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Tensor decompositions and data
fusion in epileptic
electroencephalography
and functional magnetic resonance
imaging data
Borbála Hunyadi,1,2 Patrick Dupont,3 Wim Van Paesschen4 and Sabine Van Huffel1,2*

Electroencephalography (EEG) and functional magnetic resonance imaging
(fMRI) record a mixture of ongoing neural processes, physiological and nonphy-
siological noise. The pattern of interest, such as epileptic activity, is often hidden
within this noisy mixture. Therefore, blind source separation (BSS) techniques,
which can retrieve the activity pattern of each underlying source, are very useful.
Tensor decomposition techniques are very well suited to solve the BSS problem,
as they provide a unique solution under mild constraints. Uniqueness is crucial
for an unambiguous interpretation of the components, matching them to true
neural processes and characterizing them using the component signatures. More-
over, tensors provide a natural representation of the inherently multidimensional
EEG and fMRI, and preserve the structural information defined by the interde-
pendencies among the various modes such as channels, time, patients, etc.
Despite the well-developed theoretical framework, tensor-based analysis of real,
large-scale clinical datasets is still scarce. Indeed, the application of tensor meth-
ods is not straightforward. Finding an appropriate tensor representation, suitable
tensor model, and interpretation are application dependent choices, which
require expertise both in neuroscience and in multilinear algebra. The aim of this
paper is to provide a general guideline for these choices and illustrate them
through successful applications in epilepsy. © 2016 The Authors. WIREs Data Mining and
Knowledge Discovery published by John Wiley & Sons, Ltd.
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INTRODUCTION

Epilepsy, affecting 0.5–1% of the world popula-
tion, is a wide spectrum of neurological disor-

ders, characterized by recurrent epileptic seizures,
which arise due to abnormal electrical activity in the
brain. The causes, symptoms, and severity of the dis-
ease vary drastically among individual patients.
Therefore, precise diagnosis, i.e., establishing the
exact type of epilepsy, is a crucial factor in choosing
proper treatment. The gold standard for diagnosing
epilepsy is electroencephalogram (EEG) monitoring.
The absence or presence of certain characteristic
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patterns in the EEG can differentiate epileptic sei-
zures from seizure-like symptoms of different origin.
After establishing the diagnosis, antiepileptic drug
treatment can be initiated. Unfortunately, in approxi-
mately 30% of all epilepsy patients, the seizure cannot
be controlled by medication. In such cases, epilepsy
surgery may be considered in order to resect or dis-
connect the region responsible for generating the sei-
zures, i.e., the epileptogenic zone (EZ). To localize the
EZ, different imaging modalities can be used besides
EEG monitoring such as magnetic resonance imaging
(MRI), functional MRI (fMRI), positron emission
tomography (PET), or single-photon emission com-
puted tomography (SPECT). In this paper, we will
focus on EEG and fMRI analysis methods to support
the diagnostic procedure of epilepsy.

Technically speaking, several preliminary con-
siderations can be made regarding the choice of the
analysis techniques. First of all, given the fact that
each and every epilepsy case is unique, data-driven
approaches should be implemented. Furthermore, the
chosen technique has to efficiently handle large multi-
variate datasets, i.e., EEG and fMRI signals sampled
during a long period at different spatial locations.
Robustness against noise is another crucial aspect.
Indeed, EEG and fMRI measure a mixture of signals
originating from different physiological and nonphy-
siological processes, which are all superimposed on
the epileptic signal pattern.

With this in mind, different blind source sepa-
ration (BSS) techniques have been extensively and
successfully used to mine epileptic EEG and fMRI
data. BSS techniques consider a set of observations,
which arise from a mixture of underlying source sig-
nals and aim to recover the sources and the mixing
system blindly, i.e., only based on the available
observations. The majority of BSS techniques
achieves this goal and ensures a unique solution by
imposing certain constraints on the sources or the
mixing system. In order to interpret the results and
take them into account in the medical diagnostic pro-
cedure, it is crucial that the solution is unique and
the constraints are biologically plausible.

Multichannel signals are naturally represented in
a matrix, where each row of the matrix contains the
signal measured by each sensor. Matrices are also called
two-way arrays, expressing variability in time and
space (sensors) along the two dimensions. Tensors are
higher-order generalizations of matrices, i.e., multiway
arrays, which can represent additional types of variabil-
ity in their higher dimensions. For example, data
recorded from different patients can be organized along
the third dimension. A fourth dimension may arise
from the mathematical manipulation of the signal, with

the intention of conveying relevant information about
the signals, such as spectral information through fre-
quency transformation. In case of multiway data, BSS
can be formulated as a tensor decomposition problem.
Remarkably, tensor decomposition techniques offer a
unique solution under mild conditions, making them a
very desirable method to solve the BSS problem.

The goal of this paper is to highlight the
strengths of tensor-based BSS techniques through
successful examples, propose new directions, and
encourage continued efforts within the field of epi-
lepsy research, neuroimaging, and beyond.

