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Abstract

Modern-day imperative programming languages such as C++, C# and Java
offer protection facilities such as abstract data types, field access modifiers, and
module systems. Such abstractions were mainly designed to enforce software
engineering principles such as information hiding and encapsulation, but they
can also be used to enforce security properties of programs. Unfortunately, these
source-level security properties are typically lost during compilation to low-level
machine code. For instance, access to private instance fields is restricted by
the programming language’s type system at the source-code level, but such
restrictions are not in place at the assembly level. This can leave a software
module vulnerable to attacks at the assembly level, such as code-injection
attacks and kernel-level malware.

In the first part of this dissertation, we present a compilation scheme that is fully
abstract, which means that the high-level security properties of a software module
are maintained after compilation. We formalize this property as preservation of
contextual equivalence, which means that two assembly-level compiled modules
should only be distinguishable from each other by another module interacting
with them, when their original source-level modules can also be distinguished
from each other by a source-level module. In other words, a fully abstract
compiler ensures that any possible assembly-level interaction is explainable at
the source-code level. This effectively reduces the power of an assembly-level
attacker to the power of a source-level attacker. To achieve this strong security
property, the compiler relies on the presence of a fine-grained, program counter-
based memory access protection primitive, as part of the assembly-level target
language. We formalize our compilation scheme, prove that it is fully abstract
and we show by means of a prototype implementation that the assumed memory
access protection primitive can be realized efficiently on modern commodity
hardware.

In the second part of this dissertation, we discuss the sound modular verification
of imperative programs executing in an unverified context. We focus on Hoare
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logic-based software verification techniques, which enable developers to statically
prove correctness and safety properties of imperative programs. Unfortunately,
the runtime guarantees offered by such verification techniques are relatively
limited when the verified codebase is part of a program that also contains
unverified code. In particular, unverified code might not behave as assumed by
the verifier, leading to failure of all verified assertions that were based on those
assumptions. This is particularly troublesome in memory-unsafe languages,
where a memory safety error in unverified code can corrupt the runtime state
of verified code.

We have developed a series of runtime checks to be inserted at the boundary
between the verified and unverified parts of a program, which check that the
unverified code behaves as expected. A key problem that we had to solve, is
how to ensure that memory errors or malicious code in the unverified part
cannot corrupt the state of the verified part. We solve this problem in two steps.
Firstly, the inserted boundary checks perform an integrity check on the heap
memory owned by the verified code, to ensure that bad writes to heap memory
by the unverified part are detected upon (re-)entry to verified code. Secondly,
we use the mechanism of fully abstract compilation developed in the first part of
this dissertation, for the integrity protection of the verified code’s local variables
and control flow metadata on the runtime call stack. The combination of these
protection measures results in a very strong modular soundness guarantee: no
verified assertion in the verified codebase will ever fail at runtime, even if the
verified codebase interacts with unverified code. We formalize the developed
program transformations, prove that they are sound and precise, and we show
by means of micro and macro benchmarks that the performance overhead of
the boundary checks is sufficiently low for practical applicability.



Beknopte samenvatting

Moderne programmeertalen zoals C++, C# en Java bieden diverse bescher-
mingsfaciliteiten aan, zoals abstracte gegevenstypes, toegangsbeperkingen voor
instantievelden en modulesystemen. Dergelijke abstracties zijn ontworpen om
softwareontwerpprincipes te ondersteunen, zoals het afschermen van private
informatie en de inkapseling van implementatieaspecten achter een publieke
interface. Ze kunnen echter ook gebruikt worden voor het realiseren van
beveiligingseigenschappen van computerprogramma’s. Helaas gaan zulke
eigenschappen typisch verloren bij het vertalen van de broncode van een
programma naar machinetaal. Op broncodeniveau wordt bijvoorbeeld de
toegang tot private instantievelden beperkt door het typesysteem van de
programmeertaal, maar een dergelijke beperking bestaat niet op het niveau
van de machinetaal. Dit kan ertoe leiden dat een vertaalde softwaremodule
kwetsbaar is voor aanvallen op het niveau van de machinetaal, zoals code-
injectieaanvallen en malware die zich in het besturingssysteem manifesteert.

In het eerste deel van dit proefschrift stellen we een vertalingsschema
voor dat wolledig abstract is, wat ruwweg betekent dat de vertaling de
beveiligingseigenschappen die op broncodeniveau gelden behoudt tijdens
het vertalingsproces. De definitie van volledige abstractie is gebaseerd op
het behoud van contextuele equivalenties: twee softwaremodules mogen op
machinetaalniveau enkel en alleen van elkaar te onderscheiden zijn door een
derde module die met hen kan interageren, wanneer hun oorspronkelijke
bronmodules ook van elkaar te onderscheiden zijn door een module op
broncodeniveau. Een volledig abstracte vertaler zorgt ervoor dat elke mogelijke
interactie op het niveau van de machinetaal uit te leggen is op het niveau
van de brontaal. Deze eigenschap verzekert dat een aanvaller die zijn
aanval mag schrijven in machinetaal niet krachtiger is dan een aanvaller
die zijn code moet schrijven in een veilige hoog-niveau brontaal. Om deze
sterke beveiligingseigenschap te verkrijgen, rekent ons vertalingsschema op de
aanwezigheid van een beveiligingsprimitief in de doeltaal dat de toegang tot
bepaalde geheugengebieden van een proces afschermt op basis van de waarde van
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de programmateller. De contributies van dit deel van het proefschrift bestaan
uit het formuleren en formaliseren van het vertalingsschema, het bewijzen
van de volledige abstractie van de vertaling, en het aantonen door middel
van een prototype-implementatie dat het vereiste beveiligingsprimitief efficiént
realiseerbaar is op hedendaagse, alom beschikbare hardware.

In het tweede deel van dit proefschrift bespreken we hoe imperatieve
programma’s correct modulair geverifieerd kunnen worden, zelfs wanneer
ze worden uitgevoerd in een ongeverifieerde omgeving. We richten ons op
verificatiemethodes die gebaseerd zijn op Hoarelogica, dewelke ontwikkelaars
toelaten om de correctheid van imperatieve programma’s te bewijzen op
basis van de programmabroncode. Helaas zijn de uitvoeringsgaranties van
dergelijke methodes beperkt wanneer de geverifieerde code deel uitmaakt van
een programma dat ook ongeverifieerde code bevat. Het is namelijk mogelijk
dat de ongeverifieerde code zich niet gedraagt zoals aangenomen tijdens het
verificatieproces, wat kan leiden tot het falen van eender welke assertie die
gebaseerd is op die aannames. Dit is vooral problematisch bij geheugenonveilige
programmeertalen zoals C, waarbij een geheugenfout in ongeverifieerde code de
uitvoeringstoestand van geverifieerde code ongeldig kan maken.

Om dit probleem op te lossen, hebben we een reeks controles ontwikkeld die
op de grens tussen de geverifieerde en ongeverifieerde code kunnen worden
ingevoegd. Deze controles worden uitgevoerd bij elke functieoproep tussen
geverifieerde en ongeverificeerde code en verzekeren dat de ongeverifieerde
code zich gedraagt zoals aangenomen tijdens de verificatie. Een belangrijk
probleem dat hierbij moet worden opgelost, is hoe de controles kunnen
verzekeren dat geheugenfouten in het ongeverifieerde deel van het programma
de uitvoeringstoestand van het geverifieerde deel niet kunnen beinvloeden. We
lossen dit probleem in twee stappen op. In de eerste stap zorgen we ervoor
dat de ingevoegde controles de integriteit controleren van het heapgeheugen
dat toegankelijk is voor de geverifieerde code. Hierdoor zullen ongeldige
geheugenoperaties uitgevoerd door ongeverifieerde code gedetecteerd worden
wanneer de geverifieerde code (terug) wordt binnengetreden. In de tweede stap
gebruiken we de volledig abstracte vertaling die ontwikkeld werd in het eerste
deel van dit proefschrift, om de lokale variabelen en besturingsstroominformatie
van de geverifieerde code op de uitvoerstapel te beschermen. De combinatie
van deze twee beschermingsmaatregelen resulteert in een zeer sterke modulaire
correctheidsgarantie: geen enkele geverifieerde assertie in de geverifieerde code
kan falen tijdens de uitvoering van het programma. De bijdragen van het tweede
deel van het proefschrift bestaan uit het formuleren en formaliseren van de
voorgestelde controles, het bewijzen dat deze controles correct en precies zijn,
en het aantonen door middel van snelheidstesten dat de performantiekost van
de controles voldoende laag is voor praktische toepasbaarheid.
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Chapter 1

Introduction

Software today plays an important role in many areas of society, including
commerce, government, industry, education, healthcare, etc. Not only is software
ubiquitous, it is also becoming increasingly complex. For instance, recent desktop
operating systems are built from tens of millions of lines of code [86], and the
software for a modern high-end car is even estimated to have over 100 million
lines of code [39]. The impact of software bugs can be significant, since they can
lead to exploitable security vulnerabilities such as the recent Heartbleed [91],
Shellshock [49], and Ghost [48] bugs, or can even result in catastrophic events
such as air plane crashes, radiation overdoses and pipeline explosions [102].
However, the consequences of software bugs do not have to be so spectacular
to have a large impact. Consider for instance the number of flights delayed or
canceled due to software problems at check-in terminals, and the amount of
revenue lost by merchants due to payment system failures. Annual productivity
and turnover losses due to software failure are estimated at € 1.6 billion in the
Netherlands [118] and up to $59.5 billion in the US [82] alone.

1.1 Abstractions in programming languages

To tackle the ever-increasing complexity of software, developers rely on various
techniques and tools, such as novel programming languages and methodologies,
smart integrated development environments, version control software, continuous
integration, etc. However, one of the most important software development
techniques is also likely one of the oldest: the technique of abstraction. When
programmers write code, they write functions or procedures, that are given a
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name and (hopefully) some documentation describing the expected input, the
intended output, any potential side-effects and possibly the runtime complexity
of the function. When a programmer later uses a function, she will rely on the
function’s name and documentation (i.e., the function’s interface) to know what
that function does. Thus, the programmer has abstracted away how the function
works, and focuses only on what it does. Such abstractions are necessary to hide
the complexity of the system under development, since for all but the smallest
software systems, it would be infeasible for any developer to know exactly how
each function works. From the basic building block of function abstraction,
higher-level abstractions can be built, for instance in the form of a software
library with a documented application programming interface (API).

Other forms of abstraction that are commonly provided by modern-day, general-
purpose programming languages, are execution platform abstractions, module
systems, field access modifiers, structured control flow, etc. An example of
execution platform abstraction is the fact that a compiled C program that
conforms to one of the proper C standards will behave the same on various
kinds of execution platforms that feature heterogeneous types of processors,
operating systems, and system libraries. The C programmer does not need
to worry about how the provided high-level constructs will be translated into
low-level assembly code. Similarly, the field access modifier abstraction allows a
Java developer to mark a class instance field as private to ensure that access
to this field will be restricted to the class’s local methods by the type system.
Even at the level of assembly code, abstractions are made. For instance, the
assembler hides the specific binary encoding of each assembly instruction from
the programmer.

Each layer of abstraction hides the complexity of the layer beneath it. But,
as a consequence of hiding complexity, each abstraction layer also typically
restricts the power of the developer, in some way or another. For instance, at the
assembly code level, control can jump from any memory location to any other
location, while most high-level programming languages only allow functions to
be entered from the top (non-local gotos are an infamous exception to this rule).
In case of a software library, the programmer is restricted to using the library’s
public API and usually cannot access the private functions that are internal to
the library. Such restrictions are in place for two reasons: (1) to protect the
programmer and provide a convenient and coherent interface to work with, and
(2) to ensure the internal consistency of the abstraction. As an example of the
latter reason, consider again a compiler for a high-level programming language.
When compiling a function, the compiler will assume that the code interacting
with this function (i.e., the context surrounding it) adheres to the conventions
set out by the target platform’s application binary interface (ABI). Ensuring
correctness, safety and interoperability is much easier in this setting than in the
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case where compiled functions must be able to safely interact with arbitrary
assembly code. Making this assumption is fair, because normal code, written by
well-behaved programmers and compiled by well-behaved compilers, will always
adhere to the assumed conventions.

The problem is, however, that most of the abstractions available at the source
level, are lost during compilation towards low-level assembly code. This means
that code that is injected directly at the assembly level (i.e., hand crafted
assembly code, which does not necessarily result from the compilation of valid
high-level code), is not bound to the restrictions set out by the high-level
abstractions. This is a real issue, as attacks in practice often rely on injecting
machine code into a process’ address space [41, 42, 122], and kernel-level malware
can attack any process in the system at the assembly level. An assembly-level
attacker is hence strictly more powerful than a source-level attacker.

This is the problem we are concerned with in Chapter 2 and Chapter 3. In
these chapters, we develop a compilation scheme from an imperative high-level
language to a low-level assembly target language, that will prevent any low-level
code from performing actions that could not occur at the source code level. In
other words, the power of an assembly-level attacker will be reduced to that of a
source-level attacker, because any attack that can be mounted at the low level is
explainable at the source-code level. To obtain this strong security property, the
compilation scheme relies on a special memory access control mechanism in the
target language, which we show to be implementable on commodity hardware
available today. We call the compilation scheme fully abstract, because it allows
all behavior of a system to be understood from studying the source code alone.
That is, even in case of code-injection attacks at the assembly level, will the
source-level security properties of the system be maintained. This property
enforces the principle of source-based reasoning, which was characterized by
Baltopoulos and Gordon [17] as the proposition that security properties of a
software system should follow from review of the system’s source code and its
source-level semantics alone, and hence should not depend on details of the
compiler or execution platform used to execute the system.

1.2 Sound modular software verification

A different approach for reducing the number of bugs in complex pieces of
software, lies in the use of formal software verification techniques. In general,
formal software verification denotes any automated or semi-automated technique
for checking the validity of certain properties about a rigorously specified model
of a software system. In this text however, we will focus primarily on a specific
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type of formal software verification, namely the techniques based on the inductive
assertion method of Floyd and Hoare [46, 53] for imperative programs. This
method involves annotating functions with pre- and postconditions, which relate
the original program state before the function has executed to the state after the
function has finished execution. Intermediate annotations can also be specified,
in order to express further assertions to prove, or to help guide the verifier
towards the verification goal. Function contracts and intermediate assertions
can express interesting program properties such as memory safety, absence of
race conditions and deadlocks, adherence to communication protocols, or even
full functional correctness. Program verification in this case corresponds to
proving that, if a function is called in any state and with any input values such
that its precondition holds, that the function’s intermediate assertions hold at
the corresponding program points and that its postcondition will hold after
the function finishes execution. If the verification of a function using a sound
verifier is successful, we can be sure that the source code of the verified function
implements the behavior expressed by the function’s contract. If the program
verifier cannot prove correctness, it can usually give a hint on why it failed.
This can either be because there is a bug in the function under verification, or
because the verifier simply was not able to prove correctness.

A successfully verified function adheres to its specified contract for any possible
input that satisfies the precondition. Hence, the correctness guarantees offered by
formal verification are significant. Unfortunately, these hard guarantees usually
come at a price. Creating or annotating the model of a complex software system
and formulating a formal description of the properties to verify, can be a difficult
task, requiring substantial human effort and expertise. Although research for
reducing the required effort and expertise is ongoing, it remains one of the
reasons of why the industrial adoption of formal software verification remains
slow [121] in comparison to the integration of formal verification techniques in
the hardware industry [44].

The substantial investment required for applying formal verification is also one
of the main reasons why it is essential that verification methods are modular.
That is, it should be possible to soundly verify only a part of an application,
leaving the rest of the code unverified. This allows a gradually increasing part of
the codebase to be verified over time, rather than requiring the entire codebase
to verified in order to have any guarantees at all. The inductive assertion
verification methods we discuss in this text satisfy this requirement. Functions
that need not be verified can simply be left unannotated, except those that are
called from a verified function. Although those functions are unverified, they
must be supplied with a pre- and postcondition contract because the verifier
needs to know the functions’ expected behavior in order to verify their callers.
Successful verification using a sound verification method then guarantees that
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any execution of the program will comply with the verified specifications, under
the critical condition that the unverified functions behave as dictated by their
contracts and that they always satisfy the precondition when calling a verified
function.

Problems occur when this critical condition is not met. When the assumptions
made by the verifier about the behavior of unverified functions turn out to be
false, all further proof results that were based upon these assumptions might no
longer hold. Hence, if the unverified codebase does not behave as expected, all
bets are off. The situation is even worse in memory-unsafe languages such as
C, because, even if the unverified codebase behaves according to its contracts
in terms of function input-output behavior, a memory-safety error (such as a
buffer overflow) in unverified code can corrupt the runtime state of verified code.
Thus, the runtime guarantees of a partially verified codebase are more limited
than they appear to be at first sight, especially for memory-unsafe languages.

In Chapter 5 and Chapter 6, we address this problem by proposing a program
transformation that adds a series of runtime checks at the boundary between
verified and unverified code, in order to detect when the unverified codebase
does not behave according to its contracts. A key problem that must be solved is
how to ensure that memory errors in the unverified codebase cannot corrupt the
state of the verified codebase. We propose to solve this problem by having the
runtime checks perform an integrity check on the heap memory of the verified
codebase: on re-entry to a verified function, we check that the part of the heap
“owned” by the verified codebase has not been changed by the unverified function
that was called. This ensures that bad writes to the heap performed by the
unverified codebase are detected upon re-entry to verified code. Protecting heap
memory alone is not enough, however. We must also protect the local variables
within the activation records of verified functions, and the control flow metadata
on the call stack. Since it is impossible to tamper with activation records at
the source code level, we can rely on the fully abstract compilation scheme of
Chapter 2 to protect against this kind of misbehavior. The combination of the
boundary checks and the fully abstract compilation protection of local variables
and control flow result in a strong modular soundness guarantee: no verified
assertion in the verified codebase will ever fail at runtime, even if the verified
code interacts with unverified code.

1.3 Attacker model and scope

Many system security research papers model the attacker they are protecting
against as a so-called input-providing attacker, who can interact with the
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program under attack by providing input and reading output. An attacker
can for instance craft a special string to be given as input to the program
under attack, in order to exploit a buffer overflow vulnerability, SQL injection
vulnerability, or a logic flaw in the program. The input-providing attacker is a
suitable model for an attacker that is trying to subvert a service running on a
hardened and well-protected machine.

In this dissertation, however, we use the strictly stronger in-process attacker
model, which assumes the attacker has the power to load and execute arbitrary
machine code in the process executing the program under attack. More
specifically, we model the attacker as an arbitrary piece of low-level assembly
code that can interact with the code resulting from our translation schemes. An
in-process attacker can for instance try to scan memory for secrets, overwrite
control-flow data and non-control data of the program under attack, and can
even attempt to overwrite other code that was loaded into the process. We
place no a priori limitations on the attacker’s code, but the interactions that it
can engage in with the program under attack are restricted by (1) the memory
access control mechanism that we assume is part of our low-level target language
and (2) the constraints enforced by the runtime checks inserted by our fully
abstract compiler and the boundary checking program translation. The in-
process attacker is a suitable model for applications that can be extended at
run-time with (binary) plugins, or for situations in which the attacker has
already successfully exploited a component that the program under attack is
interacting with.

Although this is a very strong attacker model, the following categories of attacks
are still out of scope.

o Attacks that exploit logic flaws or other bugs that are present at the source-
code level. The goal of our compilation and translation schemes is to
preserve source-level semantics when our code is executing in an untrusted
low-level environment. Hence, any bugs present at the source-code level
will still be present after translation.

o Attacks that depend upon features not modeled in our high- or low-level
languages. For instance, our assembly language does not model time
nor I/O devices, hence timing- and I/O-based side-channel attacks are
excluded from our attacker model.

o Attacks that occur during the bootstrapping of the system. Our model
assumes that the program under attack is securely loaded into memory
before the attacker has a chance to mount her attack. Hence, attacks
against the program before it is loaded (e.g., while it is stored on disk
after compilation, or during the loading phase) are excluded.
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e Attacks against the availability of the system. Since an attacker can
execute arbitrary code, it is trivial for her to enter an infinite loop and
hence prevent any program progress.

Finally, it is interesting to consider the kinds of system properties that can be
expressed using the techniques we employ. For our fully abstract compilation
scheme, we conjecture that it preserves all hypersafety properties [28] of the
module to compile, but this is only an intuition that has not been formally
pursued in this work. As for the second part of this dissertation, the logics
underlying the verification techniques we reason about can refer only to a single
execution at a time, and hence are limited to expressing 1-hypersafety properties
such as memory safety and functional correctness.

1.4 Other research conducted

The works presented in this dissertation are a subset of the research I have
conducted over the past four years. For the contents of this dissertation, I have
selected the works of which I am the principal author and which are related to
the sound modular reasoning about security properties of imperative programs.
Below I give a brief description of the other research I conducted during my
PhD.

FAMoS: A Flexible Active Monitoring Service for Wireless Sensor Networks
This paper presents FAMoS, a network traffic monitoring framework for low-end
wireless sensor networks. In this framework, each wireless sensor node locally
collects data about the number of transmitted and received network packets for
different categories of network traffic. The nodes then periodically transmit the
collected data to a back-end system for data aggregation and analysis. This
paper is based upon the work conducted as part of my Master’s thesis, which
was performed under supervision of Jef Maerien, Christophe Huygens, and
Wouter Joosen.

Publication data:

J. Maerien, P. Agten, C. Huygens, W. Joosen. “FAMoS: A Flexible Active
Monitoring Service for Wireless Sensor Networks”. In: DAIS. 2012, pp. 104—
117
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Recent Developments in Low-level Software Security This work describes
state-of-the-art approaches for securing code written in C-like languages, for two
types of attackers. The first type is the interactive attacker, who can interact
with the program under attack by providing input and reading output. For
instance, an interactive attacker could perform an SQL injection attack. The
other type of attacker is the in-process attacker, who can load and execute
arbitrary machine code in the process executing the program under attack. The
latter attacker model corresponds to the type of attacker we protect against in
the works described in this dissertation. This work was an invited paper for
the WISTP workshop, jointly co-authored by Nick Nikiforakis, Raoul Strackx,
Willem De Groef, Frank Piessens and myself.

Publication data:

P. Agten, N. Nikiforakis, R. Strackx, W. De Groef, F. Piessens. “Recent
Developments in Low-level Software Security”. In: Proceedings of the 6th
IFIP WG 11.2 International Conference on Information Security Theory and
Practice: Security, Privacy and Trust in Computing Systems and Ambient
Intelligent Ecosystems. WISTP’12. Egham, UK: Springer-Verlag, 2012,
pp. 1-16

JSand: Complete Client-Side Sandboxing of Third-Party JavaScript With-
out Browser Madifications This paper presents JSand, a server-driven but
client-side enforcing JavaScript sandboxing framework. The framework allows
different JavaScript web components included on the same web page to be
isolated from each other and from the web page itself. Interactions between
different components is still possible, but must adhere to a server-defined
policy. For instance, a privacy-aware policy could specify that JavaScript-based
advertisements included on a webmail page, are not allowed to access any of the
DOM-elements containing the e-mails’ subject line and content. This research
was conducted in cooperating with Steven Van Acker, Yoran Brondsema, and
Phu H. Phung, under supervision of Lieven Desmet and Frank Piessens.

Publication data:

P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, F. Piessens.
“JSand: complete client-side sandboxing of third-party JavaScript without
browser modifications”. In: Proceedings of the 28th Annual Computer Security
Applications Conference. ACSAC ’12. Orlando, Florida: ACM, 2012, pp. 1-10
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Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-
software Trusted Computing Base This paper describes Sancus, a hardware-
based protected module architecture for networked embedded devices. Sancus
implements a program counter-based memory access control scheme similar to
the one we describe in Chapter 2, as an extension of the MSP430 microprocessor.
The architecture allows the correct, uncompromised execution of a software
module to be attested to a remote software provider, and provides authenticated
communication between a software module and a software provider. Sancus has
a zero-software trusted computing base (TCB), i.e., no software must be trusted
in order to achieve the provided security guarantees. The principal author of
this work is Job Noorman, who collaborated with me, Wilfried Daniels, Raoul
Strackx and Anthony Van Herrewege, under supervision of Christophe Huygens,
Bart Preneel, Ingrid Verbauwhede and Frank Piessens.

Publication data:

J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,
B. Preneel, I. Verbauwhede, F. Piessens. “Sancus: Low-cost Trustworthy
Extensible Networked Devices with a Zero-software Trusted Computing
Base”. In: Proceedings of the 22nd USENIX Conference on Security. SEC’13.
Washington, D.C.: USENIX Association, 2013, pp. 479-494

Salus: Non-hierarchical Memory Access Rights to Enforce the Principle
of Least Privilege This work describes Salus, a Linux kernel modification
that provides a program counter-based memory access control scheme similar
to the one provided by Sancus. It allows a process to be subdivided into
small compartments, each of which is isolated from other compartments. One
compartment cannot access the data sections of other compartments and can
only jump to specific entry points within the code section of other compartments.
Interaction between compartments is possible only through function calls, and
each compartment is able to authenticate both the compartments that it calls
and the compartments that it is called from. The principal author of this work
is Niels Avonds, who conducted this research as part of his Master’s thesis,
which was supervised by Raoul Strackx, me and Frank Piessens.



10 INTRODUCTION

Publication data:

N. Avonds, R. Strackx, P. Agten, F. Piessens. “Salus: Non-hierarchical
Memory Access Rights to Enforce the Principle of Least Privilege”. English.
In: Security and Privacy in Communication Networks. Ed. by T. Zia,
A. Zomaya, V. Varadharajan, M. Mao. Vol. 127. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering. Springer International Publishing, 2013, pp. 252-269

Salus: Kernel Support for Secure Process Compartments This journal
paper is an extended version of the work on Salus described above. The
main extension consists of adding support for unforgeable references. Under
this extension, only knowing a compartment’s location in memory is not
sufficient for calling it; an additional cryptographic nonce that is specific for each
compartment, is required as well. This prevents compromised compartments
from being able to scan memory and subsequently access any compartment
found by the scan. The principal author of this extended work is Raoul Strackx,
who collaborated with me and Niels Avonds, under supervision of Frank Piessens.

Publication data:

R. Strackx, P. Agten, N. Avonds, F. Piessens. “Salus: Kernel Support for
Secure Process Compartments”. In: FAI Endorsed Transactions on Security
and Safety 15.3 (Jan. 2015)

Seven Months’ Worth of Mistakes: A Longitudinal Study of Typosquatting
Abuse This paper presents an empirical study of typosquatting, which is the
act of purposefully registering a domain name that is a mistype of a popular
domain name. For instance, www.kuleuben.be is a typosquatting domain name
of www.kuleuven.be. Typosquatting has been known and studied for over 15
years, but previous typosquatting studies have always taken a single snapshot
of the typosquatting landscape over a limited period of time. This work
presents the first content-based longitudinal study of typosquatting. The results
presented in this work are based upon a data collection experiment of the 500
most popular websites of the Internet, over a period of seven months. The work
was conducted in collaboration with Nick Nikiforakis of Stony Brook University,
New York, under supervision of Wouter Joosen and Frank Piessens.


www.kuleuben.be
www.kuleuven.be
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Publication data:

P. Agten, W. Joosen, F. Piessens, N. Nikiforakis. “Seven months’ worth of
mistakes: A longitudinal study of typosquatting abuse”. In: Proceedings of
the 22nd Network and Distributed System Security Symposium (NDSS 2015).
Internet Society, Feb. 2015

Secure Compilation to Protected Module Architectures This work describes
a fully abstract compilation scheme from a Java-like object-oriented source
language, to a target language representing an x86-like processor extended with
a program counter-based memory access control mechanism. The work is an
extension of the research described in Chapter 2 and Chapter 3, in order to
support dynamic memory allocation, dynamic dispatch and exceptions. The
principal author of this work is Marco Patrignani, who collaborated with me
and Raoul Strackx, under supervision of Bart Jacobs, Dave Clarke and Frank
Piessens.

Publication data:

M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, F. Piessens.
“Secure Compilation to Protected Module Architectures”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 37.2 (Apr.
2015), 6:1-6:50

1.5 Outline

The rest of this text is structured as follows. In Chapter 2, we discuss in detail
the fully abstract compilation scheme referred to in Section 1.1. The contents
of this chapter are precise but informal, since the formalization of the secure
compilation scheme is left for Chapter 3. In Chapter 4 we give an overview of
formal software verification techniques, focusing in particular on the inductive
assertion method of Floyd and Hoare, and the verification methods derived
from it. Next, in Chapter 5 we discuss in detail the program transformations
for the sound modular verification of code executing in an unverified context,
as described in Section 1.2. Again, the matter is first discussed informally, and
the formalization is left for Chapter 6. Finally, in Chapter 7 we conclude this
dissertation by summarizing the obtained results and by taking a step back to
reflect upon the work performed and the future work that is left.






Chapter 2

Secure Compilation to
Modern Processors

Publication data

P. Agten, R. Strackx, B. Jacobs, F. Piessens. Secure compilation to modern
processors: extended version. CW Reports CW619. Department of Computer
Science, KU Leuven, Apr. 2012

P. Agten, R. Strackx, B. Jacobs, F. Piessens. “Secure Compilation to Modern
Processors”. In: Computer Security Foundations Symposium (CSF), 2012 IEEE
25th. June 2012, pp. 171-185

Pieter Agten is the main contributor to these works, which were conducted
under supervision of Frank Piessens and Bart Jacobs. The second author, Raoul
Strackx, was responsible for the performance benchmarks and the development
of the PMA prototype, which is based on Fides [113].

2.1 Introduction

High-level programming languages such as Java, C#, ML or Haskell offer
protection facilities such as abstract data types, the private field modifier,
and module systems. Such abstractions have long been used in programming
languages, at least since the 1970s [77, 69]. They were mainly designed to enforce

13
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software engineering principles such as information hiding and encapsulation,
but they can also be used as building blocks for providing security properties
of programs. For instance, declaring a field private in Java can protect the
confidentiality of that field towards less trusted code running in the same Java
Virtual Machine.

When such protection features are used for the purpose of security, it is important
to maintain the resulting security properties when the program is compiled. The
classical way to formalize this notion of secure compilation is full abstraction [1].
Roughly speaking, compilation from a source language to a target language
is fully abstract if the contextual equivalence of source programs implies the
contextual equivalence of corresponding target programs and vice versa. In
other words, a fully abstract compiler ensures that a source-level context
can distinguish two source programs if and only if a target-level context can
distinguish the two corresponding target programs.

Full abstraction (and more specifically the preservation of contextual equivalence)
is a good candidate for the definition of secure compilation, because the
contextual equivalence of programs can express important security properties,
such as confidentiality and integrity properties. For instance, the fact that the
value of a static field v in a Java class C is confidential can be expressed by
saying that class C is contextually equivalent to a class C’ that only differs
from C in its value for v. Full abstraction entails the preservation of all security
properties that can be expressed using contextual equivalence. We conjecture
that this class of security properties consists of all hypersafety properties [28] of
the program to compile, but this is only an intuition that has not been formally
proved.

Unfortunately, it is notoriously hard to securely compile higher-level languages
to lower-level languages. Even the compilation of Java to JVM bytecode, or of
C# to the .NET intermediate language is known not to be fully abstract [65] —
even if for these cases the source and target languages are relatively close. No
state-of-the-art compiler of Java-like or ML-like languages towards machine
code on classic Von Neumann computer architectures is even close to fully
abstract. As a consequence, any security properties the source program might
have are possibly lost towards attackers that can interact with the program
at machine code level. Unfortunately, this is a real and important issue, as
attacks in practice often rely on injecting machine code into a process’ address
space [42]. Also, kernel-level malware can attack any process in the system at
the machine code level.

Recently, however, some important progress has been made. At CSF 2010,
Abadi and Plotkin [3] have shown how address space layout randomization
can achieve a probabilistic variant of full abstraction when compiling from a
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lambda-calculus variant with abstract public and private memory locations
towards a lower-level language in which memory locations are numbers. At CSF
2011, Jagadeesan et al. [62] have extended these results to a more expressive
programming language.

The main contribution of our work is the proposal of a new secure compilation
technique towards low-level machine code. Instead of relying on randomization
as Abadi and Plotkin, or Jagadeesan et al., our compilation technique builds on
low-level memory access control techniques. It is inspired by recently developed
systems for the fine-grained protection of small pieces of applications such as
TrustVisor [72], Fides [113] and Intel’s SGX extensions [56]. These systems show
that it is possible to efficiently implement relatively fine-grained memory access
control on modern processors. In this chapter, we show that such fine-grained
memory access control can in turn be used to support fully abstract compilation
from a simple imperative programming language to machine code.

The remainder of this chapter is structured as follows. First we give an informal
overview of our high- and low-level languages and our compilation scheme in
Section 2.2. In Section 2.3, we introduce our prototype implementation. We
then reflect upon our approach in Section 2.4, and discuss related work in
Section 2.5. Finally, we provide a summary of the chapter in Section 2.6. In the
next chapter, we will provide a formal definition of our languages and compiler,
and we will prove that the compilation scheme is fully abstract.

2.2 Informal overview

This section presents a precise but informal overview of our approach. We first
introduce our high-level language, and illustrate by means of examples in that
language how security properties can be expressed using contextual equivalence.
We then describe the low-level platform with its fine-grained memory access
control model. Finally, we describe our compilation scheme. We first describe
a basic, straightforward compilation scheme and illustrate that it is not fully
abstract by means of counterexamples. We then describe the more involved,
fully abstract compilation by discussing how it handles the counterexamples.

2.2.1 High-level language

Our high-level language is a small, single-threaded, procedural language. It
supports the basic constructs one would expect of an imperative programming
language, including branches, loops and local variables. Indirect function calls
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module m {
<(Int,Int)—Unit> listener = null;
Int value = 0;

Unit setlListener (<(Int,Int)—Unit> 1) {
listener = 1;
return unit;

}

Int getValue() {
return value;

3

Unit setValue(Int v) {

if (listener != null && value != v) {
listener(value, v);

3
value = v;
return unit;

3

3

Figure 2.1: Example of a module in our high-level imperative language.

are supported through function references (also known as typed function pointers
or delegates). For simplicity, the language does not support dynamic memory
allocation. The language is type safe; one can prove progress and preservation
using standard methods [101].

Each high-level program consists of a number of modules, which should be
thought of as compilation units that encapsulate private state. Each module
consists of private fields and public functions. The supported base types are
Unit, Int and the function reference type (U — T). Figure 2.1 illustrates
the high-level programming language by showing an example module that
encapsulates a value and notifies a listener through an indirect call whenever
this value changes.

Execution of a high-level program starts in the main function of the module
named c¢. The main function must be typed (Unit — Int). Execution either
ends with an integer result n or gets stuck in an infinite loop. When the main
function ends with result n, we say the program as a whole ends with result n.
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2.2.2 Contextual equivalence and security properties

Modules encapsulate their private state, and hence the internal representation
of a module is hidden from outside of its definition. In our language, the private,
internal representation of a module consists of its member variables and the
implementation of its functions. Its public, external representation consists of
the signatures of its functions.

Having this division between the internal and external representation of a
module implies that modules can be equivalent from an external point of view,
even though they have a different implementation. In other words, two modules
might have a different internal representation, but no third module will be able
to distinguish them by calling their functions and inspecting their return values.
We call any two such modules contextually equivalent and we say that a third
module C that tries to differentiate them, is a test context.

We can use contextual equivalences between modules to express important
security properties, such as the confidentiality and integrity of private variables
and the integrity of module invariants. This is illustrated by the following
examples (the first two examples are taken from [3] but are adapted to our
programming language).

Example 2.2.1. Ezpressing confidentiality properties

module m { module m {
Int secret = 0; Int secret = 0;
Int m() { Int m() {
secret = 0; secret = 1;
return 0; return 0,
} }
3 }

These two programs differ only in the value that they store in the secret field.
By saying these modules are contextually equivalent, we are effectively saying
that no external module can read or deduce the value of the secret field.
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Example 2.2.2. Ezpressing integrity properties

module m { module m {
Int zero = 0; Int zero = 0;
Int m(<Unit—Unit> cb) { Int m(<Unit—Unit> cb) {
zero = 0; zero = 0;
Unit x = cb(unit); Unit x = cb(unit);
if (zero == 0)
return 0, return 0;
else return 1;
} }
3 }

The left module checks whether the zero field was changed during the callback
cb(unit), and the right module does not. By saying that these module are
contextually equivalent, we are expressing that there is no way for the external
code that is called through the callback function to modify the zero field.

Example 2.2.3. Ezpressing module invariants

module m { module m {
Int min = 0; Int min = 0;
Int max = 0; Int max = 0;
[...] [...]
Int m() { Int m() {
if (min <= max) {
return 0; return 0;
} else {
return 1;
3
3 }
3 }

By saying these two modules are contextually equivalent, we are expressing that
no external module can break the invariant min <= max. This is a more general
kind of integrity property on the data encapsulated by an module.

For the high-level language, these contextual equivalences (and their correspond-
ing security properties) clearly hold, because the only way a high-level test
context can interact with another module is through function calls and returns.
No high-level context C' can distinguish the left module from the right module
for any of these three examples.
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To efficiently execute a high-level program however, it must be compiled into a
lower-level assembly-language program. From the viewpoint of an attacker, this
low-level language is much more powerful than the high-level language, because
there is no type system to make it safe. For instance, an attacker that can
inject code to interact with a compiled program at the low level can read and
write arbitrary memory locations. As a consequence, none of the contextual
equivalences in these three examples would continue to hold at the low level,
and hence also the corresponding security properties are lost.

Our objective in this chapter is to define a fully abstract compilation scheme from
the high-level language to a realistic low-level assembly language. The compiler
must ensure that if any two high-level modules are contextually equivalent,
then so are their corresponding low-level translations. We limit ourselves to the
contextual equivalence of single modules, and hence we define a context to be an
arbitrary test module C, which can be linked to a single module under test M.
Linking a context C' with a module M yields a program C|M. If no context C
can distinguish two implementations of M then these two implementations are
contextually equivalent. The notion of contextual equivalence can be generalized
to talk about multiple modules, which can all interact with each other as well
as with the test module, but we leave this generalization for future work; many
interesting security properties can already be expressed using single modules.

The intuition behind a fully abstract compiler is that it ensures that any security
property that can be expressed using contextual equivalence and that holds at
the source-code level of a program, also holds at the low level after compilation.
The power of a low-level attacker is hence reduced to that of a high-level attacker,
because any vulnerability that can be exploited at the low level is explainable
at the source-code level.

2.2.3 Low-level language

Our low-level target language models a Von Neumann computer architecture [81]
extended with a mechanism for fine-grained, program counter-based memory
access control.

