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Abstract

The amount of available data grows rapidly nowadays. Data mining and machine
learning techniques deal with discovering interesting knowledge from data and
improving the performance of methods to do so. When the collected data
points are independently drawn, these tools work well in practice. Statistical
theories make sure that, if the sample size is large enough, then the mined
knowledge is very likely to be convincing, and the trained model has a good
generalization ability. However, the structure of available data becomes more
and more complex, which violates the assumption that every data point is
independent of each other. The fact that data points are dependent usually
makes the data less informative.

We begin with the task of defining support measures which gauge the frequency
of a given pattern in a given dataset. If the dataset is transactional, one
only needs to count the occurrences of the pattern in the dataset. If the
dataset is a large network, occurrences of a subgraph pattern may overlap,
which makes the support measure definition less straightforward. We lose the
important property of anti-monotonicity, which allows us to effectively prune
search spaces, if we ignore overlaps and directly count the occurrences. An
important class of anti-monotonic support measures relies on overlap graphs,
but all earlier overlap graph based support measures are expensive to compute.
In this thesis, we introduce the concept of overlap hypergraphs, and propose an
overlap hypergraph based support which is anti-monotonic and can be computed
efficiently.

In order to understand this support measure from a statistical point of view, we
consider the problem of statistics on networked examples. We build a model for
networked examples and represent them by hypergraphs, and make a reasonable
assumption to replace the classical i.i.d. assumption. Based on this model, we
design an estimator on networked examples with the minimum variance and
generalize Chernoff-Hoeffding inequalities to weighted estimators on networked
examples. We then minimize these bounds by properly choosing a weight vector
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which is closely related to the graph support measure we proposed.

These statistical concentration results are used to adapt some crucial learning
principles, e.g., empirical risk minimization, to the networked case, and show
generalization error bounds for learning from networked examples.
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Chapter 1

Introduction

The topic of this thesis is graph patterns and networked statistics, and the goal
is to build statistically sound and efficient methods to mine and learn from
networked data. This thesis consists of the present introductory part in the
first two chapters, other four chapters which delve into different aspects of the
topic and a conclusion chapter.

In this chapter, we introduce the topic, describe the motivations of the work,
give an overview of the contributions, and list the original articles.

1.1 Thesis topics and research questions

The amount of available data is rapidly increasing everyday. In order to obtain
interesting knowledge from data and to improve the performance of machines
when learning from data, we need accurate and efficient data mining and
machine learning algorithms. An nonnegligible issue in the design of these
algorithms is the structure of the data. Informally speaking, the data is usually
called propositional when the observed data can be stored in a single table and
there is no relationship between any pair of two tuples. Traditional mining and
learning techniques work well for most cases of propositional data.

However, collected data tends to have more and more complex structures which
make most traditional tools lose effectiveness. The goal of this research work is
to propose methods to mine and learn from the data with complex structures,
in particular, networked data which is usually represented by a graph or a
hypergraph.
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2 INTRODUCTION

Figure 1.1: Four triangles in the complete graph on four vertices

Many applications produce and exploit linked data which is often called networks,
such as social networks, economic networks, citation networks and chemical
interaction networks. Several graph mining techniques have been proposed
to explore this type of data. For example, vertex clustering methods find
communities in a large network [24]; network abstraction techniques transform
a large network into a smaller one which is a representative of the original
network [76]. Our research starts from another graph mining task: frequent
subgraph pattern mining, which finds frequent patterns in a large network [41]
or a database of many disjoint graphs [74].

Frequent subgraph pattern mining plays an important role in many applications.
For example, it helps biologists in analyzing gene regulatory networks to find
motifs, which are subgraph patterns that occur much more often than they do
in random networks, such as self-regulations and feed forward loops [59].

For frequent pattern mining, an important component is the support measure,
which measures how frequently a given pattern occurs in a given database.
When the database is transactional, i.e., data can be stored in a single table and
there is no dependency relationship between any two data points, one only needs
to directly count the occurrences of the pattern. However, occurrences of a
subgraph pattern in a large graph may overlap, and then it becomes challenging
to define a support measure.

As an example, consider a social network, such as Facebook in which vertices
represent individuals and edges represent friendships. Suppose four users A,
B, C and D are friends. In this local network of A, B, C and D, what is the
support of the triangle pattern? If we do not set a standard, the answer is
not determined. The support can be 4, if we follow the same idea as in the
transactional case, see Fig. 1.1. It can be 1, if we cannot endure any overlap. It
can be 4/3, if we weight every triangle by 1/3 because every vertex is shared by
3 triangles. It even can be some number that is not intuitive at all but one may
find a reason (or an excuse) to use this number as the support.

The first main question of this thesis helps to set the standard.
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• What are the criteria of a good graph support measure?

The answer to this question suggests that a good graph support measure should
inherit some good properties from those for transactional databases, such as
anti-monotonicity (i.e., the support of a pattern is always greater than or equal
to those of its superpatterns) since it helps graph miners in pruning search
spaces.

Given that we are able to tell if a graph support measure is good or not, we
face the second question:

• Is there any good graph support measure that is efficiently computable?

To answer this question, we review existing graph support measures but find
they are not efficiently computable and then design a new graph measure that
can be efficiently computed.

To deeply understand this new support measure, we ask the third question:

• Is there any appealing interpretation of graph support measures?

This question leads us to statistics on networks and statistical learning theory
on networked examples.

Learning from structured data becomes one of the most important machine
learning topics because the available data shows more and more complex
structures. For example, statistical relational learning does not only deal with
learning from data points but also from the relationships between them [27];
link prediction tries to find (missing or potential) connections between vertices
in a social network [42].

When learning from propositional data, one usually assumes that every data
point is independently and identically distributed (i.i.d.). Based on this
assumption, many accurate and efficient learning algorithms have been proposed,
e.g., support vector machine (SVM) [62], random forests [8], etc. These learning
algorithms do not only perform well in practice, but also provide theoretical
guarantees. These guarantees show that, some principles such as empirical risk
minimization or structural risk minimization [57] make sure that the expected
risk of a trained model is close to its empirical risk [17]. However, these results
cannot be directly applied to networked data because networked data does not
satisfy the i.i.d. assumption as two or more training examples may share some
objects and their features [64].

Like the classical learning theory which is based on statistical results on i.i.d.
samples, the corresponding learning theory for networked examples needs
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foundations in statistics. To lay such a foundation stone, the first question we
try to answer is

• What are reasonable assumptions for networked examples?

To set exact goals, we choose two quality measures of statistical estimators on
networked examples, variance [68] and concentration bound [15]. For variance,
we ask the following question:

• How can we minimize the variance of an unbiased estimator on networked
examples?

For concentration bound, we ask a similar question:

• How can we obtain tight concentration bounds for an estimator on
networked examples?

Given that we are able to derive tight concentration bounds, we face the last
question in this thesis:

• How can these concentration bounds for networked examples guide our
learning algorithm design?

This thesis aims to shed light on mining graphs and learning from networked
data by answering aforementioned questions. The answers to these questions
are discussed in several original articles.

1.2 Contributions

This thesis contributes in different but related aspects to the field of networked
data analysis. These are displayed in the following subsections.

Graph support measures (Chapter 3)

In Chapter 3, we propose a graph support measure that has good properties
and can be computed efficiently.

In the task of frequent subgraph pattern mining, it is important to properly
define the support measure: how frequently a subgraph pattern occurs in a given
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large network. An important class of support measures relies on the notion of
overlap graphs. A major advantage of overlap graph based approaches is that
they combine anti-monotonicity with counting the occurrences of a subgraph
pattern which are independent according to certain criteria. However, existing
overlap graph based support measures are expensive to compute.

Therefore, we propose a new notion of overlap hypergraphs and show that some
parameter of these hypergraphs naturally defines a graph support measure. We
study the anti-monotonicity and other properties of this measure. This new
measure can be computed by solving a linear program that is known to be
efficiently computable. It is experimentally shown that, in contrast to earlier
overlap graph based proposals, this support measure makes it feasible to mine
subgraph patterns in large networks.

Networked variances (Chapter 4)

In Chapter 4, we propose the problem of learning from networked examples,
introduce the concept of networked random variables and analyze variances
of weighted mean value estimators on these random variables. This analysis
results in a convex quadratically constrained linear program which minimizes
the variance of the worst case.

Given a set {ξi|i = 1, . . . , n} which is sampled from an unknown distribution,
a fundamental problem is to estimate the expected value µ = E[ξ]. If these
random variables are independently distributed, µ is typically approximated by
averaging all ξi,

µ̂ = 1
n

n∑
i=1

ξi

because this estimator has the minimal variance. According to the definition
of networked random variables, we would not have an independent sample. In
such case, we could answer the question what is an effective way to combine
the observations to get a good estimate. We will limit ourselves to weighted
average estimators

µ̂w =
∑n
i=1 wiξi∑n
i=1 wi

.

We exploit Hoeffding decomposition to write the variance of any µ̂w as a sum of
several variance components. For every weight vector, one can choose possible
variance components to maximize the variance which is called the worst-case
variance. That is, for every networked sample, the worst-case variance of the
corresponding µ̂w is a function of the weight vector w. We find an optimal
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weight vector w minimizing the variance of the worst case, which is called a
Min-Var weighting scheme.

Networked concentration inequalities (Chapter 5)

In Chapter 5, we prove exponential concentration inequalities for weighted mean
value estimators on networked random variables. We find good weights based
on these inequalities by solving linear programs. These linear programs and the
linear programs mentioned in Chapter 3, which are used to compute our graph
support measures, are essentially the same.

Consider again the mean value estimation problem. In the i.i.d. case, one can
apply classical results, e.g., Chernoff-Hoeffding inequalities [14, 33] to bound
the probability Pr(µ̂ − µ ≥ ε) or Pr(|µ̂ − µ| ≥ ε) where ε is an arbitrary
positive number. We derive Chernoff-Hoeffding style concentration inequalities
which can be applied to weighted estimators on networked variables. Based
on these inequalities, we slightly improve both the Janson inequalities [36]
and the concentration bounds for general U -statistics [32, 2]. Comparing with
techniques that have been used in the past to prove concentration bounds for
unweighted average estimators of networked sample, our proof methods do
not decompose the convex sum of networked random variables into several
independent parts. From these inequalities, we also obtain a very efficient way
to find nearly optimal weights, which is called an FMN (Fractional Matching
Number) weighting scheme. An FMN weighting scheme also achieves a small
variance.

Learning from networked examples (Chapter 6)

In Chapter 6, we present a statistical learning theory of networked examples.

The main goal of supervised learning is to learn a function f : X 7→ Y from
a set of training examples Z = {zi|i = 1, . . . , n} with zi = (xi, yi) ∈ X × Y,
and to predict labels for unseen examples. For an i.i.d. sample, there are many
learning approaches, such as the empirical risk minimization principle

min
f

1
n

n∑
i=1

(f(xi)− yi)2,

which can lead to good generalization bounds. We generalize the empirical risk
minimization principle to the networked case by allowing weighted empirical
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risk
n∑
i=1

wi(f(xi)− yi)2.

Based on inequalities derived in Chapter 5, we present generalization bounds
for the networked examples.

1.3 Main publications

1. Christos Pelekis, Jan Ramon, and Yuyi Wang. On the Bernstein-
Hoeffding method. Annales de l’Institut Henri Poincaré (B) Probabilités
et Statistiques, Submitted.

2. Jan Ramon, Constantin Comendant, Mostafa Haghir Chehreghani, and
Yuyi Wang. Graph and network pattern mining. In Marie-Francine
Moens, Juanzi Li, and Tat-Seng Chua, editors, Social Media and Social
Computing. CRC Press, 2014. Accepted.

3. Jan Ramon, Yuyi Wang1, and Zheng-Chu Guo. Learning from networked
examples. Journal of Machine Learning Research, Accepted.

4. Yuyi Wang and Jan Ramon.An efficiently computable support measure
for frequent subgraph pattern mining. In Proceedings of ECMLPKDD
2012, pp. 362–377.

5. Yuyi Wang, Jan Ramon, and Thomas Fannes. An efficiently computable
subgraph pattern support measure: Counting independent observations.
Data Mining and Knowledge Discovery, 27 (3):444–477, 2013.

1The first two authors are listed in lexicographical order.



Chapter 2

Background

In this chapter, we begin by reviewing some classical and simple cases of data
mining and machine learning to first convey an intuition of what mining and
learning are. These classical cases are extended to and compared to networked
cases in Section 2.2. To make this thesis self-contained, we review basic graph
theory concepts and notations in Section 2.3.

2.1 Classical cases

Data mining and machine learning is such a broad field that it is impossible
to exhaustively list all tasks in this field. We give some tasks that are closely
related to the main topics of this thesis.

Frequent itemset mining

One of the most popular and well studied instances of data mining is frequent
itemset mining [5], which is also a basic step for several other data mining tasks,
e.g., the first step of association rule mining [1] is to find (all) frequent itemsets
in a database.

Let I = {i1, i2, . . . , in} be a set of n binary attributes called items. Let D =
{t1, t2, . . . , tm} be a set of transactions called the database. Each transaction
in D has a unique transaction ID and contains a subset of the items in I. An
itemset X ⊆ I is frequent if and only if the support of X is not less than

8
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smin × |D| where smin is a threshold specified by the user. Here, the support is
the number of occurrences. The task of frequent itemset mining is to find (all)
frequent itemsets in D.

To illustrate these concepts, we use a small example from the market basket
analysis. The set of items is I = {beer, candy,diaper, egg,milk} and a small
database containing the items (1 and 0 code respectively presence and absence
of an item in a transaction) is shown in Table 2.1. If we set smin = 0.4, the
frequent itemsets are {beer}, {diaper}, {milk} and {beer,diaper}.

transaction ID beer candy diaper egg milk
1 0 1 1 0 1
2 0 0 0 1 1
3 1 0 0 0 1
4 0 0 1 1 1
5 1 0 1 0 0
6 1 0 0 0 1
7 1 0 1 0 0
8 1 1 1 0 0
9 1 1 1 0 1

Table 2.1: Example database with 5 items and 9 transactions

Note that the example in Table 2.1 is extremely small. In practice, datasets
often contain thousands or millions of transactions and an itemset needs a
support of more than several hundred transactions before it can be considered
frequent. Many techniques (see e.g., [5]) have been proposed to accomplish
the task of frequent itemset mining for real-world problems. Almost all these
techniques are based on the fact that if an itemset is not frequent then its
supersets are neither frequent, which is called anti-monotonicity.

Regression and Classification

Regression, in particular linear regression, is probably one of the oldest topics in
mathematical statistics dating back to about two hundred years ago [73] when
machine learning (or even the modern computer) had not been invented yet.

Given a set of data points D = {(x1, y1, ), (x2, y2), . . . , (xn, yn)} where (xi, yi) is
in R2, linear regression aims to find a straight line f̂(x) = ax+ b that optimally
approximates a function f : R 7→ R presumed to be implicit in this dataset, as
in Fig. 2.1.
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Figure 2.1: Linear regression

One often solves this problem by minimizing the empirical risk with regard to
the square loss

L(f̂) =
n∑
i=1

(yi − axi − b)2,

which leads to the solution

a =
∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 b = ȳ − ax̄

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi.

Classification is similar to regression but it usually classifies examples into
several groups rather than output a real value.
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(b) non-zero training error case

Figure 2.2: Binary classification

Binary classification is the most common case. The output of binary
classification is 0 (for positive examples) or 1 (for negative examples). See Fig.
2.2, given a set of training data points D = {(x1, y1, ), (x2, y2), . . . , (xn, yn)}
where xi ∈ R2 and yi ∈ {0, 1}, a binary classification algorithm learns a
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classification rule f̂ : R2 7→ {0, 1}. In Fig. 2.2a, we find a rule that is consistent
with this data but is complicated. The classification rule in Fig. 2.2b does not
classify all training data points correctly but is simpler. Intuitively, one may
believe that the classification rule in Fig. 2.2b performs better when these two
models are used to predict outputs of new data points, because it is likely that
the first classification rule has been overfit. In order to find a good classification
rule, one usually minimizes the empirical risk with regard to some loss (e.g.,
the 0-1 loss) plus an extra term ||f̂ || that measures the complexity of the rule

n∑
i=1

I(yi 6= f̂(xi)) + ||f̂ ||

where I(expr) equals to 1 if expr is true, 0 if expr is false. This principle, called
structural risk minimization, is widely used in classification and regression.

Concentration bounds

The goal of frequent itemset mining is to collect interesting knowledge which
can be applied to guide our future actions. Remember the result of the
aforementioned market basket analysis example, {beer,diaper} is a frequent
itemset in that database, which reflects that people often buy beer and diaper
together so that supermarkets may take advantage of this appearance to increase
their profit with promotion. However, a database is only a finite sample, which
may be not sufficiently representative for the underlying population. On the one
hand, it is possible that an itemset is frequent in the database but infrequent
in this population, thus this false positive would mislead our actions. On the
other hand, an itemset may be frequent in the population but infrequent in
the database, thus we miss some interesting knowledge because of this false
negative. Therefore, one might ask:

• Under which conditions the frequency of an itemset in a database is close
to the real frequency?

Before answering this question, let us introduce an important assumption that
all the transactions in the database drawn from the population are independent
and identically distributed (i.i.d.). There is a class of results in statistics stating
that, if the sample is i.i.d. and the sample size is large enough, then some
estimator will converge to the real value. These results can be used to answer
the question above.
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For a given itemset X and a database D = {t1, t2, . . . , tm}, let ξi = I(X ∈ ti).
The frequency of X in D is

µ̂ = 1
m

m∑
i=1

ξi,

and the real frequency is the expected value of µ̂

µ = E[µ̂].

The question that we need to answer becomes whether the estimator µ̂ is close
to µ under the i.i.d. assumption. Several theories were developed to answer this
type of questions, e.g., variance analysis, laws of large numbers, exponential
inequalities, central limit theorems and large deviations, etc. If different criteria
are applied, the answers are various as well.

First, let us consider variance. Suppose the variance of ξi is σ2, then

E
[
(µ̂− µ)2] = σ2

m
.

Next, we consider exponential inequalities, e.g., the one-side and two-side
Chernoff-Hoeffding bounds:

• For any ε > 0,

Pr (µ̂− µ ≥ ε) ≤ e−2mε2

and Pr (|µ̂− µ| ≥ ε) ≤ 2e−2mε2
.

All these results demonstrate that, when the sample size m = |D| is large
enough, the distance between µ̂ and µ is small, more precisely, the probability
that they have a big distance is small.

For regression and classification, models trained from a finite set of examples
are used to predict outputs for new data points, so a similar question can be
asked:

• Under which conditions learning and generalizing from finite training
examples is possible?

Statistical learning theory (SLT) deals with finding such conditions by showing
generalization error bounds stating that the learned model would be close
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to the optimal one if one has enough i.i.d. training examples1 and properly
chooses the hypothesis space in which the trained model is selected. To derive a
generalization error bound, the aforementioned Chernoff-Hoeffding-style bounds
play crucial roles.

2.2 Networked cases

In the previous section, we reviewed some classical cases in data mining and
machine learning. This section introduces networked correspondences of these
tasks.

Frequent subgraph pattern mining

Frequent subgraph pattern mining concerns the problem of looking for subgraph
patterns that occur frequently in a collection of graphs or in a single large
graph. In this thesis, we mainly consider the single-graph setting, and we call
the large graph D containing all data the database graph. Referring to the
many applications, such as social networks, the Internet, chemical and biological
interaction networks, traffic networks and citation networks, the database graph
is also often called the network.

The task of frequent subgraph pattern mining is to find (all) frequent subgraph
patterns which satisfy some specified constraints (e.g., connected) in the database
graph. Similar to the classical frequent itemset mining, a subgraph pattern is
said to be frequent if its support is not less than a threshold specified by the
user. To fully accomplish this task, a graph miner needs three main components,
though sometimes there are no clear boundaries among them

• A subgraph pattern generator: it generates an initial subgraph pattern
and extends this pattern to larger ones. For example, a generator could
bring about a pattern as in Fig. 2.3b and extend this small pattern to a
larger one as in Fig. 2.3c.

• A matching algorithm: it searches for copies of a subgraph pattern in a
database graph. For example, a matching algorithm should be able to list
all occurrences of the pattern in Fig. 2.3b (or Fig. 2.3c) in the database
graph in Fig. 2.3a.

1Actually, in the classical results, testing data points are also assumed to be independent
and have the same distribution as training examples.
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• A support measure: it counts how frequently a pattern occurs in a database
graph (usually after the matching operator finds all the occurrences). For
example, a support measure should be able to measure the support of the
pattern in Fig. 2.3b (or Fig. 2.3c) in the database graph in Fig. 2.3a.

The first two components, subgraph pattern generator and matching algorithm,
are not relevant for the work described in this thesis; the interested reader can
find information about them in [51]. The third component, support measure, is
trivial in the classical frequent itemset mining; one only needs directly count the
occurrences. However, in the networked case, to define a proper support measure
becomes complicated. Should we ignore the overlaps between occurrences? If
we directly use the number of the occurrences, the pattern in Fig. 2.3b has
4 occurrences in the database graph in Fig. 2.3a (See Fig. 2.3d), while that
in Fig. 2.3c has 6 occurrences (See Fig. 2.3e). This violates the property of
anti-monotonicity that allows mining algorithms to efficiently prune the search
space.

We will discuss this problem in Chapter 3 by explaining an efficiently computable
support measure that has the property of anti-monotonicity.

Learning from networked examples

Comparing to classical regression and classification which have been extensively
studied, learning from networked examples is a relatively new topic. In
networked cases, two or more training examples may share some information.

To build a concrete mental image, we consider a simple example of movie rating,
which will be refined in following chapters. Every training example in this
problem involves two objects, a person and a movie. In Fig. 2.4a, the vertices
labeled Pi represent personal features, e.g., age and gender, and the vertices
labeled Mi represent features of movies, e.g., length, actor popularity, genre, etc.
An edge connecting a person vertex and a movie vertex represents a training
example. If one likes the movie, the corresponding edge is labeled 1; otherwise,
the edge is labeled 0. Since several edges may share a common person vertex or
a common movie vertex, these training examples are not independent.

Suppose every person has a one-dimensional feature (e.g., age) and every movie
also has a one-dimensional feature (e.g, length)2 , then these examples can be
plotted in a two-dimensional space as in Fig. 2.4b. In Fig. 2.4a, there are only 6

2In practice, we usually exploit more features of an object, not only the age of a person
and the length of a movie. In order to plot these examples in a two-dimensional space, we
simplify this problem by only considering one feature of an object.
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Figure 2.3: Frequent subgraph pattern mining

training examples. If we add more training examples which involve the person
P1 or the movie M4, in that way these training examples in the two dimensional



16 BACKGROUND

feature space should be similar to Fig. 2.4b. These networked examples lie on
two orthogonal lines. If we assume that we have an i.i.d. training sample of the
same size, then the corresponding two dimensional image looks like Fig. 2.4c.
Intuitively, the i.i.d. examples should be more informative than the networked
examples.
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(a) Bipartite examples
for the movie rating
problem. Every exam-
ple involves the person
P1 or the movie M4.
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sample. The ratings given by
P1 are in a horizontal line; the
ratings for M4 are in a vertical
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(c) An i.i.d. set of ratings.
This training set has the same
sample size as the networked
one, but this sample is “more
informative”.

Figure 2.4: Networked training examples

A challenge of learning from networked examples is to answer the question
whether the aforementioned principles, such as empirical risk minimization and
structural risk minimization, still work in this setting. We will discuss the
empirical risk minimization principle of learning from networked examples in
Chapter 6.

Networked statistics

Like the classical cases, for learning from networked data, the following question
could be asked

• Under which conditions the model trained from a networked sample is
guaranteed to have good generalization ability?

Remember that in the classical cases with the i.i.d. assumption, the answer
is related to the quality of some estimator µ̂ of the mean µ. The quality of
the estimator can be measured by the variance E

[
(µ̂− µ)2] or the confidence

level Pr(µ̂ − µ ≥ ε). Under the i.i.d. assumption, the variance analysis is
straightforward, and the confidence level can be bounded by the classical
Chernoff-Hoeffding inequalities.
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In networked cases, since we drop the independence assumption, the above
classical results cannot be directly applied. In Chapter 4, we will bring in the
concept of networked random variables and analyze the variance of estimators
defined on these networked random variables. In Chapter 5, we will focus on
these estimators by extending Chernoff-Hoeffding style inequalities.

2.3 Basic graph theory concepts

In this section, we provide basic notions and notations of graph theory that are
used in the following chapters.

The notion of a graph was introduced by Leonhard Euler in his paper on the
Seven Bridges of Königsberg. It did not only solve this specific problem, but
also gave necessary and sufficient conditions to find a walk through a general or
even an imaginary city (graph), which consists of several islands (vertices), that
would cross each bridge (edge) once and only once.

