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Donghun Kim e,g, Enric Perarnau Ollé b, Juraj Oravec h, Michael Wetter e, Draguna L. Vrabie a, 
Lieve Helsen b,c 

a Pacific Northwest National Laboratory, Richland, WA, USA 
b KU Leuven, Department of Mechanical Engineering, Leuven, Belgium 
c EnergyVille, Thor Park, Waterschei, Belgium 
d VITO NV, Boeretang Mol, 200, Belgium 
e Lawrence Berkeley National Laboratory, Berkeley, CA, USA 
f University of Southern Denmark, Center for Energy Informatics, Denmark 
g Purdue University, School of Mechanical Engineering, West Lafayette, IN, USA 
h Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Slovakia   

A R T I C L E  I N F O   

Keywords: 
Model predictive control 
Building climate control 
MPC formulation 
MPC software tools 
MPC implementation 

A B S T R A C T   

It has been proven that advanced building control, like model predictive control (MPC), can notably reduce the 
energy use and mitigate greenhouse gas emissions. However, despite intensive research efforts, the practical 
applications are still in the early stages. There is a growing need for multidisciplinary education on advanced 
control methods in the built environment to be accessible for a broad range of researchers and practitioners with 
different engineering backgrounds. This paper provides a unified framework for model predictive building 
control technology with focus on the real-world applications. From a theoretical point of view, this paper pre
sents an overview of MPC formulations for building control, modeling paradigms and model types, together with 
algorithms necessary for real-life implementation. The paper categorizes the most notable MPC problem classes, 
links them with corresponding solution techniques, and provides an overview of methods for mitigation of the 
uncertainties for increased performance and robustness of MPC. From a practical point of view, this paper de
livers an elaborate classification of the most important modeling, co-simulation, optimal control design, and 
optimization techniques, tools, and solvers suitable to tackle the MPC problems in the context of building climate 
control. On top of this, the paper presents the essential components of a practical implementation of MPC such as 
different control architectures and nuances of communication infrastructures within supervisory control and data 
acquisition (SCADA) systems. The paper draws practical guidelines with a generic workflow for implementation 
of MPC in real buildings aimed for contemporary adopters of this technology. Finally, the importance of stan
dardized performance assessment and methodology for comparison of different building control algorithms is 
discussed.   

1. Introduction 

Buildings today contribute to roughly 40% of the global energy use 
(approx. 64 PWh), of which a large portion is used for heating, cooling, 
ventilation, and air-conditioning (HVAC) (IEA International Energy 
Agency & International Partnership for Energy Efficiency Cooperation, 
2015). Energy savings thus become a priority in the design and 

operation of modern HVAC systems. Numerous studies reported that 
advanced HVAC control can notably reduce energy use and mitigate 
greenhouse gas emissions with average energy savings of 13% to 28% 
(Gyalistras et al., 2010; del Mar, Álvarez, de A., & Berenguel, 2014; 
Roth, Westphalen, Dieckmann, Hamilton, & Goetzler, 2002). This means 
that in the ideal case of full employment of this technology, annual final 
energy savings of roughly 8PM h to 18PM h can be projected. Based on 
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this potential, recently revised EU policy on the energy performance of 
buildings states that large buildings should be equipped with building 
automation and control systems by 2025 if economically and technically 
feasible (EUp, 2018). 

However, the majority of buildings today still adopt simple rule- 
based control (RBC) techniques with only limited energy saving capa
bilities (Aghemo et al., 2013; Mechri, Capozzoli, & Corrado, 2010). The 
promise of a digital age comes with decreasing costs in computation and 
sensing, which is paving the way for the adoption of advanced control 
strategies, like model predictive control (MPC). In the last decade, MPC 
has become a dominant control strategy in research on intelligent 
building operation. The main benefit of MPC is a systematic thermal 
comfort improvement with simultaneous energy savings spanning from 
15% up to 50% demonstrated on numerous simulation and several pilot 
case studies (Ma et al., 2012; Oldewurtel et al., 2012; Sturzenegger, 
Gyalistras, Morari, & Smith, 2016; ̌Siroký, Oldewurtel, Cigler, & Prívara, 
2011), as well as grid flexibility services via price-responsiveness and 
active demand response capabilities (Bianchini, Casini, Pepe, Vicino, & 
Zanvettor, 2017; Borsche, Oldewurtel, & Andersson, 2014; Cutsem, 
Kayal, Blum, & Pritoni, 2019a; Esther & Kumar, 2016). The strength of 
MPC lies in the use of a mathematical model of the building to predict its 
future behavior. By using these predictions, MPC can optimally choose 
the control actions based on a given objective while taking into account 
the comfort and technological constraints, and weather forecasts in a 
systematic and flexible way. 

Despite the abundance of research papers and several pilot in
stallations, the transfer of this technology to the building market is still 
in its early stages. The difficulty of the building sector stems from the 
fact that building management systems (BMS) engineers do not have 
advanced education in modern optimal control methods and tools, as 
control engineers do in other fields that have utilized MPC successfully, 
such as the process industry. Moreover, in contrast to the production of 
cars or user electronics, design and production of building and their 
HVAC systems are not standardized. Every building is a unique system 
which requires tailored modeling and control design, hence imposing 
increased engineering time and cost, particularly for advanced control 
strategies. All of this emphasizes the requirement for extending the 
theoretical education and practical skill set of the building control 
practitioners to enable the installation, maintenance, and operation of 
advanced MPC applications. An additional limiting factor is the poor ICT 
infrastructure in pre-existing buildings. One of the emerging advanced 
building control solutions is cloud-based control as a service platform. 
Although, significant privacy and cyber-security challenges are linked 
with these remote control architectures. Based on the observations 
described above and reflections presented in Cigler, Gyalistras, Široký, 
Tiet, and Ferkl (2013a); Prívara et al. (2013), six main challenges for 
wide-spread application of MPC to buildings are defined:  

1. Availability of appropriate hardware and software infrastructure 
with compatible communication interfaces. 

2. User-friendly, control-oriented, accurate, and computationally effi
cient building modeling.  

3. Automated design, tuning, and deployment of MPC.  
4. Plug-and-play implementation, and robust operation of MPC.  
5. Privacy and cyber-security issues and the user trust.  
6. Trained personnel to handle commissioning, and maintenance of 

MPC in practice. 

The first challenge does not fall in the scope of research anymore 
because it lies in the domain of market adaptation. To address the sec
ond challenge, a methodology for the automatic synthesis of building 
models based on Building Information Models (BIM) has been proposed 
(Andriamamonjy, 2018). Different attempts in reducing the model 
development effort via available templates in Modelica libraries like 
Buildings (Wetter, Zuo, Nouidui, & Pang, 2014) and IDEAS (Baetens 
et al., 2015), or via physically inspired reduced-order automated system 

identification toolchains (De Coninck, Magnusson, Åkesson, & Helsen, 
2016). Dedicated tools are also emerging for automated MPC design for 
buildings (Blum & Wetter, 2017; Drgoňa, 2019; Jorissen, Boydens, & 
Helsen, 2018a). Computationally lightweight approximations of MPC 
control laws (Drgoňa, Picard, Kvasnica, & Helsen, 2018), and rule 
extraction algorithms based on machine learning (Domahidi, Ullmann, 
Morari, & Jones, 2014), or toolchains for generation of optimized 
C-code (Jorissen et al., 2018a) aim to tackle the fourth challenge of easy 
installation and robust operation. The privacy issues could be solved in 
two ways, first by employing local control solutions without the need for 
real-time remote communication, and second by the adoption of 
advanced cybersecurity measures (Cybersecurity in smart buildings 
inaction is not an option anymore, 2015). 

The ambition of this paper is to deliver a comprehensive summary on 
the topic of MPC for buildings, which could help to tackle the last 
challenge from the list. The necessary theoretical base on MPC is first 
supported by a literature review of the most recent advances in the field. 
Then, an extensive overview and conceptual comparison of dedicated 
software tools is given, followed by practical guidelines for imple
mentation and performance assessment of MPC in real buildings. 

1.1. Previous reviews considering MPC for buildings 

We would like to acknowledge a first attempt to provide a unified 
MPC framework, which was given in Serale, Fiorentini, Capozzoli, 
Bernardini, and Bemporad (2018). This review paper aims to build a 
bridge between control and building engineers with a common dictio
nary and taxonomy of classes to enhance the professional relationship 
between these two originally distinct engineering areas. The most recent 
review on MPC for buildings with the focus on demand-side flexibility 
compares the pros and cons of the current technology and highlights the 
requirement of expert knowledge as the main bottleneck (Zong et al., 
2019). An overview on three major research topics in building control, 
in particular semantic interoperability, fault detection, and MPC, was 
presented in Benndorf, Wystrcil, and Réhault (2018). A paper with 
in-depth literature review and classification of building control methods 
with particular focus on MPC has been published by (Afram & Jana
bi-Sharifi, 2014b). 

More specific reviews of the MPC technology focusing on particular 
aspects of building control are as follows. One of the earliest short re
flections on MPC technology for buildings was given by (Henze, 2013) 
envisioning a large impact of MPC technology on intelligent building 
operation. A review paper focused on artificial neural network based 
MPC was given in Afram, Janabi-Sharifi, Fung, and Raahemifar (2017). 
A review on an important aspect of occupancy behavior focused MPC 
was introduced in Mirakhorli and Dong (2016), concluding that using 
occupancy measurement and models in combination with MPC can 
improve the comfort and decrease the energy use in contrast to a stan
dard schedule based control strategy. Reviews (Hilliard, Kavgic, & 
Swan, 2015; Rockett & Hathway, 2017) focus on challenges, aspects and 
future trends of MPC for commercial buildings. Paper (Hilliard et al., 
2015) provides recommendations for selecting a building response 
model, simulation timestep, prediction horizon, forecast resolution, and 
optimization algorithm, while (Rockett & Hathway, 2017) stresses the 
urgent need for research on the automated creation and updating of 
predictive models for MPC. Authors in Killian and Kozek (2016) ask ten 
questions about MPC for buildings and provide critical analysis of 
challenges, future trends, and potential of MPC for the general building 
market. The identified challenges are high modeling and parametriza
tion effort, shortage of modeling and optimal control experts active in 
the building automation domain, and lack of commercial tools for 
expert-free building modeling. in Kavgic, Hilliard, and Swan (2015), the 
authors discussed the opportunities for implementation of MPC in 
commercial buildings together with the identification of specific build
ing characteristics indicating increased potential for MPC, like large 
thermal mass, high solar gains, discrete occupancy periods, and the 
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opportunity to vary temperature setpoints. 
Dounis and Caraiscos (2009); Naidu and Rieger (2011); Wang and 

Ma (2008) are more general building control reviews and classification 
studies covering advanced intelligent and optimal building control 
strategies. A detailed review in Shaikh, Nor, Nallagownden, Elamvazu
thi, and Ibrahim (2014) summarizes the impact of smart control stra
tegies on energy and comfort management in buildings focusing on 
aspects such as building sector, optimization objectives, energy source, 
control algorithm and simulation tools used. Optimal operation of en
ergy management systems with a weather forecast is reviewed in Lazos, 
Sproul, and Kay (2014) concluding that weather has a significant in
fluence on building energy operation and that the minimization of 
forecast uncertainty can lead to increased energy savings in the range of 
15% to 30%. A most recent analysis of optimization-based building 
automation and control systems focusing on performance gap mitigation 
and uncertainty evaluation was given in Aste, Manfren, and Marenzi 
(2017). Different optimization methods applied to different energy 
domain areas are reviewed in Baños et al. (2011). A review of 
multi-criteria decision analysis (MCDA), which could be used to aid the 
selection of the objectives for MPC for buildings, was presented in 
Wang, Jing, Zhang, and Zhao (2009). Finally, deeper insights into MPC 
technology, in general, can be found, e.g. in Bemporad (2006); Mayne 
(2014). 

1.2. Contributions and structure of the paper 

The presented paper aims to provide a comprehensive up to date 
overview of MPC technology applied to buildings. Although there are 
several reviews on general intelligent building operation strategies and 
MPC, to the authors’ best knowledge, a unifying overview integrating 
both theoretical and practical aspects is still missing in this field. The 
ambition of this paper is thus to fill this gap and provide the reader with 
a single publication capable of guiding the whole process of imple
mentation of MPC in a real building. The paper is also aimed to act as a 
detailed introduction to the topic for control and mechanical engineers 
and researchers, facilitating the information exchange in the multidis
ciplinary domain of building control. In comparison to referenced 
literature reviews in Section 1.1, the purpose of this paper is not to 
redefine, but refine and extend given MPC frameworks from previous 
literature overviews with a particular focus on providing a detailed list 
of software resources for increased accessibility of the technology. 

The first part of the paper emphasizes a theoretical perspective. 
Section 2 defines the general MPC framework with standard notation. 
Section 3 elaborates on building modeling. Section 4 gives a brief 
summary of algorithmic principles behind MPC. Sections 5 and 6 sum
marize different MPC problem classes and corresponding solution ap
proaches, respectively. Section 7 compactly reviews methods for dealing 

Table 1 
Nomenclature of terms and acronyms used in the paper.  

Notation Meaning Notation Meaning 

Control terminology 
PID proportional-integral-derivative RBC rule-based control 
MPC model predictive control LMPC linear MPC 
NMPC nonlinear MPC HMPC hybrid MPC 
eMPC explicit MPC OSF-MPC offset-free MPC 
RMPC robust MPC SMPC stochastic MPC 
LBMPC learning-absed MPC RHC reciding horizon control 
DPC data predictive control OCP optimal control problem 
SSM state-space model TF transfer function 
KF Kalman Filter MHE moving horizon estimation 
UKF Unscented Kalman Filter EKF extended Kalman Filter 
TVKF time-varying Kalman Filter SKF stationary Kalman Filter 
ADP approximate dynamic programming DP dynamic programming 
HJB Hamilton-Jacobi-Bellman equation RL reinforcement learning 
Optimization terminology 
OP optimization problem ADMM alternating direction method of multiliers 
LP linear programming QP quadratic programming 
NLP nonlinear programming SQP sequential quadratic programming 
MIP mixed integer programming MINLP mixed integer nonlinear programming 
MILP mixed integer linear programming MIQP mixed integer quadratic programming 
GDP generalized disjunctive programming mpP multi parametric programming 
mpQP multi parametric quadratic programming mpLP multi parametric linear programming 
LMI linear matrix inequality CC chance constraints 
SDP semidefinite programming SOCP second order cone programming 
Modeling terminology 
ODE ordinary differential equations DAE differential algebraic equations 
AR auto regressive ARMA auto regressive moving average 
BJ Box-Jenkins ARMAX auto regressive moving average with exogenous inputs 
ANN artificial neural network DT decision tree 
SVM support vector machines RF random forests 
kNN k-nearest neighbors GP gaussian processes 
4SID subspace state space system identification OE output error 
MBE mean biased error RMSE root mean square error 
EEP expected error percentage CV coefficient of variation 
PRBS pseudo random binary signal CRPS continuous ranked probability score 
Building domain terminology 
HVAC heating, ventilation, and air conditioning AHU air handling unit 
VAV variable air flow BES building energy simulation 
FMI functional mockup interface BIM building information modeling 
PIR passive infrared sensor BaU business as usual 
iCRTF inverse comprehensive room transfer functions CFD computational fluid dynamics 
SCADA supervisory control and data acquisition BMS building management system 
HMI human machine interface CM number of comfort violations minimization 
CT comfort tracking PMV predicted mean vote  
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with uncertainties in MPC for buildings. Everything is supported by a 
comprehensive up-to-date literature review reporting successful real- 
world applications or in-depth simulation case studies of the presented 
concepts. 

In the second part of the paper, the emphasis lies on the practical 
aspects of the technology. Section 8 provides a comprehensive list of 
available software tools for modeling, analysis, and solution of MPC 
problems. Section 9 delves deeper into practical aspects of MPC imple
mentation, such as control configuration, communication infrastructure, 
and SCADA architecture, together with practical guidelines for imple
mentation in real buildings. Section 10 introduces the need and meth
odology for performance assessment and comparison of MPC strategies 
for buildings. Finally, Section 11 concludes the paper. 

1.3. Nomenclature 

Table 1 summarizes the terminology and acronyms used in the paper 
with domain-specific classification. 

2. Model predictive building control 

The purpose of the following section is to compactly define and 
summarize the general MPC framework for building applications. We 
present here the fundamental building blocks and corresponding con
cepts of MPC, different problem formulations, and a notation based on 
standards used in the control engineering community. The general MPC 
framework compatible with the structure of this paper is presented in 
Fig. 1. The presented framework is the extension of the MPC framework 
given in Serale et al. (2018). 

2.1. Model predictive control basics 

MPC is a constrained optimal control strategy that calculates the 
optimal control inputs by minimizing a given objective function over a 
finite prediction horizon. The mathematical model of the system 
together with the current state measurements and weather forecast are 
used to predict and optimize the future behavior of the building. 

2.1.1. Standard MPC scheme 
Fig. 2 illustrates a typical abstract closed-loop MPC scheme which 

can describe most of the building control applications. The control loop 
consists of the building affected by disturbances d (e.g., weather con
ditions), predicted by weather forecast d̂, the state estimator providing 
the state estimates x̂ and the MPC controller which optimally manipu
lates the control actions u (e.g., heat flows, valves opening, pump 
powers), e.g., such that it minimizes used energy and keeps the output 
vector y (e.g., room temperatures) within the given comfort bounds. 

2.1.2. General MPC formulation 
The general MPC formulation for buildings can be represented as the 

following optimal control problem (OCP) in discrete time: 

min
u0 ,…,uN− 1

ℓN(xN) +
∑N− 1

k=0
ℓk(xk, yk, rk, uk, sk) (1a)  

s.t. xk+1 = f (xk, uk, dk), k ∈ NN− 1
0 (1b)  

yk = g(xk, uk, dk), k ∈ NN− 1
0 (1c)  

uk = fHVAC(xk, ak,mk), k ∈ NN− 1
0 (1d) 

Fig. 1. Structure of the general MPC framework for building control applications compatible with the structure of this paper. Solid lines represent the sub-categories, 
while dashed lines with arrows depict causal dependencies and information flow during the design process. 

Fig. 2. Schematic representation of the standard closed-loop system for 
building control with MPC and state estimator. 
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sk = h(xk, yk, uk, rk), k ∈ NN− 1
0 (1e)  

xk ∈ 𝒳 , uk ∈ 𝒰, ak ∈ 𝒜, sk ∈ 𝒮, k ∈ NN− 1
0 (1f)  

dk = d(t+ kTs), k ∈ NN− 1
0 (1g)  

rk = r(t+ kTs), k ∈ NN− 1
0 (1h)  

x0 = x̂(t), (1i)  

where xk ∈ Rnx denotes the values of states, yk ∈ Rny the outputs, uk ∈

Rnu the building envelope inputs, ak ∈ Rna the HVAC actuators, mk ∈ Rnm 

the additional measured variables, dk ∈ Rnd the disturbances, rk ∈ Rnr 

the reference signals, and sk ∈ Rns denote the slack variables, at the kth 
step of the prediction horizon N with a sampling time Ts, where n⋆ de
notes the dimensionality of associated variable ⋆. 

