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Abstract— A PDE-based optimization framework is pre-
sented that allows optimization of turbulent wind-farm bound-
ary layers. It consists of a state-of-the-art large-eddy simulation
code that allows the time-resolved simulation of the three-
dimensional turbulent flow in the atmospheric boundary layer,
together with the adjoint (backward) sensitivity equations
to this nonlinear system of PDEs (i.e. the incompressible
Navier-Stokes equations). Both the forward and the backward
system are efficiently parallelized for supercomputing, and
are combined with state-of-the-art gradient-based optimization
methods. We use this tool to investigate the use of optimal
coordinated control of wind-farm boundary-layer interaction
with the aim of increasing the total energy extraction in wind
farms. The individual wind turbines are considered as flow
actuators and their energy extraction is dynamically regulated
in time so as to optimally influence the flow field. Earlier work
on wind-farm optimal control in the fully developed regime
(Goit & Meyers 2015, J. Fluid Mech. 768, 550) is discussed,
and extended towards wind farms in which inflow effects are
important.

I. INTRODUCTION

It is well know that wake accumulation, and the interaction
of the wind farm with the atmospheric boundary layer
leads to a decrease in energy extraction downstream in
the farm that can amount up to 40% and more [1], [2].
The current work investigates coordinated optimal control
of wind turbines in a wind farm, focussing on improving
energy extraction. Individual turbines are considered as flow
actuators, whose energy extraction can be regulated dynam-
ically in time and per turbine. To this end, our main focus
is on the control of the wind turbine’s axial induction factor
by means of the thrust coefficient. In the past, studies on
increasing energy extraction in wind farms by means of
induction control have mainly focused on optimization of
quasi-static power set-points of individual turbines through-
out the farm (cf. [3]–[8]), that are only slowly adapted to
changing atmospheric conditions (e.g. at a rate of once per 15
minutes). The main idea is that downrating the power output
from upwind turbines in a farm, so that the wind speed in
their wake would be higher, leads to higher energy extraction
in downwind turbines, and possibly an overall increase of
power extraction. These studies all relied on simple wake
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engineering models to test and develop their ideas, lacking at
that time the means to validate against experiments or high-
fidelity turbulence-resolving flow simulations (such as LES).
Recently, Annoni et al. [8] performed a detailed analysis
using large-eddy simulations. Unfortunately, they find that
static downrating of upstream turbines is not effective, as the
reduction of wake deficit diffuses too much to be sufficiently
captured by the downstream turbines. Similar findings were
also observed in recent wind-tunnel testing (L. Sætran, J.
Bartl, NTNU Norway – pers. comm.).

To date, research into much faster dynamic changes of
power set-points for increase of energy extraction has not
received much attention, though some work has focused
on wind-farm power tracking in combination with load
reduction [9], [10]. Set points may be adapted at much faster
rates than typically considered in quasi-steady approaches,
e.g. 10 to 20 seconds, so that the turbine directly interacts
with turbulent flow structures, possibly influencing wake
mixing and entrainment. The challenge in developing and
evaluating such dynamic wind-farm control approaches is
related to the very high dimensionality and complexity of the
turbulent flow state with which the controls should interact.
In addition, simulating the evolution of this turbulent flow
state with large-eddy simulations is very expensive, while
any other faster wake models are based on implicit assump-
tions on wake and wind-farm boundary-layer dynamics. As
a result designing controllers based on intuition or simple
first-principle based physical insights is nontrivial. The lack
of success of static set-point optimization discussed above,
illustrates this point.

In the current work, we focus on improving energy extrac-
tion of wind farms in large-eddy simulations (LESs), where
the LES model itself is used as a control model in a receding-
horizon optimal-control framework. Such an approach is
infeasible as a real wind-farm controller, as computational
costs are exhibitive. Instead, the methodology is used as
a means to explore the potential of coordinated control in
wind farms, without excluding a priori any of the turbulent
flow physics that could potentially improve performance.
Recently, this approach was used by Goit & Meyers [11]
for fully developed ‘infinite’ wind-farm boundary layers.
To this end, they employed gradient-based optimization of
the control actions, using adjoint LES to estimate the high-
dimensional gradients of the optimal-control objective func-
tional. They found that energy extraction could be potentially
increased by up to 16%. However, the limit of ‘infinite’
wind farms is representative only for the fully developed
boundary-layer part of very large wind farms. Such a regime
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typically arises for wind farms with a streamwise extend that
is larger than 10 to 20 km, in which the energy extraction
in the wind farm is governed by the vertical transport of
kinetic energy towards the turbine region [12]. Most modern
wind farm are not that large, or at least have a major portion
of their turbines situated in the first 10 km. In this region,
the atmospheric boundary layer is still developing and the
upstream inflow of kinetic energy still plays an important
factor in overall performance. In the current work, we extend
the approach by Goit & Meyers [11] to a regular ‘finite’ wind
farm, in which entrance effects in the first rows are expected
to play an important role.