Because graphs naturally capture relations between entities, they are widely
used to express structured and semistructured data nowadays.

Graphs

An undirected graph G is an ordered pair (V,E) where V is a set of vertices
[n] = {1, . . . , n} and E is a set of edges E ⊆ {{u, v}|u, v ∈ V, u 6=
v}. For example, the set V could be [4] = {1, 2, 3, 4}, and E could be
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}}. Graphs can be naturally visualized as in
Fig. 2.5.

1

2 3

4

Figure 2.5: An undirected graph

Given two vertices u, v in a graph, if e = {u, v} ∈ E, then the two vertices u
and v are said to be adjacent, and they are also said to be incident with e. The
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neighborhood of a vertex v, denoted by Nv, is the set of vertices adjacent to v:

Nv ≡ {u ∈ V |{u, v} ∈ E}.

The cardinality of Nv is called the degree of v, denoted by dv. In Fig. 2.5, vertex
4 has degree 2. The maximum degree of a graph G, denoted ωG, is defined as:

ωG ≡ max
v∈VG

dv.

The maximum degree of the graph in Fig. 2.5 is 3 because d1 = 3 and no vertex
has a larger degree.

Replacing the edge set with a set of arcs (ordered pairs of vertices) E ⊆
{(u, v)|u, v ∈ V, u 6= v}, we obtain a directed graph (Fig. 2.6).

1

2 3

4

Figure 2.6: A directed graph

By G, we denote the class of all graphs; by G↔ (G→), the restriction to undirected
(directed) graphs. For a graph G, we use VG and EG to denote its vertex set
and edge set respectively.

Actually, the graph (Fig. 2.7) that Euler used to describe the Seven Bridges of
Königsberg requires E to be a multiset which allows repeated elements. Such
graphs are called multigraphs. Besides, graphs with self-loops and/or infinite
vertices and edges are also used in many problems. In this thesis we focus on
finite, simple graphs: those without self-loops or multiple edges.

Figure 2.7: The graph corresponding to the Seven Bridges of Königsberg

By assigning labels to vertices and/or edges, we obtain labeled graphs G =
(V,E,Σ, λ) where Σ is an alphabet and λ : V ∪ E 7→ Σ is a labeling function.
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For example, V is a set of persons, edges in E are relationships between these
persons, Σ might be {m, f, friends, couples} in which m and f are assigned
to vertices to represent their genders and friends and couples are assigned to
edges to illustrate their relationships (Fig. 2.8). Note that an unlabeled graph
can be also considered as a labeled graph in which all vertices and all edges are
labeled with the same symbol.

1

2 3

4

m

f

m

f

couples

couples

friendsfriends

friends

Figure 2.8: A labeled graph

For a labeled graph G, we use λG to stand for the labeling function. By Gλ (G•),
we denote the class of labeled (unlabeled) graphs. In this thesis, we combine
notations, e.g., G→• for directed, unlabeled graphs.

A graph g is said to be a subgraph of G if and only if Vg ⊆ VG and Eg ⊆ EG,
and write g ⊆ G. Fig. 2.9 shows a subgraph of Fig. 2.5.

1

3

4

Figure 2.9: A subgraph of Fig. 2.5

For G ∈ G↔, G ≡ (VG, V 2
G \ (EG ∪ {{v, v}|v ∈ VG})) denotes the complement

graph of G. Fig. 2.10 shows the complement graph of Fig. 2.5.

By Kn ∈ G↔ we denote the complete graph on n vertices (Fig. 2.11), i.e.,
Kn ≡ ([n], {{u, v}|1 ≤ u < v ≤ n}).

For an undirected graph G, if there exist two disjoint sets V (1) and V (2) such
that VG = V (1) ∪ V (2) and EG ⊆ {{u, v}|u ∈ V (1), v ∈ V (2)}, then this graph is
a bipartite graph (Fig. 2.12).
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1

2 3

4

Figure 2.10: A complement graph of Fig. 2.5

Figure 2.11: A complete graph on 4 vertices

Figure 2.12: A bipartite graph

Morphisms

The following concepts defined in terms of G→λ are also valid for undirected
and/or unlabeled graphs by dropping the direction of the edges and/or the
labels.

A homomorphism ψ from G ∈ G→λ to G′ ∈ G→λ is a mapping from VG to VG′
such that ∀(u, v) ∈ EG : (ψ(v), ψ(w)) ∈ EG′ . We say that G is homomorphic
to G′ (Fig. 2.13).

If ∀v ∈ VG : λG(v) = λG′(ψ(v)), we call ψ label-preserving. We always implicitly
assume that ψ is label-preserving when G,G′ ∈ Gλ.

A homomorphism ψ is called vertex-surjective if ∀v′ ∈ VG′ : ∃v ∈ VG : ψ(v) = v′.
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G

G'

Figure 2.13: A homomorphism from G to G′ shown by dashed lines: the vertices
with label a (b) are mapped to a vertex with label a (b). The non-shaded
vertices of G′ are not involved in this homomorphism.

We call ψ edge-surjective if ∀(u′, v′) ∈ EG′ : ∃(u, v) ∈ EG : ψ(u) = u′∧ψ(v) = v′

and call it surjective if it is both vertex- and edge-surjective (Fig. 2.14).

G G'

a b

ab

a

b
b

Figure 2.14: A surjective homomorphism from G to G′ shown by dashed lines.

An isomorphism from G to G′ is a bijective homomorphism ψ from G to G′,
i.e., the homomorphism ψ is surjective and for all u, v ∈ VG, v 6= u implies
ψ(v) 6= ψ(u). In that case, we say that G is isomorphic to G′ and write G ∼= G′

(Fig. 2.15).

G'G

Figure 2.15: An isomorphism from G to G′ shown by dashed lines.

We use G � G′ to denote that G ∼= g, for some subgraph g of G′. This is the
same as saying that there exists a subgraph isomorphism from G to G′ (Fig.
2.16).
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G'
G

Figure 2.16: A subgraph isomorphism from G to G′: the shaded part of G′ is
isomorphic to G.

Hypergraphs

Allowing edges to be arbitrary subsets (instead of only pairs) of vertices, i.e.,
E ⊆ 2V , gives us hypergraphs (Fig. 2.17), and these edges are called hyperedges.
The class of all hypergraphs is denoted by H.

e1

e2
e3

e4

Figure 2.17: A hypergraph

Figure 2.18: A 3-uniform hypergraph
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Figure 2.19: A 3-partite hypergraph

For a hypergraph H ∈ H, if each edge in EH has a same cardinality k, then
this hypergraph is called a k-uniform hypergraph (Fig. 2.18). It is noticed that
simple undirected graphs are 2-uniform hypergraphs.

For a k-uniform hypergraph H, if VH =
⋃k
i=1 V

(i) where V (i) and V (j) are
pairwise disjoint for all different i and j, and EH ⊆ {{v(1), . . . , v(k)}|v(i) ∈
V (i), i = 1, . . . , k}, then this hypergraph is called a k-partite hypergraph (Fig.
2.19).



Chapter 3

Graph support measures

Graph mining is a subfield of structured data mining. An important task in
graph mining is frequent subgraph pattern mining, which concerns the problem
of finding subgraph patterns that occur frequently in a collection of graphs or
in a single large graph. In this chapter, we consider the single-graph setting,
and we will call the large graph containing all data the database graph.

In order to precisely define a frequent subgraph pattern mining problem, a
support measure (also called a frequency measure) is needed. In the problem
setting where patterns are mined in a set of transactions (e.g., itemset mining
[1]), a simple support measure is to count the number of transactions in which
the subgraph pattern occurs. However, in the context of a single large graph, the
issue is less straightforward as several articles have demonstrated [9, 10, 22, 65].

A drawback of just using the number of occurrences of a subgraph pattern (either
embeddings or images, see Definition 3.1) as its support is that this support
does not have the important property of anti-monotonicity. An important class
of anti-monotonic support measures relies on overlap graphs. However, existing
overlap graph based support measures (OGSM) are expensive to compute.

In this chapter, we propose a new support measure ν∗1 that is based on bounding
the value of all occurrences of a subgraph pattern that share a particular part
of the database graph, and we show that this support measure can be computed
efficiently using a linear program (LP). The measure ν∗ is not a traditional
OGSM, because its output does not merely depend on the overlap graph. We
introduce the notion of an overlap hypergraph, and represent ν∗ as an overlap
hypergraph based support measure (OHSM). We prove that ν∗ is anti-monotonic

1In the original paper [70], this support measure was denoted as s.

24
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and normalized. Furthermore, we show that all normalized anti-monotonic
OHSMs are bounded between two extreme support measures. Our empirical
analysis shows that this approach yields the first support measure which is both
overlap based and computationally feasible.

3.1 Support measures

In this section, we review the concepts and properties of support measures and
overlap graphs, and present a new overlap graph based support measure which
is similar to the Lovász ϑ value but closer to the Maximum Independent Set
(MIS) support measure. As this new measure is mainly of theoretical interest,
it is not further explored in this chapter. In Section 3.3 we introduce the ν∗
measure and show that it can be computed using algorithms with much lower
asymptotic complexity.

Basic concepts and properties

We first review a number of concepts related to the support of a pattern.
Definition 3.1 (Image and embedding). An iso-image (homo-image) g of a
subgraph pattern P ∈ G in a database graph D ∈ G is a subgraph g ⊆ D
for which there exists an isomorphism (surjective homomorphism) ψ from P
to g. The subgraph g is called the iso-image (homo-image) through ψ. An
individual isomorphism (surjective homomorphism) ψ from P to g is called an
iso-embedding (homo-embedding) of P in D.

In this chapter, we only consider iso-images, although the measure ν∗ can
be generalized for other matching operators such as homomorphism. We
subsequently use the term image instead of iso-image, and denote by Img(D,P )
the set of all images of P in D. We denote by Emb(D,P ) the set of all
embeddings of P in D. Given two patterns P ′ and P , two images g ∈ Img(D,P )
and g′ ∈ Img(D,P ′), if g is a subgraph of g′, then we call g a subimage of g′
and g′ a superimage of g.
Definition 3.2 (Support). A support measure is a function f : G ×G 7→ R that
maps pairs (D,P ) to a non-negative number f(D,P ), where P is called the
subgraph pattern, D the database graph and f(D,P ) the support of P in D.

For efficiency reasons, most graph miners generate subgraph patterns from
smaller subgraph patterns to larger ones [11], exploiting the anti-monotonicity
property of their support measure to prune the search space [41].
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Definition 3.3 (Anti-monotonicity). A support measure f is anti-monotonic
if for all P, P ′, D in G : P ⊆ P ′ ⇒ f(D,P ′) ≤ f(D,P ).

However, anti-monotonicity is not sufficient. For example, a support measure
that just returns a constant is anti-monotonic, but not informative.

The support measure should also be able to account for the independence of
the occurrences of the subgraph patterns. Overlap can be defined in different
ways (see [10] and later in this chapter Section 3.4). Popular definitions are, for
instance as vertex-overlap, i.e., two images g1 and g2 overlap if Vg1∩Vg2 6= ∅, and
as edge-overlap, i.e., two images g1 and g2 overlap if Eg1∩Eg2 6= ∅. Edge-overlap
implies vertex-overlap. In this chapter, we use ‘overlap’ to mean vertex-overlap,
although our results are also applicable in the edge-overlap setting.

While one can argue about the value a support measure should have for patterns
with overlapping embeddings, things are clearer when embeddings do not overlap.
Hence, we will use non-overlapping cases as reference points.

From a statistical point of view, the more independent examples are, the more
valuable this set of examples. Calders et al. [10] proposed using a situation
in which images (or embeddings) of a subgraph pattern occur independently
(i.e., they do not overlap according to some notion of overlap) as a reference.
In particular, the notion of a normalized graph support measure was defined:
a support measure is normalized if every subgraph pattern which only has
non-overlapping occurrences in a database graph has a support in this database
graph that equals the number of occurrences.

Definition 3.4 (Normalized support). A support measure f is normalized if
for all P,D in G : f(D,P ) = |Img(D,P )| when there do not exist two distinct
images g1 and g2 in Img(D,P ) satisfying Vg1 ∩ Vg2 6= ∅.

Overlap graphs

The notion of an overlap graph plays an important role in the design and
computation of anti-monotonic support measures in networks.

Definition 3.5 (Overlap graph). Given a subgraph pattern P and a database
graph D, the overlap graph of P in D is an unlabeled undirected graph GDP .
Every vertex of GDP is an image of P in D, that is, VGD

P
= Img(D,P ). Two

distinct vertices u and v are adjacent in GDP if they overlap, i.e., if we use
vertex-overlap, Vu ∩ Vv 6= ∅. Though an image always overlaps with itself, we
assume that overlap graphs do not contain any self-loop.
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An overlap graph therefore indicates how often a subgraph pattern occurs in
the database graph, and how independent these occurrences are. Vanetik et
al. [66] define the induced support measure f(D,P ) = f ′(GDP ) where f ′ is a
measure on overlap graphs. We call the induced support measure an overlap
graph based support measure (OGSM). A major advantage of overlap graph
based approaches is that they combine anti-monotonicity with counting the
occurrences of a subgraph pattern which are independent according to certain
criteria.

Existing overlap graph based support measures

The first normalized anti-monotonic OGSM which has been proposed was the
size of the maximum independent set (MIS) of the overlap graph [65]. To
precisely define these supports, we first present the concept of independent sets,
cliques and clique partitions.

Definition 3.6 (Independent set). Given a graph G ∈ G↔, a subset I ⊆ VG is
an independent set if for every pair of vertices u, v ∈ I, {u, v} /∈ EG.

Definition 3.7 (Clique). Given a graph G ∈ G↔, a subset C ⊆ VG is a clique
if for every pair of vertices u, v ∈ C, {u, v} ∈ EG.

Definition 3.8 (Clique partition). Given a graph G ∈ G↔, a clique partition
of G is a partition of the vertices of G into cliques.

Definition 3.9 (MIS support). Given a database graph D and a subgraph
pattern P the MIS support of P in D is

MIS(GDP ) = max{|I| | I is an independent set of GDP }.

This MIS support is intuitively appealing since it measures how often we observe
a subgraph pattern occurring independently. Unfortunately, computing the MIS
of an overlap graph is NP-hard [26]. Moreover, it has been shown that MIS
cannot be approximated even within a factor of n1−o(1), where n is the number
of vertices of the overlap graph, in polynomial time, unless P=NP [21, 30, 19].

Later, Calders et al. [10] proposed two normalized anti-monotonic OGSMs, the
size of a minimum clique partition (MCP) of the overlap graph and the Lovász
theta value (ϑ) of the overlap graph.

Definition 3.10 (MCP support). Given a database graph D and a subgraph
pattern P the MCP support of P in D is

MCP (GDP ) = min{|Q| | Q is a clique partition of GDP }.
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The Lovász ϑ function is a well-known function sandwiched between MIS and
MCP which can be computed in polynomial time. The concept of Lovász feasible
matrix is used in the definition of the Lovász ϑ support measure.
Definition 3.11 (Lovász feasible matrix). Given an overlap graph GDP , a Lovász
feasible matrix A for GDP is a symmetric positive semidefinite matrix with (i)
Au,v = 0 for all u and v such that {u, v} ∈ EGD

P
and (ii) Tr(A) = 1 where Tr(.)

is the sum of the elements on the main diagonal (the trace).
Definition 3.12 (Lovász ϑ support measure). Given a database graph D and
a subgraph pattern P the Lovász ϑ support measure of P in D is

ϑ(GDP ) = max

∑
i,j

Ai,j | A is a Lovász feasible matrix of GDP

 .

These OGSMs are also very expensive to compute. In particular, MCP is
NP-hard to compute while the Lovász ϑ value is the solution of a semidefinite
program (SDP) which takes O(|VGD

P
|6.5) to solve for a general graph. An

SDP primal-dual algorithm for approximating ϑ with a multiplicative error
of (1 + ε) has been proposed [12]; it has a running time of O(ε−2n5 logn).
Iyrngar et al. [34] considered subgradient methods for approximating ϑ; they
run in time O(ε−2 log3(ε−1)n4 logn) in the worst case. Unfortunately, even
these approximation methods are still computationally too expensive for our
purposes.

Operations on overlap graphs

Vanetik et al. [66] provide a way to prove the anti-monotonicity of OGSMs.
The result is based on three operations defined on overlap graphs.

For any graph G = (V,E) ∈ G↔, we define

• Vertex Addition (VA): for a new vertex v, VA(G, v) = (V ∪ {v}, E ∪
{{v, u}|u ∈ V }).

• Edge Removal (ER): for a given edge e ∈ E, ER(G, e) = (V,E \ {e}).

• Clique Contraction (CC): for a given clique K ⊆ V and a new vertex k,
CC (G,K, k) = (V \K ∪{k}, E \{e|e∩K 6= ∅}∪{{k, v}|∀u ∈ K : {v, u} ∈
E}).

Theorem 3.13 (Vanetik et al. [66]). An overlap graph based support is anti-
monotonic if and only if the corresponding overlap graph measure does not
decrease when we perform VA, ER and CC on overlap graphs.
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The anti-monotonicity of OGSMs mentioned in Section 3.1 can be proved by
this theorem. We extend these results to overlap hypergraphs (see Section 3.3).

The Schrijver graph measure as a support measure

The material in this section is not essential for the sequel of this chapter and
can be easily skipped by readers eager to get to the main contribution.

The first function which was shown to be a normalized anti-monotonic OGSM
computable in polynomial time was the Lovász ϑ value of the overlap graph.
In the graph theory literature, many other measures on graphs are studied
which could be of interest from the point of view of support measures. Often,
the literature also shows relations to the size of the maximum independent set
and other important measures. We believe that it may be valuable for the
data mining community to further explore this literature. As an example, we
point out that the Schrijver graph measure [56], which is similar to the Lovász
ϑ value, can also be interpreted as a normalized anti-monotonic OGSM. The
Schrijver graph measure has nearly the same computational complexity as the
Lovász ϑ value, and it is closer to the MIS support measure. The latter can be
an advantage for certain statistical tasks in which we want to stay as close as
possible to an independent set of images.

The Schrijver graph measure is defined on a Lovász feasible matrix with
nonnegative elements.

Definition 3.14 (Schrijver feasible matrix). Given an overlap graph GDP ,
a Schrijver feasible matrix A for GDP is a Lovász feasible matrix which is
nonnegative, i.e., for all i and j, Ai,j ≥ 0.

Given a graph G, we denote by sfm(G) the set of all Schrijver feasible matrices
of G.

Definition 3.15 (Schrijver graph support measure). Given a database graph
D and a subgraph pattern P the Schrijver graph measure (SGM) support of P
in D is

SGM(GDP ) = max

∑
i,j

Ai,j | A ∈ sfm(GDP )

 .

From the definition, we can easily see that for any overlap graph GDP , it holds
that

SGM(GDP ) ≤ ϑ(GDP ) (3.1)
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since any Schrijver feasible matrix is a Lovász feasible matrix. In addition,
the Schrijver graph measure can also be modeled as an SDP which has similar
variables and constraints as the Lovász ϑ value, so it is almost equally expensive
to compute the Schrijver graph measure of an overlap graph as to compute its
Lovász ϑ value.

Now, we prove the following result using Theorem 3.13:

Theorem 3.16. The SGM support measure is a normalized anti-monotonic
OGSM.

Proof. First, we prove SGM is normalized. This is equivalent to proving that
SGM(Kn) = n where Kn is a graph with n isolated vertices. According to
Inequality (3.1), we have SGM(Kn) ≤ ϑ(Kn). It is known that for any graph
G, ϑ(G) ≤MCP (G) (see e.g., [40]). Therefore, SGM(Kn) ≤ n.

Now we show that n is attainable. The matrix whose every element 1/n is a
Schrijver feasible matrix of Kn. Then, SGM(Kn) = n.

Next, we prove that SGM is anti-monotonic using the conditions of Theorem
3.13, i.e., the SGM support measure is non-decreasing under the three operations
VA, ER and CC.

• Let G′ = VA(G, v) and A ∈ sfm(GDP ) such that SGM(GDP ) =
∑
i,j Ai,j .

The matrix A′ =
[
A 0
0 0

]
is a Schrijver feasible matrix of G′. Then,

SGM(G′) ≥
∑
i,j A

′
i,j =

∑
i,j Ai,j = SGM(G).

• Let G′ = ER(G, e), and A ∈ sfm(GDP ) such that SGM(GDP ) =
∑
i,j Ai,j .

The matrix A′ = A is a Schrijver feasible matrix of G′. Then, SGM(G′) ≥∑
i,j A

′
i,j =

∑
i,j Ai,j = SGM(G).

• Let G′ = CC (G,K, k), and A ∈ sfm(GDP ) such that SGM(GDP ) =∑
i,j Ai,j . Without loss of generality, we assume that the vertices in

K are the last vertices (i.e., they correspond to the bottom rows
and rightmost columns). Suppose |VG| = n, for any real vector
x = (x1, . . . , xn), xTAx ≥ 0 because A is positive semidefinite. Let
A′ be a symmetric matrix of size (n − |K| + 1) × (n − |K| + 1) that
A′i,j = Ai,j for every 1 ≤ i, j ≤ n− |K|, A′n−|K|+1,j =

∑
n−|K|+1≤i≤nAi,j

for every 1 ≤ j ≤ n − |K|, A′i,n−|K|+1 =
∑
n−|K|+1≤j≤nAi,j for every

1 ≤ i ≤ n − |K|, and A′n−|K|+1,n−|K|+1 =
∑
n−|K|+1≤i≤nAi,i. For

every real vector y = (y1, . . . , yn−|K|+1), there is a vector x, xi = yi
for 1 ≤ i ≤ n − |K| and xi = yn−|K|+1 for n − |K| ≤ i ≤ n, such that



RELATED WORK 31

yTA′y = xTAx ≥ 0. Therefore, A′ is a Schrijver feasible matrix of G′ and
SGM(G′) ≥

∑
i,j A

′
i,j =

∑
i,j Ai,j = SGM(G).

According to Inequality (3.1) and the bounding theorem in [10], the following
inequalities hold for any overlap graph GDP :

MIS(GDP ) ≤ SGM(GDP ) ≤ ϑ(GDP ) ≤MCP (GDP ).

3.2 Related work

Besides the existing overlap graph based support measures described in the
previous section, several previous studies have explored the support of a subgraph
pattern in a database graph. In this section, we review a widely used support
measure called the min-image based measure as well as another definition of
overlap, which ignores those overlaps that do not harm the anti-monotonicity
of the MIS support. The definitions given in this section are not needed for the
main results in this chapter (Section 3.3).

Min-image based support

In [9], the authors proposed an anti-monotonic support measure named min-
image based support.

minImage(D,P ) = min
v∈VP

|{ψ(v) | ψ is a subgraph isomorphism from P to D}|
(3.2)

This support counts the minimum number of images of subgraph pattern
vertices. Although the anti-monotonicity of this support is obvious, and it can
be computed very efficiently, it has several drawbacks.

For example, from a statistical point of view, minImage overestimates the
evidence. In particular, as Fig. 3.1 shows, a vertex can be counted arbitrarily
many times.
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Figure 3.1: Database graph D contains two independent images of the subgraph
pattern P . However, minImage(D,P ) = 4 (and we can make this value
arbitrarily large by adding more vertices with label b (resp. a) and link them
to the bottom-left vertex with label a (resp. top-right vertex with label b). As
a consequence, if we remove just a single vertex (the bottom-left or top-right
one) the support of the pattern in the network can suddenly drop to one.

Harmful overlap

Fiedler and Borgelt [22] observed that, when using edge-overlap, some of the
overlaps can be disregarded without harming the anti-monotonicity of the MIS
support measure. The authors introduce the notion of harmful overlap support
which relies on the nonexistence of equivalent ancestor embeddings.

Definition 3.17 (Harmful overlap). Given a database graph D and a subgraph
pattern P , there is harmful overlap between two embeddings ψ1 and ψ2 of P in
D if ∃v ∈ VP : ψ1(v), ψ2(v) ∈ Vg1 ∩ Vg2 , where g1 (resp. g2) is the image of P
in D through ψ1 (resp. ψ2).

The notion of harmful overlap makes sense, especially in situations where objects
(vertices) in the database graph play different roles in different embeddings, i.e.,
if one vertex in the database graph participates in two embeddings as images
of two different vertices of the pattern, this is not considered as a dependency
between the two embeddings.