The objective function is given by (1a), where ℓN(xN) represents the 
terminal penalty used to ensure the stability and convergence of the 
control. For most of the building control applications the terminal 
penalty is omitted. ℓ(rk, yk, uk, sk) is called a stage cost and its purpose is 
to assign a cost to a particular choice of xk, yk, rk, uk and sk. 

The predictions of the state values are obtained from the state update 
Eq. (1b), while the values of the predicted outputs are given by the 
output Eq. (1c). The building envelope inputs uk are subject to the HVAC 
dynamics (1d). Slack variables usually represent the violations of 
additional algebraic constraints (1e), such as comfort zones. States, 
envelope inputs, actuators, and slack variables are often subject to 
bounding constraints (1f). The initial conditions of the state variables 
are given by (1i) which are either measured or estimated. A forecasts of 
the disturbances and reference signals are given by (1g) and (1h), 
respectively. For building control applications, disturbances usually 
represent weather conditions and occupancy behavioral patterns, while 
reference signals span from tracking a single reference signal to more 
common comfort ranges on controlled variables. For the sake of gener
ality we denote by ξ the vector that encapsulates all time-varying pa
rameters of (1), i.e., the current state estimates x̂(t), current and future 
disturbances d(t),…, d(t + (N − 1)Ts), and reference signals r(t),…,r(t +
(N − 1)Ts). Compression of all parameters into single vector ξ is 
convenient for compact representation of MPC feedback law A =
fMPC(ξ), where A = [ a0, a1,…, aN− 1 ] is the vector of computed optimal 
control actions. 

2.1.3. Standard MPC notation 
Table 2 summarizes the standard notation and meaning of the vari

ables used in the control community together with most common 

physical representations in buildings. 

2.2. Objectives in building control 

The objective, or also called cost function, represents the perfor
mance target to be minimized. When two or more targets are set, the 
problem is referred to as a multi-objective optimization. In such cases, 
the terms of the objective function are often conflicting and a trade-off 
among them has to be found. Common approaches for multi-objective 
optimization include goal attainment, minimax, and Pareto front. 

Goal attainment In building control, the vast majority of MPC prob
lems are using goal attainment formulations aiming to find a balance 
between weighted goals, such as energy use and thermal comfort of the 
occupants. This balance is typically adjusted by means of weighting 
terms to give priority to one of the targets. For example, Eq. (1a) can be 
re-written as (2). Where ‖ Qssk‖

2
2 represents an arbitrary discomfort term 

in the form of the weighted squared 2-norm of the slack variables, and 
Quuk stands for the weighted linear energy term. The matrices Qs and Qu 
here represent the weighting factors, and κk is the time-varying factor 
representing, e.g. the weight associated with price or emission profiles. 
In human perspective, these weighting factors represent the “price” that 
the user is willing to pay to have more or less comfort. Besides standard 
weighting techniques, other methods to select the preferred objective 
have also been tested, such as lexicographic formulations which assume 
that the objectives can be ranked in order of importance (O’Dwyer, De 
Tommasi, Kouramas, Cychowski, & Lightbody, 2017). 

min
u0 ,…,uN− 1

∑N− 1

k=0
( ‖Qssk‖

2
2 +Quκkuk

)
(2)  

Minimax Also called Min-Max formulations aim to minimize the worst- 
case values of a set of multivariate functions. Minimax objective func
tions are typically being used for finding conservative solutions to the 
optimization problems in the presence of uncertainties. More details on 
this class problems are provided in Section 7.2 dedicated to robust MPC. 
Pareto front Finds trade-off solutions in which an improvement in one 
objective requires a degradation in another. A generic review on MPC 
and PID design with Pareto front objectives was provided in Gambier 
(2008). Authors in Zhao, Shen, Li, and Bentsman (2017) demonstrated 
how to formulate and solve the preference adjustable multi-objective 
MPC for constrained nonlinear systems. The advantage of 
multi-objective MPC in the context of building control is that the 
resulting Pareto front solution space allows the user to choose the 
outcome according to his comfort preferences and economic constraints 
(Arendt et al., 2019; 2016; Ascione, Bianco, De Stasio, Mauro, & Vanoli, 
2016; Ascione, Bianco, Mauro, Napolitano, & Vanoli, 2019; Li & Mal
kawi, 2016; Liu et al., 2013). 

The formulation of the objective function is influenced by several 
factors, like building dynamics, type of the HVAC system, the level of 
detail of the controller model, observability and controllability of the 
system and user preference. For example, if only the building envelope is 
modeled, a classic approach is to minimize its heat inputs from the 
different heating and cooling systems, with each system having an 
associated cost (Picard & Helsen, 2018). In other approaches where the 
HVAC is explicitly modeled, setpoints of the components are usually 
manipulated to minimize the energy use (Jorissen, 2018). Although 
energy use and user comfort are the most frequently used objectives, it is 
possible and for some cases desired to have also different objectives like 
minimization of monetary costs, or greenhouse gases (GHG) emissions, 
maximization of the share of renewable energy sources (RES), and more. 
The following subsections elaborate more on different objectives used in 
the building control sector. Earlier reviews on MPC objective functions 
for building control can be found in Cigler, Široký, Korda, and Jones 
(2013b); Cupeiro Figueroa, Cigler, and Helsen (2018). 

Table 2 
Standard notation and most common physical representation of the variables 
used in MPC for buildings.  

Notation Controller Building Units 

x states building structure temperatures [K] 
y outputs room operative temperatures [K] 
u inputs heat flows to the zones [W] 
a actuators valve and pump modulations [%] 
m measurements HVAC states [K, W, 

%] 
d disturbances ambient temperatures, solar 

radiation, 
[K, W]   

and internal heat gains [W] 
r references comfort zones, setpoints [K] 
s slack variables discomfort measures [K] 
ξ parameters aggregate of the building states, [K]   

references, and disturbances [K,W] 
Q weighting factors importance of particular objective [− ] 
N prediction 

horizon 
predicted future time window [− ] 

Nc control horizon optimized future time window [− ]  
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2.2.1. Comfort satisfaction 
The main purpose of heating, cooling, and ventilation systems in 

buildings is to maximize the thermal comfort and indoor environmental 
quality (IEQ) for the occupants. Enhanced IEQ can improve occupants’ 
productivity by 5 to 10% Olesen (2005), or satisfy the specific re
quirements of more demanding occupants like elderly people who in 
general prefer warmer thermal conditions (Schellen, van Marken Lich
tenbelt, Loomans, Toftum, & De Wit, 2010). 

In general, the main constituent of the IEQ is thermal comfort. The 
standard way to achieve thermal comfort is to maintain the zone tem
peratures of the building within a given temperature range or so-called 
comfort zone, e.g., as defined by the international standard ISO7730 
(International Organization for Standardization, 2005). An advanced 
metric used to assess thermal comfort is the Predicted Mean Vote (PMV) 
indicator of Fanger (Fanger, 1973). PMV is used not only in the thermal 
comfort model of ISO7730 (International Organization for Standardi
zation, 2005) but also in other standards like ASHRAE55 (American 
Society of Heating Refrigerating & Air Conditioning Engineers, 2013), 
EN15251 (Comite’Europe’en de Normalisation, 2007), and ISSO74 (van 
der Linden, Boerstra, Raue, Kurvers, & de Dear, 2006). PMV is a 
nonlinear model, which depends on various parameters like the meta
bolic rate, the clothing insulation, the indoor air temperature, the 
radiant temperature, the air velocity, the relative humidity, and on the 
outdoor meteorological conditions. However, its nonlinear nature 
makes it computationally more expensive for MPC applications (Castilla, 
Álvarez, Normey-Rico, & Rodriguez, 2014; Castilla et al., 2011), leading 
to the use of approximated versions of this model (Cigler, Prívara, Váňa, 
Žáčeková, & Ferkl, 2012; Klaučo & Kvasnica, 2014; Yang et al., 2018). 
The PMV value is moreover complicated to calculate in such a way that 
it fits the real observed mean vote (Humphreys & Nicol, 2002). On the 
other hand, some studies recommend an adaptive thermal model that 
involves acclimation of people, which could improve people’s health by 
increasing their thermo-neutral zone (van Marken Lichtenbelt & 
Kingma, 2013). Standards including adaptive comfort bounds are 
defined by the thermal models in EN15251 (Comite’Europe’en de Nor
malisation, 2007), ASHRAE55 (American Society of Heating Refriger
ating & Air Conditioning Engineers, 2013), and ISSO74 (van der Linden 
et al., 2006). A comprehensive comparison of adaptive thermal comfort 
models defined by different standards can be found in Sourbron and 
Helsen (2011). The main disadvantage of these personalized comfort 
metrics is that their parameters need to be properly measured or esti
mated, which often increases their cost and limits their applicability in 
control practice. For a more comprehensive overview of thermal com
fort models, we refer the reader to Enescu (2017). Table 3 presents a 
compact summary of most common thermal comfort models used in 
MPC. 

However, thermal comfort constitutes only a part of IEQ since it also 
depends on additional factors, such as indoor air quality (IAQ), lighting 
quality, visual and acoustic comfort. For example, evidence exists that 
mechanical ventilation systems lead to an overall improvement of the 
IAQ and reduction of reported comfort and health-related problems 
(Kephalopoulos, Geiss, Barrero-Moreno, D’Agostino, & Paci, 2016). To 
predict the air quality an occupancy model needs to be developed, e.g., 

based on statistical data or available measurements (Jorissen, Boydens, 
& Helsen, 2017). The occupancy models can also be used to predict the 
thermal loads and thus improve thermal comfort, and when correctly 
implemented they can further save up to 30% of energy (Mirakhorli & 
Dong, 2016). Furthermore, ventilation units can have some degree of 
freedom with respect to the relative humidity of the supplied air, and 
therefore they can also be straightforwardly incorporated into MPC 
formulations via humidity models or additional constraints on temper
atures (Freire, Oliveira, & Mendes, 2005). The lighting quality can be 
improved by utilizing blind control and electric lighting power control 
(Oldewurtel, Sturzenegger, & Morari, 2013). In general, based on the 
available sensors, the output vector y can include not only the temper
ature measurements but also CO2 concentrations, humidities, illumi
nance, and others. 

2.2.2. Minimization of cost 
The minimization of the energy use in a building does not necessarily 

result in the minimization of the related operational costs. If for 
example, the energy prices are volatile, as it is the case for electricity, it 
may be worth to shift the load and store thermal energy during cheap 
periods for its later use when the energy prices are higher. This thermal 
energy can be stored in buffer tanks, geothermal borefields or by using 
the building’s own thermal inertia. An economic objective can be 
formulated by transforming the energy use into monetary cost by means 
of a variable cost factor, (i.e., the term κk in Eq. (2)) which can be 
considered as a forecasted disturbance to the model. 

The variability fuel prices (gas, oil, and wood) can be neglected 
because their dynamics is relatively slow, making the cost factor quasi- 
constant over the prediction horizon. These cost factors could be 
updated offline in the formulation when the price has a substantial 
change. Nonetheless, times are changing for electricity prices. The 
minimization of the monetary cost is equal to the minimization of en
ergy in the cases where only electricity-based systems are used and the 
user has contracted a flat tariff. However, today, a wider variety of tariffs 
are being implemented with higher variability in both energy and peak 
demand prices. With the implementation of smart meters, even for the 
residential sector, it would be possible to access, e.g., hourly prices. 
Subsequently, using an economic objective has major potential if 
electricity-based supply systems such as heat pumps and chillers are 
used. The advantage of these objectives has been widely studied in the 
context of demand-response problems with real-time pricing (Avci, 
Erkoc, Rahmani, & Asfour, 2013; Bianchini, Casini, Vicino, & Zarrilli, 
2016a). It has been shown that economic optimization could be used to 
reduce the peak electricity demand (Oldewurtel, Ulbig, Parisio, Ander
sson, & Morari, 2010b), or increase the stability, flexibility, and sus
tainability of the energy system, particularly in the face of growing 
intermittent renewable generation (Patteeuw, Henze, & Helsen, 2016; 
Qureshi & Jones, 2018). Examples of such a pricing-formulation are 
given by Bianchini, Casini, Vicino, and Zarrilli (2016b); Oldewurtel, 
Ulbig, Parisio, Andersson, and Morari (2010c); Vrettos, Lai, Oldewurtel, 
and Andersson (2013). A simulation study of different economic MPC 
formulations under commercial time-of-use tariffs concluded that mul
tiple MPC formulations could offer the same value for the user (in terms 
of utility bill cost) but different grid service capabilities such as load 
shifting (Cutsem, Kayal, Blum, & Pritoni, 2019b). 

2.2.3. Minimization of greenhouse gas emissions 
This objective can be chosen if the user is motivated to reduce the 

carbon footprint of the building HVAC system. In contrast to the eco
nomic objective, the cost factor is replaced by an emission factor on the 
used energy amount. The minimization of GHG is equal to the minimi
zation of energy in the cases where only conventional fossil energy 
sources are being used. The emissions for gas and oil boilers are pro
portional to the amount of combustible used. When electricity is sup
plied by a distributor who guarantees that it comes from the renewable 
electricity pool, the direct GHG emissions are zero. In this case, 

Table 3 
Selective summary of thermal comfort models used in MPC formulations.  

Reference Static 
model 

Adaptive 
model 

PMV Others 

Sturzenegger et al. (2013) • – – – 
Oldewurtel et al. (2013) • – – •

Feng, Chuang, Borrelli, and 
Bauman (2015) 

– • – – 

Maasoumy et al. (2014) – • – – 
Castilla et al. (2014, 2011) – – • – 
Freire, Oliveira, and Mendes 

(2008) 
– – • •
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minimization of GHG emissions is not possible. The emission factor 
differs from the cost factor when electricity-based components take the 
energy from a standard electricity supplier. The cost profiles usually do 
not coincide with the GHG emissions profile. The GHG emission factor 
varies with the distribution of the different generation system types 
active at the considered moment. These emission factors can be provided 
or estimated through generation schedules by the grid operators. Cases 
where this objective function is used, can be found in Knudsen and 
Petersen (2016); Vogler-Finck, Wisniewski, and Popovski (2018). 

2.2.4. Maximization of the share of renewable energy use 
In cases where the building has local RES, these terms can typically 

be added to the above formulations with a negative cost/emission factor, 
which would lead to their maximum usage. The formulation that max
imizes the share of RES (or minimizes the share of fossil fuels) uses 
different weighting factors on different available energy sources. 
Moreover, when sufficiently large thermal energy storage capacity and 
accurate controller models are available, the MPC can harness the power 
of the predictions to maximize the use of intermittent renewable systems 
by storing the energy for later use into thermal mass or batteries. The 
abstract factor κk = 1 − Rk in Eq. (2) is used as the time-varying factor, 
where Rk represents the share of renewable energy in the load at the 
moment k. Some examples that use this objective function are treated in 
Vandermeulen, Vandeplas, Patteeuw, Sourbron, and Helsen (2017); 
Vogler-Finck, Pedersen, Popovski, and Wisniewski (2017) 

2.2.5. Optimization of multiple generation and storage components 
Another prominent set of multi-term objectives is optimizing the use 

of multiple energy generation (eg., PV cells) and energy storage com
ponents. The objective here is to increase the energy efficiency and 
flexibility of the building stock by load shifting, the energy exchange 
between multiple buildings or storage units, and by prioritizing the use 
of cheapest, cleanest, or most efficient energy sources. For instance, MPC 
formulation increasing the flexibility of a commercial building with 
thermal energy storage (TES) in demand-side management (DSM) pro
grams was evaluated in Cao, Du, and Soleymanzadeh (2019). Authors in 
Tarragona, Fernández, and de Gracia (2020) apply MPC in a heating 
system with TES, PV panels, and electricity grid supply and study the 
impact of different MPC settings on the energy cost performance. MPC 
formulation for extremely large central cooling systems with TES was 
introduced in Shan, Fan, and Wang (2019). Kuboth, Heberle, 
König-Haagen, and Brüggemann (2019) formulate economic MPC for a 
residential building with a coupling of thermal and electric supply by an 
air source heat pump. A simulation study of MPC formulation for a 
residential house leveraging local PV microgeneration was presented in 
Godina, Rodrigues, Pouresmaeil, and Catalão (2018). MPC formulation 
optimizing the coefficient of performance (COP) of a hybrid geothermal 
system with a borefield heat exchanger was presented in. Cupeiro Fig
ueroa, Picard, and Helsen (2020). in Zhao, Lu, Yan, and Wang (2015), an 
MPC formulation with multiple energy generation and storage compo
nents was tested on a real building. 

2.2.6. Optimization of large-scale systems 
In the case of large-scale commercial HVAC systems, the imple

mentation of MPC as a single monolithic optimization problem is not 
practical nor desirable given real-time operating requirements (Raw
lings et al., 2018). In these situations, decomposing the problem into a 
set of smaller problems presents a viable and practical alternative. A 
hierarchical decomposition of economic MPC in large-scale HVAC sys
tems with district heating/cooling networks was applied and tested on a 
500-zone campus in Rawlings et al. (2018). The energy hub concept 
allows optimizing a set of buildings in a cooperative manner, providing 
opportunities for load shifting, and sharing of costly energy generation 
and storage components, such as heat pumps, boilers, batteries (Dari
vianakis, Georghiou, Smith, & Lygeros, 2015). 

2.2.7. Long-term objectives 
In general, it is difficult to incorporate the long-term dynamic effects 

of the system which exceed the defined prediction horizon N. Such 
problems arise, for example, in MPC applications with seasonal energy 
storage units, like underground thermal energy storage (UTES), large- 
scale storage tanks, etc. However, to avoid thermal depletion of these 
storage systems, a thermal balance should be ensured on the long-term. 
To this end, some authors (Jorissen, 2018; Verhelst, 2012) have 
included a long-term cost in the objective function, that penalizes the 
use of the seasonal storage system at specific moments, thereby inviting 
the system to use the secondary production unit. However, this 
long-term cost could move from penalization objectives within the ho
rizon towards shadow costs over a longer horizon. Since the accuracy of 
the predictions would decay over time, historical data may be needed to 
fit the predictions over longer horizons. 

2.2.8. Design and tuning factors 
In MPC there are several important setup and tuning factors, which 

can be considered as hyperparameters with a strong influence on the 
overall performance of the system. We summarize them in the following 
list: 

Weighting factors Q: give the preferences to the multiple objectives 
to be penalized in the objective function. 
Sampling period Ts: is the time interval in which the computed 
control actions remain constant, and the choice of it depends on the 
time constant of the controlled system. 
Prediction horizon N: N are here the number of time steps and hence 
N Ts defines the length of a time window for which MPC computes 
the predictions given by model (1b) and enforces the system 
behavior desired by the objective function. 
Control horizon Nc: Nc ≤N represents the number of time steps for 
which MPC computes the optimal control actions which minimize 
the given objective function. Hence the length of an optimized time 
window is given by Nc Ts. 

Fig. 3 provides a conceptual example of the characteristic MPC 
behavior for a building with a highlighted summary of design and tuning 
factors. 