The basic machine model consists of a program counter, a register and flags
file, and a memory space. The program counter indicates the address of the
instruction under execution. The register and flags file contains general purpose
registers, a stack pointer register and two flags ZF and SF, which are set or
cleared by the cmp instruction and are used by branching instructions. The
memory space maps addresses to words that represent both code and data. The
supported instructions are shown in Table 2.1.
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Table 2.1: The set of instructions that make up the low-level programming

language.
1d ry [rs] Load the word at the address pointed to by ry into rq.
st [rq] rs Store the word value of rg into the address pointed to by rq.
1di ry i Load the immediate value i into register rq.
add rq rs¢ Store (14 + 74) mod 232 into 4.
sub rq rs  Store (14 —74) mod 232 into rq.
cmp ry rp Calculate r; — 9 and set the ZF and SF flags accordingly.
jmp r;  Jump to the address pointed to by register r;.
je ry If the ZF flag is set, jump to the address pointed to by r;.
jl ry If the SF flag is set, jump to the address pointed to by r;.
call r; Push the value of the program counter onto the top of the
stack and jump to the address pointed to by r;.
ret Pop a value from the top of the stack and jump to the popped
location.
halt Stop execution with the result in register R0.

Table 2.2: Read-write-execute memory permissions enforced by the protection
scheme of the low-level language.

from \ to Protected Unprotected
Entry point | Code Data

Protected r - x r-xlrw- WX

Unprotected - - X - - - | - - ¢ rwx

So far, the low-level platform is effectively a highly simplified model of the Intel
x86 platform. However, in order to support fully abstract compilation, our low-
level model must be extended with a protection mechanism. We propose to use
a fine-grained, program counter-based memory access control scheme, inspired
by existing low-level memory protection systems [72, 113, 56]. In this scheme,
the memory address space is logically divided into protected and unprotected
memory, and the former type of memory is further divided into a code and a
data section. Within the code section, a variable number of memory addresses
are designated as entry points. These addresses are the only points through
which execution of code in protected memory can start. Table 2.2 summarizes
the access control rules enforced by the protection mechanism. The size and
location of each of the memory sections and the location of the entry points
are specified by a memory descriptor, which can be considered a configuration
structure for the low-level language. In Section 2.3 we show how this memory
access control scheme can be implemented efficiently on modern commodity
hardware.
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Execution of a low-level program starts at the first address of unprotected
memory. It either ends with an integer result or gets stuck in an infinite loop.
To end with a result ¢, the halt instruction must be executed with register
RO containing the value c. If an invalid memory access attempt is made, the
value 0 is placed in register R@ and execution is halted.

2.2.4 Compilation

We now get to our main result, the fully abstract compilation scheme. We
describe the compilation of a single high-level module M. This is sufficient to
study full abstraction for our definition of contextual equivalence. High-level
contextual equivalence was already defined above: two high-level modules are
equivalent if no test module can distinguish them. At the low level, two compiled
modules are contextually equivalent if no arbitrary machine code placed in the
unprotected area of memory can distinguish the compiled modules.

We introduce our compilation scheme in two steps. First we describe a basic,
straightforward compilation that places the code and data of the compiled
module in the protected memory area and configures the entry points such that
control flow can only enter at the start of each function. This scheme is sound,
in the sense that two non-equivalent high-level modules will be compiled into
two non-equivalent low-level modules. It also provides some basic protection;
for instance, the low-level context cannot just scan memory to find the values
of module fields, as this is prevented by the low-level memory access control
scheme.

However, we will show by means of counterexamples that the basic scheme fails
to be fully abstract. These counterexamples then motivate the final definition
of our compilation scheme, for which we prove full abstraction in Chapter 3.

Basic compilation

The compilation of a high-level module M results in a low-level module M,
consisting of a partial memory space and a memory descriptor. We should
prevent the low-level context from being able to distinguish two modules just
by their size, so a constant amount of memory is reserved for each translated
module, independent of the actual memory space required. The translated
module will be placed in protected memory and the memory descriptor divides
the reserved space equally over the code and the data section. The compiler
assumes the stack pointer register is set up by the context and is pointing to
free space in unprotected memory.
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The compilation process consists of translating each field and each function of
the input module. To prevent a low-level module from being distinguished by
the order of its functions in memory, all functions are first sorted alphabetically.
Fields and functions are then given a unique index number starting at 0, based
on their order of occurrence. Parameters and local variables are given a function-
local index number. For a field v;, one word of memory is reserved at the ith
memory address of the data section. Integer-typed constants are translated to
their corresponding numeric value. Unit-typed constants are translated to 0 and
the null function reference is translated to the highest address OxFFFFFFFF.

To translate a function body, the compiler processes each high-level statement
in turn, translating it into a list of instructions that performs the corresponding
operation. Registers RO to R3 are used as general working registers and return
values are passed through R@ as well. The first eight parameters are passed
through registers R4 to R11 and additional parameters are spilled onto the
run-time stack. A prologue is prepended to each translated function body and
an epilogue is appended to it. The prologue allocates and initializes a new
activation record on the stack, which contains the function’s local variables and
parameters. The epilogue deallocates this activation record when the function
is done. This code is placed in free space in the code section.

In addition to translating each function’s body, an entry point is generated
for each function as well. The entry point for function f; is placed at address
(i + 1) % 128 of the code section. The offset of 128 memory words is chosen
arbitrarily, with the only condition that there is enough space between entry
points to perform a number of simple operations, as will be described in
Section 2.2.4. The code at each entry point consists of two parts: (1) a call to
the function’s body and (2) a return instruction. When the call to the body
returns, the return instruction will simply return control to the location from
which the entry point was called.

Because the low-level language allows protected memory to be entered only
through one of the entry points, an additional return entry point is generated at
the first address of the protected code section, to support returning from calls
from the module to the context. We name such calls outcalls. To perform an
outcall, first the actual return address is placed on the stack, followed by the
address of the return entry point. Control is then transferred to the context by
a jmp instruction. When the context returns from the outcall, control will first
be transferred to the return entry point, which will then subsequently return
back to the actual return address within the caller function.

The compilation scheme as described above ensures that a module is always
exited through an outcall, or through the return instruction at the end of an
entry point. Therefore, we name the end of each entry point an ezit point.
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Limitations of the basic compilation scheme

The compilation scheme defined so far is not fully abstract, as illustrated by
the counterexamples below.

Example 2.2.4. Stack security

module m { module m {
Int secret = 0; Int secret = 1;
Int f(<Unit—Unit> cb) Int f(<Unit—Unit> cb)
{ {
Int x = secret; Int x = secret;
Unit y = cb(unit); Unit y = cb(unit);
return 0; return 0;
3 3
3 3

These two high-level modules are contextually equivalent, because the only
difference is the value of the secret field and this value is never exposed to
the context. The low-level translations of these modules are not contextually
equivalent, however, because an attacker can read the value of x during the
callback cb(unit). An attacker is able to do this, because local variables are
placed on the runtime stack (which is in unprotected memory) as part of a
function call, and a low-level attacker can read all unprotected memory. Since
the variable x contains the value of secret, the attacker can distinguish the two
modules.

The above example shows that the current compilation scheme does not entail
the confidentiality or integrity of the runtime stack, and this enables attackers
to read and write local variables of the module under test. Attackers can use
this vulnerability to read secrets from the stack, similar to a buffer-overread
attack [115], or they can even tamper with control flow by overwriting a return
address, similar to a classic return address clobbering attack [42].
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Example 2.2.5. Illegal function pointers

module m { module m {
Int v = 1; Int v = 1;
Int f(<Unit—Unit> cb) Int f(<Unit—Unit> cb)
{ {
Unit x = cb(unit); Unit x = cb(unit);
v += 1, v -= 1;
v -= 1, v += 1;
return v; return v;
3 }
3 3

These two high-level modules are contextually equivalent, because in both modules
the function f always returns 1. A low-level attacker can differentiate their low-
level translations, however, by giving the address of the instruction corresponding
to line 8 as the callback address cb. In this case, the left module will decrement
v without first incrementing it, while the right module will increment v without
first decrementing it. This will result in v having a value of O in the left
module and 2 in the right. This attack is similar to a real-world return-oriented
programming attack [106].

Example 2.2.6. Information leakage

module m { module m {
Int () { Int f() {
Int x = 0; Int x = 1;
if (x == 0) { if (x == 0) {
return 0; return 0;
} else { } else {
return 0; return 0;
} 3
3 3
3 }

These two high-level modules are contextually equivalent, because in both modules
the function f always returns 0. A low-level attacker can differentiate their
translations, however, due to the equality test in the condition of the if-statement.
This test sets the ZF flag in the first module and clears it in the second. This
example illustrates that the flags register can leak information. Information can
also be leaked through the general purpose registers RO to R11 or through the
stack pointer register SP.
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Example 2.2.7. Illegal program values

module m { module m {
Unit f(Unit x) { Unit f(Unit x) {
return unit; return x;
3 }
3 }

These two high-level modules are contextually equivalent, because the only legal
value of type Unit is unit. The low-level translations of these modules are not
contextually equivalent, because a low-level attacker can supply any 32-bit value
for parameter x when calling f.

As there is no real purpose for having Unit-typed function parameters, the
above example might seem to be contrived, without ever occurring in the real
world. However, this problem is actually similar to a full abstraction failure for
the NET C# compiler reported by Kennedy [65], where the boolean type is
two valued in C# but is byte valued in the .NET virtual machine.

Secure compilation

In this section, we describe an enhanced compilation scheme, which adds a
number of runtime checks at strategic places in the protected module’s code,
to correct the full abstraction failures described above. When these runtime
checks detect that the context is performing an action that cannot possibly
correspond to some action expressible in the high-level language, they will end
execution with return value 0. We will show in Chapter 3 that this enhanced
compilation scheme is fully abstract.

Stack security The compiler must ensure the confidentiality and integrity of
variables and control structures on the run-time stack. Instead of storing the
entire stack in unprotected memory, it is split into an unprotected stack in
unprotected memory and a secure stack in the data section of protected memory.
The protected module places its activation records exclusively on the secure
stack, where they are protected from the context.

At each low-level entry point, the stack must be switched to the secure stack
and the spilled parameters for the function call (if any) must be copied from
the unprotected to the secure stack. At each exit point, the stack must be
restored to its previous address in unprotected memory. To implement these
stack switches, the compiler uses a shadow stack pointer variable in the data
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section. It is initialized to a fixed address somewhere in the middle of the
protected data section, which is the base address of the secure stack. At each
entry and exit point, code is added to swap the value of the stack pointer
register with the value of this shadow field.

An outcall from the protected module to unprotected memory is performed by
first pushing the actual return address onto the secure stack. Next, the stack
must be switched to the unprotected stack and the address of the return entry
point and any spilled parameters must be pushed onto it. Control can then be
transferred to the context by a jump. When the outcall returns, control will
first be transferred to the return entry point, which switches back to the secure
stack and subsequently returns back to the actual return address in the original
protected function. Because data is written to the unprotected stack as part of
making an outcall, the compilation scheme must ensure that the location of the
unprotected stack (i.e., the value of the SP register) is valid before any stack
modifications are performed. That is, code must be added to check that the
address of the unprotected stack lies outside of the protected memory region, for
otherwise parts of protected memory might get overwritten. If this check fails,
it means the context is trying to tamper with the protected module and hence
execution should be terminated by placing the value 0 into RO and executing
the halt instruction.

To prevent the context from tampering with control flow by jumping to the
return entry point when there is no outcall to return from, the compiler initializes
the first location of the secure stack to the address of a procedure that writes 0
to R@ and then halts execution. The return entry point will jump to this address
if it is called when there is no outcall to return from.

Because the first half of the data section is now reserved for the secure stack, the
memory space for a field v; will now be located at the ith address of the second
half of the data section. Figure 2.2 illustrates this memory layout. Notice that
this layout also ensures that an overflow of the secure stack will result in a
memory access violation, because the code section is non-writable.

lllegal function pointers The compilation scheme must ensure control flow
integrity on jumps from the protected module to an externally supplied address.
Such a jump occurs at each indirect call and at each exit point. For an indirect
call, a valid destination address is either (1) an address outside of the module’s
memory bounds, or (2) the address of one of the module’s own functions with
a correct signature. For an exit point, only addresses outside of the module’s
memory bounds are valid. A call or return to the address OxFFFFFFFF is also
not allowed, because it corresponds to the null function reference.
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Figure 2.2: Memory layout of the enhanced secure compilation scheme.

The compiler will add runtime checks for these conditions at each indirect call
and exit point. A check for the first type of addresses is straightforward to
implement, while a check for the second type of addresses is more complicated,
because it requires function signature information to be available at runtime.
An alternative solution is to simply forbid indirect calls from a module to
itself in the high-level language. In that case, the run-time check for illegal
function pointers must only check that each indirect call destination lies outside
of the protected module’s memory bounds. We select the alternative solution,
because it does not pose any fundamental restrictions on function calls, since
any indirect call to a local function f can be replaced by an indirect call to a
wrapper function in the context that calls f.

Information leakage In the high-level language, the only way for two modules
to communicate, is through function calls, function arguments and return
values. The compiler must ensure that a low-level attacker cannot use any other
communication channels, as this might leak information that should be kept
private to the protected module.

The low-level language inherently provides three ways to exchange information:
(1) through unprotected memory, (2) through the register and flag file, and
(3) by jumping to or calling memory locations. The first method is already
restricted, because the only data that is exchanged through unprotected memory
consists of spilled function arguments and return values that are copied from
the unprotected stack to the secure stack and vice versa. Since this copying is
controlled by code in the protected module (generated by the secure compiler),
no information other than the information available at the high level can be
leaked through unprotected memory. The compiler must constrain the other
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communication methods as follows:

e The flags register must be cleared at each outcall and exit point.

o Every general purpose register except R0 must be cleared at each exit
point.

o Every general purpose register not used for passing a parameter must be
cleared at each outcall.

Note that the SP register does not convey any module-private information,
because it is restored to the location of the unprotected stack whenever
control leaves the protected module. The above measures ensure that the
only information that can be observed from the protected module by the
context is also available at the high level.

lllegal program values The compiler must ensure that all low-level memory
locations corresponding to high-level fields and variables of the protected module
contain only values for which there is a corresponding high-level value of the
correct type. The only type in our programming language for which this
could be problematic is Unit, because it is the only type for which there is
no corresponding high-level value for every possible 32-bit low-level value. In
particular, unit is the only valid high-level value, for which the corresponding
low-level value is 0. Hence, the compiler must add a runtime check at each
entry point, to ensure that the value of any Unit-typed parameter is 0. The
same check is added at each outcall to a function with return type Unit. If the
check fails, the value 0 is placed into register R@ and the halt instruction is
subsequently executed.

2.3 Implementation

Our secure compiler relies on the fine-grained, program counter-based memory
access control scheme described in Section 2.2.3. A prerequisite for the practical
application of this compiler is that this memory access control scheme has
an efficient real-world implementation. Efficiency is important, as the main
motivation to compile a language is performance; if one does not care about
performance, one can simply interpret the high-level program, which is safe
assuming the interpreter and underlying operating system are safe. At least
three types of implementations are possible: (1) a hardware implementation,
(2) a software implementation based on the virtualization support offered by
modern processors and (3) a software kernel-level implementation.
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An important difference between these three types is the size of the trusted
computing base (TCB). A small TCB gives better assurance that there are
no vulnerabilities in the implementation that could be exploited to bypass
the access control scheme. Recent research [114, 40, 85, 56] has proposed
hardware modifications to processors designed for use in embedded systems,
to implement a memory access control scheme that is very similar to the one
required by our compiler. Such hardware implementations have a very small
TCB, since only the hardware itself needs to be trusted. Unfortunately, these
modified processors are not yet available for end-consumers at the time of
writing, although [56] is expected to be integrated into commodity off-the-
shelf processors soon. Conversely, a virtualization-based implementation is
supported by currently available commodity hardware and, as we will show
below, can also achieve good performance while having a small TCB. A kernel-
level implementation does not require virtualization support and hence can even
run on older hardware, but this solution would include the entire kernel in its
TCB. Given that kernel-level malware is a realistic threat on internet-connected
computers today, a kernel-level implementation will most likely not provide
sufficient security. This is also an additional reason (besides performance) of
why an interpreter would not provide a good solution.

Given these conditions, we followed the second implementation strategy, which
is inspired by implementation techniques used in other security architectures
that support fine-grained isolation of pieces of application logic [74, 72]. The key
idea is to build on the virtualization support offered by current-day commodity
hardware. The essence of the memory protection scheme is that the permissions
for accessing certain regions of memory depend on the current value of the
program counter, as shown in Table 2.2. However, as can be seen from this
table, the memory permissions change only when the protected code region is
entered or exited. We can trap such entries and exits using a small hypervisor,
and reconfigure the standard hardware memory access control unit (MMU) as
necessary. We first describe the overall architecture of this implementation, then
report on the size of its TCB and finally we provide performance benchmarks.

2.3.1 Architecture

Our prototype implementation is based on a small hypervisor that runs two
virtual machines, called the Legacy VM and the Secure VM (see Figure 2.3).
Both VMs have the same view of physical memory, but have different memory
access permission configurations.
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Figure 2.3: The architecture of our prototype is based on two virtual machines:
the Legacy VM and the Secure VM.

Legacy VM

The Legacy VM executes all legacy applications and other code in unprotected
memory. Using virtualization techniques, this virtual machine is able to execute
commodity operating systems and legacy applications without any modification.
From the point of view of the Legacy VM, the only difference compared to
running on bare hardware is that certain memory locations are inaccessible.
More specifically, two memory regions are inaccessible to the Legacy VM: (1)
the memory region reserved for the hypervisor and (2) the protected memory
region as defined in our low-level machine model. Whenever an access to these
memory locations is attempted from the Legacy VM, execution traps to the
hypervisor.

Hypervisor

The hypervisor serves two simple purposes. First, it offers a coarse-grained
memory protection: it prevents any code executing in the Legacy VM from
directly accessing protected modules (as discussed above) and it prevents both
the Legacy VM and the Secure VM from accessing the hypervisor itself.

Secondly, the hypervisor implements a simple scheduling algorithm. When the
Legacy VM calls an entry point in the protected module, execution traps to
the hypervisor, which then schedules the Secure VM. Execution only returns to
the Legacy VM when the protected module returns or performs an outcall to
unprotected memory.

Secure VM

The Secure VM can access all memory, with the exception of the memory
containing the hypervisor. The fine-grained memory access control mechanism
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Table 2.3: The TCB of our PMA prototype consists of only 7K lines of C and
assembly code.

Trusted Computing Base (Lines of Code)
VMM | Security kernel | Shared Total
1,045 1,947 4,167 7,159

is implemented by a security kernel running in this VM. When a request is
received from the hypervisor to execute a function in the protected module, the
requested entry point is checked against a list of valid entry points provided by
the protected module’s memory descriptor. If this check passes, the MMU is
set up to allow memory access to the protected module’s memory region and
execution then proceeds from the entry point that was called. The MMU is
set up to disallow execution of unprotected code, such that a page fault will
be generated when execution tries to jump back out of the protected module.
This page fault will be handled by the security kernel, which will let execution
return to the Legacy VM.

2.3.2 Trusted Computing Base

An important factor for the security assurance provided by this system is the
size of its TCB. Table 2.3 shows the code size of the different parts of our
prototype’s TCB, as measured by SLOCCount [120]. Only the hypervisor
(VMM) and the security kernel are trusted. They contain 1,045 and 1,947 lines
of C and assembly code respectively, and they share an additional 4,167 lines of
code. This totals the size of the implementation of the TCB to only 7,159 lines
of code, which is at least 4 orders of magnitude less than the TCB of a typical
operating system [86].

2.3.3 Performance

We performed two benchmarks to quantify the performance of the memory
access control implementation. First, we measured the impact on the overall
system. Next, we measured the cost of transitioning between unprotected and
protected memory.

All our experiments were performed on a Dell Latitude E6510, a mid-end
consumer laptop equipped with an Intel Core i5 560M processor running at
2.67 GHz and 4 GiB of RAM. Due to limitations of our prototype, we had
to disable all but one core in the laptop’s BIOS. An unmodified version of
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Figure 2.4: The SPECint 2006 benchmarks indicate our prototype
implementation has a very low overhead on legacy applications running in
unprotected memory.

KUbuntu 10.10 running the 2.6.35-22-generic x86_ 64 kernel was used as the
operating system.

System-wide performance cost

Our implementation uses a small hypervisor, which affects the performance of
both the protected module as well as all legacy code. To measure the performance
impact of the hypervisor on legacy applications running in unprotected memory,
we ran the SPECint 2006 benchmarks. Figure 2.4 displays the results, which
show that all applications have an overhead of less than 3.28%, with the exception
of the mcf application (10.36%). We attribute the performance increase of gec
to caching effects.

As our implementation does not require any computation when the protected
module is not under execution, this performance overhead can be attributed
completely to the hardware virtualization support. We expect that as this
support matures, performance overhead will be reduced further. Note that our
hypervisor can be unloaded when it is no longer required, reducing the overhead
to 0%.
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Table 2.4: Overhead of executing a protected module call vs. executing a
kernel-level driver call (in us).

Module | Driver | Overhead
Entry 4.35 0.05 81x
Round trip 6.58 0.07 88x

Micro benchmarks

To measure the impact of crossing the protected/unprotected memory boundary,
we implemented a PingPong protected module that immediately returns control
back to the caller after being called. Using a hardware high-frequency timestamp,
we calculated both the time to enter the module as the round trip time. Each
test was executed 100,000 times. The results (see Table 2.4) show an overhead
of 81x and 88X respectively, compared to a similar module implemented as a
driver. Hence, a transition between the two protection domains in our system
is about 85 times slower than calling a driver in the operating system. This
overhead is mainly caused by the fact that each time the protected /unprotected
memory boundary is crossed, a different virtual machine needs to be scheduled.
This measurement is an upper bound: as the hardware implementations of
virtualization mature, the performance cost of VM transitions will decrease
further. Nevertheless, even this upper bound seems small enough to lead to
a negligible overhead on the overall application when the protected module is
relatively large. For instance, a sensible application design would be to put
cryptographic code in the protected module. Calls to this crypto module would
cost a few microseconds of performance overhead, which is negligible if the
cryptographic operations are computationally intensive.

Conclusions

Our benchmarks indicate that our fine-grained, program counter-based memory
access control scheme can be implemented efficiently on commodity hardware.
At the same time, it should be clear that the main contribution of this text lies in
the description of the secure compilation scheme, and a mature implementation
with rigorous micro and macro benchmarks is out of scope.
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2.4 Discussion

In this section, we first discuss our choice of using full abstraction as the
definition of secure compilation. We then discuss limitations of our high- and
low-level languages.

2.4.1 Security by fully abstract compilation

As illustrated by the examples in Section 2.2.2, full abstraction can be used
as the definition of secure compilation because the preservation of contextual
equivalence expresses important security properties. Full abstraction ensures
that programs that are safe at the source-code level remain safe after compilation.
Though, one could argue that full abstraction is too restrictive as a definition
of secure compilation. For instance, sorting functions alphabetically before
compilation to hide the order of a module’s functions in memory is required to
achieve full abstraction, yet unnecessary if we are only interested in providing
confidentiality and integrity of data and in maintaining control flow integrity.

There are two ways to deal with this problem: (1) we can use an entirely
different definition for secure compilation that is not based on full abstraction or
contextual equivalences, or (2) we can adjust our source and/or target language
to better match our desired definition of security. As an example of the latter,
consider again the issue described above, where we unnecessarily hide the order
of functions in memory. We could add an operation to the high-level language
that, when given two functions of a module, returns whether or not the first
one is defined before the second one. This would make the high-level language
more powerful, without compromising its safety, and it would do away with the
need to hide the order of the functions at the low level in order to achieve full
abstraction.

2.4.2 Language limitations

The high-level language as described in this paper has a number of limitations as
compared to modern programming languages. Most noticeably, it does not have
support for multiple interacting modules or dynamic memory allocation. These
limitations were removed in the works of Patrignani et al. [99, 96, 94], which
extend the compilation scheme described in this chapter. Further extensions,
such as support for dynamic dispatch and exceptions, are also discussed in these
works.
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Multiple modules

Extending our languages to support multiple interacting modules that are part
of a single trust domain is straightforward. As these modules trust each other,
they can be placed together in protected memory and can share a single secure
stack and return entry point.

However, in a more realistic situation, each module could be in its own trust
domain, i.e., each module only trusts itself. This situation is more complicated,
as each module would require its own protected memory area, including its own
secure stack. The memory access protection scheme would have to take this
into account and a number of changes to the compilation scheme would have to
be made as well. For instance, the stack switch on entry and exit of a module
would have to be modified, because spilled parameters and return addresses of
calls between two protected modules cannot be written on either of their stacks,
as neither stack is accessible by both modules. Furthermore, new attack vectors
might exist due to the increased complexity of multiple interacting modules.
For instance, an attacker could try to make two low-level modules interact in
ways that could never occur at the high level, leading to undefined behavior
that is dependent on the specific implementation of a module. New compiler
measures would have to be installed to protect against these new attacks.

Dynamic memory allocation

For simplicity, our high-level language does not support dynamic memory
allocation. However, Patrignani et al. have developed a fully abstract
compilation scheme for an object-oriented source language with support for
dynamic allocation of objects [99, 96, 94|, as an extension of this work.

Support for dynamic memory allocation is implemented in these works as follows.
A predetermined amount of protected data memory is reserved as heap space,
similar to the memory reserved for the secure stack. Because this memory is
protected, an attacker will be unable to access heap records directly. This is
necessary to maintain full abstraction, since direct access to heap records would
violate the high-level encapsulation properties of an object. Construction of a
new object of a class of the protected module is performed by a factory method
in the protected code section.

Since objects are now created dynamically, references to these object will need to
be passed around for other objects to access them. Supporting such references
without breaking full abstraction is nontrivial, since they might leak information
about the order in which objects are allocated and possibly about their size,
thereby breaking full abstraction. Patrignani et al. solve this problem by
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maintaining a hidden object identity map in the protected module. This data
structure maps a unique number (an object identifier) to each protected object
passed to the context. Instead of passing the memory address of the object
to the context, as would be the case in a standard compiler, the generated
object identifier is passed instead. By choosing the identifiers such that the
first object exposed to the context receives identifier 1, the second exposed
object receives identifier 2, etc., no information about the order or size of object
allocations is leaked. Other changes to the compilation scheme that are required
for maintaining full abstraction, include more thorough runtime type checks of
argument and return values of class methods.

2.5 Related work

There is a large amount of research on secure compilation to machine code,
but in most works the emphasis is on hardening the compilation of unsafe
languages such as C to protect against exploitation of the compiled program
by feeding it malicious input. Younan et al. [122] give an extensive survey.
Some notable examples that can provide formal guarantees include control-flow
integrity (CFI) [2], and obfuscation [103].

In our work, attackers can do much more than just supply malicious input;
attackers can execute arbitrary code in the low-level language. The idea to
formalize secure compilation to lower-level languages as full abstraction (and
thus protect against this more powerful type of attacker) was pioneered by
Abadi [1]. In that paper, Abadi illustrates this idea in two settings: the
compilation of Java to bytecode, and the implementation of secure channels
in the pi-calculus by means of cryptographic protocols. The second setting,
proving the soundness of cryptographic implementations, has received a lot of
attention but it is less related to the work reported in this paper. The first
setting, secure compilation to lower-level languages, was studied in the context
of compilation to .NET bytecode by Kennedy [65]. However, for compilation to
low-level code with natural number addressing for memory, only very recently
Abadi and Plotkin [3] have shown that Address Space Layout Randomization
(ASLR) is a sufficiently strong software protection technique to achieve fully
abstract compilation in a probabilistic sense. Jagadeesan et al. [62] extended the
results of Abadi and Plotkin to a richer programming language with dynamic
memory allocation, first class and higher order references and unstructured
control flow. Instead of relying on randomization as the fundamental protection
mechanism, our work shows that program counter-dependent low-level memory
access control is also a sufficiently strong protection mechanism to achieve fully
abstract compilation. Another notable application of full abstraction can be
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found in the recent work of Fournet et al. [47], who present a fully abstract
compiler from an ML-like language with higher-order functions and references
to JavaScript.

The fact that fine-grained memory isolation can be achieved with reasonable
performance overhead, was shown by a second line of related research that
influenced our work. Several authors have proposed security architectures with
a closely related low-level isolation mechanism. While there are significant
differences between these security architectures and our own prototype (in for
instance the implementation techniques used), their access control mechanisms
are comparable. For example, Nizza [110], Flicker [74], TrustVisor [72] and
SICE [15] also provide isolation of small pieces of application logic. The memory
access control mechanisms enforced by these architectures are a special case of
our model, where accesses to unprotected memory from modules is not allowed.
P-MAPS [107], Fides [113], Sancus [85] and Intel’s SGX [56], do allow access
to unprotected memory. All these papers are systems papers: they report
on working systems without providing formal security guarantees. It is likely
that several of these proposed security architectures could be low-level target
platforms for a secure compilation process as we developed in this paper. In
addition, these papers provide evidence that the low-level memory access control
we need in our model is efficiently implementable on today’s computer platforms.

Finally, as reported above, the secure compilation scheme described in this
chapter has been extended by Patrignani et al. [99, 96, 94], to support
dynamic memory allocation, dynamic dispatch, exceptions and other advanced
programming language features.

2.6 Summary

Protection facilities in high-level programming languages can be used to
enforce confidentiality and integrity properties for the data managed by one
component towards other (potentially malicious) components that it interacts
with. Maintaining such security properties after compilation to a low-level
language requires some protection features in the low-level language as well.
Randomization is one such protection feature that is known to be strong enough
to support secure compilation. We have shown in this paper that program
counter-based memory access control schemes, such as those offered by state-of-
the-art protected module architectures, are also suitable as low-level protection
mechanism. We developed a model of such a low-level platform, and have shown
how a procedural high-level language can be securely compiled to this platform.
We have also shown that the low-level platform is realistic, in the sense that it
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can already be implemented on today’s commodity computers with acceptable
performance. We believe that the presented secure compilation technique can
help address the pervasive threat of kernel-level malware that we still see today.
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3.1 Introduction

In this chapter, we formalize the compilation scheme defined in the previous
chapter and prove that it is fully abstract. We have divided our efforts in the most
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efficient way between developing a thorough implementation of the compiler (see
Appendix A) and rigorously formalizing it and its security properties. For this
reason, the theorems and lemmas that we believe contribute most to convincing
the reader of the correctness of our results are proved in full detail, while some
details on the proofs of the more straightforward statements have been omitted.
To make this difference in rigor explicit, the less rigorous proofs are named
proof sketches instead of proofs.

The further outline of this chapter is as follows. In section Section 3.2, we give
a formal definition of contextual equivalence. We then formalize our high- and
low-level programming languages in Section 3.3. In Section 3.4, we describe our
compiler, and in Section 3.5 we introduce program execution traces. Finally,
we give our full abstraction proof in Section 3.6 and provide a summary of the
chapter in Section 3.7.

3.2 Contextual equivalence

We will consider programs that consist out of two modules: a test context C
and a test subject M. Programs of this form are written as C|M. The context
is always modeled as a single module, because from the viewpoint of the subject,
the entire context is a (potentially malicious) black box of which the internal
structure is irrelevant.

The execution of a program C|M is written as C|M —* n if it ends with
integer result n and as C|M —* 4 if it diverges. We will now first formally
define what it means for two modules to be contextually equivalent.

Definition 3.2.1 (Contextual equivalence). For any two modules My and M,
we say My and Ms are contextually equivalent, and write My ~ Ms iff

VC. C|M; —*r <= C|My —"r

This definition holds for both low- and high-level programs, and the program
result 7 can be an integer, the fault outcome, or it can be 4 if the programs do
not terminate.

3.3 Language definitions

In this section we formally define the high-level source language and the low-
level target language of our compiler. We start with the high-level language in
Section 3.3.1 and discuss the low-level language in Section 3.3.2.
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Pu=C|M programs
C,M ::= module m {V F} modules
Vi=Tz=v variables
F =T f(T z) {vars V; S; ret x} functions
T ::= Unit |Int | (T — T) types
S =gz :=FE|m.x:= E|if B then S else S| statements
x:= E(E)|exit E|S;S
B:=E=FE|E<E|!B booleans
E:=xz|ma|v|E+E|E—-FE expressions
v = n|m.f|unit values

Figure 3.1: Syntax definition for the high-level language. The metavariable m
ranges over module names, x over variable names, f over function names, and
n over natural numbers. We implicitly assume all variable and function names
are unique.

3.3.1 High-level language

The syntax of the high-level language is defined in Figure 3.1. Figure 3.2 shows
the language’s typing rules, and Figure 3.3 shows its operational semantics. In
these figures, [E]s denotes the evaluation of expression E under the store s
(which we assume has a mapping for each of the free variables of E), using the
modulo 232 interpretation of the available arithmetic operators. The notation
s[z — n| denotes the partial function that maps = to n and all other arguments
y in the domain of s to s(y).

We make one simplification to the formal high-level language compared to the
language used in the previous chapter, which is that we require each function
to have exactly one parameter. This change simplifies the formal notation and
the compiler, because it prevents parameters from having to be spilled onto the
runtime stack, while only slightly reducing the expressivity of the language.

Notice that the high-level language does not contain an explicit looping construct
such as a while- or for-loop. These constructs have been omitted in favor of
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sig(M) F C : OKn, sig(C) = M : OK.
name(C) # name(M) name(C).main : (Unit — Int) € sig(C) Tp
-FROG

C|M : OK
M = module m {V F}
[V :OKx I Usig(V,m) Usig(M) - F : OKx '+ B: OK
T-MobD T-Not
' M : OKy I'!'B: OKy
I'Fo:T z: T el mx:T el
T-FIELD

T-VARDECL — T-VAR _
I'tx:T I'tmax:T

'FT xz=0v:0K
m.f: (T = T)eTl

Tt - T.Unmr ;
I'-n:Int I' - unit : Unit PEm.f:(T—T)

T-FREF

' E:Int I'-E' :Int

T-Sum 7 T-DIFF
'rE-E:T

' E:Int I'-E':Int
TrE+E:T

Tusig(V)u{z' : T'} - S : OKx sigV)kFa: T
— = T-Func
T f(IT" «') {vars V; S; ret z} : OK«

IFE:(T—>T) Tra:T TFE:T
I'z:=E(E"): OKx

T-CALL

I't+ B: OKy Tk S: 0Ky kS : OKy
T-IF

' E:Int
T-ExiT 5
I'+if B then S else S' : OKx

'k exit E: OK.

'S :0Kx 'S : OKx

T-ASsN y T-SEQ
I'S; S : 0K

'tax:T '-E:T
I'kxz:=F: 0Ky

B '+ E:Int I'tE :Int
e I'FE<E :OKx

T-Lr

'HE:T T+HE :T
I'E=FE:0K

name(module m {...})=m
sig(module m{V F}) = {m.f (T = T) | T f(T' z) {...} € F}

sigV)={z: T|Tx=veV} sigV,m)={maz: T|Tz=veV}

Figure 3.2: Typing rules for our high-level language.
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C = module c {V F} bodies(C)(c.main) = (—, V", S, z)
— —

M = module m {Vl Fl} g = init(V) U init(V")

— E-ProG
C|M — fc(C|M) F {g,[(c, init(V"))], S;ret x)
=[FE s =[F s
! [[7]]gu E-VAR ! E Jou E-FIELD
¥+ {(g,(m,s):5, x:=FE) — Y+ {(g,(m,s):3, mz:=E) —
3+ (g, (m, s[x — v])::35, skip) Y F (glm.x — v], (m, s)::5, skip)
Blgus =t
— [Blo r1}e — E-IFTRUE
3+ (g, (m,s):5, if B then S else S') — X+ (g, (m, s)::5, S)
Bl gus = fal
[Blyv: = false E-TFFALSE

Y F (g, (m,s):3, if B then S else S') — X |- (g, (m, 5):55, S')

validCall(m, E, g U s) [E]gus = m'.f

Y(m'.f) = (2',V,S,2") [E'gus = s' = {2z’ = v} Uinit(V) EC
-CALL
Sk (g, (m,s):3, x = E(E)) — 2 (g,(m',s)::(m, 5):5, S;x = ret z)

—validCall(m, E, g U s)

- E-CALLINVALID
Y+ {(g,(m,s):5, x:=E(E")) — 0

" — / — /
s sz — s(x)] E Rt

S F (g, (m,s):(m',s'):5, 2 :==ret ') — T (g, (m',s")::3, skip)

Xk <97§7 S> — Xk <gl7§/7 Sl)

— 77 E-SEQ — — E-SkIpP
¥+ {g,5, 5;58") — Y+ {g,3, skip; S) — X I (g,53, S)
{5, 99"
= [Elous
v = [Elou E-EXIT E-END
Y F (g, (m,s):3, exit E) — v Yk (g,[(m,s)], ret ) — s(x)

nit(V) ={z—=v|Tr=veV} iit(V,m)={mar—ov|Tz=veV}
validCall(m, E, s) = Im/, f. (E=m/.f) V ([E]s =m/.f Am' #m)
fe(C|M) = bodies(C) U bodies(M))
bodies(module m {V F}) = {m.f — mbody(F) | F € F}

mbody(T f(T' z) {vars V; S; ret 2'}) = (x,V, S, 2")

Figure 3.3: Small-step operational semantics of our high-level language.
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using recursion. Also notice that the protected module is not allowed to use
the exit statement. This is because allowing the module to do so would break
full abstraction, since it makes a module that calls exit appear equivalent
to a module that enters an infinite loop, at the level of execution traces (see
Section 3.5.1). Finally, remember that our language disallows indirect calls
between functions of the same module, as discussed in Section 2.2.4.

Typing judgments take the form I' = K : T', where I' is the typing context, K is
the programming construct to be typed and T is a type or OKy if the construct
does not have a type but has been checked to conform to the language’s typing
rules. The x in OKy is a metavariable that is either ¢ while type checking
the context or m when type checking the protected module. We make this
distinction in order to be able to reject protected modules that use the exit
statement, while still allowing the context to use this statement.

The transition relation — relates configurations, which are four-tuples
3 F {g,3, S), representing the current execution state. The first element
of those tuples is the function context ¥, which maps function names to
tuples (z,V, S, '), containing those functions’ parameter name x, local variable
declarations V, body S and return variable name z’. The function context
is never modified during execution. The second element g is the global store,
which maps module field names to values. The third element s is a stack of
activation records, each of which is a pair (m, s), where m is a module name
and s is a local store mapping variable names to values. The record at the top
of the stack is the current activation record, which designates the module name
and local store of the function under execution. Keeping track of the module
name associated with each activation record is not strictly necessary for defining
the operational semantics of the high-level language, but it will facilitate the
definition of traces in Section 3.5.1. The fourth and final configuration element
S is simply the program under execution. All inference rules of the language are
deterministic, and hence any configuration either diverges or results in exactly
one end state.

3.3.2 Low-level language

The low-level language models a basic Von Neumann computer architecture [81],
extended with a fine-grained, program counter-based memory access control
scheme. Its syntax has already been described in Table 2.1 and its formal
semantics are defined in Figure 3.4 and Figure 3.5.