The paper is organized as follows. In
section Mining EEG and fMRI in Epilepsy, we dis-
cuss some challenging tasks where knowledge discov-
ery through BSS can help answer clinical questions
related to epilepsy. In section BSS Multiway Data,
we give a formal definition to BSS, introduce the
most important tensor decomposition techniques and
discuss their uniqueness properties. In section Tensor
Analysis of Functional Brain Data: A General Frame-
work, we give a general framework for tensor-based
analysis of EEG and fMRI. Finally, in section Tensor
Analysis of Epileptic EEG and fMRI: Successful
Applications, we review the existing tensor-based
solutions, which have successfully tackled clinical or
research questions in the field of epilepsy.

MINING EEG AND fMRI IN EPILEPSY

Epilepsy affects brain function, causing pathological
changes in brain activity. EEG and fMRI record con-
tinuous data from the functioning brain over a cer-
tain period, therefore, can capture epileptic activity
as well. Besides epileptic activity, normal neural
activity, other physiological signals, and nonphysio-
logical noise are also recorded. Therefore, it is not
trivial to answer the crucial questions: when and
where does epileptic activity take place.

The EEG recordings may last up to 1 week,
when the patients are hospitalized for presurgical eval-
uation. Although trained experts can recognize epilep-
tic EEG patterns visually, reviewing such large
amounts of data is very time consuming. Therefore,
automated seizure detection techniques are very benefi-
cial in long-term monitoring. Once the seizure occur-
rences have been identified, the EEG data are further
analyzed in order to determine the seizure onset zone
(SOZ). Practically, this means finding the electrode on
which the first signs of ictal pattern are seen. As sei-
zures are often accompanied by involuntary muscle
contractions, severe artifacts often contaminate the
ictal pattern hindering visual interpretation. Therefore,
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BSS techniques for artifact removal or for modeling the
source of interest are crucial. Note, however, that the
spatial resolution of scalp EEG is relatively low. For
precise delineation of the SOZ, we need source imaging
techniques1 to map the data from the channel space to
the source space, i.e., obtain three dimensional
(3D) localization information.

Alternatively, fMRI offers high spatial resolu-
tion by measuring blood-oxygen-level dependent
(BOLD) signals at typically 3 × 3 × 3 mm3 voxels
within the whole volume of the brain. To determine
the brain regions that are involved in generating epi-
leptic activity, fMRI signals are usually analyzed in
conjunction with temporal information from simulta-
neously recorded EEG. EEG–fMRI integration poses
various signal processing challenges, such as remov-
ing severe scanner artifacts from the EEG,2 reliably
identifying interictal epileptic discharges3,4 and
accounting for the mismatch in terms of the temporal
dynamics and the spatiotemporal resolution between
the EEG and fMRI signals.5,6

More recent approaches to unravel epilepsy-
related neural phenomena are based on studying the
interactions among the brain signals recorded at dif-
ferent spatial locations. Functional connectivity anal-
ysis studies the statistical interdependency between
the multivariate brain signals. It can reveal the origin
and the spreading pattern on epileptic activity in
EEG7 or study large-scale network behavior and dis-
ruption in fMRI, which can lead to a better under-
standing of the disease mechanisms.8

Besides studying pathological phenomena,
fMRI also plays an important role in mapping
healthy brain function to determining the eloquent
cortex, i.e., regions that are responsible for memory,
sensory, motor, and language function.9

BSS OF MULTIWAY DATA

Blind Source Separation
There are a few common elements among the above-
discussed signal processing challenges. They all tackle
large multichannel time series of low signal to noise
ratio, where the pattern of interest is embedded in a
mixture of irrelevant information. Formally, let
sr* 2ℝI, a real vector of length I, denote the source
of interest, and s1, … sr − 1, sr + 1, … sR 2 ℝI are
other physiological and nonphysiological sources.
Depending on the location of the sources with respect
to the spatial sampling points (EEG channels or
fMRI voxels), they contribute to the measured signals
with different weights a1, … aR 2 ℝJ Then, the
observed multichannel signal X 2 ℝI × J can be

written as a linear instantaneous mixture of the
sources, where the mixing system is defined by the
weights:

X =
XR
r =1

arsTr +E =
XR
r = 1

ar∘sr +E =AS +E: ð1Þ

The goal of BSS is to recover the sources and the
mixing system purely based on the observations and
characterize the source of interest based on the tem-
poral and spatial signatures sr* and ar* . In other
words, the aim is to factorize the matrix X in inter-
pretable rank-1 components. Different terminology
calls the mixing matrix A and source matrix S factor
matrices. Furthermore, we will call their respective
columns and rows signatures. The outer product
(denoted by ∘) of the signatures defines the compo-
nents. Some BSS models are exact and will model
noise as an additional source variable, while others
allow a residual error term E.