Weighting factors are usually determined based on magnitudes of the 
penalized signals, while the other parameters should be set up based on 
the dynamics of the controlled system. The practical rule is that Ts 
should be large enough for computing, communicating, and imple
menting the next control signal, though small enough to control the 
system in a stable way. The general rule in control theory is to choose Ts 
such that there are at least 10 to 20 samples in the rise time T90 of the 
process step response. Buildings are in principle slow dynamic systems 
with Ts usually spanning from 15min to 180min. In control theory, N 
should be large enough to cover the settling time of the process step 
response. N for building control applications usually spans between 5h 
to 48h (Afram & Janabi-Sharifi, 2014b). Typically, the control horizon is 
chosen such that Nc ≤N and Nc ≥ 2. For many practical applications, the 
rule of thumb is to set Nc roughly to 20% of N. The advantage of Nc <N 
lies in reduced computational demands by having fewer decision vari
ables in the resulting optimization problem (Cagienard, Grieder, Kerri
gan, & Morari, 2004). The reason why Nc ≤N is often used in practice is 
that the effect of the computed control actions decreases with each step 
in the future, which means that only the first few computed control 
actions have a major impact on the trajectory of the controlled variables. 
Eq. (3) serves as an example of such an objective function where Nc <N. 
The number of optimized variables is decreased from nuN to nuNc which 
can significantly reduce the computational burden especially for prob
lems with many control inputs. 
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min
u0 ,…,uNc − 1

∑N− 1

k=0
‖ Qssk ‖

2
2 +

∑Nc − 1

k=0
Quκkuk (3) 

A common practical problem that can appear in poorly tuned MPC is 
an oscillatory behavior. If the weights are unbalanced and control 
constraints are not tight enough, the control actions can result in bang- 
bang control profiles, i.e., either idle (no energy) or deadbeat (full 
power) control actions. These oscillations can be corrected by properly 
balancing the weighting terms, e.g., based on the magnitudes and ranges 
of the penalized variables, or by introducing the rate of change or slew 
rate constraints on control inputs (Cigler et al., 2013b). Definitions and a 
discussion about different types of constraints that can be used for 
tuning the performance of MPC are given in Section 2.3. 

Further reading with detailed overviews, comparisons, and strategies 
for selection of an appropriate objective function and tuning parameters 
for MPC-based building control can be found, e.g. in Afram and Jana
bi-Sharifi (2014b); O’Dwyer et al. (2017); Rincón, Santoro, and Men
doza (2016); Serale et al. (2018). Please note that different 
mathematical formulations of the objective function can lead to 
different MPC problem classes with varying solution complexity and 
computational demands, which is further discussed in Section 5. 

2.3. Constraints used in building control 

MPC can handle a wide variety of constraints on state, input or 
output variables (Maciejowski, 2002). In general, there are two types of 
constraints: inequality (control inputs range, comfort zones, etc.) and 
equality (building model dynamics, rate limits, etc.) constraints. Hard 
constraints are those for which satisfaction is mandatory. An example of 
such constraints is the state update equation given by the equality 
constraint (1b), or control action bounds (4), which need to be satisfied 
at every time instant for the whole prediction horizon. 

u ≤ uk ≤ u (4)  

Soft constraints, on the other hand, are those for which violations can 
occur. They are usually relaxed by slack variables sk that are added to 
and penalized in the objective function (1a). Soft constraints commonly 
used in building control are thermal comfort zone inequality constraints 
given by (5), defined by upper yk and lower bounds yk on the controlled 
variable yk. For these types of constraints, the softening may be neces
sary to avoid infeasibility of the optimization problem during the time 

periods when the comfort constraints will be violated, as can happen in 
practical implementation. In general, soft constraints are preferable due 
to numerical reasons that guarantee the feasibility of the resulting 
optimization problem. 

yk − sk ≤ yk ≤ yk + sk (5)  

Another type of constraints consist of time-varying constraints, which in 
contrast to constant constraints, vary in time. Eq. (5) represents such 
constraints because comfort boundaries are defined as time-varying 
parameters yk and yk. Slew rate constraints penalize the rate of change 
of certain variables, for example Eq. (6) limits the one-step difference of 
the control variable uk. This type of constraint is useful for avoiding 
overshooting and peak behavior. 

Δuk = uk − uk− 1 (6a)  

Δu ≤ Δuk ≤ Δu (6b) 

Move blocking constraints represent a formulation strategy for 
decreasing the computational burden by reducing the number of deci
sion variables of the resulting optimization problem, as discussed in the 
Section 2.2.8. The basic idea is based on reducing the degrees of freedom 
by fixing the control variables or its derivatives to be constant over a 
defined time-period (Cagienard et al., 2004). See for example Eq. (7). 

uk =

{
uk if k ≤ Nc
uNc otherwise , k ∈ NN− 1

0 (7)  

Terminal constraints penalize the last predicted state to stay within a 
given terminal region: xN ∈ 𝒳N. They are usually used for enforcing the 

Fig. 3. Characteristic features and illustrated behavior of MPC for building temperature control.  

Table 4 
Summary of constraints types used in MPC for buildings, inspired by Serale et al. 
(2018).  

Form Violations Time Math Variables Meaning 

Inequality Soft Varying Linear States Model 
dynamics 

Equality Hard Constant Nonlinear Outputs Ranges    
Mixed- 
integer 

Inputs Slew rate      

Move 
blocking      
Terminal  
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stability and recursive feasibility of the OP (1) with respect to the 
controller model. 

From a practical perspective in building control applications, the 
constraints are most commonly used to enforce selected variables to stay 
within given ranges, e.g., heat fluxes and room temperatures (Picard, 
Drgoňa, Kvasnica, & Helsen, 2017), supply air temperatures (Rehrl & 
Horn, 2011), airflow rates (Huang, 2011), and other HVAC variables 
(Afram & Janabi-Sharifi, 2014b), or for tuning the MPC performance 
via, e.g., slew rate constraints on control variables (Cigler et al., 2013b). 
From a mathematical point of view, the constraints can be further 
classified as linear, nonlinear or mixed-integer. The latter two can lead 
to better performance but also result in an increased complexity of the 
optimization problem. Table 4 compactly summarizes the constraint 
types discussed in this section. The influence of the constraints on the 
type and complexity of the OP is discussed in Section 5 in more detail. 

3. Building models for control 

The main bottleneck in practical implementation of MPC is the 
controller model development (Cigler et al., 2013a). Naturally, the 
quality of the MPC solution relies on the model accuracy, but also the 
overall MPC implementation is affected by the chosen modeling 
approach in a number of ways. Efficient optimization algorithms utilize 
specific model characteristics, like linearity, continuity, or known de
rivatives. However, the phenomena and processes occurring in buildings 
are often nonlinear and discontinuous, and complex physical models or 
advanced data-driven models are required to model such processes 
accurately. On the other hand, more complex models increase the 
overall computational demand of MPC, not only by increased simulation 
time but also because they are not suitable for efficient optimization 
algorithms and gradient-free algorithms have to be used instead. 
Therefore, a sound trade-off between the model accuracy and simplicity 
is required. This section provides an overview of the building model 
types, three modeling paradigms used in building modeling, as well as 
practical aspects of building modeling. 

3.1. Building model types 

This section elaborates on individual components of a generic 
building model structure, as shown in Fig. 4, and summarized by hybrid 
differential algebraic equations (DAE) with continuous and discrete time 
dynamics (1b)–(1d). These components are the building envelope, 
HVAC system, sources of disturbances such as weather and occupancy, 
and the peripherals represented by sensors and actuators. 

3.1.1. Envelope 
A building envelope consists of the external an internal walls, roofs, 

windows, ground floors, and other partitions separating the indoor 
environment from the outdoor environment, or two indoor thermal 
zones. In general, the building envelope model should take into account 

the heat transfer through conduction, radiation (especially solar gains), 
and convection (especially air infiltration). The conductive heat transfer 
depends on the thermal resistance of the partition and on its thermal 
mass. Heavier materials, e.g. brick or concrete, have higher thermal 
mass (inertia) and can absorb more energy, effectively working as a 
thermal buffer between the indoor and outdoor environments. This 
buffer can be utilized in MPC to shift energy use. Lighter materials, e.g. 
wood or thermal insulations, have low thermal mass resulting in a lower 
potential for accumulating energy. On the other hand, lighter materials 
have lower conductivity and therefore increase the thermal resistance of 
the partition. The radiative heat transfer from solar gains has to be taken 
into account in the case of transparent partitions (windows, curtain 
walls), but is often considered also for opaque partitions (heating 
building thermal mass). The transparent partitions have low thermal 
mass and are often modeled using the steady state heat equation. 

The conduction in building envelopes is typically modeled using the 
1D transient heat equation (Clarke, 2001; Hensen & Lamberts, 2019), 
converted to a system of ordinary differential equations using for 
example the method-of-lines, whereas the radiation and convection 
modeling approaches vary extensively. For example the radiative heat 
transfer can be modeled with anything from a simple solar heat gain 
coefficient to a complex dynamic shading model. In contrast, 
data-driven models typically do not consider the building envelope 
directly. Instead, they model indoor environment as a function of indoor 
and outdoor disturbances, and therefore the effect of building envelope 
is taken into account implicitly (Arendt, Jradi, Shaker, & Veje, 2018a). 

3.1.2. HVAC 
Building HVAC systems vary greatly in designs, however some of the 

commonly used components are as follows: boilers, heat pumps, chillers, 
fans, filters, pumps, dampers, valves, heat exchangers, diffusers, ducts, 
and pipes. There is a vast spectrum of controls regulating the fluid flow, 
supply temperatures, and indoor air conditions. 

HVAC components and controls coupled to building envelope models 
are challenging to simulate while maintaining reasonable computational 
demands (Jorissen, Wetter, & Helsen, 2018d). Fans and pumps have 
nonlinear characteristics (Wetter, 2013), which are coupled to nonlinear 
relations of mass flow rates and pressure differences in the system 
caused by active components such as valves and dampers and static 
components such as ducts and pipes. Excluding computationally 
expensive modeling approaches such as Computational Fluid Dynamics 
(CFD) that may be prohibitive from an MPC point of view, the final 
model structure highly depends on phenomena and processes the model 
has to cover. For example, in some cases MPC does not control all HVAC 
components directly and instead controls high-level setpoints. In such 
cases the model may have to include some embedded controls, which 
also can be nonlinear or even discrete (e.g. on/off), or assume ideal, 
instantaneous control. 

3.1.3. Disturbances 
Disturbances refer to every non-controllable input that has an in

fluence on the building system. Some examples are weather conditions 
(e.g. outdoor temperature, solar radiation), internal heat gains (e.g. 
occupancy, equipment), and electricity prices. The weather conditions 
are simply inputs to the building simulation and so just an accurate 
forecast is required (no feedback). The easiest way to obtain it is from 
some online weather forecast service (many free and commercial are 
available), typically providing forecasts based on advanced climate 
models. A potential drawback of this approach is that the online weather 
forecast is typically generated based on data from climate stations which 
can be far from the considered building, and may not represent the 
actual weather conditions for the building. Alternatively, machine 
learning models can be employed and trained on the data collected from 
the building site, if available. The machine learning models can be 
especially accurate for short-term predictions, up to several hours ahead 
(Wollsen & Jørgensen, 2015), which is the range typically relevant for Fig. 4. Generic structure of a building model.  
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MPC in buildings. 
The most straightforward approach for including weather forecast in 

the prediction model of MPC is based on a data-driven linear dynamics 
model of the weather variables (Oldewurtel et al., 2012; Prívara, ̌Siroký, 
Ferkl, & Cigler, 2011), representing a cost-effective alternative to so
phisticated simulation models or costly weather stations (Hedegaard, 
Pedersen, Knudsen, & Petersen, 2018). However, in some cases, linear 
dynamics might not be sufficiently accurate and can result in hampering 
the performance of the predictive controller (Kim, Witmer, Brownson, & 
Braun, 2014). In case of inaccurate disturbance models, stochastic 
(Drgoňa, Kvasnica, Klaučo, & Fikar, 2013; Parisio, Fabietti, Molinari, 
Varagnolo, & Johansson, 2014) or adaptive (Mazar & Rezaeizadeh, 
2020) data-driven methods have been applied for mitigating the un
certainties associated with the weather forecast errors. For instance, 
(Liu, Paritosh, Awalgaonkar, Bilionis, & Karava, 2018) use a probabi
listic time-series autoregressive model to quantify solar irradiance un
certainty. However, the disadvantage of data-driven correction methods 
is that the underlying disturbance distributions are often poorly repre
sented based purely on historical data. Authors in Darivianakis, Geor
ghiou, Smith, and Lygeros (2019) address this issue by exploiting the 
historical data to construct families of distributions based on real 
weather data, and construct a first-order model for weather prediction 
error. 

The indoor occupancy can be modeled either as the heat gain profile, 
presence (room empty vs. at least one person in the room), occupant 
count, or occupant count and behavior. The latter approach is the most 
accurate, since building occupants not only generate heat, but also 
interact with the building, sometimes taking actions to adjust the indoor 
environment (window opening, overriding default setpoints). However 
currently, the state-of-the-art occupancy behavior models (e.g. obFMU 
Hong, Sun, Chen, Taylor-Lange, & Yan, 2016 or StROBe Baetens & 
Saelens, 2016) are computationally too expensive to be included in 
MPC. Therefore, less computationally demanding approaches are typi
cally adopted in the context of MPC, for example models based on 
heuristics (e.g. anticipated schedules) or machine learning. Reviews in 
Balvedi, Ghisi, and Lamberts (2018); Yan et al. (2015) provide in-depth 
discussion on current methods of monitoring and modeling occupant 
behavior suitable for real-time control applications. For more compre
hensive and systematic literature review of models for occupant 
behavior we refer the reader to (Carlucci et al., 2020). One of the pop
ular data-drive models for the occupancy behavior are Markov chains 
processes, providing systematic framework for evaluating accurate 
scenarios for human-building interaction suitable for integration in 
scenario-based MPC formulations (Johnson, Starke, Abdelaziz, Jackson, 
& Tolbert, 2014). Sangogboye et al. (2017) presented data-driven oc
cupancy prediction methods with average errors of 7% and 3% for 
passive infrared (PIR) sensor and stereovision camera training data, 
respectively. Peng, Rysanek, Nagy, and Schlüter (2018) incorporated 
data-driven occupancy models to optimize rule-based control in a real 
building and reported 7–52% energy savings, depending on the room 
type. Capozzoli, Piscitelli, Gorrino, Ballarini, and Corrado (2017) re
ported 14% energy savings through a pattern-recognition analysis of 
occupants’ displacement. The most accurate occupancy predictions are 
yielded by models trained on dedicated-sensor data (PIR, cameras), 
however occupancy can be also predicted from other sensors, such as 
CO2 or plug power (De Coninck & Helsen, 2016; Jorissen et al., 2017; 
Sangogboye et al., 2017). 

Purely theoretical studies of the building dynamics using detailed 
white-box models can often include dozens sometimes up to a hundred 
of disturbance signals (Picard et al., 2017). However, for most practical 
applications, it is sufficient to take into account only a small subset of 
dynamically dominant disturbances. Authors in Drgoňa et al. (2018) 
used feature extraction based on principal component analysis (PCA) to 
select the most significant disturbances for residential building control, 
selecting the ambient temperature and solar irradiation. Similarly, 
(Lambrichts, 2020) studied the impact of the weather and occupancy 

uncertainties on MPC’s performance, finding that uncertainties associ
ated with the forecast of ambient temperature, solar irradiance, and 
internal heat gains have the largest impact on the performance of the 
predictive controller. Some intuition on the selection of dynamically 
dominant disturbances in specific cases can be derived from the studies 
above. However, systematic theoretical studies and practical guidelines 
for selecting dominant disturbances in a wide range of building model 
types, climate zones, and types of use are lacking in the current 
literature. 

3.2. Modeling paradigms 

This section provides an introduction to the three modeling para
digms used in building modeling and discusses their applicability to 
MPC. For a more extensive review on the modeling techniques used in 
HVAC control we refer to Afroz, Shafiullah, Urmee, and Higgins (2018). 
Additionally, a broad comparative study between the different modeling 
paradigms can be found in Boodi, Beddiar, Benamour, Amirat, and 
Benbouzid (2018). 

3.2.1. White-box 
White-box models describe the building dynamics from physical 

knowledge. They are based on the principles of heat transfer and con
servation of energy and mass. The parameters of these models are 
physically meaningful and are obtained from the building technical 
documentation regarding geometry, material properties, and equipment 
specifications. For a detailed description of the equations that are 
considered in this modeling approach we refer to Jorissen et al. (2018c). 

The main challenge in white-box modeling is the significant effort 
required to describe the building properties. Despite the advances in 
Building Information Modeling (BIM), this process is still largely manual 
and tedious (Gao, Koch, & Wu, 2019). The resulting model typically 
includes hundreds or, more likely, thousands of parameters. Hence, 
there are many potential sources of model inaccuracy, making the 
process of parameter setup difficult. With available measurement data, 
calibration may be used to tune the selected parameters. However, a 
model calibrated based on the overall yearly energy use might be still 
inaccurate for predicting performance on the individual zone level 
(Arendt et al., 2018a) or at smaller timescales. Moreover, the large 
number of equations and their nonlinear nature makes the imple
mentation of white-box MPC more difficult. 

On the other hand, when the parameters of the white-box models are 
accurate, their physical properties endorse them with highly reliable 
results. They can also track the evolution of physically meaningful 
variables. As a consequence, they are often considered suitable for fault 
detection (Henze, 2013) and building monitoring systems (Jradi et al., 
2018). In addition, detailed building envelope and HVAC models can 
also enable control of the building at a more granular level, since the 
optimization variables may have a direct translation into the signals 
used in the actuators. This direct control skips the development of any 
sub-controller, which can be a cumbersome task, and it also increases 
the overall MPC performance due to direct assessment of HVAC effi
ciencies. For these reasons, research has been conducted to facilitate the 
implementation of these models into optimal control. As a result, tool
chains have been developed to define white-box models for buildings 
and couple them with or translate them into an optimization problem. 
Coupling has traditionally taken the form of using a building energy 
simulation program within iterations of a numerical optimization 
technique, such as a scheme that couples EnergyPlus and a particle 
swarm optimization algorithm (Corbin, Henze, & May-Ostendorp, 2012) 
or one that couples TRNSYS and a genetic algorithm (Coffey, Haghighat, 
Morofsky, & Kutrowski, 2010). However, these schemes can be 
computationally expensive, especially as the number of optimization 
variables grows and complexity of the model increases, and prone to 
convergence issues (Wetter, 2004; Wetter & Wright, 2004). Wetter, 
Bonvini, and Nouidui (2016) argued that equation-based languages, 
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such as Modelica, can address some of the limitations of traditional 
building energy modeling software tools, such as EnergyPlus, specif
ically by (a) enabling symbolical manipulation of model equations and 
by (b) separating the model definition from the numerical solver. For 
instance, some of the most prominent Modelica libraries for building 
modeling are Buildings (Wetter et al., 2014), IDEAS (Baetens et al., 
2015), AixLib Müller, Lauster, Constantin, Fuchs, and Remmen (2016), 
and BuildingSystems (Nytsch-Geusen et al., 2016). Jorissen et al. 
(2018a) implemented and validated an automated toolbox for auto
matically parsing white-box models written in Modelica into MPC, 
showing the feasibility of this approach. A detailed overview of the 
available software tools is presented in Section 8.1.1. 