3.3 The ν∗ support measure

In this section we introduce our new support measure ν∗. We start by
introducing overlap hypergraphs, which are overlap graphs carrying additional
information on the cause of the overlap.
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Overlap hypergraphs

As we are using vertex-overlap, each vertex v in a database graph D determines
a clique in the overlap graph GDP in which P is a subgraph pattern. That
is, suppose v is a vertex in D, then Imgv(D,P ) = {g ∈ Img(D,P ) | v ∈ Vg}
induces a clique in GDP since these images overlap at the vertex v.

Definition 3.18 (Overlap hypergraph). Given a subgraph pattern P and a
database graph D, the overlap hypergraph of P in D is a hypergraph HD

P . Every
vertex of HD

P is an image of P in D, that is, VHD
P

= Img(D,P ). The hyperedge
set of HD

P is EHD
P

= {Imgv | v ∈ VD}.

In an overlap hypergraph HD
P , we say that a hyperedge e is dominated by

another hyperedge e′ if e ⊂ e′, and a hyperedge e is dominating if it is not
dominated by any other hyperedge. For any D and P , we define the reduced
overlap hypergraph H̃D

P to be the hypergraph for which VH̃D
P

= VHD
P

and EH̃Dp
is the set of all dominating hyperedges of HD

P . In the sequel we only refer to
H̃D
P . We will abuse terminology and simply call H̃D

P the overlap hypergraph.
See Fig. 3.2 for an example.
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Figure 3.2: Overlap graphs and overlap hypergraphs. Figures in (a) show a
subgraph pattern P (top left), a database graph D (top right), the overlap
graph GDP (bottom left) and the overlap hypergraph HD

P (bottom right). The
two shaded vertices in D determine two dominating hyperedges (solid curves) in
HD
P ; other vertices in D determine several dominated hyperedges (blue dotted

curves) in HD
P . Figures in (b) show all images of the pattern P in the database

graph D.
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We henceforth refer to the overlap hypergraph measures, which we denote by
f ′(H̃D

P ), instead of referring to the induced support measure f(D,P ). Such
induced support measures are called overlap hypergraph based support measures
(OHSM). We call OHSMs and OGSMs overlap based support measures.

Origin and definition

Given an overlap hypergraph H̃D
P , we can derive the corresponding overlap

graph GDP by replacing every hyperedge with a clique. Therefore, we can
rephrase the definition of the MIS measure using overlap hypergraphs. Suppose
D is a database graph and P is a subgraph pattern:

MIS(D,P ) = MIS(H̃D
P ) = max |{I ⊆ VH̃D

P
| ∀e ∈ EH̃Dp : |e ∩ I| ≤ 1}|, (3.3)

i.e., the MIS measure is the maximum number of vertices, any two of which
do not belong to one hyperedge. The MIS measure requires that a vertex of
an overlap (hyper)graph is either in the independent set I or not, so it is the
solution to a binary integer program. Our new measure ν∗ is a linear relaxation
of the MIS support measure by allowing for counting vertices of an overlap
hypergraph only partially.

Let H̃D
P be an overlap hypergraph. We start by assigning to each vertex v of

H̃D
P a variable xv. We then consider vectors x ∈ R

|V
H̃D
P
|
of variables where for

every v ∈ VH̃D
P
, xv denotes the variable (component of x) corresponding to v.

Definition 3.19 (ν∗ support measure). The measure ν∗ is defined by

ν∗(H̃D
P ) = max

x∈R(H̃D
P

)

∑
v∈V

H̃D
P

xv (3.4)

where R(H̃D
P ) is the feasible region of x, and x is feasible if and only if it satisfies

(i) ∀v ∈ VH̃D
P

: 0 ≤ xv
(ii) ∀e ∈ EH̃Dp :

∑
v∈e xv ≤ 1. (3.5)

Clearly, ν∗ is the solution to a linear program.

We will call an element x ∈ R(H̃D
P ) which makes

∑
v∈V

H̃D
P

xv maximal a solution
to the LP of ν∗.

There are very effective methods for solving LPs, including the simplex method
which is efficient in practice although its complexity is exponential, and the
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more recent interior-point methods [6]. The interior-point method solves an LP
in O(n2m) time, where n (here min{|VH̃D

P
|, |EH̃Dp |}) is the number of variables,

and m (here |VH̃D
P
|+ |EH̃Dp |) is the number of constraints. Usually, subgraph

patterns are not large, so the LPs for computing ν∗ are sparse. Almost all LP
solvers perform significantly better for sparse LPs.

An intuitive interpretation

So far, the ν∗ support has been explained as a relaxation of the MIS support.
In more detail, the basic ideas underlying the ν∗ measure are the following:

1. xv is the contribution of the image v, and xv ≥ 0 for all v. By finding
an additional image (corresponding to a ‘Vertex Addition’ in the overlap
(hyper)graph), it should positively contribute to the total support.

2. The ν∗ support measure is the sum of contributions of all images. This
idea addresses the question of how to use the contributions to define the
total support. We can simply sum the contributions of all images, which is
intuitive and is one of the main factors in the nice mathematical properties
of ν∗ including its additivity (the ν∗ of a graph is the sum of the ν∗ of its
connected components).

3. Every image should contribute as much as possible (but not more than
1). This principle implies that ν∗ is obtained through a process of
maximization. In fact, in this maximization process we identify a set of
images of the pattern which is most interesting / informative.

4. All images which share a common vertex cannot contribute more than 1
in total, i.e., the sum of contributions of images in a hyperedge ≤ 1. If
only the first three principles applied and if no additional constraints were
imposed on the contributions of the individual images, this would yield a
trivial support which just counts the number of images. As pointed out
earlier, this support is not anti-monotonic because overlapping images are
counted independently. When discussing the minImage support measure,
we also pointed out that, ideally, any vertex in a database graph cannot
contribute more than 1 to the support measure. This is equivalent to
saying that, all images sharing a common vertex cannot jointly contribute
more than 1 in total.

The ν∗ measure therefore has several uses. It is statistically meaningful in its
own right (see Chapter 5), and as a relaxation of the maximal independent
set, it can give a quick approximation of the MIS value. Still, if overlap needs
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to be avoided at all cost (such as in [18]), the maximum independent set size
will need to be computed or approximated from below if that is an acceptable
alternative.

Conditions for anti-monotonicity

Vanetik et al. [66] described necessary and sufficient conditions for anti-
monotonicity of OGSMs on labeled graph using edge-overlap. In [10], this result
was generalized to any OGSM on labeled or unlabeled, directed or undirected
graphs using edge overlap or vertex overlap and isomorphism, homomorphism or
homeomorphism. Our conditions for anti-monotonicity are similar but based on
overlap hypergraphs. In particular, we show that an OHSM is anti-monotonic if
and only if it is non-decreasing under three operations on the overlap hypergraph.

We begin by defining these three operations on any overlap hypergraph, which
we will then use in our conditions for anti-monotonicity. These operations are
different from those used in [66, 10], but play a similar role. As mentioned in
these earlier papers, the motivation for the operations defined below is that it
is often easier to show that an OHSM satisfies the conditions of the theorem
(being non-decreasing under the three operations), than to directly demonstrate
the anti-monotonicity of a measure.

Definition 3.20 (Hypergraph operators). For H ∈ H, we define:

• Vertex Addition (VA): A new vertex v is added to every existing hyperedge:
VA(H, v) = (VH ∪ {v}, {e ∪ {v} | e ∈ EH}).

• Subset Contraction (SC): Let K ⊆ VH be a set of vertices of the
hypergraph such that ∃e ∈ EH : K ⊆ e. Then, the subset contraction
operation contracts K into a single vertex k, which remains in only
those hyperedges that are supersets of K. Formally, SC (H,K, k) =
(VH \K ∪ {k}, E1 ∪ E2) where E1 = {e \K ∪ {k} | e ∈ EH and K ⊆ e}
and E2 = {e \K | e ∈ EH and K * e}).

• Hyperedge Split (HS): This operation splits a size k hyperedge into k
hyperedges of size (k−1) each: HS(H, e) = (VH , EH\{e}∪{e\{v} | v ∈ e}),
where e ∈ EH .

For example (see Fig. 3.3), suppose H0 is a hypergraph with VH0 =
{v1, v2, v3, v4}, and EH0 contains two hyperedges {v1, v2, v3} and {v1, v4}.
Let H1 = VA(H0, v5), then VH1 = {v1, v2, v3, v4, v5} and EH1 contains
hyperedges {v1, v2, v3, v5} and {v1, v4, v5}. Let H2 = SC (H1, {v1, v3}, v6), then
VH2 = {v2, v4, v5, v6} and EH2 contains hyperedges {v2, v5, v6} and {v4, v5}. Let
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Figure 3.3: An example of the three operations defined on hypergraphs

H3 = HS(H2, {v2, v5, v6}), then VH3 = VH2 and EH3 contains four hyperedges
{v2, v5},{v2, v6}, {v5, v6} and {v4, v5}.

Sufficient condition

We present a sufficient condition for support measure anti-monotonicity in terms
of the three operations on overlap hypergraphs that we have defined.

Theorem 3.21. Let f : H → R be a hypergraph measure and f ′ : G × G → R
be an overlap hypergraph based measure such that f ′(D,P ) = f(H̃D

P ). If f is
non-decreasing under VA, SC and HS, then f ′ is an anti-monotonic support
measure.

Proof. Suppose D is a database graph, and P and P ′ are two subgraph patterns
such that P ′ is a subgraph of P . We prove that H̃D

P ′ can be obtained from
H̃D
P by applying only the operations VA, SC and HS. It follows then that

f ′(D,P ) = f(H̃D
P ) ≤ f(H̃D

P ′) = f ′(D,P ′) for any D, P and P ′, proving the
theorem.

Let < be an arbitrary total order defined on VH̃D
P ′
. For v ∈ VH̃D

P ′
, we define

the set Πv = {u ∈ VH̃D
P
| v � u and ∀w < v : w 6� u}. Remind, � stands for

subgraph isomorphism, hence Πv consists of each image of P that contains v,
an image of P ′, as far as it has not been part of some Πw with w < v. Hence
the sets Πv are pairwise disjoint; moreover, every image of P is an element of
some Πv, i.e., {Πv}v∈V

H̃D
P ′

is a partition of VH̃D
P
.
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We point out that there may exist vertices v for which Πv = ∅. We divide VH̃D
P ′

into two sets V0 = {v | Πv = ∅} and V1 = {v | Πv 6= ∅}.

Let H be a hypergraph initially equal to H̃D
P . We will perform operations VA,

SC and HS on H, until it is finally equal to H̃D
P ′ .

First, H is modified by a sequence of VA operations. For each v ∈ V0, we do
H := VA(H, v). Now, ∀e ∈ EH : V0 ⊆ e.

Then, for each v ∈ V1, we perform H := SC (H,Πv, v). The operations are valid
because for v ∈ V1 each vertex u ∈ Πv stands for a superimage of the same v,
i.e., v � u and hence ∃e ∈ EH : Πv ⊆ e. Note that a vertex is created for every
v ∈ V0 and for every v ∈ V1. Moreover, contraction removes the vertices of the
original HD

P . As every vertex was part of exactly one Πv, they are all removed
and hence now the vertices of H are exactly the vertices of HD

P ′ .

It remains to show that a sequence of HS operations can reduce the edges of H
to the edges of HD

P ′ . As all hyperedges are dominating, it suffices to show that,
for every hyperedge e ∈ HD

P ′ , there is a hyperedge in H that is a superset of
e. Consider the vertex set ex = {v ∈ V DP ′ |x ∈ VD and x ∈ v}, i.e., x is a vertex
of the database D and x is part of the images that form the set. If ex is not a
hyperedge of HD

P ′ , it is because another hyperedge dominates ex. Let e′x be the
dominating hyperedge, i.e., e′x ∈ HD

P ′ and ex ⊆ e′x.

We can divide e′x into two disjoint parts, namely e′x∩V0 and e′x∩V1. The former
is part of every hyperedge; so it remains to show that there is a hyperedge in
H that contains e′x ∩ V1.

In HD
P , there is a hyperedge e′′x that is equal to or dominates the vertex set

{v ∈ V DP |x ∈ VD and x ∈ v}. Now consider a vertex v ∈ e′x ∩V1; it is part of V1
hence Πv ⊆ e′′x and there is a contraction that introduces v in e′′x. This holds
for each vertex in e′x ∩ V1 hence H has a hyperedge that contains e′x ∩ V1 and
hence e′x.

Theorem 3.22. ν∗(D,P ) = ν∗(H̃D
P ) is a normalized anti-monotonic support

measure.

Proof. First, we prove that ν∗ is normalized. If the subgraph pattern P only
has non-overlapping images in the database graph D, every hyperedge in EH̃Dp
contains only one vertex, then setting xv = 1 for every v ∈ VH̃D

P
is a feasible

assignment and is clearly maximal. That is, ν∗ equals the number of non-
overlapping images. Therefore, ν∗ is normalized.



THE ν∗ SUPPORT MEASURE 39

Then, we prove ν∗ is anti-monotonic using Theorem 3.21. Suppose H is an
overlap hypergraph and x∗ is an optimal solution to the LP of ν∗H . Let H1 be the
overlap hypergraph VA(H, v), and let xu = x∗u for all vertices u 6= v and xv = 0.
The vector x is a feasible solution for the LP of ν∗H1

, so ν∗H1
≥
∑
v xv = ν∗H .

Let H2 be the overlap hypergraph SC (H,K, k), and let xu = x∗u for all vertices
u 6= k and xk =

∑
v∈K x

∗
v. The vector x is a feasible solution for the LP of

ν∗H2
, so ν∗H2

≥
∑
v xv = ν∗H . Let H3 be the overlap hypergraph HS(H, e). The

vector x∗ is also a feasible solution for the LP of ν∗H3
, so ν∗H3

≥ ν∗H .

Necessary condition

We show that the condition for anti-monotonicity mentioned above is not only
a sufficient but also a necessary condition.

Theorem 3.23. Let f : H → R be a hypergraph measure and f ′ : G × G → R
be an overlap hypergraph based measure such that f ′(D,P ) = f(H̃D

P ). If f ′ is
anti-monotonic, then f is non-decreasing under VA, SC and HS.

b

c

a

b

a

...

...

c

b

c

a

b

a

...

...

c

c

aa

...

c

b

...

b

c

a

b

a

...

...

c

c

b

...

a

b

a

...

c

c

aa

...

c

b

...

b

c

a

b

a

...

...

c

b

c

a

b

...

...

c

b

c

b

...

P

P'

O1 O2

O3 O4

Figure 3.4: Two patterns and different types of overlap. The highlighted parts
show the ways two images overlap.
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Proof. LetHP be any hypergraph andHP ′ a hypergraph obtained by performing
VA, SC or HS on HP . We show that there exists a database graph D and
subgraph patterns P and P ′ such that H̃D

P = HP and H̃D
P ′ = H ′P (it is not

harmful to assume that HP and HP ′ only contain dominating hyperedges). It
follows then that f(HP ) = f ′(D,P ) ≤ f ′(D,P ′) = f(HP ′), which proves the
theorem. For convenience, we only show the theorem for undirected labeled
graphs, but the proof can be generalized.

In Figure 3.4, we give two subgraph patterns P and P ′ (P ′ � P ), and list 4
different possible types of overlap. The numbers of vertices with label a (called
a-vertex) and b (called b-vertex) in P and P ′ are not fixed, but the pattern P
always has 2 vertices labeled c (called c-vertex) while the pattern P ′ always has
only one c-vertex. We construct the database graph D by combining multiple
copies of the patterns P and P ′, overlapping in different ways. We name the
different types of overlap O1, O2, O3 and O4. We say two or more copies of
the pattern P have overlap type O1 if they share a common b-vertex. Two or
more copies of P and a copy of pattern P ′ have overlap type O2 if they share
a b-vertex. Two or more copies of the pattern P have overlap type O3 if they
share a subgraph isomorphic to P ′ (i.e., the bottom part of P in the figure).
Two or more copies of the pattern P have overlap type O4 if they share an
a-vertex. As in our construction of the database graph D we do not use other
types of overlap (e.g., we will not need copies of P that share c-vertices), every
copy of P in D (whether overlapping with another copy or not) gives rise to
one vertex in the overlap hypergraph HD

P and one vertex in HD
P ′ and every copy

of P ′ in D gives rise to one vertex in HD
P ′ .

Let us first consider the case HD
P ′ = VA(HD

P , v). Recall, the effect of VA is to
create a new node v and to add it to all existing edges. Let m be the number
of vertices and n be the number of edges in HD

P . Then the pattern P has n
b-vertices and no a-edges. Also the pattern P ′ has n b-edges, i.e., one b for each
hyperedge of HD

P . The database has n copies of P and one copy of P ′, so the
overlap graphs HD

P and HD
P ′ have respectively n and n+ 1 vertices as desired.

We denote the jth b in the ith copy of P as bi,j and the jth b in the copy of P ′
as bi. As for the sharing of vertices in the database, consider the ith hyperedge
ei of HD

P and assume ei = {ve1 , . . . , vek} of HD
P . To get this hyperedge in HD

P

we let be1,i = . . . = bek,i, i.e., the copies ej(1 ≤ j ≤ k) of P in D share their
ith b as in case O1 of Figure 3.3. This sharing gives rise to the edge ei in HD

P

as desired. Moreover we set also be1,i = bi, i.e., each copy ej(1 ≤ j ≤ k) of P
share their ith b with the ith b of the copy of P ′ as in case O2 of Figure 3.3.
This gives rise to the edge {ve1 , . . . , vek , v} in HD

p , hence HD
P ′ = VA(HD

P , v) as
desired.

Next, we consider the case H̃D
P ′ = SC (H̃D

P ,K, k). We let the pattern P have
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|EH̃D
P ′
| b-vertices and |EH̃D

P ′
| a-vertices. We let the pattern P ′ also have |EH̃D

P ′
|

b-vertices. The database graph D consists of |VH̃D
P
| P -images, such that |K|

of them (the ones corresponding to the contracted subset) share a subgraph
(corresponding to k) isomorphic to P ′ (i.e., their overlap type is O3). Next
to these overlaps, there are overlaps determined by H̃D

P : for every hyperedge
e ∈ EH̃D

P ′
that satisfies e∩K 6= ∅ and K * e, we let the P -images corresponding

to vertices participating in e share the a-vertex corresponding to e (i.e., their
overlap type is O4) and the P -images corresponding to vertices participating
in e \K share a b-vertex (i.e., their overlap type is O1). Then, the hyperedge
e \K appears in EH̃D

P ′
. For every hyperedge e ∈ EH̃D

P ′
that satisfies e ∩K = ∅,

we let the P -images corresponding to vertices participating in e share a b-vertex
(i.e., their overlap type is O1). These O1 overlaps imply that e appears in EH̃D

P ′

when e ∩K = ∅. For every hyperedge e ∈ EH̃D
P ′

that satisfies K ⊆ e, we let
the P -images corresponding to vertices participating in e \K and the P ′-image
which corresponds to k share a b-vertex (i.e., their overlap type is O2). These O2
overlaps imply that e\K ∪{k} appears in EH̃D

P ′
when K ⊆ e. This construction

satisfies H̃D
P ′ = SC (H̃D

P ,K, k).

Finally, we consider the case H̃D
P ′ = HS(H̃D

P , e). We let the pattern P have
|EH̃D

P ′
| b-vertices, and one a-vertex. We let the pattern P ′ also have |EH̃D

P ′
|

b-vertices. The database graph D consists |VH̃D
P
| P -images, each corresponding

to a vertex of H̃D
P , with the overlaps among images determined by H̃D

P as
follows. We let the P -images corresponding to vertices participating in e share
their a-vertex (i.e., their overlap type is O4), and for every v ∈ e we let the
P -images corresponding to vertices participating in e \ {v} share a b-vertex
(i.e., their overlap type is O1). These overlaps make sure that e appears in
EH̃D

P ′
and, for all v ∈ e, e \ {v} appears in EH̃D

P ′
. For every other hyperedge

e′ in EH̃D
P ′
, we let the P -images corresponding to vertices participating in e′

share the b-vertex which determines e′ (i.e., their overlap type is O1). These
O1 overlaps imply that e′ also appears in EH̃D

P ′
. This constructions satisfies

H̃D
P ′ = HS(H̃D

P , e).

Bounding theorem

In [10], the authors showed that all normalized anti-monotonic OGSMs are
bounded (between the maximum independent set size (MIS) and the minimum
clique partition size (MCP)). Similarly, we prove that all normalized anti-
monotonic OHSMs are also bounded. We first introduce another OHSM, the
size of a minimum set cover (MSC) of overlap hypergraphs:
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MSC (D,P ) = MSC (H̃D
P ) = min |{S ⊆ EH̃Dp |

⋃
e∈S

e = VH̃D
P
}| (3.6)

It is not difficult to verify that MSC is normalized and anti-monotonic.
Computing MSC is an NP-hard problem. The maximum independent set
size (Eq. (3.3)) and minimum set cover (Eq. (3.6)) are the minimally and
maximally possible normalized anti-monotonic OHSMs.

Theorem 3.24. Given a database graph D, and a subgraph pattern P , it holds
thatMIS(D,P ) ≤ f(D,P ) ≤MSC(D,P ) for every normalized anti-monotonic
OHSM f(D,P ) = f ′(H̃D

P ).

Proof. We use Theorem 3.23 to show the minimality of MIS and the maximality
of MSC.

On the one hand, let I = {v1, v2, · · · , vk} be a maximum independent set of H̃D
P .

Starting from the hypergraph HI = ({v1, v2, · · · , vk}, {{v1}, {v2}, · · · , {vk}}),
we can get H̃D

P by adding vertices VH \ I using VA first and then splitting
hyperedges by a sequence of HS. Since f is normalized, f ′(HI) = k. Because
f is anti-monotonic, f ′ cannot decrease after each step and f(D,P ) is larger
than or equal to k = MIS(D,P ).

On the other hand, let {e1, e2, · · · , ek} be a minimum set cover for H̃D
P and

let Hsc = SC (. . .SC (SC (H, e1, ve1), e2, ve2) · · · , ek, vek). Hsc only has the
hyperedges with exactly one vertex in each of them. Because f is anti-monotonic,
f ′ does not decrease under SC and thus f(D,P ) ≤ f ′(SC (H, e1)) ≤ · · · ≤
f ′(Hsc) = MSC (D,P ).

Relaxation of the OGSM MIS

One may ask whether the ν∗ support can be defined by relaxing the OGSM MIS
instead of the OHSM MIS. In other words, is the concept of overlap hypergraphs
really necessary?

Our answer is that the concept of overlap hypergraph is needed for the definition
of the ν∗ support measure because it carries additional information on the overlap
graph. In particular the hyperedges show which overlaps have a common cause.
If we did not have this information, we would not be able to reconstruct
it. For instance (see Fig. 3.5), if we see a triangle in an overlap graph, we
do not know whether this triangle originates from one vertex shared by the
three images or from three vertices, each shared by two of the images. This
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Figure 3.5: An example of the case that two different overlap hypergraphs
correspond to the same overlap graph

additional information is needed for the definition of ν∗, and for its mathematical
properties.

3.4 Properties of the ν∗ support measure and
discussion

In this section, we discuss several aspects of our approach, pointing out
interesting properties and possible future extensions.

Phase transition from frequent to infrequent

Large real-world networks are known to satisfy properties similar to random
graphs. A well-known result is that properties that can be expressed in first
order logic are satisfied either by almost all graphs or by almost none (0-1 law,
see [20]). For random graphs, it is either very easy to embed a given subgraph
pattern P in the network, or very difficult (see also our experiments below).
This leads to another 0-1 property: the frequency of many subgraph patterns is
either very low or very high (for our ν∗ measure, nearly equal to the network
size). Consider for instance a social network and the subgraph pattern “X is
a friend of Y and Y is a friend of Z”. Since most people have at least two
friends, such a subgraph pattern will match about everywhere. This holds
more generally for many tree and path subgraph patterns. In fact, most such
subgraph patterns are overly general and not very interesting.
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The notion of overlap

Overlap can be defined in several ways, for instance as vertex-overlap or as
edge-overlap. In [66] and [10], the authors showed that overlap-based support
measures are anti-monotonic for the vertex-overlap setting. Furthermore, they
claimed that the results are also valid for the edge-overlap setting, even though
this should be treated more carefully. Consider, for instance, an unlabeled
database graph D which satisfies |ED| > |VD|, a subgraph pattern P1 which
consists of a single vertex and another subgraph pattern P2 which consists of a
single edge. If we use edge-overlap, the support of P1 in D (|VD|) is smaller than
that of P2 in D (|ED|). Still, this violation of the anti-monotonicity property
only applies to these small patterns and does not affect larger patterns. As
such, it does not significantly inhibit the use of support measures to prune the
pattern mining search.