Interpretability implies that the factorization
problem is unique. This guarantees the extraction of
a unique set of sources, the signatures of which need
to match as closely as possible to those of the true
sources. However, the matrix factorization problem,
in general, does not produce a unique solution.10

Additional constraints, such as orthogonality or sta-
tistical independence of the sources are imposed in
order to ensure uniqueness. However, in general,
there is no reason to assume that true physiological
processes behave independently in the brain. Instead,
they behave as a highly complex system of intercon-
nected regions, which dynamically interact and mod-
ulate each others’ activity.

Tensor Factorization
Let us generalize the matrix factorization problem to
the case of a Nth order tensor X 2 ℝI1 × I2 × ���× IN :

X =
XR
r = 1

a 1ð Þ
r ∘a 2ð Þ

r ∘� � �∘a Nð Þ
r +E : ð2Þ

This model is called the polyadic decomposition
(PD). The smallest R for which E = 0 is called the
rank of the tensor, and the model is the canonical
polyadic decomposition (CPD). CPD is a very power-
ful tool for BSS, as the conditions under which it is
unique, are easily met. Later we discuss two sufficient
conditions for uniqueness.

A very simple and easy to check condition,
which often applies in BSS problems, states that the
CPD of a third-order tensor is unique if two factor
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matrices have linearly independent columns and the
third factor matrix has no collinear columns.

The most well-known and more relaxed
uniqueness condition, first derived by Kruskal11 for
third-order tensors and later generalized to higher
order tensors by Sidiropoulos and Bro12 relates the
number of components to the number of collinear
columns in the factor matrices:

kA 1ð Þ + kA 2ð Þ + kA 3ð Þ ≥ 2R + 2; ð3Þ

where kA denotes the k-rank of the matrix, defined
as the largest number of k such that any k columns
of A are linearly independent, and A(i) denotes the
factor matrix comprising the signatures in mode i.
Some of the most relaxed general conditions for
uniqueness were introduced recently in a comprehen-
sive study by Refs 13,14. Note that the unique
decomposition is subject to trivial indeterminacies,
therefore, the ordering or the magnitude of the
extracted signatures cannot be interpreted.

Note that rank-1 CPD terms imply trilinear
components, i.e., in each source, the same signature
pattern is scaled along the other two modes. In cer-
tain cases, this model might be too restrictive and
does not match the true physical properties of the
underlying sources. Block term decompositions
(BTDs) offer more flexible models through extracting
low-rank components, rather than rank-1 compo-
nents.15 In this review, we will discuss one particular
case, block term decomposition of a third-order ten-
sor X 2 ℝI1 × I2 × I3 in rank-(Lr,Lr,1) components:

X =
XR
r = 1

A 1ð Þ
r � A 2ð Þ

r

� �T
� �

∘a 3ð Þ
r : ð4Þ

The matrix Dr =A
1ð Þ
r � A 2ð Þ

r

� �T
2ℝI1 × I2 has rank Lr,

and the vector a 3ð Þ
r is nonzero. Similarly to CPD, this

decomposition has mild uniqueness conditions up to
trivial indeterminacies. In case the matrices

A 1ð Þ
1 …A 1ð Þ

R

h i
and A 2ð Þ

1 …A 2ð Þ
R

h i
have linearly inde-

pendent columns, and the matrix a 3ð Þ
1 …a 3ð Þ

R

h i
has no

collinear columns, the decomposition is guaranteed
to be unique. For more relaxed uniqueness condi-
tions, we refer the reader to 16,17

Both CPD and BTD can be viewed as a con-
strained Tucker decomposition. In the Tucker model,
the tensor is written as the product of a core tensor
and the factor matrices:

X =G× 1A 1ð Þ × 1A 2ð Þ� � �× 1A Nð Þ: ð5Þ

The values in the core tensor control the interactions
between the factor signatures: in case of the trilinear
CPD, only the values on the superdiagonal are non-
zero, while BTD allows some off-diagonal nonzeros
depending on the multilinear rank of the compo-
nents. While Tucker decompositions offer very good
model fit, they have many degrees of freedom, there-
fore, the nonunique factors usually have no physical
meaning.

An illustration of the various tensor decomposi-
tions is shown in Figure 1.