3.2.2. Gray-box 
The gray-box category represents a wide spectrum of models 

encompassing simplified physical relationships, but also requiring 
parameter estimation based on measured data. Usually, the physics in 
gray-box models is simplified by means of state space dimensionality 
reduction or linearization. A typical concept in gray-box modeling is the 
RC analogy that defines any model by its affinity with a resistor- 
capacitor electrical circuit as the one shown in Fig. 5. This very simple 
example represents the model of a building envelope where Cz is the 
thermal capacitance of the zone which can be seen as the capacity of a 
zone to store thermal energy. The thermal resistor Rw represents the 
building walls that separate the ambient temperature Ta from the zone 
temperature state Tz. Finally, Q̇h and gAQ̇Sun represent the thermal 
power from the building heating system and the solar irradiation, 
respectively. From this scheme it is possible to derive the equations that 
define the simplified physics of the system. For a one state RC model as 
the one shown in the example, the only equation defining the model is 
shown in Eq. 8. In this way, the model can be represented using state- 
space matrices by carefully grouping the parameters in the elements 
of the matrices for the specified inputs and outputs. An alternative 
formulation, called inverse comprehensive room transfer functions 
(iCRTF), is derived from discretization of the state space formulation 
and creation of linear transfer functions, whose coefficients can be 
identified based on regression (Armstrong, Leeb, & Norford, 2006). Such 
an approach has been used in simulation (Blum, Xu, & Norford, 2016; 
Zakula, Armstrong, & Norford, 2014) and experimental (Gayeski, 
Armstrong, & Norford, 2012) studies. 

Cz
dTz

dt
=

Ta − Tz

Rw
+ Q̇h + gAQ̇Sun (8) 

For buildings, model order reduction has proven to be able to 
maintain the same level of accuracy even when strong simplifications 
are carried out (Picard et al., 2017). This enables the use of more suitable 
models for optimization without any expected loss of controller model 
performance. It is often argued that the gray-box approach can address 
the limitations of both white- and black-box models. First, since some 
knowledge about the modeled system is already hardcoded in the model 
equations, gray-box models are more likely to stay reliable outside the 
calibration range than black-box models (Afroz et al., 2018), they 
require less data for calibration (Arendt et al., 2018a), and there is a 

lower risk of overfitting than in black-box models. Second, the equations 
used in a gray-box model can be more easily adapted to the needs of 
MPC solvers, e.g. by ensuring continuity, linearity or differentiability. 
Finally, gray-box models are found to be easily portable between similar 
systems. For instance, (Reynders, Diriken, & Saelens, 2014) argued that 
only few model types are required to represent the majority of buildings. 
Verhelst (2012) showed low-order models provide similar accuracy to 
higher order models for both building and borehole heat exchanger 
modeling. It was concluded that the quality of the measured data has 
higher impact on the accuracy of the model than the model structure 
itself. A direct comparison of the gray- and white-box approaches for 
their application in MPC can be found in Picard et al. (2016). In this case, 
the white-box MPC resulted in a better thermal comfort and used only 
half of the energy used by the gray-box MPC. 

The main challenge related to gray-box modeling is the need for a 
robust parameter estimation method. The approaches can be divided 
into batch and online estimation. The batch estimation is an offline 
process in which model parameters are found by minimization of the 
model error over a specific time period. The estimation can be per
formed only once or the models can be periodically recalibrated based 
on more recent data. Typically, the batch estimation leads to a non- 
convex optimization problem with many local and flat optima as 
shown by Arendt, Jradi, Wetter, and Veje (2018b). The complexity of the 
objective function can also bring the parameters to the constraint 
boundaries. Therefore, there is a need for a global optimization strategy, 
either by using evolutionary methods as in Arendt et al. (2018b) or 
multi-start methods as in De Coninck et al. (2016). In addition, an expert 
involvement and cross-validation of the parameter estimation results is 
advised (Verhelst, 2012). The online estimation is usually based on 
methods related to recursive Bayesian estimation, such as sequential 
Monte Carlo Rouchier, Jiménez, and Castaño (2019) or Kalman filtering 
(Shi & O’Brien, 2019). Online parameter estimation forms the basis of 
indirect adaptive MPC approaches, which are covered in more detail in 
Section 7.4. 

Finally, unlike many data-driven models which usually perform 
better when trained on more data, gray-box models often require special 
care regarding the data chosen for training. For example, parameter 
estimation in an RC (resistor-capacitor) thermal network may lead to an 
overestimated thermal mass if the training period is too long and the 
gray-box model cannot find a good fit for the entire period (Arendt et al., 
2018a). Blum et al. (2019b) found that the optimal training period 
length depends on the MPC horizon, suggesting that a periodic 
re-callibration is necessary. 

3.2.3. Black-box 
Black-box models learn the dynamics of the buildings from the 

measured data without making any prior assumptions regarding any 
physical relationships. The main advantages of the black-box approach 
compared to gray- and white-box are that they usually lead to lower 
development cost and that any signal can be used as an input or output, 
as there are no physics involved. On the other hand, black-box models 
require more training data than gray-box models (Afroz et al., 2018) and 
are not reliable outside the training range (Afram & Janabi-Sharifi, 
2014a). 

Linear models The simplest and most intuitive black-box models are 
the parametric linear models. The forecasts of these models are linear in 
the observations and the uncertainty increases with the prediction ho
rizon. The models that belong to this group are Auto Regressive (AR), 
Auto Regressive with eXogenous inputs (ARX), Auto Regressive with 
Moving average or Box-Jenkins (ARMA or BJ), Auto Regressive with 
Moving Average and eXogenous inputs (ARMAX) and Output Error 
(OE). All these models can be transformed into the general state space 
formulation. A common alternative for estimating the state space pa
rameters is the Subspace-based State Space System IDentification (4SID) 
(Van Overschee & De Moor, 1996). With this methodology, the state 
sequence and its order are first calculated, and later the state space 

Fig. 5. Example of an RC building envelope model.  
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matrices are estimated just by solving a least squares problem. A com
parison between subspace identification and an ARMAX model for their 
use within the MPC of a large building was made in Ferkl and Široký 
(2010). The authors concluded that subspace identification is faster, 
easier to implement and more accurate. This conclusion is corroborated 
by Prívara et al. (2011). Finally, a number of MPC relevant identification 
methods exist, which aim to minimize multi-step ahead prediction error 
in relation to the MPC optimization horizon, such as the MRI+PLS 
method introduced by Prívara, Cigler, Váňa, Oldewurtel, and Žáčceková 
(2013b). 

Parametric nonlinear models The parametric nonlinear models pro
vide a nonlinear relation between the inputs and outputs of the model 
and have a non-monotonous increase of their uncertainty over the pre
diction period. Artificial Neural Networks (ANN) (Hagan, Demuth, & 
Beale, 1996; Jiang & Wang, 1999; Siegelmann & Sontag, 1995) are 
probably the most renowned models of this type. Some building 
implementation examples of these models can be found in Dodier and 
Henze (2004); Huang, Chen, and Hu (2015); Kusiak and Xu (2012); 
Ruano, Crispim, Conceicao, and Lucio (2006); Tang and Wang (2001). 
Some researchers have shown that these models perform better and 
more accurately than physical models (Arendt et al., 2018a; Ruano et al., 
2006) and other forms of statistical models (Mustafaraj, Lowry, & Chen, 
2011). However, Huang, Chen, and Hu (2014) state that the application 
of ANN for model predictive control on real commercial buildings is still 
challenging because it has a complicated structure, which results in 
non-convex optimization problems that are hard to solve. The latest 
advances in convexification of neural network modeling may provide a 
remedy. The use of convex ANN in optimal control of the building HVAC 
system demonstrated a performance improvement compared with 
classical linear models (Chen, Shi, & Zhang, 2018). 

Nonparametric nonlinear models The nonparametric models, like k- 
Nearest Neighbors (kNN), Support Vector Machines (SVM), Decision 
trees (DT), and Random Forest (RF), do not make strong assumptions 
about the model structure. Therefore, these models can learn generic 
function mapping between inputs and outputs. The main drawbacks of 
these modeling approaches are the larger data requirements and the 
higher risk of overfitting. Control-oriented building models based on 
regression trees and random forests have been presented in Jain, Behl, 
and Mangharam (2017a); Jain, Smarra, and Mangharam (2017b); 
Smarra et al. (2018). 

Gaussian Processes (GP) are particularly powerful nonparametric 
stochastic models, which has been recently used to model building dy
namics. They capture the model uncertainty directly, providing a dis
tribution of the predictions of the model, and enable the use of prior 
knowledge in the system identification process. Moreover, a comparison 
of four data-driven methods for building energy prediction concluded 
that GP are accurate and highly flexible (Zhang, O’Neill, Dong, & 
Augenbroe, 2015). Short- and long- term building energy consumption 
forecasts using GP were investigated in Noh and Rajagopal (2013). More 
examples of GP-based models in the building modeling context can be 
found in Abdel-Aziz and Koutsoukos (2017); Ahn, Kim, Kim, Park, and 
Kim (2015); Jain, Nghiem, Morari, and Mangharam (2018); Nghiem and 
Jones (2017). 

3.3. Practical aspects of building modeling 

3.3.1. Data acquisition and processing 
Special care should be taken with data sets used for training data- 

driven models because poor data may not capture the main dynamics 
of the system. The data can be obtained from a detailed model or from 
actual measurements. The first approach is interesting for research 
purposes since different types of excitation signals can be applied at no 
cost. The drawback is that a reliable model is required. The second 
approach is more suitable for real applications. However, when using 
real measurements, the input excitations for obtaining rich training data 
are limited by the technical and operational constraints of the available 

HVAC systems. 
Design of Experiments assesses which excitations provide the most 

useful data. When the objective is to build a model suitable for control, 
the generated inputs do not need to cover the entire frequency domain, 
but rather some control-relevant selection. Therefore, the sampling time 
should be chosen based on the time constants of the building, with a 
typical range for building systems between 5min to 60min. In system 
identification of building systems, usually Pseudo Random Binary Sig
nals (PRBS) and normal operation (business as usual) signals are used to 
generate the training data sets. The former is probably the most 
appropriate signal to provide rich data (Ljung, 1999), while the latter is 
used to avoid the extra costs of the experiments, as well as the risks of 
discomfort and the need for technical support. Case studies of building 
system identification using PRBS as input signals are (Bacher & Madsen, 
2011; Hazyuk, Ghiaus, & Penhouet, 2012; Madsen & Holst, 1995; Prí
vara et al., 2011; Royer, Thil, Talbert, & Polit, 2014), while examples of 
cases that used normal operation are (Berthou, Stabat, Salvazet, & 
Marchio, 2014; Ferkl & Široký, 2010; Reynders et al., 2014; Verhelst, 
2012). Although a lot of system identification studies have already used 
data from normal operation, this data is usually insufficiently informa
tive to reliably estimate a model (Prívara et al., 2013). This is because 
during normal operation only a small part of the possible HVAC range is 
used. Consequently, the other operating conditions remain unexplored 
in the data and cannot be learned. Jain et al. (2018) proposed a method 
for optimal experiment design based on maximizing information gain or 
variance with a faster learning rate than using uniform random sampling 
or PRBS. This method reduced the required training period up to 50%, 
but was tailored for black-box Gaussian Processes. 

There exist different indicators to check the quality of the obtained 
data. The most commonly used are the signal-to-noise ratio. This ratio is 
proportional to the amplitude of the response of the output to the excited 
input, and inversely proportional to the amplitude of the response to 
modeled disturbances and to measurement noise. The measurement 
length is also important and it should be at least larger than the largest 
time constant of the system. The minimum sampling time period should 
be defined by the Nyquist criterion, but in practice, a smaller sampling 
time is advised. Obviously, missing data-points should be avoided, 
although it is a common issue in building management systems. Filtering 
and re-sampling the data can not only overcome this threat, but can also 
help in the modeling process by smoothing the data to get rid of the 
measurement errors and other fast dynamics that may be blurring the 
main dynamics. 

3.3.2. Model validation 
The main purpose of the validation process is to ensure that the 

identified model is reliable not only within the training conditions, but 
also beyond. For this purpose, the data is normally divided into two sets: 
1) a training set and 2) a validation or test set. The training set is used to 
tune the parameters of the model, while the test set simulates the trained 
model to check whether it captures the real behavior of the building 
when using different data than that used in the training. 

There exist different statistical tests to validate a model. One 
example is the analysis of the residuals which are defined as the dif
ferences between the measurements and the outputs of the model given 
as ek = yk − mk. Here, ek, yk and mk are the residual, the model output 
and the measurement at time k, respectively. These residuals should be 
white-noise in the training data to ensure that all systematic dynamics 
are captured within the model. Any correlation in the residuals would 
indicate that the model can be improved further. Another option to test 
the performance of a model are the typical t-tests for checking the sig
nificance of the parameters, and the maximum likelihood tests for 
comparing the goodness of fit of two statistical models. 

Many statistical indicators exist, such as the n-step ahead prediction 
error, the Root Mean Square Error (RMSE), the Continuous Ranked 
Probability Score (CRPS), the Expected Error Percentage (EEP), the 
Coefficient of Variation (CV), the Mean Biased Error (MBE) or the R2 
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(also called coefficient of determination or fit). However, these in
dicators do not provide information about the control performance of 
the model, but instead about the simulation errors. Therefore, their 
interpretation has to be taken carefully. The statistical indicator choice 
depends on the desired highlights to put forward when analyzing the 
model. The RMSE, for instance, provides a symmetric and absolute score 
for model error over a period of time facilitating the comparison of 
different models. The CRPS is used for stochastic models and is defined 
as the mean root squared value of the difference between the cumulative 
distribution function of the forecast and the cumulative distribution 
function of the observations. The CRPS in probabilistic forecasting is the 
analogous key performance indicator to the RMSE in deterministic 
forecasting. In some cases, mainly for tuning purposes, it may be 
interesting to investigate the direction of the bias of the model. In such 
cases, metrics that indicate the direction of the bias like the MBE should 
be used. Alternatively, a box-plot with the n-step ahead prediction error 
can be used. Finally, the CV, EEP and R-squared indicators show relative 
values for the evaluation of the residuals. 

3.4. Concluding remarks of building modeling 

Modeling is one of the main bottlenecks for implementing MPC in 
buildings. White-, gray- and black-box modeling are three different 
paradigms used in practice. The choice of a particular paradigm mainly 
depends on the available resources and possibly on additional re
quirements, such as transferability between buildings and systems, high 
accuracy, smoothness (required by some optimization solvers), or reli
ability (generalization capabilities) (Fig. 6). If detailed technical docu
mentation and physics-based modeling expertise are available, then it 
may be preferable to follow the white-box approach, as it leads to reli
able and interpretable models with little requirements on the sensor data 
amount and quality (Afroz et al., 2018). On the other hand, if extensive 
reliable measurement data is available, the black-box approach provides 
models which are often more accurate and easily transferable to 
different buildings and systems, reducing the implementation time 
(Afroz et al., 2018). In industry, there is a trend towards data-driven 
modeling approaches as they can be more easily automated. Finally, if 
information about the building and HVAC design is available as well as 
some historical measurements, the gray-box approach may be the most 
convenient, as it shares many features of white- and black-box para
digms (Afroz et al., 2018). In any case, it is strongly recommended to 
carry out an exhaustive model validation to ensure good MPC 
performance. 

Table 5 shows some examples of building modeling applications for 
optimal control that have been classified by the building system size, 
real implementation, modeling paradigm, the excitation input signal in 
the training data, the training data period, the modeling tool used to 
estimate the model parameters, and the model complexity regarding the 
number of thermal zones and the number of states in the model. BaU 

stands for business as usual and refers to the standard operation of the 
building without any additional excitation. Finally, the hyphens indicate 
that the attribute does not apply to that type of model or that such 
characteristic is not specified in the reference. Notice that a more 
elaborate list of modeling tools is provided in Section 8. 

4. MPC algorithms and methods 

After building modeling and MPC problem formulation, designing 
and tuning the algorithmic implementation is the next step to take on the 
path towards real life operation of the building. This section sumarizes 
key algorithmic principles and methodologies which are being used to 
implement and solve MPC problems in practice. 

4.1. Receding horizon control 

Typically, the MPC algorithms are being implemented in closed-loop 
using the principle of receding horizon control (RHC), defined by Algo
rithm 1. Here, the prediction horizon N keeps being shifted forward, 
with the controller implementing only the first step of the computed 
control strategy and discarding the rest, as described in Step 3. The al
gorithm introduces feedback into the system in the first step of Algo
rithm 1, where, at each time step, it corrects the deviations of the 
prediction from reality by updating the initial conditions of the system 
with measurements or estimates of the system parameters. 

4.2. State estimation 

Successful application of MPC relies on accurate information about 
the state variables to be used by the controller model for predictions. 
However, in most of the building control applications, measuring all 
state variables is not possible and state estimation algorithms need to be 
used as an integral part of the MPC system. By definition, the state 
estimator is an algorithm that provides an estimate of the internal states 
of a real system, from the measurements of its inputs and outputs. There 
are many distinct state estimation algorithms. The suitability and per
formance of each depends on the type of the observed system, nature of 
the disturbances, and availability and accuracy of the prediction model. 
A comprehensive review of the different state estimators in the context 
of process control can be found in Ali, Hoang, Hussain, and Dochain 
(2015). 

The nature of the building’s dynamics allows us to use several as
sumptions to simplify the selection and design of the appropriate state 
estimator. First, the building envelope model can be accurately 
described by the linear dynamics (9): 

xk+1 = Axk + Buk + Edk + wk, (9a)  

yk = Cxk + Duk + vk, (9b) 

Fig. 6. Summary of the often cited features of the three modeling paradigms (based on Afram and Janabi-Sharifi (2014a); Afroz et al. (2018)).  
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where xk, uk and dk are states, inputs and disturbances at the k-th time 
step, respectively. The model is subject to uncertainties, where model 
uncertainty is represented by the process noise variable wk and mea
surement uncertainty is defined by the measurement noise vk. Second, 
the HVAC dynamics can be decoupled from the building envelope 
model. Third, the statistical properties of the measurement noise vk can 
be induced from the data, and the nature of model uncertainty described 
by the process noise wk can be induced from the model accuracy by 
verifying it with real data. Therefore, we focus only on the class of 
Bayesian estimators. They use the accurate mathematical model of the 
building and update its predictions by measurements in a feedback 
fashion with estimator gain L or by solving an online optimization 
problem. The probabilistic distributions of the process and measurement 
noise act as tuning factors, similarly to the weighting factors in the MPC 
objective function. The linear dynamics of the prediction model make 
linear Bayesian estimators the most straightforward choice. In partic
ular, the Kalman filter (KF) family, for which, based on the nature of the 
estimator gain L, computation can come in stationary (SKF) or time- 
varying (TVKF) form. A more advanced optimization-based algorithm 
is moving horizon estimation (MHE), which is an extension of the KF 
framework capable of handling constraints over an arbitrary estimation 
horizon. When the prediction model is nonlinear, classical linear esti
mators do not guarantee satisfactory performance. In such a case, one 
can use nonlinear estimators, most notably extended (EKF) or unscented 

(UKF) Kalman filters. 
For the complete picture, we provide here the equations for SKF as a 

most straightforward example. In general, a KF consists of two stages 
executed at every sampling instant: update and prediction. The predic
tion stage, represented by Eq. (10b), predicts the state at the next time 
step k + 1 based on the current state and the mathematical model of the 
building. In the update stage represented by Eq. (10a), the measurement 
ym

k is used to refine the predicted state estimate from the previous time 
step by introducing feedback into the system. 

x̂k|k = x̂k|k− 1 + L

(

ym
k − ŷk|k− 1

)

(10a)  

x̂k+1|k = Ax̂k|k + Buk + Edk (10b) 

A compact overview of selected works with a focus on state esti
mators applied to building control can be found in Table 6. For more 
technical details and performance comparison of the linear estimators 
using white-box building models, we refer the reader to Cupeiro, 
Drgoňa, Abdollahpouri, Picard, and Helsen (2018). 

