this decision clearly
has an impact on the quality of care as well as patients’ comfort. However, the
overall flow of patients and the ‘load’ across the hospital remains unchanged, as
the admission dates are considered an input. Undoubtedly, the patient load has
an important impact on hospital operations. Therefore, this chapter focuses on
the decision on when patients should be admitted.

A robust admission scheduling approach for determining admission dates of
elective surgical patients is presented. The admission scheduling problem
is modelled in an online, stochastic decision making setting. The aim is to
minimize expected operating theatre costs and waiting time, while avoiding the
risk of bed shortages at a fixed certainty level by means of a chance-constrained
formulation. This stochastic model is approximated by means of sample average
approximation and is solved by a meta-heuristic algorithm. The approach is
used to implement four admission scheduling strategies that are evaluated based
on different criteria in a computational study.
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4.1 Introduction

Faced with the uncertain and highly variable nature of the care process, hospital
managers try to control the flow of patients to their best extent. Their aim
is to provide care to all patients in a timely fashion and to maximize the
efficient usage of their most costly resources such as the operating theatre (OT).
However, operational inefficiencies such as overtime in the operating theatre,
bed shortages in hospital wards, increase costs and are to be avoided.

One key instrument in this management process is admission scheduling of
elective patients. Contrary to urgent or emergency patients, by its nature the
flow of elective patients is the only flow that can be planned and thus can be
‘tuned’ to the available capacity of the operating theatre, nursing wards and
other resources. However, this requires careful planning and an overview of
availability of all considered resources, forecasts on urgent/emergency admissions
and other uncertain factors.

In practice, the admission scheduling for individual patients is mostly performed
by manual planners (e.g. an admission office). The request for admission
typically follows from a physician or surgeon who has determined during a
consultation that a patient needs to be admitted for treatment. One observation
that can be made is that the manual admission scheduling process is often
myopic. For example, a surgeon may schedule surgery on an elective patient
by considering her/his available operating time in the OT to determine a
surgery date. However, assuming that the patient may need to recover a
few days, the patient will need to be admitted to a bed for that duration.
The availability of a free bed is often assumed rather than really considered.
Therefore, a bed shortage may occur when occupancy is high, requiring an
ad-hoc operational intervention (discharging a patient earlier to free a bed,
admitting the patient to wards of a different discipline, postponing/cancelling
the patient’s admission). Another complicating factor is the uncertainty on
how long patients will take to recover from treatment. Although a physician or
surgeon may have an estimate, every patient is different and complications may
cause further variability. Considering future bed availability may therefore be
difficult and is easily over- or underestimated.

This chapters presents an admission scheduling approach that employs stochastic
information and sampling to consider variations in patients’ recovery times and
surgery durations. The risk of bed shortages is avoided at a fixed certainty level.
The focus is on the admission scheduling of elective surgical patients, as described
in the previous example. The motivation for this consideration follows from the
fact that one of the largest patient admission flows is that of patients being
admitted for surgery. As already noted in the introduction (Chapter 1), as high
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as 60% of hospital admissions may be surgery related [74]. The surgical patient
flow is of particular interest as it involves the hospital’s operating theatre.
It can be considered as the prime hospital resource, generating significant
revenue, though, due to its resource intensive nature (personnel, equipment), at
considerable cost. Another large patient flow is that of patients being admitted
for examinations or medical treatment; this flow is not considered in this chapter.

Using this robust surgery admission scheduling approach, four different admission
scheduling strategies are developed and compared in an online decision making
setting. These four strategies differ in both the scheduling horizon they assume,
as well as the frequency of decision making. Consequently, these four strategies
have different levels of flexibility for optimization and will therefore achieve
different levels of performance with respect to hospital ward bed shortages,
operating theatre usage cost and patient waiting time.

4.1.1 Related work

As noted by Hulshof et al. [40], considerable attention has been devoted to
strategic and tactical decisions for inpatient care services. Particularly, capacity
dimensioning and allocation of wards/beds and staff have been well studied
with a variety of techniques (simulation, mathematical programming, markov
processes, queueing theory).

Concerning admission scheduling and surgical ward usage, studies have been
performed mainly in the context of operating theatre planning and scheduling
since, as already noted, surgery is a major driving factor for admission. Notably
the connection between surgical scheduling and the impact on bed usage in
surgical wards has been considered at the tactical decision level. A prime
example is the development of a master surgical schedule (MSS). The MSS is
a (typically cyclical) timetable that allocates operating rooms and time slots
to individual surgeons/surgical disciplines based on their allocated (bi-)weekly
capacity. The distribution of these OT slots in the MSS can be related to the
bed usage in the surgical wards (through consideration of the length of stay
(LOS) distributions and arrival patterns of the different surgical disciplines,
see e.g. [5, 28, 73, 75]). By manipulation of the MSS, it is possible to reduce
variation in the bed usage and possibly reduce the number of required beds.

Another approach to admission scheduling at the tactical decision level concerns
the development of admission control schemes to set admission quota. These
admission quota serve as rules by which admission planners can assign individual
admissions. For example, Bekker and Koeleman [4] investigated approximations
for determining the impact of daily variability in admissions on the variability in
bed demand and blocking probabilities. Using these approximations, Bekker and
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Koeleman employed a quadratic programming model to determine an admission
scheme that minimizes weighted deviations of the bed usage from a defined
target load. Hulshof et al. [41] developed a mixed integer linear programming
(MILP) model to construct tactical resource allocations and admission plans.
The model is able to determine a selection of patients to be served that are in a
particular stage of their care process. Their main aim was to achieve equitable
access for patients, to meet admission targets and to use resources efficiently.

At the operational decision level, admission scheduling is concerned with the
determination of admission dates for individual patients. Vissers et al. [81]
developed a platform for comparing different admission strategies, considering
resources such as the operating theatre, nursing requirements, bed usage and
ICU usage. Different admission strategies such as maximum resource usage
(MRU) that employ waiting lists, booked admissions (determining an admission
date at request time) and zero wait (admitting a patient at request time)
were compared with respect to several performance measures. Mazier et al.
[55] discussed the problem of scheduling inpatient admissions in a hospital
with a highly uncertain length of stay and a significant number of emergency
admissions. Their main concern was to assure enough beds are available for
unknown emergency patients and future unknown elective patients. No other
resources are considered. To this end, Mazier et al. modelled the problem as a
stochastic programming problem and proposed and studied different estimation
techniques for assessing the number of beds required by emergency patients.
Schmidt et al. [67] presented an admission scheduling decision support system
that determines both admission dates as bed assignments for elective patients.
The system considers patient priorities, gender and preferences, the availability
of LOS estimates and dynamic adjustment of the LOS estimate if patients
stay longer than expected. Both an exact method and heuristic methods are
presented for the decision support system and are compared through simulation.
Gartner and Kolisch [30] presented an approach to schedule the hospital wide
patient flow at the operational level. Patient admissions are assumed to be
classified by their diagnosis-related group (DRG) and their clinical pathway.
The clinical pathway gives a blueprint of the sequence of activities, such as
diagnostic activities, surgery, that will occur during a patient’s stay, as well as
their corresponding resource requirements. Two mixed-integer programming
models are presented that aim to maximize the total contribution margin of
performing these activities, one in which admission dates are assumed to be
fixed/given and one in which admission dates are decision variables. The models
are tested and compared on real world data from a mid-size hospital in both a
static as a rolling horizon approach.

For surgical patients, the admission date is mostly determined by their assigned
surgery date. Considerable attention has been devoted to surgery scheduling at



PROBLEM DEFINITION 63

the operational level (see e.g. Cardoen et al. [13] for a thorough review). As
operating theatre planning and scheduling is the subject of Chapter 5, most
related work is discussed there. However, one observation that can be made is
that very few of these works consider the bed usage caused by surgical scheduling
at surgical wards. One notable exception is the consideration of the intensive
care unit (ICU), which is considered a bottleneck resource for certain surgical
types. Min and Yih [57] presented a model to determine an optimal surgery
schedule for elective patients, considering uncertainty on surgery durations and
LOS in downstream care units (specifically the ICU). A stochastic optimization
approach using the sample average approximation method (SAA) is proposed
and it is shown to be superior at minimizing overtime to using solely estimated
values (the expected value). However, this comes at the cost of additional
underutilization.

4.1.2 Contribution

This chapter presents a stochastic optimization model for elective surgery
admission scheduling. The model extends Min and Yih [57]’s approach to
additionally apply chance-constrained bed usage constraints to minimize risk
on bed shortages. Whereas the model of Min and Yih avoid ICU bed shortages
altogether, the current model is parametrizable with respect to bed shortage
risk. In addition, as the LOS in surgical wards is typically longer than the
ICU LOS, the model is also extended to use a longer scheduling horizon to
plan all patients, rather than assuming a lower bound cost for unplanned
patients. Because of these two complicating factors, a heuristic approach based
on local search is developed to solve this chance-constrained surgical admission
scheduling problem. This approach is then used to develop different admission
scheduling strategies that resemble the concepts explored by Vissers et al. [81].
These strategies are compared in a computational study on a dataset that was
generated according to fitted distributions from a hospital.

4.2 Problem definition

4.2.1 The offline problem

This chapter considers a setting in which a set of elective surgical patients P
of a certain surgical discipline must be admitted to a hospital for treatment
over a certain scheduling horizon H ′. Each patient p ∈ P requires some surgical
procedure to be performed and requires some days for recovery in a surgical ward
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before being discharged. The surgical discipline has a certain ward capacity,
denoted BEDS, that can be used for admitting patients. In addition, the
surgical discipline can make use of a set of operating rooms O for performing
surgeries, in which their daily allocated surgery capacity is denoted by CAPot
(possibly determined by an MSS).

Each patient p is characterised by:

• the time at which the request for admission was made rp,

• the earliest possible date for admission rdp,

• the number of days before surgery the patient must be admitted preopp,

• the duration of the surgical procedure dp,

• the length of the recovery period losp,

The aim is to provide to each patient an admission date ap such that he/she
can be admitted to a bed (i.e. a bed must be available) and two performance
measures are optimized:

1. Operating theatre cost: irrespective of individual surgery/treatment costs
and profits (i.e. some treatments may be more profitable than others),
the aim is to utilize the available operating theatre capacity as good as
possible. Deviation from this available capacity should be minimized
as both underutilization and running into overtime increase operating
costs: underutilization will decrease revenue and incur opportunity costs,
whereas running into overtime will incur additional staffing costs and
mostly at a higher rate.

2. Patient waiting time: a secondary aim is to admit patients in a timely
fashion. Although elective patients are considered not urgent, long waiting
times may increase the risk of a deteriorating medical condition and thus
incur additional costs. Moreover, patient satisfaction is reduced as patients
have to wait longer.

The previous problem definition may be modelled by a mixed integer linear
programming formulation as follows. Define the following decision variables:

xpt =
{

1 if patient p is admitted at time t,
0 otherwise.

(4.1)

ypto =
{

1 if patient p undergoes surgery at time t in OR o,
0 otherwise.

(4.2)
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The objective of the model is to minimize and balance operating theatre costs,
and patient waiting time. Let otoot,otuot denote real variables representing the
overtime resp. undertime in operating room o at time t. The objective is then:

Minimize WOT ·
∑

1≤t≤H′

∑
o∈O

α · otoot + otuot

+WWAIT ·
∑
p∈P

∑
rdp≤t≤H′

(t− rdp) · xpt (4.3)

with WOT, WWAIT denoting weights reflecting the relative importance of the
different costs and α denoting the cost ratio of overtime with respect to
underutilization.

The model is subject to the following constraints. Firstly, the following
constraints enforce that each patient is admitted exactly once and operated
once:∑
rdp≤t≤H′

xpt = 1 ∀p ∈ P (4.4)

∑
o∈O

ypτo = xpt ∀p ∈ P , rdp ≤ t ≤ H ′, τ = t+ preopp (4.5)

Secondly, the following relates for each operating room o and each day t of the
scheduling horizon, the surgical load to the deviations (overtime/undertime)
from the operating room’s target capacity CAPot.∑
p∈P

dp · ypto − CAPot ≤ otoot ∀o ∈ O, 1 ≤ t ≤ H ′ (4.6)

CAPot −
∑
p∈P

dp · ypto ≤ otuot ∀o ∈ O, 1 ≤ t ≤ H ′ (4.7)

In an ideal setting, the admission scheduling should be such that all elective
patients that are admitted for surgery can be admitted to the hospital ward.
Therefore, the following expression relates the admission scheduling to its
corresponding bed usage and constrains it to be at most equal to the available
bed capacity:∑
p∈P

∑
rdp≤τ≤t<τ+losp

xpτ ≤ BEDS ∀1 ≤ t ≤ H ′ (4.8)

Third, for each patient, decision variables are constrained to the relevant days
of the scheduling horizon, i.e. after each patient’s earliest admission date rdp:

xpt = 0 ∀p ∈ P, 1 ≤ t < rdp (4.9)
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ypto = 0 ∀p ∈ P, o ∈ O, 1 ≤ t < rdp + preopp (4.10)

Finally, the domains of the decision variables xpt, ypt and aid variables otoot, otuot
are defined.

xpt ∈ {0, 1} ∀p ∈ P, 1 ≤ t ≤ H ′ (4.11)

ypto ∈ {0, 1} ∀p ∈ P, o ∈ O, 1 ≤ t ≤ H ′ (4.12)

otoot, ot
u
ot ≥ 0 ∀o ∈ O, 1 ≤ t ≤ H ′ (4.13)

4.2.2 The online problem

Clearly, the previous problem formulation and mixed integer programming
model is not applicable to online decision making as it assumes knowledge
of uncertain parameters. The release date rdp, the surgery duration dp and
the length of stay losp of all patients p ∈ P only become known as patient
admission requests arrive, patients undergo surgery and finally leave the hospital.
Therefore, advance knowledge of these uncertain parameters cannot be assumed
a priori. Decision making can only be done in an online setting, making
decisions as new events occur. However, this does not imply that decision
making must be done instantaneously. Decisions on when to admit patients
may be postponed (e.g. put on a waiting list) and gathered to make a globally
better decision than in an instantaneous decision making setting. Another
implication that should not be made is that there is no knowledge at all of
uncertain parameters. Length of stay of a patient may not be known until a
patient is discharged, but certainly information is available on previous patients’
length of stay that have undergone a similar treatment. A similar argument
holds for the surgery duration. Therefore, knowledge on the expected length of
stay and surgery duration of any patient may be assumed, as well as some idea
of their distribution/spread.