Coupled Tensor Factorization
Often more than one sort of measurements is per-
formed to study different aspects of the same phe-
nomenon. For example, the electromagnetic waves
generated in the brain can be measured with EEG or
MEG. BOLD signal changes in active tissue are cap-
tured by fMRI. Metabolic changes, perfusion,
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FIGURE 1 | Illustration of the most important tensor
decompositions: (a) CPD, (b) BTD-(Lr,Lr,1), (c) Tucker, (d) CMTF. CPD,
canonical polyadic decomposition; BTD, block term decomposition;
CMTF, coupled matrix-tensor factorization.
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structural connections, or anatomy can be acquired
using PET, SPECT, diffusion imaging, or structural
MR, respectively. The integration of the information
coming from these complementary modalities is
highly beneficial to obtain a more detailed characteri-
zation of the underlying processes. Often these mea-
surements share one or more common source of
variability. For example, the same underlying neural
source will generate a similar temporal pattern in
EEG and MEG. Owing to some pathology, changes
occurring in similar brain regions will be captured
using the different modalities, hence, the images will
share similar spatial signature. Or, in case of a multi-
subject dataset, the subject-by-subject variability will
be related in all modalities. One can exploit this com-
mon variability using joint BSS. Joint independent
component analysis (jointICA) is a matrix-based
technique, which concatenates the data from each
modality into a large matrix. Then, assuming that
the underlying sources are mutually statistically inde-
pendent, and that the exact same mixing system A
generates the observations, it concatenates the data
from all modalities into a large source matrix
X mod1½ � X mod2½ �…X modK½ �� �

, and retrieves the joint
sources S mod1½ � S mod2½ �…S modK½ �� �

using ICA 18,19:

X mod1½ � X mod2½ �…X modK½ �
h i

= A S mod1½ � S mod2½ �…S modK½ �
h i

:

ð6Þ

The strong assumption of the same underlying mix-
ing system for all modalities can be relaxed by pre-
processing the dataset using multimodal CCA.20

Similarly to the unimodal case discussed previ-
ously, tensor-based techniques, which jointly factor-
ize two or more tensors, can circumvent the
independence constraint in joint BSS. Let us consider
a set of m tensors Xm 2 ℝI1 × I2,m × ���× IKm,m ,
m2 1,…,Mf g, where each tensor may have different
order Km and different sizes IKm,m, except for the first
dimension, which is of size I1 and is shared among
all tensors. The coupled PD of this set of tensors is
formulated as follows:

Xm =
XR
r = 1

a 1ð Þ
r ∘a 2,mð Þ

r ∘� � �∘a Km,mð Þ
r : ð7Þ

Interestingly, the uniqueness conditions for a coupled
decomposition are even more relaxed than the condi-
tions for the decomposition of the single tensors.21 One
special case, namely coupled matrix-tensor factoriza-
tion (CMTF) has been studied extensively in the

literature and has found different applications in EEG–

fMRI analysis and beyond.22 Let us consider a matrix
X2 ℝI1 × I2 and a third-order tensor X 2 ℝI1 × I2 × I3 .
Their coupled decomposition is written as:

X =
XR
r = 1

a 1ð Þ
r ∘a 2,1ð Þ

r

X =
XR
r = 1

a 1ð Þ
r ∘a 2,2ð Þ

r ∘a 3,2ð Þ
r

ð8Þ

Regarding the uniqueness of the factors A1, A2,2, and
A3,2, the same mild conditions hold as in CPD. In
order to ensure the uniqueness of A2,1, the common
factor matrix A1 needs to have full column rank.21

Similarly to jointICA, this model assumes that
the factors in the shared dimension are equal. Several
relaxations of this condition have been proposed,
such as advanced CMTF (ACMTF), which allow the
existence of both shared and nonshared factors,5,22

or relaxed ACMTF, which allows similarity rather
than equivalence of the shared factors.23 Alterna-
tively, multiway partial least squares (N-PLS) can be
applied, which generalizes the concept of PLS regres-
sion. In a resting state EEG–fMRI experiment, the
electrical and BOLD signal sources were estimated
such that the shared temporal signatures in both
modalities have maximal covariance.24

TENSOR ANALYSIS OF FUNCTIONAL
BRAIN DATA: A GENERAL
FRAMEWORK

In this section, we provide a comprehensive guide on
performing tensor-based analysis of EEG and fMRI
data. Each step of the processing pipeline is discussed
in detail in order to highlight the necessary considera-
tions and identify possible decisions. We will illustrate
each step using an example EEG segment recorded
during an epileptic seizure. Data were analyzed in
Matlab R2014a with built-in routines, Tensorlab25

and the N-way toolbox,26 two Matlab toolboxes for
tensor manipulations and decompositions.

Figure 2 summarizes the consecutive steps of
the processing pipeline.

In the first tensorization step, the data are pre-
processed and organized in the form of a higher
order array. Such a representation may come natu-
rally, for instance when multichannel measurements
are performed repeatedly or in different patients. The
multichannel signal forms a matrix; repeated mea-
surements organized along the third dimension form
a third-order tensor; finally, such repeated
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measurements performed on multiple patients will
give rise to a fourth-order tensor with dimensions
channels × time samples × measurements × patients.

Alternatively, an additional dimension may
arise from the mathematical manipulation of the sig-
nal. The motivation for this is twofold. First, in case
there is prior knowledge or a reasonable assumption
about the properties of the underlying sources, such
mathematical manipulation can convey this knowl-
edge about the signals. Second, a well-chosen trans-
formation will result in a low-rank data structure,
which will make the data suitable for tensor decom-
position. Therefore, tensorization is a crucial and
application dependent step, which requires both bio-
medical and mathematical expertise.