4.3. Optimal control solution methods 

In general, optimal control problems (OCP) are traditionally solved 
via numerical methods which can be classified into three categories. For 

Table 5 
Sample of building modeling applications for optimal control categorized by building size, real implementation, modeling paradigm, modeling tool, input data, 
training period, number of zones and number of states.  

Ref. Building 
size [m2] 

Real 
impl. 

Modeling 
paradigm 

Modeling tool Input 
data 

Training 
period [days] 

#Zones #States 

May-Ostendorp, Henze, Corbin, 
Rajagopalan, and Felsmann 
(2011) 

1750 – White EnergyPlus (Crawley et al., 2001) – – 11 – 

Corbin et al. (2012) 46,320 – White EnergyPlus (Crawley et al., 2001) – – 15 – 
Drgoňa et al. (2020) 3760 – White Modelica Lin. (Picard et al., 2015) – – 12 700 
Picard and Helsen (2018) 10,135 – White Modelica Lin. (Picard et al., 2015) – – 10–20 941 
Jorissen and Helsen (2019) 150 – White Modelica (Baetens et al., 2015; Wetter 

et al., 2014) 
– – 9 330 

Jorissen et al. (2018b) 2232 – White Modelica (Baetens et al., 2015; Wetter 
et al., 2014) 

– – 27 1262 

Jorissen (2018) 10,000 – White Modelica (Baetens et al., 2015; Wetter 
et al., 2014) 

– – 32 1151 

Li et al. (2015) 6982 – White TRNSYS (Beckman et al., 1994) – – 10 – 
Bengea et al. (2011) – – Gray RLS MATLAB (Jiménez et al., 2008) Monte- 

Carlo 
2 5 15 

Sourbron et al. (2013b) 24 – Gray TRNSYS (Beckman et al., 1994) Step, 
BaUa 

4 1 2–4 

Bacher and Madsen (2011) 120 – Gray CTSM-R (Kristensen et al., 2004a) PRBS 6 1 2–4 
Reynders et al. (2014) 136 – Gray CTSM-R (Kristensen et al., 2004a) BaUa 7–28 1 3–5 
Madsen and Holst (1995) 60 – Gray CTSM-R (Kristensen et al., 2004a) PRBS 4 1 2 
De Coninck and Helsen (2016) 960 • Gray Modelica (Baetens et al., 2015), GB tbx ( 

De Coninck et al., 2016) 
BaU 18 1 4 

Arroyo, van der Heijde, Spiessens, 
and Helsen (2018) 

109 – Gray Modelica (Wetter et al., 2014), GB tbx (De 
Coninck et al., 2016) 

BaUa 14 9 23 

Blum and Wetter (2017) 37 – Gray Modelica (Wetter et al., 2014), MPCpy ( 
Blum & Wetter, 2017) 

BaUa 3 3 10 

Blum et al. (2019b) 48 – Gray Modelica (Wetter et al., 2014), MPCpy ( 
Blum & Wetter, 2017), ModestPy (Arendt 
et al., 2018b) 

BaUa 1–21 1 1–4 

Blum et al. (2016) 4982 – Gray MATLAB (The MathWorks, 2000) Pulsesa 5 18 72 
Li et al. (2015) 6982 • Black MATLAB (The MathWorks, 2000) BaUa 2 10  
Hilliard, Swan, Kavgic, Qin, and 

Lingras (2016) 
27,000 • Black Rand forest R (Liaw & Wiener, 2001) BaUa 6570 32 – 

Hilliard, Swan, and Qin (2017) 10,000 • Black Rand forest R (Liaw & Wiener, 2001) Pulses, 
BaUa 

– 40 – 

Ma, Qin, and Salsbury (2014) – • Black MATLAB (The MathWorks, 2000) PRBSa 9 5 – 
Royer et al. (2014) 515 – Black MATLAB (The MathWorks, 2000) PRBSa 24 5 – 
Kusiak and Xu (2012) – • Black Neural network – 22 4 – 
Mustafaraj et al. (2011) 260 – Black MATLAB (The MathWorks, 2000) BaU 5 1 – 
Smarra et al. (2018) 210 – Black Rand forest MATLAB (The MathWorks, 

2000) 
BaU 46 4 –  

a Simulation model used to generate training data. 
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more details, see (Binder et al., 2001; Kelly, 2017; Rao, 2019): Direct 
methods These approaches are based on the translation of the OCP (1) to 
the corresponding optimization problem (OP) and solution via optimi
zation algorithms. Their efficiency and versatility make direct methods 
most popular for the solution of the OCP in practice today. They are 
discussed into more detail in Section 4.4. Indirect methods These ap
proaches are based on the calculus of variations and Pontryagin’s 
maximum (minimum) principle. Here, the OCP (1) is reformulated as a 
boundary value problem and the optimal solution is obtained by maxi
mization (minimization) of the control Hamiltonian, which is the 
function incorporating the stage cost and costate equations. This prob
lem can be solved by several types of numerical methods, namely, 
gradient-based, multiple shooting and collocation methods. Indirect 
methods carry, however, several practical drawbacks: difficult formu
lation of the problem in a numerically suitable way, problems with 
handling the active constraints, the need for an accurate initial guess, 
and difficulties with including changes in the problem formulation, such 
as re-parameterization of the constraints. Dynamic programming (DP) 
methods These approaches provide a globally optimal control policy via 
recursive solution of the Hamilton-Jacobi-Bellman (HJB) equations as a 
single step optimization problem. The main disadvantage of this 
approach is the so-called curse of dimensionality, which restricts the so
lutions to very small state dimensions. However, this disadvantage is 
reduced with the concept of approximate dynamic programming (ADP), 
which is also known as reinforcement learning (RL) in the machine 
learning community. These algorithms are based on simple principles of 
reward and punishment to facilitate the learning of approximate control 
policies and/or value functions by interacting with the controlled sys
tem. Advances in RL research in recent years may provide an interesting 
framework for solution of the building climate control tasks (Liu & 
Henze, 2007). 

Recently, there has been given a substantial research effort into new 
optimal control (OC) solution methods emerging from various fields. To 
give the reader a broad overview of the complexity and various possi
bilities in solving OCP, we refer to Fig. 7, which captures an approximate 
taxonomy of the classical and alternative OC solution methods relevant 
for the field of building control and MPC in general. 

Due to the before-mentioned claims on the dominance of direct 
methods in today’s practice, the scope of this paper will focus on direct 
methods only. Further, in Section 5, we define basic MPC problem 
classes which differ in the type of the resulting OP, and in Section 6, we 
define thee solution paradigms based on direct methods. 

4.4. Direct methods 

Direct methods are based on translation of the OCP into an OP and 
obtain its solution via numeric optimization methods. In general, there 
are two distinct strategies for the translation (Binder et al., 2001): 

Sequential simulation and optimization: In every time step, the 
model equations (1b) are solved via numerical integration for the 
current control variables. 
Simultaneous simulation and optimization: The model equations 
(1b) are represented in the OP as equality constraints that can be 

violated during the optimization process and need to be satisfied at 
the solution. 

The particular methods are: Single shooting This method is also called 
dense formulation, or state condensing method. It is a sequential approach, 
which solves a boundary value problem by reducing it to the solution of 
an initial value problem. It ’shoots’ the candidate trajectories in 
different directions until it finds the one which satisfies the boundary 
conditions. The OCP is rewritten into a smaller, but denser OP form, 
eliminating the states from the vector of optimization variables. This 
approach is recommended for systems with computationally cheap nu
merical integration, such as linear systems. The underlying principle of 
this strategy is illustrated in Fig. 8a. Multiple shooting This method is also 
called sparse formulation. It is a hybrid method because it divides the 
solution interval into smaller intervals, for each of which an initial value 
problem is being solved with additional conditions that match the so
lution on the whole interval. In this formulation, each input uk and each 
state xk are considered as optimization variables, forming a large, but 
sparse OP form. The efficiency of many advanced optimization solvers 
tailored to solve OCP is based on exploiting the sparsity of the problem. 
This approach is usually faster than single shooting for systems with 
nonlinear dynamics. The underlying principle of this strategy is illus
trated in Fig. 8b. Collocation This method is a simultaneous approach, 
which selects a finite-dimensional space of candidate solutions and set of 
collocation points in the parametric domain, and chooses the solution 
which satisfies the given equations at these collocation points. In this 
formulation, the set of optimization variables consists of all inputs uk, 
states xk, and collocation points xc

k,j, where index j corresponds to the j-th 
collocation point for each state xk. Therefore, the resulting OP is even 
larger, but also sparser, than in multiple shooting approach. Collocation 
may bring improved speed and performance for systems with highly 
nonlinear dynamics. The underlying principle of this strategy is illus
trated in Fig. 8c. 

5. MPC problem classes 

In this section, we recall the most notable MPC problem classes 
which differ in the type and structure of the corresponding optimization 
problem to be solved via direct methods. 

5.1. Linear MPC 

We speak about linear MPC (LMPC) when the objective function (1a) 
is either linear or quadratic and the prediction model (1b) is linear as 
given by Eq. (9). Then, the OCP (1) can be translated to a Linear Pro
gramming (LP) or Quadratic Programming (QP) problem, depending on 
whether the objective function is linear or quadratic. The main advan
tage of linear systems is that they can be integrated in a straightforward 
manner via dense formulation by recursive substitution of consecutive 
state variables. The complexity of such dense LP becomes ℴ(N3n3

u), with 
N the control horizon, and nu the number of inputs. Usually, because of a 
large number of states, the condensing method is appropriate for linear 
building control applications. On the other hand, the computation cost 
of sparse LP is ℴ(N3(nx + nu)

3
), where nx is the number of states (Frison 

1. At time t, measure, estimate, or forecast the plant’s parameters ξ, i.e. states x̂(t), references r(t), . . . , r(t + (N − 1)Ts) and distur-
bances d(t), . . . , d(t + (N − 1)Ts).

2. Compute the optimal sequence of control inputs U∗Nc(ξ) = {u∗0, . . . , u∗Nc )} by solving the problem (1).
3. Select only the first element of the control signals sequence, i.e., u∗(t) = u∗0.
4. Implement the selected control signal over a pre-defined time interval, called sampling time Ts.
5. Time advances to the next interval t + Ts, and the procedure is repeated from step 1 with updated parameters ξ, using values of
x̂(t + Ts), r(t + Ts), . . . , r(t + NTs) and d(t + Ts), . . . , d(t + NTs).

Algorithm 1. Receding horizon control.  
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& Jorgensen, 2013). If the solver makes use of the sparsity of the 
problem, the complexity of the problem becomes ℴ(N(nx + nu)

3
). 

Today, LMPC is a well-studied and established technology in many 
industries, with efficient online implementation scalable even to prob
lems with hundreds of thousands of parameters and optimization vari
ables (Muske & Rawlings, 1993). Due to this fact, and also because the 
thermal dynamics of the building envelope can be linearized with high 
accuracy (Picard, Jorissen, & Helsen, 2015b), LMPC is considered to be a 
mature technique for building climate control (Rehrl & Horn, 2011; 
Sourbron, Verhelst, & Helsen, 2013b). 

5.2. Nonlinear MPC 

Nonlinear MPC (NMPC) emerges when either the objective function 
(1a) or the prediction model (1b) is nonlinear. Then, the translation of 
the OCP (1) yields a Nonlinear Programming (NLP) problem. In general, 
for nonlinear dynamic equations, multiple shooting and direct colloca
tion methods are numerically more efficient. This is due to the available 
solvers’ capabilities of exploiting the sparsity of the corresponding NLP. 
However, in general, nonlinearities in building models can be decoupled 
from the linear dynamics and represented by Hammerstein-Wiener 
models. These models are composed of linear dynamical equations 
representing the building envelope, and nonlinear static algebraic 
equations representing the HVAC and effects of disturbances. In this 
case, single shooting is more efficient than multiple shooting and 
collocation due to cheaper numerical integration of linear dynamic 
equations. 

NLPs can be efficiently solved even on larger scales by using algo
rithms such as sequential quadratic programming algorithms (SQP) 
(Gill, Murray, & Saunders, 2005b), or newton-based methods (Wächter 
& Biegler, 2006). A more detailed discussion about solutions for NMPC 

can be found in Binder et al. (2001). NMPC has a large potential in the 
building sector due to more accurate predictions of nonlinear models 
(HVAC models in particular) and higher flexibility in the formulation of 
the OCP (1). Several studies and real applications of NMPC for buildings 
have already been reported (Castilla et al., 2014; Jorissen, Picard, 
Cupeiro Figueroa, Boydens, & Helsen, 2018b; Santos, Zong, Sousa, 
Mendonca, & Thavlov, 2016; Touretzky & Baldea, 2014), and we can 
expect more of them to come in the years to come. 

5.3. Hybrid MPC 

When the dynamical model of the system (1b) employs switching 
dynamics, binary or integer control variables, logic states or constraints, 
then we speak about hybrid MPC (HMPC). If the hybrid dynamic model 
is piecewise linear 

xk+1 = Aixk + Biuk + Eidk, if (xk, uk, dk) ∈ ℛi, (11)  

the corresponding optimization problem to be solved is either a Mixed- 
Integer Linear Programming (MILP) or Mixed-Integer Quadratic Pro
gramming (MIQP) problem, depending on the objective function being 
linear or quadratic. On the other hand, when the hybrid dynamical 
model incorporates nonlinearities, we end up with an extremely difficult 
Mixed-Integer Nonlinear Programming (MINLP) problem. 

There exist three main frameworks for modeling of HMPC: 

Mixed logical dynamical (MLD) systems: This framework in
corporates both continuous and binary variables by means of mixed- 
integer linear equalities and inequalities and auxiliary binary vari
ables (Bemporad & Morari, 1999a). 
Big-M approach: This approach translates the hybrid model into a set 
of if-then-else conditions which are subsequently translated into 
corresponding mixed-integer equalities and inequalities by using 
auxiliary binary variables and large positive values of the constant 
parameters (Williams, 1993). 
Generalized Disjunctive Programming (GDP): This method repre
sents discrete decisions in the continuous space via logical disjunc
tions and uses logical propositions to denote algebraic constraints in 
the discrete space (Castro & Grossmann, 2012; Grossmann & Ruiz, 
2012). Compared to traditional MIP, the inherent logic structure in 
GDP yields tighter relaxations that are exploited by the global branch 
and bound algorithms to improve solution quality (Bhattacharya, 
Ma, & Vrabie, 2020). 

In general, Mixed-Integer Programming (MIP) problems are NP- 
complete problems and thus are hard to solve. However, there are 
several state-of-the-art optimization solvers capable of solving these 
problems even on larger scales (Bemporad, 2006). From a practical point 
of view, HMPC based on MIP optimization is a powerful tool for control 
of buildings employing discrete decision variables (e.g., shadings posi
tions, on-off valves, etc.) (Le, Bourdais, & Gueguen, 2014), switching 
dynamics (e.g., operating modes of the heat pump) (Mayer, Killian, & 
Kozek, 2015), or for the formulation of supervisory HMPC optimizing 

Table 6 
Selective summary of state estimators applied to building control.  

Reference SKF TVKF EKF UKF MHE 

Picard et al. (2017) • – – – – 
Zong et al. (2017) • – – – – 
Cupeiro et al. (2018) • • – – •

Li, O’Neill, and Braun (2013); Li et al. 
(2015) 

– • – – – 

Chandan and Alleyne (2014) – • – – – 
O’Neill, Narayanan, and Brahme (2010) – – • – – 
Fux et al. (2014) – – • – – 
Chen, Wang, and Srebric (2015) – – • – – 
Maasoumy et al. (2013, 2014) – – • • – 
Baldi, Yuan, Endel, and Holub (2016) – – • • – 
Radecki and Hencey (2012) – – – • – 
Bonvini, Sohn, Granderson, Wetter, and 

Piette (2014) 
– – – • – 

Ferhatbegović, Zucker, and Palensky 
(2012) 

– – – • – 

Fielsch, Grunert, Stursberg, and Kummert 
(2017) 

– – – • – 

Vande Cavey et al. (2014) – – – • •

Fig. 7. Approximate taxonomy of optimal control solution methods.  
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the performance of relay-based thermostats (Drgoňa, Klaučo, & Kvasn
ica, 2015). The first use of GDP in the context of building control and its 
comparison with classical MIP method was reported in (Bhattacharya 
et al., 2020). 

6. MPC problem solutions 

In this section, we recall three distinct solution paradigms based on 
direct methods which can be used to obtain solutions to the MPC prob
lems described in the previous section. 

6.1. Implicit MPC 

In the case of implicit MPC, the optimal control sequence U*
N for a 

particular choice of parameters ξ is obtained by solving online the cor
responding optimization problem (1). Computational complexity of 
obtaining such a sequence depends on the type of the prediction model 
(1b) and the choice of the cost function (1a), as discussed in the previous 
section. Depending on the problem type and solver used, the solution of 
such OP usually requires a relatively powerful computing platform, and 
in practice it is performed most often via desktop or industrial com
puters. However, recent advances in dedicated solvers for fast MPC 
allow us to implement the online MPC algorithms also on embedded 
hardware with limited computing power and memory storage (Wang & 
Boyd, 2010). An overview of the most notable optimization solvers for 
each class of problems is provided in Section 8.3. 

As mentioned in Section 2.2, buildings are inherently slow dynamic 
systems, which allow sufficiently large time windows for the solution of 
a large-scale OP. Such problems are emerging from MPC formulations 
with long prediction horizons and a larger number of parameters, which 
are typical for building control applications. Hence, there is no surprise 
that most of the building MPC applications reported in a survey (Afram 
& Janabi-Sharifi, 2014b) have been implemented in an online fashion 
via implicit MPC. 

6.2. Explicit MPC 

The development of explicit MPC was driven by the motivation to 
overcome the primary drawback of implicit MPC, which is the need to 
compute the optimal control law online at every sampling instant by 
solving the corresponding OP. Instead, explicit MPC employs parametric 
programming (Bemporad, M., Dua, & Pistikopoulos, 2002; Borrelli, 2003) 
to pre-calculate the optimal control law for all admissible values of pa
rameters ξ. Hence, the explicit representation of the optimizer is con
structed offline as a function of the MPC parameters given as u =
fMPC(ξ). Then, the online identification of the optimal control action 
boils down to mere function evaluations for particular measurements. 
This significantly reduces computational requirements of the 

implementation. From a mathematical point of view, the problems to be 
solved in the case of linear MPC are multi-parametric linear programs 
(mpLP) or multi-parametric quadratic programs (mpQP), respectively. 