Compared to the model described in the previous chapter, we only make the
following simplification. We assume a fixed memory descriptor 6 = (b, S¢, sS4, 1),
where b = 0x1000000 is the base address of the protected memory region,
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={r—0|r & RegsU Fl, = halt
ro {T I ! 95 ags} E-Proc m(p) @ E-HALT
C|M — (0,70,C|M) (p,r,m) — r(RO)

m(p) =1d d [s] validJmpg (p, inc(p)) validReads(p,r(s))
{p,r,m) — (inc(p), r[d — m(r(s))],m)

E-LD

m(p) =st [d] s validJmpg(p, inc(p)) validWrites (r(d),)

orom) — (ine(p), rymlr(d) = r()) s

m(p) = 1di d i m(p) = jmp 11
lidJ i lidJ: ,
vali m??(s(P inc(p)) : E-LDI vate mp5(p r(r)) E-JMmp
{p,7,m) — (inc(p),r[d ~ i],m) {p,rym) — (r(r),r,m)
— add d lidJ ¥ — dq 232
m(p) = a s validJmpg(p, inc(p)) v =r(d) +7(s) mo E-ADD

(p,7,m) — (inc(p),r[d — v],m)

m(p) =sub d s validJmpg (p, inc(p)) v =7(d) —r(s) mod 2%

E-S
(p,r,m) — (inc(p),r[d — v], m) ve
m(p) =cmp x y validJmpg (p, inc(p))
s @) =rly)  s=0@ <)
(p,7,m) — (inc(p), r[ZF — z,SF — s],m)
m(p) = je d r(ZF) = true m(p) = je d r(ZF) = false
validJmps(p, r(d)) validJmpg (p, inc(p))
o) — (r(d), ) E-JETRUE ooy — (inc(p).r.m) E-JEFALSE
m(p) = jl d (T(SI(:))T true m(p) =3l d ( r(SF() )z)false
validJmps(p, r(d validJmps(p, inc(p
E-JLT E-JLFE
(p,r,m)y — (r(d),r, m) LIRUE (p,r,m) — (inc(p),r, m) LEALSE

m(p) = call d s=7(SP) —1 mod 2*
validJmpg(p,r(d)) validWrites (p,(s))

(p,rym) — (r(d), r[SP > s],m[r(s) — inc(p)])

E-CALL

m(p)=ret  s=r(s)+1 mod 2
validJmps(p, m(r(SP)))

oy — (m(r(5P)), (5P o ) m) et

inc(p) =p+2 mod 2°?

Figure 3.4: Operational semantics of our low-level assembly language.
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4 = (0x1000000, 0x4000000, 0x4000000, 16)

validJmps(p,p’) = (internalJmps(p,p’) V entryJmps(p,p’) V exitJmps(p,p’)) A
p mod2=0

internalJmps(p,p') = (unprotected;(p) A unprotecteds(p')) V
(codes(p) A codes(p'))

entryJmp;(p,p’) = unprotecteds(p) A entryPoints(p’)
exitJmps(p, p’) = protecteds(p) A unprotecteds(p’)
protecteds(p) = 3b, s¢, Sa. § = (b, S¢, 84, —) Nb < pAp < (b+ sc + sa)
unprotecteds(p) = —protecteds(p)
entryPointgs(p) = Im € Nt bn. 6 =(b,—,—n) Ap=b+mx128Am<n
retEntryPointgs(p) = 3b. § = (b,—,—,—) Ap=1b
validReads(p, ) = unprotectedg(l) V protecteds(p)
validWrites (p, 1) = unprotecteds(l) V (protecteds(p) A datas(l))
codes(l) = 3b, sc, 8a. § = (b, Se, 84, —) NS IANL < (b+ sc)
datas(l) = 3b, sc, Sa. § = (b, 8¢, Sa, —) ANb+sc <IAL< (b+ sc+ sq)

Figure 3.5: Auxiliary definitions for the program counter-based memory access
control scheme of our low-level assembly language.

s, = 0x4000000 is the size of the protected code region, s; = 0x4000000 is the
size of the protected data region, and n = 16 is the number of entry points in
the protected module. Each entry point is spaced 128 words apart, starting
at the module’s base address. The return entry point is always the first entry
point. If fewer than 16 entry points are required, the compiler should ensure
that extraneous entry points simply halt the machine. We assume that the
compiler returns an error when the fixed number of entry points or the fixed size
of the provided memory regions is insufficient for the module under compilation.

Evaluation starts from a program C|M, which is the result of linking C' and M.
We do not give a formal description of the linking procedure, as it would distract
from the main purpose of this chapter, but informally it means that (1) the
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resulting memory region consists of C'; with the memory region from 0x1000000
to Ox8FFFFFFF overwritten by the contents of M, and (2) any unresolved call
targets are replaced by the memory address of the corresponding function.

The initial program C|M transitions into a three-tuple (p,r, m) that models a
processor, where p is the program counter, r is the register and flags file, and
m is the main memory. The register and flag file contains 12 general purpose
registers RO to R11, a stack pointer register SP, and two flags: the zero flag ZF
and the sign flag SF. The stack is used for return addresses and local variables
and grows down, i.e. from high to low memory addresses. The flags are set
or cleared by the cmp instruction and are used by branching instructions. The
memory space is a function mapping positive natural numbers to words which
represent both data and code. Addresses, words and registers are 32 bits wide,
instructions are 64 bits wide and memory is addressed in multiples of 32 bits.
Any conditional or unconditional jump target must be a multiple of 2, such
that it is impossible to jump to the middle of an instruction.

Initially the program counter and all flags and registers are 0, and the main
memory is taken from the starting program C|M. From then on, the processor
will start processing instructions, thereby modifying the registers, flags and
memory space along the way. The processor implements the program counter-
based memory access control scheme by checking whether each memory read,
memory write and control flow jump (even “jumps” from one instruction to the
next) adheres to the permissions of Table 2.2. If at any point in the execution
there is no transition rule from Figure 3.4 that applies to the current state,
we assume that the processor identifies this as a fault. In that case, we write
(p,r,m) — fault.

In this work, we do not consider side channel attacks that could trivially break
full abstraction in practice. This is reflected in the low-level processor model by
the lack of features that would provide such side channels, such as a real-time
clock, caches and I/O devices.

3.4 Compiler

Recall that the compilation of a high-level module M results in a low-level
module M|. We have formalized this compilation process in the form of an
OCaml implementation, which can be found in Appendix A. The full source
code, including a number of examples, can be downloaded at http://people.
cs.kuleuven.be/~pieter.agten/csf2012/. The compiler takes as input a high-
level module in a slightly different format than presented in Section 3.3.1. The
syntax of the high-level modules taken as input by this compiler looks more
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like a typed assembly language than the syntax presented in Section 3.3.1. This
should be considered only a cosmetic change that doesn’t change the expressivity
or safety of the language, but lets the compiler focus on the essentials of the
translation (i.e., ensuring that the compilation is fully abstract), instead of on
basic compilation issues that you would find in any compiler.

3.5 Traces

Inspired by Jeffrey and Rathke’s technique of using program traces for proving
full abstraction for Java Jr [63], we now introduce traces for our high- and
low-level programming languages. Traces let us reason about executions at a
higher level of abstraction, by showing only the interactions between a program’s
context C and its subject M, and hiding the internal computation in either
component. For instance, if we have a high-level execution in which the context
C first performs a number of internal computations, then calls the function
m.f with argument v in the module M, which subsequently does some internal
computations and then returns the value v’ then the corresponding high-level
trace (so far) will be call f(v)? - ret v'!.

We will show that the traces we define are fully abstract. That is, we will define
them such that My ~ My <= Tr(M;) = Tr(Mz), where Tr(M) is the set
of all possible traces generated by M when interacting with some unknown
context. In Section 3.6, we will show that whenever Tr(M;|) # Tr(Mzl), that
Tr(M;) # Tr(Ms). Because our traces are fully abstract, this implies that
My ~ My = M| ~ Ms], which is the core of our full abstraction theorem.

3.5.1 High-level traces

Figure 3.6 defines a labeled transition relation © —aih ©’ between configurations
© and ©', which can either be a starting state C|M, or an intermediate or final
state ¥ F (g, s, S). The trace of (the execution of) a high-level program C|M is
defined as the sequence of basic actions @j generated by this transition relation,
starting from the initial state C'|M. Each high-level basic action ay, is either:

e acall ‘call f(v)?" from C to M, where f is the name of the function that
was called and v is the value passed as argument;
e areturn ‘ret v!’ from M to C, where v is the return value;

o an outcall ‘call f(v)l’ from M to C, where f is the name of the function
that was called and v is the value passed as argument;
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C|M — X F{(g,5s, S)

- TR-INIT
C|M =, C|M + (name(c),s, S)

fc(C|M) F (g, (m, s):3, S) — S (g, (m,s):5, 5"

5 — TR-INTERNAL
C|M + (g, (m,s):35, ) ==, C|M + (¢, (m,s'):5, §)

fe(C|M) F {g, (m,s):5, x := E(E'); S) — Y F {¢',(c,s):5, §")
[E]s =m.f [E']s =v ¢ = name(C) m = name(M)

call f(U> C|M + < , (¢, s’)::gl, S/>

Tr-INCALL
C|M + (g, (m,s):5, z :== E(E'); S)

fc(C|M) - {g, (¢, 8):3, x := E(E'); S) — B F (¢, (m,s'):5, S")
[Els =c.f [E']s=v ¢ = name(C) m = name(M)

call f(v)' TR-OUTCALL
C|M F (g, (c,s):3, x := E(E"); S)

CIM & (g, (m,s):35, 5"

fe(C|M) - (g, (m, s)::(c,s'):5, z :=ret z'; S) — X+ (¢, (c,s"):5, S')
’

s(z')y=w ¢ = name(C) m = name(M) TRR
R-RETURN

ret v!

C|M + (g, (m, s):(c, s'):5, z :=ret 2'; S) =1, C|M + {d, (¢,s"):55, S")

fe(C|M) - (g, (¢, 8)::(m, )55, x :=ret 2';S) — T+ (¢, (m, s"):35, S)
s(z)y=w ¢ = name(C) m = name(M)

CIM F (g, (c, s):(m, §'):5, « :=ret 2’3 S) B=5% C|M (¢, (m, s"):5, S')

TreSweny  Tr-Actioy  RTLEANS &
TR-REFL o :T>h oY 0=2,0 0 —», 0 0 —», 0"
€ € ’ [o] ” add
O —, O © —», O O —», O O —, O

Figure 3.6: Definition of traces for our high-level imperative language.

e a return-back ‘ret v?’ from C to M, where v is the return value.

Notice that interactions from the context to the protected module are annotated
with a ‘?’, while interactions from the protected module to the context are
annotated with a ‘! Based on the described labeled transition relation, we can

define the set of traces of a high-level module as follows.

Definition 3.5.1 (High-level trace set). The set of traces of a high-level module
M is defined as:

T (M) = {a | 3C,0. C|M -5, 0}

From this definition, we can define high-level trace equivalence.

TRrR-RETBACK
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Definition 3.5.2 (High-level trace equivalence). We say two high-level modules
My and My are trace equivalent when their trace sets are equal:

My ~gr My iff T (M) = e (M)

The following lemma states that the high-level traces as defined in Figure 3.6
are fully abstract.

Lemma 3.5.1 (Full abstraction of high-level traces).

M1 ~HT MQ < MlﬁMg

Proof sketch. In the high-level language, all implementation aspects of a module
are hidden and the only way for a context to interact with a module is through
function calls to the module. The information exchanged between a module and
a context is (1) the names of the functions called, (2) function call arguments
and (3) the function call return values. Hence if there is a context that is able to
distinguish M; from Mo, it can only do so based on these three elements. Since
each of these elements is included in the traces of a module, the trace sets of
these two modules will differ and hence the = direction of the lemma follows.
Conversely, if Tr(M;) # Tr(Ms), then at some point M reacts differently to a
function call than M5 and this means there must be some context C' that can
trigger this difference by interacting with M7 and M. O

3.5.2 Low-level traces

Figure 3.7 defines the labeled transition relation © ﬂ»l ©’ for low-level traces,
based on the relation presented in [97]. Considering all possible interactions
between a module and a context, each low-level basic action q; is either:

o acall ‘call p(r)?’ from C to M, where p is the call target address in M
and r is the register and flag file;

o areturn ‘ret p(r)l’ from M to C, where p is the return address in C' and
r is the register and flag file;

e an outcall ‘call p(r/,p")!" from M to C, where p is the call target address
in C, 7’ is the register and flag file, and p’ is the return address in M;

e a return-back ‘ret v’ from C to M, where r is the register and flag file;

e ajump ‘jmp p(r)" from M to C, where p is the jump destination and r
is the register and flag file;
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Figure 3.7: Definition of traces for our low-level assembly language.
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e a write-out ‘write (a,v)!’, when M writes value v at address a which is

in C

e aread-in ‘read v?’, when M reads a value v at some memory location of

C.

The set of traces of a low-level module is defined in terms of these basic actions,
as follows.

Definition 3.5.3 (Low-level trace set). The set of traces of a low-level module
M s defined as:

TL(M) = {@ | 3¢, 0. C|M -2, 0}

As we did for high-level traces, we now define low-level trace equivalence.

Definition 3.5.4 (Low-level trace equivalence). We say two low-level modules
My and My are trace equivalent when their trace sets are equal:

M1 ~LT M2 iff T‘I‘L(M1> = T‘IL(M2>

Following the same structure as the section above, we should now argue that
these low-level traces are fully abstract. Unfortunately, it turns out that these
traces are not fully abstract. More specifically, the traces are complete in the
sense that they capture all observable actions, but they are unsound because
they also capture unobservable actions. Thus, if two low-level modules have
the same sets of traces, then they are contextually equivalent, but the opposite
statement does not hold.

Lemma 3.5.2 (Completeness of low-level traces). For any two low-level modules
My and My, we have:

My ~p7 My = M; ~ M,

Proof sketch. In the low-level language, there are inherently three ways for
a context C' and a module M to communicate: (1) through unprotected
memory, (2) through the register and flag file, and (3) by jumping to or calling
memory locations. We will argue that the low-level traces capture each of these
interactions. The context can initiate communication in the following ways.

e By calling or jumping to an entry point of M, potentially passing
information through the register and flag file. All of this information,
including the address that was called, is captured in the TR-INCALL rule.
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e By returning to the return entry point from an outcall, again potentially
passing information through the register and flag file. This information is
captured in the TR-RETBACK rule.

The program counter-based memory protection rules of the low-level language
prevent the context from jumping to anywhere else in the protected code section,
and from accessing the protected data section. Of course, it is possible that M
reads information from unprotected memory in response to a call or return-back,
but this will be captured in the TR-READIN rule.

Similarly, the module M can initiate communication as follows.

¢ By making an outcall to some location in C'. The information transferred
by this action is (1) the call target location p’, (2) the values of the
register and flag file 7/, and (3) the original value of the program counter p,
because inc(p) is pushed onto the top of the stack in unprotected memory
(see rule E-CALL in Figure 3.4). Each of these pieces of information is
captured in the TR-OUTCALL rule.

e By jumping to some location in C'. This case is similar to the previous
one, except for the fact that the jmp instruction does not place the return
address on the stack. Hence the information transferred consists of the
call target location p’ and the values of the register and flag file 7/, which
are both captured in the TR-OuTJMP rule. Note that it is not possible
for the execution to “run off the end” of the protected code section into
unprotected memory, because the protected code section is followed by the
protected data section, which is non-executable and hence would cause
the processor to fault.

e By returning from a call made by C'. The information transferred in this
case is the return location p’ and the register and flag file r’. The original
program counter is not disclosed in this case, because it is not written
into memory. All information transferred is captured in the TR-RETURN
rule.

e By writing some value into unprotected memory. The information
transferred in this case is the address of the memory write and the
value that was written. Both pieces of information are capture in the
TR-WRITEOUT rule.

e By reading some value from unprotected memory. The information
transferred in this case is the value that was read. This information is
captured in the TR-READIN rule.
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The above items describe all possible ways for a module and a context to
communicate, and all of them are captured in the low-level traces. Hence, if the
trace sets of two modules M; and My are equal, they communicate with the
context in exactly the same ways, and since a context C can only distinguish
M; from Ms by communicating with them, no context will be able to tell them
apart. ]

Lemma 3.5.3 (Unsoundness of low-level traces). For low-level modules My
and My, we have in general:

M1 ZMQ ?5 M1 LT M2

Proof. 1t is easy to prove this lemma by using a counterexample. Consider a
low-level module M; that reads the value v at memory location 1 of the context
and subsequently returns 0, and a low-level module M5 that reads the value
v’ at memory location 2 of the context and also subsequently returns 0. The
observable behavior of these two modules is the same, hence we have My ~ M.
However, assuming v # v/, the trace sets of these two modules are not equal
because the read values v and v’ show up in the low-level traces. Hence we have
My 21 M. O

As argued above, the problem is that the low-level traces capture too much:
they not only capture all observable behavior of a module, they also capture
unobservable actions. Read-ins and write-outs are the offending actions, since
they are not always observable by the context. Patrignani and Clarke [98] have
studied this problem in depth and propose two possible solutions, based on earlier
observations by Curien [34]. The first solution consists of modifying the trace
semantics, such that the traces capture more precisely what is communicated
between the module and the context. In particular, a read-in or write-out
label should only be generated for observable read-ins or write-outs, which is
not trivial to achieve for our low-level language. The other solution is more
straightforward and consists of preventing or avoiding read-ins and write-outs
from occurring altogether. In the next section, we will show that this solution
is a natural fit for our compilation scheme.

3.5.3 Revised low-level traces

As argued above, the low-level traces are not fully abstract because they not
only capture all observable actions, but certain unobservable read-ins and write-
outs as well. In this section, we will show that, while in general a low-level
module can perform any of the low-level actions a;, the low-level modules that
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result from the compilation of a high-level module using our secure compiler
are more reserved in the kinds of interactions they engage in. This allows us
to create a revised low-level trace semantics that is both simpler and fully
abstract for securely compiled modules (it will not be fully abstract in general,
for arbitrary modules, however). We make the following simplifications for our
revised low-level traces.

o A securely compiled module never performs any reads from unprotected
memory. Hence, read actions will never show up in low-level traces of a
securely compiled module and thus we can discard them for our revised
low-level traces.

e A securely compiled module never performs an outcall directly, but always
passes through a function (named outcall_helper in the formalization in
Appendix A) that (1) switches from the secure stack to the public stack,
(2) places the address of the return entry point on the stack, (3) clears
all flags and registers except the argument passing register R4 and the SP
register, and finally (4) jumps to the call target using a jmp instruction.
The call instruction is never used. Hence, the call p(r/, p’)! action will
never show up in any low-level trace of a compiled module, but instead we
will see a write (s,v)! followed by a jmp p(v’), where s is the top of the
public stack, v is the address of the return entry point, p is the call target
destination and v’ is the value of the argument passed in R4. For our
revised low-level traces, we can hence discard the original call p(r/, p’)!
action and we can replace sequences write (s,v)! - jmp p(v') by a new
action call p(v"). This new call action contains the same information as
the sequence it replaces, even though it does not mention s or v. This
is because s is always the top of the public stack (which is controlled
completely by the context) and v is the address of the return entry point,
which is constant for all protected modules and hence does not carry any
information.

o Apart from the case described above, a securely compiled module never
performs any write or jump to unprotected memory. Hence write and
jmp actions never show up in low-level traces, except in the above case,
where we have replaced them by the new call p(v') action. Thus, we can
discard jmp and write actions for our revised low-level traces.

¢ When a function of a securely compiled module returns, it will first return
to the entry point through which it was called, which (1) switches from the
secure stack back to the public stack, (2) checks that the return address
(which is on the top of the stack) is a valid address in unprotected memory,
(3) clears all flags and registers except R0 and SP, and finally (4) returns
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back to unprotected code. Hence, for our revised low-level traces, we can
replace each ret p(r)! action by a ret v! action, where v is the value of Re.
We can discard the return location p, because it is controlled completely
by the context and hence does not represent any information transferred
from the module to the context. We also do not need to incorporate the
value of SP into our traces, because it will point to the top of the public
stack, which is also controlled completely by the context.

e When a securely compiled module receives a call from the context, the
module never reads any of the values passed through the register and flag
file, except the value of R4, which contains the call argument, and the
value of SP, which is simply stored somewhere in protected memory such
that the stack can be switched to the secure stack and later restored to
the public stack. Thus, in our revised low-level traces, we can simplify
call p(r’)? actions to the format call p(v)?, where p is the call target
address and v is value of R4.

e When a context returns back to a securely compiled module after an
outcall, the protected module never reads any of the values passed through
the register and flag file, except (1) the value of R0, which contains the
return value, and (2) the value of SP, which is only stored temporarily, as
described above. Thus, in our revised low-level traces, we can simplify
ret r? actions to the format ret v?, where v is value of R0.

Figure 3.8 formally defines these revised low-level traces and we give the
definitions for trace sets and equivalence below.

Definition 3.5.5 (Revised low-level trace set). The revised set of traces of a
securely compiled low-level module M is defined as:

TR (M) = {a | 3C,0. C|M| ==, 0}

Definition 3.5.6 (Revised low-level trace equivalence). We say two securely
compiled low-level modules M| and Ml are trace equivalent when their revised
trace sets are equal:

My] ~pr M) iff TR (M]) = TeR(Ms])

Lemma 3.5.4 (Full abstraction of revised low-level traces). For two securely
compiled low-level modules M1| and Msl., we have:

Myl ~gr M2| < M| ~ M|

Proof sketch. The above paragraphs have argued why no information is
lost when using the revised low-level traces for securely compiled modules,
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Figure 3.8: Definition of revised traces for our low-level assembly language.
These traces are only fully abstract for securely compiled low-level modules.

compared to the original low-level traces. Hence we have M1| ~prMs] =
My} ~p7M>s| and based on Lemma 3.5.2, we thus have M| ~gr Ms] —
My} ~ Ms]. The soundness of the revised low-level traces follows from the fact
that any action that is part of a revised low-level trace is now observable in
the corresponding low-level execution. This is because control is transferred
from one component to the other (the context or the module) as part of each
action, and any call destination, argument value or return value included in
the action is directly observable by the destination component in the low-level
execution. Hence we also have M| ~ Ms] = M| ~gr Ms] and thus the
lemma holds. O
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3.6 Full abstraction

We can now start to prove our full abstraction theorem, but before we begin,
there is one important assumption that we must point out, which is that we
assume that the secure stack of the low-level modules under consideration never
overflows. The limited size of the secure stack could be seen as a failure of full
abstraction, because it reveals information about the number of local variables
used by a module, which is not visible at the high level. However, we will
abstract from this problem, because revealing this information does not pose a
security risk in practice.

Full abstraction breaks down into two parts: soundness and completeness.

Theorem 3.6.1 (Soundness). For any two high-level modules My and My, we
have:

Myl ~ Ms] = My ~ M,

The soundness theorem states that if two low-level modules behave identically,
then their high-level sources must behave identically as well. Or, in other words,
if two high-level modules behave differently, then their compilations behave
differently as well. This essentially means the compiler is correct (but not
necessarily secure), since otherwise two modules that have different high-level
semantics are translated to low-level modules that behave the same, and hence
at least one of those translations behaves incorrectly. Proving this theorem is
nontrivial, but since the focus of this chapter is on proving the security of the
compiler, we do not prove the soundness theorem.

Theorem 3.6.2 (Completeness). For any two high-level modules My and Mo,
we have:
My ~ My = MlJ/ ~ MQ\J,

To prove the completeness theorem, we will prove the equivalent statement
Myl # Ms| = My % M. The general idea is as follows. From Lemma 3.5.4,
we know that M| #£ Myl = Mil] #grr Msl] and hence, by the definition
of revised low-level traces, there is some low-level context C; such that
Cy| My —* r and C;|Ms] —A* r. Let a7 and @z be the traces of Cj|My]
and Cj|Mas] respectively, then we know a7 # az. We will describe an algorithm
that, given any such high-level M7, M, and revised low-level traces @y and a3 as
input, will construct a high-level C}, such that Cp,|My; —* r and Cp,|Ms —A* 7.
The existence of this algorithm proves the completeness theorem.

The algorithm relies on the following two propositions.

Proposition 3.6.1. If we number the actions of a high-level or revised low-level
trace starting at 0, then o is a call or a return-back (i.e., a ?-type action)
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when i is even, and a9 is an outcall or a return (i.e., a !-type action) when i

s odd.

Proof. The proof goes by induction on i. For i = 0, the proposition certainly
holds, because execution starts in the main function of the context and hence
action number 0 can only be a call. Assuming that the proposition holds for
i = n, we now prove it holds for i = n + 1. If n is even, then a(™ is a call or
return-back. In either case, control will be in the protected module M after the
call or return-back and hence, the next action can only be a return or outcall
respectively. The case for when n is odd is symmetrical. O

Proposition 3.6.2. For any low-level C', Miyl, and Masl, the revised low-level
traces ay and ag generated by C| Myl and C|Mal respectively, differ for the first
time at an odd-numbered (i.e., !-type) action.

Proof. Suppose the first pair of differing actions is even-numbered. By
Proposition 3.6.1, all even-numbered actions are calls or return-backs, which
originate from C'. The information carried by these actions is the target address
p and the argument value v for a call, or the return value v for a return-back. At
least one of these components must be different for the actions to be different,
but this means some state of C' must already be different in the two executions,
which can only be because of a prior difference in the actions performed (because
both executions start from the same context C'). This is a contradiction and
hence our assumption that the first pair of differing actions is even-numbered
must be false. O

3.6.1 Lifting low-level values

The algorithm that we will use to prove our completeness theorem requires a
function for ‘lifting’ low-level values to a corresponding high-level value. The
input to this function consists of (1) the expected high-level type T of the value
to lift, (2) the low-level value v to lift, and (3) a function table T mapping
(address, function type) pairs to high-level function names. Each entry of this
function table will correspond to a function of the high-level module that is
under construction by the algorithm. The lifting function is defined as follows.
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lift(Unit, v, 7) = if v = 0 then unit else Fail
lift(Int,v,7) = v

lift((T — T'),v,7) =
match 7(v, (T — T')) with
f then c.f
e then T' f(T z) {vars T’ 2’ = default(T); ret x'}
where
default(Unit) = unit
default(Int) =0
default({T — T')) = null

We assume the function name f’ in the case where T'= (T" — T") is a fresh
function name not yet occurring in the high-level module under construction.

3.6.2 Algorithm

We are now ready to define the algorithm for proving our completeness theorem.
It takes as input two high-level modules M; and M, and non-equal revised low-
level traces a7 and @z, generated by the executions of Cj|M;] and C;| Mz for
some low-level context C;. From this, the algorithm will construct a high-level
context C such that the (high-level) trace of C|M; differs from the trace of
C|Ma, thereby proving that My %y M. The idea behind the algorithm is that
the created context C' will try to “mimic” the revised low-level execution traces
a7 and a3 at the high level. The created context must perform ?-type actions
such that, at every step of the execution of C|M; and C|Ma, the high-level
state of M7 and M, is equivalent to the low-level state of M| and Ms] in the
execution of Cj|Mi| and Cj|Msy] respectively. This will ensure that, at the
execution point where M;| performs a different action than Ms|, their high-level
counterparts My and Ms also perform different actions. While describing the
algorithm, we will at each point argue why the algorithm ensures that the state
of My and M5 remains equivalent to the state of M| and Ms]| respectively and
why the !-type actions generated by M; and My have the same format as those
generated by M;| and Ms]| respectively.

As internal variables, the algorithm uses an integer step counter variable i, a
stack of return locations 7 and a current function name f.. The algorithm will
iterate over the pairs of basic actions of the @y and az given as input, and the
step counter will indicate the pair of actions that is currently being handled.
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The top of the stack of return locations will indicate the precise location in the
context under construction where M; and M, will return to on the next return
action. Finally, the current function name simply indicates the name of the
function of C' that is currently being constructed by the algorithm.

The algorithm will alternate between a construction mode and an execution
mode, and will increment ¢ by 1 at each alternation. The algorithm will start
in construction mode and hence it will handle ?-type actions in construction
mode and odd-numbered !-type actions in execution mode. In construction
mode, the algorithm will add statements to the context under construction C,
and in execution mode, the algorithm will be executing functions of M; and
M,. Hence we assume the algorithm contains an interpreter for the high-level
language, following the evaluation rules of Figure 3.3. The algorithm always
maintains the following invariant: Vj < i : agj ) = aéj ). Thus, it finishes when
it reaches the pair of basic actions that differ. According to Proposition 3.6.2,
this will be at an odd-numbered, !-type action.

Initialization

C' is initialized to:

module ¢ {
Int step = O0;

Int main() {
vars;
ret O;

}
}

The initial return location stack 7 is empty, the current function f. is set to
main and the step counter i is set to 0. The algorithm must also initialize the
function table 7. It does this by scanning M;, Ms, to create a list of all function
reference literals and their corresponding type. For each distinct function
reference c.f found (where ¢ is the name of the context C') with type (T' — T7),
a new function 77 f/(T z) {vars T' o’ = default(T); ret 2’} is created in
C and an entry (p, (T — T")) — c.f is added to 7, where p is the low-level
memory location of the start of the newly added function after compilation of
C'. This initialization step is required to ensure that when the algorithm sees
the low-level value p being exchanged between C' and M; or M, as part of a
low-level interaction, that it can consistently exchange the correct corresponding
function c.f at the high level.
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Construction mode

Whenever the algorithm is in this mode, ¢ is even, so by Proposition 3.6.2 we
have agi) = ag). We shall refer to these actions simply as a(®). The algorithm
will add a block of code at the end of the current function f., right before its
return statement. The code to add depends on the kind of a() we are dealing

with.

o If a = call p(v)?, the algorithm will first determine which high-level
function corresponds to the called address p. This address must correspond
to the address of one of the entry points of M;| and Ms/, for otherwise
a call ? action would not have been generated (see rule TR-INCALL of
Figure 3.8). For the same reason, the called entry point cannot be the
return entry point. Since the mapping of entry points to functions is
deterministic, the algorithm can determine which high-level function f
corresponds to the p that was called. When the algorithm knows f, it also
knows the type T of the function’s argument and its return type 7”. It
now has enough information to call the lifting function for the argument
value: vt = lift(T, v, 7). There are four possible outcomes for this lifted
value:

The Fail outcome - This can only happen when T = Unit and v # 0.
This means the low-level context that generated this action has
performed an illegal operation: it has specified an invalid value for
a function parameter, as described in Section 2.2.4. However, our
secure compiler was designed to handle this situation by halting
execution with outcome 0. This contradicts the given fact that
a1 # as, and hence we can conclude that this case cannot occur.

A new function T” f/(T' z) {...} - This means that T = (T — T")
for some 7" and T”, and that (v,T) was not yet present in the
function table 7. It also means that v is an address somewhere
outside of the protected memory region, for otherwise the protected
module would halt the execution with outcome 0 right after this
call, again contradicting the fact that a7 # a@3. When the algorithm
encounters this case, it will add the new function definition v1 to
the module under construction C and it will update the function
table by mapping (v, T') to the name of the new function c.f’. This
ensures that the next time the algorithm tries to lift (v,T), it will
end up using the same high-level function. This is important because
protected modules are allowed to compare function pointers of the
same type, and hence we must ensure that whenever we see two
equal values in the actions of the revised low-level traces @y and as
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that we are mimicking, that the corresponding high-level values are
also equal.

An existing function name c.f - This means that T = (T — T") for
some 7" and T”, and (v, T') was already present in the function table
T.

A integer value v - This means that either T' = Unit and v = 0, or
that T' = Int.

In any case, the algorithm adds the following block of code to f..
if (c.step =1i) {
c.step = c.step + 1;

T r = mf(oh);
=
}

In this piece of code, i refers to the current step counter value, m is
name(M;) = name(Ms), and T, T, f and v are as described above. The
arrow indicates the return location /.. We use a bit of syntactic sugar
here for the format of the if-statement and for declaring a new variable
r inline, instead of in the initial vars declaration at the start of f.. We
also assume that 7 is a fresh variable name and that the step field has an
unlimited integer range (we can simulate an arbitrarily large range using
multiple 32-bit variables).

After adding this block of code to f., the algorithm increments its internal
step counter 7, pushes [,. onto the return location stack 7 and then switches
to execution mode, passing the location of the called function name m. f
in M; and in M5 as arguments to this mode.

o If ¢ = ret v?, the algorithm will add the following block of code to f,,
right before its return statement.
if (c.step = 1) {
c.step = c.step + 1;
T x = vl
ret x;

}

Here, ¢ again refers to the current step counter value, and vt = lift(7', v, 7).
The type T to use for lifting is the return type of the current function f..
For the same reason as described above, the lifting function cannot fail
(i.e., if T'= Unit, v must be 0).

After adding this block of code to f., the algorithm increments its internal
step counter 4, pops two locations /; and [s from the return stack 7 and
switches to execution mode, passing I; and /o as arguments to this mode.
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Execution mode

In this mode, the algorithm will execute high-level statements of M; and M
using an embedded interpreter based on Figure 3.3. The step counter i will
always be odd when the algorithm is in this mode and hence the current action
will be a !-type action. This mode always executes after construction mode, and
receives as arguments from that mode two locations [y and Il in M; and Ms
respectively, indicating where the execution should start or continue. However,
before starting execution, the algorithm first checks if the current low-level
actions agi) and agi) both exist. At least one of them must exist, for otherwise
we have a contradiction with the fact that ay # az.

If agi) exists, the algorithm runs its interpreter from location /; until it encounters

a high-level outcall call ¢. f(v)! or return ret v! to C. If aéi) exists, the algorithm

does the same for location l;. We shall call these high-level actions hgi) and

hgi) respectively. After reaching the outcall or return, the interpreter pauses,
thereby saving the execution state, so that it can continue execution using the
same variable and field values the next time the algorithm enters the execution
mode.

If only agi) exists, this means the second execution trace has ended. In this
case, the algorithm decides its next action based on the form of hgz).

o If hgi) = ret v!, the algorithm first pops a location r; from the return
location stack 7. This is the code location in C' that M7 will return to. It
then simply adds the statement exit(1) at that location and ends.

o If hgi) = call ¢.f(v)!, the algorithm adds the following code block at the
end of function c.f of C, right before its return statement.
if (c.step =1) {
exit (1);

}

The algorithm ends after adding this code.

If only a(Qi) exists, the algorithm behaves symmetrically to the case where only

agi) exists. If both agi) and aéi) exist, the algorithm decides its next action

based on the forms of hgi) and hgi).

o If hgi) = ret v{! and hg) = ret vs!, the algorithm first pops the return
location [, from the top of the return location stack 7. The current
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function f. is set to the function enclosing this location. The algorithm
then checks whether the values of v; and vy are equal. If so, the algorithm
adds the statement ‘step += 1’ at location [,., increments its internal step
counter ¢ and returns to construction mode. However, if the values are
different, the algorithm adds the following code at location I,
if (r =wv) {

exit (1);
} else {

exit (2);

}
The algorithm then ends after adding this block of code.

o If hgi) = call c.f1(v1)! and héi) = call c. f3(v3)!, the algorithm decides its
next action based on whether f; = f; and v; = vs.

If f1i = fo = f and v; = vg, the algorithm adds the following code right
before the final return statement in c. f:
if (c.step =1) {

c.step = c.step + 1;

}

The algorithm then pushes the locations in M; and Ms right after the
outcalls onto the return location stack, sets f as the new current function f,
and increments its internal step counter 4, before returning to construction
mode.

If f1 = fo = f, but v; # vs, the algorithm adds the following code right
before the final return statement in c. f, where x refers to f’s parameter
name.
if (c.step = 1)
if (x =wv1) {
exit (1);
} else {
exit (2);
}

}

The algorithm then ends at this point.

If f1 # fo, the algorithm adds the following code to both c.f; and c. fs,
right before their return statements, where num is 1 in f; and 2 in fs.

{

if (c.step =1) {
exit (num);

}
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The algorithm ends at this point.

If hy and hy are two different kinds of actions (i.e., one is an outcall
call c.f(v1)! and the other is a return ret v!), the algorithm first pops the
return location [, from the return stack and adds the statement exit(1)
at that location in C'. The algorithm then adds the following code right
before the final return statement in c. f.

if (c.step =1) {
exit (2);

}

The algorithm then ends at this point.

3.6.3 Correctness proof

We will now argue why the algorithm described above generates a high-level
context C' that can distinguish the given M; from Ms. The argumentation is
based on a correspondence between high- and low-level states.

Definition 3.6.1 (High- and low-level state equivalence). We say that the
state (9,3, S) of a high-level module M is equivalent to the state (p,r,m) of
its low-level translation M in the context of the high- and low-level executions
of Cr|M and Ci|M| respectively (for some arbitrary Cy and C;), when the
following properties hold.

The program counter p either points somewhere in unprotected memory, or
it points to the first instruction of the translation (by the secure compiler)

of S in M|.

For each field x of M in g with high-level value vy, there must be a
corresponding memory location | in m with low-level value vy.

For each local variable y with high-level value vy in each activation record
(n,s) €5 for which n = name(M), there must be a corresponding memory
location | in m with low-level value v;.

For each pair (v, v;) of high- and low-level values described above, the
following properties must hold.

— If vy is Unit-typed, then v; = 0.

— If vy is Int-typed, then vy = v;.

— If vy, has function reference type (T — T'), then for every other pair
(vy,,v]) with the same type, we have v, = v}, <= v, = vj.
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By definition of the compiler, the initial high-level state of a module M will
always be equivalent to the initial low-level state of its translation M, as
expressed by the following lemma.

Lemma 3.6.1 (Initial state equivalence). For any Cy, Cp, and M, the initial
state of M in the execution of Cp|M is equivalent to the initial state of M in
the execution of Cj|MJ.

Proof. This follows directly from the definition of the compiler. There are
no activation records of M yet, hence we only need to take field values into
account. Unit-typed values are translated to 0, integers are trivially translated
to their own value, and each occurrence of a particular function reference c.f is
translated to the same memory location p in the linking phase. O

The following lemma says that executing statements of M together with the
corresponding instructions in M| does not break state equivalence.

Lemma 3.6.2 (State equivalence preservation). If, for some C} and C), at
some point in the execution of Cy|M, the next statement to be executed is part
of M, and the current execution state is equivalent to the execution state of
M| at some point in the execution of Cj|MJ, then the state of M will still
be equivalent to the state of M| when that statement and the corresponding
low-level instructions have been executed.