Definitions of overlap can be generalized. For example, the following notions of
overlap could also be considered:

• two-vertex (edge) overlap: two images overlap if and only if they share
two or more common vertices (edges);

• label-specific overlap: two images overlap if and only if they share a
common vertex (edge) which has a label in a certain set;

• distance-based overlap: Two images u and v overlap if u has a vertex x
and v has a vertex y such that the distance between x and y is smaller
than a specified constant min_dist.

In order to study the anti-monotonicity of the two-vertex (edge) overlap and
the label-specific overlap, we need the following definition.

Definition 3.25 (S-overlap). Given a set S of graphs {gi}|S|i=1 (some of them
may be unconnected), a database graph D and a pattern P , two images
u, v ∈ Img(D,P ) overlap if and only if there exists at least one pattern g ∈ S
such that u and v share an image of g.

The vertex overlap, the edge overlap, the two-vertex (edge) overlap and the
label-specific overlap are essentially S-overlap. For instance, two-vertex overlap
is an S-overlap where S only contains the graph with two isolated vertices.

For S-overlap, we can show the following result.

Theorem 3.26. Given a set S of graphs {gi}|S|i=1, a database graph D and two
patterns P, p where p ⊆ P , if we use S-overlap and there exists g ∈ S such that
g ⊆ p, then HD

p can be obtained by performing VA, SC or HS on HD
P .
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For the distance-based overlap, a similar result holds.

Theorem 3.27. Given a database graph D and two patterns P, p where p ⊆ P ,
if we use the distance-based overlap, then HD

p can be obtained by performing
VA, SC or HS on HD

P .

The proofs of the two theorems above are similar to the proof of Theorem 3.21.

3.5 Implementation

To conduct the experiments in Section 3.6, we implemented the ν∗ support
measure in a pattern mining system2. In this section, we discuss a number of
implementation-related issues.

As we mentioned in Chapter 2, graph miners have three components: a pattern
matcher, a candidate generator and a support measure. We briefly describe
the basic pattern matcher and the simple candidate generator used in our
experiments. We also present methods to handle patterns with too many
embeddings (images) and to optimize the computation of overlap (hyper)graph
based anti-monotonic support measures.

Pattern matching

As this chapter focuses on the computation of a support measure, efficient
pattern matching is not our main concern. We implemented a simple pattern
matcher with a few optimizations. In particular, patterns are searched by
backtracking. Images for the various vertices of a pattern are selected on the
basis of a heuristic. Before processing a pattern P of k vertices, we compute
the embeddings of all subpatterns of k − 1 vertices. We store the time cost of
the pattern matching for all these parents and chose the ‘best’ parent p, i.e.,
the subgraph of size k − 1 with the smallest number of embeddings and the
least time spent on pattern matching. Then, for the pattern matching of P , we
order the vertices as they were ordered for p, and the vertex of P which is not
in p is put at the end of the sequence. Thus, we expect to be able to prune the
search space at an early stage.

2This system is part of the MIPS project, available from
http://people.cs.kuleuven.be/∼jan.ramon/MiGraNT/MIPS/
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Handling patterns with many embeddings

An important problem in constructing a graph pattern miner for a single network
is that some patterns have an extremely large number of embeddings. As
explained in Section 3.4, we believe that such patterns are not very interesting,
and we do not calculate their exact supports. In particular, we impose a
threshold τ on the number of embeddings to be found and stop searching when
the threshold is reached. If a pattern has more embeddings than than the
threshold, we only compute a lower bound of its support using these found
embeddings.

To avoid that all embeddings we found share the same first vertex, we designed
our pattern matcher to perform a cyclical breadth-first search: whenever we
find an embedding of a pattern, we try another image for the first vertex of
the pattern next. When we have tried to find an embedding mapping the first
pattern vertex on every vertex of the network, we start over again. Thus, we
ensure that embeddings are distributed evenly over the network.

This approach yields three different types of subgraph patterns.

• Interesting subgraph patterns, i.e., subgraph patterns which are frequent
enough to pass the minimum support threshold while the number of
embeddings remains under the maximum embedding threshold {P |
ν∗(D,P ) ≥ σ and |Emb(D,P )| ≤ τ}.

• Infrequent subgraph patterns, i.e., subgraph patterns which are not
frequent enough to pass the minimum support threshold while the
number of embeddings remains under the maximum embedding threshold
{P | ν∗(D,P ) < σ and |Emb(D,P )| ≤ τ}.

• Overly frequent subgraph patterns, i.e., subgraph patterns of which the
number of embeddings is larger than the predefined maximum #embedding
threshold {P | |Emb(D,P )| > τ}. Still, in practice these patterns are
usually frequent, and the lower bounds are close to the real supports.

We find that, in practice, a number of embeddings equal to at most ten times
the number of vertices in the graph is sufficient to discover all frequent patterns.

The pattern miner

We follow the classical level-wise pattern mining approach, with some
modifications for patterns with an extremely large number of embeddings
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(as discussed above). Our miner contains a candidate generator, a pattern
matching algorithm (as discussed above) and a module for support measure
computation (the main topic of this chapter).

The algorithm maintains a list of candidate patterns and a list of solutions
(frequent patterns). It starts with an empty pattern in the candidate list. It
processes the list of candidate patterns one by one. First, it calculates the
frequency of the pattern. If the pattern is frequent, it is added to the list of
solutions, and all its extensions (see the candidate generation explanation) are
added to the end of the candidate list. As an initialization, the empty candidate
is considered frequent.

Candidate generation is performed by adding a single vertex to a frequent graph
and the new vertex must be connected to some existing vertex. This choice
is preferred above the more common choice of building patterns edge by edge.
Indeed, sparser graphs have a larger number of embeddings and there is a higher
risk of reaching the upper bound on the number of embeddings to compute.
Hopping from dense pattern to dense pattern guarantees accurate results for
the dense (and hence more interesting) patterns.

Even though we use a canonical form, we do not use canonical refinement. We
generate a candidate if there is at least one parent that is frequent in the sense
that we have an exact value of or lower bound on its support, higher than the
minimum support threshold.

Image elimination

Although the linear program can be solved very efficiently, the number of images
may grow exponentially with the size of subgraph patterns. Therefore, effective
optimizations can help us compute the support. In this section, we demonstrate
that some images can be shown to contribute 0 to the support without being
included in the linear program. The following theorem holds for every OHSM.

Theorem 3.28. Suppose H is an overlap hypergraph and there exist two vertices
v and w in VH for every edge e ∈ EH such that v ∈ e implies w ∈ e. Let
H ′ = H[VH \{w}] be the induced sub-hypergraph of H on the vertex set VH \{w},
then f(H) = f(H ′) if f is any anti-monotonic OHSM.

Proof. We use the fact that the anti-monotonic OHSM cannot decrease under
VA (Vertex Addition), HS (Hyperedge Split) and SC (Subset Contraction). Let
H be an overlap hypergraph and v and w as defined above.
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On the one hand, let H ′′ = VA(H ′, w), then f(H ′′) ≥ f(H ′) because f cannot
decrease under VA. Because H can be obtained by a series of HS from H ′′, we
have that f(H) ≥ f(H ′′). According to the two inequalities, f(H) ≥ f(H ′).

On the other hand, because H ′ = SC (G, {v, w}, v) and f cannot decrease under
SC, we have that f(H ′) ≥ f(H). Thus, f(H) = f(H ′).

This theorem tells us that if the hyperedges containing image v are a subset of
the hyperedges containing image w, then we can eliminate the image w without
changing any anti-monotonic OHSM. We call the image w an unnecessary image.

In our experiments, we found that many images are only contained in a single
dominating hyperedge. For these images, we can use the following corollary.

Corollary 3.29. Suppose H = (V,E) is an overlap hypergraph, let v ∈ VH
be an image which is only contained in a single hyperedge and N(v) be the
set of vertices that are adjacent to v. If f is an anti-monotonic OHSM, then
f(H) = f(H[V \ {v} \N(v)]) + 1.

We can show similar results for any OGSM.

Theorem 3.30. Suppose G is an overlap graph and there exist two adjacent
vertices v and w in VG such that N(v)\{w} ⊆ N(w)\{v}, i.e., every neighbour
of v (apart from w) is also a neighbour of w, let G′ = G[VG \ {w}] be the
induced subgraph of G on the vertex set VG \ {w}, then f(G) = f(G′) if f is
any anti-monotonic OGSM.

Proof. We use the fact that the anti-monotonic OGSM cannot decrease under
VA (Vertex Addition), ER (Edge Removal) and CC (Clique Contraction). Let
G be an overlap graph and v and w as defined above.

On the one hand, let G′′ = VA(G′, w), then f(G′′) ≥ f(G′) because f cannot
decrease under VA. We can consider G is obtained by a series of ER from G′′,
we have that f(G) ≥ f(G′′). According to the two inequalities, f(G) ≥ f(G′).

On the other hand, because G′ = CC (G, {v, w}, v) and f cannot decrease under
CC, we have that f(H ′) ≥ f(H). Thus, f(G) = f(G′).

If an overlap graph has m edges and a maximal degree d it only takes O(md)
time to eliminate all the unnecessary images from the OGSM. Hence, eliminating
these unnecessary images first can speed up the computation of support measures,
especially for the more expensive ones such as the Lovász ϑ and the SGM
support measures.
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In our experiments, we found that almost half the images in every overlap graph
are unnecessary. This may inspire us to find more efficient ways to reduce the
size of overlap graphs, enabling us to use the Lovász ϑ support measure and
the SGM support measure in practice.

3.6 Experiments

This section provides experimental results, illustrating the practical potential
of our new measure ν∗.

Experimental setup

Our experiments address the following experimental questions:

Q1 How does the computational cost of the ν∗ measure compare to other
existing overlap based support measures, for instance, the Lovász ϑ value?

Q2 How high is the cost of computing the ν∗ measure?

Q3 Is it feasible to mine all ν∗-frequent subgraph patterns in moderately sized
networks?

Q4 What can we learn about the phase transition between frequent and
infrequent patterns and the randomness of the real-world dataset?

All experiments were run on an Intel Core i7-2600 CPU (3.4Gz) with 8Gb RAM.

Data

In our experiments, we consider both synthetic and real-world data. We first
give an overview of the datasets used.

Synthetic datasets

We constructed random hypergraphs RndHyp-V-E; where V is the number of
vertices and E is the number of hyperedges. In these random hypergraphs, for
every vertex v and hyperedge e with probability 0.05, v is an element of e.
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We also generated scale-free networks of different sizes, using the linear
preferential attachment processes described in [3]. We denote such networks
with 10n vertices Barabasi-n. The network begins with an initial network of
m0 ≥ 2 vertices (here, m0 = 5) which are fully connected. New vertices are
added to the network one at a time until the size of the network reaches 10n.
Each new vertex is connected to m existing vertices (in this case, m = 5) with
a probability proportional to the number of edges that these existing nodes
already have. Formally, the probability pi that the new vertex is connected to
vertex i is

pi = ki/
∑
j

kj

where kj is the degree of the vertex j. Vertices are randomly labeled by 4
different labels (the labels do not affect the network generating procedure).

Real-world datasets

We use two labeled real-world datasets: Facebook and DBLP. Table 3.1 shows
all real-world datasets with elementary statistics.

In the Facebook network, vertices represent users while edges represent
friendship relations. The label of a vertex represents the privacy setting
of the corresponding user. We consider two Facebook samples3: a uniform
sample (Facebook-Uniform) and a Metropolis-Hastings random walk sample
(Facebook-Mhrw) [28].

We use two DBLP co-authorship networks (DBLP-0305 showing co-authorships
from 2003 to 2005 and DBLP-0507 showing co-authorships from 2005 to 2007)
[4] in which vertices represent authors. If an author i co-authored a paper
with author j, the networks contain an undirected edge {i, j}. The vertices are
unlabeled, whereas the edges are labeled with an integer indicating the year in
which the edge first appeared.

Table 3.1: Overview of real-world datasets.

Dataset Version # vertices # edges labels
Facebook Uniform 984830 371021 4 vertex labels
Facebook Mhrw 957359 3584376 4 vertex labels
Dblp 0305 109944 228461 3 edge labels
Dblp 0507 135516 290363 3 edge labels

3http://odysseas.calit2.uci.edu/doku.php/public:online_social_networks
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Results

The Lovász ϑ support measure vs. the ν∗ support measure

We compared the time needed to compute the Lovász ϑ function with the time
needed to compute the ν∗ measure on random hypergraphs. In particular, we
consider random hypergraphs RndHyp-V-E with V ∈ {20, 40, 60, . . . , 200} and
E ∈ {20, 40, 60, 80, 100}. We evaluate ν∗ directly on the hypergraphs, while in
order to evaluate the Lovász ϑ function we first convert the hypergraphs to
graphs by replacing every hyperedge with a clique.

Fig. 3.6 shows the time cost of computing the ν∗ measure and the Lovász ϑ
measure for these graphs. The symbols θ-E and ν∗-E mean that there are E
hyperedges in that hypergraph.

Figure 3.6: Time required for computing the Lovász ϑ and ν∗.

Mining patterns in real-world data

Table 3.2 gives the results of our algorithm for mining frequent subgraph patterns
in the Facebook networks with a minimal frequency threshold of 0.2%. Table
3.3 provides the same information for DBLP mined with a frequency threshold
of 1%.

As described in Section 3.5, for patterns with a huge number of embeddings we
only collect a limited number of them in our mining algorithm. Here, we put
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the threshold at 100000 embeddings. Only few patterns have more than that
number of embeddings, e.g., in Facebook-Mhrw we discovered 6 of them (all
are path patterns). All patterns with more than 100000 embeddings were found
to be frequent (thanks to our breadth-first way of searching for embeddings),
so we didn’t miss any frequent pattern.

Table 3.2: Frequent subgraph pattern mining in Facebook-Uniform network
(left) and Facebook-Mhrw network (right) with minimal support 0.2%. Lev
= level (number of vertices), Cand = # candidate subgraph patterns, Freq
= # frequent subgraph patterns, Tmap = average time per pattern needed to
compute images, Tν∗ = average time needed to compute the support measure.
Time units are in seconds.

Lev Cand Freq Tmap Tν∗

1 3 3 0.01 0.00
2 2 2 0.03 1.88
3 7 6 0.26 1.96
4 41 10 0.26 0.48
5 67 11 0.15 0.40
6 72 16 0.36 0.99
7 168 26 0.31 1.63
8 337 36 0.39 2.32
9 515 43 1.63 4.23
10 847 64 0.25 5.60
11 1268 85 0.47 11.12
12 1849 25 0.83 15.12

Lev Cand Freq Tmap Tν∗

1 2 2 0.01 0.00
2 2 2 0.57 1.72
3 7 5 0.79 12.43
4 40 27 0.75 10.87
5 220 101 1.19 8.17
6 480 193 1.71 4.46
7 126 80 0.19 0.62
8 104 66 4.58 0.91
9 93 30 22.73 1.20
10 29 8 12.85 0.89
11 18 0 50.97 0.01

Table 3.3: Frequent subgraph pattern mining in Dblp-0305 network (left) and
Dblp-0507 network (right) with minimal support 1%.

Lev Cand Freq Tmap Tν∗

1 1 1 0.00 0.00
2 3 3 0.05 0.91
3 24 21 0.09 2.21
4 559 167 0.24 20.59
5 10746 496 0.08 0.16
6 28737 1694 1.73 0.36

Lev Cand Freq Tmap Tν∗

1 1 1 0.00 0.00
2 3 3 0.14 2.16
3 24 17 0.17 2.56
4 204 93 0.17 13.8
5 689 420 0.21 0.44

Mining patterns in synthetic data

In the Barabasi-n datasets, all tree patterns are very frequent. As this is in
line with the predictions of random graph theory, we only report statistics for
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the non-tree subgraph patterns. We set the frequency threshold to 0.1%.

Tables (3.4)-(3.6) give the results of these experiments, in which Barabasi-n
(with n ∈ {2, 3, 4, 5, 6}) are mined for frequent non-tree subgraph patterns up
to level 6 (except for the network which has 106 vertices). Given that we only
report non-tree patterns, no patterns smaller than 4 are reported.

Table 3.4: Frequent non-tree subgraph pattern mining in the Barabasi-2
network (left) and Barabasi-3 network (right) with minimal support 0.1%.

Barabasi-2
Lev Cand Freq Tmap Tν∗

4 20 16 0.014 0.383
5 191 182 0.015 0.388
6 2083 2033 0.018 0.394

Barabasi-3
Lev Cand Freq Tmap Tν∗

4 20 20 0.02 0.38
5 215 215 0.03 0.43
6 2430 2422 0.13 0.48

Table 3.5: Frequent non-tree subgraph pattern mining in the Barabasi-4
network (left) and Barabasi-5 network (right) with minimal support 0.1%.

Barabasi-4
Lev Cand Freq Tmap Tν∗

4 20 20 0.09 0.39
5 215 215 0.28 0.41
6 2430 2349 3.14 1.88

Barabasi-5
Lev Cand Freq Tmap Tν∗

4 20 5 2.91 0.30
5 99 9 12.44 0.67
6 758 648 354.19 24.41

Table 3.6: Frequent non-tree subgraph pattern mining in the Barabasi-6
network with minimal support 0.1%.

Barabasi-6
Level Candidates Frequent Tmap Tν∗

4 20 0 216.20 0.43
5 55 12 1565.13 0.99
6 - - - -

Discussion

Based on the results presented above, we can answer the experimental questions
as follows:

Q1 Figure 3.6 shows that, for all randomly generated (hyper)graphs, ν∗ can
be computed in a very short period of time (< 0.01 seconds), while the
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time required to compute ϑ increases rapidly when the number of vertices
increases. Clearly, for larger (hyper)graphs on which the ν∗ measure can
be computed efficiently, it is extremely difficult to compute the ϑ value
in a reasonable time by solving the corresponding SDP using existing
methods. Therefore, ν∗ outperforms ϑ value in terms of efficiency.

Q2 The cost of computing ν∗ mainly depends on the number of embeddings.
This cost is low for the smallest patterns (having only a small number of
embeddings with little overlap), and also, in several cases, for the largest
patterns, probably because they are less frequent on average than the
smaller ones.

Q3 The ν∗ measure, allows us to mine frequent subgraph patterns of moderate
size in a reasonable amount of time. The main bottleneck for DBLP
is the explosive growth of the set of frequent patterns. In practical
applications where it is more obvious which types of patterns are of
interest, this problem could probably be overcome by selecting a smaller
pattern language. For Facebook, only one label is really important, and
the number of patterns increases much more slowly. In contrast to earlier
approaches using the MIS or ϑ measures, where the computation of
the support measure was the bottleneck, here both pattern matching
and support measure computation contribute a significant fraction to
the runtime. As we mainly selected the linear programming library
(GLPK) based on its ease of interfacing with the other C code rather
than on efficiency, we expect that the time required for support measure
computation can be further reduced.

Q4 For the synthetic data, we found that cyclic (non-tree) subgraph patterns
were fairly infrequent, as we needed a frequency threshold of 0.1% to
mine them. This suggests that whereas in standard random graph models
nodes choose their neighbors randomly, in real-world data the connections
between candidate neighbors have an important influence.

3.7 Summary

In this chapter, we have studied the problem of measuring how frequently a
given subgraph pattern occurs in a given database graph. We have proposed
a new overlap based support measure ν∗, which unlike existing overlap based
support measures can be computed efficiently. We have shown that this overlap
based measure is anti-monotonic and normalized. The experimental results
demonstrate that it is practical to use and effective in pruning the search space.
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Our proposed measure is flexible, in the sense that it is possible for a user
to plug in his own definition of overlap. It also makes it possible to measure
the frequency of a subgraph pattern in a more sound statistical way. There
are, however, other challenges related to subgraph pattern mining in networks.
The major one in our experiments was subgraph pattern matching. However,
we anticipate that here too we will be able to make considerable advances in
finding tractable solutions. In particular, we intend to integrate our approach
with recent results concerning efficient subgraph pattern matching operators
based on arithmetic circuits [39].

In this chapter, we mention that the support measure should be larger if there
are more independent observations. Starting from the next chapter, we make
this point clearer from a statistical point of view.



Chapter 4

Networked variance

In many domains, e.g., scientific research and businesses, statistics and statistical
machine learning play important roles. A crucial assumption made by many
approaches in the field of statistics and machine learning is that observations
are independently drawn. Most existing estimators are designed based on
this assumption. However, this assumption does not hold for observations
extracted from the same network since two or more observations may share
some information.

In this chapter, we define networked examples and networked random variables,
and propose a weaker independence assumption. The model of networked
examples will be used in Chapter 6 for learning. The model of networked random
variables is mainly used in statistics. We consider mean value estimators on
networked random variables because many learning tasks and statistics involve
mean value estimation.

Bias and variance are widely used to measure the quality of estimators. We
restrict to unbiased weighted estimators in this chapter, and exploit Hoeffding’s
decomposition to minimize the variance. This variance minimization algorithm
is efficient.

4.1 Networked examples

In this section, we introduce networked examples and a framework to represent
them. The basic intuition is that a networked example combines a number of
objects, each of which can carry some information (features). However, each of

56
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these objects can be shared with other examples, such that we get a network.
The sharing of information also makes explicit the dependencies between the
examples.

Structure of networked examples

We use a hypergraph G = (V,E) to represent a set of networked examples.
The vertices V = {v1, v2, . . . , vm} represent objects, and the hyperedges E =
{e1, e2, . . . , en} represent examples grouping a number of objects. In what
follows, we will often abuse terminology, identify vertices and objects and use
the terms interchangeably. We consider two variants of networked examples:
general networked examples and tuple networked examples. Tuple networked
examples are special cases of general networked examples. For problems with
tuple networked examples, the hypergraphs are restricted to be k-partite. For
indexing, we use the common notation [k] = {i ∈ N | 1 ≤ i ≤ k}. The following
running examples illustrate both types of networked examples.

Example 4.1 (club). Consider a dataset of clubs, i.e., every club is an example.
A club is related to one or more themes and has two or more members. In our
network representation, we have nodes for persons and for themes. A club is
represented with a hyperedge containing the persons who are member of the
club and the themes to which the club is related. Clubs can share members
and/or themes. �

The following example has been discussed in [64].

Example 4.2 (binary classification). In a binary classification problem, we
want to predict the relationship between some objects. For example, given two
persons, a question is whether they are friends or not. In network analysis, this
task is also called link prediction. We would have a vertex set V of persons and
every hyperedge contains two persons. �

Example 4.3 (court). In court, lawsuits involves litigants (clients), lawyers
and judges. We want to analyze the satisfaction of clients in their lawsuits. We
can construct a network with a vertex set V (1) of litigants, a vertex set V (2) of
lawyers and a set V (3) of judges. The hyperedges (training examples) of interest
are then tuples (litigant, lawyer, judge). �

Example 4.4 (movie rating). Consider the problem of predicting the rating
by a person who watched a movie in a particular cinema. We can construct a
network with a vertex set V (1) of persons, a vertex set V (2) of movies and a set
V (3) of cinemas. Every hyperedge contains a person vertex, a movie vertex and
a cinema vertex. Figure 4.1a illustrates this setup. �
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movieperson venue

example

(rating)

e1

e2

e3

e4

e5

(a) represented by a hyper-
graph

movieperson venue

example

(rating)

(b) represented by a Bayesian
network

Figure 4.1: Networked examples of movie rating

Features and target values

We denote with X the space of features of objects. Objects can be represented
with feature vectors or other suitable data structures.

As usual in supervised learning, an example is a pair of an input and a target
value. The input of an example is a collection of objects and is represented by
a multiset of elements of X . We denote with X = NX the space of all possible
examples.

Each example also has a target value, e.g., a class label or regression value. We
denote with Y the space of all possible target values.

Example 4.5 (club). Clubs have several members and several themes. Each
member may be represented by a feature vector containing demographic data
and a set of interests. Each theme may be described by a Wikipedia page on
the theme. Suppose we want to model how active each club is. Then we could
attach to each club as target value the frequency of its meetings. �

Example 4.6 (binary classification). In the problem of predicting whether two
persons are friends, every person has his/her own feature vector (containing e.g.,
interests, demographical info, education, . . . ) in the space X , while an example
(an element of X) is a pair of such vectors. The target value of an example is a
boolean value to show whether they are friends, i.e., Y = {0, 1}. �

Example 4.7 (movie rating). In the movie rating example, a movie (a vertex
in V (2)) can be described by a feature vector from X (2) describing genre, actor
popularity, . . . . A person (a vertex in V (1)) who watches movies can be described
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by a feature vector from X (1) describing gender, age, nationality, . . . . A venue
(a vertex in V (3)) can be described by a feature vector from X (3) containing
cinema size, city, . . . . Then, X = X (1) × X (2) × X (3) is the space of feature
vectors of complete examples, consisting of a concatenation of a movie feature
vector, a person feature vector and a cinema feature vector. The target value of
an example is the rating the person gave to the movie in the concerned venue,
e.g., the space Y can be the set of integers {1, 2, . . . , 10}. �

When representing a dataset, we use a labeled hypergraph where vertices are
labeled with the descriptions (feature vectors) of the objects they represent
and the hyperedges are labeled with the target values of the examples they
represent.