The fundamental limitation of explicit MPC solution is, however, 
that the complexity of the computed explicit control law grows expo
nentially with the dimensionality of the parametric space imposed by 
the number of constraints of the problem, which grow with higher 
prediction horizon and number of parameters. Therefore, it can only be 
used for small-scale systems with up to 10 parameters (Mayne, 2014). 
Also, the memory storage capacity of the hardware should be large 
enough to accommodate the pre-computed explicit control law (Bem
porad, 2006). One possible remedy to overcome this large memory 
footprint drawback is to employ the recently introduced approach of 
so-called region-free explicit MPC (Kvasnica, Takécs, Holaza, & Cairano, 
2015b). The solution complexity of this approach no longer depends on 
the number of parameters ξ, but rather on the number of optimization 
variables u, for instance up to 20. This still limits the problem complexity 
mainly with respect to the prediction horizon length and number of 
decision variables. In both cases, these restrictions are usually not a 
realistic assumption for complex building control problems with several 
thousands of parameters and hundreds of optimization variables. Thus, 
only a few applications of explicit MPC with simplified building models 
have been reported (Drgoňa et al., 2013; Parisio et al., 2014). 

6.3. Approximate MPC 

The idea behind this solution approach is to train machine learning 
(ML) models such that they mimic the behavior of MPC. This concept is 
also known as imitation learning, where MPC is acting as a teacher and 
generates the training data for an ML model. The training data are 
generated in closed-loop simulations by implicit MPC, as defined in 
Section 6.1. Then, the ML model represents an approximation of the 
MPC control law, also called control policy. 

The parametric solution of problem (1) represents a mapping of the 
parametric space to the space of control variables, i.e. fMPC : Rnξ →Rnu . 
For this task, state-of-the-art supervised learning algorithms can be used 
to approximate MPC policies with an arbitrary type of cost functions and 
constraints. Regression algorithms can be used for problems with 
continuous control variables, while classification algorithms can be used 
for problems with discrete control variables. Consider a set of m training 
data1{(ξ(1), u(1)), …, (ξ(m), u(m))}, with ξ(i) ∈ Rnξ and u(i) ∈ Rnu generated 
by an implicit MPC approach acting as an expert teacher for an ML al
gorithm. The objective is to devise a regression/classification function 
fΘ : Rnξ →Rnu , which predicts the values of control variables u (often 
called the response or target variable) that correspond to the parameters ξ 

Fig. 8. Visual comparison of discretization principles behind different translation methods. Actions uk (red) are discretized at each sampling interval to control the 
state trajectories xk (green). Green dots represent the values of state variables, or their initial guess in the case of multiple shooting and collocation, while blue dots 
correspond to collocation points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

1 Here, ξ(i) ∈ Rnξ denotes the ith sample of a vector ξ. 
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(representing the feature vector) as accurately as possible. During online 
evaluation, the implicit MPC described in Section 6.1 is replaced by an 
approximate control policy u = fΘ(ξ). 

The advantage over implicit MPC is that the solution of the optimi
zation is replaced by a computationally cheap function evaluation 
similar to the case of explicit MPC. The main advantage over the explicit 
MPC approach, however, is that the ML approach is not limited to lower- 
dimensional parametric spaces, which allows for construction of the 
approximated explicit control laws with a low memory footprint for 
large-scale problems with many parameters. The drawback of the ML 
approach is that the control policy is suboptimal with respect to the 
solution of the MPC problem (1), and that a larger amount of informa
tive training data is needed to learn well-performing control policies. 
Additionally, in a standard imitation learning setup, the learned 
controller does not provide any guarantees on stability and constraints 
handling. 

Generic approaches dealing with imitation learning of MPC control 
laws have been recently proposed in Chen, Wang, Atanasov, Kumar, and 
Morari (2019b); Hertneck, Köhler, Trimpe, and Allgöwer (2018); Lucia, 
Navarro, Karg, Sarnago, and Lucía (2018); Maddalena, Moraes, Wal
trich, and Jones (2019); Zhang, Bujarbaruah, and Borrelli (2019). One of 
the first attempts to generate MPC laws for building control problems in 
the form of look-up tables was introduced by Coffey (2013). Other re
searchers used classification algorithms for extracting decision rules 
from hybrid MPC closed-loop behavior (Domahidi et al., 2014; Le, 
Bourdais, & Guéguen, 2014b; May-Ostendorp, Henze, Corbin, Rajago
palan, & Felsmann, 2011b). Approaches for the more challenging task of 
approximating the continuous control laws are also available. For 
example, they are based on a piecewise linear mixing architecture 
(Baldi, Michailidis, Ravanis, & Kosmatopoulos, 2015), regression trees 
with piecewise linear approximations (Klaučo, Drgoňa, Kvasnica, & Di 
Cairano, 2014), nonlinear regression (Žáčeková et al., 2015), or deep 
learning models (Drgoňa et al., 2018). 

7. Dealing with uncertainties in MPC 

The real-world implementation of the model-based control strategies 
suffers from the plant-model mismatch and inaccurate or corrupted 
measurements. This section aims to present an overview of methods 
used to mitigage the effect of uncertainties on the performance and 
safety indicators of MPC, such as constraints handling and stability 
guarantees. In general, we face two classes of uncertainties modeled by 
following parameters: 

Parametric uncertainty: q ∈ Rnq originates directly in neglected dy
namics of the plant, so-called plant-model mismatch. 
Non-parametric uncertainty: also called additive is caused by 
external disturbances, in particular measurement noise vk ∈ Rny , and 
process noise wk ∈ Rnx . 

Lets consider following uncertain linear system: 

xk+1 = A(q)xk + B(q)uk + E(q)dk + wk, (12a)  

yk = C(q)xk + D(q)uk + vk. (12b) 

From the building perspective, the most common parametric un
certainties arise from the modeling errors caused by unknown parame
ters, inaccurate equations, or components not working according to 
specifications. Most common non-parametric uncertainties are associ
ated with measurements and predictions of ambient temperature, solar 
irradiation, temperature sensors inaccuracy, or by a limited number of 
sensors, and unmeasured disturbances, such as windows opening. In 
principle, implementation of MPC in RHC approach implicitly reduces 
the plant-model mismatch due to the presence of feedback. However, for 
higher degrees of uncertainties, it is often not sufficient by itself and 
more advanced techniques need to be adopted to ensure the desired 

control performance. 

7.1. Offset-free MPC 

The purpose of this popular technique is to compensate the effect of 
uncertainties via prediction model augmentation by extra states p rep
resenting unmeasured disturbances (Muske & Badgwell, 2002). These 
disturbances p are estimated by Kalman Filters or moving horizon esti
mation (MHE), and their effect is subsequently compensated by the MPC 
via predictions. One extra state with a constant dynamic is added per 
each output or state of the prediction model (Pannocchia & Rawlings, 
2003). This approach is also called active disturbance rejection control 
and allows us to consider a simpler controller model, because the 
modeling error is compensated for in real time (Picard et al., 2017). For 
a linear system, the disturbance augmented prediction model repre
sented by matrices Ã, B̃, Ẽ, C̃, D̃ is given as: 
[

x̂k+1

p̂k+1

]

⏟̅̅̅⏞⏞̅̅̅⏟

x̃k+1

=

[
A0

0I

]

⏟̅̅⏞⏞̅̅⏟

Ã

[
x̂k

p̂k

]

⏟̅̅⏞⏞̅̅⏟

x̃k

+

[
B

0

]

⏟̅⏞⏞̅⏟

B̃

uk +

[
E

0

]

⏟̅⏞⏞̅⏟

Ẽ

dk,
(13a)  

ŷk = [ CF ]
⏟̅⏞⏞̅⏟

C̃

[
x̂k
p̂k

]

+

[
D

0

]

⏟̅⏞⏞̅⏟

D̃

uk. (13b)  

where the output disturbance matrix F was chosen as a full column rank 
identity matrix and all other matrices are the same as in Eq. 9. 

Variants of OSF-MPC A linear offset-free MPC (OSF-MPC) for refer
ence tracking formulation was studied in Maeder, Borrelli, and Morari 
(2009). A comprehensive overview of OSF-MPC for the linear and 
nonlinear discrete-time system together with economic MPC formula
tion was presented in Pannocchia, Gabiccini, and Artoni (2015). A 
disturbance modeling and estimator design were systematically studied 
for different formulations of state-space process models in Tatjewski 
(2011). The design and tuning of OSF-MPC based on the black-box ARX 
model was discussed in Huusom, Poulsen, Jørgensen, and Jørgensen 
(2010). Authors in Huang, Biegler, and Patwardhan (2010b) presented 
an approach for reduction of the computational burden associated with 
the online computation of nonlinear OSF-MPC with MHE. 

OSF-MPC for Buildings In the context of building control, the OSF- 
MPC formulation for a white-box heat pump model developed in Mod
elica was given (Wallace, Mhaskar, House, & Salsbury, 2014). A 
multi-zone heat pump model developed in Modelica was augmented 
with a disturbance offset of the measured outputs for the design of 
centralized linear OSF-MPC (Krupa et al., 2019). A simulation study of 
an OSF-MPC for energy-efficient operation of the hotel’s central chiller 
plant in a tropical climate was presented in Lara, Molina, Yanes, and 
Borroto (2016). Systematic analysis with varying order of the building 
envelope model for three variations of the residential houses showed 
that state augmentation can reduce the modeling errors and improve the 
overall control performance in terms of energy use and comfort con
straints satisfaction (Picard et al., 2017). 

7.2. Robust MPC 

In case the impact of uncertainties significantly decreases the control 
performance, or even endangers the closed-loop system stability, we 
introduce the robust MPC policy, see (Bemporad & Morari, 1999b) and 
references therein. Robust MPC strategy is also suitable if we need to 
certify the designed MPC w.r.t. the impact of the bounded uncertainties. 
As the values of uncertain parameters vary, there are various scenarios 
of the future behavior of the plant. Therefore, the crucial task of robust 
MPC is to design a control law that guarantees the closed-loop system 
stability of the plant subject to all the admissible evolution scenarios of 
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the uncertain system. As a consequence, the robust MPC strategy is 
usually conservative. This means that the robust control policy ensures 
the constraints satisfaction by creating an energy buffer (in the case of 
energy minimization) to be able to mitigate the impact of some unex
pected disturbances. More generally, the robust MPC creates reserves for 
potentially difficult times in the future, the quantity of which is deter
mined based on the estimates of the worst-case scenario and robust 
control design method. 

Complexity of RMPC The robust MPC assumes the impact of the 
bounded disturbance. Consider a linear state-space system in (12) 
affected by bounded uncertainty q ∈ 𝒬nq , where 𝒬nq ⊂Rnq is the nq- 
dimensional set of uncertain parameters. Consider constraints given by 
(1f), where 𝒰, 𝒳 are polytopes including origin in their strict interior. 
Then, the closed-loop system is robustly stable if and only if all the 
vertices of the constraints parametrized by uncertainty q are simulta
neously stable. In other words, although the uncertainty set 𝒬 includes 
an infinite number of a possible realization of q, the system is stable 
within all constraints on the feasible region under bounded uncertainty 
q by checking 2nq the system vertices. Total number of uncertain system 
vertices 2nq originates in the enumeration of hyper-box vertices defined 
in nq− dimensional space, e.g., see (Kothare, Balakrishnan, & Morari, 
1996). The main drawback is that the number of investigated vertices 
increases exponentially with a prediction horizon N, i.e., 2nq × N. The 
complexity is high because the controller evaluates all scenarios w.r.t. 
all combinations of uncertain parameters. Therefore, the dominant term 
of the complexity evaluation is determined by the number of uncertain 
parameters nq. 

Min-max RMPC In general, robust optimal values of the manipulated 
variables are computed either (i) directly as a sequence of the control 
actions, or (ii) by designing the linear/affine state-feedback control laws, 
see (Langson, Chryssochoos, Raković, & Mayne, 2004). Various ap
proaches are considered to keep the optimization problem tractable, 
mostly considering the worst-case, i.e., so-called MIN-MAX optimization 
(Campo & Morari, 1987). In this approach, only the worst-case scenario 
is evaluated and used for the robust controller design. 

LMI-based RMPC Another popular approach in tackling the expo
nential complexity is based on linear matrix inequalities (LMIs), see 
(Boyd, El Ghaoui, Feron, & Balakrishnan, 1994). The advantage of LMIs 
lies in the possibility of transforming non-convex optimization problem 
into the convex form. The original problem could also have infinity 
many decision variables, but introducing LMIs enables to transform it 
into a tractable optimization problem with modest complexity. The idea 
of LMIs is to optimize the control performance by minimizing the ei
genvalues of the matrices. For instance, the aim is to optimize the tra
jectories of the controlled variables, e.g., zone temperatures, subject to 
the influence of uncertain parameters. The solution of the optimization 
problem shapes the set of admissible values of the controlled variables, i. 
e., defines their limit values. In the case of LMIs, the resulting optimal set 
has the shape of ellipsoid ε and contains the setpoint values in its center. 
The volume of this set is minimized in each control step to keep the 
controlled variables closer to the setpoint value. This strategy is pio
neered by Kothare et al. (1996) and refined by many later works, see 
Oravec, Pakšiová, Bakošová, and Fikar (2017); Zhang, Wang, and Wang 
(2014) and references therein. 

SDP in RMPC From a technical point of view, the problem is trans
formed into the form of semidefinite programming (SDP) (Vandenberghe 
& Boyd, 1996) that has a convex (usually linear) objective function and 
the constraints have the form of LMIs. For the class of SDP problems, 
various tailored solvers are available, for instance, SeDuMi, MOSEK, to 
list some, while a more extensive list is provided in Table 13. The online 
computational complexity of SDPs can be further reduced by replacing 
them by QPs w.r.t. the construction of the maximal robust positive 
invariant sets (Blanchini, 1999), forward and backward reachable sets 
(Borrelli, Bemporad, & Morari, 2017). Once the system state enters the 
invariant set, it is trapped inside this set also in the future. As a conse
quence, the states will not diverge into infinity/instability. For instance, 

life sentence in a prison is an invariant set. Analogously, the reachable 
sets limit the future behavior of the states. In control theory, the 
reachability for a dynamical system means that a certain state is 
reachable from a given initial state within a given cost threshold (Allen, 
Clark, Starek, & Pavone, 2014). We can think of it as a formal reality 
check, answering questions of a type: ”Can we reach the thermal comfort 
zone from a given room temperature within an hour by using a given 
amount of energy?”. Therefore, these properties are crucial tools to 
guarantee/certify the closed-loop system stability and performance. 

Explicit and tube-based RMPC The explicit solution of the robust MPC 
problem was proposed in Kvasnica, Takács, Holaza, and Ingole (2015). 
However, from a computational viewpoint, it is limited by the modest 
complexity of the optimization problem, i.e., a number of constraints. 
So-called tube-based robust MPC addresses the problem of the conser
vatives minimization of robust MPC policy by reducing the exponential 
evolution of the predicted states, see pioneer work (Langson et al., 
2004), or more recent papers (Yadbantung & Bumroongsri, 2018; Zei
linger, Raimondo, Domahidi, Morari, & Jones, 2014), and references 
therein. The “tube” refers to the shape of the bounded set of admissible 
evolutions of the controlled variable. 

RMPC for buildings The detail analysis of the sources of the uncertain 
parameters and the origins of the imperfect models in building energy 
assessment is provided in Tian et al. (2018). From building control 
perspective, the robust MPC based on offline precomputed LMIs for 
temperature control of variable-air-volume air-handling units was 
designed in Huang, Wang, and Xu (2010a), Xu, Wang, and Huang 
(2010). Simulation results show robust control performance and con
straints satisfaction. A robust MPC framework based on the input 
disturbance feedback for building HVAC systems was proposed in 
Maasoumy, Razmara, Shahbakhti, and Vincentelli (2014); Maasoumy 
and Sangiovanni-Vincentelli (2012). A novel robust adaptive MPC 
strategy reducing the conservativeness of the uncertainty handling was 
presented in Tanaskovic, Sturzenegger, Smith, and Morari (2017). The 
simulation results show improved control performance in contrast to 
non-robust adaptive MPC. in Antonov and Helsen (2016), robustness 
analysis of the designed MPC was performed. Satisfaction of the 
robustness conditions subject to the uncertain prediction of the system 
states was investigated a posteriori to prevent evaluation of computa
tionally demanding robust MPC design procedure. The classification of 
various Robust MPC approaches to building control is given in Table 7. 

7.3. Stochastic MPC 

Stochastic MPC (SMPC) is a framework for systems affected by 
probabilistic uncertainty. A key feature of SMPC are chance constraints 
(CC), which enable a systematic trade-off between control performance 
and probability of constraints violations (Heirung, Paulson, OĹeary, & 
Mesbah, 2018). Chance constraints, for example on state variables, are 
given in the form: 

Pr(xk ∈ 𝒳) ≥ 1 − α, k ∈ NN− 1
0 (14)  

where Pr(xk ∈ 𝒳) denotes the probability of satisfaction of the constraint 
xk ∈ 𝒳 , and 1 − α specifies the value of that probability for α ∈ [0, 1]. 
Unfortunately, these types of constraints are in general non-convex and 
extremely computationally demanding for optimization. Hence, for any 
practical implementation of SMPC, a computationally tractable refor
mulation of CC needs to be derived. For this task, there are several ap
proaches which are based on solving convex realizations of chance 
constrained optimization problems. 

An overview of linear SMPC with CC classifying alternative ap
proaches in terms of the system model, the objective function, the 
meaning and management of the chance constraints, and their feasibility 
and convergence properties was given in Farina, Giulioni, and Scattolini 
(2016a). The connection to stochastic dynamic programming as well as 
Bayesian estimation of SMPC problem in the dual control paradigm was 
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reviewed (Mesbah, 2018). Authors in Lorenzen, Müller, and Allgöwer 
(2017d) provide assumptions that are sufficient to establish closed-loop 
stability for various approximations of CC used in SMPC methods. For 
the purposes of this paper, we classify the alternative SMPC methods 
into three principal groups based on Mesbah (2016), namely 
scenario-based approaches, chance constraints approximations, and 
disturbance feedback control law parametrizations. The conceptual 
difference of the latter two approaches compared to scenario approaches 
is that no samples need to be generated. Instead, some prior knowledge 
of the system or the past realization of the uncertainties is exploited to 
derive the accurate approximations of chance constraints. 

Scenario-based approaches Sampling-based techniques replace the CC 
with a finite number of deterministic constraints generated by the 
various realizations of the stochastic variables. Sampling density is 
chosen as a trade-off between computational demands and violation 
probability. A larger number of samples decreases the violations but 
usually leads to increased computational burden (Zhang, Schildbach, 
Sturzenegger, & Morari, 2013). Another concern of SMPC is safety in 
terms of closed-loop stability and constraint handling capabilities. Sto
chastic stability and recursive feasibility can be enforced through linear 
matrix inequality (LMI) for linear problems (Bernardini & Bemporad, 
2009). An alternative approach uses an offline sampling of probabilistic 
constraints realizations to guarantee recursive feasibility and asymptotic 
stability of linear SMPC (Lorenzen, Allgöwer, Dabbene, & Tempo, 
2015). Additionally, it has been shown that bounds on closed-loop 
constraint violations can be provided for linear SMPC formulations 
(Schildbach, Fagiano, Frei, & Morari, 2014). Modern approaches 
involve machine learning methods in the design of SMPC, for instance, 
using Gaussian processes GP (Bradford, Imsland, Zhang, & del Rio 
Chanona, 2019), or Support Vector Clustering (SVC) for learning an 
uncertainty set directly from available data (Shang & You, 2019). 