Proof sketch. Since the high- and low-level states are initially equivalent and
the behavior of the next low-level instructions to be executed corresponds
exactly to the behavior of the next high-level statement to be executed, the
states will still be equivalent after the execution of the high-level statement and
the corresponding low-level instructions. More specifically, if we consider all
state-changing operations that are possible in the high-level language, we can see
that the compiler ensures that the low-level state changes correspondingly. One
potential state-changing operation that deserves special attention is an equality
test between two function references. The high-level language allows function
references of the same type to be compared to each other in the condition of an
if-statement. Hence, to ensure that high- and low-level executions remain in
sync, it is important that our definition of state equivalence requires any two
equal high-level function reference variables of the same type, to be equal at
the low-level as well, and vice versa. O

We can now prove the correctness of our algorithm, using the lemmas given
above.
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Theorem 3.6.3 (Algorithm correctness). Given two high-level modules My and
My, and the non-equal revised low-level traces a1 and @z corresponding to the
execution of Cy| Myl and Ci|Mal respectively, where Cy is a low-level module that
distinguishes M1l from Mosl, the algorithm described in Section 3.6.2 generates
a high-level C that such that the execution of C|My and C|Msy generate different
traces.

Proof. By Lemma 3.6.1, there is an initial state equivalence between M; and
M, and between Ms and Ms]. We will argue by induction on the interactions
between C' and the modules, that for x € {1, 2}, we have that (1) this equivalence
is maintained throughout the synced execution of C|M, and Cj|M,|, and that
(2) the high-level actions performed by M, are similar to the revised low-level
actions performed by M./, in the sense that M; and My will perform different
actions in the same step that M;| and Ms| do. By synced execution, we mean
that when we execute a statement of C|M,, we execute the corresponding
instructions in Cj| M.

Assume that, after interaction ¢, the state of M is equivalent to the state of
M| and the state of M5 is equivalent to the state of Ms], where ¢ is odd. We
will show that the states are still equivalent after interaction ¢ + 2 and that
12 #* 1572 — plit? #* R where I, and [y are the revised low-level
1 2 1 2

execution traces of C;|Mi] and C;|My| respectively, and h; and hy are the
high-level execution traces of C|M; and C|Ms respectively.

Since i is odd, i + 1 is even and hence hgiH) = th) are 7-type actions. These
actions are thus performed by the generated context C' and the statements
causing these actions have been generated in the construction phase of the

algorithm. From the definition of the algorithm, we know that if hgiﬂ) = héﬂrl)
are calls call m.f(vp)? then the corresponding low-level actions lgz) = l;l) are
calls call p(v;)?. Similarly, if they are return-backs ret v ?, we know that the
corresponding low-level actions lgi) = lgi) are return-backs ret v;?7. In either
case, the value vy, passed during these interactions is the lifted version of v;. As
can be seen from the definition of the lifting function, the lifted value is always
equivalent to the original low-level value. Furthermore, the algorithm ensures
that the next high-level statement to be executed in M; and Ms (i.e., the call
target locations or return locations) corresponds to the next instructions to be
executed in M7 and Ms] respectively. That is, the next instructions to be
executed at the low level are the result of the translation (by the secure compiler)
of the next statements to be executed at the high level. Hence, because (1)
the original high- and low-level states were equivalent, (2) the newly passed-in
values are equivalent, and (3) the next low-level instructions to be executed
correspond to the next high-level statements to be executed, we can see that the
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high- and low-level states are still equivalent after execution has entered M; and
M> as the result of action ¢ + 1. We can then repeatedly apply Lemma 3.6.2 to
see that the high- and low-level states will remain equivalent until right before
action ¢ + 2. Now, because the states are still equivalent at this point, the
high- and low-level actions will be similar as well. More precisely, the high- and
low-level actions will be of the same kind and the high- and low-level values
vy, and v; passed as part of these interactions will also be equivalent, in the
following sense.

o If vy is of type Unit, v; = 0.
o If vy is of type Int, v; = vy,.

o If v, has function reference type (T — T’), then vy = c.f for some
function f that was wniquely associated with the pair (v, (T — T"))
through the algorithm’s function table 7.

Therefore, when lf“) # léi“), we will also have hgi”) # hgw). O

Our full abstraction theorem now follows.

Theorem 3.6.4 (Full abstraction). For any two high-level modules My and
My, we have:
My~ My = M|~ M|

Proof. As mentioned at the start of this section, we assume the soundness
of our compiler and hence only prove completeness here. Thus, we need to
prove the statement M1] % Ms] = M; % Ms. From Lemma 3.5.4, we know
that M| % Myl implies M| %£rr Ma). Thus, Tr®(M;]) # TrR(Msl), which
means there is some low-level C; such that the trace I; generated by the execution
of Cj|M,| is different from the trace I, generated by the execution of Cj|Mal.
We can feed M;, M, and these two revised low-level traces I; and I, into our
algorithm, which will generate a high-level C' that, according to Theorem 3.6.3,
generates two different traces hy and hs in the executions C|M; and C|Ma
respectively. This means My #Zgr Ms and thus we can use Lemma 3.5.1 to see
that M1 ;ﬁ Mz. O

3.7 Summary

We started this chapter by giving a formal definition of contextual equivalence.
We then moved on to defining the high- and low-level languages we would be
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working with. Our secure compiler was formalized in the form of an OCaml
implementation that takes as input a high-level module M and returns a low-
level protected module M|. To prove that this compiler is fully abstract, we
first defined high- and low-level execution traces. We then argued that securely
compiled modules perform only a restricted set of low-level interactions and
that therefore we can use a simpler, revised form of low-level execution traces.
We then used these traces to define an algorithm that, given two high-level
modules M; and M, and corresponding non-equal revised low-level traces I1
and I generated by the interaction of M;| and M| with a distinguishing
low-level context C, produces a high-level context C}, that can distinguish M;
from Ms. Finally, the existence of this algorithm was used to prove that our
compiler implements a fully abstract translation from a high-level imperative
programming language towards a processor featuring a fine-grained, program
counter-based memory access control scheme.



Chapter 4

Formal software verification

Preamble

In this chapter we present background information on Hoare logic-based formal
software verification techniques. Readers that are familiar with Hoare logic,
separation logic and symbolic execution might prefer to skip this chapter. The
chapter is a literature study and hence its contributions lie not in the originality
of the technical matter, but in the selection and synopsis of the works discussed.

4.1 Introduction

The goal of software development is to write code that works, i.e., does what it is
intended to do, is sufficiently performant, is maintainable and readable for other
developers and does not introduce any security vulnerabilities. Unfortunately,
history has shown that real-world software development often falls short of these
objectives. Good quality software is estimated to have about one defect per 2,000
lines of code, while the accepted industry standard is even twice that number
of defects [33]. The consequences of such defects include system malfunction,
security vulnerabilities, and in the case of safety-critical systems even human
injury [123]. The economic impact is significant, with annual productivity and
turnover losses estimated at € 1.6 billion in the Netherlands [118] and up to
$59.5 billion in the US [82].

Over the years, researchers and practitioners have come up with various technical
approaches for reducing the number of programming defects. The most well-

71
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known and straightforward way of doing this is by testing, in which (a part of)
the program is executed and checked to run correctly on a specific set of input
values. A good testing approach involves choosing the set of input values such
that all code paths and boundary conditions are covered. Unfortunately, for
complex systems the number of possible code paths is so large that full test
coverage is impossible to achieve. Since testing says nothing about the behavior
of the system under test outside of the tested scenarios, its provided correctness
guarantees are limited.

A different approach is to consider formal verification techniques, which can
provide rigorous guarantees about a system’s behavior for all possible input
values. In general, formal software verification denotes techniques for checking
the validity of certain properties about a rigorously specified mathematical
model of a software system. Interesting properties to verify include memory
safety, absence of race conditions and deadlocks, adherence to communication
protocols, and full functional correctness. The model on which these properties
are checked can range from the system’s source code itself, over a compiled
binary of the system, to a model defined separately in a different language, or a
combination of these approaches. In any case, it is vital that both the model
and the formal semantics for reasoning about the model truthfully reflect the
actual system’s behavior, for otherwise the verified properties will hold for the
model but not for the system itself. This requisite is not always easy to achieve,
since even when the model consists of an executable description of the system
(such as its source code or a compiled binary), its runtime behavior will depend
on the specific compiler and platform that will be used for its execution.

While formal verification methods have been used in the hardware industry since
the 1990’s [44], their adoption in the software industry is proceeding much more
slowly. One of the main reasons for this, is the fact that the hard correctness
guarantees offered by formal verification algorithms come at a price. Creating
the mathematical model and formal description of the desired properties for a
complex software system, is a difficult task, requiring substantial human effort.
Experience with practical software verification tools has shown that the time
spent on verifying a piece of software can easily exceed the time spent writing
the original source code [100]. Hence, only when the impact of potential software
defects outweighs the extra development cost of applying formal verification
methods, does the approach become economically interesting. Nevertheless,
there are a number of large, real-world software systems that have been the
subject of formal verification in the past years, demonstrating its maturity
and real-world feasibility. Three high-profile examples are the verification of
Microsoft’s Hyper-V hypervisor using the VCC verifier [35], the verification
of sel4 [66], a micro-kernel of the L4 family, and CompCert [68], a formally
verified C compiler.
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In the rest of this chapter, we will focus on a specific set of formal verification
methods, namely those based on Hoare logic. In Section 4.2 we discuss Hoare
logic itself, in Section 4.3 we discuss separation logic and in Section 4.4 we
discuss symbolic execution techniques based on separation logic. Finally, in
Section 4.5 we summarize the chapter.

4.2 Hoare logic

Hoare logic provides a formal framework for reasoning about imperative software
programs. Its foundations date back to the work of Floyd [46] and Hoare [53]
in the 1960’s. The key construct of Hoare logic is the Hoare triple, written
{P} C {Q}. It denotes the statement “if the precondition P holds before
executing the program C, then either C will end up in an infinite loop, or Q
will hold when C' has been executed”. The assertions P and @ are formulas
from a mathematical logic, typically taken to be first-order logic.

As an example, consider the Hoare triple below. Its precondition T is by
definition always satisfied and hence the triple states that the program variable
x will be equal to 5 if the program finishes.

{T}int z := 0; while (z <5)doz:=x+1{zx =5}

4.2.1 Formal semantics

In this section, we will formally define the semantics of Hoare logic. We start
by defining the programming language we will reason about and the assertion
language out of which we will draw the assertions we want to prove. We will
then start from a model-theoretic viewpoint and define what it means for a
Hoare triple to be valid, before considering the proof-theoretic approach in
which we describe a proof calculus for proving Hoare triples.

Programming language

The programming language we will use in this section is the so-called while
programming language. It is the programming language for which Hoare logic
was originally introduced [53] and it provides only simple variable assignments,
if-then-else statements and while statements as its basic constructs. Figure 4.1
formally defines the language’s syntax and semantics. In this figure, the
transition relation — relates configurations, which are state-command pairs
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E:=n|z|E4+E|E-F B = true|false| E=F

. _ |E<E|-B|BAB|BVB
C := skip |z := E|if B then C else C

| while B do C'|C;C neN z € Vars
[B]s = true [B]s = false
(s,if B then C else C3) — (s,C1) (s,if B then C; else C2) — (s, Ch)
[B]s = true [B]s = false
(s, while B do C) — (s,C;while B do C) (s, while B do C) — (s, skip)
[E]ls=n (s,C1) — (s',C1)

(s,z:= E) — (s[lx — n],skip) (s,skip;C) — (5,C) (s,C1;Cs) — (s',C1;Cs)

Figure 4.1: Syntax and small step operational semantics for the while
programming language. The notation [E]s represents the evaluation of
expression E under the store s (which we assume has a mapping for each
of the free variables of F), using the natural interpretation of the available
arithmetic and logical operators.

(s,C). The state consists of only a store s, which is a partial function mapping
variable names to integers. We write (s,C) —* (s/,C") to indicate there is
a finite sequence of transitions from (s, C) to (s,C’) and we write (s, C) 1 to
indicate that (s, C') diverges. Each inference rule is deterministic, and hence
any configuration either diverges or results in exactly one end state. In this
section and the rest of this chapter, we always assume programs are well-formed,
meaning that expressions never reference undefined variables.

Assertion semantics

We will use first-order logic as the language from which we can draw assertions
for our Hoare triples, as is common in Hoare logic literature. Figure 4.2 defines
the syntax and semantics of this logic, using a relation s E P which asserts that
the assertion P holds under state s.

Given this logic, we can define what it means for a Hoare triple to be valid
or not. Informally, we say a triple {P} C {Q} is valid if, starting from a state
where the precondition P holds, the postcondition @ holds after C' has been
executed. We write this statement as F {P} C {Q} and we can formally define
its meaning as follows.
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P,Q.R:= B|P=Q|PAQ|3z.P

sSEE=F iff [E]s = [E]s sEE< E iff [E]s < [E]s
sEP = Q iff if s F P then s F @ s Ffalse never
sF3x. P iff v eN.s[zx > v]EP sEPAQ iff sk Pand skFQ

Figure 4.2: First-order logic syntax and semantics. Other logical connectives
can be defined in terms of these primitives: =P = P = false; true = —false;
PvQ@=(-P)=Q;Ve.P = —-3z.-P.

Definition 4.2.1 (Validity of a Hoare triple for partial correctness).
F{P}C{Q} iff
Vs,s'.(sE PA(s,C) —* (s, skip)) = s'EQ
Notice that this definition gives no guarantees if C' diverges. That is, if C' does
not terminate then {P} C {Q} is valid. For this reason, we say {P} C {Q} are
partial correctness triples and we write total correctness triples, which require

C' to terminate, as [P] C [Q]. Validity of total correctness triples is defined as
follows.

Definition 4.2.2 (Validity of a Hoare triple for total correctness).
=[PICQ] i
Vs.s EP = (3s'.(s,C) —* (¢, skip) A s’ F Q)

In the rest of this chapter we will focus primarily on partial correctness triples.

Notice that in both definitions the stores s and s’ can contain variables that are
not referenced anywhere in the program C'. These are called auziliary variables
and can be used to relate a triple’s pre- and postcondition. The following triple,
for instance, is valid and uses an auxiliary variable y.

{z=ylz=x+1{z=y+1}
Proof calculus

Given a program C' and pre- and postconditions P and ) that do not hold for C,
we can directly show a negative result & { P} C'{Q} by finding a counterexample,
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(PYCHQ}  {QYCa{R}

{P} skip {P} HO {P[E/z]} z := E {P} {P} C1;C2 {R}
{BAP}C (P} {BAPYC1{Q)  (-BAPYG{Q}
{P} while B do C {-B A P} {P}if B then C, else C2 {Q}
{PtC{Q} R=P {Ptc{Qy Q=S5
(R} C {0} H5-PRE (P} C (S} H5-pPosT

Figure 4.3: Hoare logic syntax, axioms and inference rules for proving partial
correctness properties for while programs. The term Ply/x] denotes the assertion
P with all occurrences of x replaced by y.

Proof.
{T} PRECONDITION
{0 =0} H5-PRE
int x := 0;
{z =0} H1
{z <=5} H5-PosT
while(x < 5) do {
{r <5 ANz <=5} GUARD A INVARIANT
{z < 5} H5-PRE
{z+1<=5} H5-PRE
X = x + 1;
{z <=5} H1
}
{r >=5Anz <=5} H3
{z =5} H5-PosT

O

Figure 4.4: This proof tableauz proves the example Hoare triple {T} int = :=
0; while(r < 5) do z := x + 1 {z = 5}. The proof starts from the precondition
T and ends with the postcondition z = 5, justifying each step in between by
referring to the Hoare rules listed in Figure 4.3.
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i.e., a state such that the implication in Definition 4.2.1 does not hold. However,
since our ultimate goal is to use Hoare logic for program verification, we are
also interested in positive results E {P} C {Q}, for some interesting program
property expressed by P and . Since this is a statement about all possible
states, of which there are an infinite amount, it is often difficult to show such
results using the model-based approach above. Instead, Hoare logic provides a
calculus of axioms and inference rules for proving such triples. Figure 4.3 shows
the standard set of Hoare rules for the while programming language, as they
were defined in [53]. We write F {P} C {Q} to express that a triple is derivable
from these rules. Figure 4.4 shows how these rules can be used to prove the
example triple shown at the start of this section.

The Hoare logic rules are designed to capture the meanings of the individual
constructs out of which the while programming language is constructed. Notice
that they are designed for backward reasoning, since each of the rules can be
applied for an arbitrary postcondition. In particular, the assignment axiom
H1 shows how to derive a precondition P[y/x] from an arbitrary postcondition
P. The equivalent forward reasoning axiom was given by Floyd [46] and is as

follows.
H1-FwD

{P}z:= F{32'.x = E[z'/z] A Pz’ /x]}

The basic rules of Figure 4.3 are often extended with the three structural rules
shown below, which can potentially simplify proofs. In each these rules, FV(C)
is the set of free variables in C' and mod(C) is the set of variables assigned in C.
The first rule is the auxiliary variable elimination rule, which allows auxiliary
variables to be replaced by existentially quantified logic variables.

LI
{3z. P} C {3z.Q} (where z ¢ FV(C))

The second rule is the variable substitution rule, which allows free variables in
P, C and @ to be renamed or replaced by an expression.
(where {z1,...,2zx} 2 FV(P,C,Q), and
(P} C{Q} g7 i € mod(C) implies that F; is a variable
({P} C{Q})[E1/x1,...,Ex/xk] not occurring free in any other Ej)

The third rule is the rule of constancy, also known as the simple frame rule.

{P} C{Q} Hs (where FV(R) N mod(C) = ()
{PAR}C{Q AR}

The simple frame rule allows extending local specifications of C' to global
specifications including assertions about variables that are not modified by C.
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The rule is sound because the values of variables not modified by C' remain
constant when executing C. It was soon recognized that this rule is vital for
the scalability of proofs [105, Section 3.3.5], since it enables modular reasoning:
a proof of a small program fragment C' can now easily be incorporated into the
proof of a larger program that contains C'.

Total correctness As for proving total correctness triples, the only program
construct that can cause non-termination is the while loop. Hence, the only
inference rule that must be adapted to reason about total correctness is H3.
Manna and Pnueli [71] were the first to present such a rule, based on a technique
described earlier by Floyd [46]. The technique consists of finding a numeric
expression that (1) is larger than some lower bound while executing the loop
and (2) strictly decreases with every loop iteration. Eventually the expression
must reach the lower bound and hence the loop must terminate. The total
correctness version of H3 is shown below.

[BAPA(E=n)]C[PA(E<n) PAB = E>0

H3-TotAL
[P] while B do C [-B A P]

4.2.2 Soundness and completeness

The relation between validity and provability is determined by a logic’s soundness
and completeness properties. For a sound logic, we have that - {P} C {Q}
implies F {P} C {Q} and the opposite implication holds for a complete logic.

Soundness

Since the goal of program verification is to prove program correctness properties,
we need our logic to be sound, for otherwise our verifier could assert properties
that do not actually hold. Given a formal semantics for a programming language,
we can prove the soundness of a set of Hoare logic rules with respect to these
semantics. For instance, below we prove the soundness of Hoare rules H2
and H3 (the other rules are trivial) with respect to the language defined in
Figure 4.1.

Soundness proof of Hoare rule H2. There are two cases to consider:

e (] contains an infinite loop and hence never evaluates to skip. In this
case, C1; Cs also contains an infinite loop and since we are only concerned
with partial correctness, H2 holds.
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o () evaluates to skip with an updated store s, after n evaluation steps (n
can be 0 and s’ can be equal to s). From the first premise of H2, we can
see that @ will hold in s'. Since (s', skip; C2) — (s’, C2), we now have
to prove {Q} Cy {R}, which is trivial because it is the second premise of
H2.

O

Soundness proof of Hoare rule H3. Since we are only concerned with partial
correctness, the rule holds by definition if the loop does not terminate. If the
loop ends after n iterations, we can prove the rule by induction on n.

e Forn =0, we have [B]s; = false and consequently (s, while B do C) —
(s, skip). We now need to prove { P}skip{—BA P}, which follows directly
from HO and our assumption of [B]s = false.

e Assuming the rule applies for n = 4, we can prove that it also holds
for n = i + 1 as follows. We know [B]s = true, and consequently
(s,while B do C) — (s,C; while B do C), hence our goal reduces to
proving {B A P} C; while B do C {-B A P}. According to H2, we can
do so by proving {B A P} C {Q} and {Q} while B do C {—B A P} for
some ). We can choose () = P so that the first triple follows directly
from the premise of H3 and the second triple follows from the induction
hypothesis.

Completeness

Soundness says nothing about triples that can not be proved. For instance,
the empty set of inference rules can in principle be considered sound. For
practical software verification purposes, we are also interested in some form of
completeness. A complete set of inference rules allows proving any valid triple.
Unfortunately, Gédel’s first incompleteness theorem says that any enumerable
theory capable of expressing elementary arithmetic cannot be both sound and
complete, and hence we cannot expect Hoare logic with first-order logic as
the underlying assertion language to be complete. This certainly does not
imply that Hoare logic and practical verification algorithms are useless: many
interesting properties can be proved using an incomplete logic.

An interesting question to ask is whether Hoare logic’s incompleteness stems
from the complexity of the programming language we are dealing with, or from
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the incompleteness of the underlying logic in which we write our assertions. If the
underlying logic is incomplete, there are valid implications that cannot be proved
in the logic, and since the premises of rules H5-PRE and H5-POST contain
implications, there are also valid Hoare triples that cannot be proved. Cook [32]
showed in 1978 that Hoare logic for while programs is relatively complete: if
the underlying logic is complete and sufficiently expressive to formulate the
necessary assertions of our Hoare proofs, then Hoare logic itself is also complete.
While Cook’s original proof holds for partial correctness properties of while
programs extended with non-recursive procedures, others have extended his
work to include total correctness properties [111] and recursive procedures [16,
50].

4.2.3 Hoare logic as a language definition

We have so far considered Hoare logic purely as a system for reasoning about
programs written in a separately-defined imperative programming language.
We first defined the formal semantics of a programming language and base logic,
and we then defined the set of Hoare inference rules followed by a proof that
these rules are sound with regards to the language semantics.

There is, however, an alternative way to look at a set of Hoare-style inference
rules: we can consider them to be the definitive specification of a programming
language’s semantics. This interpretation was in fact proposed in Hoare’s
original paper [53] as a way of capturing the essentials of a programming
language, while leaving undefined certain implementation-level details, such as
for instance the range of integer values and overflow handling. The advantage
of this approach as opposed to, for instance, specifying operational semantics,
is that it allows implementations of the language to be verified against its
formal specification, while still giving implementers enough freedom to create
an efficient implementation for a particular target platform. For our further
discussion of formal software verification, it does not matter which interpretation
we employ, as long as our Hoare logic is sound with respect to our programming
language semantics.

4.2.4 Extensions and limitations

The while programming language we have been working with so far has only
the most basic constructs expected from an imperative programming language.
Many extensions to Hoare logic have been proposed over the years, to move
from a toy programming language towards a language similar to Algol-60.
For instance, researchers have described how to add support for recursive
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procedures [54, 109, 90] with various parameter passing mechanisms [11], non-
determinism [84, 12] and higher-order functions [27, 11]. These extensions make
Hoare logic compatible with most, but not all, features of Algol-60. In fact,
Clarke [27] has shown that there are certain sets of programming language
constructs for which it is impossible to obtain a sound and relatively complete
Hoare-style logic. For instance, it is impossible to obtain a sound and relatively
complete Hoare logic for a language featuring simultaneously (1) higher-order
functions, (2) recursion, (3) static scoping, (4) global variables and (5) nested
functions. This shows that full Algol-60 cannot have an adequate Hoare-style
logic. However, Clarke also showed that a sound and complete Hoare logic
can be obtained by modifying any one of these features, while not adding any
additional features.

Pointers

One particular extension that has received a lot of attention in literature is
support for pointers to shared mutable data structures [24, 78, 21]. Such
pointers appear explicitly in commonly used system programming languages
such as C and C++, and implicitly in modern-day general-purpose programming
languages such as Java and C#.

The most significant difficulty of reasoning about pointer programs has to do
with aliasing: the fact that two different pointers can refer to a single shared
field. Take for instance the following Hoare triple, where ¢ and r are assumed
to be pointer variables and [-] is the heap access operator.

{Tyq:=r; [¢l:=5{g=rN[g]=5N][r] =5}

Intuitively, we can see that this triple is valid, but standard Hoare logic does
not allow us to prove it. More concretely, reasoning backwards from the
postcondition using the standard Hoare logic rules would leave us with the too
strong precondition of {[r] = 5}.

It is possible to generalize the Hoare assignment axiom to express that the value
of any alias of the pointee being assigned also changes. Unfortunately, this now
gives the logic a global character instead of a local one. Instead of being able
to handle assignment by a simple syntactic substitution of the variable being
assigned, we now have to take into account all variables that can potentially
be aliases of the variable being assigned. This complicates our Hoare logic
proofs, hampers modular reasoning and, more fundamentally, is at odds with
the fact that pointer assignment is operationally local. That is, operationally a
pointer assignment corresponds to a single, local memory write, but it can now
affect an arbitrary number of variables in our Hoare logic assertions. Hence
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there appears to be a mismatch between the axiomatic treatment of pointers as
proposed, and the intuitions behind them [88].

This mismatch led researchers to pursue the principle of spatial separation as a
way of regaining local reasoning for pointer programs. The ideas behind this
principle were already present in the work of Burstall [24], but were made explicit
in the later work of O’Hearn, Reynolds and Yang [88, 104]. The central idea
behind spatial separation is that the heap can be split into disjoint components
for which different assertions hold. When a heap cell assignment modifies a
certain component, it affects only the assertions related to that component
and leaves the other assertions untouched. Specifications can then focus only
on the heap cells modified by a certain program fragment (i.e., the so-called
footprint of that fragment). This is the intuition behind separation logic, which
is discussed in detail in the next section.

4.3 Separation logic

Separation logic is an extension of Hoare logic for reasoning about imperative
programs with pointers to shared mutable data structures. It was developed by
Reynolds, O’Hearn, Ishtiaq and Yang [104, 88, 57] around the year 2000, but is
rooted in the earlier work of Burstall [24] published in 1972.

Pointers appear implicitly in high-level general-purpose programming languages
such as C# and Java to implement object references. For simplicity, these
kinds of programming languages shield programmers from working with pointers
directly. System programming languages such as C and C++, on the other
hand, provide pointers as an explicit construct and hence allow them to be
manipulated directly by programmers. For instance, programmers can apply
arithmetic operations to pointer variables and can dereference them at will.
Such manipulations are very powerful, but are also notoriously difficult to get
right. For instance, dereferencing a pointer to unallocated memory can cause
a program to crash and can even lead to memory safety bugs that eventually
allow execution of attacker-injected code [122]. Detecting such bugs is beyond
the scope of conventional type systems, and more advanced type systems for
low-level programs suffer from reduced performance due to additional type or
bounds information that must be carried along with pointers and checked at
runtime [64, 79, 30].

Because of their excellent performance and low-level characteristics, system
programming languages have been very popular over the last decades and will
likely remain popular for time to come. At the same time, the risks of working
with pointers combined with the fact that these languages are commonly used
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for implementing embedded safety-critical systems, make them an interesting
target for formal verification. Unfortunately, as argued in Section 4.2.4, the
standard Hoare logic rule for assignment (i.e., rule H1 in Figure 4.3) is unsound
for reasoning about pointer programs. The problem is that assignment to a
memory cell through a pointer can affect the value of an arbitrary number of
seemingly unrelated expressions in Hoare logic assertions.

Separation logic relies upon the principle of spatial separation to mitigate this
problem. The key idea is to introduce a new logical operation P % P’, called the
separating conjunction, which asserts that P and P’ hold for disjoint portions of
the heap [104]. In addition, separation logic introduces a new type of assertion
FEy — FEs, called the points-to assertion, which expresses that the heap is
a singleton with address E; containing value Fy (both expressions are to be
evaluated under a specific store). Arbitrary heaps can be described by combining
these two assertions. For instance, the assertion (x — 5) % (y — 8) describes
a heap containing the values 5 and 8 (and no other values), at the addresses
contained in the program variables x and y respectively. The combination of %
and — leads to a very natural global heap mutation axiom:

(E— )% P}[E|=E {(E—> E) % P}

Here, the wildcard pattern E' — — means that E points to some value on the
heap, but that value is unspecified. A heap mutation now has a local effect on
assertions: only the points-to assertion of F is affected by an assignment to [E].
It is the disjointness expressed by the separating conjunction that enables this
kind of local reasoning.

4.3.1 Formal semantics

In this section, we will define the formal semantics of separation logic. We
follow the same approach as in the Hoare logic section, by first defining the
programming language to reason about and the assertion language out of which
we will draw the assertions we want to prove. We then define what it means for
a separation logic triple to be valid, and finally give a proof calculus for proving
such triples.

Programming language

The programming language to reason about in this section is the pointer
programming language. It is an extension of the while programming language
of the previous section, with new commands for heap allocation, deallocation,
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Cu= ... command extension
|z := alloc |z := [E]
| [E] := E'|dealloc(FE)

KENBL ¢/ mod2=0 {¢,+1}Nndomh =10 v1,v2 €N

(5.h), 7 = alloc) — (5[ = ] hll = 01, 0+ 1 — va]), skip) * MLOCATION
[E]. € dom A — LOOKUP-OK
((s,h), z := [E]) — ((s[z = h([E]s)], h), skip)
[E]. € domh MUTATE-OK

(5.1, [B] = E') — {(s, h[[E]. — [E'].]), skip)

[E]s € domh [E]s mod2=0

((s,h), dealloc(E)) — ((s,h \ {[E]s, [E]s + 1}), skip) DEALLOC-OK

[E]s € domh [F]s € domh
- — MUTATE-FAIL — LOOKUP-FAIL
((s,h), [E] := E") — fail ((s,h), z := [E]) — fail
E]s & domh Els d2#0
L], # dom DeaLLOC-F [F]. mod 2 # DeaLLoC-F
((s, h), dealloc(F)) — fail ((s,h), dealloc(E)) — fail
h), C " ), O] ,h), C fail
(), C) — (). C1) (1), C1) — fail (o

((s,h), C1;C2) — {(s', 1), C1;C2) ((s, h), C1; Cy) — fail

Figure 4.5: Syntax and small step operational semantics extensions for the
pointer programming language, which adds a heap to the while programming
language defined in Figure 4.1. Configurations are still state-command pairs,
but states now contain a heap A in addition to a store s. All transition rules of
the while programming language, except the sequencing rule, still apply, and
none of them have any effect on the heap.
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lookup and mutation. Figure 4.5 defines the language’s syntax and semantics.
To avoid redundancy, we only define the semantics for the new commands and
refer to Figure 4.1 for the commands inherited from the while programming
language.

The first important difference to notice between the pointer programming
language and the while programming language, is that the program state now
contains a heap h in addition to a store s. The heap is a partial function
from positive integers to integers. Another difference is that the language
now contains commands that can fail. More specifically, reading, writing and
deallocating an unallocated heap address are considered illegal operations that
will cause a transition to the fail configuration. Notice also that the language
is now non-deterministic, since both the start address ¢ of an allocated memory
block and its initial values v; and wve are unspecified in the allocation rule.
Hence a configuration ((s, k), C) can now diverge, fail, or transition in a finite
number of steps into an arbitrary number of final states. Finally, notice that
[E] is not an expression and hence cannot appear as a sub-expression of a
larger expression; it can only appear directly on the left or right side of the
assignment operator. Hence, expressions never depend on the heap and can
still be evaluated against a store only.

Assertion semantics

As mentioned above, separation logic introduces a number of new types of
assertions that make statements about the heap. Figure 4.6 formally defines
the syntax and semantics of these new assertions. Since the validity of these
assertions depends on the heap, they can only be evaluated against states
consisting of both a heap and a store.

Intuitively, we can associate the following meanings with each of the new
assertions: emp asserts that the heap is empty; the points-to assertion £ — E’
asserts that the heap contains exactly one value E’, at address F; the separating
conjunction P % @ asserts that the heap can be split into two disjoint parts on
which P and @ hold individually; and the separating implication (also called the
magic wand) P - @Q asserts that if we extend the heap with a disjoint fragment
where P holds, then @ will hold on the extended heap. Note that we will
sometimes write £ — E’', E” as syntactic sugar for (£ — E') % (E+ 1+ E").

Based on these definitions, we can define what it means for a separation logic
triple to be valid under partial and total correctness semantics.
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PQR:= ... assertion extension
|emp|E+— E|P % P|P - P

(s,h) E emp iff domh =0
(s,h)F E FE' iff domh = {[E]s} and h([E]s) = [E']s

(s,h) EP % Q iff 3hg,h1.ho L hq and hg U hy = h and
(s,ho) E P and (s,h1) F Q

(s,h) F P =@ ifft VA'.(R' L hand (s,h')E P) implies (s,hUR') E Q
Figure 4.6: Separation logic assertions syntax and semantics. These assertions
extend the definitions of Figure 4.2, which all still apply to separation logic,

assuming we extend the state s before the entails symbol to include a heap h.
The notation h L h' means the domains of A and k' are disjoint.

Definition 4.3.1 (Validity of a separation logic triple for partial correctness).
F{P}C{Q} iff
Vs, h. (s,h) F P =
[((s,h), C) - *fail A
(Vs' b . {(s,h), C) —* ((s', '), skip) = (s',h) E Q)]
Definition 4.3.2 (Validity of a separation logic triple for total correctness).
FPICQl if
Vs, h. (s,h) F P =
[((s,h), C) =+ "fail A=(((s,h), C) 1) A
(Vs', 1. {(s,h), C) —* ((s', 1), skip) = (s',h) F Q)]
Notice that partial nor total correctness triples are valid for executions that fail.

Thus, programs that have been verified to meet a separation logic specification
will not perform illegal memory reads, writes or deallocations.
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ALLOCATE

{emp} z :=alloc{(x — —) * (r +1+— —)}

{E—=nANz=m}z:=E|{x =nAE[m/z] —n} Lookup

MUTATE

{Ew— -}[E]:==E {E— E'}

DEALLOCATE
{(E— =) % (E+1~ —)} dealloc(E) {emp}

Figure 4.7: Small separation logic axioms for the heap access commands
introduced in Figure 4.5.

Within the language of separation logic assertions, we can identify a subclass of
precise assertions [89], defined as follows.

Definition 4.3.3 (Precise assertions). An assertion P is precise iff for all
states (s, h) there is at most one sub-heap h' C h where (s,h') E P

A precise assertion unambiguously identifies a region of memory, namely the
sub-heap A’ in the above definition. For instance, the assertion true is not
precise, while the assertion emp is.

Proof calculus

We can now define the proof calculus that will allow us to reason about pointer
programs. Since expressions do not depend on the heap, all the Hoare logic rules
and axioms defined in Figure 4.3 remain valid. Figure 4.7 shows the so-called
small axioms for reasoning about the heap access commands introduced in
the pointer programming language. Similar to the basic Hoare rules HO-H4,
these small axioms succinctly express the semantics of the new commands. For
reasoning about actual pointer programs, they are not very convenient though,
since they are only directly applicable to programs that use at most a single
heap cell. To enable reasoning about larger programs, separation logic includes
the four structural rules shown in Figure 4.8. The first three of these rules are
identical to Hoare rules H5, H6 and H7 respectively, while the third rule, the
frame rule, is similar to Hoare logic’s rule of constancy. By combining the small
axioms and these structural rules, more practical global versions of the small
axioms can be derived. For instance, the global version of the mutation axiom
is as follows.

{(Ev— —) % R} [E] == E {(E— E') ¥ R} MUTATION-GLOBAL
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CONSEQUENCE

PP ({PIC{Q} Q=
{PYC{Q}

AUXILIARY VARIABLE ELIMINATION

{(P}ci{e}
{3z. P} C {3z.Q} (where z € FV(C))

VARIABLE SUBSTITUTION

(P} o{Q} (where {z1,...,2x} 2 FV(P,C,Q), and
{P}C{Q}[EL/x1,..., Ex/zi] z; € mod(C) implies that E; is a variable
not occurring free in any other Ej)

FRAME RULE

{rrC{Q}
{P % R} C{Q * R} (where FV(R) N mod(C) = 0)

Figure 4.8: Separation logic structural inference rules.

It is also possible to derive axioms that can be applied for any postcondition
and hence are suitable for backward reasoning. The backward reasoning version
of the mutation axiom is as follows.

{(E——)* (E— E’) —~« P)}[E] := B (P} MUTATION-BWD

Global and backward reasoning versions of the other axioms can be found
in [104].

The frame rule is of particular importance in separation logic. It expresses
exactly the property that was lost when trying to apply Hoare logic to pointer
programs: the principle of local reasoning. That is, the frame rule codifies the
idea that a program that executes successfully in a small store and heap will
behave the same when executed in a bigger store and heap and will have no
influence on the additional parts of the state. The reason this rule is sound, is
because the precondition in a valid separation logic triple { P} C {Q} represents
not only a sufficient logical property for C' to execute, but also a sufficient area
of heap storage. Any heap location read, written or deallocated by C' (i.e., the
footprint of C') must be specified by a points-to assertion in P. Hence, any
extension R of the precondition that describes a disjoint heap and does not
mention any variables modified by C, will continue to hold after executing C.
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4.3.2 Soundness and completeness

As described in Section 4.2.2, the basic Hoare rules HO-H4, combined with
the structural consequence rule H5, constitute a sound and relatively complete
proof calculus for the while programming language. The other structural rules
H6-HS8 are superfluous for relative completeness.

For pointer programs however, the small axioms defined in Figure 4.7 together
with the consequence rule are not enough to obtain relative completeness. This
can easily be seen from the following example triple.

{emp} z := alloc;y ;= alloc{(z — —,—) % (y— —,—)}

This triple is valid, but cannot be derived from the small axioms alone, because
the allocation rule can only be applied starting from states with an empty heap,
and the heap will not be empty after executing the first command. This shows
that we need at least the frame rule in order to reason about arbitrary heap
structures. The full set of separation logic rules, i.e., the small axioms together
with the basic Hoare rules as defined in Figure 4.3 and the structural separation
logic rules of Figure 4.8, has been shown to be sound and relatively complete
by Tatsuta et al. [116] in 2009".

4.3.3 Extensions

In this subsection, we briefly discuss how separation logic can be extended to
support abstract inductive predicates and concurrent programs.

Abstract inductive predicates

Pointers are commonly used to implement recursive data structures such as lists
and trees. The assertion language used in this section so far has no means of
representing such arbitrary-length data structures. The logic could be extended
ad-hoc with new predicates for representing specific data structures, but this
would be a rather inflexible solution, since users would be limited to using only
the built-in predicates. Instead, separation logic can be extended to support
user-defined inductive predicates, which allow users to model their own data
structures in the assertion logic. For instance, the following inductive definition

L Actually, Tatsuta showed that the set of global separation logic axioms is sound and
relatively complete, but these global rules can be derived from the small axioms and the
structural rules.
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represents a list of n integers, starting at a given heap location .

list(l,n) =
[l =0)A(n=0)Aemp]V
FI=0)A(l——)*% 3. (I+1=10) % list(l',n—1)))]

The use of the first * in this formula ensures there can be no cycles in the list.