Wavelet transformation and other time–
frequency transformations are very popular in EEG
signal processing. Many different types of neural

phenomena appear as an oscillatory signal in a cer-
tain frequency band, such as / activity,24 epileptic
seizures,27,28 or event-related synchronization and
desynchronization. The time–frequency representa-
tion of a neural oscillation will result in a rank-1 ten-
sor in case the oscillatory source remains at the same
location and maintains the same frequency; while
changes in either of these properties will give rise to a
low-rank tensor. On the contrary, muscle artifacts
have a very broad frequency spectrum and a high
multilinear rank. As such, they cannot be modeled
using a tensor decomposition in low-rank terms. As
an example, a 10-second long segment of an epileptic
seizure recorded by EEG is visualized in Figure 2(a).
Red arrows indicate the channels on which the ictal
(seizure) pattern is most pronounced. Black arrows
indicate eye blink artifacts. In Figure 2(b), we show
the corresponding tensor representation obtained by
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wavelet transformation. The oscillatory pattern,
which increases in amplitude toward the end of the
EEG segment, is the epileptic seizure activity. In the
wavelet tensor, this pattern is reflected as large coeffi-
cients between 4 and 8 Hz after 5 second. Large
coefficients at lower frequencies reflect eye blink arti-
fact, observed at 0.5, 2, 6, and 8 second.

Brain oscillations and rhythms are well approx-
imates as the sum of sinusoids, i.e., a sum of expo-
nentials. Let us consider the representation of the
signal in a Hankel matrix, where the entries along
the skew-diagonal are constant and correspond to
the consecutive time samples of the signal. It is well-
known in system identification, that the Hankel
matrix of a pure exponential is rank-1, that of a
sinusoid (sum of two exponentials) is rank-2. In gen-
eral, an exponential polynomial of degree L yields a
Hankel matrix of rank L. Therefore, neural sources
represented in Hankel matrices will admit a low-rank
tensor decomposition.15

Many further tensorization schemes exist,
which have not yet found an application in

biomedical signal processing, which, however, may
be of interest. For example, sources, which can be
approximated as rational functions, yield low-rank
Löwner matrices. For additional examples and
detailed theoretical explanation, we refer the reader
to Ref 29.

The second step of the processing pipeline is the
selection and computation of the appropriate tensor
model for decomposition. The suitable tensor model
strongly depends on the chosen tensor representation.
As illustrated in Figure 3, the exact same source will
have different rank using different representations;
therefore, it requires a different tensor model.

Several techniques exist to assist model selec-
tion. The first group of techniques aims to find a
trade-off between model complexity and fit,
e.g., DIFFIT.30 Naturally, the more complex the
model (higher number and higher multilinear rank
components), the better the model fit. Automated
methods study the changes of the model fit in func-
tion of the parameters and then choose the corner or
the saturation point of the curve, where increasing
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model complexity does not improve the fit considera-
bly. Such techniques tend to overestimate the model
complexity of EEG and fMRI data. At reasonable
signal-to-noise ratio, if an appropriate low-rank rep-
resentation is chosen taking into account the proper-
ties of the source of interest, this source will be
represented using a relatively few number of compo-
nents. Adding more components to the model will
usually not improve the reconstruction of the source
of interest, but will only model noise and sources of
no interest.

Another widely used technique, called core con-
sistency diagnostic 31 tests the validity of the
hypothesized CPD or other restricted Tucker models
post hoc. More specifically, it fits the data onto the
computed factors in the least squares sense, and then
compares the resulting core tensor to the hypothe-
sized core tensor. In case of CPD, the core consist-
ency of the fitted model is computed for increasing
number of models. Then, the suggested number of
components is the last in the row, which still yields a
core consistency close to 100%. This approach has
successfully been used in several EEG applications,
e.g., see Refs 32,33.

We encourage the reader to use a combination
of different techniques and consider background
knowledge from the application field to make an
informed decision.

We illustrate the model selection procedure on
the initial 2-second long segment of the EEG visua-
lized in Figure 2, i.e., at the onset of the seizure. A
tensor was obtained using a wavelet transformation.

A CPD model with different ranks ranging from 1 to
20 was run five times with random initializations.
The core consistency and the relative error of each
CPD is shown in Figure 4. A rank-1 CPD model
explains around half of the total variance of the sig-
nal. The relative error drops sharply by increasing
the rank until 3 or 4, then it keeps decreasing moder-
ately. At the same time, the core consistency shows a
perfect trilinear structure up to rank-2, while the
lower values for rank-3, rank-4, and rank-5 indicate
that there is a considerable amount of variance in the
data which is not trilinear. Models with a rank
higher than 6 are invalid. Therefore, a rank-2 CPD
model seems to be a good choice for this data. Visual
inspection of the original segment reinforces this
decision, as two different physiological patterns were
observed in the EEG, namely seizure activity and eye
blinks.