Consider a decision time t′ at which patient admissions are to be scheduled
for the upcoming scheduling horizon H. At this point, a set of patients has
already been given an admission date (and are possibly already admitted to
the hospital ward), whilst a waiting list of patient requests for admission has
accumulated. Let At′ ⊆ P denote the patients that have already received an
admission date, i.e. At′ = {p ∈ P |rp ≤ t′ and ap 6= ∅} and let Pt′ ⊆ P denote
patients that are in the waiting list, i.e. Pt′ = {p ∈ P |rp ≤ t′ and ap = ∅}.

For these patients p ∈ Pt′ , assume the following is known:

• the earliest possible date for admission rdp,
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• the number of days before surgery the patient must be admitted preopp,

• the distribution of the duration of p’s surgical procedure,

• the distribution of p’s length of stay.

In addition, at decision time t′ information on departures of admitted patients
becomes known if departures occur (i.e. the true LOS of any admitted patient
is only known at time of departure).

The aim for the online problem is now to find a policy or an admission scheduling
strategy that minimizes expression (4.3) over the entire scheduling horizon. An
additional difficulty is that bed shortages cannot be avoided. Due to variability
in length of stay and arrivals, considerable variation in bed usage may occur.
As it is (financially) impossible to dimension wards such that no bed shortages
can occur, bed shortages should be avoided as much as possible.

4.3 Robust surgery admission scheduling

A heuristic approach to the online surgery admission scheduling problem under
uncertainty of both surgery durations and length of stay is presented. To be
robust against uncertainty in patient’s LOS and to control the risk of bed
shortages, a chance-constrained optimization model is presented. A sample
average approximation of this model is discussed and addressed by local search.
Finally, four admission scheduling strategies are presented that employ the
chance-constrained model in their decision making.

4.3.1 Chance-constrained surgery admission scheduling

As already discussed in the previous section, in an online decision making
setting, we can only assume the availability of stochastic information (i.e. the
distribution) on the surgery duration and length of stay of the individual
patients that need to be planned. However, this poses a problem if the aim is
to ensure that each patient can be admitted to a surgical ward bed. Although
it is possible to plan admissions considering a worst possible LOS estimate
ζMAX
p , this would likely result in an extreme underutilization of the surgical
ward. LOS distributions generally have a positively skewed shape with typically
a long tail. Scheduling with such worst case LOS estimates would result
in a bed usage pattern that is extremely unlikely. Another possibility is to
schedule patient admissions considering their expected LOS. However, this may
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over/underestimate the bed usage as it has no notion of the variance of the
LOS.

To control the risk of bed shortages, a chance-constrained approach is more
appropriate. Chance-constrained optimization was introduced by Charnes et al.
[17] in the context of scheduling heating oil production under uncertainty of
demand. Probabilistic constraints are imposed to ensure that sales requirements
and inventory storage constraints are met with a certain confidence.
For admission scheduling, such an approach can take into account the
distribution of the daily bed usage (that is a function of the admission scheduling
and LOS distributions of the patients) and limit that bed usage to the available
capacity at a predetermined risk/certainty level.

Consider again model (4.3)-(4.13). It can be adapted to a chance-constrained
optimization model in a straightforward manner. Let ξ = (ξp1 , ξp2 , . . . , ξpN

)
denote a vector of random variables representing the surgery durations of the
patients considered and similarly let ζ = (ζp1 , ζp2 , . . . , ζpN

) denote a random
vector representing the patients’ LOS.

The decision variables of the chance-constrained model remain the same, i.e.:

xpt =
{

1 if patient p is admitted at time t,
0 otherwise.

(4.14)

ypto =
{

1 if patient p undergoes surgery at time t in OR o,
0 otherwise.

(4.15)

To consider the uncertain nature of the operating theatre usage, the objective
of the model is changed to minimize and balance the expected operating theatre
costs and patient waiting time. By doing so, the aim is to minimize the
operating theatre cost in the average case. Assume that we can consider all
possible realizations of random vector ξ, represented by ξk ∈ Ξ with Ξ ⊆ RN
denoting the support of the probability distribution of ξ.

Let otoot(ξk), otuot(ξk) denote positive real-valued variables representing the
overtime resp. undertime in operating room o at time t, given a particular
realization ξk. The objective is then:

Minimize WOT ·EΞ

 ∑
t′≤t≤H′

∑
o∈O

α · otoot(ξk) + otuot(ξk)


+WWAIT ·

∑
p∈Pt′

∑
rdp≤t≤H′

(t− rdp) · xpt (4.16)
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with EΞ [. . .] denoting the expected value of (. . .) over all possible realizations
of ξ. Note that in the online setting only patients in the waiting list Pt′ are
scheduled.

The model is subject to the following constraints. Firstly, the following
constraints enforce that each patient is admitted exactly once and operated
once:∑
rdp≤t≤H′

xpt = 1 ∀p ∈ Pt′ (4.17)

∑
o∈O

ypτo = xpt ∀p ∈ Pt′ , rdp ≤ t ≤ H ′, τ = t+ preopp (4.18)

Secondly, the following relates for each operating room o and each day t of
the scheduling horizon, the surgical load to the deviations (overtime/under-
utilization) from the operating room’s target capacity CAPot. In the online
setting, the expressions considers both patients that are still to be scheduled and
patients in At′ that are already admitted (if ap ≤ t′) or whose future admission
date is already fixed (if ap > t′).∑
p∈Pt′

ξkp · ypto +
∑
p∈At′

t=ap+preopp

ξkp − CAPot ≤ otoot(ξk) ∀o ∈ O, t′ ≤ t ≤ H ′,

ξk ∈ Ξ (4.19)

CAPot −
∑
p∈At′

t=ap+preopp

ξkp −
∑
p∈Pt′

ξkp · ypto ≤ otuot(ξk) ∀o ∈ O, t′ ≤ t ≤ H ′,

ξk ∈ Ξ (4.20)

To limit hospital ward usage for each day of the scheduling horizon, a chance-
constraint is introduced to constrain usage to be below or equal to the available
number of beds with probability η:

Pr


∑
p∈At′

ap≤t<ap+ζp

1 +
∑
p∈Pt′

∑
rdp≤τ≤t<τ+ζp

xpτ ≤ BEDS

 ≥ η ∀t′ ≤ t ≤ H ′

(4.21)

where Pr {. . .} denotes the probability of event (. . .) occurring.
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Again, for each patient, decision variables are constrained to the relevant days
of the scheduling horizon, i.e. after each patient’s earliest admission date rdp:

xpt = 0 ∀p ∈ Pt′ , t′ ≤ t < rdp (4.22)

ypto = 0 ∀p ∈ Pt′ , o ∈ O, t′ ≤ t < rdp + preopp (4.23)

Finally, the domains of decision variables xpt, ypto and aid variables otoot(ξk),
otuot(ξk) are defined:

xpt ∈ {0, 1} ∀p ∈ Pt′ , t′ ≤ t ≤ H ′ (4.24)

ypto ∈ {0, 1} ∀p ∈ Pt′ , o ∈ O, t′ ≤ t ≤ H ′ (4.25)

otoot(ξk), otuot(ξk) ≥ 0 ∀o ∈ O, t′ ≤ t ≤ H ′, ξk ∈ Ξ (4.26)

4.3.2 Sample average approximation

Formulation (4.16)-(4.26) is difficult to solve in general as it depends on random
vectors ξ and ζ and all their possible realizations (which may be infinite).
Therefore, sample average approximation (SAA) [45] can be used to approximate
the stochastic model, transforming it in to a deterministic one. Informally, SAA
approximates a stochastic programming problem such as model (4.16)-(4.26), by
considering a sample of realizations of ξ and ζ of size K to represent the entire
set of possible outcomes. Each realization (ξk, ζk) is taken with a probability
pk = 1

K . The expected value of a function F (x, ξ, ζ) can then be approximated
by:

E [F (x, ξ, ζ)] ∼ 1
K

K∑
k=1

F (x, ξk, ζk) (4.27)

As K →∞, the SAA will converge to the true expected value. The application
of SAA for chance-constraints is more recent [61]. The main idea is to rewrite a
probabilistic constraint:

Pr {G(x, ξ, ζ) ≥ 0} ≥ η (4.28)

to the equivalent form:

E
[
1(0,∞)(G(x, ξ, ζ))

]
≥ η (4.29)

with:

1(0,∞)(t) =
{

1 t ≥ 0
0 t < 0

(4.30)
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an indicator function of the positive real numbers. Expression (4.29) can then
be approximated by:

E
[
1(0,∞)(G(x, ξ, ζ))

]
≥ η ∼ 1

K

K∑
k=1

1(0,∞)(G(x, ξk, ζk)) ≥ η (4.31)

For a more thorough introduction, refer to e.g. [69].

Let ξ1, ξ2, . . . , ξK be K i.i.d. samples of the random vector ξ and similarly
ζ1, ζ2, . . . , ζK be K i.i.d. samples of random vector ζ. Introduce the following
decision aid variables to serve as indicator variables for exceeding bed capacity:

ztk =


1 if bed usage in sample k exceeds the available capacity

at time t,
0 otherwise.

(4.32)

The SAA of model (4.16)-(4.26) is then defined by:

Min WOT ·
K∑
k=1

1
K

∑
t′≤t≤H′

∑
o∈O

α · otoot(ξk) + otuot(ξk)

+WWAIT ·
∑
p∈Pt′

∑
rdp≤t≤H′

(t− rdp) · xpt (4.33)

Subject to:∑
rdp≤t≤H′

xpt = 1 ∀p ∈ Pt′ (4.34)

∑
o∈O

ypτo ≥ xpt ∀p ∈ Pt′ , rdp ≤ t ≤ H ′, τ = t+ preopp (4.35)

∑
p∈Pt′

ξkp · ypto +
∑
p∈At′

t=ap+preopp

ξkp − CAPot ≤ otoot(ξk) ∀o ∈ O, t′ ≤ t ≤ H ′,

k = 1, . . . ,K (4.36)

CAPot −
∑
p∈Pt′

ξkp · ypto −
∑
p∈At′

t=ap+preopp

ξkp ≤ otuot(ξk) ∀o ∈ O, t′ ≤ t ≤ H ′,

k = 1, . . . ,K (4.37)
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∑
p∈At′

ap≤t<ap+ζk
p

1 +
p∈Pt′∑ ∑
rdp≤τ≤t<τ+ζk

p

xpτ ≤ BEDS +M · ztk ∀t′ ≤ t ≤ H ′, k = 1, . . . ,K (4.38)

K∑
k=1

ztk ≤ b(1− η) ·Kc ∀t′ ≤ t ≤ H ′ (4.39)

xpt = 0 ∀p ∈ Pt′ , t′ ≤ t ≤ rdp (4.40)

ypto = 0 ∀p ∈ Pt′ , o ∈ O, t′ ≤ t ≤ rdp + preopp (4.41)

Expressions (4.33) - (4.37) are all straightforward conversions of their
counterparts in model (4.16)-(4.26) that consider a limited set of realizations
ξk.

To model the chance-constrained bed usage, the additional aid variables ztk are
introduced in constraints (4.38) to indicate whether the bed capacity BEDS
has been exceeded in sample k at time t, by means of a Big M formulation
(with M a sufficiently large constant, for example |P |). Expression (4.39) then
constrains, for any day t of the scheduling horizon, the portion of samples
in which bed usage exceeds capacity (i.e. ztk = 1) to be less than or equal
to b(1− η) ·Kc, i.e. the proportion of samples that may exceed capacity at
certainty level η.

Also note that for patients p ∈ At′ for which ap < t′ (i.e. patients that are
currently admitted to a hospital bed), ζkp is sampled from ζp conditioned on
the event ζp > t′ − ap. Therefore, a conditional sampling approach must be
employed for patients that are already admitted.

4.3.3 Local search

Preliminary testing with the SAA model described in the previous section
showed that the model was computationally too slow for current integer
programming solvers, even with small size instances. Therefore, a local search-
based metaheuristic was implemented to solve the model.