While the formal study of such recursive definitions dates back to Morris [76],
Parkinson and Bierman [93] introduced the notion of abstract predicates into
separation logic. An abstract predicate has a name, a definition, and a scope.
The predicate’s name has global visibility, while its definition is limited to the
predicate’s scope. That is, within its scope, a predicate can be replaced by its
definition, but outside the scope the predicate can only be handled atomically,
by its name. The advantages of this approach lie in the area of abstract data
types and information hiding. Suppose that we have a module that provides
a number of functions for performing operations on an abstract data type.
The essence of an abstract data type, is that users of this module need not
know how the data type is actually implemented. Abstract predicates apply
the same principle to function specifications. That is, they allow the pre- and
postcondition of a function to be considered a contract that specifies in abstract
terms how that function behaves, without exposing the implementation details
of that function. For instance, suppose we have a function for appending an
integer to a list. The signature and contract of this function could be as follows.

routine append(i,l) = In. pre list(l,n) post list(l,n + 1)

Users of this function need not know the definition of the list predicate, since
the (partial) behavior of append is specified in terms of the abstract predicate
list.

Concurrency

The programming languages we have considered so far are all single-threaded.
That is, each command of a program is processed in sequence and no two
commands can ever be processed at the same time. Many practical programs,
however, are multi-threaded in nature. Problems occur in these programs when
multiple threads access the same resource at the same time. For instance, if
two threads simultaneously write to the same heap cell, the result is undefined.
Hence, one of the key programming challenges when writing concurrent programs,
is to ensure mutually exclusive resource usage between threads. Since the core
ingredient of separation logic is its ability to split up the heap into disjoint
chunks, it is well-suited for reasoning about shared-variable concurrency, where



SEPARATION LOGIC 91

different portions of the heap are accessed by different threads at the same time.
The ideas behind axiomatic methods for reasoning about concurrent programs
date back to an early paper of Hoare [55] and were further developed by Owicki
and Gries [92] and later O’Hearn [87].

Of course, concurrent programs of which the threads are completely disjoint
are not very interesting; there is usually some shared state between the threads.
For instance, in a producer-consumer style program, one thread (the producer)
will calculate some result and subsequently place that result into a buffer, while
the other thread (the consumer) in parallel retrieves those results from the
same buffer and subsequently performs some calculations with them. This
program will work fine as long as the producer does not add a value to the
buffer at the same time that the consumer is retrieving one. Essentially, we want
to dynamically transfer the permission to access the buffer between the two
threads, and we can model this permission using the separation logic points-to
assertion.

In order to perform such parallel executions with mutual exclusive access to
resources, a number of new constructs must be added to our programming
language. The concurrent Hoare and separation logic literature [92, 87] uses
the following construct for parallel routines, based on Algol 60.

mnit;
resource 71(T1), .- -, Tm(Tm)
Cill ... | Cn

The idea is that the init statement is a sequentially executed sequence of
commands that initializes some resources r;, before forking into the parallel
execution of C1,...,C,. Each resource r; is a set of variables Z; that are shared
between the parallel threads, in a controlled way. The command for accessing
such variables is the conditional critical region.

with » when B do C

Here, r is a resource, B is a (heap-independent) boolean expression and C' is
a command that can use the variables of r. It models common programming
idioms for controlling access to shared resources, such as binary semaphores,
mutexes and monitors. When a thread tries to execute a critical region, it
will wait until the condition B is true and the resource r is not being used by
another thread. When the thread acquires r and B is true, it executes C' and
then releases r again when C' has been executed.

The following syntactic restrictions ensure that shared variables accessed in
parallel threads are protected by critical regions:
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e each variable must belong to at most one resource;

o variables that belong to a resource r cannot appear in a parallel thread
unless they are in a critical region for r; and

o variables that do not belong to a resource and are modified in some thread
C; cannot appear in any other thread C; (where i # j).

Although these rules are sufficient to prevent concurrent variable access for
while programs, they are not enough to avoid races in pointer programs, due
to aliasing. For instance, the following parallel program adheres to the above
rules, but contains a race condition.

x:=alloc; y:=x; ([x] :=5]| [y] :=6)

We can use separation logic to reason about such concurrent programs, by
extending it with the following proof rules. Of course, the idea is that programs
with race conditions, such as the one above, cannot be proven to be valid. The
first extension is the complete program rule, as shown below.

COMPLETE PROGRAM RULE
{P} init {RI., % ... % RI.,, % P'} {PYC1 | ... || Cn {Q}

{P} init; resource r1(Z1),...,"m(Tm) C1 || ... || Cn {RL+ * ... % RI., % Q}

This rule should be interpreted as follows. The init statement is expected to
establish a disjoint resource invariant RI,, for each declared resource. Each
free variable in a resource invariant RI,, must belong to resource r;, and each
resource invariant must also be precise (as defined in Section 4.3.1). After the
initialization, the parallel composition C; || ... || C, will execute, but none
of the parallel threads can assume the resource invariants just yet. It is only
when a thread enters a critical region for a resource that it receives access to
the invariant of that resource, as indicated by the next rule.

CRITICAL REGION RULE . .
{(P % RI,) A B} C{Q * RI} (no z € (FV(P)UFV(Q)) is modified

{P} with r when B do C {@ " another thread)

Finally, the parallel composition rule allows each thread of a parallel composition
to obtain a disjoint piece of memory and to combine the postconditions of each
thread at the end of the parallel execution.

PARALLEL COMPOSITION RULE
(PYC{Q:} ... {P.}C.{Qn} (where (FV(P;) U FV(Q:)) N

Pk %P Cill o | CadQr ¥k Qny Mod(C5) =0 whenizj)
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To see how these rules prevent racy programs, consider again the example
program shown above. We can consider the first two commands to be the
initialization, and, since there are no resource declarations, there are no resource
invariants. Hence we will end up having to prove

{(@= = ) Ay==}fa]:=5] [yl :=6{Q}

for some postcondition Q). But, the only proof rule that can be considered is
the parallel composition rule and there is no way to split the precondition into
disjoint parts Py and P, such that - {P;}[z] := 5{Q1} and F { P2} [y] := 6{Q2}.

To illustrate how these proof rules allow proper resource sharing using critical
regions, consider the following example, taken from [87].

full = 0;
resource r(c, full)
x := alloc; || with r when (full = 1) do
with r when (full = @) do || y 1= c;
C =X I full := o;
full := 1 | dealloc(y)

Below is a full proof of this program, starting from the initial precondition emp
and ending with the same postcondition. The resource invariant RI, has been
selected to be (full=1Ac— —, =)V (full = 0 A emp).

{emp}
full = 0;

resource r(c, full)

{emp x emp}

{emp} {emp}

x := alloc; with r when (full = 1) do
{z——,-} {(RI, % emp) A full =1}

with r when (full = 0) do
{(RI; % (x — —,—)) A full = 0}
{(x = —, =) A full =0}

{(c—=—, =) A full=1}
y := c; full := 0;
{(y > — =) A full = 0}

c := x; full :=1 {(emp A full =0) % (y — —,—)}
{(C'_> _7_)/\fu”:1} {RIT * (yH_a_)}
(R} {y— - —}
{RI, % emp} dealloc(y)
{emp} {emp}
{emp x emp}
{emp}

In the rest of this chapter we will return our attention to sequential programs.
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4.4 Symbolic execution

The previous two sections defined formalisms for proving properties of imperative
programs with and without pointers. While these formalisms can be used
immediately for sound manual reasoning about programs, there is still a gap
that needs to be filled in order to use them for automatic program verification.
In particular, we need a way to encode the separation logic proof rules into an
algorithm that (semi-)automatically determines whether a program annotated
with separation logic assertions upholds its specification under all possible inputs.
This clearly cannot be done by simply executing the program and checking
whether the concrete store and heap satisfy the specifications at all points,
because in general the set of possible input values is infinite. Furthermore the
non-deterministic nature of memory allocation (as defined in Figure 4.5) implies
that there is an infinite set of possible executions for each user input.

Berdine et al. [20] were the first to publish an algorithm for the symbolic
ezecution of imperative pointer programs based on separation logic. In symbolic
execution, variables and heap cells are bound to symbols, which are placeholders
for real program values. Flow-dependent constraints are placed on these symbols
by executing successive program statements. The idea is that, since symbols
can represent an infinite number of concrete values, a single symbolic execution
of a program can represent all possible concrete executions of that program.

To illustrate the power of symbolic execution, consider the following simple
example program.

x := alloc; if (0 < [z]) then C) else C;

The alloc command allocates two heap cells at some arbitrary location with
some arbitrary initial value and lets x point to those cells. Hence, there are
an infinite number of concrete executions of this program. We can however
represent all of these executions by using symbols to represent the value of x and
the value in the allocated heap cell. Initially these symbols are unconstrained
and hence represent any possible integer value. Symbolically executing the
if-statement will cause the execution to fork into two execution paths. The
first path executes C7, in which the symbol corresponding to the value of x
will be constrained to values larger than 0. The other path executes Cs, in
which the symbol is constrained to values smaller than or equal to 0. These
constraints will influence the further symbolic execution. Suppose for instance
that Cy = if [z] < 5 then dealloc(0). The symbolic execution algorithm will
deduce that there are some concrete executions where the (illegal) deallocation
command will be executed and hence it must reject the program. However if
C4 would be, for instance, if [z] < 0 then dealloc(0), the symbolic execution
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algorithm would deduce that the path of the deallocation command is infeasible
and thus will not (yet) reject the program.

In the rest of this section, we will first define the programming and assertion
languages we will work with. We will then describe the symbolic execution
algorithm published by Jacobs et al. [60, 119], which is the core of the VeriFast
program verifier [61]. This algorithm is based on the original symbolic execution
algorithm published by Berdine et al. [20], which underlies the Smallfoot program
verifier [19]. Both algorithms are designed to verify partial correctness, but
extensions for total correctness do exist [31, 22].

4.4.1 Programming and assertion languages

The programming language we will be working with, is a variant of the pointer
programming language, to which we have added support for routines, so that
we can illustrate the modularity of the approach. This programming language
is formally defined in Figure 4.9. As can be seen from this figure, the state
now consists of a stack and a heap, i.e., the store has been replaced by a stack
of stores. The store at the top of the stack is the current store, i.e., the store
accessed by the currently executing routine. Separation logic triples for this
language make statements only about the current store. Routine definitions
have user-specified preconditions (requires) and postconditions (ensures), and
while-loops are fitted with a user-specified invariant, corresponding to the
assertion P of Hoare rule H3 in Figure 4.3.

The assertion language we will use is a restricted version of the separation
logic assertion language, extended with user-defined abstract predicates. The
language is formally defined in Figure 4.10. As this figure shows, the satisfaction
relation (s,h) E P ~» s’ now contains three components: the satisfying state
(s, h), the satisfied assertion P and an updated store s’. This updated store
was added to support the pattern variables 7z that appear in points-to and
user-defined predicate assertions. That is, the updated store s’ is an extended
version of the original satisfying store s, that contains a binding for each pattern
variable 7z in the satisfied assertion P. Pattern variables provide an alternative
to auxiliary variables, by enabling us to introduce new existentially bound
variables within assertions themselves. Their scope is the rest of the assertion
they reside in.

The restriction on assertions in this section compared to the full separation
logic assertion language, is that assertions are now limited to being %-separated
boolean expressions, conditionals, points-to predicates or user-defined predicates.
Hence, the language does not support non-separating conjunction, disjunction,
negation or separating implication. Although these restrictions may appear
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C ::= skip |z := E|if B then C else C'|while B inv P do C |z :=r(E) |
z := alloc|z := [E]|[E] := E|dealloc(E) | C;C

rdef ::= routine r(T) =req P ens P do C r € Routines
_ [[B]]9 = true IF-T _ ﬂ:B]]g — false I F
((s:itl, h), if B then C else C3) ((s:itl, h), if B then C else C3)
— <(S::ﬁ) h)a Cl> — <(S::ﬁa h)7 CQ>
— LB, = true Wiig-T —[Bls = false WHILE-F
((s::tl, h), while B inv P do C) — ((s:itl, h), while B inv P do C)
((s:tl, h), C;while B inv P do C) — ((s::tl, h), skip)
— —/ / /
_ <(Svh)7 Cl> — ((f/vh,)v C}> SEQ _ i _ SEQ—SKIP
((5:h), C15;C2) — (5, 1Y), C1;C) (5, h), skip; C) — ((5,h), C)
_ . E]. =
E(Svh): C1) — fail SEQ-FAL _ [E]s =n _ ASSIGN
((5,h), C1;C2) — fail ((s:itl, h), z := E) — ((s[x — n]:itl, h), skip)
E]s € domh s
J I, € dom LOOKUP-OK — L], # dom h LOOKUP-FAIL
((s:itl, h), x 2= [E]) — ((s:itl, h), z := [E]) — fail
((slz — h(IE] ), h), skip)
E]s € domh s
7[[ ]] o " MUTATE-OK = LZ]. ¢ domh MUTATE-FAIL
((s:itl, h), [E] == B') — ((s::tl, h), [E] := E') — fail
((s:itl, h[[E]s — [E']s)), skip)
routine 71@) =req Pfens Q do C CALL _ RETURN
((s::tl,h), z :=r(E)) — ((s:8"::tl, h), rety) —
({g — [E]s}:s:itl, h), C;rety) ((s'[x — [result]s]:tl, h), skip)

e Nf {t,+1}Ndomh=0  wvj,v2 €N

= = ALLocC
((s::tl, h), z := alloc) — ((s[x — £]::tl, h[l — v1,£+ 1 — v2]), skip)

[E]s € domh [E]s mod2=0

— — DEALLOC-0OK
((s:itl, h), dealloc(E)) — ((s:itl, h \ {[E]s, [E]s + 1}), skip)

(IE]s ¢ domh) V ([E]s mod 2 # 0)

= DEALLOC-FAIL
((s::tl, h), dealloc(FE)) — fail

Figure 4.9: Syntax and small-step operational semantics for the symbolic
execution programming language, which is an extension of the pointer
programming language defined in Figure 4.5.
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pdef ::= pred p(z,y) = P p € Preds

P:=B|B?P: P|E—7?z|p(E,7x)|P % P

(s,h) FB ~> s iff [B]s = true
(s,h) EB?P : P' ~ s iff if (s,h) E B then (s, h) E P else (s,h) = P’
(5,h) EE 7z ~ s’ iff dom h = [E]s and s = s[z — h([E]s)]

(s,h) Ep(E,72) ~ &’ iff pred p(z,y) = P and Jv. {z — [E]s,y > v},h) EP

and s' = s[z — v]

(S,h) ’:P*P/WS” iff aho,hl.hoth and hoUhlzhand
(s,ho) E P~ s and (s',h1) E P~ "

(s,h) FP iff 3s’. (s,h) E P~ &'
Figure 4.10: Symbolic execution assertion language syntax and semantics.

to limit the expressivity of the assertion language, real-world experience with
verification tools that use this language [19, 61, 100, 38, 25] has proven that it
suffices to express all desired verification properties in practice.

Assertions from this assertion language can be divided into two categories:
spatial assertions and pure assertions. Spatial assertions describe the structure
of the heap, while pure assertions only place constraints on logical symbols
without making any claims about the heap. Points-to assertions and user-defined
predicate assertions are spatial, while boolean expression assertions are pure.

4.4.2 Symbolic execution algorithm

The symbolic execution algorithm will keep track of a symbolic state v =
(A1, X)), consisting of a symbolic store A, a path condition II, and a symbolic
heap . We will explain the role of each of these components, based on the
symbolic execution of the following example routine.
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routine r(x,y) =
req (x > -5) % (x < 5) % p(x,y)

ens true
do
z = alloc;
if x < 0 then
result = -1
else
result =1

The symbolic store is a mapping from local variable names to symbolic
expressions that represent the variables’ values. For instance, at the highlighted
execution point in the above routine, the symbolic store is simply the trivial
mapping {x := &,y := ¢,z := £}, where the non-dotted names represent
variables and the dotted names are symbols.

The path condition is a first-order logic formula that constrains the values of the
logical symbols that appear in the symbolic store or heap, based on the routine’s
precondition and the path taken through the routine’s code. For instance, at
the highlighted execution point in the example routine, the path condition will
be (& > -5 A& < 5) A (2 <0), where the outer left conjunct comes from the
precondition and the right conjunct comes from the if-statement.

The symbolic heap is a multiset of heap chunks, where each heap chunk is of the
form p(Ey, E2) with p the name of a predicate (i.e., either a user-defined name
or —) and E; and Fs are the arguments of the predicate. Each chunk on the
symbolic heap potentially represents a piece of heap storage that is exclusively
accessible by the current routine and is disjoint from the storage represented by
all other chunks on the symbolic heap. At the highlighted execution point in
the example routine, the symbolic heap will consist of a user-defined predicate
chunk p(z,y) originating from the precondition and two points-to predicate
chunks % — © and % + 1 — o/, originating from the z := alloc command.

Transition relations

As in [60], we will define the semantics of the symbolic execution algorithm by
means of transitions v ~» o from an initial symbolic state v to an outcome o.
An outcome is either a symbolic state, or the special failure outcome fail.

At some points during the execution of a program, there will be a choice of the
path to follow next. For instance, when executing an if-then-else command,
the concrete execution will choose between the then-path and the else-path,
based on the value of the condition. Since the symbolic execution represents
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all possible concrete executions, it must consider both paths and both must
succeed for the overall symbolic execution to succeed (unless a path is deemed
infeasible, in which case it immediately succeeds). Following [119], we call
such choices demonic. Thus, when encountering an if-then-else command, the
symbolic execution must fork, which has the effect that a single initial state can
now lead to multiple different outcomes. For instance, the if-then-else statement
in the example program leads to the following two result transitions:

(A (3> -BAT<5AE<OAT=—1)),{¢~ —}), and
(A (3> =5AE<HAE>0AT=1)), {2~ —}),

)

« (Do, 0,0)
hd (AO7®7®)

where Ag is the initial symbolic store {z := &,y := y} and A is the final
symbolic store Ag U {z := 2, result := 7}.

Hence, as a first approximation, the result of the symbolic execution of a
routine starting from some initial state v can be modeled as a transition relation
R={y~ 0,y~ 0",...}, consisting of pairs of related symbolic states and
outcomes. The overall symbolic execution is successful if none of the transitions
in R starting from the initial state ends with the failure outcome.

However, as will be made explicit in the next section, there are also points in
the symbolic execution of a routine where there is a choice of how to proceed,
such that the overall execution is successful if at least one of the choices leads
to success. These are so-called angelic choices [119]. To model this, the result
of the symbolic verification of a routine from an initial state v will actually
be a set of transition relations. That is, the result will have the form W =
{R1,..., Ry} where each R; is a transition relation {7y ~» +',vy ~>~",...}. Each
R; corresponds to a different combination of angelic choices made throughout
the algorithm and each pair v ~ ' within an R; corresponds to a different
execution path (i.e., a different set of demonic choices), given those angelic
choices. Verification is successful if there is at least one R; where none of the
transition relations starting from the initial state end with the failure outcome.

Assumption, production and consumption

The symbolic execution algorithm is based upon three core operations:
assumption, production and consumption [59]. In order to formally define
these operations, we first define the conjunction and sequential composition of
transition relations.
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WAW' ={RUR |REW AR € W'}

(N\ielLw@) ={Jiel.v6)|Viely@) W)}

The conjunction W A W' denotes the pairwise union of relations from W and
W'. Tt can be considered a demonic operation, since at least one relation in W
and at least one in W’ must succeed for W A W’ to succeed.

W;W' ={R;R|REWAR €W’}

The sequential composition W; W' of sets of transition relations denotes the
pairwise sequential composition of relations of W and W', where the sequential
composition of transition relations is defined as follows.

R;R ={y~ fail |y~ fail€e R}U{y~o|y~~+ ERAy~o0€ER'}

We can now define the three core operations of the verification algorithm. The
assumption operation takes as input a boolean expression and returns a singleton
set of transition relations in which this expression has been added to the path
condition, unless this would lead to a contradiction in the path condition.

assume(B) = {{(A,I,5) ~ (A, U {[B]a},%) | I tsur ~[B]a}}

As suggested by the above notation, detecting a contradicting path condition
can be done using an SMT solver [36], or alternatively it can be done using a
separate proof engine that is part of the verifier.

The production and consumption operations both take as input an assertion and
return a set of transition relations. Informally, production corresponds to adding
chunks to the symbolic heap and adding constraints to the path condition, while
consumption corresponds to removing chunks from the symbolic heap and
checking that a given symbolic expression follows from the path condition. We
will now formally define these operations for each possible kind of assertion.

produce(p(E, E/)) = {{(A,Hv E) ~ (A,H, Xy {p([[E]]Av HE/HA)})}}

produce(p(F, %2)) = {{(A,TL,%) ~ (Alz == 8], 1T, S & {p([Fla, 5)}) |
(v,I') = nextFresh(Il)}}

produce(FE — E)) = produce(— (E, E))
produce(F —7z)) = produce(— (E, 7))

Producing a spatial assertion (i.e., a points-to or user-defined predicate assertion)
means adding a corresponding chunk to the symbolic heap, thereby potentially
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binding a new symbol to a variable if a pattern variable is specified. The
function
nextFresh(Il) = (¢, ITU {0 = v})

returns a fresh symbol © that does not appear in II, and an updated path
condition in which the new symbol does appear. We sometimes use the same
function to allocate multiple fresh variables at once. Apart from the infix
notation, producing a points-to predicate is identical to producing a user-
defined predicate. We use the wildcard notation E — — as syntactic sugar for
E —7z when we do not want to specify an expression for the value at location
FE, and we also have no need to bind a symbol to the value.

choice(W) = {{y)(R) | R € W} | VR € W.4(R) € R}

consume(p(E, E')) =
let matches(A,I1,Y) =
{(ATL ) ~ (ATLE) | S =2 W {p(®,9)} Al Fsur [(E, E)]a = (9,9")} in
choice({matches(A,II, ¥) | matches(A,IL %) # 0})
A {{(A,IL, 2) ~~ fail | matches(A,II, ) = 0}}

consume(p(E, 7z)) =
let matches(A,IL, %) =
{(ATL ) ~ (Alz =], I,Y) | B =2 W {p(®,?)} ATl Fsur [E]a = 0} in
choice({matches(A,II, Y) | matches(A,II, ) # 0})
A{{(A,II,2) ~ fail | matches(A,ILY) = 0}}

consume(E — E) = consume(— (E, E))
consume(E —7?z) = consume(— (F, 7z))

Consuming a spatial assertion means removing a matching chunk from the
symbolic heap, again thereby potentially binding a symbolic value to a variable if
a pattern variable is specified. Consumption fails if no matching chunk is found,
since this means the program could be trying to access a memory location that
it is not allowed to access (e.g. because the location is unallocated). However,
since the symbolic heap is a multiset, it is also possible that there are multiple
matching chunks when consuming a predicate assertion. Hence there could be a
choice of chunks for the algorithm to consume in order to proceed. This choice
is of the angelic kind, since the overall execution will be successful if at least
one of the choices leads to success. In practice, we can either (1) abort the
algorithm when an ambiguous match must be made, in order to force the user
to structure the program such that ambiguous matches cannot occur, or (2)
simply pick an arbitrary matching chunk to proceed with. In the latter case, if
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the wrong chunk is chosen, the algorithm will eventually fail, at which point it
can backtrack and choose another chunk.

produce(B) = assume(B)

consume(B) =
{{(A,l—L E) ~ (A,H, E) | II Fsmr [B]]A} @] {(A,I_L 2) ~ fail | II smr [B]]A}}

Producing a pure assertion (i.e., a boolean expression), means adding it to the
path condition. Consuming a pure assertion means asserting that it follows
from the current path condition.

produce(B?P : P') =
assume(B); produce(P) A assume(—B); produce(P’)

consume(B?P : P') =

assume(B); consume(P) A assume(—B); consume(P’)

Producing or consuming a conditional assertion B?P : P’ causes the
verification algorithm to fork in a demonic way. On one execution path it
will assume B (i.e., add it to the path condition) and subsequently produce,
respectively consume P. On the other execution path it will assume =B and
subsequently produce, respectively consume P’. The algorithm fails if either of
these two execution paths fail.

produce(P % P') = produce(P); produce(P’)
consume(P % P’) = consume(P); consume(P’)

Finally, producing or consuming a separating conjunction P % P’ simply means
first producing, respectively consuming P and then subsequently producing,
respectively consuming P’.

Routine verification

We can now use the production and consumption operations given above, to
define what it means to verify a routine. The symbolic execution of a routine
will result in a set of transition relations, and the routine will be deemed valid
if there is at least one transition relation in this set where the initial state does
not lead to failure.
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valid(routine r(Z) = req P ens Q do C) =
IR € W. (({T := v}, 1o, B) ~ fail) ¢ R
where (v, 11y) = nextFresh(()

and W = /\ A {(A,11,%) ~ (A, 11, %)}}; produce(P);
J\ A {(AT1,5) ~ (A, T, %)} verify(C);
/\A". {{(A", T, ) ~ (A[result :== A" (result)], I, )} }; consume(Q);
leakCheck

The symbolic execution starts from the initial state, where the routine’s
parameters are bound to fresh symbols, and the path condition and symbolic
heap are empty. We first “save” the initial symbolic store A, using the A
operator as a quantifier over all possible symbolic stores. Next, the precondition
P is produced, the resulting symbolic store A’ is saved, and the original symbolic
store A is restored. The body of the routine is then verified using the verify
operation, which is defined below. The post-production symbolic store A’ is
then restored, with the addition of a result variable that is copied over from
the routine body verification step. This store is then used to consume the
postcondition Q. Finally a so-called leak check is performed, leading all states
with a non-empty symbolic heap to failure.

leakCheck = {{(A, I, 0) ~ (A, I1,0)}} A {{(A, T, £) ~ fail | £ # 0}}

If the symbolic heap still contains heap chunks at the end of the routine
validation process, there could potentially be a memory leak in the verified
routine. This is because the remaining chunks can be points-to chunks or
abstract predicate chunks that represent the exclusive permission for the routine
to access a piece of memory. If these chunks are not removed by consuming
the routine’s postcondition, then the permission to access the corresponding
memory locations is not transferred to the routine’s caller when the routine
returns (see the definition of verify(z := r(E)) below). Hence the permissions
are lost and routine will no longer be able to access the corresponding memory
locations.

We will now describe how to verify each of the commands that make up the
body of a routine. We start with three simple structural commands.

verify(skip) = {{(A,ILY) ~ (AL )}

verify (if B then C; else Cs) =
assume(B); verify (C1) A assume(—B); verify(C2)

verify(C; C') = verify(C); verify(C")
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Verifying a skip command does not change the symbolic state at all. Verifying
an if-then-else command is similar to the production or consumption of a
conditional assertion: the symbolic execution forks into two execution paths
that must both succeed for the overall execution to succeed. The first execution
path assumes B and executes the then-case, while the other execution path
assumes —B and executes the else-case. Verifying a command sequence C; C’
simply means first verifying C' and subsequently verifying C".

verify(z := E) = {{(A,IL, ) ~ (Alz := [E]a], I, 2)}}

Verifying a variable assignment means updating the symbolic store to reflect
the variable’s new value.

verify(z := alloc) =
produce(mb(z,2) % (zx— =) % (z+1— —))

verify(dealloc(E)) =
consume(mb(E,2) % (E— —) % (E+1— —))

Verifying a memory allocation of a pair of heap cells means producing a memory
block chunk mb(z,2) and two points-to chunks, where z is the name of the
variable that will point to the allocated memory region. Verifying a memory
deallocation performs the opposite operation: consume the memory block chunk
mb(E,2) and the two corresponding points-to chunks. The mb(x,2) chunk
serves to remember the fact that z points to the first of the pair of allocated
memory cells, so that an attempt to deallocate x + 1 would not verify.

verify(z := [E]) =
let matches(A,IL X)) =
{(A7H7 Z) ~ (A[x = 7.1/]71_[7 E) |>—>(’l'},’('}/) c XAl Fsur [[(;z;,E)]]A = (q}’r[/)} in
choice({matches(A,II, %) | matches(A,IL %) # 0})
A{(A,T1, %) ~ fail | matches(A,I1, %) = §}}

Verifying a memory lookup means asserting that there is a points-to chunk
for the corresponding memory location and assigning the symbolic value v’
of that chunk to the assigned variable x in the symbolic store. Although in
practice there will be at most one matching points-to chunk in the symbolic
heap, pathological situations can occur in which there are multiple matching
chunks. In that case the symbolic execution proceeds as it did when consuming
a predicate assertion. That is, a different transition relation is constructed for
each possible match and the overall verification succeeds if there is at least one
relation that does not lead to failure from the initial state.

verify([E] := E')) = consume(FE — —); produce(E — E')
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Verifying a memory mutation simply means consuming a points-to predicate of
the memory location being modified and subsequently producing a points-to
chunk of the same memory location pointing to the updated value.

verify(while B inv P do C) =

consume(P);
/\ (AL E) ~ (A[mod(C) :=],T1,0) | (v,1') = nextFresh(IT)}};
produce(P);
(assume(B); verify(C); consume(P); leakCheck; assume(false) A
assume(-B); {{(A, I, Y) ~ (A, I, 2)}})

where mod(C') is the set of local variables modified by C

Verifying a while loop consists of first consuming the loop invariant P. Then,
all remaining chunks are removed from the symbolic heap, but the original heap
Y. is remembered. Notice that this means that only the heap chunks mentioned
in the loop invariant can be accessed by the loop body. The same step also
assigns a fresh symbol to each variable that is modified in the body of the loop.
Next, the loop invariant P is produced and the symbolic execution forks into
two execution paths. The first execution path assumes the loop condition B
is true and then verifies the loop body C, followed by the consumption of the
loop invariant P and a check that the symbolic heap is now empty. At this
point, the execution path ends, which is modeled by the assumption of false.
The other execution path assumes the loop condition B is false and restores
the symbolic heap ¥ for the execution of commands following the while loop.
Since all variables that are modified by the loop body have been assigned a
fresh symbol, the conjunction of =B and the loop invariant should express any
conditions on those variables that are to be assumed after the loop has been
executed.

verify(z := r(E)) =
A\ A {(ATL3) ~ ({7 = [E]a},11,£)}}; consume( P);
/\7‘. {{(A" 11, ) ~ (Al[result := #],II', %) | (#*,II') = nextFresh(I)}};
produce(Q); {{(A",11,%) ~ (Afx := ], 1, ) }}

where routine r(Z) = req P ens Q do C

Finally, verifying a routine call consists of first creating a new symbolic store
in which the routine’s parameters have been bound to call’s arguments. The
callee’s precondition P is then consumed under this new symbolic store, but
the original store A is remembered. Next, a fresh symbol 7 is bound to the
result variable and the postcondition @) is produced. Finally, the original store
A is restored, with variable = bound to the result symbol 7.
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Ghost statements

The algorithm presented up until this point provides a symbolic execution step
for each of the basic constructs of the pointer programming language extended
with user-defined predicates. There is however no way for users to actually use
the predicates they define. Suppose, for instance, that the user has defined the
following predicate, representing a linked list of length n.

list(z, ?n) =
(x=0)? (n=0)
((x = =) * (z + 1 —=7next) * list(next, 7n0) * (n =n0+ 1))

Now suppose the symbolic heap, at some point during the symbolic execution,
contains the following chunks: (& — 5) % (¢ + 1+ 0). This corresponds to a
linked list of length one, but there is no way to transform these chunks into a
list chunk. Hence, at this point calling a routine that requires such a chunk
would fail.

One way to solve this problem is to modify the verification algorithm to
automatically search for chunks that can be transformed into the required
precondition on routine calls. While such automatic transformations can be
convenient for the user, it is a complex search operation that can potentially
significantly increase the overall verification time if many transformations need
to be considered.

Another approach is to leave the transformation of heap chunks to the user.
This is the approach taken by VeriFast, which offers two so-called ghost
commands to open and close predicates. A ghost command is a command
that is executed as part of the symbolic execution process, but that does
nothing during concrete execution (i.e., it there behaves as the skip command).
Given that pred p(x,y) = P, the open and close ghost commands behave as
follows.

verify(open p(E, E')) =
consume(p(E, E')); /\A- HAILY) ~ ({z:=[E]la,y = [E']a}, ILE)}
produce(P); {{(A",TI,%) ~ (A, T, %)}}
verify(close p(F, E')) =
/\A- H{AILY) ~ ({z:= [E]a,y = [E']a}, 1L D)}
consume(P); {{(A',T1,%) ~ (A, 11, %)} }; produce(p(E, E'));

Opening a predicate means consuming the corresponding predicate chunk
from the symbolic heap, and subsequently producing the predicate’s body
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under a symbolic store where the predicate’s parameters have been bound
to its arguments. Closing a predicate is the reverse operation: consuming
the predicate’s body under a symbolic store where the predicate’s parameters
have been bound to its arguments, and subsequently producing the predicate
assertion under the original store.

Another ghost command that can be convenient for users is the assert command.
Many programming languages provide a runtime assert command that checks
that some boolean expression evaluates to true and ends execution if it does
not. However, we can also define a static assert command that is used during
symbolic execution to check that some boolean expression follows from the
current path condition. For boolean expressions, this ghost command simply
corresponds to consuming the expression.

verify(assert B) = consume(DB)

Like all ghost commands, the command has no effect during concrete execution.

Soundness

Proving the soundness of the symbolic execution algorithm is out of scope for
this text, but for most commands it is easy to see the resemblance between the
symbolic execution step and the corresponding Hoare or separation logic rule.
A soundness proof sketch is given in [60] and a more elaborate proof is given
in [119].

4.5 Summary

We started this chapter by proposing formal software verification as a solution
for reducing the number of programming defects, for applications where the
impact of such defects outweighs the extra development costs associated with the
approach. We then zoomed in on two specific logics that provide an axiomatic
approach to proving program correctness, namely Hoare logic and separation
logic. Hoare logic provides a sound formal basis for reasoning about imperative
programs, but is limited in its ability to reason about pointer programs, due to
the effects of aliasing. Separation logic does away with this limitation, and can
thus reason about languages with pointers to shared mutable data structures,
such as C, C++ and Java. For this it relies on the principle of spatial separation,
which allows us to express that certain sub-assertions hold for disjoint parts of
the memory heap, such that local heap mutations will only have a local effect on
a specific sub-assertion. Finally, we looked at the symbolic execution algorithm
that underlies the VeriFast program verifier, which reveals how separation logic
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proof rules can be used for semi-automatic program verification. The idea
behind symbolic execution is that an infinite number of concrete executions
can be represented by a single symbolic execution, by using variables that
hold symbols rather than concrete values. Although the algorithm deals with
a restricted version of the separation logic assertion language, the supported
assertions still allow a natural way of expressing correctness properties for
imperative programs.
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5.1 Introduction

The construction of reliable software in unsafe languages like C or C++ is
known to be challenging. Yet, because of the excellent performance of these
languages, and because they can give the programmer access to low-level details
of the machine on which the program is executing, they are often the languages
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of choice for infrastructural software such as hypervisors, operating systems and
servers, and for embedded software.

As discussed in Chapter 4, one way of significantly increasing assurance in the
reliability of software, is the use of program verification. For large systems,
it is essential that the verification technique used is modular. Each module
(i-e., for instance, each function) is verified to comply with its specification,
relying only on the specification of the other modules that the verified module
is interacting with. Several sound modular verification tools for C have been
proposed [29, 61]. However, the soundness properties of these verifiers have an
important limitation. To the best of our knowledge, all soundness results for
modular C verifiers have the form: under the condition that all modules of a
program have been verified, any execution of that program will comply with the
specification. In other words, as soon as there is one unverified module, all bets
are off. The implementations of modules that are not verified are part of the
trusted computing base; it is assumed that they comply with the specifications
for these modules that were used to verify the verified part of the program.
Such assumptions are particularly troublesome for memory-unsafe languages
such as C, as a single memory-safety error (such as a buffer overflow) in one
unverified module can in principle mess up the runtime state of all modules.
This has several undesirable consequences:

o While testing a partially verified program, failures may still occur in the
verified part of the program, and the root cause for such failures may
be hard to track down. This includes both memory safety failures (e.g.
dereferencing invalid memory addresses) as well as failures of assertions
that were statically verified to hold.

e Security properties verified to hold in a module are not guaranteed to
hold when that module is used as part of a larger, unverified program.
Hence, the benefits of partial verification for security purposes are limited.
In particular, in a security setting, one must consider that memory
safety errors may be exploited by means of code injection attacks [41].
Maintaining the integrity of a verified module in such a setting is very
challenging.

What is needed, is a technique for ensuring that failures cannot occur in the
verified part of the program. Any runtime error should either (1) lead to a
failure in the unverified part, or (2) be detected on entry to the verified part.
This will entail that the state of the verified module is always valid, and that no
properties that were verified to hold for this module state will ever be violated.

The approach we suggest is based on performing runtime checks at the boundary
between the verified and unverified part of the program. While sound approaches
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for such dynamic contract checking exist for safe languages [43, 45], to the best
of our knowledge there is no system that achieves such sound contract checking
for unsafe languages such as C. Furthermore, existing approaches instrument
each memory access in the unverified part [83] or verified part [108], entailing a
large performance cost, while in our approach checks are only performed when
crossing the verified-unverified boundary.

The main contribution of this chapter is the development of a program
transformation that, given a C program partitioned into an unverified module
and a module verified by means of separation logic, transforms the verified
module into a hardened module that includes sound and complete runtime
checks at the boundaries of the module. A key problem that needs to be solved
is how to make sure that memory errors (or alternatively, malicious code) in
the unverified module cannot corrupt the state of the verified module, while
still only performing explicit checks at the boundary. We solve this problem
in two steps. First, the boundary checks perform integrity checks on the heap
footprint of the verified module. This footprint is the part of the heap currently
“owned” by the verified module, i.e., memory that the verified module is allowed
to access at a certain point in the program execution, according to its separation
logic contracts. On re-entry to the verified module, we check that these memory
locations have not been changed by the unverified part of the program. This
ensures detection of any bad heap write performed by the unverified module
that could influence the further execution of the verified module. Second, we
need a mechanism for protecting the integrity of local variables and control flow
metadata of the verified module. For this, we rely on the secure compilation
scheme to protected module architectures (PMAs), presented in Chapter 2.
Early PMA prototypes [73, 113] are hypervisor-based [117], while the most
recent research prototypes [85] implement this protection in hardware, thereby
reducing the trusted computing base to just the processor itself. Intel recently
announced hardware support for PMAs under the name Intel Software Guard
Extensions (SGX) [56], hence this type of protection mechanisms will likely be
broadly available in the near future.

The combination of the module boundary checks and the secure compilation
protection of local variables and control flow gives us a very strong modular
soundness guarantee: no verified assertion in the verified module will ever fail
at runtime, even if the module runs as part of a vulnerable application that is
subject to code injection attacks.

The remainder of this chapter is structured as follows. First, we elaborate on the
problem we solve and on our proposed solution in Section 5.2 and Section 5.3.
In Section 5.4, we give a precise but informal explanation of our program
transformations, and in Section 5.5 we illustrate these transformations using an
example program. In Section 5.6 we discuss our prototype implementation and
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the results of our benchmarks. Finally, we discuss related work in Section 5.7
and summarize the chapter in Section 5.8. The next chapter will provide a
formal correctness proof of the runtime checks presented here.