Definition 4.8 (labeled hypergraph). A labeled hypergraph is a 5-tuple
(G,ΣV , φ,ΣE , λ) where G is a hypergraph, ΣV is a vertex label alphabet,
ΣE is a hyperedge label alphabet, φ : V (G)→ ΣV is a vertex labeling function
and λ : E(G)→ ΣE is a hyperedge labeling function.

The two labeling functions defined above are used to assign features to every
object (vertex) and to assign a target value to every example (hyperedge).
Therefore, we use ΣV = X and ΣE = Y.

Independence assumption

Though networked examples are not independent, we still need to assume
some weaker form of independence of the examples. If we would not make any
assumption, the dependence between examples could be so strong that they
perfectly correlate (and hence are all identical). In such situation, it is not
possible to generalize or learn.

The independence assumption we propose here is a relaxation of the classical
i.i.d. assumption. While it is still not fully general and is not satisfied in all
applications, we believe it is a useful first step. The idea we adopt here is that
we explicitly model information shared by several examples and in this way also
explicitly model the dependencies between the examples. We do not model the
dependencies in detail and our analysis works for any possible dependency of
the examples on the shared information.

We consider a labeled hypergraph (G,X , φ,Y, λ), where the labels assigned by
φ and λ are drawn randomly from a probability distribution ρ. We make the
following assumptions:
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• The objects (and their features) assigned to vertices are independent
from the hyperedges in which they participate, i.e., there is a function
ρX : X 7→ [0, 1] such that for every q ∈ X and v ∈ V (G), ρ(φ(v) = q) =
ρX (q) = ρX (φ(v) = q | E(G)).

• Moreover, every hyperedge (example) gets a target value drawn identically
and independently given the features attached to the objects (vertices)
incident with the hyperedge, i.e., there is a probability measure ρY|X : Y ×
X 7→ [0, 1] such that for all e ∈ E(G), ρ(λ(e) = y | φ|e) = ρY|X(y, φ|e) =
ρ(λ(e) = y | φ,E(G)). Here, φ|e is φ restricted to e, i.e., φ|e = {(v, φ(v)) |
v ∈ e}. Even if the hyperedges share vertices, still their target values are
sampled i.i.d. from ρY|X based on their (possibly identical) feature vector.

• One can choose freely which vertices participate in which hyperedges, and
which hyperedges belong to the training set and the test set, as long as this
hyperedge and training set selection process is completely independent
from the drawing of objects for the vertices and the drawing of target
values for the hyperedges.

From the above assumptions, we can infer that

ρ(φ, λ) =
∏

v∈V (G)

ρX (φ(v))
∏

e∈E(G)

ρY|X(λ(e), φ|e).

Our analysis holds no matter what the distribution ρ is, as long as the above
assumptions are met.

It is possible that the empirical distribution of the training and/or test set
deviates from ρ, but we show that we can bound the extent to which this is
possible based on the assumptions.

As a special case, we often consider a k-partite setting. We can see this is a
special case as follows. Let (G,X , φ,Y, λ) be a labeled k-partite hypergraph with
V = ∪ki=1V

(i) the vertex partition and X = ∪ki=1X (i) the feature space partition.
Let X = X ([k]) = X (1) × . . .×X (k) be the cartesian product of k feature spaces.
Then, writing ρY|X as ρY|X(y, φ|e) = f(y, φ(e ∩ V (1)), . . . , φ(e ∩ V (k))) for some
function f : Y × X ([k]) 7→ [0, 1] ensures that for vertices of V (i) only the part
of the features from X (i) is relevant. Learning ρY|X(y, φ|e) is then equivalent
to assigning (independently) to every vertex of V (i) a set of features from X (i)

and learning the function f : X ([k]) 7→ Y.

These assumptions may not yet hold in all real-world situations but are already a
better approximation than the classic i.i.d. assumptions. It may be instructive to
consider real-world situations where our assumptions are satisfied and variants
where they are not.
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Example 4.9 (movie rating). In our movie rating example, it may or may not
be realistic that these assumptions hold. In particular, if ratings are obtained
from visitors of a cinema, then probably some visitors will already have a
preference and will not choose movies randomly. On the other hand, if ratings
are obtained during a sneak preview, experiment or movie contest where a
number of participants or jury members are asked to watch a specific list of
movies, one could randomize the movies to increase fairness. In this way our
assumptions would be satisfied. �

Example 4.10 (court). In our court example, if every litigant is assisted by a
pro-deo lawyer and pro-deo lawyers and judges are randomly assigned to cases
(e.g., for reasons of fairness), then our assumption holds. Else, if litigants can
choose their prefered lawyers or judges specialize on particular topics, then our
independence assumption may not hold. �

Generating synthetic data

In many machine learning studies, synthetic data is used to evaluate approaches
or testing hypotheses. Therefore, it is useful to investigate how one can generate
synthetic data following a specified model. This is straightforward for i.i.d.
data as one can draw each example independently from a fixed distribution. In
the most general case generating data is much more difficult, e.g., in Markov
logic networks [52] and exponential random graph models [53] sampling data is
nontrivial.

Generating data according to the assumptions explained above is reasonably
straightforward. One approach consists of the following steps:

• Choose any hypergraph G whose hyperedges determine the examples.
The choice is completely free, and can be inspired by the type of
experiments one intends to conduct, e.g., a powerlaw graph or other
network satisfying topological properties of the targeted real-world
application, or experimental designs (see also Example 5.8).

• Randomly sample the features for each vertex in this hypergraph according
to the distribution ρX which also can be freely chosen. If G is a k-partite
hypergraph, the distributions can be different for different partitions of
vertices.

• Randomly sample the label for each hyperedge according to the features
of vertices inside this hyperedge and the distribution ρY|X encoding the
concept to be learned. One can choose this distribution freely.
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A relation to learning probabilistic logical models

The problem described above is also equivalent to one of the fundamental tasks
faced when learning directed probabilistic models such as Probabilistic Relational
Models [25], Logical Bayesian Networks [23], Relational Bayesian Networks [35]
and other directed models in the field of Statistical Relational Learning [27],
namely learning the conditional probability function of a dependency template.

For instance, a dependency template may state that the rating a person gives
to a movie depends on the interests of the person, the genre of the movie, the
production cost of the movie and the size of the cinema theatre. A classic
logic-based notation for such template(s) is

rating(M,P, V ) | interest(P )
rating(M,P, V ) | genre(M)
rating(M,P, V ) | cost(M)
rating(M,P, V ) | size(V )

The semantics of such template is that for every instantiation (also called
grounding) of the template (i.e., substitution of the variableM with a movie, of P
with a person and of V with a cinema) the corresponding conditional probability
function describes the dependency of the random variable representing the rating
on the random variables representing the interests, genre, cost and size.

When we consider all ground dependencies, we get a ground Bayesian network,
as illustrated in Fig. 4.1b.

A classic approach to learn such conditional probability function is to collect a
training set where every example consists of the features of a specific grounding
and the corresponding target value. Then, a classifier is learned using a
supervised learning algorithm, e.g., a decision tree learner. However, often
the grounding of the template, the training examples share common information
(properties of persons, movies, cinemas), and in fact the problem is equivalent to
the problem of learning from networked examples introduced above. Therefore,
to the extent our independence assumptions better capture the domain than the
i.i.d. assumptions made by the classic algorithms, we expect it will be beneficial
for the accuracy of the models to plug in one of the weighting schemes discussed
in the next section. In fact, it is an advantage of our proposal that the example
weighting schemes can be easily applied to allmost any existing supervised
learning algorithm.
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4.2 Mean estimation

Let f : X 7→ R be a real-valued function on some space X. A fundamental
problem is to estimate the expected value µf = Ex[f(x)]. For instance, the
solution to many learning problems can be written in terms of such expected
values of functions of the distribution of examples.

Example 4.11. Consider the problem of linear regression. We are given a set of
examples {(xi, yi)}ni=1 drawn identically and independently from some fixed but
unknown distribution D which first draws an xi from a first distribution, then an
ri from a second zero-mean distribution and then computes yi = α+βxi+ri for
some fixed but unknown parameters α and β. We can recover these parameters
α and β from expected values of functions applied to the data pairs by

β = E[xy]− E[x]E[y]
E[x2]− (E[x])2 and α = E[y]− E[xy]− E[x]E[y]

E[x2]− (E[x])2 E[x]

In this case, the parameter values of the model are combinations of the expected
values of the functions x, y, x2, y2 and xy. One can approximate these expected
values from the sample {(xi, yi)}ni=1, e.g., approximating E[x] with

∑
xi/n. �

Example 4.12. Similarly, in the context of learning decision trees, the
frequencies of (a suitable subset of) all itemsets form sufficient statistics (see
e.g., [48]). Such frequency of an itemset Z is equal to the expected value of the
indicator function which returns 1 if Z is contained in a given example and 0
otherwise. �

One typically approximates µf = Ex[f(x)] by averaging the value of f over an
independent sample of the distribution, in particular, given a set {(xi, yi)}ni=1
of instances xi drawn i.i.d. from some distribution ρX, we could estimate

µ̂f = 1
n

n∑
i=1

f(xi) (4.1)

In order to study the networked setting, we first define networked random
variables.

Definition 4.13 (G-networked random variables). Given a hypergraph G =
(V,E), we call (ξi)ni=1 G-networked random variables where n = |E| if there
exist a distribution ρX on some feature space X and a function f mapping
multisets of elements of X on real numbers such that ξi = f({Φv | v ∈ ei})
and E[ξi] = µf where {Φv}v∈V is a set of independent ρX -distributed random
variables indexed by the vertices of G.
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Note that in the definition above, the random variables are completely
determined by the features of hyperedges. This definition can be generalized
to the case that networked random variables also depend on the labels of
hyperedges and some random factors.

According to the definition of G-networked random variables, we do not have
an independent sample but rather a set of vertices V with independently drawn
features and a fixed hyperedge structure E. In such case, what is the optimal
way to combine the observations to get a good estimate? As we will see, the
answer depends on the criterion one chooses to measure the quality of the
estimate. Two popular quality criteria are variance and concentration bounds.
For an unbiased estimator µ̂ of µ, i.e., an estimator µ̂ for which E[µ̂] = µ, the
variance is defined as

var(µ) = E
[
(µ̂− µ)2] (4.2)

A concentration bound on µ̂− µ is a statement of the form

∀ε > 0,Pr (|µ̂− µ| ≥ ε) ≤ δ(ε) (4.3)

where δ is a (typically monotonically decreasing) function mapping positive
reals on positive reals.

We limit ourselves to weighted average estimators

µ̂f =
∑n
i=1 wif(xi)∑n

i=1 wi
.

In the i.i.d. case, Formula (4.1), which is the above formula with uniform weights,
is normally optimal. For the networked case, we study more alternatives:

• EQW: all examples get EQual Weights, i.e., for all i, wi = 1.

• IND: a maximum-size set EIND ⊆ E of pairwise disjoint examples is
selected, i.e., ∀e1, e2 ∈ EIND : e1 ∩ e2 = ∅. Examples in EIND get weight
1, examples not in EIND get weight 0.

• MinVar: a weighting scheme that improves the variance of estimators.

• FMN: a weighting scheme that improves the concentration bound
guarantee of the EQW weighting scheme.

We first introduce the MinVar estimator in this chapter and discuss the FMN
estimator in the next chapter.
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4.3 Networked variance minimization

In this section, we analyze the variance of the statistics on k-partite networks
(tuple networked examples and X = X ([k])). This analysis will result in a convex
quadratically constrained linear program that minimizes the variance of the
worst case. This shows that, for a weighted average, one can compute the
weights that minimize its variance in an efficient way.

First, we define a decomposition of functions defined on the hyperedges. This
decomposition comes from the analysis of variance (ANOVA, see e.g., [55]) that
partitions the variance in a particular variable into components attributable
to different sources of variation. This technique is also called Hoeffding’s
decomposition (see e.g., [49]).

Given a k dimensional vector space X ([k]) = ×ki=1X (i) and an index set S ⊆ [k],
we define X (S) := ×i∈SX (i) (where the Cartesian product is taken in increasing
order of i). For a vector x ∈ X ([k]), x(i) is the projection of x on its i-th
component and x(S) = ×i∈Sx(i).

Consider a product distribution ρX on X ([k]). We denote the marginal
distribution over X (S) with ρ(S), i.e., for x ∈ X ([k]), ρ(S)(x(S)) =

∏
i∈S ρ

(i)(x(i)).
Let f be a function defined on X ([k]), and let x ∈ X ([k]). We first define
µ = µ∅(x) = Ex∼ρX [f(x)], and then recursively define for every non-empty set
S ⊆ [k],

µS

(
x(S)

)
:= Ex([k]\S)∼ρ([k]\S)

[
f(x)|x(S)

]
−
∑
T⊂S

µT

(
x(T )

)
. (4.4)

Example 4.14. Consider a function fex : X (1) × X (2) × X (3) 7→ R where
X (1) = X (2) = {1, 2}, X (3) = {1, 2, 3}. The values of fex are given in Table 4.1.
Suppose that (x1, x2, x3) is uniformly distributed over X (1)×X (2)×X (3). Then,
Table 4.2 gives µS

(
x(S)) for all S and x(S). For example, we can compute:

µ =
∑

x1,x2,x3

fex(x1, x2, x3)/12 = 3/4

µ{1}(1) =
∑
x2,x3

fex(1, x2, x3)/6− µ = 1/12

�

From Eq. (4.4), we can easily derive that

f(x) =
∑
S⊆[k]

µS

(
x(S)

)
. (4.5)
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x1 = 1 x1 = 1 x1 = 2 x1 = 2
x2 = 1 x2 = 2 x2 = 1 x2 = 2

x3 = 1 1 1 0 1
x3 = 2 0 1 1 1
x3 = 3 1 1 1 0

Table 4.1: Function values of fex for Example 4.14

µ 3/4 µ{2,3}(1, 1) −1/6
µ{1}(1) 1/12 µ{2,3}(1, 2) −1/6
µ{1}(2) −1/12 µ{2,3}(1, 3) 1/3
µ{2}(1) −1/12 µ{2,3}(2, 1) 1/6
µ{2}(2) 1/12 µ{2,3}(2, 2) 1/6
µ{3}(1) 0 µ{2,3}(2, 3) −1/3
µ{3}(2) 0 µ{1,2,3}(1, 1, 1) 1/3
µ{3}(3) 0 µ{1,2,3}(1, 1, 2) −1/6

µ{1,2}(1, 1) −1/12 µ{1,2,3}(1, 1, 3) −1/6
µ{1,2}(1, 2) 1/12 µ{1,2,3}(1, 2, 1) −1/3
µ{1,2}(2, 1) 1/12 µ{1,2,3}(1, 2, 2) 1/6
µ{1,2}(2, 2) −1/12 µ{1,2,3}(1, 2, 3) 1/6
µ{1,3}(1, 1) 1/6 µ{1,2,3}(2, 1, 1) −1/3
µ{1,3}(1, 2) −1/3 µ{1,2,3}(2, 1, 2) 1/6
µ{1,3}(1, 3) 1/6 µ{1,2,3}(2, 1, 3) 1/6
µ{1,3}(2, 1) −1/6 µ{1,2,3}(2, 2, 1) 1/3
µ{1,3}(2, 2) 1/3 µ{1,2,3}(2, 2, 2) −1/6
µ{1,3}(2, 3) −1/6 µ{1,2,3}(2, 2, 3) −1/6

Table 4.2: µS values for Example 4.14

We now review some properties of this Hoeffding decomposition. The proof of
the following lemmas can be found in Appendix A.1.

Lemma 4.15. For any non-empty S ⊆ [k], µS is zero-mean for every dimension,
i.e., for all i ∈ S, Ex(i)∼ρ(i)

[
µS
(
x(S))] = 0.

Lemma 4.16. For any S 6= T , the functions µS and µT are uncor-
related (orthogonal), i.e., they have zero covariance or cov (µS , µT ) =
E
[
µS
(
x(S))µT (x(T ))] = 0.
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Example 4.17. Consider again the function fex and the distribution of
(x1, x2, x3) in Example 4.14. We can verify that

Ex(1)
[
µ{1}(x(1))

]
= 1

2
(
µ{1}(1) + µ{1}(2)

)
= 1

2

(
1
12 −

1
12

)
= 0

Ex(3)
[
µ{1,3}(1, x(3))

]
= 1

3
(
µ{1,3}(1, 1) + µ{1,3}(1, 2) + µ{1,3}(1, 3)

)
= 1

3

(
1
6 −

1
3 + 1

6

)
= 0

�

Lemma 4.18 shows that the variance of a function can be decomposed into
2k − 1 values σ2

T which we call variance components.

Lemma 4.18. The variance of the function f is the sum of the variances
of µS of all S, i.e., σ2 =

∑
S⊆[k] σ

2
S − µ2 =

∑
S 6=∅∧S⊆[k] σ

2
S where σ2 =

Ex∼ρX
[
(f(x)− µ)2] and σ2

S = Ex(S)∼ρ(S)
[
µ2
S

(
x(S))].

Example 4.19. Consider again the function and distribution in Example 4.14.
We can calculate the variance σ2 = 3/16 and the variance components, e.g.,
σ2
{1,3} = 1

6 (µ2
{1,3}(1, 1) + µ2

{1,3}(1, 2) + µ2
{1,3}(1, 3) + µ2

{1,3}(2, 1) + µ2
{1,3}(2, 2) +

µ2
{1,3}(2, 3)) = 1

18 . All the variance components are listed in Table 4.3. Then,
we can check that σ2 =

∑
T⊆[3]∧T 6=∅ σ

2
T . �

T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} Sum
σ2
T 1/144 1/144 0 1/144 1/18 1/18 1/18 3/16

Table 4.3: Variance components in Example 4.19

We now analyze this variance decomposition in the context of networked
examples. First, we introduce the concept of overlap index matrix.

Definition 4.20 (overlap index matrix). For a vector of examples E = {ei}ni=1,
we define the overlap matrix of E, denoted JE to be the n× n matrix with

JEi,j = {l ∈ [k] | e(l)
i = e

(l)
j }.
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Example 4.21. Consider the hypergraph in Fig. 4.1a. Its overlap index matrix
is 

e1 e2 e3 e4 e5

e1 {1, 2, 3} {1} {1} ∅ ∅
e2 {1} {1, 2, 3} {1, 2} ∅ ∅
e3 {1} {1, 2} {1, 2, 3} {3} {3}
e4 ∅ ∅ {3} {1, 2, 3} {3}
e5 ∅ ∅ {3} {3} {1, 2, 3}


�

According to the definitions and properties above, and according to our
assumption that vertex features are drawn i.i.d., for two examples (hyperedges)
ei and ej the covariance of f(φ(ei)) and f(φ(ej)) is cov(f(φ(ei)), f(φ(ej))) =∑
T⊆JE

i,j
σ2
T .

Let E = {ei}ni=1 be a set of examples in a k-partite hypergraph. Let F =
(f(φ(ei)))ni=1 be the vector of function values on the n hyperedges. Then, let
Σ = var(F ) be the covariance matrix of these function values, i.e., Σi,j =
cov(f(φ(ei)), f(φ(ej))) =

∑
T⊆JE

i,j
σ2
T .

For a weight vector w ∈ [0, 1]n with ‖w‖1 =
∑n
i=1 wi = 1, the weighted

sum w>F =
∑n
i=1 wif(φ(ei)) approximates µ = Ex∼ρX [f(x)], as E

[
w>F

]
=∑n

i=1 wiEx∼ρX [f(x)] = µ. The variance of this weighted sum estimate, which
we denote σE

(
w, {σT }T⊆[k]

)
, is

σE
(
w, {σT }T⊆[k]

)
= var(w>F ) = w>Σw =

∑
i∈[n]

∑
j∈[n]

wiwj ∑
T∈JE

i,j

σ2
T

 .

When estimating the mean of a distribution, we usually prefer an estimator
with a variance which is as small as possible. Given a k-partite hypergraph,
we can see that the variance of a networked sample not only depends on the
weights but also on the 2k values of σT , one for each T ⊆ [k]. In practice,
we usually do not know the values of the σT . Still, if the variance σ2 of the
function f (not the variance we intend to minimize) is a constant, i.e., the
sum

∑
T⊆[k] σ

2
T = σ2 is a constant, then for every weight vector w one can

find a tight upper bound for var(w>F ) by maximizing w>Σw as a function
of the variance components {σT }T⊆[k]. We call the variance of this type the
worst-case variance. An interesting question is now for what weight vector w
the worst-case variance is minimal. We define the following game, played by a
player MIN who attempts to minimize variance by choosing the weight vector
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w and a player MAX who attempts to maximize the variance by choosing the
random variable and hence the decomposition of its variance.

Definition 4.22 (MWCWSV game). A minimum worst-case weighted-sum
variance game (MWCWSV) is a game parameterized by an overlap index matrix
JE , with a player MIN who can choose a vector w satisfying∑

i∈[n]

wi = 1 (4.6)

∀i : wi ≥ 0 (4.7)

and a player MAX who can choose (σT )T⊆[k] satisfying∑
T⊆[k]

σ2
T = σ2, (4.8)

and with payoff function
σE
(
w, {σT }T⊆[k]

)
.

which MIN tries to minimize and MAX tries to maximize.

Hence, finding the optimal strategy of MIN is equivalent to computing

min
w

max
{σ2
T

:T⊆[k]}
σE
(
w, {σT }T⊆[k]

)
subject to the constraints (4.6), (4.7) and (4.8).

Example 4.23. Let us consider the hypergraph in Fig. 4.1a again. The payoff
function σE is

w>


σ2 σ2

{1} σ2
{1} 0 0

σ2
{1} σ2 σ2

{1} + σ2
{2} + σ2

{1,2} 0 0
σ2
{1} σ2

{1} + σ2
{2} + σ2

{1,2} σ2 σ2
{3} 0

0 0 σ2
{3} σ2 σ2

{3}
0 0 σ2

{3} σ2
{3} σ2

w.

�

We can see that the payoff function σE is convex in its first argument w and
linear in its second argument {σT }T⊆[k]. By Sion’s minimax theorem [60], we
get

min
w

max
{σ2
T

:T⊆[k]}
σE
(
w, {σT }T⊆[k]

)
= max
{σ2
T

:T⊆[k]}
min
w
σE
(
w, {σT }T⊆[k]

)
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which ensures that there exists an equilibrium (saddle point).

We now transform this game into an equivalent convex quadratically constrained
linear program which can be efficiently solved using standard methods [6].

Lemma 4.24. For any MWCWSV game, there exists a saddle point(
w∗, {σ∗T }T⊆[k]

)
such that ∀T ⊆ [k], |T | ≥ 2⇒ σ∗T = 0.

Proof. Among the saddle points of the MWCWSV problem, let
(
w∗, {σ∗T }T⊆[k]

)
be one of those minimizing the number of sets T ⊆ [k] for which |T | ≥ 2 and
σ∗T 6= 0. We prove the lemma by showing that if there is at least one T ⊆ [k]
for which |T | ≥ 2 and σ∗T 6= 0, then the solution is not optimal or the number
of T ⊆ [k] for which |T | ≥ 2 and σ∗T 6= 0 is not minimal.

Suppose that there is a specific U ⊆ [k] such that |U | ≥ 2 and σ∗U 6= 0.
Then, select an arbitrary l ∈ U and define the weight vector w′ and variance
components {σ′T }T⊆[k] as follows: (i) w′ = w∗, (ii) σ′U = 0, (iii)

(
σ′{l}

)2
=(

σ∗{l}

)2
+ (σ∗U )2 and (iv) for all T ∈ 2[k] \ {U, {l}}, σ′T = σ∗T . We can see that(

w′, {σ′T }T⊆[k]

)
is a feasible solution, because ‖w′‖1 = ‖w∗‖1 = 1, ∀i : w′i =

w∗i ≥ 0 and
∑

(σ′T )2 =
∑

(σ∗T )2 = σ2. Moreover, we have

(w′)>Σ′w′ − (w∗)>Σ∗w∗

=
((

σ′{l}

)2
−
(
σ∗{l}

)2
)∑

{wiwj | l ∈ JEi,j}

+
(

(σ′U )2 − (σ∗U )2
)∑

{wiwj | U ⊆ JEi,j}

= (σ∗U )2
(∑

{wiwj | l ∈ JEi,j} −
∑
{wiwj | U ⊆ JEi,j}

)
= (σ∗U )2∑{wiwj | l ∈ JEi,j ∧ U 6⊆ JEi,j}
≥ 0

Hence,
(
w′, {σ′T }T⊆[k]

)
is also a saddle point. The lemma follows by considering

that the number of sets T for which |T | ≥ 2 and σ′T 6= 0 is smaller than
the number of T for which |T | ≥ 2 and σ∗T 6= 0, leading to the announced
contradiction.
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Example 4.25. According to Lemma 4.24, the payoff function σE in Example
4.23 can be simplified as

w>


σ2 σ2

{1} σ2
{1} 0 0

σ2
{1} σ2 σ2

{1} + σ2
{2} 0 0

σ2
{1} σ2

{1} + σ2
{2} σ2 σ2

{3} 0
0 0 σ2

{3} σ2 σ2
{3}

0 0 σ2
{3} σ2

{3} σ2

w.