Chance constraints approximations Sometimes also referred to as sto
chastic tube approaches, these approximations are based on replacing 
CC with deterministic constraints by tightly bounding the disturbances. 
A convexity of chance-constrained SMPC for linear systems was studied 
in Cinquemani, Agarwal, Chatterjee, and Lygeros (2011). An extension 
of CC-based SMPC to nonlinear dynamics was presented in Xie, Li, and 
Wozny (2007). Of the latest approaches, CC defined as a discounted sum 
of violation probabilities on an infinite horizon guarantees the recursive 
feasibility without an assumption of boundedness of the disturbance 
(Yan, Goulart, & Cannon, 2018). Authors in Lorenzen, Dabbene, Tempo, 
and Allgöwer (2017c) propose a constraint tightening to 
non-conservatively guarantee recursive feasibility and stability of 
CC-based SMPC. 

Control law parametrizations Set of techniques directly mapping the 
influence of the disturbances onto control actions, for instance by 
expressing the feedback control law as an affine function of the past 
disturbances. Authors in Oldewurtel, Jones, and Morari (2008) pre
sented a tractable approximation of CC based on affine disturbance 
feedback for linear systems. An alternative approach with affine 
parametrization of the control law capable of handling possibly un
bounded stochastic disturbances via solving convex second-order cone 
program (SOCP) was given in Paulson, Buehler, Braatz, and Mesbah 
(2017). 

SMPC for buildings Table 8 summarizes numerous applications of 
SMPC in the building control context and classifies them based on the 
principal method used. Please note that the domain of SMPC is far more 
complex and used methods are more numerous and branched as those 
presented here. For more detailed overviews and fundamentals on SMPC 
we refer the interested reader to the following publications (Farina, 
Giulioni, & Scattolini, 2016b; Heirung et al., 2018; Mayne, 2016; Mes
bah, 2016). 

7.4. Adaptive MPC 

The essential idea of adaptive control is online update of the 

controller or the prediction model parameters, such that the systems 
with time-varying dynamics can be handled using the adaptive strategy, 
see (Åstrom & Wittenmark, 2008) and references therein. On the other 
hand, standard receding-horizon MPC addresses real-time computation 
of the optimal control actions subject to the fixed structure and pa
rameters of the system model. The control law itself is static, but the 
control actions are parametrized by system states, references, and dis
turbances. Adaptive MPC merges the benefits of both, i.e., introduces the 
model updates in the context of MPC. The uncertainties are then cor
rected not only via feedback of the control law parameters, but also with 
updates of the model parameters. The parameters updates are typically 
obtained from autoregressive models, recursive least squares (RLS), 
Kalman Filters, or other maximum likelihood parameter estimation al
gorithms. Adaptive model updates allow the MPC to potentially cope 
with time-varying disturbances and correct plant-model mismatch over 
longer prediction horizon, as opposed to static disturbance correction 
terms of the offset-free MPC. 

Challenges and approaches Except for the closed-loop system stability 
and recursive feasibility, the crucial challenges lie in (i) handling MIMO 
systems (Maniar, Shah, Fisher, & Muthas, 1997); (ii) design control 
action subject to constraints (Tanaskovic, F., Smith, & Morari, 2014); 
and (iii) considering the impact of the uncertain parameters (Lorenzen, 
Allgöwer, & Cannon, 2017; Tanaskovic et al., 2017). A compact over
view of adaptive MPC challenges was given in Kim (2010). As pointed 
out in Qin and Badgwell (2003), only a few adaptive MPC algorithms 
have been used in practice, despite the strong market incentive for a 
self-tuning MPC controller. Moreover, due to the above-mentioned 
challenges, this status quo is likely to be maintained in the near future. 

Adaptive MPC remains an active area of research, and it is out of the 
scope of this paper to provide a complete survey and classification of 
different approaches. Instead, we mention only a few occurring themes. 
For increased robustness, an adaptive MPC is often combined with sto
chastic and robust MPC principles such as set membership identification 
(Adetola, Guay, 2011; DeHaan, Adetola, & Guay, 2007; Fagiano, 
Schildbach, Tanaskovic, & Morari, 2015; Lorenzen, Allgöwer, & Can
non, 2017b). An adaptive strategy based on multiple linear models was 
introduced in Dougherty and Cooper (2003). A novel approach of dual 
adaptive MPC reformulates the original nonlinear deterministic problem 
into the tractable problem of convex optimization (Heirung, Ydstie, & 
Foss, 2017; Kumar, Heirung, Patwardhan, & Foss, 2015). The literature 
on simultaneous state and parameter estimation is complimentarily 
focused on aspects such as estimation error, and signal excitation 
(Kamalapurkar, 2017; Rangegowda, Valluru, Patwardhan, & Mukho
padhyay, 2018). In recent years, the principles of adaptive MPC are 
being revised and combined with various machine learning-based 
methods and are often labeled as learning-based MPC, which is 
covered separately in the following section. 

Adaptive MPC for buildings Adaptive MPC of the HVAC system based 
on self-adapting building models was investigated in Herzog, Atabay, 
Jungwirth, and Mikulovic (2013) using simulation. The self-adaptive 
model for buildings enabling correction of the prediction errors of 
pre-defined models using a dynamic Kalman filter-bank was proposed in 
Killian, Leitner, Goldgruber, and Kozek (2017). Robust adaptive MPC for 
building climate control was proposed in Tanaskovic et al. (2017), 
where the uncertainty set was recursively updated based on the system 
identification procedure. Authors in Lauro, Longobardi, and Panzieri 
(2014) studied an adaptive distributed MPC scheme for multi-zone 
building temperature control and its comparison with a decentralized 
approach. Adaptive MPC based on multiple linear regression for the 
control of a low-temperature thermo-active building system was 
designed in Schmelas, Feldmann, and Bollin (2017). A self-adaptive 
MPC based on EKF improved the model prediction accuracy for a pas
sive house (Fux, Ashouri, Benz, & Guzzella, 2014). An adaptive MPC 
mechanism proposing recursive estimation and updating approach for 
electronic expansion valves with adjustable setpoint for evaporator su
perheat minimization was addressed in Tesfay, Alsaleem, Arunasalam, 
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and Rao (2018). An online simultaneous state and parameter estimation 
for building predictive control using extended and unscented Kalman 
Filters have been proposed in Maasoumy, Moridian, Razmara, Shah
bakhti, and Sangiovanni-Vincentelli (2013); Maasoumy et al. (2014). 

7.5. Learning-based MPC 

In recent years the intersection of the areas of control and learning 
has been rapidly expanding with the emerging concept of learning-based 
MPC (LBMPC). However, due to the ubiquitous use, the label LBMPC has 
an ambiguous meaning. Moreover, LBMPC is an active area of research 
with rapidly emerging new concepts and applications. The most recent 
review (Hewing, Wabersich, Menner, & Zeilinger, 2020) classifies 
LBMPC approaches into three categories, (i) learning of the prediction 
model from data with uncertainty quantification, (ii) learning the 
controller design, i.e., learning the constraints and cost function terms, 
(iii) MPC for safe learning to derive safety guarantees for learning-based 
controllers. The comprehensive overview of the method is beyond the 
scope of this paper. Instead, we refer the interested reader to Hewing 
et al. (2020) and references therein. 

Uncertainty-aware LBMPC The first category of LBMPC approaches is 
the most numerous. The case of learning a static model with uncertainty 
quantification is directly related to some of the gray- and black-box 
modeling approaches, discussed in Section 3.2.3. The concept of 
LBMPC in the context of robust and safe control with data-driven models 
and online updates was first introduced by (Aswani, Gonzalez, Sastry, & 
Tomlin, 2013). The main insight of LBMPC is that performance and 
safety can be decoupled by using reachability analysis (Asarin, Bournez, 
Dang, & Maler, 2000; Rakovic, Kerrigan, Mayne, & Lygeros, 2006), 
making the approach tractable and practical. In general, LBMPC is 
considered to be a generalization of robust adaptive MPC, which is 
typically restricted to specific types of model structures and learning 
algorithms. Instead, LBMPC uses statistical learning methods to improve 
the model of the system dynamics, while using robust MPC techniques to 
ensure stability and constraints handling (Aswani, Bouffard, Zhang, & 
Tomlin, 2014). Alternative methods in this category, include, formula
tion of robust MPC with state-dependent uncertainty for data-driven 

linear models (Soloperto, Müller, Trimpe, & Allgöwer, 2018), or an 
iterative model updates for linear systems with bounded additive un
certainty and robust guarantees on all feasible offsets (Bujarbaruah, 
Zhang, Rosolia, & Borrelli, 2018). 

Learning-based controller design and updates Approaches falling in the 
second category are represented, e.g., by control methods updating 
time-varying dynamics, constraints, and stage cost based on closed-loop 
data for period tasks (Scianca, Rosolia, & Borrelli, 2019). An inverse 
optimization is a more challenging task dealing with an inference of 
unknown parameters of an optimization problem based on knowledge of 
its optimal solutions (Aswani, Shen, & Siddiq, 2015). In this context, 
pivotal research without performance guarantees on learning of the 
MPC parameters from available closed-loop data was recently proposed 
by differentiable MPC (Amos, Rodriguez, Sacks, Boots, & Kolter, 2018). 
It is important to mention that inverse optimal control approaches are 
closely linked with imitation learning and approximate MPC solutions 
discussed in Section 6.3. The difference is that approximate MPC deals 
with parameterizing an explicit control law based on given samples of 
closed-loop behavior of the expert controller, as opposed to finding 
parameters of a given MPC formulation matching the data. 

MPC safety certificates for learning-based control The methods in the 
third category represent new research avenues and are primarily con
cerned with employing robust or stochastic MPC in conjunction with 
data-driven controllers for safety certificates (Muntwiler, Wabersich, 
Carron, & Zeilinger, 2019) or safe exploration (Koller, Berkenkamp, 
Turchetta, & Krause, 2018), aspects particularly important for rein
forcement learning (RL) approaches. 

LBMPC for buildings One of the first experimental results of LBMPC 
applied to the office building in the US with significant energy savings 
was reported in Aswani et al. (2012), where learning refers to model 
updates of the gray-box hybrid system model. In the building control 
literature there is a multitude of learning-based, data-driven, 
data-enabled, or data predictive approaches representing an ambiguous 
set of methods, which primary concern is learning of the prediction 
model. Those methods are often not dealing with uncertainty quantifi
cation in the sense of original LBMPC (Aswani et al., 2013). Hence some 
of them may not provide robust performance guarantees or uncertainty 

Table 7 
Classification of the publications reporting Robust MPC for building control.  

Reference Robust constraints 
satisfaction 

Min-Max 
approach 

LMI-based 
approach 

Offline 
optimization 

Control law 
parametrization 

Huang et al. (2010a); Xu et al. (2010) • • • • - – 
Tanaskovic et al. (2017) • – – – - – 
Ma et al. (2012b); Ma, Borrelli, Hencey, Packard, and 

Bortoff (2009) 
• – – – - – 

Maasoumy et al. (2014); Maasoumy and 
Sangiovanni-Vincentelli (2012) 

• • – – •

Yang, Wan, Chen, Ng, and Zhai (2019) • • – – •

L. Chen and Hu (2016) • • – – - – 
Antonov and Helsen (2016) – – • – - –  

Table 8 
Classification of the publications reporting SMPC for building control based on their principal methods.  

Reference Offline 
optimization 

Scenario-based 
approach 

Chance constraints 
approximation 

Control law 
parametrization 

Oldewurtel et al. (2008); Oldewurtel, Jones, Parisio, and Morari (2014);  
Oldewurtel et al. (2010) 

– – • •

Ma, Matusko, and Borrelli (2015); Ma, Vichik, and Borrelli (2012c) – – • – 
Zhang, Grammatico, Schildbach, Goulart, and Lygeros (2014); Zhang 

et al. (2013) 
– • – – 

Long, Liu, Xie, and Johansson (2014) – • – – 
Tanner and Henze (2014) – • – – 
Garifi, Baker, Touri, and Christensen (2018) – • – – 
Kumar et al. (2020) – • – – 
Drgoňa et al. (2013) • • – – 
Parisio et al. (2014) • • – –  
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quantification. Of those methods, authors in Jain et al. (2017b); Smarra 
et al. (2018) successfully implemented random forest and regression 
trees for optimal buildings control in different scenarios. However, they 
showed that in some cases, these models suffered from limitations due to 
overfitting. These so-called data-predictive controllers (DPC) can ach
ieve comparable performance to MPC while avoiding the cost and effort 
associated with constructing a gray/white-box model of the building 
(Jain et al., 2017a). An experimental validation of the DPC method 
based on random forests applied to the room temperature control re
ported significant energy savings and thermal comfort improvement 
compared to baseline rule-based controller (Bünning, Huber, Heer, 
Aboudonia, & Lygeros, 2020). Another popular approach is the use of 
gaussian process (GP) models for real-time receding horizon control 
with probabilistic guarantees on constraint satisfaction applied to 
closed-loop simulations of large-scale building models (Jain et al., 
2018). The authors showed how this approach could provide the desired 
load curtailment in the context of demand response with high confi
dence. Data-driven MPC based on GP models of the building’s power 
demand compensating the uncertainty was presented in Nghiem and 
Jones (2017). A preliminary experimental result on the use of differ
entiable linear MPC trained offline on the RBC data with online rein
forcement learning-based updates was presented in Chen, Cai, and 
Bergés (2019a). 

8. Software tools for building modeling, simulation and control 

This section aims to provide an extensive overview and high-level 
comparison of tools for the modeling, simulation, and control of build
ings in the context of MPC. The inspiration and some information were 
obtained from online directories listing available software tools for 
modeling, analysis, optimization, and simulation for buildings (EUROSI, 
2020; Berkeley Lab, 2020; Nghiem, 2011; US Department of Energy, 
2020). 

8.1. Building modeling and simulation tools 

8.1.1. Building energy simulation tools 
Building energy simulation (BES) programs are software tools that 

simulate energy, mass, and contaminant flows in buildings. This in
cludes the interaction between the building envelope and its surround
ings (i.e., weather, radiation heat losses, etc.), internal loads (i.e. 
occupants, lighting, equipment), and HVAC systems. A number of soft
ware modeling tools for buildings are available, which usually consider 
detailed models of building components. Typically, these tools are built 
and used for building design purposes. However, as discussed previously 
in Section 3.2.1, these tools may also be used to implement white-box 
models for MPC. In addition, these tools are often used to develop dig
ital twins of real buildings (also called emulators), which can be used in 
simulation case studies to assess the performance of MPC algorithms. 

BES tools can be divided into two main subgroups (Wetter et al., 
2016). First, traditional imperative languages which declare the 
sequence of commands to be executed and are usually defined in 
function-based format. In this approach, the modeling is interconnected 
with the solver with a primary purpose of building performance evalu
ation. An advantage here is that the execution of the simulation can be 
relatively fast. However, the main disadvantage is that these programs 
are difficult to extend to support new use cases, such as modeling of 
controls, reformulation of model equations into optimal control prob
lems or integration with electric grid simulation tools. The second group 
represents equation-based, object-oriented, declarative languages such 
as Modelica. The principal difference of this paradigm of modeling in 
contrast to the imperative paradigm is that instead of giving the 
sequence of instructions which define the way how the program should 
behave, they provide a higher-level abstraction in the form of hybrid 
differential algebraic systems of equations. These equations can then be 
encapsulated into graphical components and organized into hierarchical 

libraries in an object-oriented fashion, which makes them highly reus
able and modular. In addition, this type of implementation allows for the 
explicit definition of state initial conditions as well as symbolic differ
entiation for efficient numerical integration. Finally, these equations, 
and their derivatives, can be used for generation of an optimal control 
problem for MPC, or more easily be integrated with modeling tools from 
other domains. 

A compact summary of BES tools which have been used to replace 
real buildings for testing MPC algorithms using co-simulation is given in 
Table 9. Besides programming language paradigm type, the last column 
indicates whether it is possible to model the control systems with these 
tools directly. The mentioned programs, however, represent only a 
subset of all BES tools. For a more comprehensive overview of building 
and HVAC system modeling and simulation tools, we refer to (Clarke, 
2001; Hensen & Lamberts, 2019; Trcka & Hensen, 2010; Zhou, Hong, & 
Yan, 2013). More comprehensive comparisons and discussions about 
BES programs can be found in (Nageler et al., 2018; Sousa, 2012; Wetter, 
2011; Wetter et al., 2016; Wetter & Haugstetter, 2006). 

8.1.2. Co-simulation tools and interfaces 
BES programs are typically not directly suitable for design, synthesis, 

and testing of optimal controllers. To deal with this issue, middleware 
software and interface protocols were designed for making communi
cation bridges between BES programs and control-oriented tools and 
programming languages like MATLAB or Python. Table 10 provides a 
summary of selected interface tools and standards relevant to building 
simulation and control. FMI here stands for Functional Mock-up Inter
face, which is an interface standard for general modeling and simulation 
tools not only pertaining to buildings (Blochwitz et al., 2011). For an 
in-depth overview and comparison of co-simulation technology we refer 
to (Trcka, Hensen, & Wetter, 2009). 

8.1.3. Control-oriented building modeling tools 
Obtaining models that are accurate enough and at the same time not 

too complex for optimal control represents one of the bottlenecks which 
prevents wider adoption of MPC in practice. The main reasons are, first, 
that models generated by BES programs described in previous sections 
are often too complex for use in the subsequent optimization problems. 
Second, they compute numerical approximations to cost functions that 
are not differentiable (Polak & Wetter, 2006; Wetter & Polak, 2004). 
Third, there is a substantial shortage of user-friendly and freely available 
tools for accurate control-oriented modeling of the buildings. Luckily, in 
recent years, there has been some progress in this direction, and several 
tools have emerged to help create the models for MPC. Table 11 provides 
an overview of such tools. However, it is important to note that most of 
the tools in this list still either require substantial multi-disciplinary 
expertise or are only available as a research tool. 