Different computational schemes have been
developed for performing tensor decomposition. For
an overview, we refer the reader to Ref 34.

The final step involves the interpretation of the
resulting components. As we have explained earlier,
the uniqueness of the decomposition is essential for
unambiguous interpretation. In case the factors are
not unique, the interpretation of an arbitrarily chosen
solution may lead to false conclusions. As explained
above, they are easily checked and met conditions,
under which a tensor decomposition in unique. In
the noiseless case, the unique solution can be explic-
itly computed using linear algebra.34 However, in
practice, the measurements are contaminated with
noise. Therefore, the tensor decomposition is not
exact but a CPD model is fitted to the observed ten-
sor using numerical optimization, minimizing the
model error. In such cases, uniqueness of the decom-
position can be confirmed with respect to the fitted
tensor only. Moreover, the algorithm may get stuck
in a local minimum. In order to verify the reliability
of the solution, the following sanity checks can
be done:

Checking whether the estimated factors and
rank comply with the uniqueness conditions cited in
section BSS Multiway Data. Note that in the noisy
case, these conditions are necessary but not sufficient
anymore, as there is no way to verify that the fitted
tensor is the true noiseless version of the observed
tensor.

• Running the algorithm, several times, the con-
sistency of the estimated factors can be verified.
This can be done either visually, or, in case of
large-scale problems with many components, in
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(bottom) are shown for five randomly initialized CPD models with
different ranks ranging from 1 to 20. CPD, canonical polyadic
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a semi-automated way using clustering, in a
similar fashion as done with ICASSO for ICA35

• Using different initialization strategies,36 to
make sure that the algorithm can converge to
the global minimum and not get stuck in a local
minimum.

Coming back to the previous example of Figure 2,
we ran CPD ten times with different initialization
strategies, once using generalized eigenvalue decom-
position, 4 times randomly generated orthogonal fac-
tors and 5 times randomly generated factors. The
resulting components were compared pairwise using
Pearson’s correlation coefficient. In all cases, a per-
fect correlation (r = 1) was found, suggesting that we
have found a unique solution. Moreover, as none of
the factors contain collinear columns (as verified by
visual inspection as well as by a low Pearson’s corre-
lation value), each factor has k - rank = 2. Then,
Eq. (3) holds as R = 2 and 2 + 2 + 2 ≥ 2 � 2 + 2.
The components emerging from this rank-2 CPD
solution are visualized in the bottom left panel of
Figure 2.

Once the reliability of the solution is con-
firmed, one needs to relate the various extracted
components to physical sources. Sometimes back-
ground knowledge is sufficient to identify the
sources, e.g., eye blink-related components are eas-
ily recognized due to their large contribution on the
frontal EEG channel, such as the component on the
right in of Figure 2(d). The component on the left
is identified as a seizure based on background
knowledge: epileptic seizures cause an oscillatory
pattern in the EEG, such as the signal observed in
the temporal signature of this component. In other
cases, e.g., large number of components or lack of
expert knowledge, supervised learning can be used
to train a classifier on a set of known examples that
can later select the sources of interest in new
datasets.37

After matching the components to physical
sources, the signatures can be used to characterize
the sources or use the signatures as features for pat-
tern recognition and clinical decision-making. This
often implies some application-specific postproces-
sing step, some of which will be discussed in the fol-
lowing section.

Expert knowledge is crucial throughout the
whole procedure, from the earliest step onwards. In
our example, we choose the first 2 second of EEG
segment, as this will allow us to characterize the sei-
zure onset. The localization of the SOZ can be
derived from the spatial signature of the component.

As seen in Figure 2, the seizure is most prominent
in the right frontotemporal area, which is in agree-
ment with other clinical information of the patient.
Nevertheless, the user may be interested in other
sorts of information about the data, such as the evo-
lution of the seizure pattern. It is then the user’s
responsibility to select an appropriate data segment
and a tensor model which can characterize more
complex patterns which vary in time. To illustrate
such an exploratory analysis, we take the full 10-
second long EEG segment and apply block term
decomposition after wavelet transformation. In
order to check whether the spectral content of the
seizure evolves, one rank-1 component and one
low-rank component is extracted using BTD-(Lr

Lr,1), i.e., with L1 = 1 but with L2 = 2 in the time
and frequency mode. The resulting components are
visualized in Figure 5(a). One can see on the left
that the seizure pattern, with very similar channel,
frequency, and temporal signatures as in Figure 2, is
represented in the rank-1 term. The other compo-
nent on the right has a topography similar to eye
blinks, however, its temporal signatures show both
an oscillatory seizure-like pattern and eye blinks. It
seems that the sources are not well separated, the
chosen tensor structure is not appropriate for the
data. This may indicate that the seizure and the eye
blinks have a stable spectral content throughout the
duration of the segment. Alternatively, to check
whether the seizure pattern spreads through the
brain, the channel and temporal signatures are
defined as low rank with L2 = 2. The results are
shown in Figure 5(b). One can observe now on the
left that the eye blink component is modeled in the
rank-1 term. The low-rank seizure term, shown on
the right, is characterized by an oscillatory pattern
at 5 Hz. The spatial signatures indicate that, com-
pared with the onset, the seizure pattern has propa-
gated toward posterior temporal areas and in
frontal areas as well.