II. COMPUTATIONAL METHOD

A. Forward simulation model

Large-eddy simulations of wind-farm boundary layers
are performed in SP-Wind, an in-house research code that
was developed in a series of earlier studies on wind-farm
simulations, and flow optimization (see e.g. Ref. [13]–[15]).
The governing equations are the filtered incompressible
Navier-Stokes equations for neutral flows and the continuity
equation, i.e.

∇ · ũ = 0 (1)
∂ũ

∂t
+ ũ · ∇ũ = −

1

ρ
∇p̃+∇ · τM + f (2)

where ũ = [ũ1, ũ2, ũ3] is the resolved velocity field, p̃ is the
pressure field. For the subgrid-scale model τM a standard
Smagorinsky model [16] is used, combined with Mason
& Thomson’s wall damping [17] at the wall. Furthermore,
f represents the forces (per unit mass) introduced by the
turbines on the flow. They are modelled using an actuator-
disk model (ADM) and written for turbine i as

f (i) = −
1

2
C′

T,iV̂
2
i Ri(x)e⊥ i = 1 · · ·Nt, (3)

where C′

T,i is the disk-based thrust coefficient (note that C′

T,i

differs from the conventional thrust coefficient CT , which
uses undisturbed inflow as a reference – see Refs. [11], [12]
for details). Further, V̂i is the disk-averaged and time filtered
the disk velocity, i.e. [12], [15], [18]

dV̂i

dt
=

1

τ
(Vi − V̂i), (4)

Vi(t) =
1

A

∫

Ω

ũ(x, t)·e⊥ Ri(x) dx. (5)

Here, Ri(x) is a geometrical smoothing function that dis-
tributes the uniform surface force of the turbine over sur-
rounding LES grid cells, and e⊥ represents the unit vector
perpendicular to the turbine disk. Finally, for the time
filter (4), we use τ = 5s. For more details regarding the
implementation of the ADM in the SP-Wind, the reader is
referred to Meyers & Meneveau [15], and Goit & Meyers
[11].

B. Optimization problem

We consider a classical receding-horizon optimal control
approach. In this approach, a control time horizon T is
selected, and the control parameters are optimized as a
function of time over this control horizon given the full
interaction with the turbulent flow field as described by
the LES equations. Here, the control parameters ϕ(t) cor-
respond to all disk-based turbine thrust coefficients ϕ ≡

[C′

T,1(t), C
′

T,2(t), · · · , C
′

T,Nt
(t)]. The aim is to maximize

the total wind-farm energy extraction. Thus, we consider
following cost functional

J (ϕ, q) = −

∫ T

0

P (t) dt =

∫ T

0

∫

Ω

f · ũ dx dt

= −

∫ T

0

Nt∑

i=1

1

2
C′

T,iV̂
2
i Vi dt, (6)

We further introduce the notation q ≡ [ũ(x, t), p̃(x, t), V̂ (t)]
for the state (with V̂ = [V̂1, · · · , V̂Nt

]). Also, the state
equations (1, 2, 4) are written in short-hand notation as
B(ϕ, q) = 0. Finally, we use the notation q(ϕ) for the
solution to the state equations given the control inputs ϕ,
such that B(ϕ, q(ϕ)) ≡ 0.

The optimization problem is now defined as

min
ϕ,q

J (ϕ, q) s.t. B(ϕ, q) = 0. (7)

To solve this problem, we formulate it in it’s reduced
form (similar to a single shooting approach), by introducing
J̃ (ϕ) ≡ J (ϕ, q(ϕ)), so that we end up with an uncon-
strained optimization problem minϕ J̃ (ϕ). This problem is
solved using a Polak-Ribière conjugate-gradient method in
combination with the Brent line search algorithm [19]–[21].
See Ref. [11] for details.