A Late Acceptance Hill Climbing (LAHC) procedure was developed to solve
SAA model (4.33)-(4.41). Late Acceptance Hill Climbing [9] is a simple but
effective, list-based threshold accepting metaheuristic. It has been successfully
applied to several optimization problems such as time-tabling [9], lock scheduling
[80] and the ROADEF/EURO Challenge 2012 (Google machine reassignment
problem) [31, 77].
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A general pseudocode is presented in Algorithm 4. The algorithm requires only

Algorithm 4 Pseudocode for the LAHC metaheuristic
Require: L, s0, f : s 7→ R
s∗ ← s0, s← s0 . s∗, s maintain best found/current solution
laList← (f(s∗), f(s∗), . . . , f(s∗)︸ ︷︷ ︸

L

)

i← 0
while termination criterion not met do

N ← SelectNeighbourhood()
s′ ← N(s) . Sample a neighbouring solution of s
if f(s′) ≤ f(s) or f(s′) ≤ laList[i mod L] then

s← s′

if f(s′) < f(s∗) then
s∗ ← s′

end if
end if
laList[i mod L]← f(s)
i← i+ 1

end while
return s∗

one parameter (list length L), an initial solution s0, an objective function f(s), a
set of local search operators/neighbourhoods and a stopping criterion. The main
idea behind the algorithm is that a candidate solution s′ (obtained by applying a
local search operator to the current solution s) is compared to the solution that
was ‘current’ L iterations ago. This is implemented by maintaining a circular
buffer of size L, containing objective function values f(s) of the previous L
current solutions. The gap between f(s′) and laList[i mod L] leaves room
for diversification and escaping from local optima. However, as the current
solution value f(s) is constantly added to the buffer and older solution values
are removed, the search is still directed in an improving direction.

Solution representation

The local search approach employs a straightforward solution represent-
ation based on decision vectors ad = (adp1 , adp2 , . . . , adpN

) and ot =
(otp1 , otp2 , . . . , otpN

) that maintain resp. the admission date and the operating
room assignment for each patient p ∈ Pt′ . In addition, the solution
representation maintains a fixed set of samples of size K for the LOS vector ζk
and surgery duration vector ξk.
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Figure 4.1: Example showing bed usage for 100 patients arriving at a rate of
2 per time unit (Poisson distributed arrivals), with log-normally distributed
length of stay with mean = 5 and stdev. = 3. The local search objective
function minimizes the ηth percentile bed shortage (red colour) with a high cost.
In this example η = 95%.

For any given assignment of ad and ot and for each sample k = 1, . . . ,K, the
bed usage, operating theatre cost and total waiting time can easily be evaluated.

To enforce the chance-constrained bed usage constraint, the ηth percentile of
bed usage is compared to the available capacity for each day t. The total bed
shortage at the ηth percentile is computed (see Figure 4.1) and is penalized in
the objective function with a significantly higher weight than WOT and WWAIT .

Local search operators

The local search employs three local search operators to perturb a solution s to
a solution s′.
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1

0.95

last surgery date t

CDF

rdp ad'
p

U

Figure 4.2: Sampling ad′p according to an exponential distribution, with a 95%
probability of sampling before the last surgery date (i.e. γCA = 95%). U
denotes a uniform random number between 0 and 1.

• Change Admission (CA): this local search operator samples a random
patient p ∈ Pt′ and assigns a random new admission date adp ← ad′p.
ad′p is sampled from an exponential distribution (with rate parameter λ)
that is constructed such that γCA of all samples fall within the interval
[rdp, lastSurgery), with lastSurgery = maxp∈Pt′ {adp + preopp} (see
Figure 4.2 for an example with γCA = 95%). If ad′p > H ′, i.e. it falls out
of the scope of the current scheduling horizon, then H ′ := ad′p + ζMAX

p .
By doing so, the sampling method is able to sample admission dates far
beyond the current last planned surgery date, though at an exponentially
decreasing probability. This allows the local search to postpone admissions
far enough, such that meeting the bed usage constraint is ensured.
The λ parameter can be determined by:

1− eλ·(lastSurgery−rdp) = γCA

1− γCA = eλ·(lastSurgery−rdp)

ln(1− γCA) = λ · (lastSurgery − rdp)

λ = ln(1− γCA)
(lastSurgery − rdp)

(4.42)

Additionally, it is checked that ad′p is not a weekend-day, as in practice
generally no elective admissions are planned in weekends. If that is the
case, the sample is rejected.
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• Change OR (CO): this local search operator samples a random patient
p ∈ Pt′ and assigns a random new operating room o′ ∈ O (if |O| > 1).
This operator is not used if |O| = 1.

• Swap admissions (SA): this local search operator randomly selects two
patients p1, p2 ∈ Pt′ and swaps their admission dates (if feasible with
respect to rdp1 , rdp2).

• Move OT Block (MOB): this local search operator samples a non-empty
OR and day (i.e. it contains planned surgeries) and moves all related
admissions to an earlier, empty OR and day in the scheduling horizon.
This local search operator was added to compact schedules as much as
possible (thus minimizing waiting time) and to speed up convergence of
the algorithm.

4.3.4 Admission strategies

Using the SAA model (4.33)-(4.41) and the local search approach, four different
admission scheduling strategies have been developed that vary on two different
parameters: the frequency of decision making and the scheduling window.

• Frequency of decision making: the frequency of decision making is a factor
that determines how long patients are accumulated on a waiting list until a
new admission schedule is constructed for the upcoming scheduling period.
In this work, two frequency levels are considered: daily and weekly.

– In the daily setting, every day a new admission schedule is constructed
to consider the patients that requested to be admitted on that day.
For example, consider that on a Tuesday three requests for admission
were added to the waiting list. On Tuesday eve, a new admission
schedule for Wednesday (and onwards, see scheduling window) would
be constructed that considers these three admission requests and any
other request still in the waiting list.

– In the weekly setting, the admission schedule is constructed only
once a week (e.g. on Friday) considering any admission requests that
were made in the past week and any other admission request still in
the waiting list.

• Scheduling window: the scheduling window H determines how far into
the future admission dates are fixed. Note that SAA formulation (4.33)-
(4.41) plans all patients in the waiting list over a period H ′ (which is
an upper bound to plan all patients). H on the other hand determines
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that portion of the planned admissions that is effectively fixed. If only
a portion of admission requests are fixed, more flexibility is given to
upcoming scheduling periods to achieve higher efficiency. However, this
also means that some admission requests may stay in the waiting list for
several iterations, ultimately increasing their waiting time.

– If H = H ′, then all admissions that are scheduled, are effectively
fixed (i.e. ap is set for all patients in the waiting list) and removed
from the waiting list. Fixed admission dates are never changed at
subsequent decision times.

– If H = 1, then only admissions planned on the first day of the
upcoming scheduling period are fixed. This leaves all other planned
admissions beyond H = 1 on the waiting list. Obviously, for week
scheduling (see above), this does not make sense. Only one day
would be planned, leaving all other days open. Therefore, for daily
scheduling H = 1 is used, whereas for weekly scheduling H = 7 is
used. In this case, daily admission scheduling with H = 1 will only
fix admission dates for the upcoming day, whereas weekly admission
scheduling with H = 7 will only fix admission dates for the upcoming
week.

Figure 4.3 gives an overview of these four different strategies. In the weekly
scheduling strategies (Figures 4.3a and 4.3b), the first day of the scheduling
period is always a Monday (assuming elective admissions are planned only
on weekdays, which is common practice). If H = H ′ (Figure 4.3a), then all
planned admissions are effectively fixed. If H = 7 (Figure 4.3b), then only
admissions planned in the upcoming week are fixed. In the daily scheduling
strategies (Figures 4.3c and 4.3d), the first day of the scheduling period can
be any day from Monday to Friday. Again, if H = H ′ (Figure 4.3c), then all
planned admissions are effectively fixed. If H = 1 (Figure 4.3d), then only
admissions for the upcoming day are fixed. Algorithm 5 presents pseudo code
formally describing the strategies.

This last admission strategy (daily, H = 1) is clearly the least patient-friendly,
as patients can only be notified one day before admission. The daily admission
strategy with H = H ′ is most patient-friendly, as patients are given their
admission date on the day of their request, although it must be noted that
this can be short notice (if some capacity is still available in the upcoming
day). The weekly admission strategies are milder in this sense than their daily
counterparts, as either a patient is given an admission date at the end of the
week in which the admission request was made (if H = H ′), or the admission
date is given the week before the patient is admitted.
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Algorithm 5 Pseudocode: Application of the different admission strategies in
an online setting.
Require: P , freq ∈ {daily, weekly}, H ∈ {H ′, 1/7}
t′ ← 0
At′ ← ∅
Pt′ ← ∅
while P 6= ∅ do

Pt′ ← Pt′−1 ∪ {p ∈ P : rp = t′}
P ← P\{p ∈ P : rp = t′}
if freq = daily and (t′ mod 7 6= 5 ∧ t′ mod 7 6= 6) then . Solve every

weekday
Solve (4.33)-(4.41) starting from next day (Monday if t′ mod 7 = 4).

else if freq = weekly and t′ mod 7 = 4 then . Solve every Friday
Solve (4.33)-(4.41) starting from Monday.

end if
At′+1 ← At′ ∪ {p ∈ P ′t |ap < H}
Pt′ ← Pt′\{p ∈ P ′t |ap < H}
t′ ← t′ + 1

end while

4.4 Computational study

4.4.1 Experimental setup

Experimental data

The university hospital of Leuven, UZ Leuven (UZL), has provided a dataset
of hospital admissions and surgery plans. The hospital comprises 1995 beds
spread over four campuses and is one of the largest hospitals in Belgium.

The dataset spans the year 2013, during which 62871 patient have been admitted.
From this set 33663 admissions having a surgical pathway were considered. The
following relevant data on surgical admissions was extracted: surgical disciplines,
surgical procedures per discipline, surgical durations and length of stay per
surgical procedure. For each surgical procedure of each discipline a log-normal
distribution was fitted to both the surgical duration and the LOS. The log-
normal distribution has been shown to fit well for both the surgical duration
[70] as the LOS [37, 52] (although for the latter, alternative positive skewed
distributions have been proposed as well, e.g. Exponential [33], Weibull [52],
Phase-type [25]). Figure 4.4 and 4.5 show for example, log-normal fittings of
both the surgery duration and length of stay for abdominal surgery (ABD) and
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thoracic surgery (THO). Some general information on the characteristics of
this data and the corresponding fitted distributions is presented in Table 4.1.

A dataset of test instances was generated using the following method. Assume a
given surgical discipline s, a fixed number of operating rooms #OT and a fixed
number of patients #P . Let j ∈ Js denote the surgical procedures of surgical
discipline s and fs(j) the relative frequency/occurrence of surgical procedure j.
Let ξsj , ζsj denote the surgical duration resp. LOS distributions of procedure j:

1. #P patient admission requests are generated according to a Poisson arrival
process. The mean arrival rate is determined by λ := #OT∗CAPOT

E[ξs] , with
E[ξs] the expected value of the surgical durations for surgical discipline s.
CAPOT is set to 480 min., i.e. operating rooms are staffed for 8 hours.
Furthermore CAPot := CAPOT for all o ∈ O, t = 1, . . . ,H ′, except for
weekend days, where CAPot := 0. Thus, operating capacity is assumed to
be constant during weekdays and operating rooms are closed for elective
surgeries during the weekend. Furthermore, no patient admission requests
are generated during weekend days.

2. For each patient admission request, a surgical procedure j is randomly
selected from Js according to the relative frequencies fs(j) of these
procedures. The corresponding surgical duration and LOS distributions
are associated with the patient request, i.e. ξp := ξsj and ζp := ζsj .

3. de Bruin et al. [19] show that the Erlang loss queueing model with general
service time distribution (also denoted M/G/c/c model in Kendall’s
notation [44]) is a good fit for dimensioning hospital wards to meet a
certain blocking (cancellation) probability/risk. The model is therefore
useful to determine bed capacity for the test instances, under different
blocking probabilities.
Let µ denote the mean length of stay for surgical discipline s and let λ
denote the mean arrival rate. The Erlang loss formula

Pb = (λµ)b/b!∑b
k=0(λµ)k/k!

(4.43)

determines the probability Pb of blocking (i.e. a bed shortage) in a hospital
ward with b beds.
Given a fixed blocking probability P ∗b , the required number of beds to
meet that probability can be found by enumeration on b until Pb ≤ P ∗b .

Instances were generated according to the following combination of considered
factors:
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Figure 4.4: Log-normal fitting of surgery duration (a) and length of stay (b)
over all abdominal surgery (ABD) procedures.
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Figure 4.5: Log-normal fitting of surgery duration (a) and length of stay (b)
over all thoracic surgery (THO) procedures.
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Factor Considered values
Instance size (#OT,#p) (1, 100); (2, 200); (4, 400)
Surgical disciplines ABD,GYN,NCH,NKO,ONC,THO,ORT,

TRA,TRH,URO,VAT,RHK,MKA
Blocking factor P ∗b 1%, 5%, 10%

Table 4.2: Instance generation values for the different factors under consideration.
Refer to Table 4.1 for discipline abbreviations.

• Instance size: instance size is determined by #P and #OT . Clearly #P
influences instance size as the overall scheduling horizon will increase,
whilst #OT increases scheduling complexity as more operating rooms can
be used.

• Surgical discipline: different disciplines have different characteristics with
respect to mean and variation of surgical procedure durations and LOS.

• Blocking factor: the probability of bed shortages is a crucial factor
determining the ‘bottleneck’ for admission scheduling. Low blocking
probability will shift the bottleneck towards the operating theatre capacity,
whereas a higher blocking probability will shift the bottleneck towards
ward capacity.

Table 4.2 gives an overview of the values that were considered for these factors. A
full factorial set of instances was generated, with 5 different instances (generated
using a different seed) per combination resulting in 585 instances in the dataset.
Note that cardiac surgery (CAH) was omitted. CAH is less interesting as it has
a very high mean surgical duration (292.70 min.), resulting in only one case
being scheduled per OR per day. This leaves no room for optimization.