5.2 Problem Statement

We assume as given a separation logic-based program logic for C [104], and
a sound modular static verifier that checks compliance of C functions with
contracts expressed in the program logic. For concreteness, we work in this
paper with the VeriFast verifier [61], but our results are not specific to VeriFast.
The assertion language we use for our examples is based on the symbolic
execution assertion language defined in Section 4.4.1.

For programs in which each function is statically verified and where the main
function has an empty precondition, verification ensures that no function ever
performs an illegal memory operation and that each function upholds its contract.
However, verifying the entire code base of a program is often infeasible, for
instance because it is too costly in terms of programmer effort. Trying to
prove full program correctness properties for partially verified programs would
clearly be overambitious, since there are no guarantees about the behavior of
the unverified parts. However, as this section will point out, even statements
concerned only with the verified parts of the program cannot be proven in
general for partially verified programs written in memory unsafe languages.

We consider single-threaded C programs consisting of two parts: an unverified
contert and a statically verified module. Each function of the verified module
and each function prototype used by it, specifies a separation logic contract,
consisting of a precondition (requires) and a postcondition (ensures). Static
verification ensures that the verified functions are memory safe and comply with
their specifications, but only under the assumption that the precondition holds
on function entry and that any function called from those functions complies to
its own specification.

Consider the example program shown below. On the left is the context,
consisting of a main function, a srt function and a prototype for a function
med. On the right is the verified module, which contains the function med and a
prototype for srt. The med function takes as input a non-empty list and claims
that, after execution, the list still contains the original values and the return
value will be the median of the input list. This function relies on functions len,
nth and srt to perform its task. As described in Section 4.4, the verifier relies
on the contracts of those functions, in addition to the proof statements in med
itself, to prove that the function will uphold its contract. The implementation
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of len and nth is not shown in the example, but they are assumed to be part of
the verified module, hence the verifier can verify those functions as well. On the
other hand, for the srt function the verified module only contains a prototype.
Hence the verifier can only assume that its implementation will uphold the
specified contract.

// Prototypes // Prototypes
int med(struct 1lst x1); void srt(struct lst =*1);
req list(l, ?v0);
ens list(l, ?vl1) %
val_eq(vo, vi1) *
sorted(vl);

// Unverified functions // Verified functions

int main() int med(struct 1lst 1)

{ req list(l, ?v0) x*
struct 1st *x1 = read_list(); 0 < length(vo);
print(med(l)); ens list(l, vo) *

} result = median(v0);

{

void srt(struct 1lst =x1) int s = len(l);

{ struct 1lst *x10 = copy(l);
<unverified sort srt(le);

implementation> <proof statements>

} return nth(le, s/2);

3

Linking the two parts of the example program together and executing them
may still lead to violations of the verified module specifications, if one of the
functions has a bug. We say that a function has a bug if it does not comply with
its contract. That is, there exists an execution of the function that satisfies its
precondition, but exhibits an invalid memory access, violates the postcondition,
or performs another function call and violates the precondition of the called
function. We assume that the static verifier is sound, i.e., it rejects any function
with a bug. Hence there are only bugs in the unverified context, not in the
verified module.

For instance, if read_list (called from main) has a bug and returns an invalid
(e.g., unallocated) memory address, the len function or some other verified
function could perform an illegal memory operation. Likewise, if srt has a bug
and violates the contract specified in its function prototype, then the verified
function med might not uphold its contract either. Furthermore, because C is a
memory unsafe language, srt can write to arbitrary memory locations, thereby
modifying data belonging to the med function. For instance, srt could write to
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the original list 1, instead of the copy 1o that it was given. Hence, any properties
verified to hold by the verifier about 1 while verifying med might be violated at
runtime after a call to the unverified function srt. Note that srt can also read
memory that it is not allowed to by its contract. This is also a bug, but it will
not violate any property of the verified module assumed by the verifier, hence
our runtime checks will allow this.

How bad the effects of bugs in the unverified part of the program can be,
depends on how the program is executed. A safe execution performs complete
runtime checking and will detect bugs as soon as they appear. Nguyen et
al. [83] propose a way to perform such executions. Every memory access is
checked and contracts are checked on each function entry and exit. Hence, safe
executions are expensive. It is sound to remove the runtime checks from the
verified module, as the soundness of verification implies that these checks will
never fail in the safe execution. But as long as there is a significant unverified
part, the performance cost will be high.

Because of this performance cost, executions of C programs are usually not safe.
Hence, executions can enter an error state and continue executing. We say an
execution is in an error state if it has performed memory accesses resulting in
undefined behavior according to C semantics or if the execution has violated
some of the separation logic specifications. An execution can only enter an
error state in a function with a bug. That function is the root cause of the
error state. An execution fails at the point where it detects the error state and
terminates. Safe executions fail immediately at the root cause of a bug, but
other executions may continue after entering an error state. Typically what
happens then is implementation-dependent: the program behavior depends on
details of the compiler and the machine on which the compiled code is executed.
Most C compilers will generate code that may detect some error states such as
the dereference of a memory address that the operating system has not even
allocated to the program. But in general, failure of the execution may happen
long after going into an error state. As a consequence, executions may enter an
error state in the unverified context, but then fail in the verified module. The
verified module may also be operating while in an error state, yet not fail, and
possibly further mess up the runtime state and worsen the error state of the
execution. This is exactly why partial verification is less useful than it could be,
as discussed in the introduction.

We have developed efficient runtime checks to be inserted at the boundary
between verified and unverified code, that make sure that no failures can occur
in the verified module. Executions can enter an error state while executing in
the unverified context and the execution may then continue in an error state,
but we have the guarantee that any error state that might impact the verified
module will be detected before control flow enters the verified module. As a
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consequence, we have that the execution never fails while control is inside the
verified module.

5.3 Overview of our solution

To guarantee that error states never impact verified modules, we need to model
the execution of programs with memory safety errors. We describe two such
models below.

5.3.1 Control-flow safe execution

The control-flow safe execution models programs as commands that operate
on a heap. This is a standard model of unsafe imperative programs, which we
already used in previous chapters. Under this model, memory safety errors may
impact any part of the heap, but they cannot modify local variables or the
control flow. In other words, code-injection attacks or stack smashing are not
modeled.

For the control-flow safe execution, it is sufficient to perform runtime checks at
the boundary between the verified module and the unverified context. Roughly
speaking, the checks that need to be performed at the boundary are the following.
Each function of the verified module should (1) check that its precondition holds
on entry from an unverified function, (2) check that the callee’s postcondition
holds after an outcall (i.e., a call from the verified module to an unverified
function), and (3) ensure that unverified functions do not modify any heap
locations that could affect the verified function’s correct execution. In our
approach, the first two checks are based on a translation of separation logic pre-
and postconditions into equivalent C code that will check the validity of those
conditions at runtime. For the third check, our approach keeps track of the
footprint of the verified module, i.e., the memory locations that the module can
read or write, and it uses an integrity check to ensure that unverified functions
do not modify the contents of those locations (except for the locations explicitly
allowed to be modified, i.e., those specified in the precondition of the called
unverified function). Right before performing a call from a verified function
to a function of the unverified context, a cryptographic checksum is calculated
over the contents of the verified module’s footprint, which is recalculated and
compared against the original on re-entry of the verified module.
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In Section 5.4 we describe a program transformation on the verified module
that injects the necessary runtime checks, and in Chapter 6 we prove these
checks correct for the control-flow safe execution of programs.

5.3.2 Unsafe execution

Of course, for most realistic C compilers, the control-flow safe execution model
is too abstract. Control flow information and local variables (i.e., the runtime
stack) are stored in the same memory space as the heap, and hence memory
safety errors can also modify control flow or contents of local variables. This is
particularly relevant if we consider the possibility that our program might be
under attack, and an adversary provides input that triggers a memory safety
error in the unverified part of the program by performing one of the many
possible low level attacks against C programs [41, 122].

Hence, we also consider unsafe executions, where programs are compiled in
the standard way to a Von Neumann style processor architecture. Under such
unsafe executions, the boundary checks discussed above are insufficient, as
memory safety errors might corrupt the integrity checksum that the boundary
checks compute. Also corruption of the control flow or of the verified functions’
local variables may lead to failures in the verified module.

To restore the property that no failures occur in the verified module, we build
on the fully abstract secure compilation scheme described in Chapter 2. This
compilation technique protects modules from a potentially malicious context
and ensures that any possible effect that the malicious context can have on
the hardened module can be understood at source code level. By composing
this secure compilation technique with the program transformations for the
control-flow safe execution, we get the desired property that no failures can
occur in the verified module, even in the presence of stack-smashing, code
injection attacks or other exploitations of memory safety errors in the unverified
context.

5.4 Program transformations

This section describes how a verified module can be transformed into a hardened
module containing runtime boundary checks, and how our prototype implements
these checks. At an architectural level, the hardened module can be subdivided
into a functional part and a boundary checking part (see Figure 5.1). The
functional part is essentially a copy of the verified module given as input, where
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Figure 5.1: At an architectural level, a hardened module can be subdivided into
a boundary checking part that performs the necessary runtime checks, and a
functional part that contains the code of the original verified module.

the separation logic contracts and proof statements have been removed and the
functions have been given a fresh name and marked static in order to remove
them from the module’s public interface. The boundary checking part contains
new functions and data structure definitions to actually perform the runtime
boundary checks. The hardened module is constructed such that each transition
between the context and the functional part passes through the appropriate
function of the boundary checking part.

The transformation is based solely on the source code of the verified module
and the annotated function prototypes of the unverified part. Hence, the
transformation does not require access to the source code of the unverified part.
The resulting hardened module can be linked with the unverified part as-is: no
recompilation of the unverified part is necessary.

The sections below explain concretely how different kinds of separation logic
constructs can be translated into C code for checking them. We assume the
control-flow safe execution model, since it is the execution model provided to
us by the fully abstract compilation scheme of Chapter 2.

5.4.1 Pure assertions

As described in Section 4.4.1, pure assertions, as opposed to spatial assertions,
do not make any claims about the heap. Such assertions can be translated
straightforwardly into a C expression, as shown in the example below.



118 SOUND VERIFICATION IN AN UNVERIFIED CONTEXT

// Original module // Hardened module
int fac(int x) // (Functional part)
req x >= 0; static int _fac(int x) {
ens result > 0; if (x == @) return 1;
{ int p = _prod(x, _fac(x-1));
if (x == @) return 1; return p;
int p = prod(x, fac(x-1)); 3
return p;
3 // (Boundary checking part)
static
int prod(int x, int y); int _prod(int x, int y) {
req true; int r = prod(x, y);
ens result = (x * y); if (! (r == x * y)) trap(Q);
return r;
}

int fac(int x) {
if (! (x >=0)) trap();
return _fac(x);

}

All assertions in this example, i.e., the contracts of fac and prod, are pure. In
the hardened module, fac has been replaced by an entry stub that first checks
the precondition, before calling _fac, which is a slightly modified version of
the original fac. The only functional difference is that the modified version
calls the _prod outcall stub instead of the original function prod in the context.
The outcall stub first calls prod in the context and then checks whether the
postcondition holds. If any check fails, the trap function is called, which ends
execution. The functions _prod and _fac have been marked static to indicate
they are not in the public interface of the hardened module.

5.4.2 Spatial assertions

Spatial assertions describe (parts of) the heap: they indicate that a certain
memory region should contain certain values. The assertions need not necessarily
specify exactly what those values are, they can instead existentially quantify
over them, by binding a logic variable. The difficulty with spatial assertions
is that a function in the context can overwrite these values, even though that
function might not be allowed to do so by its contract, thereby possibly violating
properties of the verified module verified to hold by the verifier. In separation
logic terms, this corresponds to a violation of the frame rule. As described in
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Section 5.3, we use a cryptographic checksum over the memory footprint of the
hardened module to solve this problem.

// Original module // Hardened module
struct pair {int a, b;}; struct pair {int a, b;};
static
void f(struct pairx* p) void _f(struct pairx p) {
req (p->a — ?a) x <...>
(p->b = ?b); —ct(p);
ens (p->a — —) * <. 0>
(p=>b — —); }
{
<...> static
ct(p); void _ct(struct pairx p) {
<. .0> struct hashval ho, hi1;
} int n = intp(&(p->a), C);
fp_hash (&ho);
void ct(struct pairx p); ct(p);
req p->a — ?n; fp_hash(&h1);
ens (p->a — ?m) * if (leq(&ho, &h1)) trap();
(m=n+ 1); int m = intp(&(p->a), P);
if (m != n+1) trap();
3

void f(struct pair* p) {
a = intp(&(p->a), P);

b = intp(&(p->b), P);
_f(p);

intp(&(p->a), C);
intp(&(p->b), C);

3

The code above shows our approach. In the hardened module on the right,
the verified function f has been replaced by an entry stub that first calls intp
for both integer points-to assertions in the precondition of the original f, then
calls _f and finally calls intp again for both integer points-to assertions in the
postcondition.

The intp function is a data type checking function provided by our runtime
checking system. It takes as arguments a pointer p to an integer and an
enumeration value C or P, and performs two important functions. The function
first checks whether p points to a valid integer, which it does by simply reading *p.
Secondly, the function adds or removes the memory region occupied by the
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integer (i.e., the memory region of sizeof(int) bytes starting at address p) to or
from a global data structure describing the hardened module’s current footprint.
When the enumeration value is P (for produce), the memory region is added
to the footprint and when it is ¢ (for consume) the region is removed. When
adding a region to the footprint, intp checks that the region does not overlap
with the existing footprint. This corresponds to the semantics of the separating
conjunction, which requires that the footprint of each of its conjuncts occupies
a disjoint part of the heap. Similar to VeriFast and other separation logic-based
tools, we do not support non-separating conjunction or negation. However, as
argued in Section 4.4.1, this does not pose expressibility problems in practice. If
all checks pass, the intp function returns the integer value at the given address, or
ends execution by calling trap otherwise. Functions similar to intp are provided
for other primitive data types (char, unsigned int, ...) and pointers, because
the memory sizes of those data types can differ.

In the function _f of the hardened module, the call to the ct function of
the context has been replaced by a call to the _ct outcall stub. This stub
first removes (consumes) the footprint of ct’s precondition from the hardened
module’s footprint, before calculating a hash over the memory regions described
by the remaining footprint. This hash is stored in the local variable he, where
it is protected from the context by the secure compilation scheme. Next, the
stub calls ct, handing over control to the context. When the context function
returns, the outcall stub verifies that the memory described by the footprint
has not been tampered with, by recalculating the hash and comparing it to the
original value stored in he. Finally, the stub checks whether the postcondition
of ct holds by producing its footprint and checking whether the values in the
corresponding memory region adhere to the contract. Note that we do not
prevent the context from reading memory it is not supposed to by its contract,
because this can never violate properties of the verified module assumed by the
verifier.

For our prototype, we implemented the footprint data structure as a radix trie.
This data structure supports O(k) addition, removal and overlap testing, and
O(n) traversal, with k the number of bits in a memory address (e.g., 64 for a
64-bit CPU) and n the number of memory regions in the trie. The footprint
description must be protected from being overwritten by memory safety errors
in the unverified context and hence we store it in the protected data memory
section provided by the PMA (see Section 2.2.3).
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5.4.3 Predicates

As described in Section 4.3.3, separation logic predicates are named,
parametrized assertions, used to provide data encapsulation and to describe
recursive data structures. For instance, the following predicate describes a
linked list of integers of a certain size.

struct list { int value; struct list*x next; };

pred list_pred(struct listx 1; int size) =
1 =0 7?7 (size = 0) : (l->value — —) % (l->next — ?n) *
list_pred(n, ?size@) % (size = size@ + 1);

Predicates can have an arbitrary number of parameters and separation logic
allows us to existentially quantify over each of them. For instance, a valid
precondition could be list_pred(?1, 5), meaning that there must be a linked list
of size 5 somewhere on the heap. Translating this quantification into a runtime
check would however be problematic, since in general the entire heap would
have to be examined in order to bind a value to 1 at runtime. To overcome this
problem, we require predicates to be precise, which is accomplished by separating
predicate parameters into input and output parameters and by allowing only
output parameters to be quantified over when using a predicate. In a predicate
definition, each output parameter of the predicate must be assigned a value
in all execution paths of the predicate’s body. The points-to assertion x ~ y
is treated as a precise predicate, of which x is an input parameter and y is an
output parameter. In our VeriFast-based assertion syntax, parameters before
the semicolon in the parameter list of a user-defined predicate definition are
input parameters and the other parameters are output parameters. Hence,
for list_pred defined above, 1 is an input parameter and size is an output
parameter. We discuss the further implications of our preciseness requirement
in Section 6.3.1.

The code below shows the transformation of the list_pred predicate. It is a
predicate checking function with one more parameter than the original predicate.
This extra parameter is an enumeration value, indicating whether the predicate
will be used for consumption or production and its value is simply passed
on to the data type checking functions (e.g. intp) described in Section 5.4.2.
Input parameters have the same type in the runtime checking function as in
the original predicate and output parameters are pointers to the type of the
parameter in the original predicate.
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static void
list_pred(struct listx 1, int*x size, enum op_type op) {
if (1 == 0) {
*size = 0;
} else {
intp(&(l->value), op);
struct listx n = ptrp(&(l->next), op);
int size®;
list_pred(n, &size@, op);
*size = size@ + 1;

The predicate’s body is transformed straightforwardly into equivalent C code.
When an output parameter is constrained to a value in the predicate body
using the equals operator, that value is assigned to the corresponding pointer
parameter in the predicate checking function. As exemplified by the recursive
call to list_pred, a predicate call assertion is transformed into a call to the
corresponding predicate checking function. If an assertion uses a constant value
or previously bound variable for an output argument instead of binding a new
variable (e.g. list_pred(l, s) with s already bound, instead of list_pred(l, ?s)),
then this is pre-transformed to first binding a fresh variable to the output
parameter and then constraining it with an equality (e.g. list_pred(l, ?s0) x
s0 = s). This allows the core transformation to assume that output arguments
are always existentially quantified.

5.4.4 Inductive data types

While spatial assertions and predicates are in some cases sufficient to prove
memory safety, they are insufficient to prove full functional correctness for
most programs. For instance, the list_pred predicate defined in the previous
section specifies the size and memory footprint of a linked list, but does not say
anything about its contents. VeriFast supports a rich specification language with
inductive data types and fixpoint functions (i.e., primitive recursive functions)
over them. The example below shows how such constructs can be used for
specifying functional correctness properties.
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induct ints = ints_nil() | ints_cons(int, ints);

pred list_pred(struct listx 1; ints values) =
1 =027
values = ints_nil ()

(1->value — ?v) % (l->next — ?n) x
list_pred(n, ?vs_tail) % (values = ints_cons(v, vs_tail));

fixpoint int head(ints 1lst) {
switch (lst) {
case ints_nil(): return 0;
case ints_cons(v, tail): return v;

}

int get_first(struct listx 1)

req list_pred(l, ?values);

ens list_pred(l, values) % (result = head(values));
{

<implementation omitted>

}

The functional behavior of get_first is completely specified by its contract. Our
transformation translates such inductive data type specifications into tagged
structures, a known technique for implementing variant types in C. The code
below shows the data structure definitions corresponding to ints and its two
constructors.

struct ints { int tag; };
struct ints_cons {

struct ints_nil { int tag;

int tag; int _1;

// No members struct intsx _2;
3 3

To prevent the context from tampering with instances of these data structures
when the context is in control, the data must either be stored in the protected
data memory section provided by the PMA, or be included in the module’s
footprint such that it’s incorporated in the cryptographic checksum described
in Section 5.4.2. We chose to store the data in the protected data memory
section, which is faster than the checksum-based approach, but does require
more protected memory.



124 SOUND VERIFICATION IN AN UNVERIFIED CONTEXT

Besides these structure declarations, the transformation also generates an
equality comparison function for each inductive data type. Finally, fixpoint
function definitions are translated straightforwardly into equivalent C functions.

5.4.5 Function pointers

VeriFast allows programs using function pointers to be verified, by letting users
associate contracts with families of functions. The code below shows how a
verified module can use a function pointer to call a function in the unverified
part.

typedef int int_func(int x); void f(int_funcx g, int x)
req true; req is_int_func(g);
ens result > 0; ens true;
{
int y = g(x);
< 002
}

The typedef on the left defines int_func as the family of functions that take an
integer argument and return a strictly positive integer result. On the right, the
function f takes a pointer g to such a function, applies it to a local variable x
and stores the result in y. The contract for g is specified by the is_int_func(g)
assertion in the precondition of f, which refers to the typedef on the left.

Our transformation handles function pointer calls in almost the same way as
it handles regular calls. More precisely, an outcall stub is generated for each
defined function pointer typedef, and the hardened module calls this outcall stub
instead of calling corresponding function pointers directly. Function pointer
outcall stubs take as an argument a pointer to the concrete function to call. For
instance, for the example code above, the function pointer outcall stub would
be as follows.

static int _int_func(int_funcx f, int x) {
<calculate footprint hash>
int result = f(x);
<verify footprint hash, check postcondition>
return result;

Indirect function calls from the context to the hardened module are also
supported naturally. Since all functions of the functional part of the hardened
module have been made static, the only publicly accessible functions of the
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Figure 5.2: When executing the example program on the left, the footprint
evolves as shown on the right. The single-bordered boxes on the left are
unverified functions while the double-bordered boxes are verified functions. The
boxes on the right represent the heap, with the grayed-out parts representing
the hardened module’s footprint. Solid lines are function calls and dashed lines
are returns.

module are those in the boundary checking part. The fully abstract compilation
scheme uses the PMA’s restriction on module entry points to ensure that only
those public functions can be called from the context at runtime. Hence, the
necessary runtime checks are performed whenever the unverified part calls the
hardened module through a function pointer.

5.5 Example program

This section uses an example program to illustrate how the transformations
described above affect the hardened module’s footprint description. Figure 5.2
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depicts the example program and the footprint at various execution points.
Note that the program is an abstract example created to illustrate the footprint
evolution under various control flow transitions, and is not intended to model
any useful computation. The program consists of the verified functions vf1, vf2
and vf3, and, in addition to the standard C library, two unverified functions
main and uvf. The unverified function uvf is annotated with a separation logic
contract, so it can be called from the verified functions. The function signatures
and contracts shown in Figure 5.2 refer to a struct m and predicate chars, defined
as follows.

struct m { pred chars(char *a, int sz) =
int x; int sz; sz <= @ ? true
3} char(a) * chars(a+1, sz-1);

A chars(a, sz) instance represents a character array of size sz, starting at heap
address a. The char predicate used by chars is a VeriFast primitive which asserts
that its argument points to a valid character in memory. Its translation is
a call to the charp data type checking function (similar to intp described in
Section 5.4.2).

We now discuss how each of the function calls shown in Figure 5.2 affects the
hardened module’s footprint description. Assume main allocates an array A of
N bytes and an instance M of struct m, using the standard (unverified) malloc
function, and assigns the value N to M’s sz field. At this point, the heap contains
A and M, and the footprint description is empty. Next, main calls the verified
function vf1(A, M), and hence this function’s entry stub will check whether its
precondition holds. The precondition check consists of reading the sz field of M
and verifying that A is in fact a character array of size N. As part of this check,
the memory occupied by M’s sz field and the entire array A will be added to the
footprint description. The memory occupied by M’s x field is not mentioned in
vf1’s precondition and hence is not added to the footprint description.

Next, vf1 calls vf2(a, m->sz) directly, without passing through a boundary
checking function, because both caller and callee are in the hardened module.
No runtime checks are performed and hence the footprint description remains
the same.

The vf2 function now makes an outcall uvf(a, sz), which passes through the
corresponding outcall stub. The stub first removes the array A from the footprint
description, because it is referenced in uvf’s precondition, and then hashes the
memory in the remaining footprint description (consisting of only the sz field of
M), before calling uvf.

We assume uvf allocates an array B of eight integers, again using the standard
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malloc function, and then calls vf3(B). This function’s entry stub will verify that
B is a valid array of eight integers and will add B to the footprint description.
The vf3 function now executes its (unspecified) body and then returns, thereby
removing B from the footprint description, as specified by its postcondition.

Now uvf is back in control and we assume it returns immediately, to its outcall
stub in the hardened module. The stub will first check that the memory in
the footprint (still consisting of only M’s sz field) has not been modified, by
recalculating the hash and comparing it to the original. Execution is aborted if
any change is detected. If the new hash matches the original, the stub checks
whether uvf’s postcondition holds and adds the second half of A back to the
footprint description, as specified by uvf’s postcondition. The stub then returns
control to vf2. Note that it is impossible that vf2 now tries to access the first
half of A, since this would have been detected by the static verifier when verifying
vf2.

The vf2 function now returns to vf1, without any change in the footprint
description, because both functions are part of the hardened module. Finally,
vf1 returns to main, removing the second half of A and M’s sz field from the
footprint description, as specified by vf1’s postcondition. Control is now back
at the main function and the footprint description is empty.

5.6 Prototype performance

We have implemented the transformations described in Section 5.4 as a source-
to-source translator written in OCaml. This translator takes as input a verified
C module with VeriFast annotations (including annotated function prototypes
for any function of the context called from the verified module), and outputs a
hardened version of the module. The translator reuses significant parts of the
existing VeriFast codebase, such as its lexer, parser and type checker. Although
VeriFast’s license prevents us from releasing the source code, a binary version
of the translator is available online®.

In the sections below, we describe the results of measuring the performance
impact of the inserted runtime checks versus the verified module without any
runtime checks. We ran micro and macro benchmarks on a standard desktop
system, without a protected module architecture, in order to quantify the
overhead of just the runtime checks, and we discuss the additional overhead
introduced by a PMA separately in Section 5.6.3. All benchmarks were compiled
with GCC 4.8.2, using optimization level 3, and were executed on a system with

1https://distrinet.cs.kuleuven.be/software/sound—verification
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Figure 5.3: Actions performed for every type of boundary transition.

a 3.10 GHz Intel Core 15-2400 CPU with 8 GiB of RAM, running Ubuntu 14.04.
The hash function used to calculate the hash over the footprint when performing
an outcall is BLAKE2Db [52].

5.6.1 Micro benchmarks

Since our transformations introduce checks at the boundary between the verified
and unverified part, there will be a performance overhead when crossing the
verified-unverified boundary. During a boundary check, up to three actions
are performed: (1) checking whether the assertion (pre- or postcondition)
holds, (2) adding or removing the assertion’s footprint from the footprint
description maintained by the module, and (3) hashing the memory in the
module’s footprint description Figure 5.3 shows which actions are performed
for each kind of boundary transition. We measured the contribution of each
of these factors using two micro benchmarks based on simple data structures,
similar to those used in [83].

The first micro benchmark is a verified module that takes as input a linked list
of integers and sorts it using insertion sort. The second micro benchmark is
another verified module that does an in-order traversal of a binary search tree
to produce a sorted linked list. Both modules have been verified for memory
safety (i.e., not for full functional correctness). The entry point signatures of
these two modules are as follows.

struct list_nodex insertion_sort(struct list_nodex 1);
req list_pred(l);
ens list_pred(result);

struct list_node* bst_to_list(struct bst_nodex* bst);
req bst_pred(bst, ?v);
ens bst_pred(bst, v) % list_pred(result);
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Figure 5.4: The execution time distribution over the different runtime checking
actions for our micro benchmarks, for different input lengths. The numbers
above the bars indicate the total execution time overhead in comparison to the
unhardened code.

Figure 5.4 shows the distribution of execution time over the different actions
performed by the runtime checks for these benchmarks, for input lengths of
10', 102, 10% and 10* elements. The number above each bar indicates the total
overhead in comparison to the unhardened code.

The left bar chart shows that, for small input sizes, the insertion sort module
spends significant time modifying the footprint description and checking
assertion validity. As the input size increases however, the relative overhead due
to these actions drops to the point where it becomes insignificant. This is because
modifying the footprint and checking assertion validity are O(n) operations
that are only performed when entering or exiting the module, and insertion sort
is a O(n?) algorithm. Hence, the time spent doing useful calculations inside
the module increases faster than the time spent performing runtime checks. No
time is spent on hashing, because the benchmark does not make any outcalls.

The middle bar chart shows that the BST module spends almost all of its time
hashing its footprint, resulting in a huge performance overhead that increases
with increasing input size. This is because the memory for the output list is
allocated piece-by-piece while traversing the input, and hence the benchmark
performs an outcall to malloc for each node of the input BST that it visits.
Because hashing the module footprint is an O(n) operation and it is performed
n times, we have an O(n?) hashing overhead. Since the BST to list algorithm
itself is only O(n), the hashing overhead quickly dominates the execution time.
It is however possible to reduce the hashing overhead to O(n) by using a slightly
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modified algorithm that first calculates the size of input BST and then allocates
memory for the entire output list with a single malloc call. This will cause the
module footprint to be hashed only once, instead of n times. The performance
overhead of this algorithm is shown in the right bar chart of Figure 5.4. While
the relative overhead is still significant, it now remains constant with increasing
input size. This demonstrates that the choice of boundary between verified and
unverified code, and the number of times this boundary is crossed, can have a
large impact on performance.

5.6.2 Macro benchmarks

While the micro benchmarks from Section 5.6.1 show how the execution time
overhead is distributed over the different actions performed during a runtime
check, they do not show one of the major advantages of our approach: the
fact that there is no performance impact on code running completely in the
verified or in the unverified part but not transitioning between the two. To
show this effect and to assess the real-world feasibility of our approach, we
have constructed three realistic macro benchmarks in which we verify and
harden a small, security-critical part of an application, but leave the bulk of
the application unverified. We measured both the execution time and memory
overhead for these macro benchmarks.

Apache httpd modules

The first two macro benchmarks are modified Apache httpd authentication
modules, which are used by the web server for verifying user credentials (for
instance as part of HT' TP Basic Authentication). The first Apache benchmark
is based on the standard mod_authn_anon module, and uses a single pair of valid
username/password credentials hardcoded in memory. The other benchmark
is based on the standard mod_authn_file module, which reads the list of valid
credentials from a file on disk. Both modules provide a single entry point
function that takes client credentials (sent to the web server by the client) as
input and returns an integer indicating whether or not they are valid. The
signatures of these functions are shown below.

int check_password_mem(char *u, char xp);
req string(u, ?user) x string(p, ?pass);
ens string(u, user) % string(p, pass) *
(result = 1) ?
(user = "username"”) % (pass = "secret”)

(result = @) ? true : (result = 2);
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Table 5.1: The execution time overhead of the program transformations is below
4% for the macro benchmarks.

Execution time (s)
unhardened hardened overhead
mod__authn__anon 33.164 33.388 | 0.224 (0.68)%
mod__authn__file 33.554 34.809 | 1.255 (3.74)%
ftpd 23.193 23.242 | 0.049 (0.21)%

Table 5.2: The peak memory overhead of the program transformations is below
7% for the macro benchmarks.

Peak resident set size (KiB)
unhardened hardened overhead
mod__authn__anon 33,356 33,384 28 (0.08%)
mod__authn__ file 33,324 35,524 | 2,200 (6.60%)
ftpd 952 976 24 (2.52%)

int check_password_file(char *u, char xp);
req string(u, ?user) % string(p, ?pass);
ens string(u, user) % string(p, pass);

The modules’ code consists mainly of outcalls to various I/O and string
processing functions of the standard library. In particular, the memory-based
module performs 2 such outcalls per HTTP request, while the file-based module
performs 34. As can be seen from the signatures above, the memory-based
module has been verified for full functional correctness, while the file-based
module has only been verified for memory safety, but this makes no difference
at runtime. The path of the valid credentials file has been hardcoded in the
source of the file-based module.

We set up the pre-forked version of Apache httpd 2.4.7 to serve the default
WordPress 3.9.1 sample website with a MySQL 5.5.37 database back-end. We
used the Apache HTTP server benchmarking tool ab to measure the time
required to perform 5,000 HTTP requests using 10 concurrent client threads.
The client and server were executed on the same host to eliminate any network
bottlenecks, and we made sure the web server did not use any form of credential
caching. The memory overhead was measured by comparing the peak resident
set size of the modules.
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The first two rows of Table 5.1 and Table 5.2 show the results for the Apache
benchmarks. The execution time overhead is low, averaging at 0.68% and 3.74%
over three benchmarking runs for the memory-based and file-based module
respectively. The memory overhead is also low, averaging at 0.08% and 6.60%.
The difference in overhead between the two modules is due to the different
number of outcalls they perform and because the file-based module needs a
relatively large buffer for reading lines from the password file. This buffer is
part of the module’s footprint and hence needs to be described by the footprint
description and hashed when making outcalls.

NetKit FTP daemon

The NetKit FTP daemon is an FTP server shipped with many current Linux
distributions. It contains a checkuser function that is used to determine whether
the names of users trying to log in appear in the /etc/ftpusers file of blocked
users. We have verified this function and have moved it into a separate module,
which we then hardened with our prototype translator. The signature of this
function is shown below.

int checkuser (char xfname, char *name);
req string(fname, ?fn) % string(name, ?n);
ens string(fname, fn) % string(name, n);

The implementation of this function is quite similar to the mod_authn_file Apache
module, performing 30 outcalls to various I/O and string processing functions
per FTP session. The benchmark consists of performing 500 FTP sessions using
10 concurrent client threads, where each session consists of a user logging in,
downloading a 1 KiB file and then disconnecting again.

The third row of Table 5.1 and Table 5.2 shows the results obtained by taking
the average of three benchmarking runs. Both the execution time and memory
overhead are again low, confirming our claim that real-world applications
consisting mainly of unverified code plus a small hardened module, incur only a
small performance overhead.

5.6.3 PMA overhead

As explained in Section 5.3, our runtime checks assume a control-flow safe
execution model, which we achieve using the fully abstract compilation process
from the hardened source code to a PMA, as described in Chapter 2. Since the
micro and macro benchmarks described above were performed on a standard
desktop system without a PMA, their results do not yet represent the overhead
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of our full end-to-end approach. Although recent developments [56] indicate
low-overhead hardware-based PMA platforms will be available for commodity
desktop systems in the near future, the currently available PMA prototypes are
still in an experimental state, prohibiting us from running meaningful end-to-
end macro benchmarks on top of them. The micro benchmarks described in
Section 2.3.3 indicate there is a 85 x performance overhead for calling a protected
module function compared to calling an operating system driver function, but
this figure represents only the execution time difference for performing a function
call. Most of this overhead is due to making the context switch from user-mode
to the protected module. When there is some actual computation involved and
when the PMA is implemented in hardware instead of using a hypervisor, the
overall overhead is likely to be much smaller.

In order to get a more realistic figure for the end-to-end overhead of our
approach, we developed a benchmark for Sancus [85], which is a fully-functional
hardware-based PMA for low-end networked microcontrollers. The Sancus
prototype consists of a fully abstract compiler towards a small PMA-enabled
16-bit microcontroller (based on the TT MSP430) featuring 48 KiB of ROM and
10KiB of RAM. Although this platform is too resource-constrained to run our
macro benchmarks, we developed a micro benchmark that is similar to the code
example given in Section 5.2. The benchmark consists of a hardened module
that provides a function for calculating the median of a linked list of integers.
The function’s precondition asserts that the list is a valid non-empty linked
list and its body performs three outcalls: one to copy the list, one to sort the
copy and one to free the copy before returning. The hash function used for this
benchmark was SHA-256. The results indicate the total overhead of Sancus
(both the secure compiler and the platform) is below 1%.

5.6.4 Reducing hashing overhead

The micro benchmarks show that considerable time is spent hashing the module’s
footprint. One way of reducing this overhead is to do away with hashing and
instead copy the entire module footprint contents to a secure location in memory
(e.g., the PMA’s private memory region) when making an outcall and to check
the footprint against this copy on return. Our experiments show that this gives
a performance benefit of between 0% and 20% in comparison with hashing, but
it obviously requires much more protected data memory.

Another potential performance issue is that, as the verified codebase of an
application grows, the size of the hardened module’s footprint grows as well,
which means more data must be hashed on each boundary transition. However,
as the verified codebase grows, the part of the data that is used exclusively by
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the verified part of the application is likely to grow as well. Hence, this data
could be placed in protected data memory, where it can be accessed only by
the hardened module and hence need not be hashed on boundary transitions.

An interesting way to solve both issues would be by taking advantage of hardware
page protection support to reduce the amount of data needing to be hashed
on boundary transitions. If an entire memory page is part of the module’s
footprint, it can be marked read-only in hardware before making an outcall
and be reverted to read-write access on return. However, memory pages are
typically at least 4 KiB in size, making this approach too coarse-grained to
be used directly. A hybrid approach where pages that are completely in the
footprint description are set read-only and the rest of the footprint is hashed or
copied, is viable, but we consider this to be future work.

5.6.5 Summary

Our micro benchmarks indicate that the performance overhead of the runtime
checks can be significant if there is little computation in- or outside the verified
module, compared to the computation required for the boundary checks. Most
of this overhead is due to hashing the module’s footprint and adding/removing
memory regions to/from the footprint description. Nevertheless, the macro
benchmarks show that this overhead becomes negligible once more computation
is performed in the unverified context. Hence, when developing modules to
be verified and hardened, it is critical that the boundary between verified and
unverified code is chosen wisely. That is, developers should try to minimize
the number of verified /unverified boundary crosses in order to minimize the
performance overhead. Although we could not run our full set of benchmarks on
a PMA-enabled system, a separate benchmark performed on Sancus indicates
the platform overhead is negligible.

5.7 Related work

Separation logic-based formal verification ensures memory safety, which can
be considered one of its main advantages for memory unsafe languages such as
C. There are however many other notable solutions for making C memory
safe, such as Safe-C [13], CCured [80] and Cyclone [64]. These systems
rely on a combination of type system extensions, static analyses and runtime
checks to ensure memory safety, but make no attempt at providing correctness
guarantees beyond that. Furthermore, these solutions protect against input-
providing attackers, while we protect against more powerful in-code attackers,
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i.e., attackers that have already gained the ability to execute code in the
unverified part.

The idea that software modules should specify contracts in the form of pre- and
post-conditions was popularized by Meyer [75] in the programming language
Eiffel. Such contracts can then be checked statically or dynamically, and there
is a huge amount of literature both on static and on dynamic checking of
contracts. Some notable examples include the Java Modeling Language (JML)
based tools [23], and .NET Contracts [18].

Our approach combines modular static verification with runtime checking, to
achieve a non-trivial soundness property in the context of an unsafe programming
language. The approach is based on separation logic [104] so that there is a
clear notion of memory ownership and we can compute the footprint (i.e., the
owned region of memory) of a module and take a snapshot of that region’s
contents. For our implementation and experiments we have used the VeriFast [61,
58] separation logic-based assertion language and static program verification
tool for C and Java. Other separation logic-based program verifiers include
Smallfoot [19], JStar [38], HIP [26], and Space Invader/Infer [25]. Another
notable modular static verification tool for C programs is VCC [29]. However,
instead of separation logic, it uses a verification logic that is heavily based on
ghost variables, so it is not clear how one would generate runtime checks for
module specifications written in VCC’s annotation language.