C. Gradient and backward simulation model

The gradient of the reduced cost functional can be derived
as (cf. Ref. [11] for details)

∇J̃ =
∂J

∂ϕ
+

[
∂B

∂ϕ

]∗
q∗, (8)

with [∂B/∂ϕ]∗ the adjoint of ∂B/∂ϕ, and q∗ = (ξ, π,χ)
the solution of the adjoint equations (see further below). For
the current cost functional (6), this leads to [11]

∇J̃ =
∂J

∂ϕ
+

1

2

∫

Ω

V̂
◦2
◦RRR(x) [ξ ·e⊥] dx (9)

=
1

2

∫

Ω

V̂
◦2
◦RRR(x) [(−ũ + ξ)·e⊥] dx (10)

with RRR ≡ [R1, · · · ,RNt
], and where ◦ is used to denote the

entry-wise product (or Hadamard product), and V̂
◦2

is the
entry-wise square of V̂ .

The adjoint solution, required for the evaluation of
Eq. (10) is obtained by solving following adjoint wind-farm
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Fig. 1: Computational domain with the fringe region.

LES equations (cf. Ref. [11] for details of the derivation)

−
∂ξ

∂t
− ũ · ∇ξ − (∇ξ)T · ũ = −

1

ρ
∇π +∇ · τ ∗

M + f∗

(11)

∇ · ξ = 0 (12)

−
dχi

dt
=

1

τ

[
−χi + C′

T,iV̂i

∫

Ω

Ri(x) (ũ− ξ)·e⊥ dx

]
,

for i = 1 · · ·Nt. (13)

Here, (ξ, π,χ) are the adjoint variables associated to each
state variable q = (ũ, p̃, V̂ ). Further, f∗, and τ ∗

M are the
adjoint forcing term, and the adjoint of the SGS model
respectively. They are given by

f∗ =

Nt∑

i=1

(
1

2
C′

T,iV̂
2
i +

χi

A

)
Ri(x)e⊥, (14)

τ ∗

M = 2ℓ2s

(
2S : S∗

(2S : S)1/2
S + (2S : S)1/2S∗

)
, (15)

where S∗ = (∇ξ + (∇ξ)T )/2, S = (∇u+ (∇u)T )/2, and
ℓs is the Smagorinsky length scale, modified by Mason &
Thomson’s wall damping [17].

D. Discretization

Both the forward simulations and the backward simu-
lations are performed in SP-Wind, an in-house research
code that was developed in a series of earlier studies on
large-eddy simulation and wind-farm simulations, and flow
optimization (cf., e.g., [11], [13]–[15]). SP-Wind uses a
pseudo-spectral discretization in the horizontal directions.
The nonlinear convective terms and the SGS stress are de-
aliased using the 3/2 rule [22]. Message Passing Interface
(MPI) is used to run the simulations in parallel mode, and the
FFTW library is employed for Fourier transforms [23]. In the
vertical direction, a fourth-order energy-conservative finite-
difference discretization is used [24], while time-integration
is performed using a classical four-stage fourth-order Runge–
Kutta scheme. A fixed time step corresponding to a Courant–
Friedrichs–Lewy (CFL) number of approximately 0.4 is
used. The time filter (4) is discretized using an implicit Euler
method. Finally, for the backward equation, the forward
velocity field is required (cf. 11). To this end, the forward
field is saved to disk at every time step in the preceding

forward simulation around which the adjoint sensitivity is
formulated.

An overview of the computational domain is schematically
shown in figure 1. Inflow boundary conditions are used
for the plane Γ−

1 , periodic boundary conditions are used
for Γ+

2 and Γ−

2 , and a symmetry condition is used on
Γ+
3 . Finallly, a classical high-Reynolds-number wall-stress

boundary condition is used on Γ−

3 [25], [26] in the forward
simulations. For the backward simulations, a related adjoint
wall-stress model is used (cf. Ref. [11] for details).

SP-Wind uses a pseudo-spectral discretization in the hor-
izontal directions. Therefore, the inflow boundary condition
cannot be straightforwardly implemented as a Dirichlet con-
dition. Instead a fringe-region technique [27] is used that
smoothly forces the outflow region in the fringe region
towards a desired inlet profile. To this end, we add a fringe-
forcing term λ(x)(ũin − ũ) to the momentum equation (2),
where ũin is the desired inlet velocity (cf. below), and

λ(x) = λm

[
S

(
x− xs

ds

)
− S

(
x− xe

de
+ 1

)]
, (16)

where

S(x) =





0 x ≤ 0,[
1 + exp( 1

x−1 + 1
x )
]−1

0 < x < 1,

1 x ≥ 1,

(17)

xs and xe are start and end of the fringe region and ds and de
control the widths of the increasing and decreasing regions
in the fringe function λ(x).