Admission strategies

The four different admission strategies discussed in Section 4.3.4 were applied
to all instances using the pseudo code presented in Algorithm 5. The following
parameters were determined in preliminary testing to configure the local search
algorithm and the SAA model:

• sample size K: a sample value of 100 was determined to give a good
balance between statistical accuracy of the SAA model and the speed of
the local search algorithm (iterations per second). Figure 4.6 presents the
relative deviation of the OT cost, OT overtime, OT undertime and the bed
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shortages from their true expected value, as a function of the sample size
K. Higher values (above 100) will slightly increase statistical accuracy, but
slow down the local search algorithm (as much more constraints/averages
must be evaluated) further. For this experimental setup, the aim was an
average execution time of at most 10 minutes (per execution of the local
search algorithm) in order to keep total experimentation time manageable.

In addition, a sample size of ‘1’ was also used, using the distributions
expected value for both the surgical duration and the LOS. The benefit
of the stochastic model over a deterministic model (with expected values)
can thus be determined by comparing to the K = 1 approach.

• LA list length L: a list length of 500 was determined to give a good
balance between early convergence and local search duration. Figure 4.7
shows the influence of the L parameter on the OT cost after optimization.
Clearly, the L parameter influences the quality of the solution found
after optimization: higher values of L allow for more diversification and
ultimately result in better solutions.

• Timeout criterion: the local search algorithm assumes convergence after
25000 non-improving solutions were sampled and thus terminates.

• In this experimental setup, we have assumed that hospital management
wants to meet bed availability at a certainty level η = 95%.

In addition to the four admission strategies, tested with both K = 1 and
K = 100, four ‘real-time’ baseline admission strategies were also tested for
comparison.

• First Fit OT (FFOT): when a new request for admission arrives, the first
OR slot that has sufficient capacity to fit the mean surgical duration is
assigned.

• Best Fit OT (BFOT): when a new request for admission arrives, the best
OR slot that has sufficient capacity and minimal slack to fit the mean
surgical duration is assigned.

• FFOT-Bed and BFOT-Bed: the counter parts of the previous two
strategies that additionally check whether or not there is sufficient bed
capacity for the mean LOS of the admission request.

In particular, FF OT is a good base for comparison to practice, where surgery
admission dates are often assigned to the first available slot and under the
assumption that a bed will be available.
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Figure 4.6: (a) Accuracy of the average OT cost, OT overtime, OT undertime
and bed shortages as a function of the number of samples, relative to their ‘true’
expected value as determined by 10000 samples. The values represent average
results obtained over a subset of the test instances (all ABD instances, 45 in
total). (b) Execution time as a function of the number of samples.



COMPUTATIONAL STUDY 87

OT Overtime

OT Undertime

OT Cost

560

580

600

3300
3400
3500
3600
3700
3800

6100

6200

6300

250 500 750 1000

250 500 750 1000

250 500 750 1000
L

V
al

ue
Legend OT Overtime (minutes) OT Undertime (minutes) OT Cost

Influence of late acceptance L parameter

(a)

400

600

800

1000

1200

250 500 750 1000
L

E
xe

cu
tio

n 
tim

e 
(s

)

Execution time until convergence vs L parameter

(b)
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optimization. The values represent average results obtained over a subset of
the test instances (all ABD instances, 45 in total). (b) Execution time until
convergence as function of L.
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Figure 4.8: Operating theatre performance measures for a single OR. For
multiple ORs, total overtime and undertime is measured over all ORs.

Evaluation

All solutions of the different scheduling strategies were evaluated with respect
to three performance criteria: # bed shortages, OT cost and the mean waiting
time for admission.

As different admissions strategies may plan surgeries over a different timespan,
a relative measure is required to gain insight in performance between strategies.
Therefore, to compare OT cost, the total overtime/undertime is measured
between the first surgery day (day of first planned surgery) and the last surgery
day, from which the total OT cost can be calculated. This cost is then divided
by the planned number of surgery days to get an average daily OT cost. I.e.:

Daily OT Cost = α · Total overtime + Total undertime
#Planned surgery days (4.44)

Figure 4.8 illustrates these performance measures. The overtime to undertime
ratio was set to α = 2, under the assumption that overtime working hours are
paid at a 100% additional rate.

To obtain an accurate estimate of the expected values of the number of bed
shortages, the OT overtime, undertime and cost, 10000 evaluations were done
on the final solutions obtained using samples drawn from ξp and ζp for each
patient.

Concerning the relative weights between objectives, in this study it is considered
that bed shortages have higher importance than OT cost and average waiting
time, as bed shortages may ultimately cause cancellations and thus will also
increase OT cost. Finally, hospitals are assumed to be profit maximizers and
thus OT cost will take precedence over waiting time. Therefore, relative weights
for the local search objective have been set such thatWBED �WOT �WWAIT .
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Implementation and computational setup

The admission scheduling approach and all supporting code has been
implemented in Java 1.8 and makes use of Apache Commons Math 3.3 for
stochastic sampling routines. All tests have been performed on a workstation
computer equipped with two eight-core Intel Xeon 2650 v2 2.6 GHz processors
and 128 GB of main memory (RAM), running a Linux-based operating system.
Only one processing thread is used per test and therefore this system was used
to perform up to 16 tests in parallel (limiting available memory to 8 GB for
each test).

4.4.2 Results and discussion

Tables 4.3, 4.4 and 4.5 report on the average performance results of the admission
strategies at a blocking level Pb of resp. 1%, 5% and 10%. Reported are: the
mean and 95th-percentile of the relative daily bed shortage (relative to the
available capacity) and the average bed occupancy, the mean daily OT overtime,
undertime and cost, as well as the mean operating room utilization and the
number of planned OT days (refer to Figure 4.8), the mean waiting time per
patient and the execution time per instance.

At a blocking level of 1% (Table 4.3), the number of bed shortages is low for all
admission strategies, as would be expected. Differences can be seen in OT cost
between real-time, daily and weekly scheduling strategies.

• Real-time strategies: FFOT and BFOT perform mostly similar, having
near equal OT costs and utilization. However, as BFOT minimizes slack
in each OR, it will plan closer to the available capacity. This results in
a higher OT overtime and lower OT undertime. Since the decrease in
OT undertime does not compensate for the increase in OT overtime, this
results in a (slightly) higher average daily cost. In addition, BFOT is more
likely to postpone an admission slightly to minimize slack, therefore mean
waiting time for patients is increased. A similar observation can be made
for their variants considering bed availability. However, OT utilization is
slightly lower due to postponing a fraction of surgeries because of lack of
bed availability.

• Daily optimization: a distinction can be made between the stochastic
approaches (K = 100) and the average value approaches (K = 1). The
average value approaches plan much closer to the available capacity and
reach higher utilization. However, as they have no notion of the variance,
the OT overtime cost is underestimated. This results in an increased
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daily OT overtime. The stochastic approaches on the other hand do
have information on the variance and in the case where there is also
sufficient flexibility (H = 1), a significant decrease in daily OT cost can
be identified. Finally, the least flexible approaches with H = H ′ perform
worst. However, the stochastic approach K = 100, H = H ′ is still able
to match the daily OT cost of real-time strategies, at a higher utilization
rate. Thus, mean patient waiting time can be reduced while maintaining
a similar cost level.

• Weekly optimization: the same distinction between stochastic approaches
(K = 100) and the average value approaches (K = 1) can be made for
weekly planning approaches. Average value approaches underestimate OT
overtime cost and plan at a higher occupancy. The stochastic approaches
on the other hand correctly estimate the expected OT cost. In addition,
OT cost is lower for the weekly optimization approaches than for the daily
optimization approaches due to increased scheduling flexibility. However,
this is at the expense of mean patient waiting time which is higher due to
postponing decision making. Again, the most flexible, stochastic approach
(K = 100, H = 7) performs best with respect to daily OT costs.

As expected, week scheduling strategies incur the highest mean waiting time per
patient due to accumulating more patients on the waiting list before decision
making is performed. Interestingly, admission strategies that fix all admission
dates (H = H ′) have slightly higher mean waiting time than strategies that
do not fix all planned patients (H = 1, H = 7). This can be explained by the
fact that in general all optimization based strategies will have a tendency to
plan short surgical procedures with shorter LOS at earlier times and longer
surgical procedures with longer LOS at later times. This results in decreased
average waiting time and increases throughput at the start of the scheduling
horizon. This effect is less pronounced when all admission dates are fixed after
scheduling them, as longer procedures will not be postponed indefinitely.

As the blocking probability increases and the bottleneck shifts towards bed
capacity (Tables 4.4 and 4.5), it can be observed that FFOT and BFOT, which
do not consider bed usage at all, will incur non-negligible bed shortages. These
bed shortages denote the average daily relative bed shortage. Bed occupancy
will generally increase during the weekdays due to new admissions and drops
during the weekend (since no admissions occur). Therefore, the peak bed
shortages during the week may be considerable.

Non-stochastic approaches considering the expected LOS (FFOTBed, BFOTBed
and admission strategies withK = 1) also underestimate the expected bed usage.
This effect is worse for the average value daily and weekly admission strategies
(i.e. with K = 1) that plan closer to the available bed and OT capacity as they
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have no notion of the variance. This results in a higher utilization and admission
rate, ultimately resulting in higher bed load and thus a higher probability for
bed shortages.

The stochastic approaches (K = 100) have a better estimate of the expected
bed usage and its variation and are able to reduce the risk of bed shortages.
Obviously they cannot completely avoid bed shortages at the 95th percentile,
as the sampling approximation is limited to 100 samples and thus may still
underestimate the 95th percentile. Nevertheless, bed shortages at the 95
percentile are kept at an acceptable level. The most flexible stochastic
approaches (H = 1 and H = 7) obtain both the lowest risk on bed shortages
and have low OT cost. However, this is at the expense of patient friendliness
(i.e. notification of admission date either the day before, or in the previous
week) and increased mean patient waiting time (for week scheduling).

Interestingly, a stochastic week scheduling approach where admission dates
are fixed (H = H ′) provides a nice balance: relatively quick notification of
the admission date (at the end of the week in which the patient admission
request was made), reduced risk of bed shortages and a daily OT cost lower
than real-time scheduling strategies that also consider bed availability.
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4.5 Conclusion

In this chapter an admission scheduling approach for scheduling elective
surgical patients has been presented, for which a stochastic, chance-constrained
optimization model is introduced. It aims at minimizing the expected operating
theatre cost (as a function of both over- and underutilization) and patient
waiting time, while limiting the risk of bed shortages to a fixed certainty level.
A sample average approximation to the model is proposed and is solved by a
meta-heuristic approach based on Late Acceptance. Finally, different admission
scheduling strategies are constructed based on this stochastic approach and are
compared in a computational study.

The results indicate that a stochastic approach is appropriate in an uncertain
scheduling setting, as it is able to consider the uncertainty on patients’ length
of stay and surgery duration, and the resulting variance in bed usages and
operating theatre occupancy and costs. When the surgical ward capacity is
not a bottleneck, stochastic approaches are able to reduce expected operating
theatre costs. This also depends on the admission scheduling strategy that
is employed: the most flexible approach will enable to reduce expected costs,
however this will be at the expense of both patient friendliness (late notification
of admission date) and/or increased waiting time. On the other hand, when
the surgical ward capacity is a bottleneck, stochastic approaches are able to
maintain a low risk of exceeding bed capacity. However, this is again at the
expense of patient friendliness and patient waiting time.

In conclusion, there is no free lunch in a capacity constrained uncertain
environment such as a hospital. Robustness against bed shortages comes
at the expense of less patient-friendly scheduling techniques (waiting lists, late
notification) or at the expense of increased OT costs.





Chapter 5

A heuristic approach to
multi-day surgical case
scheduling considering
generalized resource
constraints

In the final study of this dissertation, an insight is given into the scheduling
process of the operating theatre. The previous chapter already touched on the
fact that the operating theatre is a key hospital resource, producing significant
revenue though at substantial cost. To quantify this, consider that Macario
et al. [49] indicate that surgery related services can represent more than 40% of
hospital costs and revenues. In addition, Jackson [42] identifies the operating
theatre as an important profit center rather than a cost center. Being a profit
center, the operating theatre should be run to maximize throughput, while still
managing added costs from over-utilization. In this chapter, a decision support
model and approach is presented for scheduling the operating theatre to achieve
this goal.

A rich multi-day surgical case scheduling problem is proposed that considers
generalized resource constraints and desiderata from the surgical staff. The
aim is to schedule as many surgical cases in as few operating theatres as
possible, within regular operating theatre opening hours and under limited

97
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resource availability. A heuristic algorithm is presented to solve this rich
problem formulation, and it is tested on a set of real-world data. The results
are compared to surgical plans made by manual planners.

This work has been performed in the context of IWT project 120604, a joint
research project of the research group CODeS & iMinds-ITEC and a software
company, Dotnext1. Dotnext develops healthcare applications for the operating
theatre and the cardiology department, among which a software solution for
operating theatre planning and scheduling. The problem description and data
were provided as part of this joint research project. The final goal of this
study is the inclusion of the algorithm into the company’s software application.
The development of the model and the heuristic approach has been done in
collaboration with Pieter Smet, KU Leuven, Department of Computer Science,
CODeS & iMinds-ITEC.

5.1 Introduction

Efficiently running an operating theatre consisting of several operating rooms
(ORs) and a large surgical staff is not an easy task. It requires the coordination
of many different resources, both human and material, to be able to perform
surgeries. A great deal of careful planning and organization is thus necessary
to avoid delays and to ensure high throughput. Failure to do so may
require overtime by the surgical staff to finish all surgeries, or even cause
cancelling/postponing surgeries, ultimately resulting in loss of revenue, increase
of costs and worse quality of care.