Runtime checking of separation logic assertions is known to be challenging
because of the frame rule. A related approach is that of Nguyen et al. [83].
Although some of the techniques used in their approach are similar to ours (e.g.,
tracking footprints and splitting predicate parameters into input and output
parameters), their objective is different from ours. Their runtime checker aims
to stay as close to the standard separation logic semantics as possible, while our
approach only aims to ensure that no failures can occur in verified code. We
can hence allow unverified code to read arbitrary memory, which is not allowed
under standard separation logic semantics. Nguyen et al. use a heap coloring
technique and runtime checks at every method invocation and field access in
unverified code to check framing. This introduces a large performance overhead
(on the order of 10,000x if all necessary checks are done) that increases as
the size of the unverified code grows. As shown in Section 5.6, the relative
performance impact of our approach decreases with a larger unverified codebase.
Also, since the implementation of Nguyen et al. needs to instrument unverified
code, the entire codebase must be recompiled, whereas we only need access to
the verified module. Finally, the implementation of Nguyen et al. is for Java,
so they do not address the complications related to the lack of memory safety
of C.
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Another related approach is that of Yarra [108], in which runtime checks are used
to protect C programs from non-control data attacks. Developers must annotate
critical data structures with special type declarations, from which point on those
data structures should only be accessed using those special types. In its whole
program protection mode, runtime checks are inserted throughout the entire
codebase to detect illegal accesses to the critical data structures, causing a large
performance overhead. In its library protection mode however, only the memory
accesses of a small core of the application (loosely corresponding to the verified
module of our approach) are instrumented. Critical memory writes in the core
are modified to maintain a shadow copy of critical objects on separate memory
pages, which are made read-only using hardware page protections before calling
untrusted code. Critical memory reads in the core are instrumented to check
consistency of both copies, thereby detecting unauthorized writes to critical
objects from untrusted code. The library protection mode is similar to how
we enforce the separation logic frame rule, in the sense that critical regions
of memory are integrity protected when calling untrusted code. Our solution
provides stronger guarantees than Yarra however, since we ensure validity of
arbitrary separation logic assertions, instead of only data structure integrity.
Also, Yarra does not prevent untrusted code from disabling the shadow page
protections, making it vulnerable to code-injection attacks in the unprotected
part. Finally, although the performance cost of Yarra’s library protection mode
is low, it grows with both the number of boundary crossings and the number of
reads and writes to critical data in the core part of the application.

Kosmatov et al. [67] described the runtime checking of E-ACSL annotations
for C programs, in the context of the Frama-C platform. E-ACSL is an
executable subset of ACSL, a behavioral specification language for C programs.
Both function contracts and in-body annotations can be specified and can
be translated into runtime checks by the E-ACSL2C translator. In order to
perform such runtime checks, each memory allocation, deallocation and variable
assignment is instrumented to record information about the modified region
of memory into a dedicated data store. This store hence contains a copy of
the program’s data and some meta data about it. The runtime pre, post and
in-body annotation checks query the store in order to determine the annotations’
validity. Although the approach mentions the use of static analyses to statically
discard some of the runtime checks, there is no notion of a verified and an
unverified part. Hence, the entire program must be instrumented for the checks
to be sound and complete. This results in a high overall performance cost,
ranging from 13x to 800x.

The problem of checking contracts at the boundary between statically checked
modules and unchecked modules has also been studied extensively in higher-
order programming languages. Findler and Felleisen pioneered this line of work
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and proposed higher-order contracts [43], which have been implemented in the
Racket programming language [45]. The main challenge addressed is that of
function values passed over the boundary. Compliance of such function values
with their specified contract is generally undecidable. But it can be handled
by wrapping the function with a wrapper that will check the contract of the
function value at the point where the function is called. This is similar to how
we handle function pointers: the corresponding contract is checked when the
function is called. One concern that has received extensive attention is the
proper assignment of blame once a contract violation is detected [51, 37]. While
this line of research shares our goal of safely composing a statically checked
module with an unchecked module, the issues of higher order contracts and
blame assignment are largely orthogonal to the problems we addressed in this
chapter.

5.8 Summary

Separation logic-based verification of C code is a powerful technique for
guaranteeing the absence of code failures. However, verifying large programs
is difficult and requires significant expertise and developer effort. Modular
verification tools support partial verification, where only the most critical
modules are verified, and where over time more and more modules get verified.
Unfortunately, this kind of partial verification gives only limited guarantees at
runtime. Bugs in the unverified part of the program can also impact the state
of the verified part, and hence might trigger failures in verified modules.

We have proposed a way to transform and compile partially verified programs
such that the runtime guarantees are significantly better. After our code
transformations, no failures can ever occur in the verified module; if a bug is
triggered in the unverified part of the program, this is detected before it can
impact the state or control flow of the verified module. This is useful for testing,
as it detects bugs faster, and for security as it can guarantee verified properties
of modules even in the presence of code injection attacks against the unverified
part of the program. We have tested the performance of the transformed code,
and have found that the overhead is low if the boundary between verified and
unverified code is chosen wisely, demonstrating the real-world feasibility of our
approach.
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6.1 Introduction

This chapter formalizes the program transformations described in Chapter 5
and proves them to be safe and precise. Safety means that the hardened module
does not fail, even when it is interacting with a context that does not uphold
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nlz|E+E|E—-E

B := true|false|E=F|E < E|-B

Q
i

skip |z := E |if B then C else C'|z := r(Z) |z := alloc|
z = [z] ]| [z] := x| dealloc(x) | assert(B) | alloced(z) | C; C

I,ne Nt z,y,2 € Vars
rdef ::= routine r(z) =C

Figure 6.1: Syntax definition of our imperative language.

its contracts. Precision means that the hardened module behaves exactly like
the original verified module when interacting with a context that does uphold
its contracts.

As in Chapter 3, we have tried to divide our efforts in the most efficient way
between developing a thorough implementation of our translator (see Section 5.6)
and a rigorous formalization. We have again focused on proving the theorems
and lemmas that contribute most to convincing the reader of the correctness
of our results, marking the less rigorously conducted proofs as proof sketches.
Further focusing on the essentials of our transformation, we do not formalize
inductive data types nor function pointers.

The further outline of this chapter is as follows. We first define a simple
imperative programming language that models C in Section 6.2 and define
our separation logic assertion language in Section 6.3. Then, in Section 6.4,
we define a function prod that translates assertions to executable program
statements that check whether or not those assertions hold. This function would
be sufficient to generate complete runtime checks for a module that does not
perform any outcalls. After proving this function’s correctness, we use it as a
building block in Section 6.5 for a more complex transformation function that
safely supports outcalls. In Section 6.6 we prove that programs generated by
this transformation function are safe and precise. Finally, in Section 6.7 we
summarize the chapter.
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VARASSIGN SKIP
(G, h), v :=E) — Y {((5,h), skip;C) —
Y F{(s[x = [E]s):5,h), skip) Y +H{(5,h), C)
IFTRUE IFFALSE
[E]s = true [E]s = false
Y+ {(s:i3,h), if E then C else C') Y+ ((s::3,h), if E then C else C')
— X+ ((s:55,h), C) — X+ {(s:55,h), C")
HEAPREAD HEAPWRITE
(s(x’) = m)€h (s(x) »n') €
Sk ((s:55,h), z:=[2]) —

D <( s,h), [2] == '> —
Y+ ((s[zr = n]:35, k), skip) S E{((s: [ (x) — s(z")]), skip)

HEAPREAD-FAIL

HEAPWRITE-FAIL
SE((s:5,h), = [2/]) — fail Sk ((s:3,h), [z]:=2') — fail
CALL
3(r) = (routine r(z) = C) RETURN

Y F{(s:5,h), z:=r(7) —

EH—((S :s"15,h), ©:=ret) —
({7 — s(m)}usis,h), C; zi=ret) TE((s[z — s( es)]:5, h), skip)
ALLOC DEALLOC
l ¢ domh (s(z) > n)eh
F ((s:3,h), x:= alloc) — Yk {(s:8,h), dealloc(z)) —
b F ((s[x — 1]:53,h[l — n]), skip)

Y F{(s:3,h\ {s(z) = n}), skip)
DEeALLOC-FAIL

(s(x) = n)&h RETURN-END
S+ ((s:5,h), dealloc(z)) —> fail

Y F{(s,h), skip) — s(res)

ALLOCEDTRUE ALLOCEDFALSE
s(z) € domh s(z) ¢ domh
Y+ {(s:5,h), alloced(z)) — Y F{(s:3,h), alloced(z)) —
Y F {(s:5,h), skip) Y F{(s:5,h), trap)
ASSERTTRUE ASSERTFALSE
[B]s = true [B]s = false
Y+ ((s:5,h), assert(B)) — Y+

((s:35,h), assert(B)) —
Y F((s:5,h), trap)

Figure 6.2: Small-step operational semantics of our imperative language

Yk {(s:8,h), skip)
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6.2 Programming language

The syntax of our formal programming language is defined in Figure 6.1 and
its operational semantics are described in Figure 6.2. We write [E]; to indicate
the value of an expression E evaluated under a store s, assuming standard
non-negative integer expression evaluation. Both the syntax and the semantics
of the programming language are very similar to those of the language defined
in Section 4.4.

In addition to standard imperative language constructs such as heap lookup,
mutation, allocation and deallocation, the language provides two assertion
commands. The first is assert(b), which asserts that the boolean expression b
holds and the other is alloced(l), which asserts that the memory address [ is
allocated. Both commands evaluate to skip if the assertion succeeds and to
trap otherwise. Trapping (as opposed to failing) is a clean way of indicating
an abnormality: our runtime checks trap whenever they discover a bug in the
context.

The evaluation operator —» relates successive program states 3+ ((3,h), C),
where ¥ is a map from routine names to routine definitions, s is the stack, h is
the heap and C' is the program under execution. The stack is a list of stores
s, each of which is a partial function from Vars to NT. The heap is a partial
function from memory locations in NT to values in NT. Execution starts from
an empty store and heap, and results in an outcome o, which is either an integer
n, the failure outcome fail, the trapped outcome trap, or 4 if the program
diverges.

We assume our programs are well-formed. That is, they never try to use a
variable that was not defined earlier in the code, and they do not refer to
undefined routines. From Figure 6.2 we can see that programs only fail when
they try to read, write or deallocate an unallocated memory location. Absence of
failure according to this definition implies absence of failure of verified assertions,
because we can always modify a program to perform an illegal memory access
when an assertion that was statically verified to hold, does not hold at runtime.

6.3 Separation logic assertions

We define separation logic triples of the form I' F { P} C' {Q} and A E {P} C {Q}.
Triples of the first form mean that the static verifier asserts, given the partial
function I' mapping routine names to contracts, that if P holds then C' will not
fail and @ will hold after executing C. The I' corresponds to the prototypes of
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SShE T ~ s
s,hE B~ s
s,hE E 2z~ s
sSShE E—x~ s

s,hEp(E?72) ~ &

s,hEp(E,x) ~ s
s,hEB?P:P ~ ¢
s,hEy:=E~§

s,hE P % P~ §"

s,hE PV P ~ss
s,hE PAP ~s"
shE =P s

s,hE P
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always

iff [B]s = true

iff h ={[FE]s — n} and s’ = s[z — n]
iff s,hE E =7y~ s and s'(y) = s(x)

iff pred p(x,y) = P and Jv. {z — [E]s},h E P~ §"
and s’ = s[z — s'(y)]

iff s,hF p(E, ) ~ s" and s'(y) = s(x)
iff if s,hF B then s,h = P~ s" else s,hE P ~ s
iff s = sy — [E]s]

iff E'ho,hl. ho 1 h1 and ho Uhl = h and
s,hgE P~ s and s',hi E P ~ 5"

iff s,h=EPors,hEP
iff sshE P~ s and s’,hE P ~»s"
iff -3s’. s,h E P~ &'

iff 3s’. s,hE P~ s

Figure 6.3: Formal semantics of our assertion language.

the functions of the context (including their contracts). Triples of the latter
form mean that if P holds in some state (stack and heap), then ezecuting C
under the context A won’t fail and @ will hold in the resulting state. The A
corresponds to a concrete context, in the form of a map from routine names
to routine definitions. We are only concerned with partial correctness, so C' is

allowed to diverge.

Because the verifier is sound, I' - {P} C' {Q} implies A F {P} C' {Q}, under
the critical condition that the routines of A uphold the contracts defined in T.
The essence of our formalization is to show that our program transformation
will allow us to discard this critical condition.



144 SOUND VERIFICATION IN AN UNVERIFIED CONTEXT: FORMALIZATION

fized ,(x = E) always

fized, (B 7 A: A iff fized,(A) and fized,(A")
fived (A % A") iff fized,(A) xor fized,(A")
precise(pred p(z,y) = A) iff fized, (A)

Figure 6.4: Definition of precise predicates.

Assertions P and @ are defined as follows.

P,Q:=B|B?P:Q|E—?x|p(E,7x)|y:=E|P % Q|
PAQ|PVQ|-P|T

Boolean expressions B and integer expressions E are defined as in Figure 6.1,
p refers to a user-defined predicate, and 7z introduces a logic variable z. The
first parameter of a user-defined predicate is an input parameter and the second
is an output parameter. The assignment assertion y := FE is used for binding
a value to the output parameter of a predicate within a predicate definition.
Having a separate syntactic construct for this purpose simplifies the definition
of the program transformations.

The formal semantics of the assertion language are defined in Figure 6.3. In
this figure, a judgment s, h & P ~ s’ means that the assertion P holds under
store s and heap h and binds new logic variables (using the E —?z and p(e, ?x)
constructs) to create the updated store s'.

We always assume assertions are well-formed. That is, (1) all logic variables
are distinct from program variables, (2) assertions never refer to undefined
program or logic variables and (3) assertions never re-assign logic variables.
These properties can always be achieved by a renaming of logic variables.

6.3.1 Contract assertion language

Although assertions in our meta-theory range over the full language defined
above, routine and predicate contracts come from a more restricted language of
precise assertions.

A:=B|B?A:A|E=?x|p(E,7z)|y:=E|A%x A
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In particular, routine and predicate assertions do not include standard
conjunction, disjunction, negation nor top. Furthermore, we require user-
defined predicates to constrain their output parameter to a single value (using
the y := E construct), exactly once on each possible execution path of their body,
as defined in Figure 6.4. These requirements make existential quantification
constructive: assertions indicate how each variable can be assigned a value,
thereby avoiding an exhaustive search which would entail an enormous runtime
performance cost.

This contract assertion language corresponds exactly to the assertion language
defined in Section 4.4. As we already argued there, excluding disjunction,
negation and non-separating conjunction between spatial predicates might
seem to limit the expressiveness of the contract assertion language, but this
language subset corresponds exactly to the assertion languages supported
by VeriFast [61], Smallfoot [19] and other separation logic-based program
verifiers [38, 25]. Extensive experience with these tools has shown that this
subset is sufficiently expressive for all practical purposes [100].

In the rest of the text, we will consistently use symbols P and @ for meta-level
assertions and symbol A for contract assertions.

6.4 Assertion production

We now define a function prod(A) from assertions to commands that models
the runtime production of A (see Section 5.4.2). This function by itself would
be sufficient for generating safe and precise checks for verified modules that do
not perform any outcalls. We will use this function as a building block for the
definition of a transformation with support for outcalls, in Section 6.5.

The code generated by prod(A) assumes there is a program variable fp containing
a set of memory locations that represents the hardened module’s current
footprint. Since memory locations in our programming language are non-
negative integers, a Godel encoding could be used to store this footprint. The
generated code will (1) trap if A does not hold or if its footprint would overlap
with the footprint in fp, (2) create a program variable x for each logic variable
7z in A and (3) add the assertion’s footprint to fp. The function is defined as
follows.
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prod(y := E) = (y := E)
prod(B) = assert(B)
prod(B ? Ay : As) = if B then prod(A4;) else prod(As)

x:=E; r:=in(z,fp);
prod(E —?z) =< assert(x =0); = := E; alloced(z);

fp := add(z, fp); = z[ ]
where fp is the program variable that stores the footprint, in(z,y) returns 1 if
z is in the list represented by y and 0 otherwise, and add(z,y) adds = to the
list represented by y.

prod(p(E, ?z)) = (v := E; {fp,z} := prod,(fp,))

where prod,, implements the production part of the predicate checking routine
for p, defined as routine prod,(fp,r) = prod(A); res := {fp,y} with A the
body of pred p(z,y). The {fp,x} is syntactic sugar for a tuple consisting of
fp and z.

prod(A; % As) = prod(A;); prod(As)

Before proving the correctness of prod, we first define a number of auxiliary
definitions and lemmas.

Definition 6.4.1 (Partial function subset). We say a partial function
f:X =Y is a subset of a (partial or total) function f': X —Y, written

FE S iffVe e domf: f(z) = f'(z).

Lemma 6.4.1. For any s, s, h, i/ and A, such that h © I/, we have that
((s,h), prod(A)) — ((s', h), skip) = ((s,h'), prod(A)) — ((s', 1), skip).

Proof. Follows from the definition of prod. Any memory location allocated in h
is also allocated in A’ and has the same value. O

Lemma 6.4.2. For any s, s’, h and A such that {((s,h), prod(A)) —
((s',h), skip), we have s C s'.

Proof. The key property to check is that prod(A) never changes any program
variable z € dom s, but only creates new variables that do not exist yet. This
property follows from the fact that prod(A) only assigns a variable 2 when either
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concrete(F —7z) = E— concrete(E +— ) = E— x
concrete(p(E, 7z)) = p(E, x) concrete(p(E,x)) = p(E, x)
concrete(B) = B concrete(x :=E)=xz=FE

concrete(b ? a : a’) = b ? concrete(a) : concrete(a’)

concrete(a * a') = concrete(a) * concrete(a’)
Figure 6.5: Definition of assertion concretization.

(1) there is a logic variable ?z in A or (2) when A contains an output variable
assignment y := E. Our assumption of well-formedness ensures that all logic
variables names are distinct from program variable names, and that assertions
never re-assign logic variables. Thus, no pre-existing program variables will
be modified in the former case. The latter case only occurs when assigning an
output parameter from inside a predicate checking routine prod,, and here our
preciseness assumption ensures that every output parameter is assigned exactly
once on every execution path. O

Definition 6.4.2 (Assertion footprint). The footprint of an assertion A under
a store s and heap h' is defined as

fps 4/ (A) = domh

where h is the smallest heap such that h T h' and s,h E A ~ s" for some s'.

We now prove our first important property about prod(A), which describes how
this function behaves when A is valid. More precisely, Lemma 6.4.3 says that
if an assertion A holds under some store s and heap h and extends this store
with new logic variables to form the new store s’ and the footprint of A does
not overlap with the footprint in fp, then prod(A) executed from that store s
and heap h will evaluate to skip and the resulting store will be equal to s’. In
this new store s’, the footprint £p will have been updated with the footprint of
A and concrete(A) will hold. The formal definition of concrete(A) is given in
Figure 6.5, but intuitively it means that all occurrences of logic variables 7z
in A are replaced with corresponding program variables z, which implies that
prod(A) has introduced a program variable x for each logic variable 7z and has
assigned it the same value.
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Lemma 6.4.3. For any s, h, s’ and well-formed A, we have

s,hE A~ s Np, 1, (A) L s(fp)

I

[{((s,h), prod(A)) —* ((s',h), skip) A s',hE concrete(A) A
s'(£p) = s(£p) Ufp, 1, (A)] V ((s, 1), prod(A)) —" ¢

Proof. The proof goes by induction on the execution of prod(A). If prod(A)
diverges, the lemma holds immediately. If prod(A) does not diverge, we have
the following case analysis on A:

o When A is a boolean expression B, we have prod(B) = assert(B). If
s,h F B, then [B]s = true and hence prod(B) evaluates to skip. Since
there are no free logic variables in B, we have concrete(B) = B which
still holds in store s’ = s and since fp, ,(B) = fp, ,(B) = 0, the runtime
footprint s'(fp) is still up to date.

o When A = B? A : Ay, we have prod(A) = if B then prod(A;) else prod(As).
If [B]s = true, then s,h F A; ~» s’ holds and we have fp, ,(A4) =
fps (A1), which we can combine with the induction hypothesis for A; to
see that

{(s,h), prod(A4;1)) —* ((s', h), skip) A
s', h I concrete(A1) A s'(fp) = s(fp) Ufp, (A1)

Still assuming [B]s = true, we know that prod(A) evaluates to prod(A;)
and s’, h F concrete(A) ~~ s’ < s’ h E concrete(A4;) ~» s and hence the
conclusion follows. The case for [B]s = false is symmetrical.

e When A = F —7z, we have

prod(A) = (x := E; z := in(x, fp);
assert(z = 0); z := E; alloced(z);
fp := add(z, fp); x := [z])

Given that s,h E A ~ ', we know [E]s = [ for some memory location I,
with h = {l — m} and thus s’ = s[x — m]. We know that fp ,(A) = {I}
and from the given that fp, ,(4) L s(fp), we know that prod(A) will
evaluate to alloced(z); fp := add(z, fp); = := [z], where z initially has
the value [. Since [ € dom h, the alloced check will pass, [ will be added
to £p and x will be assigned the value m. Since no program variable other
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than 2 was assigned, the updated store will be equal to s and concrete(A)
will hold. Finally, because of our assumption of assertion well-formedness,
we have fp, ,(A) = fp ,(A) = {I} and hence the conclusion follows.

o For A= (y:=E), we have prod(4) = (y := E). Given that s,h F A ~ ¢,
we know [E]s = n for some n, and ' = s[ly — n]. We can see that
concrete(A) = (y = e) will hold in the updated store s’, because y is the
only program variable assigned by prod(A), and it will be assigned the
value n. Finally, since fp, ;(A) = fp, ,(A) = 0, the runtime footprint
s'(£fp) is still up to date.

e For A=p(E,?z), we have prod(A) = (z := E;{fp,z} := r(fp,x)), where
the body of r is (prod(A’); res:= {fp,y}) with A’ the body of predicate
p(z,y). Given that s,h F A ~~ s, we know s’ = s[z — m] for some m.
We also know that fp, ,(A) = fp, , ,(A') and that spreq,h F A"~ 5],

holds with spreqa = {z — [E]s} and s, .4(y) = m. Combining this with

our induction hypothesis, we have

{(spreds h), prod(A")) —* ((s h), skip) A

!
pred>

s;red, h & concrete(A”) A s;wed(fp) = Sprea(fp) U fps;ﬂ

ey
Hence prod(A) will evaluate to skip. Since routine 7 returns the updated
footprint and the value of y, which is assigned to x by prod(A), we see
that concrete(A) = p(FE, ) holds in the updated store. Furthermore, since
x is the only program variable assigned, this updated store is equal to
s'. Finally, since fp, ,(A) = fps;md’h(A’) the footprint s'(£p) is updated

correctly as well and hence the conclusion holds.

e When A = (A; % As), we have prod(4) = prod(A;); prod(4sz). Given
that s,h E A ~ s”, we know s,h1 E A; ~ s’ and s’,hy E Ay ~ s” for
some h; and hgy such that Ay L hy and hy U hy = h. Using the induction
hypothesis for A; and As gives us (1)

s,h1 E Ay~ 5" Ap, g, (A1) Ns(fp) = 0
I
<(S7h1)7 prOd(A1)> _>* <(817h1)7 Skip> A

s', h1 F concrete(A;) A s'(fp) = s(fp) U fpy 5, (A1)
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and (2)
5/,h2 E Ay~ s A fp5/7h2(A2) N S/(fp> =0

U
((s', ha), prod(As)) —* ((s”, ha), skip) A

5", hy F concrete(As) A 5" (fp) = s'(fp) U fpy , (Az)

From h; L hy we know that fp, ;. (A1) Nfp, 5, (A2) = 0. Combining this
with fp, ,(A) = fp, 1, (A1) Ufp, 4, (A2) and fp, ,(A) Ns(fp) = 0, leads to
fps.n, (A1) Ns(fp) = 0 and fp, 5, (A2) N s'(fp) = (). Hence the premise
and thus conclusion of (1) and (2) hold. We can apply Lemma 6.4.1 to
see ((s,h), prod(Ay)) —* ((s’,h), skip) and ((s',h), prod(43)) —*
((s”,h), skip) and hence ((s, h), prod(A;); prod(A4s)) —* ((s”, h), skip).
Lemma 6.4.2 shows us that s’ C s” and because we have h; L ho and
hi Uhg = h, we also have s” h E concrete(A4;) * concrete(As). And since
s"(fp) = s'(fp) U fpyn 5, (A2) and s'(fp) = s(fp) U fpy 5, (A1), we have
s"(fp) = s(fp) Ufp, p, (A1) Ufpgr 5, (A2). Hence, the conclusion follows.

O

We now reformulate this lemma as a separation logic triple.

Lemma 6.4.4. For well-formed assertions A, A" and Ax A’, we have
AE{Ax A Nfp L fp(A)}
prod(A)
{concrete(A) % A’ A fp = £p,,, Ufp(A)}

where fp(A) is the footprint of A evaluated in the current state and fp,,, refers
to the footprint as it was before executing prod(A).

Proof. Follows directly from Lemma 6.4.3 and the separation logic frame rule.
Note that the frame rule is not sound in general for our programming language,
because of the alloced command: extending the heap can cause alloced to
skip instead of trap. The frame rule is however applicable in this specific case,
because Lemma 6.4.3 shows prod(A4) does not trap and hence extending the
heap will not change the behavior of alloced. O

The second important property of prod states that prod(A4) will trap or diverge
when the footprint of A overlaps with the footprint in fp.
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Lemma 6.4.5. For any s, h and well-formed A, we have

A {fp [ fp(A)} prod(A) {trap}

Proof sketch. The proof goes by induction on the execution length of prod(A).
When prod(A) diverges, the lemma holds immediately. When it does not diverge,
we can intuitively see that the lemma holds, because the only assertion that has
a non-empty footprint is £ —7x. The footprint of this assertion is the value of
E and prod(E —7x) traps when the value of E is already in fp. O

The third and final important property of prod states how prod(A) behaves
when A does not hold. More specifically, Lemma 6.4.6 says that if A does
not hold in some store s and heap h, and the reason that A does not hold is
not because h is too large (i.e., defined for more memory locations than the
footprint of A), then prod(A) traps or diverges.

Lemma 6.4.6. For any well-formed assertion A, we have

AE{-(A % T)} prod(A) {trap}

Proof. The proof goes by induction on the execution length of prod(A4). If
prod(A) diverges, the lemma holds immediately because our triples only express
partial correctness. If prod(A) does not diverge we have the following case
analysis on A:

o For a boolean assertion B, we have prod(A) = assert(B). We also have
s,h E=(A % T) < s,h E —-B, and thus [B]s = false and hence
assert(B) evaluates to trap.

o For A=B?A;: Ay, wehave prod(A) = if B then prod(A;) else prod(As).
Suppose [B]s = true, then from s,h F =(A % T) we have s,h F
—(A; % T) and we can use the induction hypothesis for A; to see that
{=(A;1 % T)} prod(A;) {trap}. The case for [B]s = false is symmetrical
and hence the lemma holds in this case.

e For A =F —7?x, we have
prod(A) = (x := E; z := in(x, fp);
assert(z = 0); = :=e; alloced(z);
fp := add(z, fp); = := [z])
Since A is well-formed, E will evaluate to some memory location [. Given

that s,h E (A % T), we know | ¢ dom h. This means alloced(z) will
trap and hence no matter the outcome of in(z, fp), prod(A4) will trap.
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o For A= (y:=E), we have prod(A) = (y := E). Since A is well-formed,
E will evaluate to some value n. From Figure 6.3, we can see that
s,hE (A % T) can never occur and hence we can discard this case.

e For A = p(E,?z), we have prod(A) = (z := E; {fp,z} = r(fp,x)),
where the body of r is (prod(A’); res := {fp,y}) with A’ the body of
predicate p(x,y). Since A is well-formed, we know that F will evaluate
to some value n. Given that s,h E =(A % T), we have sa,hE (A" % T)
with s4 = {x — n}. We can use the induction hypothesis to see that
{=(A" % T)} prod(A4’) {trap} and hence the lemma holds in this case.

o For A= (A; % Az), we have prod(A) = prod(A;); prod(Az). Given that
s,hE (A % T), we have one of the following three cases.

— s,h E =(A; % T), here we can immediately apply the induction
hypothesis to A; to see that prod(A;) will trap.

—s,hE A % T ~ s As’;hE =(Ay % T), in this case, if we have
fps n(A1) L s(fp), then we can apply Lemma 6.4.3 to see that
prod(A;) will evaluate to skip with a resulting store equal to s’. We
can them apply the induction hypothesis to Ay to see that prod(As)
will trap. If however we have fp (A1) £ s(fp), then we can apply
Lemma 6.4.5 to see that prod(A;) will trap.

— s,h1 E Ay ~ s As' hg E Ay ~ §” for some hy and hy, with hy £
ha. If we have fp; ; (A1) L s(fp), then we can apply Lemma 6.4.5
to see that prod(A;) will trap. If we have fp, , (A1) L s(fp), we
can apply Lemma 6.4.3 to see that prod(4;) will evaluate to skip
with a resulting store equal to s’ and a footprint that now includes
fps n (A1) = domh;. We can then use the fact that hy [/ hy and
fpsr n(A2) = dom hy and Lemma 6.4.5 to see that prod(Asg) will trap.

O

We now summarize Lemma 6.4.4, Lemma 6.4.5 and Lemma 6.4.6 together in
the following theorem.

Theorem 6.4.1. For well-formed assertions A and A’, we have
AE{T % A" Afp(4") C £p}
prod(A)

{(T % concrete(A) ¥ A’ A fp = fp,,; Ufp(A)) V trap}
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Proof. Suppose first that in the initial state T % A holds and fp L fp(A).
Because we have fp(A’) C £p, we know that fp(A) L fp(A4’) and thus T % A *
A’ N fp L fp(A) will hold in the initial state. We can then apply the frame rule
and Lemma 6.4.4 to see that T % concrete(4) % A’ A fp = fp,;, U fp(A) will
hold after executing prod(A). Again, in this case applying the frame rule is
allowed, because prod(A) will not trap. On the other hand, if T % A does not
hold initially, we can apply Lemma 6.4.6 to see that prod(A) will trap. Similarly,
if fp £ fp(A), we can apply Lemma 6.4.5 to see that prod(A) will trap. O

6.5 Assertion consumption

We now define cons(A), a function that models the consumption of an assertion,
which is required for safely performing outcalls from a hardened module to
routines of the context that might not uphold their contract. As explained in
Section 5.4.2, this function needs to be called right before making an outcall, to
consume (remove) the footprint of the context function’s precondition from the
current footprint fp. The structure of cons(A) is identical to that of prod(A),
but it has to remove A’s footprint instead of adding it. Furthermore, there is
no need for cons(A) to check that A actually holds, because the static verifier
already ensured this when checking the verified module. Hence, we do not
need to use the assert and alloced commands in the definition of cons. The
function is defined as follows.

cons(y := E) = (y := E)
cons(B) = skip
cons(B ? Ay : Ay) = if B then cons(A;) else cons(A3)
cons(E —?z) = x := E; fp :=rem(x, fp); x := [z]
where rem(z,y) removes x from the list represented by y.
cons(p(E,?x)) = (z := E; {fp,x} := cons,(fp,x))

where cons, implements the consumption part of the predicate checking routine
for p, defined as routine cons,(fp,z) = cons(A); res := {fp,y} with A the
body of predicate pred p(x,y)

cons(A; * As) = cons(A;); cons(Asz)

The following lemma indicates that the net effect of cons(A) is the concretization
of A and the removal of its footprint from fp



154 SOUND VERIFICATION IN AN UNVERIFIED CONTEXT: FORMALIZATION

Lemma 6.5.1. For the function cons defined above and well-formed assertions

A and A, we have
AE{Ax A"}
cons(A)

{concrete(A) ¥ A’ A fp=£p,,,; \ fp(A)}
Proof. Follows directly from the definition of cons. O

We now define a function harnessp(r) that can generate outcall stubs for routines
r(T) of the context. This function takes a mapping I" from routines to contracts,
corresponding to the prototypes of functions defined in the context. For T'(r) =
(Apre, Apost), harnessp(r) is defined as follows.

routine stub,.(fp, T) =
cons(Ayre); s := snap(fp);
res := r(T);
s’ := snap(fp); assert(s = s');
prod(A,est); res:= {fp, res}

where we assume all introduced variables are fresh and snap(fp) returns a
snapshot of the contents of the footprint fp. This corresponds to calculating the
cryptographic hash over the footprint description, as described in Section 5.4.2.

Finally, we can define the full transformation function [C]r 4, using a helper
function [C]f, as follows:

[z :=r@)|r = {fp, z} := stub,(fp,T)
where 7 is a routine of the context and stub, is the name of the outcall stub

routine generated by harnessp(r)

[C1; Colr = [Chlp; [Calp

[if B then C; else Cyr = if B then [C1]} else [Ca]r

[z := alloc]; = x := alloc; fp := add(z, £p)
[dealloc(z)]r = dealloc(z); fp := rem(x, fp)

Clr=C (for all other forms of C)
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The full transformation function [C]r 4 then is
[Clr.a = (£p :=0; prod(A); [C]r)

One particularity to note is that our formal transformation [C]; has cases for
alloc and dealloc, which were not mentioned in the informal discussion in
Chapter 5. This is because in practice our hardened modules allocate and
deallocate memory using the standard library functions malloc() and free(),
which are assumed to be part of the untrusted context. Hence in practice
the updating of the footprint as shown in the definition of [C]}. is performed
automatically as part of the standard transformation of outcalls, assuming
that these functions are fitted with a proper contract. Transformation rules
similar to those for allocation and deallocation in [C]. could be implemented in
our translator as an optimization for trusted implementations of malloc() and
free().

6.6 Safety and precision

We now come to the two crucial properties our transformation must have: safety
and precision. We first need a new definition and lemma before we can formally
state these main theorems.

Definition 6.6.1 (No-fail). The function nofail(A) returns a non-failing variant

of the program A. That is, nofail(A) never performs an illegal memory access.

How nofail could work is of no importance for our formalization, but one can
see that the alloced command could be used to check each memory location
before accessing it, thereby preventing failure.

Lemma 6.6.1. For a command C and well-formed assertions Ayre and Apost
such that T'F {Apre} C {Apost}, we have

VA. nofail(A) E {T % Apre A £p = fp(Apre)}
[Clr
{(T % Apost NEp = Tp(Apost)) V trap}

Proof. The proof goes by induction on C. Since I' - {A4,,.} C {Apos} implies
I'E {4} C {Apos} for all commands except routine calls, we know that
commands other than routine calls won’t fail. We also know that the only
commands that change the domain of the heap (i.e., the symbolic footprint)
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are allocation, deallocation and routine calls. Hence for all other commands,
we can immediately see that fp still correctly contains the same footprint
after the command has been executed. For z := alloc and dealloc(z), the
symbolic footprint is extended respectively shrunk with the value of z, but
the transformation [C]; modifies the runtime footprint fp accordingly. For a
sequence of commands C7; Cs, the lemma follows immediately from the rule of
composition and applying the induction hypothesis to C; and Cs.

Hence the only case left to prove is the case for routine calls, for which the
transformation [Cp 4 is ({fp,2} := h.(fp,¥)), where h, is the name of
the stub harness as defined above. Because (1) we assume nofail(A), (2)
snap(fp) never reads outside the current footprint and (3) Lemma 6.5.1 and
Theorem 6.4.1, we can see that none of the harness’ commands will fail. Suppose
L(r) = (Apres Apost)- At entry to the harness stub, the store and heap are
exactly as they would be when calling the original function r (except for fp,
which we assume to be distinct from all program or logic variables), and hence,
according to Lemma 6.5.1, cons(A;,,..) will remove the footprint of A}, from
fp and create a corresponding program variable for each logic variable in A7,
The harness then takes a snapshot of the remaining footprint, calls the original
routine and checks that the footprint hasn’t changed. If this check succeeds, we
know all our original assertions from before the function call still hold, except
potentially those involving the footprint of A;Te. From Theorem 6.4.1, we can
see that prod(Aj,,) either traps or assures that concrete(Aj,,;) (and hence

) holds and adds fp(4},,) to £p, such that it now corresponds to the

p post
Apost
footprint of Apos:. O

This lemma leads to our safety theorem, which states that if the context does

not fail, but does not necessarily uphold its contracts either, then the hardened
module will never fail.

Theorem 6.6.1 (Safety). For any command C, environment I, well-formed
assertions Apre and Apost such that T'F {Aye} C {Apost}, and an arbitrary
context A, we have nofail(A) E {T} [C]r,a,,. {T}

Proof. The definition of [C]r 4,,, is fp := 0; prod(Ap..); [C]p. Hence we can
first use Theorem 6.4.1 and the fact that s, h F concrete(Ap,.c) ~» s = s,hE
Apre to see that after prod(A,,.) we have either trapped or we know that
T % Ay holds and fp = fp(Apre). The theorem then follows by applying
Lemma 6.6.1. O

Finally, our precision theorem states that our transformations do not change
the expected behavior of the hardened module when the context upholds its
contracts.
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Theorem 6.6.2 (Precision). For any command C and well-formed as-
sertions Apre and Apost such that T+ {Aye} C {Apost}, we have that
VA.AET = AF{Ape} [Clr,a,,. {Apost}-

Proof. The proof goes by induction on C. Under the assumption that C' does
not mention fp, it is clear for all commands except routine calls that [C]r 4,,.
does not change the behavior of C. We can use Lemma 6.5.1, Lemma 6.4.4 and
the fact that s, h F concrete(Ap,.) = s,h E A, to see that the theorem also
holds for routine calls. O

The A E I' condition in the precision theorem states that the context A upholds
the contracts specified by I'. Under standard separation logic, this means
(amongst other conditions) that context functions cannot read outside the
footprint specified by their precondition. However, our precision theorem can
actually be slightly stronger than this, because the theorem holds even if the
context is allowed to read outside its designated footprint..

6.7 Summary

We started this chapter by formally defining a simple, control-flow safe
imperative programming language, similar to C. We then defined an assertion
language for meta-theoretical use, and we also defined a more restricted subset
of this language for the separation logic contracts that drive our program
transformation. These restrictions made the contract language constructive, in
the sense that a witness for existentially bound variables can always be derived
directly from the logic assertions at hand, rather than requiring a search for a
suitable value. We then formally defined the function prod, which models the
runtime production of an assertion. This function is sufficient for generating
runtime checks for modules that do not make any outcalls to the untrusted
context. The function was proved to be correct, by showing that if execution
has not trapped after executing prod(A), then A will hold. We then defined and
proved correct the function cons, which models the runtime consumption of an
assertion. Finally, both prod and cons were used to define the full transformation
function [C]r 4 and this function was proved safe and precise, where safety
means that the transformed code never fails, even when it is interacting with
an untrusted context, and precision means that the code behaves exactly like
the original verified module when interacting with a context that does uphold
its contracts.