The turbulent inflow field ũin(x, t) is generated using
a concurrent precursor method [28] in which a separate
simulation is concurrently run to the main simulation. This
second simulation comprises a classical fully developed
boundary-layer simulation (without wind farm) that can be
straightforwardly run on periodic domains. The method is
visualized in Figure 2, showing velocity snapshots from the
precursor boundary layer simulation and the main domain
wind-farm simulation, including the coupling from precursor
simulation to main-domain fringe region.

Finally, also the adjoint equations require an fringe region
approach, since the adjoint boundary condition at Γ+

1 corre-
sponds to ξ = 0. The corresponding fringe-forcing function
follows naturally from the forward fringe forcing, leading to
−λ(x)ξ that is added to (11).
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Fig. 2: Snapshots representing instantaneous streamwise
velocity fields from the precursor boundary layer simulation
(top) and from the finite farm simulation (bottom). The
horizontal planes in the figures are taken at the hub height.

TABLE I: Summary of the simulation set-up

Domain size Lx × Ly ×H = 10× 3.8× 1 km3

Driving pressure gradient f∞ = 4× 10−4 m/s2

Turbine dimensions D = 0.1H = 100 m, zh = 0.1H
Turbine arrangement 10× 5

Turbine spacing Sx = 7D, and Sy = 6D
Surface roughness z0 = 10−4H = 0.1m
Grid size Nx ×Ny ×Nz = 384 × 256× 200

Time step 0.6 s

III. CASE SET-UP

In the current study, we consider a domain size that
corresponds to Lx × Ly × H = 10 × 3.8 × 1 km3. The
computational grid Nx×Ny ×Nz = 384×256×200, using
576×384×200 when applying the 3/2-dealiasing rule. The
fringe region accounts for 15 % of the streamwise length and
is located at the downstream end of the domain, starting from
x = 8.5 km. Fifty turbines with diameter D = 100m are
arranged with streamwise spacing Sx = 7D, and spanwise
spacing Sy = 6D, leading to a matrix of 10 by 5 turbines.
In the spanwise direction, the spacing between the most left
and most right turbine column to the respective left and right
boundaries corresponds to 7D. This results in a blockage of
the wind-farm frontal area to the total frontal area of the
domain of around 9%. The inflow velocity is generated in a
separate precursor simulation of the boundary layer, which

has a domain size and grid resolution identical to those of
the actual wind-farm simulation (cf. Figure 2 and discussion
above). It is driven by a constant pressure gradient and has
periodic boundary conditions in the horizontal directions.
Set-up parameters are summarized in Table I.

For the optimal control, we take a time horizon T = 240s.
This roughly corresponds to the time for the flow to pass 4
turbine rows, similar to the value used in Ref. [11]. The
optimization algorithm is started with C′

T,i(t) = 2.0 (i.e.,
ϕ(0) = 2.0) for all the turbines in the farm. This corresponds
to the optimal operating condition of a lone-standing turbine
following the Betz theory. To limit the computational cost,
the optimization is not formally converged, but terminated
after four conjugate gradient iterations. One conjugate gradi-
ent iteration requires roughly 8 standard LES simulations (for
the line search), and one adjoint LES for the determination
of the gradient, leading to a total of 36 simulations per
optimal control window. As soon as the optimization over the
first time horizon [0, T ] is completed, the optimal controls
are used to advance the flow. In standard receding-horizon
optimal control, this is done for one time step, after which
a new optimization problem is defined for the next time
horizon [∆t, T+∆t]. In view of the excessive computational
resources required for the optimization, we instead advance
the solution for TA = T/2. Subsequently, a new optimization
is performed over [TA, T + TA]. We repeat this for 17
optimal control windows, leading to a total control time of
17TA = 2040s, and a total number of 612 simulations.

Finally, similar to Goit & Meyers [11], we impose box
constraints on the controls, i.e. 0 ≤ C′

T,i(t) ≤ 4. These
constraints are trivially applied in the conjugate gradient
algorithm, and not explicitly added in the description above.
The lower constraint prevents that the turbine operates as a
fan. The upper boundary is imposed to avoid C′

T → ∞,
which is not very practicable from a turbine-construction
point of view. However, we do not a priori want to limit
C′

T to the Betz limit (C′

T = 2). Therefore, we select an ad-
hoc limit of C′

T = 4, which, e.g., corresponds to a wind
turbine that is constructed with double blade-chord lengths
compared to Betz-optimal blade design (cf. Ref [11] for
further discussion).