Over the past decades, numerous software development efforts have been made
to assist the planner (e.g. a surgeon, an OT manager) to plan and schedule the
OT. These efforts have mainly computerized the process that human planners
perform, e.g. providing digital user interfaces and scheduling boards in which
the manual planner can allocate surgeries. Such applications can provide the
planner with a good overview of availability of resources, thus improving his/her
effectiveness at the task. However, the complexity of finding a good OT schedule
has not been reduced, and planners still have to ‘puzzle’ to find a good, workable
OT schedule. Software support for generating surgical schedules automatically
has seen considerably less adoption. For example, Cardoen et al. [14] report on
the usage of software support for generating and optimizing surgery schedules
in hospitals in Flanders, Belgium. Their survey indicates that as high as 56%
of the hospitals do not use any software support to develop and optimize their
surgical schedules, 26% use software support but the produced schedules are

1Dotnext, Dikkemeerweg 172, 1652 Alsemberg, Belgium – http://www.dotnext.be

http://www.dotnext.be
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not reliable (may contain errors, or do not consider all resources) and 11% use
software that produces reliable/usable schedules (7% used other approaches, or
left the question unanswered).

This chapter focuses on the development of a decision support model and
algorithm for OT scheduling, generalizing many considerations encountered
in the literature and in practice. The aim is to algorithmically support OT
managers and planning offices in their daily/weekly task of both scheduling
(determining start date and time of) surgeries and assigning them to an OR. In
particular, the presented approach supports scheduling other resources that may
be required for performing surgeries, both human resources (e.g. the surgical
staff: surgeons, anaesthesiologists, instrumenting nurses) and other resources
(e.g. portable imaging tools, operating lights). To this end, generalized resource
requirements are introduced to define the dependency of surgeries on specific
types of resources. A heuristic approach to this problem formulation is presented.
It is based on a schedule generation procedure combined with local search.

The main motivation for this work was to develop an approach general and
flexible enough to deal with different approaches to operating theatre scheduling
across hospitals. This has been facilitated by the collaboration with Dotnext.
Their input on current operating theatre planning practices and the provision of
data has been essential. The final goal of this collaboration is to integrate the
presented approach in this application to algorithmically support the planning
process of the operating theatre in practice.

5.1.1 Related work

Given the central role of the OT in the operation of any hospital, and the
impact it has on hospital costs and revenue, it has been the subject of a
myriad of studies. In particular, optimization and decision support for planning
and scheduling in operating theatres is not at all new. Cardoen et al. [13]
review 115 studies on the matter published after 2000, and many more have
been published since then. As also noted by Guerriero and Guido [34], a
general distinction can be made between studies depending on the decision
level they focus on. The surgical scheduling problem that is considered in
this chapter is situated at the operational decision level. It is concerned with
scheduling individual surgical cases in an operating theatre over a certain
planning horizon. However, one particular decision at the tactical level that
is of interest for this work is the operating theatre planning strategy. The
operating theatre planning strategy determines how operating theatre capacity
is distributed among different surgeons or surgeon groups. Different strategies
can be identified [34]:
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• Open scheduling strategy: in this strategy, operating theatre capacity
is not reserved for surgeons or surgeon groups. Rather, the operating
theatre capacity is managed as a single, shared entity in which surgical
cases can be planned. Capacity is allocated on a first-come first-served
basis. This may cause problems between surgeons and surgeon groups,
as certain disciplines may be able to plan certain surgery types well in
advance. Thus, they may fill up capacity before other surgeons have the
opportunity to do so. Furthermore, it is more difficult to manage. For
these reasons, the following strategy is more common.

• Block scheduling strategy: preallocates the operating theatre capacity to
the different surgeons or surgeon groups. Operating theatre capacity is
divided into blocks or slots consisting of an OR for a specified duration
(usually either a half day/full day). A block schedule, also denoted as the
master surgical schedule (MSS), determines which blocks are allocated
to which disciplines for each day of the week. Surgeons are free to plan
surgical cases within their allotted blocks as they see fit.
The MSS is typically cyclical, and is repeated over the course of several
weeks/months before being adjusted. By doing so, a stable and fair
way of planning and working is ensured, resulting in a stable flow and
consistent mix of patients. This stable situation also serves as the basis for
further decision making, for example for setting staffing levels in operating
theatres and the surgical wards. However, it is also one of its weaknesses.
As demand for surgery changes, some blocks may become underutilized
by certain disciplines while other disciplines are accumulating patients
on waiting lists. Therefore, some reallocation may be necessary. This is
addressed by the following strategy.

• Modified block scheduling: complements block scheduling with a policy to
check for underutilization. If underutilization of an upcoming OR block is
likely, this block may be opened to other surgeons to plan surgical cases.

As already introduced in Chapter 4, the MSS has been shown to have significant
impact on other resources (bed usage, workload) as it partly determines the
arrival rate and arrival pattern/variation of surgical patients. Therefore, these
resources should not be ignored when constructing/updating the MSS. Beliën
and Demeulemeester [5] showed how to construct an MSS that results in
an expected levelled bed occupancy, by minimizing a weighted sum of the
maximum expected bed occupancy and the maximum expected variance of the
bed occupancy. van Essen et al. [73] also showed how to relate downstream
ward bed usage to the MSS. By doing this, they were able to reduce the number
of required beds in HagaZiekenhuis (Den Haag, the Netherlands) by rearranging
the MSS. Next to bed occupancy, the MSS also influences the workload in
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nursing wards. Therefore, it is worthwhile to consider staffing decisions in the
process of creating the MSS. Beliën and Demeulemeester [6] showed how to
match and integrate the construction of an MSS with nurse scheduling

At the operational decision level, the focus is on scheduling individual surgical
cases. Many studies further decompose the process into two steps, denoted
advance scheduling and allocation scheduling [51, 60]. Other authors, e.g.
[66], have coined terms such as “intervention assignment” and “intervention
scheduling”, and “surgical case assignment” [1] and “surgical case scheduling”
[12]. In any case, the former process deals with assigning a surgery date, and
possibly an OR, to individual surgical cases in an upcoming planning period.
The latter process deals with sequencing/scheduling individual surgical cases
during the day within the different ORs, determining a specific start time for
each surgery to be performed.

The advance scheduling problem has already been mentioned in Chapter 4
in the context of admission scheduling. Most studies however, focus solely
on the operating theatre, assigning surgery dates to individual surgical cases.
This is often a weekly process of selecting surgical cases from a waiting list
to be performed in the upcoming week, and possibly (pre-) assigning them
to individual ORs. The main objectives considered minimize overtime and
underutilization of ORs [26, 43], as well as patient related costs and quality of
service measures such as waiting time [35, 43] and tardiness with respect to due
dates [66].

The allocation scheduling problem follows the advance scheduling problem, and
takes as input the planned surgical cases for the upcoming planning period.
The main goal of the planning process is to construct a feasible work plan
for each surgery day. Therefore, the allocation scheduling process typically
considers more resources and more operational constraints in order to be feasible
in practice. Examples consider surgeons operating in multiple rooms [53, 56],
the capacity-limited post anaesthetic care unit (PACU) [12, 56] or the intensive
care unit (ICU), (sequence-dependent) setup times between surgeries [63, 82].
Many studies target optimization of a variety of performance measures, but
mostly maximizing utilization of ORs (within restricted capacity), or minimizing
overtime or makespan (while scheduling all patients) are of main importance.

Some studies tackle both the advance scheduling problem and the allocation
scheduling problem in one single approach. Marques et al. [53] presented an
integer programming model to both select surgical cases to be performed in the
upcoming week and determine an OR and start time (slot). The model considers
different surgical case urgency classes, surgeon and patient availabilities, and
slack time for cleaning. Marques et al. [54] presented a genetic heuristic for the
same problem that achieves even better results. Riise and Burke [66] presented
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an iterated local search algorithm for a combined surgery allocation and surgery
admission planning problem, considering patient waiting time and tardiness,
and surgeon overtime.

Another distinguishing element between studies is the consideration of
uncertainty in surgery durations and emergency interventions. Denton et al.
[22] presented a stochastic model for surgery sequencing and scheduling in a
single OR. Their aim is to minimize a weighted objective function consisting of
waiting time, idle time and tardiness. Hans et al. [36] presented a robust surgery
loading study for the advance scheduling problem. Their aim is to minimize
overtime and to maximize free capacity, whilst considering uncertainty in surgery
durations and varying flexibility with respect to a base schedule. They minimize
the required slack for avoiding overtime by exploiting the portfolio effect – a
decrease in risk by increasing diversity (by means of non-correlated portfolio
components). As already discussed in Chapter 4, Min and Yih [57] presented
a stochastic approach to the advance scheduling problem that considers both
uncertainty on surgery durations, emergency arrivals and length of stay in the
ICU. Their objective was to minimize block overtime and patient waiting time
related costs. Bruni et al. [8] presented a heuristic approach to a stochastic
programming model for the advance scheduling problem considering different
recourse methods. On a weekly basis, an advance schedule is constructed that
maximizes an abstract priority weighted profit of performing surgeries, decreased
by the expected recourse cost. Different recourse methods are considered that
either perform surgical cases in overtime, redistribute surgical cases between
ORs or completely reschedule.

5.1.2 Contribution

The main contribution of this study is a decision support model and approach
for the surgical scheduling problem that generalizes many considerations found
in literature and in practice: employing multiple ORs, assigning a surgical team,
material requirements for surgical cases, etc. A generalized resource requirement
model is proposed for specifying dependencies of surgical cases on different
resources.

The model of Meskens et al. [56] is one that considers many aspects of the
surgical case scheduling problem encountered in practice. The study has a
similar goal as ours, namely to present a general decision support tool. Meskens
et al. present a modular model for the daily surgical case scheduling problem
using constraint programming, in which different considerations are grouped into
modules and can be turned ‘on/off’ according to the application’s requirements.
However, the work presented in this chapter also accommodates several other
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considerations, such as minimizing resource transfers (e.g. avoiding that nurses,
anaesthesiologists have to move between rooms), the concept of surgical phases
(e.g. a surgeon should only be present during an incision phase) and multi-day
scheduling.

Many studies [e.g. 12, 53, 54, 56] employ a discrete representation of time in their
planning models. Both the planning horizon and the surgical case durations are
discretized into multiples of a certain time unit. To keep model sizes tractable,
time unit sizes are often in the order of 15-30 minutes. As surgical durations
must be rounded due to this discretization underutilization may be introduced.
The approach presented in this study uses a continuous time representation,
enabling any precision of scheduling and avoiding underutilization due to limited
precision. More important, the algorithm complexity does not depend on the
precision of time.

Finally, an important practical contribution is that the approach is being
prepared for implementation, as part of the joint research project with Dotnext.
The generality and flexibility of the model and the approach are essential in
this aspect, as the software application is employed in many different hospitals
and must be able to cope with this diversity.

5.2 Surgical case scheduling problem

The surgical case scheduling problem (SCSP) deals with scheduling a set of
surgical cases S in a set of ORs O, over a finite time horizon of one or more
days. In this work, an open-scheduling policy is assumed, allowing surgical
cases to be planned in any OR at any time. As also noted by Fei et al. [26],
an open scheduling strategy is more general than block scheduling in the sense
that schedules fitting in a block scheduling strategy, also fit an open scheduling
strategy. Nevertheless, block scheduling, which is most common in practice,
can also be accommodated.

The aim is to schedule as many surgical cases in as few ORs as possible, within
the regular opening hours of the OT. Furthermore, a set of hard resource and
ordering constraints (cannot be violated) must be considered. Soft resource
constraints and desiderata are penalized if violated or not met. In what follows,
the elements and constraints of the problem are described. Notation will be
introduced along the description but is also summarized in Tables 5.1 and 5.2.
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Notation Description
s ∈ S (|S| = N) the set of surgical cases
o ∈ O the set of ORs
H = {1, . . . , |H|} the planning horizon (in days)
j ∈ RT the set of resource types
r ∈ R the set of resources
RTr ⊆ RT the set of resource types that resource r

can be assigned to.
Rj ⊆ R the set of resources of type j. Note that Rj1 and

Rj2 are not necessarily disjoint for j1 6= j2
i.e. some resources are flexible and
can fulfil different resource type requirements
(e.g. nursing staff members that have multiple skills).

RTRAN ⊆ R the set of resources for which transfers between ORs
must be minimized.

RIDLE ⊆ R the set of resources for which idle time must be
minimized.

Cr the number of ORs resource r can be used in.
AF (r1, r2) the affinity (positive, negative, neutral) between

resources r1 and r2.
[start, end) ∈ AVo,d Availability intervals for OR o on day d.
[start, end) ∈ AVr,d Availability intervals for resource r on day d.

Table 5.1: Summary of problem input sets and notation.

Notation Description
Ds ⊆ H the days on which case s can be planned
ps the priority of case s
ds the surgical duration of case s
ssj start of surgical phase (offset from start of case s in

the OR) of resource type j
dsj duration of surgical phase of resource type j
O1
s , O

2
s , O

3
s ⊆ Os the set of preferred, possible and if-necessary operating

rooms
RT rs , RT

o
s ⊆ R the set of required (optional) resource types

Csj the specific number of resources of resource type j that
are requested (required or optional) to be present.