�

Therefore, for any MWCWSV game, the solution of the following simplified
game can be extended into a solution of the original MWCWSV game:

minw max{σ2
l

:l∈[k]}
∑
i∈[n]

∑
j∈[n]

wiwj
∑
l∈JE

i,j

σ2
l

s.t.
∑
l∈[k]

σ2
l = σ2

∑
i∈[n]

wi = 1

∀i : wi ≥ 0

For a fixed w, the inner part

max{σ2
l

:l∈[k]}
∑
i∈[n]

∑
j∈[n]

wiwj
∑
l∈JE

i,j

σ2
l

s.t.
∑
l∈[k]

σ2
l = σ2

is a linear program with decision variables {σ2
l }l∈[k], so it reaches the maximum

value when σl = σ for some l (and σl′ = 0 for all l′ 6= l). Then, the inner part
is equivalent to:

max
l∈[k]

∑
i∈[n]

∑
j∈[n]

wiwjσ
2I(l ∈ JEi,j)

where I is the indicator function.
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Introducing a new decision variable t, one can rewrite the whole optimization
problem as follows:

min
w;t

t

s.t. ∀l ∈ [k] :
∑
i∈[n]

∑
j∈[n]

wiwjσ
2I(l ∈ JEi,j) ≤ t

∑
i

wi = 1

∀i : wi ≥ 0

(4.9)

An optimal solution of this problem can be extended into a saddle point of the
original MWCWSV game by choosing some l for which

∑
i∈[n]

∑
j∈[n] wiwjσ

2I(l ∈
JEi,j) = t, and setting σl = σ and σT = 0 for all T ∈ 2[k] \ {{l}}. Conversely, it
is straightforward to see that any optimal strategy of MIN can be mapped to
an optimal solution of program (4.9). Therefore, there is a one-to-one mapping
between optimal strategies of MIN and solutions of program (4.9).

Example 4.26. Continuing on Example 4.25, the final program is

min
w;t

t

s.t. (w1 + w2)2 + (w3 + w4)2 + w2
5 ≤ t

w2
1 + (w2 + w3)2 + (w4 + w5)2 ≤ t

(w1 + w5)2 + w2
2 + w2

3 + w2
4 ≤ t

w1 + w2 + w3 + w4 + w5 + w6 = 1

w1, w2, w3, w4, w5, w6 ≥ 0

�

4.4 Summary

In this chapter, we have introduced networked examples, networked random
variables and a weaker independence assumption. These networked examples
and networked random variables can be represented by hypergraphs.
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We proposed the MinVar weighting scheme which is optimal from the worst-case
variance point of view.

In the future, we want to consider independence assumptions that are more
general than those investigated here. A first step in this direction would be to
develop a measure to assess the strength of the dependency of the hyperedges
on the features of the vertices.



Chapter 5

Concentration inequalities for
networked random variables

To derive a generalization error bound in the next chapter, only a variance
guarantee is not sufficient. One needs stronger concentration inequalities to show
learnability results. For mutually independent random variables, there exists
a class of concentration inequalities to bound Pr(µ̂− µ ≥ ε) and Pr(|µ̂− µ| ≥
ε), e.g., the Chernoff-Hoeffding concentration inequality. The assumption of
random variables being mutually independent is pivotal in the proofs of these
concentration inequalities.

In this chapter, we prove Chernoff-Hoeffding style concentration inequalities for
weighted mean value estimators on networked random variables. We first discuss
unweighted (or equally weighted) averages and Janson’s inequalities which are
Chernoff-Hoeffding style concentration inequalities for the EQW estimator on
networked random variables. In order to prove a weighted version, we define
the vertex-bounded weight vectors for hypergraphs. Based on this definition,
we show a lemma related to moment generating functions. This lemma not only
brings us Chernoff-Hoeffding style concentration inequalities for weighted mean
value estimators on networked random variables, but also improves Janson’s
inequalities a bit.

According to these inequalities, we are able to minimize the bound if we properly
choose a weight vector. This minimization can be done by solving a linear
program as in Chapter 3.

As an example, we apply our concentration inequalities to U -statistics.

74
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5.1 Unweighted averages and Janson’s bound

In this section, we relate our work to Janson’s result [36]. The definitions
introduced below are only relevant for the discussion of Janson’s result and are
not required for the rest of the thesis.

Definition 5.1 (hyperedge-chromatic number). The hyperedge-chromatic
number χ of a hypergraph G is the smallest number of colors needed to color
the hyperedges in EG such that any two adjacent hyperedges have different
colors.

Definition 5.2 (b-fold hyperedge-coloring). A b-fold hyperedge-coloring of a
hypergraph G is an assignment of b colors to every hyperedge in EG such that
adjacent hyperedges have no color in common.

Definition 5.3 (b-fold hyperedge-chromatic number). The b-fold hyperedge-
chromatic number χ(b) of a hypergraph G is the smallest number of colors
needed to obtain a b-fold hyperedge-coloring of the hyperedges in EG.

Note that, in the definition of hyperedge-chromatic numbers, we only do 1-fold
hyperedge-coloring.

Definition 5.4 (Fractional hyperedge-chromatic number). Let G be a
hypergraph. The fractional hyperedge-chromatic number χ∗ of G is

χ∗G = inf
b

χ
(b)
G

b
.

(a) Hyperedge coloring

r,y

r,g

p,b

p,yg,b

(b) 2-fold hyperedge coloring

Figure 5.1: An example for different hyperedge-chromatic numbers

Example 5.5. Consider the hypergraph in Fig. 5.1. Three colors are sufficient
and necessary to color these hyperedges in such a way that no two incident
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hyperedges have the same color (Fig. 5.1a). A 2-fold hyperedge-coloring of the
hyperedges needs five colors (Fig. 5.1b). In fact, this 2-fold hyperedge-coloring
also gives us the fractional hyperedge-chromatic number 5

2 . �

The following theorem, from [36], gives concentration bounds on the error
between the expected value µ and the average of n networked samples ξi.

Theorem 5.6. Let (ξi)ni=1 be G-networked random variables with mean E[ξi] =
µ, variance var(ξi) = σ2 and satisfying |ξi − µ| ≤M . Then for all ε > 0,

Pr
(

1
n

n∑
i=1

ξi − µ ≥ ε

)
≤ exp

(
− nε2

2χ∗GM2

)
,

Pr
(

1
n

n∑
i=1

ξi − µ ≥ ε

)
≤ exp

(
− 8nε2

25χ∗G(σ2 +Mε/3)

)
,

where χ∗ is the fractional hyperedge-chromatic number.

In some cases, the fractional hyperedge-chromatic number can be very large.
One can always construct hypergraphs such that every pair of hyperedges
intersects. In this case, the fractional hyperedge-chromatic number is equal
to its hyperedge number, hence n

χ∗
G

= 1. In that way, the exponent does not
decrease with sample size n and then the bounds in Theorem 5.6 do not decrease.
As an example, we consider projective planes.

Definition 5.7 (projective plane). For every integer κ ≥ 2, a projective plane
of order κ is a hypergraph G such that

• every pair of vertices determines one hyperedge

• every pair of hyperedges intersect at one vertex

• every hyperedge e ∈ EG contains κ+ 1 vertices

• every vertex is contained in κ+ 1 hyperedges

The last two properties together imply that |EG| = |VG| = κ2 + κ+ 1. Also, it
is known that a projective plane of order κ exists when κ is a prime power [46].
Moreover, the fractional hyperedge-chromatic number of any subhypergraph
of a projective plane is equal to its hyperedge number. Finally, a truncated
projective plane (see e.g., [46]) of order κ, which is obtained from a projective
plane of order κ by deleting a vertex v and the κ+ 1 hyperedges incident to
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v, is a κ+ 1-partite hypergraph; its fractional hyperedge-chromatic number is
equal to κ2, its hyperedge number.

So there are k-partite hypergraphs consisting of n (n = O(k2)) tuple-networked
examples for which n

χ∗
G

= 1. For such datasets, Janson’s inequalities (Theorem
5.6) fail to offer useful bounds. A tighter bound will be derived in the next
section (Corollary 5.16); it is significantly better in some datasets such as
projective planes.

Projective planes and truncated projective planes are not only of theoretical
interest. In fact, they are special cases of block designs as studied in the field
of experimental design [16]. This field studies what points in a feature space
to measure to maximize certain experimental objectives such as diversity and
independence of training data.

Example 5.8. Consider the problem of solving a task by combining experts
from four different disciplines D1, D2, D3 and D4. One may be interested in
understanding how the quality of the result depends on the skills and points
of view of the four experts. Suppose we can hire three experts from each of
the four disciplines to perform a number of experiments. We denote the i-th
expert (i ∈ {1, 2, 3}) of the j-th discipline with vj,i. In each experiment, we
choose one expert Xj from each discipline Dj (j ∈ {1, 2, 3, 4}), and measure
the function value f(X1, X2, X3, X4). Measuring all 34 = 81 combinations
of values of f : {1, 2, 3}4 → R may be too expensive. We could therefore
decide to measure only the 9 datapoints in Table 5.1 and then to fit a model.
Interesting properties are that (i) each feature-value pair Xj = vj,i (for

(v1,1, v2,1, v3,1, v4,1) (v1,2, v2,1, v3,2, v4,3) (v1,3, v2,1, v3,3, v4,2)
(v1,1, v2,2, v3,2, v4,2) (v1,2, v2,2, v3,3, v4,1) (v1,3, v2,2, v3,1, v4,3)
(v1,1, v2,3, v3,3, v4,3) (v1,2, v2,3, v3,1, v4,2) (v1,3, v2,3, v3,2, v4,1)

Table 5.1: A truncated projective plane as experimental design.

j ∈ {1, 2, 3, 4} and i ∈ {1, 2, 3}) occurs in the same number (three) of examples
and (ii) each combination of two feature-value pairs Xj = vj,i and Xj′ = vj′,i′

(for i, i′ ∈ {1, 2, 3} and j, j′ ∈ {1, 2, 3, 4} and i 6= i′) uniquely determines a
datapoint and (iii) any two datapoints share exactly one feature-value pair.
These properties are beneficial for avoiding bias in learned models. At the same
time, when we view the experts vj,i as vertices and the datapoints as hyperedges,
by definition, this dataset is a truncated projective plane of order 3. �
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5.2 Concentration bounds for weighted networked
random variables

In this section, we study concentration bounds of the form (4.3). Before stating
the main result (Theorem 5.10), we first define vertex-bounded weight vectors
and give the property whose generalization requires this concept.

A common key property used for proving basic exponential concentration
inequalities is that all observations are independent. If (ξi)ni=1 are independent
random variables, then the moment-generating function E[exp (c

∑n
i=1 ξi)],

where c ∈ R, satisfies

E

[
exp

(
c

n∑
i=1

ξi

)]
=

n∏
i=1

E
[
ecξi
]
.

However, when considering networked random variables, the equality does not
hold. Instead, we show a generalized property (Theorem 5.12). Based on this
theorem, we derive exponential concentration inequalities. First, we define
vertex-bounded weights of hypergraphs.

Definition 5.9 (vertex-bounded weights). Given a hypergraph G = (V,E) with
E = {ei}ni=1, a vertex-bounded weight vector w is a nonnegative vector (wi)ni=1
defined on its hyperedges satisfying that for every vertex v ∈ V ,

∑
i:v∈ei wi ≤ 1.

In other words, a weight vector is vertex-bounded if for every vertex the sum of
the weights of the incident hyperedges is at most 1.

The following inequalities are networked analogues of the Bennett, Bernstein,
Hoeffding inequalities (see e.g., Chapter 2 in [15]).

Theorem 5.10. Let (ξi)ni=1 be G-networked random variables with mean E[ξi] =
µ, variance σ2(ξi) = σ2, and satisfying |ξi−µ| ≤M . Let w be a vertex-bounded
weight vector of G and |w| =

∑n
i=1 wi, then for all ε > 0,

Pr
(

1
|w|

n∑
i=1

wiξi − µ ≥ ε

)
≤ exp

(
−|w|ε2M log

(
1 + Mε

σ2

))
, (5.1)

Pr
(

1
|w|

n∑
i=1

wiξi − µ ≥ ε

)
≤ exp

(
− |w|ε2

2(σ2 + 1
3Mε)

)
, and (5.2)

Pr
(

1
|w|

n∑
i=1

wiξi − µ ≥ ε

)
≤ exp

(
−|w|ε

2

2M2

)
. (5.3)
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In order to prove this theorem, we first show some intermediate result.

Lemma 5.11. Let β = (βi)ki=1 ∈ Rk+ such that
∑k
i=1 βi ≤ 1. Then, the

function g(t) with t = (ti)ki=1 ∈ Rk+ defined by g(t) =
∏k
i=1 t

βi
i , is concave.

The following theorem plays a very important role in proving Theorem 5.10,
and the rest is essentially standard.

Theorem 5.12. Given G-networked random variables (ξi)ni=1, if w = (wi)ni=1
is a vertex-bounded weight vector of the hypergraph G, then

E

[
exp

(
n∑
i=1

wiξi

)]
≤

n∏
i=1

(
E
[
eξi
])wi

. (5.4)

Proof. First, note that the expectation in the left hand side of inequality (5.4)
is over the (independent) features x1, . . . , xm of the vertices of G, because these
are the basic random variables of which the (ξi)ni=1 are composed. We prove
this theorem by induction on |VG|. For |VG| = 1,

E

[
exp

(
n∑
i=1

wiξi

)]
= Ex1

[
n∏
i=1

ewiξi

]
.

Using Lemma 5.11 with t =
(
eξi
)n
i=1, β = w and g(t) =

∏n
i=1 e

wiξi , we know
that g(t) is a concave function since w is a vertex-bounded weight vector. Given
that g(t) is concave, we have

E

[
exp

(
n∑
i=1

wiξi

)]
= Ex1 [g(t)] ≤ g(Ex1 [t]) =

n∏
i=1

(
E
[
eξi
])wi

which follows from Jensen’s inequality [37]. Assume that the theorem is true
for |VG| = 1, . . . ,m− 1, we now prove the theorem for |VG| = m. We can write

E

[
exp

(
n∑
i=1

wiξi

)]
= Exm

[
Ex1,...,xm−1

[
n∏
i=1

ewiξi

∣∣∣∣∣xm
]]
. (5.5)

where the E[·|·] notation on the right hand side denotes a conditional expectation.
We use the induction hypothesis on the right hand side of Eq. (5.5), yielding

Exm

[
Ex1,...,xm−1

[
n∏
i=1

ewiξi

∣∣∣∣∣xm
]]
≤ Exm

[
n∏
i=1

(
Ex1,...,xm−1

[
eξi
∣∣xm])wi]. (5.6)

We define two index sets A and B, partitioning hyperedges in G (and hence
random variables ξi) into a part which is incident with vm (dependent on xm)
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and a part which is not: A := {i|vm ∈ ei} and B := {i|vm /∈ ei}. Then, for all
i ∈ B, ξi is independent of xm. We can write this as

Exm

[
n∏
i=1

(
Ex1,...,xm−1

[
eξi
∣∣xm])wi]

=Exm

[∏
i∈A

(
Ex1,...,xm−1

[
eξi
∣∣xm])wi]∏

i∈B

(
E
[
eξi
])wi

. (5.7)

Let t =
(
Ex1,...,xm−1

[
eξi
∣∣xm])i∈A, β = (wi)i∈A and g(t) =

∏
i∈A

(
Ex1,...,xm−1

[
eξi
∣∣xm])wi .

According to the definition of vertex-bounded weights and Lemma 5.11, we
know that g(t) is concave. Again, by Jensen’s inequality, we have

Exm

[∏
i∈A

(
Ex1,...,xm−1

[
eξi
∣∣xm])wi] ≤∏

i∈A

(
Exm

[
Ex1,...,xm−1

[
eξi
∣∣xm]])wi

=
∏
i∈A

(
E
[
eξi
])wi

. (5.8)

From Equations (5.5), (5.7) and Inequalities (5.6) and (5.8), we can see that
this theorem is still true for |VG| = m.

Remark: Note that this theorem holds for any hypergraph (and its
corresponding networked random variables). It therefore also holds for any
k-partite hypergraph (k ∈ Z+).

Using Theorem 5.12, we are able to obtain exponential concentration inequalities
of networked variables. The proofs of corresponding inequalities of independent
random variables can be found in [17].
Theorem 5.13. Let (ξi)ni=1 be G-networked random variables with mean E[ξi] =
µ and variance σ2(ξi) = σ2, such that |ξi − µ| ≤ M with probability 1. Let
w = (wi)ni=1 be a vertex-bounded weight vector for G, and let |w| =

∑
i wi, then

for all ε > 0,

Pr
(∑

i

wi (ξi − µ) ≥ ε
)
≤ exp

(
−|w|σ

2

M2 h

(
Mε

|w|σ2

))
where h(a) = (1 + a) log(1 + a)− a for any real number a.

Proof. Without loss of generality, we assume µ = 0. Let c be an arbitrary
positive constant which will be determined later. Then

I := Pr
(

n∑
i=1

wiξi ≥ ε

)
= Pr

(
exp

(
c

n∑
i=1

wiξi

)
≥ ecε

)
.
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By Markov’s inequality and Theorem 5.12, we have

I ≤ e−cεE

[
exp

(
c

n∑
i=1

wiξi

)]
≤ e−cε

∏
i

(
E
[
ecξi
])wi

.

Since |ξi| ≤M and µ = 0, we have

E
[
ecξi
]

= 1 +
+∞∑
p=2

cpE[ξpi ]
p! ≤ 1 +

+∞∑
p=2

cpMp−2σ2

p!

from the Taylor expansion for exponential functions. Using 1+a ≤ ea, it follows
that

E
[
ecξi
]
≤ exp

(+∞∑
p=2

cpMp−2σ2

p!

)
= exp

(
ecM − 1− cM

M2 σ2
)

and therefore
I ≤ exp

(
−cε+ ecM − 1− cM

M2 |w|σ2
)
.

Now choose the constant c to be the minimizer of the bound on the right hand
side above:

c = 1
M

log
(

1 + Mε

|w|σ2

)
.

That is, ecM − 1 = Mε
|w|σ2 . With this choice,

I ≤ exp
(
−|w|σ

2

M2 h

(
Mε

|w|σ2

))
.

This proves the desired inequality.

Theorem 5.14. Let (ξi)ni=1 be G-networked random variables with mean E[ξi] =
µ and variance σ2(ξi) = σ2, such that |ξi − µ| ≤ M . Let w = (wi)ni=1 be a
vertex-bounded weight vector for G and let |w| =

∑
i wi, then for all ε > 0,

Pr
(

n∑
i=1

wi (ξi − µ) ≥ ε
)
≤ exp

(
− ε

2M log(1 + Mε

|w|σ2 )
)
,

Pr
(

n∑
i=1

wi (ξi − µ) ≥ ε
)
≤ exp

(
− ε2

2(|w|σ2 + 1
3Mε)

)
,

Pr
(

n∑
i=1

wi (ξi − µ) ≥ ε
)
≤ exp

(
− ε2

2|w|M2

)
.
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Proof. Without loss of generality, we assume µ = 0. The first inequality follows
from Theorem 5.13 and the inequality

h(a) ≥ a

2 log(1 + a), ∀a ≥ 0.

The second inequality follows from Theorem 5.13 and the inequality

h(a) ≥ 3a2

6 + 2a, ∀a ≥ 0.

To prove the third inequality, we use Theorem 5.12. As the exponential function
is convex and −M ≤ ξi ≤M , there holds

ecξi ≤ cξi − (−cM)
2cM ecM + cM − cξi

2cM e−cM .

It follows from the assumption µ = 0 and the Taylor expansion for the
exponential function that

E
[
ecξi
]
≤1

2e
−cM + 1

2e
cM = 1

2

+∞∑
p=0

(−cM)p
p! + 1

2

+∞∑
p=0

(cM)p
p! =

+∞∑
p=0

(cM)2p

(2p)!

=
+∞∑
p=0

((cM)2/2)p
p!

p∏
j=1

1
2j − 1 ≤

+∞∑
p=0

((cM)2/2)p
p! = exp((cM)2/2).

This, together with Theorem 5.12, implies

Pr
(

n∑
i=1

wi (ξi − µ) ≥ ε
)

= Pr
(

exp
(
c

n∑
i=1

wiξi

)
≥ ecε

)

≤ exp
(
−cε+ E

[
c

n∑
i=1

wiξi

])

≤ exp
(
−cε+ |w|(cM)2/2

)
.

Choose c = ε/(|w|M2). Then, Pr (
∑n
i=1 wi (ξi − µ) ≥ ε) ≤ exp

(
− ε2

2|w|M2

)
.

Now we are ready to prove Theorem 5.10.

Proof of Theorem 5.10. We apply Theorem 5.14 to the variables ξ′i = ξi/|w|
which satisfy |ξ′i − E[ξ′i]| ≤M/|w|, σ2(ξ′i) = σ2/|w|2.
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From Theorem 5.10, we can see that the tighter bounds can be obtained by
maximizing |w|. Given a hypergraph G = (V,E), this can be achieved by solving
the linear program (LP):

maxw
n∑
i=1

wi

s.t. ∀i : wi ≥ 0

∀v ∈ V :
∑
i:v∈ei

wi ≤ 1

The optimal value of this linear program is called the fractional matching number
(FMN) of the hypergraph G. We denote it as ν∗G1. That is, ν∗G is defined as the
maximum of the sum of the weights, and a corresponding weight vector is called
an FMN weight vector. Note that the linear program above and the same value
ν∗ are used in Chapter 3 to define a graph support measure. Decision variables
in the linear program of the graph support measure are defined on vertices
in overlap hypergraphs, but here decision variables (weights) are defined on
hyperedges. In fact, if we replace an overlap hypergraph with its dual overlap
hypergraph, then the two linear programs are exactly the same.

As we have shown, using an FMN weight vector we can achieve a good
concentration inequality. We can also show an upper bound of the corresponding
variance if G is a k-partite hypergraph:

Theorem 5.15. If a weight vector w is an FMN weight vector of a k-partite
hypergraph G, then the variance σ2

FMN of the weighted sample mean can be
bounded as follows:

σ2
FMN = var

(
1
ν∗

n∑
i=1

wiξi

)
≤ σ2

ν∗
.

Proof. Note that if the weight vector w (if it is feasible) is given in the program
(4.9), the objective value t is the worst-case variance for this weight vector.
Thus, for any positive number a, if a weight vector w satisfies

• ∀l ∈ [k] :
∑
i∈[n]

∑
j∈[n] wiwjI(l ∈ JEi,j) ≤ a

•
∑
i∈[n] wi = 1

1This number also appeared in [71] where we denoted it s.
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• ∀i : wi ≥ 0

then the variance var (
∑n
i=1 wiξi) is at most aσ2.

Now, we define w′ = w
ν∗ , i.e., for every i, w′i = wi

ν∗ . Since w is a vertex-bounded
weight vector, for all vertices v,

∑
i:v∈ei wi ≤ 1 which implies( ∑

i:v∈ei

wi

)2

≤
∑
i:v∈ei

wi.

For every l, because every hyperedge meets V (l) exactly once, we get

∑
v:v∈V (l)

( ∑
i:v∈ei

wi

)2

≤
∑
i∈[n]

wi. (5.9)

The left hand side of Inequality (5.9) is equal to
∑
i∈[n]

∑
j∈[n] wiwjI(l ∈

JEi,j), and the right hand side is equal to ν∗. Then, we have ∀l ∈ [k] :∑
i∈[n]

∑
j∈[n] w

′
iw
′
jI(l ∈ JEi,j) ≤ 1

ν∗ . It is easy to verify that
∑
i∈[n] w

′
i = 1 and

∀i : w′i ≥ 0. Hence, w′ satisfies (4.9) and σ2
FMN = var(

∑n
i=1 w

′
iξi) ≤ 1

ν∗σ
2.