TENSOR ANALYSIS OF EPILEPTIC EEG
AND fMRI: SUCCESSFUL
APPLICATIONS

Table 1 gives an overview about the studies in the
literature, which have successfully applied tensor
decompositions to analyze EEG and fMRI datasets
and answer important clinical questions about
epilepsy.
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EEG Analysis
As explained already in section Mining EEG and
fMRI in Epilepsy, automated EEG analysis methods
can assist visual inspection through extracting the
pure epileptic activity patterns and rejecting arti-
facts, or reduce the workload of clinicians through
automated seizure detection. Epileptic seizure pat-
terns have been successfully retrieved using CPD of
wavelet transformed multichannel EEG data.27,28

Both applications rely on the assumption that the
oscillatory seizure pattern remains stationary within
a short observation window, maintaining the same
frequency spectrum and localization. Therefore, its
pattern is well represented with a rank-1 tensor,
which is the outer product of an oscillatory tempo-
ral pattern, a frequency signature with a clear peak

and with a channel signature. These signatures can
be utilized in various ways. First, the component
corresponding to epileptic activity has to be
selected. This can be done by ordering the compo-
nents according to their variance and excluding eye
blink sources.28 Then, the channel distribution can
be postprocessed in order to localize the SOZ, by
selecting those channels where the seizure pattern is
dominant, i.e., present with amplitude higher than
a predefined relative threshold.28 This technique
will reveal the SOZ in channel space. However,
more precise spatial information can be obtained by
utilizing source localization techniques on the chan-
nel signature,45 which will pinpoint the SOZ in the
so-called source space, defined as a 3D grid in the
entire volume of the brain. Moreover, in a patient-
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specific setting, where the first seizure pattern serves
as training data, the channel, time, and frequency
signatures extracted by CPD can also be used as
features to train a classifier and detect subsequent
seizures.38 Alternatively, a tensor can be built by
extracting various discriminative time and fre-
quency domain features, such as Hjorth parameter
of spectral entropy from the multichannel EEG seg-
ments. Then, using labels from the training data,
N-PLS-based multilinear regression is used to model
the epilepsy feature tensor. Again, the extracted
component can be used to predict the labels of new
EEG segments from the same patient.40 A recent
study39 has developed a framework based on
Tucker decomposition, which allows to train classi-
fiers sensitive to certain types of EEG patterns, by
selecting subsets of the core tensor corresponding to
relevant factor signatures. This is a step forward to
patient independent seizure detection, as it enables

the user to target specific types of epileptic patterns
without collecting patient-specific data.

fMRI Analysis
Tensor-based solutions for fMRI data are scarce in
the literature. Although fMRI images are inherently
3D, the spatial patterns of interest are usually not
low rank in this space. Moreover, as the cortical sur-
face is highly folded, neighboring voxels in the fMRI
do not necessarily represent adjacent neuronal popu-
lations. Therefore, fMRI images are usually vector-
ized, and the consecutively recorded images are
stored in a voxels × time matrix.

The ICA is a popular class of matrix-based BSS
techniques, which is often used to analyze fMRI time
series. It can delineate epileptic networks37 and so-
called resting state networks (RSNs) as well, which
comprise various spontaneously coactivating brain
regions.46 Analysis of RSNs and the degree of

TABLE 1 | An Overview about the Studies in the Literature

Study Application Modality Tensorization Tensor Model Postprocessing
27 Seizure onset zone

localization
EEG Wavelet transform CPD Visual analysis

28 Seizure onset zone
localization

EEG Wavelet transform CPD Component ordering and
selection of dominant
channels

15 Seizure onset
localization

EEG Hankel matrix representation BTD Visual assessment

38 Seizure detection EEG Wavelet transform CPD CPD of new segments using
fixed spectral and spatial
signatures, classification based
on temporal signature

39 Seizure detection EEG Windowed spectrogram Tucker Classifier training on selected
subsets of factors

40 Seizure detection EEG Time and frequency features N-PLS Classification using the
component matrices from N-
PLS model

41 Lateralization of the
seizure onset

EEG Graph features Tucker Analysis of residuals and
hoteling T-squared values

42 Seizure prediction
(modeling preictal
period)

EEG Relative power in sub-bands CPD Component selection based on
correlation with target, visual
analysis of signatures

43 Functional connectivity
analysis

fMRI Natural
(voxels × time × patients)