Table 5.2: Summary of surgical case attributes.
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5.2.1 Basic problem

The aim of this work is to schedule as many surgical cases in an OT over a
specified planning period as possible. In practice it is common to schedule the
surgical cases for the upcoming week, one week in advance. However, it is not
uncommon that certain arrangements have already been made with respect to
the surgery date of individual cases. Therefore, this work considers a general
setting where surgical cases s ∈ S are eligible to be scheduled on one day from
a set of possible days Ds ⊆ H. Clearly, a surgical case should only be scheduled
once:

Constraint 1. A surgical case s can be scheduled on at most one day d ∈ Ds.

It is assumed that an open scheduling policy is maintained, i.e. surgical cases
can be scheduled in any OT. However, practice may differ: some surgical cases
may only be performed in certain ORs, due to restrictions on capacity, fixed
equipment, etc. Therefore, for each surgical case s a set of suitable ORs Os is
considered. Obviously:

Constraint 2. A surgical case s can be scheduled in at most one OR o ∈ Os
.

In addition, some ORs may be more suited than others for a surgical case s.
Therefore, a distinction is made between ORs. “Preferred” rooms (O1

s ⊆ Os) are
best suited for performing surgery for case s, but “possible” rooms (O2

s ⊆ Os)
and “if-necessary” rooms (O3

s ⊆ Os) may be used as well. However, “if-necessary”
rooms should be avoided but can be used if no other room is available. Thus:

Soft constraint 1. Surgical cases should be planned in “preferred” rooms
as much as possible, but “possible” and “if-necessary” rooms may be used as
well. “If-necessary” rooms should be avoided.

Each surgical case s has a specific duration ds during which the case occupies
the OR. Clearly:

Constraint 3. A surgical case s cannot be overlapping in time with any
other surgical case s′ scheduled in the same OR.

ORs are only ‘open’ during specific time windows, often only from 7-8 am until 5-
6 pm. Sometimes an OR may also be closed during lunch. Therefore, availability
intervals can be specified for each OR and each day d as [open, close) ∈ AVo,d,
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and:

Constraint 4. A surgical case s can only be scheduled on day d in OR o
within an availability interval [open, close) ∈ AVo,d.

5.2.2 Resource dependencies

Surgical procedures may require the presence of some resources when being
performed. In this problem setting, resource requirements are considered in a
broad sense: both human resources such as surgeons, anaesthesiologists, nurses,
but also specific material such as portable imaging equipment, surgical lights or
other tools.

We distinguish between resource types and resources. Resource types (denoted
j ∈ RT ) represent general types such as surgeons, nurses, instrumenting nurses,
anaesthesiologists, lamps, imaging devices. That is, they represent a specific
functionality (for materials) or role (for people). Resources (denoted r ∈ R) on
the other hand represent true physical resources that have specific functionalities
or can perform certain roles. The set of resource types a resource r belongs to
is denoted by RTr ⊆ RT , and the set of resources of a certain resource type j
is denoted Rj ⊆ R.

Each surgical case specifies dependencies on resource types rather than specific
resources, and are denoted by RTs. For each resource type dependency j ∈ RTs,
a count Csj specifies the number of resources required for a specific resource
type. Therefore, an additional complexity in this model is that for each resource
type dependency j ∈ RTs of a surgical case s, sufficient resources r ∈ Rj must
be assigned.
Furthermore, resources may only be needed during a specific part of the surgical
case duration. For example, an imaging tool may only be needed at the start
of a surgical case. A (supervising) surgeon on the other hand may only be
present during the incision phase of the surgical case. Therefore, each resource
type requirement j ∈ RTs a surgical case s depends on, also specifies a surgical
phase by an offset ssj from the planned start, and a duration dsj (Figure 5.1).
Resources only need to be assigned during this surgical phase, rather than
during the entire surgical case.

As with ORs, resources also have limited availability. Thus, for each resource
r availability intervals are specified for each day d of the planning period as
[start, end) ∈ AVr,d.

Finally, a distinction is made between required and optional resources (denoted
RT rs and RT os respectively), the former being necessary for planning the surgical
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ds

Required Resource
Types (RT):

RT1 

ds1ss1

resource phase 1

RT2 

resource phase 2

ds2ss2 = 0

Figure 5.1: Definition of a resource phase. For surgical case s, one dependency
on a resource type (RT1) is defined, with offset from start ss1 and duration ds1.

case, while the latter are preferably present. The resource constraints are thus:

Constraint 5. For each required resource type j ∈ RT rs a surgical case s may
depend on, Csj resources r ∈ Rj should be assigned during [ssj , ssj + dsj).

Constraint 6. A resource can only be assigned to one surgical case at any
given time and is used during the entire surgical phase it is assigned to (no
pre-emption).

Soft constraint 2. Optional resource types RT os for a surgical case s must
be assigned as much as possible, i.e. shortages with respect to Csj should be
minimized.
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5.2.3 OR and resource considerations

Resource efficiency

Next to handling the dependency of surgical cases on resources, the aim is
also to schedule resources assigned to surgical cases as efficiently as possible.
Therefore some measures of resource efficiency are considered as well.

Firstly, resources considered in this paper are assumed to be mobile. This is a
reasonable assumption given that stationary resources are fixed to a specific OR,
and are thus scheduled implicitly together with the OR. Even though resources
are assumed mobile, some should only be used in few OTs, and some should not
be transferred too much (e.g. large equipment). Therefore, for such resources
the aim is to minimize the number of ORs they are used in, and the transfers.
However, other resources may not have such a restriction. A surgeon assigned
to two ORs, may want to alternate surgical cases in different rooms to avoid
non-surgical tasks that occur at the start/end of a surgery, such as anaesthesia
and closing/cleaning. Thus, transfers for such resources (i.e. surgeons, but also
others) should not be constrained/minimized, but the number of ORs these
resources are used in should not exceed their assigned ORs.

To accommodate this, the following is defined:

• Cr : the number of ORs a resource r may be used in.

• RTRAN ⊆ R: the set of resources for which transfers between ORs must
be minimized.

These requirements are then formalized by:

Soft constraint 3. The number of ORs a resource r is used in, should be
smaller than Cr, i.e. the surplus should be minimized.

Soft constraint 4. For resource r ∈ RTRAN , transfers between ORs should
be minimized.

Secondly, next to transfers between ORs it may also be important that resources
are not left idle between surgical cases. For example, surgeons may prefer that
their surgical cases are not scattered during the day, but are grouped together.
Idle time between surgical cases may need to be minimized, for ensuring maximal
efficient usage of a resource. Let RIDLE ⊆ R denote the set of resources for
which the idle time between surgical cases must be minimized. Then:



SURGICAL CASE SCHEDULING PROBLEM 109

Soft constraint 5. The total idle time between surgical phases to which r
is assigned should be minimized, for all r ∈ RIDLE.

Resource affinity

Meskens et al. [56] point out that generally some affinities may exist between
surgical staff members, i.e. some people work better together than others. Their
model considers a positive-valued affinity matrix defined between individual
surgical staff members to address this aspect. Affinities are ranked on a range
of 0 to 9, with 0 denoting incompatible and 9 denoting strong preference.

In this work, a simplified version of this idea is used that distinguishes between
negative, neutral and positive affinities. Therefore, an affinity matrix AF (r1, r2)
with r1, r2 ∈ R, is defined as follows (assuming minimization of conflicts):

AF (r1, r2) =


1 if r1, r2 have a negative working affinitiy,
−1 if r1, r2 have a positive working affinity,
0 if r1, r2 have a neutral working affinity.

(5.1)

The aim is consider these affinities when assigning resources to surgical cases.

Soft constraint 6. Positive working affinities should be maximized when
assigning resources to surgical cases, whereas negative working affinities should
be avoided. That is, the total affinity cost should be minimized.

Note that no strong incompatibility is defined.

OR idle time

Maximal throughput and efficient occupation of ORs are also ensured, by
minimizing the idle time between surgeries scheduled in an OR.

Soft constraint 7. For every OR, the total idle time between surgeries
should be minimized.

Note that this goal does not leave time between surgeries for e.g. cleaning
the OR. We assume that such ‘setup times’ are considered in the surgical case
duration ds. Surgical phases can be defined, accordingly, to end when cleaning
should start.
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Ordering constraints

For medical and practical reasons, there is a preferential ordering of surgical
cases within any OR. For example, typically patients with latex allergies are
operated on before other surgical cases, while patients who may be infectious
are operated on after all other cases (to avoid contamination). Another common
case is that children are operated earlier during the day, after which adults
follow. This work assumes that such sequencing rules can be captured by an
ordering ps, specific to each case s, and:

Constraint 7. Within any OR, surgical cases should be performed in order
of increasing priority ps.

5.2.4 Objective function

The main aim of the surgical case scheduling problem is scheduling as many
surgical cases as possible (within availabilities). As a secondary objective,
the number of OR days, i.e. days individual ORs are occupied, is minimized.
Essentially the combination of these two objectives maximize efficient usage of
the OT.

In addition, soft constraints 1-7 should also be considered. These three elements
are combined in a weighted sum objective function:

Minimize WS · unscheduled cases (5.2)

+WR ·OR days (5.3)

+
7∑
i=1

Wi · penalty soft constraint i (5.4)

with WS ,WR,Wi denoting weights indicating relative importance of the
objectives. This work sets weights such that WS � WR � Wi, as scheduling
surgical cases is of primary importance, followed by minimizing the number of
OR days.

5.3 Algorithmic approach

Previous research efforts have mostly focused on approaches based on
mathematical programming formulations and related techniques (e.g. integer
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Figure 5.2: General overview of the heuristic approach.

programming [53], column generation [12]) and constraint programming [56, 82].
However, such approaches often suffer from the dimensionality of the problem,
limiting scalability. This study has thus opted for a heuristic two phase approach
in order to deal with the generalized problem definition, which may involve
many resources.

A general overview of the two phase approach is presented in Figure 5.2. The
approach is based on a list decoding procedure for generating feasible schedules.
This procedure takes as input a list of surgical cases in a specific order and
produces a schedule that adheres to all hard constraints of the problem. Next, a
local search algorithm is used to manipulate this list of surgical cases in order to
find new feasible schedules of better quality. Finally, in a second phase, optional
resources are greedily assigned to surgical cases.



112 A HEURISTIC APPROACH TO MULTI-DAY SURGICAL CASE SCHEDULING CONSIDERING
GENERALIZED RESOURCE CONSTRAINTS

Notation Description
(s, o, d, AR) A tuple assigning s to room o on day d,

with resource assignments AR.
AR = {(j, r)|j ∈ RT rs , r ∈ Rj} Resources r assigned to resource type j

for case s.
To,d, Tr,d OR schedule / resource schedule for

OR o, resource r on day d.
T (s) Starting time of case s.
Tr(s) Starting time of resource r for case s.

Table 5.3: Summary of data structures and decision variables.

5.3.1 Solution representation and list decoding procedure

The list decoding procedure takes as input an ordered list of surgical cases
in which each surgical case is already assigned to an OR o, a day d and to a
set of resources AR. From this list, a feasible schedule/solution is constructed.
Therefore, the main decision variable in this approach is an ordered list of tuples,
each consisting of a surgical case s, an OR o, an assigned day d and a set of
assigned required resource type/resource pairs AR = {(j, r)|j ∈ RT rs , r ∈ Rj},
or formally:

< (s1, o1, d1, AR1), (s2, o2, d2, AR2), . . . , (sN , oN , dN , ARN ) > (5.5)

Note that for resource assignments, only required resource types are considered.
Optional resources are handled differently, see Section 5.3.4.

The ordering must be feasible with respect to the ordering/priority constraint
(Constraint 7) for any day d and OR o, i.e. (sk, ok, dk, ARk) should appear
earlier in the list than (sl, ol, dl, ARl) if dk = dl,ol = ok and psk

< psl
for any

1 ≤ k < l ≤ N .

Given this priority feasible list, the list decoding procedure produces a feasible
schedule as follows.

1. Initialize data structures: the main data structures of importance are
representations of a schedule for both the ORs and the resources. These
data structures will hold the partial schedules of all surgical cases/surgical
phases assigned to an OR/resource.
A schedule is implemented as an interval tree, a balanced binary tree data
structure for storing intervals over the real numbers. Intervals are stored
ordered first by decreasing start time, and second by decreasing end time
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[5,18)

[5,16) [8,14)

[4,18) [5,17) [7,9) [8,15)

[4,12)

Figure 5.3: An example interval tree holding the intervals (in order) [4, 12),
[4, 18),[5, 16), [5, 17),[5, 18),[7, 9),[8, 14), and [8, 15).

(when start times are equal). Figure 5.3 shows an example interval tree.

An interval tree is well suited for testing whether a point/interval is
contained in/overlaps with an interval in the tree. Such operations can be
performed in O(log n), if the tree is balanced. Finding the first interval
before/after a query point or interval can also be found in O(log n).
Finally, given a node in the tree, the next node in the ordering can be
found in O(log n). Cormen et al. [18] provide a thorough introduction to
interval trees, and how they can be implemented through augmenting a
Red Black tree, a self balancing binary tree data structure.
For both ORs and resources, interval trees are used to store all relevant
intervals (surgical case start + duration for ORs, surgical phase start
+ duration for resources), where each node also stores a pointer to the
relevant surgical case. The schedules of OR o ∈ O are denoted To,d for
each day of the planning horizon d ∈ H. The schedules of resource r ∈ R
are denoted Tr,d. Similarly, the availability intervals of an OR o/resource
r are stored in interval trees AVo,d/AVr,d for each day d.