Using Theorem 5.10, we can also improve existing concentration inequalities for
the EQW weighting scheme [36]. Let w be a vertex-bounded weight vector and
satisfy w1 = w2 = . . . = wn (EQW). This requires that for all i, 0 < wi ≤ 1

ωG
where ωG = maxv∈VG |{e : v ∈ e}| is the maximum degree of G. Let w1 = w2 =
. . . = wn = 1

ωG
, we can get the following corollary.

Corollary 5.16. Let (ξi)ni=1 be G-networked random variables with mean
E[ξi] = µ, variance σ2(ξi) = σ2, and satisfying |ξi − µ| ≤M . Then for all ε > 0,

Pr
(

1
n

n∑
i=1

ξi − µ ≥ ε

)
≤ exp

(
− nε2

2ωGM
log
(

1 + Mε

σ2

))
,

Pr
(

1
n

n∑
i=1

ξi − µ ≥ ε

)
≤ exp

(
− nε2

2ωG(σ2 + 1
3Mε)

)
,

Pr
(

1
n

n∑
i=1

ξi − µ ≥ ε

)
≤ exp

(
− nε2

2ωGM2

)
.

We know that for every hypergraph G, it holds that the maximum degree of G is
not larger than the fractional hyperedge-chromatic number of G, ωG ≤ χ∗G. This
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fact generally ensures the inequalities in Corollary 5.16 provide tighter bounds
than those in Theorem 5.6. In addition, for any r ≥ 1, there exist hypergraphs
G such that χ

∗
G

ωG
> r, and hence the improvement of Corollary 5.16 over Theorem

5.6 can be arbitrarily large. For example, consider (truncated) projective planes
discussed already in the last section. The maximum degree of the projective plane
of order κ (κ ≥ 2) is κ+ 1 while its fractional chromatic number is equal to the
number of hyperedges n = κ2 +κ+ 1, so χ∗G

ωG
= κ+ 1

κ+1 = O(|EG|1/2). A similar
result can be obtained for tuple networked examples. The maximum degree of the
truncated projective plane of order κ is κ, while its fractional chromatic number
is the same as the number of hyperedges n = κ2, so χ∗G

ωG
= κ = O(|EG|1/2).

It is possible that the size of the matching number of a hypergraph is smaller
than n

ωG
(see Example 5.17), but it is also possible that it is larger (see Example

5.18). Therefore, concentration bounds using the IND weighting scheme (i.e.,
the classical concentration bounds applied to sets of independent examples)
cannot be compared in strength with the above theorem. However, both n

ωG
and the size of a maximum independent set of hyperedges of G are smaller than
ν∗G. Therefore, the FMN weighting scheme always gives the best concentration
bounds of these three weighting schemes.

In the following, we give some examples using tripartite hypergraphs which
make the relationship between the three parameters (ν∗, ω and |EIND|) clearer.

(a) A hypergraph with
|EIND| < |E|

ωG

(b) A hypergraph with
|EIND| > |E|

ωG

Figure 5.2: Two hypergraphs with different relationships between |EIND| and
|E|
ωG

.

Example 5.17. Consider the tripartite hypergraph in 5.2a. The three
parameters of G satisfy the following inequality:

ν∗G = 3 > |E|
ωG

= 7
3 > |EIND| = 2.
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�

Example 5.18. Consider the tripartite hypergraph in 5.2b. The three
parameters of G satisfy the following inequality:

ν∗G = 5 > |EIND| = 4 > |E|
ωG

= 3.5.

�

5.3 Concentration inequalities for U-statistics

A statistical method, that generates unbiased estimators of minimum variance,
involves the notion of U -statistics proposed by Hoeffding in [32]. A U -statistic
is a class of estimators, which can usually be written as averages over functions
on distinct samples of size r taken from an i.i.d. sample {x1, x2, . . . , xm}, e.g.,
the sample mean, sample variance, sample moments, Kendall-τ (see [38]),
Wilcoxon’s signed-rank sum (see [72]), etc. Hoeffding also derived concentration
inequalities for U-statistics. Using results from Section 5.2, we can improve
these concentration inequalities. As an example, we only consider one-sample
U-statistics.

Definition 5.19 (One-sample U-statistics). Let {xi}mi=1 be independent
random variables. For m ≥ r consider a random variable of the form

U =
∑
(mr )

ξ(xi1 , . . . , xir )

where the sum
∑

(mr ) is taken over all subset {i1, . . . , ir} of distinct positive
integers not exceeding m. The random variable U is called a one-sample
U-statistic.

It is always possible to construct a hypergraph G = (V,E) for a one-sample
U-statistic. This graph has m vertices, and E = {S ⊆ V | |S| = r}. We consider
the independent random variables {xi}mi=1 as the features of the vertices. The
statistic U is an equally weighted sample mean of the networked random
variables of these hyperedges.

If the function ξ is bounded, |ξ − E[ξ]| ≤M , [32] showed that for any ε > 0,

Pr (U − µ ≥ ε) ≤ exp
(
−
bmr cε

2

2M2

)
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where µ = E[U ].

Arcones showed a Bernstein-type bound [2] that if var(ξ) = σ2, then for any
ε > 0,

Pr (U − µ ≥ ε) ≤ exp
(
−

bmr cε
2

2(σ2 + Mε
3 )

)
.

However, a corollary of our result shows that the operator bc is not necessary,
i.e.,

Pr (U − µ ≥ ε) ≤ exp
(
− mε2

2rM2

)
and

Pr (U − µ ≥ ε) ≤ exp
(
− mε2

2r
(
σ2 + Mε

3
)) .

To prove these inequalities, we just let n = m!
(m−r)!r! and ωG = (m−1)!

(m−r)!(r−1)! in
Corollary 5.16.

5.4 Summary

Janson’s inequality showed that ignoring the dependency relationships between
random variables may result in poor estimations. We proposed the FMN
weighting scheme to generalize existing Chernoff-Hoeffding style concentration
inequalities. The weights in our weighting schemes can be computed efficiently.

While the MinVar weighting scheme is optimal for worst case variance, we do
not have a proof that the FMN scheme is optimal for concentration bounds.
Hence, it would be interesting to find methods to optimize the weights for
concentration inequalities.



Chapter 6

Statistical learning theory on
networked examples

Many practical approaches to supervised learning in networks ignore (at least
partially) the problem of dependent data and learn models with classic machine
learning techniques. While these work to some extent, they are not supported
by a well-developed theory such as the one which provides generalization
guarantees for the i.i.d. case as a function of the number of training examples.
As a consequence, one may miss opportunities to learn due to the numerous
dependencies between the training examples.

In the previous chapters, we have developed theory for statistics on networked
data, in particular we focused on concentration and variance bounds. For the
variance criterion, we determined the weighting scheme that minimizes the (worst
case) variance among all weighted average estimators of a distribution mean.
For what concerns concentration bounds, we showed that the FMN weighting
scheme provides clearly better properties than classical approaches (even though
we could not prove optimality of a weighting scheme for concentration bounds).

Statistical learning theory gives answers to fundamental questions about learning
from examples. Which conditions ensure that a function (a concept) can be
learned from examples? Why, in some cases, the measured performance on a
dataset lead to guarantees on the generalization performance? How can we
properly choose hypothesis spaces? How many examples are needed for training?
These theoretical results are elegant and helpful, though the assumptions for the
results to be valid are almost impossible to check for most (if not all) practical
tasks. Exponential concentration inequalities (and to some extent also variance

88
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bounds) form crucial tools in statistical learning theory. As an application, in
this chapter, we use the results we obtained in the previous chapter to show
generalization performance guarantees when learning from networked examples,
making the same relaxed assumptions as in previous sections. We do this in
the context of a specific framework (empirical risk minimization), but the same
principles can be applied to many other paradigms in the field of learning theory.

6.1 Learning theory

We first review some basic concepts of statistical learning theory and empirical
risk minimization, and then discuss the learning theory for networked examples.

Expected risk and empirical risk

The main goal of supervised learning is to learn a function f : X 7→ Y from a set
of training examples Z = {zi}ni=1 with zi = (xi, yi) ∼ ρ, and to predict labels
for unseen examples. We define a loss function L : Y × Y 7→ R+. The value
L(f(x), y) denotes the expected local error suffered from the use of f to predict
y from x. We use the square loss function, that is L(f(x), y) = (f(x) − y)2.
Note that our analysis can easily be extended to general loss functions. We
can measure the predictive ability of a learned model f approximating ρ by
averaging the local error over all pairs (x, y) by integrating over Z with respect
to ρ. More precisely, we define the expected risk as

E(f) =
∫
Z

(f(x)− y)2
ρ(x, y)dxdy.

A natural idea is to find the minimizer fρ,F of E(f) over all functions, i.e.,
fρ,F = arg min

f∈F
E(f),

where the minimization is taken over the set of all measurable functions F .
Unfortunately, because the probability distribution ρ is unknown, fρ,F cannot
be computed directly. If examples in Z were mutually independent, by the law
of large numbers, as the sample size n tends to infinity, the empirical risk

EZ(f) = 1
n

n∑
i=1

(f(xi)− yi)2

converges to the expected risk E(f). Then we may get a good candidate fZ,F
to approximate the target function fρ,F , where

fZ,F = arg min
f∈F
EZ(f).
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Empirical risk minimization principle

In order to avoid over-fitting, one usually does not take the minimization of the
empirical risk over all the measurable functions. The main idea of the empirical
risk minimization (ERM) principle [57] is to find the minimizer in a properly
selected hypothesis space H, i.e.,

fZ,H = arg min
f∈H
EZ(f).

The performance of the ERM approach is commonly measured in terms of the
excess risk

E(fZ,H)− E(fρ,F ).
If we define

fρ,H = arg min
f∈H
E(f),

then the excess risk can be decomposed as

E(fZ,H)− E(fρ,F ) = [E(fZ,H)− E(fρ,H)] + [E(fρ,H)− E(fρ,F )].

We call the first part the sample error ES(Z) := E(fZ,H)− E(fρ,H), the second
part the approximation error EA(H) := E(fρ,H)− E(fρ,F ).

The approximation error is independent of the sample and it is studied in [17]. It
is an interesting question how to choose a proper hypothesis space. Intuitively, a
small hypothesis space brings a large approximation error, while large hypothesis
space results in over-fitting. Hence the hypothesis space must be chosen to be
not too large or too small. It is closely related to the bias-variance problem. In
this chapter, we concentrate on the sample error.

The complexity of the hypothesis space is usually measured in terms of covering
number [75], entropy number [63], VC-dimension [67], etc. As an illustration
of our approach, we use the covering numbers defined below to measure the
capacity of our hypothesis space H, and the hypothesis space H will be chosen as
a subset of C(X) which is a Banach space of continuous functions on a compact
metric space X with the norm ‖f‖∞ = supx∈X |f(x)|. However, our approach
can be applied using other hypothesis space measures as well.

Before stating the existing results, we first introduce some notations and
definitions.

Definition 6.1 (Covering number). Let H be a metric space and τ > 0. We
define the covering number N(H, τ) to be the minimal ` ∈ N such that there
exists ` disks in H with radius τ covering H. When H is compact, this number
is finite.
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Definition 6.2 (M-bounded functions). Let M > 0 and ρ be a probability
distribution on Z. We say that a set H of functions from X to Y is M-bounded
when

Pr
(x,y)∼ρ

(
sup
f∈H
|f(x)− y| ≤M

)
= 1.

The following result for the i.i.d. case can be found in [17].

Theorem 6.3. Let H be a compact and convex subset of C(X). If H is M-
bounded, then for all ε > 0,

Pr
(
ES(Z) ≥ ε

)
≤ N

(
H, ε

12M

)
exp

(
− nε2

300M4

)
.

6.2 Learning theory for networked examples

Now, we provide statistical learning theory for learning from networked examples.
We consider three weighting schemes having different upper sample error bounds
which are related to different important parameters of hypergraphs. The first
two weighting schemes are straightforward, but from the upper bound point
of view, they waste the information provided by the networked examples. The
third weighting scheme reaches a better sample error bound via solving the
linear program discussed in Chapter 5.

The EQW weighting scheme

Let us first consider the EQW weighting scheme that learns from a set of
networked examples in the same way as if they were i.i.d. (i.e., without weighting
them as a function of the network structure). We can use Corollary 5.16 above
to bound the sample error of EQW scheme:

Theorem 6.4. Let H be a compact and convex subset of C(X), and Z be a
G-networked sample. If H is M-bounded, then for all ε > 0,

Pr
(
ES(Z) ≥ ε

)
≤ N

(
H, ε

12M

)
exp

(
− nε2

300ωGM4

)
.

The result above shows that the bound of the sample error not only relies on
the sample size but also depends on the maximum degree ωG. That is, a larger
sample may result in a poorer sample error bound since ωG can also become
larger.
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Remark: In [64], based on Janson’s inequalities, the authors provided a
generalization bound for classifiers trained with equally weighted networked
data. Using Corollary 5.16, their results can be improved.

The IND weighting scheme

A straightforward idea to learn from a G-networked sample Z is to find a
(maximal) subset ZI ⊆ Z of training examples that correspond to a matching
in G. Due to our assumptions, such set will be an i.i.d. sample. We can then
perform algorithms on ZI for learning. We can define the empirical risk

EZI (f) = 1
|ZI |

∑
zi∈ZI

(f(xi)− yi)2
,

and the function we obtain by the ERM principle is

fZI ,H = arg min
f∈H
EZI (f).

To bound the sample error of this weighting scheme, we can directly use Theorem
6.3, replacing n there by |ZI |.

A key step in applying the IND weighting scheme is to find a large ZI . The
larger ZI is, the more accurate fZI we can guarantee. To find a large ZI is
equivalent to find a large matching in G. However, given a positive integer n0,
it is in general an NP-complete problem to decide whether there is a matching
in G of size greater than n0 [26]. Moreover, the maximum matching problem
is also an APX-complete problem [21], so we would not expect an efficient
algorithm to achieve a good approximation in practice.

The FMN weighting scheme

We now consider the FMN weighting scheme proposed in the last chapter. The
ν∗ value is a linear program relaxation of the maximum matching problem
[44, 13], so it always holds that ν∗G ≥ |EIND| where |EIND| is the matching
number, i.e., the size of a maximum independent set of hyperedges.

For a G-networked sample Z, we denote the FMN weighted sample Zν∗ =
{(zi, wi)} where (wi)ni=1 is an FMN weight vector. Now we can define a new
empirical risk on the FMN weighted sample Zν∗ that

EZν∗ (f) = 1
ν∗

n∑
i=1

wi (f(xi)− yi)2
.
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Later, we show that the empirical risk EZν∗ converges to the expected risk E(f)
as ν∗ tends to infinity for fixed f .

We consider the ERM approach associated with Zν∗ . As discussed in Section
6.1, the ERM approach aims to find a minimizer of the empirical risk in a
proper hypothesis space H to approximate the target function, i.e.,

fZν∗ ,H = arg min
f∈H
EZν∗ (f).

Then the performance of the ERM approach is measured by the excess risk

E(fZν∗ ,H)− E(fρ,F ).

Recall the definition fρ,H = arg minf∈H E(f), the excess risk can be divided
into two parts (sample error and approximation error) as follows

E(fZν∗ ,H)− E(fρ,F ) = [E(fZν∗ ,H)− E(fρ,H)] + [E(fρ,H)− E(fρ,F )].

We focus on the sample error ES(Zν∗) := E(fZν∗ ,H) − E(fρ,H). To this end,
we use the probability inequalities with ν∗ (see Theorem 5.10) to estimate the
sample error ES(Zν∗). The following is the main result of this section.

Theorem 6.5. Let H be a compact and convex subset of C(X). If H is M-
bounded, then for all ε > 0,

Pr
(
ES(Zν∗) ≥ ε

)
≤ N

(
H, ε

12M

)
exp

(
− ν∗ε2

300M2

)
.

Remark: We mainly consider the ERM principle as an example of applying
our concentration results to statistical learning theory. Many other learning
approaches can also be analyzed using these concentration inequalities. For
example, by using the inequalities in the section of networked concentration
inequalities, similar results (generalization bounds) can be obtained for the
regularization method (see e.g.,[29, 61]) which is a way to deal with over-fitting.
Besides, the technique we used to prove our concentration inequalities can be
easily adapted to get a Chernoff-type inequality for networked Bernoulli random
variables which is useful if we intend to have a PAC-Bayesian bound.

Effective sample size

An important aspect of the theory presented can be understood as a better
estimation of the effective sample size of a dataset. Several slightly different
definitions exist, but generally speaking one can define the effective sampling
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size of a dataset G for a particular statistical approximation task F as the
number of examples an i.i.d. dataset would need to allow for estimating F as
accurately as can be done with the original dataset G.

In that light, for the sake of estimating a statistic with concentration guarantees
as in the last chapter or learning with PAC-style bounds as in Theorem 6.5,
the fractional matching number ν∗ is the effective sample size we can achieve
using our theory, while classic approaches based on unweighted averaging would
only achieve smaller effective sample sizes such as the one provided by Theorem
5.6. As illustrated in Example 5.8, the difference between these effective sample
sizes can be substantial.

When the objective is variance minimization, Chapter 4 provides an approach to
compute the effective sample size when using the MinVar weighting scheme. The
variance criterion is in general easier than the concentration bound criterion,
i.e., for some datasets the effective sample size for estimating a statistic with
minimal variance will be larger than the effective sample size for estimating a
statistic satisfying a concentration bound. The reason for this can be found in
the fact that for classic data, even though i.i.d. is a sufficient condition, it is
stronger than needed to guarantee a certain variance. In particular, if (ξi)ni=1
is a set of random variables each having variance σ2, it is sufficient to assume
they are uncorrelated to conclude that their average will have variance σ2/n.
Random variables may be uncorrelated but not independent.

When we know the dataset, we can compute the effective sample sizes according
to the criteria of interest, and if we want to be safe we can take the most
conservative effective sample size ν∗. Then, in the vast majority of results for
i.i.d. data we are able to obtain an equivalent for networked data by replacing
the sample size n by the effective sample size ν∗G of the network. We expect
this does not only hold for the learning result of Theorem 6.5, but for virtually
any statistical computation that can be expressed in terms of averages and
concentrations.

6.3 Related Work

In this section, we provide some additional discussion of relations between our
results and existing work.
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Hypothesis tests

In [69], the authors consider a similar setting of networked examples. They use
dependency graphs to represent the examples and their relations. While we
assume a worst case over all possible dependencies, and allow to model explicitly
causes of dependencies (represented with vertices which can be incident with
more than two edges), this work assumes a bounded covariance between pairs of
examples connected with an edge (excluding possible higher-order interactions).
While we use our model to show learning guarantees, [69] shows corrections
for the bias (induced by the dependencies between examples) on statistical
hypothesis tests. It seems plausible that both models can be applied for both
the learning guarantee and statistical testing tasks.

Mixing conditions

There is also some literature on learning from a sequence of examples where
examples close in the sequence are dependent. In the community of machine
learning, mixing conditions are usually used in time series analysis. For example,
in [29], the learning performance of a regularized classification algorithm using
a non-i.i.d. sample is investigated, where the independence restriction is relaxed
to so-called α-mixing or β-mixing conditions. In [61], regularized least squares
regression with dependent samples is considered under the assumption that the
training sample satisfies some mixing conditions. In [47], the authors presented
a Bernstein type inequality for stationary exponentially α-mixing processes,
that is based on the effective number (less than the sample size). Our Bernstein
type inequalities for dependent network data too assigns weights to examples.
However, the assumptions for the training sample are different, and the main
techniques are distinct. Moreover, in practice, it is not easy to check whether
the training sample satisfies the mixing conditions. Our networked training
examples certainly do not satisfy any of these mixing conditions. We refer
interested readers to [7] and references therein for more details about the mixing
conditions.

Statistical relational learning

Our theory is applicable to problems considered in the field of Statistical
Relational Learning (SRL) [27], e.g., for learning local conditional probability
functions for directed models such as Probabilistic Relational Models [25],
Logical Bayesian Networks [23], Relational Bayesian Networks [35].
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There is a huge literature in SRL for learning features and existence of edges in a
graph, for which we refer the reader to the excellent survey of [54]. An important
difference to many of these is that we do not assume that the distribution of
connections for every vertex in the test set will be similar to what we have seen
in the training set. This is tightly connected to our independence assumptions.
Both the classic assumptions (where often testing examples are found in the
same network) and ours have clear advantages which are more or less important
depending on the application. A question of future research is how to combine
both aspects. E.g., if one wants to build models for time-evolving networks
where a significant amount of vertices are replaced over time, the importance
will gradually move from the classical setting where all examples are in the same
network towards a situation where the future examples are in a new network
with new vertices and connections but where still the same underlying processes
apply.

There are also methods that aim at addressing settings where training set and
test set are different, e.g., transfer learning approaches such as [31] and [45].
An important difference with this direction of research is that our approach
does not need to learn the distribution of the test set, e.g., using a sample of
labeled or unlabeled examples.

6.4 Summary

In this chapter, we reviewed statistical learning theory for the i.i.d. case and
extended it to the networked case by exploiting concentration inequalities in
the last chapter. We considered three different weighting schemes in which
the FMN weighting scheme achieves the best learning bound. Though we only
considered a specific type of bound, the result in this chapter can be generalized
to a large fraction of existing learning theory results, e.g., PAC-Bayes learning
bounds.

Interesting questions for future work are whether this strategy is (nearly) optimal
or not and how to obtain a minimax lower bound for learning from networked
examples.



Chapter 7

Conclusion

In this chapter, we summarize this thesis, discuss potential impacts of this work,
and conclude it by pointing out some future work.

7.1 Thesis summary

In this thesis, we considered the problem of mining and learning from networked
data.

We first investigated how to define support measures of subgraph patterns in a
large network. The challenge of this task comes from the fact that occurrences
of a subgraph pattern may overlap in the large network. The main goal of this
work has several aspects. First, some properties of support measures, such as
anti-monotonicity, play important roles in mining algorithms, so it is reasonable
to require support measures of subgraph patterns to have such properties.
Second, support measures should be normalized, i.e., when occurrences do not
overlap, support measures should output the number of occurrences. Most
anti-monotonic and normalized support measures are based on the concept of
overlap graphs. Third, a support measure should be robust, because it is very
common that the collected data has some noise. When we remove only one
vertex from the large network, the support of a pattern is not supposed to
change a lot. Fourth, a useful support measure of subgraph patterns needs to
be efficiently computable. However, these earlier overlap graph based support
measures cannot be efficiently computed. Fifth, it would be good if a support
measure has an elegant statistical interpretation, which is related to the second
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part of our work.

In Chapter 3, we proposed a support measure of subgraph patterns based on
a new concept of overlap hypergraphs. This new support measure fulfills the
aforementioned requirements. We considered how to keep the properties of
being normalized, anti-monotonic and robust for overlap graph based support
measures. At the same time, we tried to reduce the computational expenses by
using linear programs. This support measure also inspired us to understand
the statistical power of networked data.

We also considered how to do statistics on networked random variables. In
most applications, data is assumed to be i.i.d. We reviewed earlier results
on doing statistics on non-i.i.d. data, but most of these results rely on other
assumptions such as mixing conditions which are not applicable to our cases.
We introduced a hypergraph based model and a new assumption to replace the
classical i.i.d. assumption. Janson proved Chernoff-Hoeffding style inequalities
for this type of random variables and some statistical learning theory results
based on Janson’s inequalities exist. However, these earlier works only studied
the case that we ignore the dependencies between data points and equally
weight every data points. We demonstrated that ignoring the dependencies
between data points and using unweighted (or equally weighted, the EQW
weighting scheme) estimators may result in a poor estimation. To design a
better estimator, we can choose an independent subset of these networked
random variables (the IND weighting scheme), but we would waste too much
information in the data. We proposed two other schemes for weighting data
points that allow for using the available training data to a large extent while
mitigating the dependency problem. In particular, the MinVar weighting scheme
described in Chapter 4 is optimal from the worst-case variance point of view,
while the FMN weighting scheme described in Chapter 5 allows for generalizing
a large fraction of existing Chernoff-Hoeffding style concentration inequalities.
The weights in our weighting schemes can be computed efficiently. As an
example, in Chapter 6, we applied our statistical concentration results to the
problem of learning from networked examples, in particular, empirical risk
minimization principle on networked examples.

7.2 Discussions

In this thesis, we have designed a support measure of subgraph patterns and
related this support measure to statistics on networked examples.

This graph support measure is anti-monotonic so it can be used to prune the
search space of a frequent subgraph pattern mining task. Unlike many other
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anti-monotonic support measures, this support measure is efficiently computable.
As our experimental results show, this support measure can be used to mine
frequent subgraph patterns in real-world networks.