Chapter 7

Conclusion

Nearly every sector of our economy, ranging from healthcare to banking,
transportation, education and commerce, increasingly relies on software. As
the ubiquity and complexity of software increases, the importance of properly
securing the software we use, grows as well. The enormous impact that software
bugs can have on society, calls for comprehensive countermeasures. Valuable
prior research has come up with various ways to protect programs written in
unsafe languages such as C and C++ against a wide variety of low-level attacks,
including stack smashing attacks, jump-to-libc attacks and return-oriented
programming attacks [122]. What these protection measures have in common,
is that they defend against input-providing attackers who can interact with the
program under attack only by providing input and reading the program’s output.
In this dissertation, we have adopted the strictly stronger in-process attacker
model, which assumes that attackers have already somehow gained the ability
to execute arbitrary code in the address space of the program under attack.
This is a realistic assumption, since practical attacks are often triggered by the
injection or loading of untrusted binary code into a process’ address space, for
instance through kernel-level malware. In this setting, even programs written in
safe languages, such as Java or statically verified C, can be exploited by low-level
attacks. In particular, the high-level abstractions offered by these languages,
such as structured control flow and field access restrictions, can be broken.
This essentially means that in order to accurately reason about the security
of a program, developers must take into account the low-level implementation
details of the compiler and the execution problem that they target. This is in
conflict with the accepted principle of source-based reasoning [17], which says
that security properties of a software system should follow from review of the
system’s source code and its source-level semantics alone.

159
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In the first part of this dissertation, we developed a fully abstract compilation
scheme that protects against in-process attackers and restores the principle of
source-based reasoning for safe source languages. Assuming the low-level target
platform provides a protection primitive that allows a region of code and data
to be isolated from other code in a program’s address space, the compiler will
ensure that the high-level abstractions provided by the source programming
language are maintained at the low level after compilation.

In the second part of this dissertation, we developed a source-to-source
translation scheme that relies on the guarantees provided by this fully abstract
compiler, in order to ensure the correct runtime behavior of statically verified C
code that interacts with unverified code. The problem with standard modular
verification is that, during the static verification process, the verifier can only
assume that unverified code will behave in accordance with its expected behavior
at runtime. Our translation scheme essentially adds a series of runtime checks
at the boundary between verified and unverified code, that will detect when
unverified code misbehaves.

The rest of this conclusion chapter consists of a more detailed summary of
the dissertation in Section 7.1 and finally a discussion of future work and a
reflection upon the work performed in Section 7.2.

7.1 Summary

We started this text by discussing the role of abstractions in programming
languages. In particular, we pointed out the fact that compilers and
programming languages provide abstractions such as module systems, field
access modifiers, structured control flow, and platform independence to the
programmer. However, standard compilers are not fully abstract, which means
that two software components that appear equivalent to a third component
interacting with them at the source-code level, can be distinguished from
each other by a low-level component interacting with them after they have
been compiled. In other words, for a standard compiler, high-level contextual
equivalence does not imply low-level contextual equivalence. This means that
the high-level abstractions provided by the compiler and programming language
can be broken by low-level code.

This is especially troublesome when the high-level abstractions are used for
security purposes. For instance, access to a private instance field containing a
cryptographic key will be restricted at the source-code level, but such variables
can simply be read or modified at the assembly level. A fully abstract compiler
is able to maintain such properties after compilation. To achieve this property,
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the low-level target language must provide some suitable protection primitive.
Previous research [3, 62] has shown that address space layout randomization is a
sufficiently strong protection primitive to support fully abstract compilation in
a probabilistic sense. In Chapter 2, we have shown that a fine-grained, program
counter-based memory access control scheme, as provided by state-of-the-art
protected module architectures, also qualifies as a suitable protection primitive.
We developed a model of such a low-level protection platform and showed
how a procedural high-level language can be securely compiled towards it. We
also showed that the model is realistic, by creating a prototype that runs on
today’s commodity computers with an acceptable performance overhead. The
resulting security guarantees are strong: any security property that holds at the
source-code level and that can be expressed using contextual equivalence, also
holds at the assembly level after compilation. The power of a low-level attacker
is hence reduced to that of a high-level attacker, because any vulnerability that
can be exploited at the low level is explainable at the source-code level.

In Chapter 3, we formalized the languages and compiler described in Chapter 2,
and we proved the compilation scheme to be fully abstract. For this, we first
defined high- and (revised) low-level execution traces, which were shown to be
fully abstract in their own right. We then defined an algorithm that, given two
high-level modules and trace-based evidence that their low-level compilations
are contextually inequivalent, will generate a high-level context module that
can distinguish the two modules at the high level. This algorithm formed the
basis of our full abstraction proof.

In Chapter 4, we changed focus from full abstraction to Hoare logic-based formal
software verification. We showed that Hoare logic provides a sound formal
basis for reasoning about imperative programs, but is limited in its ability to
reason about pointer programs, due to the effects of pointer aliasing. Separation
logic does away with this limitation, and can thus reason about languages with
pointers to shared mutable data structures, such as C, C++ and Java. We then
described the symbolic execution algorithm that underlies the VeriFast program
verifier, thereby revealing how separation logic can be used for semi-automatic
program verification.

We argued that in order to ensure scalability of a verification method, it is
essential that the method is modular. That is, it should be possible to soundly
verify only a part of an application, leaving the rest of the code unverified. The
verification methods studied in Chapter 4 attain this modularity property, by
allowing users to specify the behavior of unverified code. The static verifier will
then assume that the unverified code behaves as described. Unfortunately, this
provides only limited guarantees at runtime. Bugs in the unverified part of the
program can still impact the state of the verified part, and hence might trigger
failures in verified modules.



162 CONCLUSION

In Chapter 5, we proposed a way to transform partially verified programs
such that the provided runtime guarantees are significantly better. Our code
transformation adds a series of runtime checks at the boundary between verified
and unverified code, in order to detect when unverified code does not behave
according to its contract. If a bug is triggered in the unverified part of the
program, this is detected before it can impact the state or control flow of the
verified module. A key part of this approach consists of ensuring that memory
errors in unverified code cannot corrupt the state of verified code. We solved
this problem in two steps. First, we rely on the fully abstract compilation
scheme of Chapter 2 for protecting the local variables and control flow metadata
of calls to verified functions on the call stack. Secondly, the runtime checks
perform an integrity on heap memory: before calling an unverified function
from verified code, a cryptographic hash is calculated over the heap memory
owned by verified code, and this hash is re-calculated and verified when control
returns to verified code. Hence, any illegal heap modifications performed by
unverified code that can impact the execution of verified code will be detected
upon re-entry.

The combination of the boundary checks and the secure compilation protection
of local variables and control flow, results in a very strong modular soundness
guarantee: no verified assertion in the verified codebase will ever fail at runtime,
even if that code runs as part of a partially verified application. These guarantees
are useful for testing, as they help to detects bugs faster, and for security, as they
guarantee that verified properties of modules continue to hold in the presence
of code injection attacks against the unverified part of the program. We have
benchmarked the performance of the transformed code, and have found that the
overhead is low if the boundary between verified and unverified code is chosen
wisely, thereby demonstrating the real-world feasibility of our solution.

Finally, in Chapter 6 we formalized the languages and program transformations
described in Chapter 5 and proved that the transformations are safe and precise.
In this context, safety means that a verified assertion in the transformed code
never fails at runtime, even when the code is interacting with an unverified
context, and precision means that the code behaves exactly like the original
verified module does when interacting with a context that does uphold its
contracts.
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7.2 Future work and reflection

7.2.1 Fully abstract compilation

The compilation scheme described in Chapter 2 and Chapter 3 has been extended
by Patrignani et al. to support dynamic memory allocation, dynamic dispatch
and exceptions [99, 96, 94]. Further extensions include support for secure
interactions between modules of multiple mutually-distrusting parties. In this
settings, each module would require its own protected memory area, including
its own secure call stack. This would make interactions between modules
more complicated, because neither module can read from or write to the other
module’s stack, hence a different kind of calling convention must be established.
Furthermore, new attack vectors might appear due to the increased complexity
of multiple interacting modules. For instance, an attacker could try to make
two low-level modules interact in ways that could never occur at the high level,
leading to undefined behavior that is dependent on the specific implementation
of a module.

Another extension that would enrich the source language, is adding support for
garbage collection. The most common type of garbage collection is the so-called
tracing garbage collection, which involves scanning over all objects in memory.
Hence, the garbage collector would have to have access to every object of the
program, whether it is part of a protected module or not. This could prove to be
troublesome to implement on the protected module architectures available today,
especially in the case of multiple mutually-distrusting modules. Furthermore,
the garbage collector might leak information about the allocation status of
objects of one module to another module, thereby breaking full abstraction if
this information is not available at the source-code level.

Future work could also focus on extending the low-level assembly model, as it
currently only models a small subset of the features available on real computing
platforms. For instance, real systems have caching memory hierarchies and a
real-time clock, the combination of which can potentially break full abstraction.

However, while more accurate models of the low-level execution model can lead
to new insights on how to achieve full abstraction on real systems, we should
not lose focus on the real-world security improvements we are trying to achieve.
As discussed in Section 2.4.1, one could argue that full abstraction is a too
strong property to demand for secure compilation. For instance, having to hide
the order of a module’s functions in memory and having to allocate a fixed
amount of memory for any module, are necessary requirements for obtaining
full abstraction, but these requirements do not seem to result in any real-world
security benefits. Therefore, I believe we should consider full abstraction to
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be an ideal property for compilers towards low-level code to have, but for
the development of real-world security-oriented compilers, a balanced trade-off
should be made between the real-world security benefits of a security feature
and its performance overhead.

It is also important to keep in mind that not all security problems are solved by
secure compilation. For instance, as argued in Section 1.3, logic flaws or other
bugs that are present at the source-code level will still be present after fully
abstract compilation. True application security should hence not depend on
secure compilation alone.

7.2.2 Sound modular software verification

An important future work track for the program transformation described
in Chapter 5 and Chapter 6 consists of building and benchmarking a full
end-to-end implementation that runs on a desktop-level protected module
architecture. Unfortunately, the currently available PMA prototypes are
still in an experimental state, prohibiting us from running meaningful macro
benchmarks on top of them at this time. However, recent developments regarding
Intel’s SGX extensions [56] indicate that a low-overhead, hardware-based PMA
platform will likely be available on standard desktop systems in the near future.
Once these systems are available, a fully abstract compiler from verified C code
towards the SGX platform can be developed on top of which the hardening
translations can be benchmarked. This end-to-end implementation would allow
us to accurately measure the total real-world performance overhead introduced
by (1) the runtime checks inserted by our hardening transformations, (2) the
runtime checks introduced by the fully abstract compiler and (3) the SGX
platform itself. Based on the outcome of these benchmarks, further performance
improvements can be developed for different aspects of the system.

Since the micro benchmarks of Section 5.6.1 indicate that considerable time is
spent calculating the cryptographic hash over the verified module’s footprint,
future work can focus on reducing the hashing overhead. However, Section 5.6.4
has pointed out that making a secure copy of the footprint instead of hashing it,
results in an overall performance gain of only 20%. Hence a different approach
is necessary to make the system truly scalable. As proposed in Section 5.6.4,
an interesting approach for improving performance would be to take advantage
of hardware page protection support. Whenever a full memory page needs
to be integrity protected, it could be marked read-only using the memory
management unit of the CPU, which would cause a page fault to be triggered
when unverified code tries to access the page in question. When only part of
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a memory page must be integrity protected, the system could fall back to the
hashing- or copying-based approach.

Reflecting on the practical usefulness of our hardening translations, one could
argue that our solution does not improve the overall security of an application,
since, although verified code is guaranteed to behave as expected, an attacker
can still perform code-injection attacks on unverified code and hence can still
execute arbitrary code within an application’s address space. This is a valid
point for monolithic applications as they are today, but it does not hold for
compartmentalized applications in which each compartment can be individually
identified and authenticated. For instance, Salus [112] allows applications to be
subdivided into compartments, each of which can authenticate the compartments
it calls and the compartments from which it is called. Remote authentication
and attestation of compartments is also possible. In this setting, an attacker can
still inject and execute code into an unverified compartment, but the amount of
damage that can be performed will be limited by the amount of trust that was
placed in that compartment by other compartments. Since it is reasonable to
assume that the amount of trust placed in an unverified compartment is much
lower than that placed in a verified compartment, our hardening translation
can significantly improve the security of an application.

Another situation in which it is useful from a security perspective to have
a software module that is guaranteed not to fail, is when that module has
exclusive access to a resource. For instance, if we were to place the address
range of a memory-mapped I/O device inside the protected memory area of a
hardened module, we would give that module exclusive access to the device.
The module can then provide a secure API for accessing the device towards
other components, on which it can enforce arbitrary security constraints. Our
program transformation ensures that such constraints can never be broken at
runtime.

Finally, it is again important to note that not all security bugs in the verified
module can be solved by our hardening translation. Since the correctness of our
translation relies on the guarantees provided by our fully abstract compilation
scheme, the limitations that apply to that scheme also apply here. Furthermore,
although sound software verification ensures adherence of the verified code to its
specifications, not all security properties can be expressed in the specification
language and it is of course still possible for a developer to make mistakes in
specifying the expected behavior of the software under verification. Therefore, a
comprehensive approach to secure application development should not depend
on software verification and secure compilation alone.






Appendix A

Secure compiler source code

(% xxxskxxxxkxtxrxx AST elements of the high—level language #xsxsx*xkxkx x)
type hl_field_ index =
FI of (int)

IR}

type hl_var_index =
VI of (int)

IR}

type hl_method__index =
MI of (int)

IR}

type hl_label_ index =
LI of (int)

bR}

type hl_type =
TUnit
| TInt
| TMethod of (hl_type list = hl_ type)

3

type hl_value =
VUnit
| VNull
| VInt of int
| VMethod of (hl_method_index)

3

type hl_field__decl =

FDecl of (

hl_type =* (* field type *)
hl_field index = (* field index +*)
hl_value (* initial value x)
)

IR}
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type hl_var_decl =

VDecl of (
hl_type = (* variable type *)
hl_var_index x* (* wvariable index x)
hl_value (* initial value *)
)
type hl_param__decl =
PDecl of (
hl_type =x* (* parameter type x)
hl_var_ index (* parameter index x)
)

bR}

type hl_expression =
EMovi of (hl_value)
| EMov of (hl_var_index)
| EAdd of (hl_var_index * hl_var_index)
| ESub of (hl_var_index % hl_var_index)
| EField of (hl_field_ index)
| ECalli of (hl_method index % hl_ var_index list)
| ECall of (hl_var_index = hl var_ index list)

bR

type hl_statement =

SVarAssign of (hl_var_index * hl_expression)
| SFieldAssign of (hl_field index * hl_var_index)
| SJmp of (hl label index)
| SBeq of (hl_var_index * hl_var_index % hl_label index)
| SBIt of (hl_var_index * hl_var_index % hl_label index)
| SRet of (hl_var_index)

type hl_line = (

hl_label index = (* line label %)
hl_statement (* statement x*)

type hl_method_decl =

MDecl of (

hl_type =* (* return type *)

hl_method__index =* (* method index x)

hl_param_decl list % (x parameters )

hl_var_decl list = (# wvariable declarations and initializations x)
hl_line list (* method body +*)

)

bR

type hl_module_decl =
ODecl of (
hl_field decl list % (% fields =x)
hl method decl list (* methods x)
)

IR}

(# wsxxxxskxkxxskxkx Instructions of the low—level language xssxsxskssxkxsks *)
type ll_label =
LLabel of (string)

IR}
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type 11 _address =
LAddr of (int)

IR}

type 1l_immediate =

IInt of (int)
| TAddr of (1l1__address)
| ILabelRef of (11__label)

type ll_register =
PC

RO
R1
R2
R3
R4

|
|
[
|
|
|
| R6
|
|
|
|
|

)

type ll__instruction =
IMovl of (11_register
| IMovs of (ll_register
| IMovi of (1ll_register
| TAdd of (1l_register
| ISub of (1l _register
| ICmp of (ll_register
| IJmp of (1l _register)
| IJe of (1l _register)
|
|
|
|
|

¥ ¥ ¥ ¥ ¥ ¥

1J1 of (11 _register)
ICall of (ll_register)
IRet
IData of (1l _immediate)
IHalt
INop

3

type 1l _line = (

11_label option =* (*
11 _address = (*
11 _instruction (*

)

type 1l_mod__descriptor =
ModDescriptor of (

int * (*
int * (*
int (*

bR}

type 1ll_module =
Module of (
hl_module__decl x* (*

11 _register)
11 _register)
11_immediate)
11_register)
11_register)
11 _register)

label )
memory address )
instruction )

number of entry points x)
size of code section *)
size of data section *)

reference to high—level source x)
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11_line list = (* module instructions x)
11 _address = (* mext free address *)
11_mod__descriptor (% module descriptor )

(# *#xx Translation of a high—level object to a low—level module #xx%x x*)
exception Too__Many_ Parameters;;

(* Addresses x)
let mod_base_address =
LAddr(0x10000000)

let mod_end_address =
LAddr (0x8FFFFFFF)

let mod__entry_ base_address =
mod__base__address

let secure_stack_ base_ address =
LAddr (0x6FFFFFFF)

let code__base_ address =
mod__base__address

let code__end__address =
LAddr (0x4FFFFFFF)

let data_base_ address =
LAddr(0x50000000)

let data_end__address =
mod__end__address

let null_address =
TAddr (LAddr (OXxFFFFFFFF))

(* Sizes x)

let code_size =
match (code_base_address, code_end_address) with
| (LAddr(cb), LAddr(ce)) —>

ce — cb

let data_ size =
match (data_base_ address, data_end_address) with
| (LAddr(sb), LAddr(se)) —>

se — sb

IR}

(¥ Label names x*)
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let stack_ base_label =
LLabel ("stack base")

bR}

let field label (FI(fi) : hl_field index) =

LLabel("field" =~ (string_of_ int fi))
let method_ entry_ point_label (MI(mi)
LLabel("method" = (string_of int mi))
let method__entry_ point_label suffix
(MI(mi) : hl_method_ index) (suffix
LLabel("method" = (string_of int mi)

bR

hl_method_index) =

string) =
" " 7 suffix)

let method_ exit_point_label (MI(mi) : hl_method index) =
LLabel("method" = (string_ of int mi) = " _exit")

IR}

let method_prologue_label (MI(mi) : hl_method_index) =

LLabel("method" = (string_of int mi)

IR}

" _prologue")

let method_epilogue_label (MI(mi) : hl_ method_ index) =

LLabel ("method" = (string_ of int mi)
let method_label_ label
(MI(mi) : hl_method_index) (LI(1i)
LLabel ("method" = (string_of_ int mi)
let return__entry_ point__label =
LLabel("return_entry_ point")

bR}

"

__epilogue")

hl label index) =
" _label" 7 (string_of_int

let return_entry_ point_label suffix (suffix : string) =

o~

LLabel("return_ entry point"

bR

let outcall_ helper_label =
LLabel("outcall helper")

bR

let full_register__cleanup__helper__label =

LLabel("register_cleanup__helper")

bR}

let return__address_check_helper_label =
LLabel("rac__helper")

IR}

let halt__helper__label =
LLabel("halt__helper")

IR}

let shadow__stack__pointer_ field_label =
LLabel("shadow_stack_pointer")

bR}

(¥ Register for parameter #)

suffix)

1i))
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let register_for_ param_index (i : int) =
match i with

0 —> R4

—> R5

—> R6

—> R7

—> RS

—> R9

—> R10

—> RI11

__—> raise Too__Many_Parameters

N O U WK

bR}

let register_for_ param (VI(i) : hl_var_ index) =
register__for__param__index i

(oo ek ok ok K Kk ek Kk ok ek ko k TP AN STATTONS ook ok e ok o o ok e K oK ok oK KK K KKK K k)
(¥ Translates a high—level wvalue to a corresponding low—level wvalue x)

let translate_ value (v : hl_value) =
match v with
| VUnit —> IInt (0)
VNull —> null__address

|
| VInt(i) —> IInt (i)
| VMethod (mi) —> ILabelRef (method_prologue_label mi)

bR}

(# Reserves some memory at the current position in the low—level module,
for a given high—level field. x)
let generate_field (m : 11_module) (fd : hl_field decl) =
match (m, fd) with
| (Module(src, lines, LAddr(free addr), d), FDecl(_, index, value)) —>
let new_line = (Some(field_label index), LAddr(free_addr),
IData(translate value value)) in
let new_addr = LAddr (free_addr 4+ 1) in
Module(src, lines @ [new_line], new_addr, d)

(% *#xx% Common translation helper functions sx¥xx )
(* Appends a low—level instruction to the low—level module. *)
let append_instruction (m : 1l_module) (i : 11_instruction) =
match m with Module(src, lines, LAddr(free_addr), d) —>
let new_lines = lines @ [(None, (LAddr free_addr), i)] in
let new_addr = LAddr(free_addr + 1) in
Module(src, new_lines, new_addr, d)

IR}

(¥ Generates a label at the current position in the low—level module. *)
let append_label (m : 11_module) (1 : 11_label) =
match m with Module(src, lines, LAddr(free_addr), d) —>
let new_lines = lines @ [(Some 1, (LAddr free_addr), INop)] in
let new_addr = LAddr(free_addr + 1) in
Module(src, new_lines, new_addr, d)

bR}

(¥ Generates instructions for loading the address of a given label into

* a given register at the current position in the low—level module. x)

let generate_load_label (m : 11_module) (1 : Il1_label) (r : 1ll_register) =
append__instruction m (IMovi(r, ILabelRef(1)))
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(¥ Generates instructions for jumping to a given label at the current
* position in the low—level module. )
let generate_label jump (m : 11_module) (1 : 1l1_label) =

let mO0 = generate_load__label m 1 R3 in

append_instruction mO (IJmp(R3))

bR}

(* Generates instructions for calling a given label at the current
* position in the low—level module. )
let generate_ label call (m : 11_module) (1 : 1l1_label) =

let mO = generate_load__label m 1 R3 in

append_instruction m0 (ICall (R3))

bR}

(¥ Generates a list of instructions that checks whether the wvalue in a
* given register is in— or outside of the module’s memory boundaries and
* jumps to to the label lin <f it is inside the memory boundaries or to
* the label lout otherwise. The given register r cannot be RI or R3. x)
let generate_address_in_mod_ check
(m : 11_module) (r : 11_register) (lin : 1l_label) (lout : Il_label) =
List . fold__left append__instruction m

[(IMovi(R3, ILabelRef(lout))); (* Load out jump address in R3S x)
(IMovi(R1, TAddr(mod_base_ address))); (#* Load base address in R1 x)
(ICmp(r, R1)); (* Jump to the out label if... x)
(IJI(R3)); (# ... r < base address *)
(IMovi(R1, IAddr(mod_end_address))); (* Load end address in R1 x)
(ICmp(R1,1r)); (% Jump to the out label if... *)
(IJI(R3)); (* end address < r *)
(IMovi(R3, ILabelRef(lin))); (# Load in jump address into R3 x)
(IJmp(R3))] (¥ Jump to in label *)

bR

(* Generates a list of instructions that checks whether RO is equal to a
* given immediate and jumps to a given label if so. x)
let generate__equals__check

(m : 11_module) (i : 1ll_immediate) (leq : 11_label) =
List.fold_left append__instruction m

[IMovi(R3, ILabelRef(leq));

IMovi(R1, i);

ICmp (RO, R1);

IJe (R3)]

IR}

(¥ Generates a list of instructions that pushes the wvalue in a given
* register onto the run—time stack. x)
let generate_push_onto_stack (m : 11_module) (r : 11_register) =
List.fold_left append__instruction m
[IMovi(R2, IInt(1));
ISub (SP, R2);
IMovs (SP, r)]

bR}

(* wokckok ok kkkkkkkkkkkxx Method entry point Gemeration ks x ks fkk *)
(¥ Generates instructions for swapping the wvalue of the SP register with
* the shadow stack pointer field. x)
let generate_stack_switch (m : 11_module) =
List.fold__left append__instruction m
[IMovi(R2, (ILabelRef shadow_stack_pointer_field_label));
IMovl(R3, R2); (* Load value of shadow stack pointer field in R3 x)
IMovs(R2, SP); (* Store walue of SP in shadow stack pointer field =)
IMovi(SP, (IInt 0));
IAdd (SP, R3)] (* Store wvalue of R3 in SP *)
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(* Generates instructions for clearing registers R1, R2, R3 and the flags
* register *)
let generate working register_ cleanup (m : 11_module) =
List . fold__left append__instruction m
[IMovi(R1, IInt (0));
IMovi(R2, IInt (0));
IMovi(R3, IInt (0));
ICmp(R1, R2)]

IR}

(¥ Generates instructions that load the wvalue at the top of the stack
* into RO and then call the return__address_ check__helper to check
* whether the value is outside of the bounds of the protected module x)
let generate_ return_address_check_call (m : 1l_module) =
List . fold__left append__instruction m
[IMovl (RO, SP);
IMovi(R3, (ILabelRef return_address_check_helper_label));
ICall (R3)]

IR}

(* Returns the next entry point address. That is, this function returns
* the closest multiple of 128 greater than or equal to the given
* address #*)
let next_entry point_address (LAddr(a) : 1l1_address) =
let new_a = truncate (128.0 x. (ceil ((float_of int a) /. 128.0))) in
LAddr(new_a)

(* Generates a list of instructions forming the entry point for a given
* high—level method x)
let generate_entry_ point (m : 1l_module) (md : hl method_ decl) =

match (m, md) with (Module(src, lines, a, d), MDecl(_,index, , , )) —>

let m = Module(src, lines, next_ entry point address a, d) in
let m = append_label m (method_ entry_ point_label index) in (*Entryx)
let m = generate__address__in__mod__check m SP halt__helper__label
(method_entry_point_label suffix index "sp_ok") in
let m = append__label m
(method_ entry_ point_ label suffix index "sp_ok') in
let m = generate_stack_switch m in
let m = generate_ label call m (method_ prologue_ label index) in
let m = append_label m (method_ exit_point_label index) in (*Ezitx)
let m = generate__stack_switch m in
let m = generate_return__address_check_call m in
let m = generate__label__call m full_register__cleanup__helper__label in
append__instruction m IRet

(* Generates a list of instructions forming the return entry point #*)
let generate_return_entry_ point (m : ll_module) =
match m with Module(src, lines, a, d) —>

let m = Module(src, lines, next_ entry point address a, d) in

let m = append_label m return__entry_point_label in

let m = generate__address__in_mod__check m SP halt__helper__label
(return__entry_ point_label suffix "sp_ok") in

let m = append__label m

(return_entry_ point_label suffix "sp_ ok") in
let m = generate__stack_switch m in
append__instruction m IRet
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(% wkxckkrdkxkkkkxkxkkxkxkx Method code Generation #x ks «k sk kx «k &k %k % k& %k % *)

(* Generates a list of instructions to initialize a local wvariable. It
* assumes the register RO contains the wvalue 1. x)
let generate_ local var_init (m : 11_module) (var : hl_var_ decl) =
match var with VDecl( , index, value) —>
List.fold__left append__instruction m

[ISub(SP, RO);

IMovi(R1, translate_value value);

IMovs (SP, R1)]

bR}

(* Generates a list of instructions to push a parameter contained in a
* register onto the stack. It assumes the register RO contains the
* value 1. x)
let generate_param_ copy_ to_ stack
(m : 11_module) (param : hl_param_decl) =
match param with
| PDecl(TUnit, index) —>
List . fold__left append__instruction m
[ISub(SP, RO);
IMovi(R1, IInt (0));
IMovs(SP, R1)]
| PDecl(_, index) —>
List.fold__left append__instruction m
[ISub(SP, RO);
IMovs (SP, register_for_param index)]

IR}

(¥ Generates a prologue for a given high—level method. =x)
let generate_ prologue (m : 11_module) (md : hl_method_ decl) =
match md with MDecl(_, index, params, vars, body) —>
let mO append_label m (method_prologue_label index) in
let ml append__instruction m0 (IMovi(RO, IInt(1))) in
let m2 = List.fold__left generate_ param_ copy_to_stack ml params in
List.fold__left generate_local_ var_init m2 vars

IR}

(¥ Generates instructions that load the address of a given local variable
* into register R3. %)
let generate_var_address (m : 1l_module) (VI(vi) : hl_var_index) =
List.fold__left append__instruction m

[IMovi(R3, IInt (0));

IAdd(R3, SP);

IMovi(R2, IInt(vi));

IAdd (R3,R2)]

IR}

(* Generates instructions that store the wvalue of a given register into a
* given local wariable. x)
let generate__store_ var
(m : 11_module) (vi : hl_var_index) (r : 1l_register) =
let mO = generate__var__address m vi in
append_instruction mO (IMovs(R3, 1))

bR}

(¥ Generates instructions that load the value of a given local wvariable
* into a given register. )
let generate__load__var
(m : 11_module) (vi : hl_var_index) (r : 1l_register) =
let mO = generate_var_address m vi in
append_instruction m0 (IMovl(r, R3))
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(* Generates instructions for storing the wvalue of a given register into
* a given field )
let generate__store_ field
(m : 11_module) (fi : hl_field index) (r : Il_register) =
List.fold__left append__instruction m
[IMovi(R3, ILabelRef(field_ label fi));
IMovs(R3, r)]

IR}

(¥ Generates instructions for loading the wvalue of a given field into a
* given register x)
let generate__load_ field
(m : 11_module) (fi : hl_field index) (r : Il_register) =
List . fold__left append__instruction m
[IMovi(R3, ILabelRef(field label fi));
IMovl(r, R3)]

IR}

(* Generates instructions for performing a compare between two given local
* wvariables and for loading the address of a given label into a given
* register. Usefull for performing conditional jumps. *)
let generate_ cjump (m : 11_module) (x1 : hl_var_index) (x2 : hl_var_index)
(1 : 11_label) (r : 1l_register) =
let mO = generate__load__var m x1 RO in
let ml generate_load__var mO0 x2 Rl in
let m2 generate__load__label ml 1 r in
append_instruction m2 (ICmp(RO, R1))

53
(¥ Generates instructions for clearing all registers with a given index
* or higher. x)

let rec generate_register_ clear (m : 1l_module) (i : int) =
try (
let m = append__instruction m

(IMovi(register_for_param__index i, IInt 0)) in
generate register_clear m (i + 1))
with Too__Many_ Parameters —> m
35
(* Generates instructions for copying a given local variable to a
* register with a given index. *)
let generate_param__copy_ to_register
((m,i) : 11_module % int) (param : hl_ var_index) =
(generate_load__var m param (register_for_ param_index i), i+1)
53
(¥ Generates instructions for copying a given list of local wvariables to
* the parameter registers. x*)
let generate params_copy_to_registers
(m : 11_module) (params : hl_var_ index list) =
let copied =
List.fold_left generate param_copy_to_register (m,0) params in
generate register clear (fst copied) (snd copied)
53
let is_param (VI(i) : hl_var_index) (param : hl_param_decl) =
match param with PDecl(typ, VI(index)) —>
i == index
53

let is_var (VI(i) : hl_var_index) (var : hl_var_ decl) =
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bR}

let get type (md : hl_method decl) (i : hl_ var_ index) =
match md with MDecl(_, _, params, vars, _) —>

bR}

i == index

match var with VDecl(typ, VI(index), init_value) —>

try match (List.find (is_param i) params) with

| PDecl(typ, ) —> typ with

| Not_ found —>

match (List.find (is_var i) vars) with
| VDecl(typ, _, _) —> typ

let is_unit_ method_ref (t : hl type) =

IR}

(*

*

match t with

| TMethod(_, ret) —> ret == TUnit
| — —> false

Generates instructions for calculating the value of a high—level

expression. *)

let generate_expression

bR

(*

*

let generate_ line code (mi : hl method index) (md

(m : 11_module) (md : hl_method_ decl) (e

match e with

| EMovi (v) —>

append__instruction m (IMovi(RO, translate_ value v))

| EMov (x) —>
generate__load__var m x RO

| EAdd (x1, x2) —>
let m = generate_load__var m x1 RO in
let m = generate_load__var m x2 Rl in
append__instruction m (IAdd(RO,R1))

| ESub (x1, x2) —>
let m generate__load_var m x1 RO in
let m generate_load__var m x2 Rl in
append_instruction m (ISub(RO,R1))

| EField (f) —>

generate__load__field m f RO

| ECalli (mi,p) —>
generate_load_label m (method_ prologue_label mi) RO in

let m

hl_expression) =

let m = generate__params_ copy_ to_registers m p in

append__instruction m (ICall(RO))
ECall (x,p) —> (* outcall )

let m = generate__params_ copy_ to_registers m p in
let m = generate_load__var m x RO in
let m = generate_label_ call m outcall_ helper_label

if (is_unit_method_ref (get_type md x)) then
append_instruction m (IMovi(RO, IInt (0)))

else m

Generates instructions performing the corresponding operations

given high—level statement #*)

(m : 11_module) ((l, s) : hl_line) =

let mO = append_label m (method_label label mi 1)

match s with

| SVarAssign (x, e) —>
let ml = generate_ expression mO md e in
generate__store__var ml x RO

| SFieldAssign (f, x) —>
let ml = generate_load__var mO x RO in
generate_store_ field ml f RO

in

in

177

of a
hl _method_decl)
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| SJmp (1) —>
generate_label jump m0 (method label label mi 1)
| SBeq (x1, x2, 1) —>

let ml = generate_cjump mO x1 x2 (method_ label label mi 1) R3 in
append_instruction ml (IJe(R3))

| SBIt (x1, x2, 1) —>
let ml = generate cjump m0 x1 x2 (method label label mi 1) R3 in
append__instruction ml (IJ1(R3))

| SRet (x) —>
generate__load__var mO x RO

bR

(* Generates instructions for deallocating an activation record from the
* stack. *)
let generate_stack teardown (m : 11_module) (md : hl_method decl) =
match md with MDecl(_, , params, vars, _) —>
List.fold_left append__instruction m
[IMovi(R1, IInt(List.length params + List.length vars));
IAdd (SP,R1)]

(* Generates the epilogue for a given high—level method. x)
let generate epilogue (m : 11_module) (md : hl_method decl) =
match md with MDecl(_, index, _, _, ) —>
let m0 = append_label m (method_epilogue_label index) in
let ml = generate_stack_ teardown mO md in
append__instruction ml IRet (* Return back to entry point x*)

IR}

(¥ Generates instructions for a given high—level method. x*)
let generate_method_code (m : 1l_module) (md : hl _method_decl) =
match md with MDecl(_, index, params, vars, body) —>
let mO0 = generate__prologue m md in
let ml1 = List.fold_ left (generate_ line code index md) mO body in
generate__epilogue ml md

bR}

(* *#xx% Helper procedures #x¥kx *)
(¥ Generates a helper method for checking whether an address in RO is
* within the memory bounds of the protected module x*)
let generate_return_address_check_ helper (m : 1ll_module) =
let mO = append_label m return_address_check_helper_label in
let ml = generate__address__in__mod_check mO RO halt__helper_label
(LLabel "rac_helper_ok") in
let m2 = append_label ml (LLabel "rac_helper_ ok") in
append__instruction m2 IRet

(* Generates a helper method for performing an outcall to unprotected
* code. The address in unprotected code to jump to is assumed to be in

* RO. x)
let generate_ outcall helper (m : 1l _module) =
let m = append_label m outcall_ helper_label in
let m = generate__equals__check m null__address halt__helper__label in
let m = generate__address__in__mod__check m RO halt__helper_label
(LLabel"outcall _helper_out") in
let m = append_ label m (LLabel "outcall helper out") in
let m = generate_stack_switch m in
let m = generate_load__label m return_entry_point_label R3 in
let m = generate__push__onto_stack m R3 in
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let m = generate__working_register_cleanup m in
append_instruction m (IJmp(R0))

bR}

(* Generates a helper method for clearing all register (including the
* flags register) except RO. *)
let generate full register cleanup_ helper (m : 1l _module) =
let mO = append_label m full_register_cleanup__helper_label in
List.fold_left append__instruction mO
[IMovi(R1, IInt (0));
IMovi(R2, IInt (0));

IMovi(R3, IInt (0));
IMovi (R4, IInt (0));
IMovi(R5, IInt (0));
IMovi(R6, IInt (0));
IMovi(R7, IInt (0));
IMovi(R8, IInt (0));
IMovi(R9, IInt (0));
IMovi(R10, IInt (0));
IMovi(R11, IInt (0));

ICmp(R1, R2);
IRet]

IR}

(¥ Generates a helper method for storing 0 into RO and then halting the
* system. *)
let generate__halt_helper (m : 1l_module) =
let m = append_label m halt__helper_label in
List.fold__left append__instruction m
[IMovi(RO, IInt (0));
IHalt ]

bR}

(¥ Generates the four helper functions defined above. x)

let generate_helper_ _methods (m : 1l_module) =
let mO = generate_return_address_check_ helper m in
let ml generate__outcall_ _helper m0O in

let m2 = generate__full_register__cleanup__helper ml in
generate__halt__helper m2

3
(% *xxxx Fields xxsxx x)

(¥ Reserves a memory cell for the shadow stack pointer field. x)

let generate_ shadow_stack_ pointer_ field (m : 11_module) =
match m with Module(src, lines , LAddr(free_addr), d) —>
let new_lines = lines @

[(Some shadow_stack pointer_field label,
LAddr(free_addr),
IData (IAddr secure_stack_ base_address))] in
let new_addr = LAddr (free_addr + 1) in
Module(src, new_lines, new_addr, d)

IR}

(* Reserves memory space for all helper fields. x)
let generate_ helper_ fields (m : 11_module) =
generate__shadow__stack__pointer_ field m

IR}

(* Initializes the secure stack. x)
let generate_initial stack (m : 11_module) =
match (m, secure_stack base address) with
(Module(src, lines, LAddr(free_addr), d), LAddr(s)) —>
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let new_lines = lines @ |
(Some stack base label, secure stack base address,
IData (ILabelRef(halt__helper_label)))] in

let new_addr = LAddr(s + 1) in
Module(src, new_lines, new_addr, d)

(oo ek ok ek ek ok ko ko ko ok ok Module TramSTation sk sk sk k sk d ok o o ok ok 5k ok Kk KK KKK K )
(¥ The entry point of the compiler. Translates a high—level module

into a low—level one. x)
let translate module (o : hl module decl) =

match o with

| ODecl(fields , methods) —>

let m0 = Module(o, [], mod_base_address, ModDescriptor (
(List.length methods) + 1, code_size, data_size)) in

let ml = List.fold_left generate_entry_point mO0 methods in
let m2 = generate_return__entry_point ml in

let m3 = generate_helper__methods m2 in

let m4d = List.fold__left generate__method__code m3 methods in
let mb = generate__initial_ stack m4 in

let m6 = generate__helper_fields m5 in
List.fold__left generate_field m6 fields
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