CPD with
independence
constraint
(T-PICA)

Component selection using
regression to task time course;
statistical analysis for group
comparisons

44 Interictal network
analysis

EEG–
fMRI

Natural
(channel × time × patient)

CMTF Visual analysis

EEG, electroencephalography; fMRI, functional magnetic resonance imaging; CPD, canonical polyadic decomposition; BTD, block term decomposition;
N-PLS, multiway partial least squares; CMTF, coupled matrix-tensor factorization; T-PICA, Tensor Probabilistic Independent Component Analysis.
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functional connectivity among the nodes of these net-
works is a very promising research area in epilepsy.
The disruption of RSN functional connectivity in epi-
lepsy patients gives us deeper insight in the disease
mechanisms and the resulting clinical manifestations,
such as decreased connectivity in the language net-
work during rest in patients with language
impairment.47

Functional connectivity studies compare the
connectivity of a homogeneous group of patients
against a group of individuals in order to retrieve
robust and reproducible network connectivity pat-
terns. Data from individual subjects can be organ-
ized in a voxels × time × subject tensor. The time
course of network activity in resting state differs in
each individual. However, in task-based fMRI,
where each participant executes the same task proto-
col, the networks engaged by the task will have simi-
lar activation time course. Therefore, these sources
will have a rank-1 structure and can be decomposed
using CPD. Considering the success of the source
independence constraint widely applied in fMRI
research, Beckmann and Smith48 have proposed ten-
sor probabilistic ICA, which incorporates this con-
straint into the CPD model. Using this approach,
previously unknown functional reorganization was
discovered in a group of temporal lobe epilepsy
cases.43

EEG–fMRI Analysis
Simultaneous EEG–fMRI has gained increasing
importance in the past years, despite technical diffi-
culties which arise due to the simultaneous measure-
ments.2 The motivation behind integrating these two
modalities is their complementary nature. They not
only record different aspects of neural activity, they
can complement each other’s temporal and spatial
resolution. In the context of epilepsy, this tool is use-
ful to delineate the irritative zone and some centers
have already implemented this technique in clinical
practice within presurgical evaluation.

Several ways exist to integrate information
from EEG and fMRI data. Sequential integration
means that the information from one modality is
used to inform or constrain the analysis of the other,
such as within the general linear model, in which the
interictal spikes detected on EEG are used to obtain a
regressor for the fMRI analysis.49 The specificity and
sensitivity, hence the successful clinical use of this
technique, largely depends on correctly identifying
interictal epileptic discharges on the EEG,3 the use of
an appropriate hemodynamic model and appropriate
thresholding of the statistical maps.50 General Linear

Model (GLM) based maps often show widespread
activation patterns, including voxels remote to the
epileptogenic areas. This may be due to the fact that
the EEG signals, used as a reference, represent a mix-
ture of neural processes51 or it may represent an
underlying interictal network.52

Model-free, data-driven approaches can relax
or circumvent some of the above difficulties. Dur-
ing parallel integration, each modality is first pro-
cessed separately using ICA. Then, in a second
phase, the sources are matched across the modal-
ities.51 The advantage of this approach is that the
source signatures will not be affected by a possibly
inaccurate model specification, e.g., inaccurate
EEG information or hemodynamic model. Indeed,
this technique helped the interpretation of wide-
spread GLM-based epileptic activation maps to
pinpoint the EZ.44

The drawback of parallel integration is that it
does not allow a flow of information between the
modalities, while this may enhance the discovery of
interesting patterns, which are present in both data-
sets. Symmetric EEG–fMRI fusion processes the
modalities simultaneously, allowing a flow of infor-
mation in both directions. As such, jointICA of
EEG–fMRI can give a detailed spatiotemporal char-
acterization of the neural processing, taking the
best of both worlds.8,18 An extension of this tech-
nique allows incorporating multichannel EEG
information by temporal or spatial concatenation.53

In either case, however, the spatial or temporal
interdependencies of the multichannel signals are
lost. In order to exploit the inherent higher dimen-
sional structure of the EEG, a tensor representation
and joint matrix-tensor decomposition is preferred.
Indeed, the superiority of this approach over join-
tICA and multichannel jointICA has been shown in
a recent study44 revealing an interesting association
between different features within an interictal epi-
leptic discharge and different fMRI activation
clusters

CONCLUSION

Tensor decompositions are a very powerful set of
tools for BSS of functional neural datasets. Their
power relies on two principles. First, tensor represen-
tations allow to exploit the inherent higher dimen-
sional structure of EEG and fMRI data. Second,
tensor decompositions offer a unique solution under
mild conditions, which allows unambiguous interpre-
tation of the signatures. Therefore, we presented a
general framework for tensor-based EEG–fMRI
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signal processing, explaining the most important con-
siderations to make during each step of the

processing pipeline and discussed successful applica-
tions in epilepsy.
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