This support measure is potentially helpful in several applications such as motif
detection [59], uncertain graph mining [77] and graph mining with privacy [58].
For motif detection, one usually directly counts the occurrences of a subgraph
pattern, and then compares the number to the expected number of occurrences
in a random graph. A random graph is treated as a homogeneous network,
i.e., subgraph patterns distribute evenly in a random graph. However, it is
possible that a real network have more occurrences of a pattern than that in
a random graph, but most of these occurrences depends on a single vertex.
In this case, our support measure seems more convincing than the number of
occurrences. Mining a large uncertain graph (a random graph, but presence
probabilities of different edges may be different) needs a definition of support
measure. The uncertainty of this type of graph data increases the difficulty of
the task. Our support measure can be the starting point, i.e., if the presence
probabilities only take two values 0 (absence) and 1 (presence), then a good
support measure in this network should be related to our support measure. A
popular way to do privacy preserving data mining is based on the differential
privacy technique, and this technique can be used to graph data as well. An
important precondition of this method is that every data point should have a
very limited effect in statistics, and our graph support measure restricts the
contribution of every vertex. If a vertex participates in many examples and we
equally weight all examples for some statistics, then the contribution of this
vertex will be larger than expected.

The part of networked statistics showed a variance bound and Chernoff-Hoeffding
style concentration inequalities which are applied to learning from networked
examples. The presented theory forms a first step towards a statistically sound
theory for learning in networks. Our ongoing work mainly focuses on this
direction.

Our variance bound is related to the standard ANOVA techniques for analyzing
k-partite networked examples, and is leading us to stronger concentration
results for the k-partite case. The proved Chernoff-Hoeffding style concentration
inequalities for the general hypergraph case are powerful, and can be exploited
in many tasks that were not discussed in this thesis yet. First, as Janson
pointed out in his paper [36], we can apply our concentration results to analyze
random structures such as random graphs and random hypergraphs. Second,
we can use these concentration inequalities to provide generalization bounds
under some mixing conditions [50]. Third, these inequalities are useful for other
fields in computer science, e.g., randomized algorithm analysis. Fourth, one
of our ongoing studies deals with phylogenetic trees in which data points are
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structured as a tree, and we plan to generalize our concentration inequalities to
these cases.

However, the assumption we made for this networked example model and
corresponding random variables is still not realistic in many cases. As we
pointed out with examples, a person usually does not choose movies randomly
because (s)he would have some preferences. Besides, as John Donne said, “No
man is an Island, entire of itself”, data points could be influenced by other
connected data points. Therefore, in the future, we have to make a more realistic
assumption than the one made in this thesis and study some related questions.

7.3 Future work

We have obtained some results for mining and learning from networked examples,
but as we mentioned in the previous section, there are several remaining
questions to investigate.

First, in order to analyze more real-world networked cases, one needs to build
new models with more flexible assumptions than the classic i.i.d. assumption and
the weaker assumption we studied in this thesis which is already more general
but still is not sufficiently powerful to properly model a range of real-world
scenarios.

This thesis has provided a learning bound based on our weaker assumption. It
is also interesting to investigate the conditions of learnability from networked
non-i.i.d. data for new models, i.e., study generalization guarantees, e.g., using
PAC-style bounds or expected risk bounds, and to investigate to what extent
the provided bounds are the best possible ones.

Besides the theory, accurate and efficient algorithms to learn from non-i.i.d.
data in networks are also necessary. Part of this task should concern general
“upgrades” which are applicable to the majority of existing algorithms.

To design active learning methods for structured data is another useful topic,
i.e., to study query strategies to choose objects or examples in a network to
perform experiments in order to learn a good predictor at minimal cost.

It would be a meaningful work if one studies the implications of the above
theory and algorithms for other learning settings and tasks, e.g., cross-validation,
bootstrapping and ranking (see, e.g., [64]), thereby improving on work as [69]
on cross-validation and [43] on bootstrapping.

The theory and algorithms described above should be validated on real-world
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datasets, especially in the fields of social networks, biological regulatory networks
and chemical interaction networks.

For the model and assumption described in this thesis, there are also several
problems to solve, e.g., how to get better concentration bounds for k-partite
hypergraphs and how to obtain lower bounds for learning from networked
examples.





Appendix A

A.1 Decomposition of the variance

In this part, we provide the proofs of the properties of the decomposition in
Chapter 4.

Lemma 4.15 Every µS is zero-mean for every dimension, i.e., For any S ⊆ [k]
and i ∈ S, Ex(i)∼ρ(i)

[
µS
(
x(S))] = 0.

Proof. We first show that,

µS

(
x(S)

)
=
∑
T⊆S

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

]
(A.1)

by induction on |S|. For S = ∅, from the definition of S∅,

µS

(
x(S)

)
= µ∅

(
x(∅)

)
= Ex([k])∼ρ([k]) [f(x)]

and (A.1) follows because the only subset of the empty set is the empty set
itself, Assume that Eq. (A.1) holds for |S| = 0, . . . , l, we now prove Eq. (A.1)
holds for |S′| = l + 1. By definition,

µS′
(
x(S′)

)
:= Ex([k]\S′)∼ρ([k]\S′)

[
f(x)|x(S′)

]
−
∑
T⊂S′

µT

(
x(T )

)

= (−1)|S
′\S′|Ex([k]\S′)∼ρ([k]\S′)

[
f(x)|x(S′)

]
−
∑
T⊂S′

µT

(
x(T )

)
.

Using the induction hypothesis on µT
(
x(T )) for every T ⊂ S′, we see that

µS′
(
x(S′)

)
can be written as a linear combination of
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(
Ex([k]\T ′)∼ρ([k]\T ′)

[
f(x)|x(T ′)

]
: T ′ ⊆ S′

)
. For any T ′ ⊂ S, the induction

hypothesis implies that there is a term (−1)|T\T ′|Ex([k]\T ′)∼ρ([k]\T ′)

[
f(x)|x(T ′)

]
in the expansion of µT

(
x(T )) if T ′ ⊆ T ⊂ S′ . The coefficient of

Ex([k]\T ′)∼ρ([k]\T ′)

[
f(x)|x(T ′)

]
in the expansion of µS′

(
x(S′)

)
is

∑
T :T ′⊆T⊂S′

(−1)|T\T
′| =

|S′\T ′|∑
i=1

(
|S′ \ T ′|

i

)
(−1)i = (−1)|S

′\T ′|

where the second equality comes from the well known identity
∑a
i=0
(
a
i

)
(−1)i =

0, so Eq. (A.1) holds.

Now, starting from Eq. (A.1),

Ex(i)∼ρ(i)

[
µS

(
x(S)

)]

= Ex(i)∼ρ(i)

 ∑
T :T⊆S

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

]

= Ex(i)∼ρ(i)

 ∑
T :T⊆S∧i/∈T

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

]

+Ex(i)∼ρ(i)

 ∑
T :T⊆S∧i∈T

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

].
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The first summation does not depend on x(i), so we can drop the expectation,
while in the second term we can merge both expectations:

Ex(i)∼ρ(i)

[
µS

(
x(S)

)]
=

∑
T :T⊆S∧i/∈T

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

]

+Ex(i)∼ρ(i)

 ∑
T :T⊆S∧i∈T

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

].
=

∑
T :T⊆S∧i/∈T

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

]

+
∑

T :T⊆S∧i∈T
(−1)|S\T |Ex(([k]\T )∪{i})∼ρ(([k]\T )∪{i})

[
f(x)|x(T\{i})

]

Substituting in the second term T with T \ {i} we obtain:

Ex(i)∼ρ(i)

[
µS

(
x(S)

)]
=

∑
T :T⊆S∧i/∈T

(−1)|S\T |Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

]

+
∑

T :T⊆S∧i/∈T

(−1)|S\T |+1Ex([k]\T )∼ρ([k]\T )

[
f(x)|x(T )

]
= 0.

Lemma 4.16 For any S 6= T , the functions µS and µT are uncorrelated (orthog-
onal), i.e., they have zero covariance or cov (µS , µT ) = E

[
µS
(
x(S))µT (x(T ))] =

0.
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Proof. Because S 6= T , either S \ T or T \ S is non-empty. We assume without
loss of generality that T \ S 6= ∅. Let i ∈ T \ S. Then,

E
[
µS

(
x(S)

)
µT

(
x(T )

)]
= Ex([k]\{i})∼ρ([k]\{i})

[
Ex(i)∼ρ(i)

[
µS

(
x(S)

)
µT

(
x(T )

)]]
= Ex([k]\{i})∼ρ([k]\{i})

[
µS

(
x(S)

)
Ex(i)∼ρ(i)

[
µT

(
x(T )

)]]
The second equality holds because µS is independent of the value x(i). Now,
we use Lemma 4.15 that Ex(i)∼ρ(i)

[
µT
(
x(T ))] = 0, so E

[
µS
(
x(S))µT (x(T ))] =

0.

Lemma 4.18 The variance of the function f is the sum of the variances of µS of
all S, i.e., σ2 =

∑
S⊆[k] σ

2
S where σ2 = E

[
f2] and σ2

S = Ex(S)∼ρ(S)
[
µ2
S

(
x(S))].

Proof. By Eq. (4.5),
f(x) =

∑
S⊆[k]

µS

(
x(S)

)
.

It follows that σ2 =
∑
S,T⊆[k] cov (µS , µT ). From Lemma 4.16 we know that if

S 6= T then cov (µS , µT ) = 0. Therefore, σ2 =
∑
S⊆[k] σ

2
S .

A.2 Proofs of concentration inequalities

In this part, we prove Lemma 5.11.

Lemma 5.11 Let β = (βi)ki=1 ∈ Rk+ such that
∑k
i=1 βi ≤ 1. Then, the function

g(t) with t = (ti)ki=1 ∈ Rk+ defined by g(t) =
∏k
i=1 t

βi
i is concave.

Proof. We prove by showing that its Hessian matrix ∇2g(t) is negative
semidefinite. ∇2g(t) is given by

∂2g(t)
∂t2i

= βi(βi − 1)g(t)
t2i

,
∂2g(t)
∂ti∂tj

= βiβjg(t)
titj

,

and can be expressed as

∇2g(t) =
(
qqT − diag(β1/t

2
1, . . . , βn/t

2
n)
)
g(t)
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where q = [q1, . . . , qk] and qi = βi/ti. We must show that ∇2g(t) � 0, i.e., that

uT∇2g(t)u =

( k∑
i=1

βiui/ti

)2

−
k∑
i=1

βiu
2
i /t

2
i

 g(t) ≤ 0

for all u ∈ Rk. Because g(t) ≥ 0 for all t, we only need to prove(
k∑
i=1

βiui/ti

)2

−
k∑
i=1

βiu
2
i /t

2
i ≤ 0.

Since βi is positive for every i and
∑k
i=1 βi ≤ 1, we define a random variable ξ

with probability P (ξ = ui/ti) = βi and P (ξ = 0) = 1 −
∑k
i=1 βi. From basic

probability theory, we have(
k∑
i=1

βiui/ti

)2

= (E[ξ])2 ≤ E
[
ξ2] =

k∑
i=1

βiu
2
i /t

2
i .

A.3 Estimating sample errors

In this part we prove Theorem 6.5. We first give some lemmas which are
extended versions of lemmas that were used before to establish the sample error
bounds for i.i.d. samples. In particular, the main ideas were borrowed from [17].
For any function f ∈ H, we define the defect function DZν∗ (f) = E(f)−EZν∗ (f),
the difference between the expected risk of f and the empirical risk of f on the
FMN weighted sample Zν∗ .

Lemma A.1. Let M > 0 and let f : X 7→ Y be M -bounded. Then for all
ε > 0,

Pr (DZν∗ (f) ≥ −ε) ≥ 1− exp
(
ν∗ε2

2M4

)
.

Proof. Note that Pr (DZν∗ (f) ≥ −ε) = Pr (EZν∗ (f)− E(f) ≤ ε) . This lemma
then follows directly from Inequality (5.3) in Theorem 5.10 by taking ξi =
(f(xi)− yi)2 satisfying |ξi| ≤M2 when f is M-bounded.

To present Lemma A.3 and A.4, we first define full measure sets.
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Definition A.2 (full measure set). A set U ⊆ Z is full measure for distribution
ρ over Z if Prz∼ρ (z ∈ U) = 1.
Lemma A.3. If for j = 1, 2, |fj(x) − y| ≤ M on a full measure set U ⊆ Z
then, for all Z ∈ Un

|DZν∗ (f1)−DZν∗ (f2)| ≤ 4M‖f1 − f2‖∞.

Proof. Because

(f1(x)− y)2 − (f2(x)− y)2 = (f1(x) + f2(x)− 2y)(f1(x)− f2(x)),

we have

|E(f1)− E(f2)| =
∣∣∣∣∫
Z
ρ(z)(f1(x) + f2(x)− 2y)(f1(x)− f2(x))dz

∣∣∣∣
≤

∫
Z
ρ(z)|(f1(x)− y) + (f2(x)− y)|‖f1 − f2‖∞dz

≤ 2M‖f1 − f2‖∞.

For Z ∈ Un, we have

|EZν∗ (f1)− EZν∗ (f2)|

= 1
ν∗

n∑
i=1

wi(f1(xi) + f2(xi)− 2yi)(f1(xi)− f2(xi)

≤ 1
ν∗

n∑
i=1

wi|(f1(xi)− yi) + (f2(xi)− yi)|‖(f1 − f2‖∞

≤ 2M‖f1 − f2‖∞.

Thus,

|DZν∗ (f1)−DZν∗ (f2)| = |E(f1)−EZν∗ (f1)−E(f2)+EZν∗ (f2)| ≤ 4M‖f1−f2‖∞.

Lemma A.4. Let H be a compact M-bounded subset of C(X). Then, for all
ε > 0,

Pr
(

sup
f∈H
DZν∗ (f) ≤ ε

)
≥ 1−N

(
H, ε

8M

)
exp

(
− ν
∗ε2

8M4

)
.
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Proof. Let {fj}`j=1 ⊂ H with ` = N
(
H, ε

4M
)
such that H is covered by disks

Dj centered at fj with radius ε
4M . Let U be a full measure set on which

supf∈H |f(x)− y| ≤M . Then for all Z ∈ Un and for all f ∈ Dj , according to
Lemma A.3, we have

|DZν∗ (f)−DZν∗ (fj)| ≤ 4M‖f − fj‖∞ ≤ 4M ε

4M = ε.

Consequently,
sup
f∈Dj

DZν∗ (f) ≥ 2ε⇒ DZν∗ (fj) ≥ ε.

Then we conclude that, for j = 1, · · · , `,

Pr
(

sup
f∈Dj

DZν∗ (f) ≥ 2ε
)
≤ Pr (DZν∗ (fj) ≥ ε) ≤ exp

(
− ν
∗ε2

2M4

)
.

The last inequality follows from Inequality (5.3) in Theorem 5.10 by taking
ξi = −(fj(xi)− yi)2. In addition, one can easily see that

sup
f∈H
DZν∗ (f) ≥ ε⇔ ∃j ≤ ` : sup

f∈Dj
DZν∗ (f) ≥ ε

and, from the fact that the probability of a union of events is bounded by the
sum of the probabilities of these events, it follows that

Pr
(

sup
f∈H
DZν∗ (f) ≥ ε

)
≤
∑̀
j=1

Pr
(

sup
f∈Dj

DZν∗ (f) ≥ ε
)
≤ ` exp

(
− ν
∗ε2

8M4

)
.

This completes the proof.

Lemma A.5. Suppose networked random variables (ξi)ni=1 satisfy that for all
i, E[ξi] = µ ≥ 0, and |ξi − µ| ≤ B almost everywhere. Let (wi)ni=1 be any FMN
weight vector. If E

[
ξ2
i

]
≤ cµ, then for every ε > 0 and 0 < α ≤ 1, there holds

Pr
(
µ− 1

ν∗

∑n
i=1 wiξi√

µ+ ε
> α
√
ε

)
≤ exp

(
− α2ν∗ε

2c+ 2
3B

)
.

Proof. We apply Inequality (5.2) in Theorem 5.10 by substituting the ξi in
Inequality (5.2) with ξi/

√
µ+ ε, the ε in Inequality (5.2) with α

√
ε, the M in

Inequality (5.2) with B/√µ+ ε and the |w| in Inequality (5.2) with ν∗. We get

Pr
(
µ− 1

ν∗

∑n
i=1 wiξi√

µ+ ε
> α
√
ε

)
≤ exp

(
− α2ν∗ε

2(σ2 +Bα
√
ε/3√µ+ ε)

)
,

where σ2 = E
[
(ξi/
√
µ+ ε)2] ≤ cµ/(µ + ε). The lemma then follows from

observing that cµ/(µ+ ε) ≤ c (as µ ≥ 0 and ε > 0) and Bα
√
ε/3√µ+ ε ≤ B/3

(as µ ≥ 0, ε ≥ 0 and 0 < α ≤ 1).
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Lemma A.5 can also be extended to families of functions as follows.

Lemma A.6. Let G be a set of functions on Z and c > 0 such that, for each
g ∈ G, E[g] ≥ 0, E

[
g2] ≤ cE[g] and |g − E[g]| ≤ B almost everywhere. Let

(wi)ni=1 be any FMN weight vector. Then for every ε > 0 and 0 < α ≤ 1, we
have

Pr
(

sup
g∈G

E[g]− 1
ν∗

∑n
i=1 wig(zi)√

E[g] + ε
≥ 4α

√
ε

)
≤ N(G, αε) exp

(
− α2ν∗ε

2c+ 2
3B

)
.

Proof. Let {gj}Jj=1 ⊂ G with J = N(G, αε) be such that G is covered by balls
in C(Z) centered at gj with radius αε.

Applying Lemma A.5 to ξi = gj(zi) for each j, we have

Pr
(
E[gj ]− 1

ν∗

∑n
i=1 wigj(zi)√

E[gj ] + ε
≥ α
√
ε

)
≤ exp

(
− α2ν∗ε

2c+ 2
3B

)
.

For each g ∈ G, there is some j such that ||g − gj ||C(Z) ≤ αε. Then
| 1
ν∗

∑n
i=1 wig(zi) − 1

ν∗

∑n
i=1 wigj(zi)| and |E[g] − E[gj ]| are both bounded by

αε. Hence, as
√
ε√

ε+E[g]
≤ 1,

| 1
ν∗

∑n
i=1 wig(zi)− 1

ν∗

∑n
i=1 gj(zi)|√

E[g] + ε
≤ α
√
ε

and
|E[g]− E[gj ]|√

E[g] + ε
≤ α
√
ε.

The latter implies that

E[gj ] + ε = E[gj ]− E[g] + E[g] + ε ≤ α
√
ε
√
E[g] + ε+ (E[g] + ε)

≤
√
ε
√
E[g] + ε+ (E[g] + ε) ≤ 2(E[g] + ε).



ESTIMATING SAMPLE ERRORS 111

It follows that
√

E[gj ] + ε ≤ 2
√
E[g] + ε. We have thus seen that

E[g]− 1
ν∗
∑n

i=1
wig(zi)√

E[g]+ε
≥ 4α

√
ε implies

E[gj ]− 1
ν∗

∑n
i=1 wigj(zi)√

E[g] + ε

= E[gj ]− E[g]√
E[g] + ε

−
1
ν∗

∑n
i=1 wigj(zi)− 1

ν∗

∑n
i=1 wig(zi)√

E[g] + ε

+
E[g]− 1

ν∗

∑n
i=1 wig(zi)√

E[g] + ε

≥ −2aε√
E[g] + ε

+ 4a
√
ε ≥ 2α

√
ε

and hence E[gj ]− 1
ν∗
∑n

i=1
wigj(zi)√

E[gj ]+ε
≥ α
√
ε. Therefore,

Pr
(

sup
g∈G

E[g]− 1
ν∗

∑n
i=1 wig(zi)√

E[g] + ε
≥ 4α

√
ε

)

≤
J∑
j=1

Pr
(
E[gj ]− 1

ν∗

∑n
i=1 wigj(zi)√

E[gj ] + ε
≥ α
√
ε

)

which is bouned by J · exp
(
− α2ν∗ε

2c+ 2
3B

)
.

Let L2
ρ(X) be a Banach space with the norm ‖f‖L2

ρ(X) =
(∫

X |f(x)2|ρX(x)dx
) 1

2 .

where ρX(x) =
∏k
i=1 x

(i). We define the error in H of a function f ∈ H,

EH(f) = E(f)− E(fρ,H)

which is always nonnegative.

Lemma A.7. Let H be a convex subset of C(X) such that fρ,H exists. Then
fρ,H is unique as an element in L2

ρ(X) and for all f ∈ H,∫
X

(fρ,H(x)− f(x))2ρX(x)dx ≤ EH(f).

In particular, if ρX(x) is not degenerate then fρ,H is unique in H.
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Proof. The proof can be found in [17] (Lemma 3.16).

Proof of Theorem 6.5 For every function f ∈ H, we define a function

gf (x, y) = (f(x)− y)2 − (fρ,H(x)− y)2.

We define G as the set of all functions gf with f ∈ H. For any function gf ∈ G,
we have

Ez∼ρ[gf ] = EH(f) ≥ 0. (A.2)
We first show that the two preconditions of Lemma A.6 are true (for B = 2M2

and c = 4M2):

1. |gf − Ez∼ρ[gf ]| ≤ 2M2

2. Ez∼ρ
[
g2
f

]
≤ 4M2Ez∼ρ[gf ].

First, since H is M -bounded, we have that −M2 ≤ gf (z) ≤M2 holds almost
everywhere. It follows that |gf − Ez∼ρ[gf ]| ≤ 2M2 holds almost everywhere.
This is the first precondition above. Second, one can easily see that

gf (z) = (f(x)− fρ,H(x))[(f(x)− y) + (fρ,H(x)− y)].

It follows that |gf (z)| ≤ 2M |f(x) − fρ,H(x)| holds almost everywhere. Then,
Ez∼ρ

[
g2
f

]
≤ 4M2Ex∼ρX

[
(f(x)− fρ,H(x))2] = 4M2 ∫

X (f(x)− fρ,H(x))2
ρX(x)dx.

Together with Lemma A.7 this implies that Ez∼ρ
[
g2
f

]
≤ 4M2EH(f) = cEz∼ρ[gf ]

with c = 4M2. Hence, all the conditions of Lemma A.6 hold and we get that
for every ε > 0 and 0 < α ≤ 1,

Pr
(

sup
g∈G

E[g]− 1
ν∗

∑n
i=1 wig(zi)√

E[g] + ε
≥ 4α

√
ε

)
≤ N(G, αε) exp

(
− α2ν∗ε

2.4M2 + 2
3 2M2

)
.

(A.3)
Remind from Equation (A.2) that E[gf ] = EH(f). We also define

EH,Zν∗ (f) = 1
ν∗

n∑
i=1

wigf (zi) = 1
ν∗

n∑
i=1

wi(f(x)− y)2 − 1
ν∗

n∑
i=1

wi(fρ,H(x)− y)2

Furthermore, we take α =
√

2/8. Substituting all these into Inequality (A.3)
we get that for all ε > 0,

Pr
(

sup
f∈H

EH(f)− EH,Zν∗ (f)√
EH(f) + ε

≥ 4
√

2
8
√
ε

)
≤ N

(
G,
√

2
8 ε

)
exp

−
(√

2
8

)2
ν∗ε

28M2/3

 .
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As this holds for the supremum over f , it also holds for f = fZν∗ ,H: for all
ε > 0,

Pr
(
EH(fZν∗ ,H)− EH,Zν∗ (fZν∗ ,H)√

EH(fZν∗ ,H) + ε
≥
√
ε

2

)
≤ N

(
G,
√

2
8 ε

)
exp

(
− ν∗ε

896M2/3

)
.

The definition of fZν∗ ,H (Eq. (6.2)) tells us that ES(Zν∗) = EH(fZν∗ ,H) and
EH,Zν∗ (fZν∗ ,H) ≤ 0. It follows that (we also upper-bound 896/3 by 300)

∀ε > 0,Pr
(

ES(Zν∗)√
ES(Zν∗) + ε

≥
√
ε

2

)
≤ N

(
G,
√

2
8 ε

)
exp

(
− ν∗ε

300M2

)
.

It is easy to see that ES(Zν∗) ≥ ε implies ES(Zν∗ )√
ES(Zν∗ )+ε

≥
√

ε
2 , so

∀ε > 0,Pr (ES(Zν∗) ≥ ε) ≤ N
(
G,
√

2
8 ε

)
exp

(
− ν∗ε

300M2

)
.

Finally, the inequality ‖gf1 − gf2‖C(Z) = ‖f1(x)− f2(x)[(f1(x)− y) + (f2(x)−
y)]‖C(Z) ≤ 2M‖f1 − f2‖C(X), tells us that

N(G,
√

2ε
8 ) ≤ N(H,

√
2ε

16M ) ≤ N(H, ε

12M ).

This completes our proof. �
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