IV. RESULTS

Goit & Meyers [11] showed for a fully developed wind-
farm boundary layer (the so-called ‘infinite’ wind-farm case)
that energy extraction can be increased by up to 16% by
dynamic induction control. The main mechanism was related
to improved wake recovery by increasing wake mixing.
This was realized by optimal thrust coefficients that were
slightly anti-correlated in time with the incoming velocity,
thus increasing turbulence levels in the wake. Here, we are
studying a similar case in which entrance effects play an
important role by changing the boundary conditions, using
a precursor simulation in combination with a fringe-region
approach. Apart from that, simulation parameters are the
same (same number of turbines, arrangement pattern, surface
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Fig. 3: Time evolution of total farm power output.

roughness, etc.). A typical wind-farm simulation output is
appreciated in Figure 2.

In Figure 3, the instantaneous power output of the wind
farm is displayed before and after the optimal control is
switched on. It is observed that also for this case, wind-
farm power extraction increases. We observe a gain of 7%
when averaging over the 2000 seconds of optimal control,
compared against the greedy case (C′

T = 2) run over the
same time interval. This value is considerably lower than for
the infinite case, but still quite significant.

The power extraction over the different turbine rows is
further shown in Figure 4. In this figure, it is observed that
the average power extraction of the first row decreases, but
this is compensated for by the increase in power extraction
in the later turbine rows. This is in sharp contrast to static
set-point optimization, for which downrating of the first row
does not work [29]. In the current study, we further confirmed
this by also running our LES using static set points obtained
by averaging the dynamic C′

T values for the different turbine
rows. We found that removing the dynamics in the signal,
leads to power output that is worse than the uncontrolled
case (results not shown here).

The mechanism that improves power extraction is similar
to that observed for the fully developed case, i.e. improved
wake recovery. This is illustrated in Figure 5, where the
hub-height centerline velocity through the turbines is plotted
versus the streamwise distance. It is appreciated that the
mean velocity recovers much faster in the controlled case; in
particular after the first turbine row, this is very pronounced.

Similar to Goit & Meyers [11], we analyze the correlation
between the control signal C′

T , and the turbine disk velocity.
To this end, a Reynolds decomposition of the power output
(cf. Eq.(6)) is performed. Thus, the control is decomposed
in its time mean and fluctuating part, i.e., C′

T,i ≡ C′

T,i +

∆[C′

T,i]. Similarly, V̂ 2
i Vi ≡ V̂ 2

i Vi +∆[V̂ 2
i Vi]. Hence,

Pr =

Nr∑

i=1

1

2
C′

T,i V̂
2
i ViA+

Nr∑

i=1

1

2
∆[C′

T,i] ∆[V̂ 2
i Vi]A, (18)
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Fig. 4: Comparison of the time averaged power output for
the controlled and uncontrolled farm as a function of turbine
row. (�): power output for the uncontrolled case; (N): power
output for optimal control case.
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Fig. 5: Time and row averaged profiles of streamwise
velocity through the rotor center. ( , black): uncontrolled
case; ( , dashed): optimal control case averaged over the
time interval [0, 17TA]. Vertical dashed lines (light grey)
represent the location of the turbines.

where Pr is the total power output from a turbine row and
Nr is the number of turbines in the row. It is obvious that the
second term on the right-hand side is zero in the uncontrolled
case, since C′

T is constant in that case, so that ∆[C′

T,i] = 0.

In Figure 6, results are shown for the Reynolds de-
composition of the wind-farm power. We find that C′

T is
anticorrelated with the turbine disk velocity. In particular in
the first row, this anticorrelation is around 15%. This is much
higher than the 6% found for the infinite farm in Ref. [11].
However, further downstream the amount of anticorrelation
drops, and approaches the infinite case. For the last row, the
control is not anymore anticorrelated with disk velocity, as
increased wake mixing downstream of the last row is not
relevant for increased energy extraction.
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Fig. 6: Reynolds decomposition of power output from
different turbine rows. (�): Ratio of the mean component
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T to the total extracted power.

V. CONCLUSIONS

We presented an optimization framework that allows for
the optimization of wind-farm control taking into account
the full coupling between control actions and the three-
dimensional turbulent flow. To this end, LES of wind-
farm boundary layers is combined with the adjoint LES
equations into a gradient-based optimization framework. The
approach was used to study dynamic induction control of
wind turbines in a wind farm in which entrance effects play
an important role, with the aim to increase overall energy
extraction. Currently, ongoing research is investigating opti-
mal control in different wind-turbine arrangement patterns,
optimal control using other wind-turbine models, such as
the actuator-line model, and the effect on results of different
constraints on the controls. An additional aspect that is of
importance for the control to be feasible is the rate of change
of the power set points, as high rates of change lead to
large additional loading cycles of the turbine. Therefore, in
ongoing research we are also looking into the effect of rate-
of-change limitations on control effectiveness.
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