2. Variable definitions: Let S′ denote the set of all scheduled surgical
cases up to this point. Let S′o,d denote the subset of S′ that were scheduled
in OR o, on day d. Let S′r,d denote the subset of S′ that use resource
r on day d. Let T (s) denote the scheduled start time of surgical case s.
Let Tr(s) denote the scheduled start time of a surgical phase for assigned
resource r ∈ AR.

3. Schedule cases: For each tuple (s, o, d, AR) in the priority feasible list:
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(a) Find the earliest starting time t for case s as:

t = max
s′∈S′

o,d
:

ps′<ps

(T (s′) + ds′)

i.e. the earliest starting time is after the end time of the last surgical
case of a lower priority case in the same room on the same day.

(b) Check if [t, t+ ds) is contained in an interval in AVo,d. If not, find
the next interval [u, v) in AVo,d and t := u. If no such interval [u, v)
exists, there is no more availability of room o on day d. Leave s
unscheduled and go to 3.

(c) Check if [t, t+ds) overlaps with any interval [T (s′), T (s′)+ds′) ∈ To,d.
If yes, t := T (s′) + ds′ and go to 3b.

(d) Check if [t+ ssj , t+ ssj +dsj) is contained in an interval in AVr,d, for
each (j, r) ∈ AR. If no resource r is available, find the next interval
[u, v) in AVr,d and t := u− ssj . If no such interval [u, v) exists, there
is no more availability for resource r on day d. Leave s unscheduled
and go to 3.

(e) Check if [t+ssj , t+ssj+dsj) overlaps with any interval [Tr(s′), Tr(s′)+
ds′j) ∈ Tr,d for any (j, r) ∈ AR. If yes, t := T (s′) + ds′j − ssj and
goto 3b.

(f) Schedule surgical case: S′ := S′ ∪ {s}, T (s) := t, Insert([T (s), T (s) +
ds), To,d), and Insert([T (s) + sjs, T (s) + sjs + djs), Tr,d) for each
(j, r) ∈ AR.

At the end of this procedure, the result is a feasible schedule for all s ∈ S′,
while s ∈ S\S′ are left unscheduled.

Essentially, the algorithm just described constructs a schedule in the order
defined by the priority feasible list. At each step, the algorithm maintains a
schedule for each OR/resource that holds when it is available or occupied. The
main loop defined in step 3 scans these schedules in order to find the earliest
time at which the current surgical case s can be inserted, respecting its assigned
OT and resources. If no such insertion position is found on day d, due to lack
of available time, the surgical case s is left unscheduled.

5.3.2 Schedule evaluation

Given a priority feasible list l, its corresponding schedule can be computed
using the list decoding procedure described in Section 5.3.1 (denoted
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GenerateSchedule(l)):

(T (s), S′, To,d, Tr,d, S′o,d, S′r,d) := GenerateSchedule(l) (5.6)

with T (s) containing the scheduled start time of each case s, S′ the set of
scheduled cases, S′o,d, S′r,d the set of scheduled cases for OR o, resource r on
day d and To,d, Tr,d containing the occupied intervals of each OR o/resource r.

The schedule can be evaluated on the following objectives:

• Number of surgical cases left unscheduled = |S\S′|

• Number of OR days = #OR with:

#OT =
∑
d∈H

∑
o∈O

(To,d 6= ∅) (5.7)

where (To,d 6= ∅) =
{

1 If |To,d| > 0
0 otherwise.

• Number of surgical cases scheduled in preferred room = |Pref | with

Pref = {(s, o, d, AR) ∈ l|o ∈ O1
s and s ∈ S′} (5.8)

• Number of surgical cases scheduled in ‘if-necessary’ room = |IfNec| with

IfNec = {(s, o, d, AR) ∈ l|o ∈ O3
s and s ∈ S′} (5.9)

• Number of resource ‘overloads’:

Overload =
∑
d∈H

∑
r∈R

max (|Or,d| − Cr, 0) (5.10)

with:
Or,d = {o ∈ O|∃(s, o, d, AR) ∈ l and s ∈ S′r,d} (5.11)

denoting the distinct ORs in which a resource r is scheduled on day d.

• Number of resource transfers for resource r on day d: let lS′

r′,d′ denote
the sublist of l containing (s, o, d, AR) for which s ∈ S′ (it is scheduled),
d = d′ (assigned to day d′) and ∃(j, r′) ∈ AR (has r′ assigned to it).
Then the number of transfers for resource r on day d can be determined
by considering all adjacent pairs (sk, ok, dk, ARk) ,(sl, ol, dl, ARl) in lS′

r,d,
and checking if ok 6= ol.
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• Total OR idle time:

TotalORIdleT ime =
∑
d∈H

∑
o∈O

Max(To,d)−Min(To,d)−
∑
s∈S′

o,d

ds


(5.12)

with Min(To,d),Max(To,d) denoting the first start (last end) time of a
surgical case in room o on day d.

• Total resource idle time:

TotalResourceIdleT ime =
∑
d∈H

∑
r∈RIDLE

(Max(Tr,d)−Min(Tr,d)

−
∑

(T (s)+ssj ,T (s)+ssj+dsj)∈Tr,d

dsj


(5.13)

with Min(To,d),Max(To,d) denoting the first start (last end) time of a
surgical case in room o on day d.

• Total resource affinity:

TotalResourceAffinity =
∑
s∈S′

∑
(j1,r1),(j2,r2)∈AR

AF (r1, r2) (5.14)

5.3.3 Local search procedure

The schedule constructed by the list decoding procedure may be arbitrarily bad.
Complex resource dependencies may not be resolved due to the sequence of
the cases in the priority feasible list, or a particular resource may be assigned
to too many surgical cases. Therefore, the list decoding procedure is used
within a local search framework. It enables modifying both the sequence of the
surgical cases in the priority feasible list, as well as the assigned resources, OR
or operating day of the surgical cases.

The following local search operators have been developed:

• Shift (S): given a priority feasible list l, shift one tuple (s, o, d, AR) to a
new position, maintaining the priority feasible nature of the list.

• Change Day (CD): given a tuple (s, o, d, AR) ∈ l, replace d by d′ ∈ Ds.

• Change OR (COR): given a tuple (s, o, d, AR) ∈ l, replace o by o′ ∈ Os.
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• Change Assigned Resources (CAR): given a tuple (s, o, d, AR) ∈ l, with
AR = {(j, r)|j ∈ RT rs , r ∈ Rj}, select a required resource (j, r) and a
resource r′ ∈ Rj and replace (j, r) by (j, r′).

A stochastic improving-or-equal local search algorithm has been developed
applying these operators to improve an initial feasible priority list and
corresponding schedule. Pseudocode of this procedure is presented in Algorithm
6.

Algorithm 6 Local search procedure
Require: f : l 7→ R . f applies list decoding and evaluation to l
l← RandomPriorityFeasibleList() . Rand. assigns o, d,AR from
Os, Ds, RT

r
s ×R

i← 0
while termination criterion not met do

N ← SelectNeighbourhood(S,CD,COR,CAR)
l′ ← N(l) . Sample a neighbouring solution from l
if f(l′) ≤ f(l) then . Only accept improving/equal solutions

l← l′

end if
i← i+ 1

end while
return l

5.3.4 Optional resource assignment

After the local search phase has finished, the final schedule is constructed. Up
to this point, only required resource dependencies have been considered in
the approach, while optional resource dependencies have been left unassigned.
Essentially, optional resource dependencies could have been handled in a similar
fashion as required dependencies. Optional resources can be assigned to a
surgical case s, be scheduled by the list decoding procedure, and be manipulated
by the local search. For this, the list decoding procedure should be suitably
modified to not prohibit a case from being scheduled due to unavailability of an
optional resource.

However, a study on real-life problem instances (presented in Section 5.5.1)
revealed that optional resources were quite numerous. Treating the optional
resources in the same manner as required resources would therefore slow down
the approach unacceptably.
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A two-phase approach has been developed to cope with this problem, performing
the optional resource assignment after the surgical case schedule has been
constructed. The optional resource assignment is implemented using a greedy
approach: it considers the scheduled surgical cases one by one, and assigns the
resource that minimally increases the objective function.

5.4 Modelling examples

To illustrate the flexibility of the resource requirements, we present two common
practical considerations in surgical case scheduling and show how they can be
modelled using generalized resource dependencies.

5.4.1 Post-anaesthetic care unit

Availability of a bed in the post-anaesthetic care unit (PACU) is an important
consideration for scheduling surgical cases. Generally, patients undergo
surgery under local, regional or general anaesthesia, and require post-operative
monitoring (typically a few hours) in the PACU to assess recovery thereof.
A bed in the PACU must be available when surgery ends to ensure proper
monitoring. If no beds are available for some time, surgeries may be delayed or
even postponed to a later date.

The following shows how such a dependency can be modelled using the
generalized resource constraints.

• Define a resource type jPACU denoting the PACU. Define as many
resources r as there are beds in the PACU, with RTr := {jPACU}.

• For each surgical case s (assuming all surgeries require post-anaesthetic
care), add a required resource dependency on jPACU , i.e. RT rs :=
RT rs ∪ {jPACU} with CsjP ACU

= 1 and ssjP ACU
= ds, dsjP ACU

=
Required monitoring time in the PACU. Thus, a required resource
dependency is defined with surgical phase starting after the surgical
case ends. Therefore, the surgical case can only be scheduled at a time
when bed availability in the PACU can be ensured after the surgery ends.

5.4.2 Instrument kits

Another common practical consideration is the usage of instrument kits, standard
sets of surgical tools (e.g. scalpels, scissors, clamps). Clearly such tools are
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necessary during surgery and thus need to be available. It is important to
account for the fact that these also must be cleaned and sterilized after each
surgery. This cleaning process is typically performed in a dedicated facility,
which may take significant time. The turnaround time of this cleaning process
can therefore not be neglected. When instrument kits are in limited supply
(some kits are specialized for example), this may require extra attention during
planning.

Again such a dependency can be modelled

• Define resource types jinstr1, jinstr2, . . . , jinstrK as much as there are
different kinds of instrument kits (e.g. K). Define as many resources r as
there are instrument kits of each type, with RTr := {jinstr1, jinstr2, . . .}.
(Large kits may serve multiple purposes thus it is possible that |RTr| > 1).

• Add resource dependencies to surgical cases s, accommodating their
instrument kit requirements, e.g. RT rs := RT rs ∪{jinstr1} and accordingly
ssj , dsj , with dsj sufficiently long to account for cleaning turnaround time.

5.5 Computational experiments

5.5.1 Experimental setup

Data for the surgical case scheduling problem was provided in the context of the
joint research project between the research group and Dotnext. A dataset of 52
problem instances was obtained from a hospital managing an OT consisting of
24 ORs, of which 18 are general purpose ORs and 6 are specialized. General
characteristics of this data can be found in Table 5.4.

We distinguish the problem instances by the planning horizon, which ranges
from 1 to 7 days. The planning horizon relates to the problem size. Single-day
instances have fewer appointments to be planned than multi-day instances. As
can be seen in Table 5.4, the number of resources under consideration is quite
high. In general, the surgical cases have only one required resource type, a
surgeon, and 2-3 optional resource requirements, representing the remaining
surgical team (anaesthesiologists, nursing staff). The specified surgical phase
[ssj , dsj) for surgeons is smaller than the surgical case interval [0, ds) (i.e.
surgeons only need to be present during the incision phase). In addition,
surgical cases were always fixed to a specific surgeon. Incorporation in the
presented model can be achieved by specifying a unique ‘resource type’ specific to
each surgeon. No MSS is imposed, therefore all ORs are available for scheduling
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|H| # instances Avg. |R| Avg. |S|
1 11 276.1 86.5
2 9 285.2 175.2
3 7 288.6 258.4
4 11 288.8 247.9
5 8 292.1 306.5
6 4 293.5 339.5
7 2 293.5 429.5

Table 5.4: General problem instance characteristics. Instances are grouped by
their planning horizon, ranging from 1 to 7 days.

Weight Value
Planned appointments 1 000 000
# OR days 10 000
Resource overload 10
Unwanted transfers 1
Optional resources left unplanned 100
Possible room assignment 1
If-necessary room assignment 100
Affinity 1
OR idle time 0.1
Resource Idle time 0.01

Table 5.5: Weights determining relative importance of different objectives and
penalties.

surgical cases. Finally, weights for the instances were determined in preliminary
testing to reflect the relative importance of the different criteria. These are
reported in Table 5.5.

The algorithm has been coded in Java 1.7. All tests have been performed on
a workstation computer equipped with two eight-core Intel Xeon 2650 v2 2.6
GHz processors and 128 GB of main memory (RAM), running a Linux-based
operating system. Only one processing thread is used per test (the algorithm
does not employ parallelism), and therefore this system was used to perform up
to 16 tests in parallel (limiting available memory to 8 GB for each test).
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Figure 5.4: Relative improvement of the local search algorithm after 30 seconds,
with respect to the size of the planning horizon.

5.5.2 Results and discussion

Convergence of the algorithm

One important aspect is whether or not the algorithm is able to converge in a
reasonable time, considering that the number of resources (and thus the problem
size) is quite large. Figure 5.4 shows the relative improvement that can still
be found after an initial 30 seconds of running the local search algorithm. It
is clear that for small instances (1-2 day instances) the algorithm is able to
converge in a relatively short time span of 1-2 minutes. The objective of the
presented research was to construct schedules for day instances in a reasonable
time and to allow for near-interactive use. For the larger planning horizons (up
to 1 week), it is clear that additional time is required (up to 10 minutes) for
the improvement process to start to converge. However, in a weekly planning
setting the required time is less of an issue.
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Comparison with practice

Another objective in surgical case scheduling is the quality of the schedules. The
generated schedules were compared with schedules made by manual planners.
However, it must be noted that these schedules rarely were completely feasible:
overlap could be detected between surgical cases, surgical phases would overlap
for some resources, or surgical cases were planned outside of availabilities of
the ORs/resources. For the comparison, these surgical cases were considered
unscheduled. In the case of overlap between two surgical cases (or their required
resources), only one is left unscheduled. Infeasibilities due to overlap for optional
resource requirements were handled by leaving the optional resource unassigned.

Table 5.6 reports on the results obtained by the heuristic approach, using
different timeout values T (30, 60, 120, 300 and 600 seconds) and the manually
constructed schedules (last column).

Clearly, the presented approach is able to schedule more surgical cases without
violating any of the hard constraints. In addition, it is able to do this in less
OT days, although this may be related to an implicit MSS being considered
by human planners. With respect to the secondary soft constraints 1-7, the
approach is able to plan more optional resources (feasibly) and minimize resource
affinities. Evidently, this results in higher total resource overload and more
resource transfers, as more resources are assigned. However, it is assumed that
assigning optional resources takes precedence over their performance. Finally,
operating room idle time is reduced to a negligible level and resource idle time
is reduced, showing that the approach is able to produce tighter schedules.
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5.6 Conclusion

A decision support model for multi-day OT scheduling has been presented
that encompasses many considerations from practice. The goal has been to
develop a sufficiently general and flexible model to cover different practices to
OT scheduling in hospitals. To this end, generalized resource dependencies were
introduced to cope with a broad variety of scheduling considerations: human
dependencies (surgeons, anaesthesiologists, instrumentalists, nurses) as well as
material dependencies (e.g. large surgical equipment), dependencies during
specific surgical phases, etc. The aim of the model is to assist in scheduling as
many surgical cases as possible, within availabilities of all considered ORs and
resources, to reduce the number of ORs that need to be opened for performing
surgical cases, to minimize violations of soft constraints and to optimize several
measures of resource efficiency.

A heuristic approach has been developed to address this feature-rich problem.
The algorithm scales favourably with problem size. In addition, the algorithmic
complexity of the schedule generation approach does not depend on the precision
of scheduling and is therefore able to schedule up to any precision of time. The
approach has been validated on a set of problem instances obtained from a
hospital. Computational experiments on these problem instances show that
the approach is able to schedule more surgical cases in a feasible way, whilst
further decreasing the required number of ORs. In addition, secondary resource
performance and efficiency measures are also improved.



Chapter 6

Conclusion

6.1 Summary and contributions

The present dissertation has focused on the development of computational
models and algorithms for providing decision support for the admission process
at the operational decision level. Three planning and scheduling processes
that occur during the admission process have been studied: the assignment of
patients to hospital wards and rooms, the admission process for elective surgical
patients and the daily/weekly scheduling process for the operating theatre.

Patient-to-room assignment planning: The patient-to-room assignment
planning process has been studied in two chapters, reporting on the application
of decision support models in a dynamic setting and the theoretical complexity
of the underlying assignment problem in which gender separation is considered.

In Chapter 2, an existing problem definition of the patient-to-room assignment
problem (PA) has been extended from a static, offline setting to a dynamic,
online one. The main research question was to determine whether or not decision
support models can support and improve decision making in an online setting,
where uncertainty on patient admissions and patients’ length of stay (LOS)
may deteriorate decision making. It is shown that an anticipative approach,
considering lookahead on registered future admissions, may improve over a
reactive policy, even when presented with inaccurate estimates of patients’ LOS
and unforeseen admissions from the emergency department. Even when hospital
occupancy is high, and the flexibility for room planning is reduced, the second
model is advantageous over the first. In addition, it is shown that allowing the
flexibility of patient transfers does not necessarily improve decision making.
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This work implies that the patient-to-room assignment process may be improved
and better patient care and comfort may be achieved. The presented models
can be applied in a central, hospital-wide admission system; supporting bed
managers and admission officers in their daily task of assigning patients to
hospital rooms. The models can be used each day to plan the room assignments
for the patient arrivals of the upcoming day, and to reschedule room assignments
on the next day, considering unplanned, urgent/emergency arrivals.

In Chapter 3, the main research question was to establish how the gender
separation policy impacts the computational complexity of the PA problem. To
this end, the Red-Blue transportation problem (Red-Blue TP) was defined as
an abstraction of the PA problem. The Red-Blue TP is a new generalization of
the well known transportation problem (TP) that considers a partitioning of the
supply nodes and which requires that no two supply nodes from the different
partitions may send supply to the same demand node. Being a generalization of
the TP, the Red-Blue TP presents an interesting opportunity to study the effect
of this type of exclusionary constraints (i.e. a separation policy between two
groups), since it is well known that the TP can be solved using a polynomial
time algorithm. The Red-Blue TP is shown to be an NP-Hard problem and
this result stands in two special cases. This complexity result extends beyond
the PA problem setting, as the Red-Blue TP may be identified as a special case
of other practical problems, thus establishing their complexity.
Furthermore, two integer programming formulations for the problem are
presented for which it is shown that one is stronger than the other. A
computational study points out however, that this stronger formulation is
not necessarily the best choice, as the overhead by a.o. additional variables
makes the model computationally less efficient to solve.
A maximization variant of the Red-Blue TP is also presented, for which three
algorithms are developed; two of which guarantee an approximation ratio of 1

2 .
Furthermore, several variants of this ‘Max-Red-Blue TP’ are considered and
the applicability of the approximation algorithms to these variants is discussed.
Although the approximation algorithms are 1

2 -approximations in the worst
case, the practical performance as validated on a set of instances with varying
characteristics is much more distinct.

Admission scheduling: In Chapter 4, a robust admission scheduling approach
is presented for scheduling elective surgical patients. The main research
motivation was to make the admission scheduling for surgical patients less
myopic. Whereas most existing literature focuses solely on the operating theatre
performance, the presented approach also considers surgical ward capacity. In
addition, the approach is to be used for decision making in an online, uncertain
setting, with uncertainty on patients’ length of stay and surgical durations.
To this end, a chance-constrained stochastic admission scheduling model is
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presented that aims to minimize expected operating theatre costs and patient
waiting time, and that avoids the risk of bed shortages at a fixed confidence level.
A sample average approximation of the model is solved by a meta-heuristic
algorithm and serves as the basis for four admission scheduling variants. In a
computational study, it is shown that a stochastic approach may accurately
consider variance in operating theatre costs and surgical ward usage. When the
admission strategies are sufficiently flexible, this may lead to improved hospital
performance in terms of either bed shortages or operating theatre costs, though
at the cost of patient friendliness and patient waiting time. Decision makers
will therefore closely need to evaluate to what extent the different performance
measures impact hospital operations in order to find an acceptable balance.

Operating theatre scheduling: Chapter 5 discussed the operating theatre
scheduling problem of determining both start times and dates for surgical cases
over a fixed scheduling horizon. The main research question was how different
resource dependencies (surgeons, anaesthesiologists, nursing and instrumenting
staff, but also material requirements) can be taken into account during this
process in a general and flexible way. To this end, a generalized resource
dependency model is proposed along with several other considerations applicable
to current operating theatre practice. A heuristic approach is presented that
scales favourably with problem size, and that is validated on a set of test
instances from practice. An important contribution is that the approach has
been developed with the mindset to be implemented in a commercial software
application of a software partner.

The literature and the state of the art on operating theatre scheduling techniques
has matured considerably in the past decade, as can be seen in several literature
reviews [13, 34]. Practical case studies in pilot hospitals have shown that
surgical scheduling techniques can effectively increase performance. Although
larger hospitals may have the research staff and the IT resources to pick
up and implement these techniques in their own (often in-house developed)
hospital information systems, smaller and mid-size hospitals rely on commercial
software available from different vendors. However, from informal discussions
with hospitals and software vendors we have observed that very few of these
techniques are finding their way to implementations in commercial software.
Even worse, they may not even be aware that these algorithmic techniques exist,
as they typically do not have access to the scientific repositories and journals
where these findings are published. Discussions with software developers, and
implementation of the research results in their applications, may be an important
step for bringing the research results on operating theatre scheduling techniques
into commercial software applications. If the ability to automatically plan
surgical cases becomes a crucial selling point, others vendors will have no other
option to also explore these techniques in order to remain competitive.
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6.2 Perspectives for future work

Clearly, the application possibilities of operations research to health care services
are broad. Even the restricted scope that was considered in this dissertation
leaves many open ends and interesting directions for future research. Therefore,
to conclude this dissertation, some of the author’s ideas are presented next.

Patient-to-room assignment planning: One interesting direction for future
research is to look into further integration of the scheduling process of patients
and the room assignment process. Currently, the PA problem takes the scheduled
arrival times of elective patients as input, as found by a scheduling process such
as the one presented in Chapter 4. It is therefore limited in what can be achieved.
If the two processes could be integrated, or if the scheduling process could at
least take into account some information from the room assignment process,
better global results may be obtained. This is, however, a difficult research
question as the two processes have conflicting objectives: scheduling processes
typically aim for high utilization of resources such as beds and the operating
theatre, whereas the difficulties that the room assignment process tries to solve
follow from a high occupancy of the wards. In addition, the problem dimension
increases significantly since both a temporal and a spatial decision need to be
taken. Different solution approaches may be more appropriate. One possible
approach would be to apply some form of decomposition with feedback between
the two sub-problems, such as for example Logic-based Benders’ decomposition
[39]. In such an approach, the scheduling problem would take the role of the
master problem which determines admission dates for elective patients. The
secondary/slave problem would be a PA problem which can determine a lower
bound on the patient-to-room assignment cost and gender costs for the given
admission schedule. These costs can then serve as feedback to the master
problem to find a new admission schedule that may produce a better global
solution.

Admission scheduling: One open end that has not yet been considered, is to
take into account emergency admissions. Clearly, emergency admissions must be
considered in order to leave sufficient remaining capacity in surgical wards and
in the operating theatre. Essentially, this should not be a problem in the current
approach: additional random variables can be modelled to represent surgical
ward usage and operating theatre usage by emergency patients for each day of
the scheduling horizon. In addition, a method must be available for sampling
these random variables. Two approaches can be employed. A forecasting
method can be implemented to estimate the arrival rate of emergency patients,
that can then be used to simulate emergency patient arrivals. Combined with
fitted distributions of length of stay and surgery duration (specifically fitted
to emergency patients), samples can be generated for the surgical ward usage
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and the operating time usage. Another approach could be to fit distributions
to the measured bed usage and operating time usage by emergency patients on
historical data, for each day of the week/month/year/etc. These distributions
can then be sampled directly.

Operating theatre scheduling: The model that has been presented in this
dissertation is rather general, but still not complete. One particular element
related to resources that has not yet been implemented are non-renewable
resources, or consumables. This should be rather straightforward to implement
in the current resource model. Another aspect that has not been considered
is the inherent uncertainty related to surgical durations. Variance on surgical
durations may be taken into account in the schedule generation procedure.
Instead of scheduling a new surgical case at the earliest possible insertion point,
the procedure should introduce sufficient slack with respect to earlier surgical
cases, in both the operating room schedules and in the resource schedules.





Appendix A

Red Blue TP instance
generation procedure

A.1 Instance generation procedure

Algorithm 7 generates Red-Blue TP instances according to the following
parameters:

• |S|, |D|: the number of supply and demand nodes,

• PR: the percentage of red supply nodes in the graph,

• DEN : the density of the graph,

• Smax: the maximum supply for any given supply node,

• Cmax: the maximum cost (or profit, for Max-Red-Blue TP) for any given
edge in the bipartite graph,

• seed: a seed value for the pseudo-random number generator.

Supply nodes are generated with supply ai randomly selected in [1, Smax]. The
procedure ensures that total supply meets total demand by randomly dividing
total supply over |D| demand nodes (see Figure A.1). First, |D| − 1 unique
numbers between 0 and Stotal (the total supply) are generated. Next, these
numbers are sorted and the demand nodes are then generated as the pairwise
difference between these numbers. Finally, to reduce the density of the graph,
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b1 b2 b3 b4

0 Stotal

Figure A.1: Procedure for randomly generating demand, matching supply. The
procedure generates |D| − 1 random, unique numbers strictly between 0 and
Stotal. The numbers then divide the total supply over |D| demand nodes.

edges of the graph are randomly selected and removed (indicated by setting
cij = −1). 7.

Algorithm 7 Red-Blue TP instance generation procedure
Require: |S|, |D|, PR,DEN,Smax, Cmax, seed
1: RAND← seed
2: R← {1, . . . , PR · |S|}, B ← {PR · |S|+ 1, . . . , |S|}
3: S ← R ∪B, D ← {1, . . . , |D|}
4: Stotal ← 0
5: for i← 1, . . . , |S| do
6: ai ← RAND(1, Smax)
7: Stotal ← Stotal + ai
8: end for
9: T ← UNIQUERAND(1, Stotal − 1, |D| − 1)
10: SORT (T )
11: b1 = t1 − 0, b2 = t2 − t1, . . . , bj = tj − tj−1, . . . , b|D| = Stotal − t|D|−1
12: for (i, j) ∈ S ×D do
13: cij ← RAND(0, Cmax)
14: end for
15: for k ∈ (1−DEN) · |S| × |D| do
16: (i, j)← UNIQUERAND(S ×D)
17: cij ← −1
18: end forreturn Red-Blue TP(S,D, (ai), (bj), (cij))
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