Tools exist for the linearization of Modelica models (Picard, Jorissen, 
& Helsen, 2015), returning a state space formulation of the model. This 
allows for direct integration within the optimal control problem. The 
linearization methodology has proven to have a high level of accuracy. 
Moreover, Modelica models can be exported as a Functional Mockup 
Unit, which allows accessing directional derivatives as needed to solve 
optimal control problems (Blochwitz et al., 2011). Another white-box 
control-oriented modeling approach for multi-zone buildings was 
developed based on the Simspace library in Matlab/Simulink environ
ment (Lapusan, Balan, Hancu, & Plesa, 2016). The emphasis lies on easy 
modeling with a modular framework based on a set of pre-defined 
blocks. The popularity of gray-box models extends to toolboxes for 
parameter estimation and application of the derived models into MPC. 
The Grey-Box Toolbox (De Coninck et al., 2016), for instance, allows 
parameter estimation of Modelica models using the JModelica (Mod
elon, 2017) platform with a front end in Python. The toolbox has been 
extended for the direct application of the obtained models into MPC 
(Vande Cavey, De Coninck, & Helsen, 2014). MPCPy (Blum & Wetter, 
2017) is another toolbox using reduced order grey-box models and 
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relying on JModelica (Modelon, 2017) for both parameter estimation 
and solving MPC problems, with the parameter estimation and optimi
zation problems automatically generated based on specification of a 
Modelica model and high-level input parameters in Python. The 
modeling environment (ME) for MPC (Zakula et al., 2014) is based on 
TRNSYS and its coupling with MATLAB to obtain a simplified inverse 
thermal response model in the form of an inverse comprehensive room 
transfer functions (iCRTF). The Building Resistance-Capacitance 
Modeling (BRCM) toolbox (Sturzenegger, Gyalistras, Semeraro, Mor
ari, & Smith, 2014) facilitates physical modeling of buildings for MPC 
via generation of control-oriented linear RC models from EnergyPlus 
models. OpenBuild (Gorecki, Qureshi, & Jones, 2015) provides an in
tegrated simulation environment for building control in MATLAB. Like 
BRCM, it generates the RC models from EnergyPlus. In both tools, 
co-simulation of MATLAB with EnergyPlus is built on BCVTB (Wetter & 
Haves, 2008) and MLE+ (Bernal, Behl, Nghiem, & Mangharam, 2012). 
Another Matlab toolbox BLDG (Kircher & Zhang, 2016) provides users 
with a standalone building model based on simplified PDE equations 
with a small number of parameters, along with system identification and 
parameter estimation functionality. IDENT (Jiménez, Madsen, & 
Andersen, 2008) provides a graphical user interface in MATLAB to es
timate the RC models of building envelopes from the measurement data. 
BASBenchmarks (Cauchi & Abate, 2018) represents a modular model 
library for building automation systems covering physical components 
as well as digital control strategies. The software package LORD 
(Gutschker, 2008) performs a combination of two different methods 
alternatively for parameter estimation. One is the Downhill Simplex 
Method, and the other is a specially adopted Monte Carlo procedure. 
LORD also offers a graphical user interface for creating the RC model 
structures based on nodes and connections. CTSM-R (Kristensen, Mad
sen, & Jørgensen, 2004a) and MoCaVa (Bohlin, 2003) feature maximum 
likelihood and maximum a posteriori estimation of stochastic grey-box 
models. The former is accessed through the programming language R, 
while the latter runs under Matlab. A comparison between MoCaVa and 
CTSM was studied in Kristensen, Madsen, and Jørgensen (2004b). It 
shows that CTSM has better performance in terms of quality of estimates 
for nonlinear systems with significant diffusion and in terms of repro
ducibility. In particular, CTSM provides more consistent estimates of the 
diffusion term parameters. Finally, there exist more generic tools that 
can be used to calibrate simulation models that do not make any as
sumptions regarding the model (language, paradigm) except the inter
face. For example, ModestPy (Arendt et al., 2018b) is a parameter 
estimation Python package for FMI-compliant models, mostly used with 
gray-box models as in Arendt et al. (2018a), while GenOpt (Wetter, 
2001) is an optimization software that can be used for parameter esti
mation in any model that can be interfaced through text files, e.g. 
EnergyPlus, TRNSYS. 

8.2. MPC design tools 

Table 12 provides an overview of the most important software tools 
which can be used or are particularly dedicated to modeling, simulation, 
evaluation, deployment and code generation of MPC controllers. Most 
advanced and widely popular tools are based on MATLAB, Modelica or 
Python languages and come with a free license. These modeling lan
guages allow for high-level modeling of the optimization problems and 
provide an interface to a wide variety of optimization solvers in an 
automated way. This reduces the engineering burden of error-prone and 
time-consuming manual translation of the OCP (1) to the OP form 
required by a particular solver. 

OpenBuild (Gorecki et al., 2015) supports the design and simulation 
of the state observer and MPC using an RC model generated based on an 
EnergyPlus model. BRCM toolbox (Sturzenegger et al., 2014) offers the 
generation of the cost and constraint matrices for MPC based on the 
generated RC model from EnergyPlus. However, it does not provide the 
environment for simulation, tuning, and analysis of MPC. EHCM 
toolbox (Darivianakis, Georghiou, Smith, & Lygeros, 2020) is an 
extension of BRCM providing a framework for controlling the operation 
of the energy hub with multiple interconnected buildings in a cooper
ative manner. BLDG (Kircher & Zhang, 2016) provides functionality for 
state and parameter estimation, and MPC based on the identified 
simplified RC model. BeSim (Drgoňa, 2019) provides functionality for 
fast development, tuning, and simulation of model order reduction, state 
estimation and MPC based on linearized white-box building models 
from Modelica (Picard et al., 2015) and optimization toolbox Yalmip 
(Löfberg, 2004). Modeling environment (ME) (Zakula et al., 2014) is a 
modular simulation tool for buildings that employs MPC based on 
TRNSYS for virtual building modeling and Matlab for MPC imple
mentation. TACO (Jorissen et al., 2018a) automates the process of 
setting up an MPC from a white-box model in Modelica. The nonlinear 
MPC is formulated using the CasADi (Andersson, Gillis, Horn, Rawlings, 
& Diehl, 2018) framework and solved with the JModelica (Modelon, 
2017) optimizer. 

8.3. MPC solvers 

Today, dozens of optimization solvers are available, both commer
cially and free, for a wide variety of problems. Tables 13 and 14 provide 
an overview of the most significant solvers suitable to solve MPC 
problems on desktop and embedded platforms, respectively. The used 
acronyms stand for Linear Programming (LP), Quadratic Programming 
(QP), Mixed-Integer Linear Programming (MILP), Mixed-Integer 
Quadratic Programming (MIQP), Mixed-Integer Nonlinear Program
ming (MINLP), Nonlinear Programming (NLP), Second Order Cone 
Programming (SOCP), Semi Definite Programming (SDP), Multi- 
Parametric Linear Programming (mpLP), and Multi Parametric 
Quadratic Programming (mpQP), respectively. 

Progress in the solution techniques and an increase in the compu
tational power of the desktop platforms allow us to efficiently solve 
large-scale optimization problems with up to hundreds of thousands of 
variables. In the case of embedded platforms, several tools have auto
mated and optimized code generation features supporting different 
languages (e.g., C, C++ or Python) for rapid development and deploy
ment of the MPC controllers in real-world applications. These embedded 
applications are, however, mostly suitable for small, fast dynamic sys
tems, which are different from the large and slow dynamics of the 
buildings. Nevertheless, their efficiency and cheap computational power 
could be harnessed in large buildings for local control loops, or small- 
scale residential applications of MPC. 

In the case of data-driven approximate MPC, the machine learning 
models can be trained by solving a wide variety of optimization prob
lems offline. The type of OP to be solved depends on the used models (e. 
g., neural networks, regression trees, etc.) and their specification. While 
dedicated algorithms also exist to train more complex and specific ML 

Table 9 
Summary of the selected BES programs used to emulate the buildings for testing 
MPC in co-simulation.  

BES Tool Free Equation- 
based 

Imperative Explicit 
controls 
modeling 

ESP-r (Yahiaoui, Hensen, 
& Soethout, 2003) 

• – • •

EnergyPlus (Crawley 
et al., 2001) 

• – • – 

TRNSYS (Beckman et al., 
1994) 

– – • – 

Modelica (Baetens et al., 
2015; Wetter et al., 
2014) 

• • – •

J. Drgoňa et al.                                                                                                                                                                                                                                  



Annual Reviews in Control xxx (xxxx) xxx

24

models (Sra, Nowozin, & Wright, 2011), most of the problems in this 
domain are solved via gradient descent algorithms. However, they can 
also be solved by using general purpose solvers listed in Table 13. 

9. Practical implementation of MPC in buildings 

The ambition of this section is to provide a complete overview of the 

key components and nuances of practical implementation of MPC in 
buildings. A schematic representation of the presented framework cor
responding to the structure of this section is given in Fig. 9. The three 
key elements are: the control configuration discussed in Section 9.1, the 
SCADA architecture presented in Section 9.2, and the communication 
infrastructure described in Section 9.3. Section 9.4 concludes the topic 
and provides experience-based practical guidelines for MPC 

Table 10 
Summary of the co-simulation tools and interface standards to bridge BES programs with other simulation platforms and control-oriented programming languages.  

Co-simulation tool or interface standard Free Interface for    

ESP-r EnergyPlus TRNSYS Modelica MATLAB Python 

BCVTB (Wetter & Haves, 2008) • • • • • • – 
MLE+ (Bernal et al., 2012) • – • – – • – 
OpenBuild (Gorecki et al., 2015) • – • – – • – 
FMI (Broman et al., 2013; Pang et al., 2016) • – • • • • •

Table 11 
Summary of selected control-oriented building modeling tools. The acronyms are explained in the text.  

Tool Free Language Paradigm   

Modelica MATLAB Python TRNSYS R White Grey Black 

Modelica Linearization (Picard et al., 2015) • • – – – – • – – 
Simscape Library (Lapusan et al., 2016) • – • – – – • – – 
ME for MPC (Zakula et al., 2014) – – • – • – – • – 
OpenBuild (Gorecki et al., 2015) • – • – – – – • – 
IDENT (Jiménez et al., 2008) • – • – – – – • – 
BRCM Toolbox (Sturzenegger et al., 2014) • – • – – – – • – 
BLDG (Kircher & Zhang, 2016) • – • – – – – • – 
BASBenchmarks (Cauchi & Abate, 2018) • – • – – – – • – 
Grey-box Toolbox (De Coninck et al., 2016) • • – • – – – • – 
MPCPy (Blum & Wetter, 2017) • • – • – – – • – 
LORD (Gutschker, 2008) • – – – – – – • – 
CTSM-R (Kristensen et al., 2004a) • – – – – • – • – 
MoCaVa (Bohlin, 2003) – – • – – – – – •

System Identification Toolbox (Ljung, 2006) – – • – – – – – •

Table 12 
Overview of the modeling software for optimization problems suitable for formulating and solving MPC problems.  

Tool Free MATLAB Python Julia Modelica C/C+ Java Tool-specific language 

Yalmip (Löfberg, 2004) • • – – – – – – 
CVX (Grant & Boyd, 2014) • • – – – – – – 
MPC Toolbox™ (Mathworks, 2020) – • – – – – – – 
MPC Tools Package (Amrit, 2008) • • – – – – – – 
Hybrid Toolbox (Bemporad, 2004) • • – – – – – – 
MPT3 (Herceg, Kvasnica, Jones, & Morari, 2013) • • – – – – – – 
NMPC Tools (Rawlings & Amrit, 2008) • • – – – – – – 
ACADO (Houska, Ferreau, & Diehl, 2011) • • – – – • – – 
ACADOS (Verschueren et al., 2019) • • • – – • – – 
CasADi (Andersson et al., 2018) • • • – – • – – 
APMonitor (Hedengren, Shishavan, Powell, & Edgar, 2014) • • • • – – – – 
HPMPC (Frison, Sørensen, Dammann, & Jørgensen, 2014) • – – – – • – – 
CVXPY (Diamond & Boyd, 2016) • – • – – – – – 
Pyomo (Hart et al., 2017) • – • – – – – – 
Picos (Sagnol & Stahlberg, 2018) • – • – – – – – 
OpenModelica (Fritzson et al., 2018) • – • – • • – – 
JModelica.org (Modelon, 2017) • – • – • • • – 
JuMP (Dunning, Huchette, & Lubin, 2017) • – – • – – – – 
AMPL (Fourer, Gay, & Kernighan, 2002) – – – – – – – •

GAMS (Rosenthal, 1988) – – – – – – – •

Building control oriented         
OpenBuild (Gorecki et al., 2015) • • – – – – – – 
BRCM toolbox (Sturzenegger et al., 2014) • • – – – – – – 
EHCM toolbox (Darivianakis, 2020) • • – – – – – – 
BLDG (Kircher & Zhang, 2016) • • – – – – – – 
BeSim (Drgoňa, 2019) • • – – • – – – 
FastSim (Arroyo et al., 2018) • – • – • – – – 
MPCPy (Blum & Wetter, 2017) • – • – • – – – 
GenOpt (Coffey et al., 2010) • – – – – – • – 
ME for MPC (Zakula et al., 2014) – • – – – – – – 
TACO (Jorissen et al., 2018a) – – – – • • – –  
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implementation in real buildings. 

9.1. Control configuration 

The following terminology is used in this section for networked 
control systems. See Fig. 10 for conceptual diagrams. 

Centralized control: a centralized agent (or controller) regulates an 
entire system. 
Decentralized control: each agent controls its own subsystem 
without communicating with neighbors. 
Distributed control: multiple agents are distributed horizontally over 
a whole system. There is no central agent. 
Hierarchical control: multiple agents are arranged in a hierarchical 
tree to control an entire system. 

Centralized MPC The centralized MPC scheme solves a plant-wise 
optimization problem in a central computer and has been the primary 
method in the building sector. However, for buildings which are 
composed of a large number of dynamic subsystems composing a com
plex topological network, applying centralized MPC could be chal
lenging due to increased computational complexity and reliability issues 
(Jamshidi, 1996). In this case, it is favorable to decompose a large 
centralized optimization problem into smaller multiple subproblems, 
which motivates configurations of decentralized, distributed and hier
archical MPCs. 

Decentralized MPC In the decentralized MPC scheme, each local 
controller is designed as MPC and optimizes its own performance index 
without considering costs and dynamic influences of the others. There
fore, overall performance could be quite poor, especially for strongly 
coupled systems, though the communication overhead is minimal 
(Rawlings & Mayne, 2009). 

Distributed MPC In the distributed MPC approach, each local 
controller which regulates its own subsystem solves a subproblem and 
communicates with others in order to improve the entire system per
formance. The information exchange consist of predicted state or control 
inputs so that any local controller can predict better by considering in
fluences of neighboring systems. The communication can occur only 
once at each sampling time (non-iterative algorithms), i.e. only after 
each local optimization problem is solved, or many times within the 
sampling time (iterative algorithms) (Scattolini, 2009). Iterative algo
rithms could show better performance in terms of convergence and 
closed loop stability, but have higher communication burdens, causing 
concerns about communication delays, overloads and transmission 
package losses (Camponogara, Jia, Krogh, & Talukdar, 2002). 

In the literature of process control, the non-cooperative and coop

erative MPCs (Rawlings & Mayne, 2009; Venkat, Rawlings, & Wright, 
2005) are the most popular distributed MPC methods. Both of them 
optimize control inputs to minimize a global index in the form of 
∑N− 1

k=0
∑S

i=1ℓi(xi
k, u

i
k) +

∑S
i=1ℓi(xi

N) where ℓi is the stage cost for the ith 
subsystem. Note that the cost function is not separable2 when control 
inputs are the only optimization variables (because of dynamic cou
plings between subsystems), although separable with respect to the state 
and control inputs. During the optimization phase, each MPC predicts 
the state evolution considering dynamic couplings to neighbors 
assuming that input profiles received from neighbors are fixed. The key 
difference between the non-cooperative and cooperative MPCs is that 
local controllers of the cooperative MPC tend to minimize the same 
global cost function, while those of non-cooperative MPC tend to 
minimize individual cost functions, i.e. the ith MPC minimizes 
∑N− 1

k=0 ℓi(xi
k, u

i
k) + ℓi(xi

N) (Moroşan, Bourdais, Dumur, & Buisson, 2011). 
In cooperative control, the distributed optimization problems are 
equivalent to the centralized MPC problem and are solved iteratively. 
Therefore, the cooperative control guarantees global performance, such 
as constraint feasibility, convergence, optimality and closed loop sta
bility. See (Stewart, Venkat, Rawlings, Wright, & Pannocchia, 2010) for 
detailed proofs. 

Hierarchical MPC The hierarchical control configuration is particu
larly useful when coordination between local controllers is needed in 
order to improve overall performance, or control actions for different 
time scales need to be decided (Scattolini, 2009), e.g. an upper layer 
computes optimal temperature setpoints in an economic sense while 
lower layers focus on setpoint tracking. 

To design a coordinator (upper-level) and local MPCs (lower-level), 
the dual decomposition method (Jamshidi, 1996) or the Alternating 
Direction Method of Multipliers (ADMM) (Boyd et al., 2011) can be 
employed. Both methods solve a global optimization problem indirectly 
by solving the Lagrangian dual problem and adopt the dual ascent 
method (Bazaraa, Sherali, & Shetty, 2013). The key to decomposing the 
primal MPC problem is that coupled dynamic equations can be sepa
rated in the Lagrangian function when the primal objective function is 
separable. If the dynamics are linear and the objective function is convex 
on a convex compact set, the dual and primal problems are equivalent 
(the strong duality theorem (Boyd & Vandenberghe, 2004)). In the hi
erarchical control scheme, the upper-level controller represents the dual 
ascent step, and hence vertical communication between the upper and 
all lower-level controllers are necessary. For the ADMM, 

Table 13 
Overview of the most notable optimization solvers suitable to solve MPC problems on a desktop platforms.  

Solver Free LP QP MILP MIQP MINLP NLP SOCP SDP 

CPLEX (ILOG, 2007) – • • • • – – • – 
Gurobi (Gurobi Optimization, 2012) – • • • • – – • – 
MOSEK (Andersen & Andersen, 2000) – • • • • – – • •

XPRESS (Berthold, Farmer, Heinz, & Perregaard, 2018) – • • • • – – • – 
SeDuMi (Sturm, 2003) • • • – – – – • •

SDPT3 (Toh, Todd, & Tütüncü, 1999) • • • – – – – • •

CVXOPT (Andersen & Vandenberghe, 2018) • • • – – – – • •

GLPK (Makhorin, 2012) • • – • – – – – – 
IPOPT (Wächter & Biegler, 2006) • • • – – – • – – 
ALGLIB (Bochkanov, 2019) • • • – – – • – – 
Artelys Kitro (Byrd, Nocedal, & Waltz, 2006) – • • – – – • – – 
SNOPT (Gill, Murray, & Saunders, 2005a) – • • – – – • – – 
APOPT (APOPT, 2020) – • • • • • • – – 
BARON (Sahinidis, 2017) – • • • • • • – – 
Bonmin (Bonami et al., 2005) • • • • • • • – – 
WORHP (Büskens & Wassel, 2013) • • • • • • • – – 
GenOpt (Wetter, 2001) • – – – – • • – –  

2 An objective function, f(x1, ⋅⋅⋅, xS), is called separable, if f can be expressed 
as a sum of functions of the individual variables of x1, ⋅⋅⋅, xS, i.e. f(x1,⋯,xS) =
∑S

i=1fi(xi)
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communications between lower-level MPCs which represents the 
Gauss-Seidel algorithm is additionally required. Note that the 
upper-level controller is not MPC since it does not predict future 
behaviors. 

When both short-term and long-term behaviors of a system are 
concerned, a hierarchical control system can be designed so that an 
upper layer regulator acts on lower frequencies and computes a control 
action concerning a long-term effect, while lower layer controller(s) act 
on higher frequencies and are responsible for short-term behavior(s) 
(Scattolini & Colaneri, 2007). This approach is related to cascade con
trols in which the inner and outer control loops are associated to faster 
and slow dynamics, respectively. One of the most significant advantages 
of this control approach is that it can substantially improve control 
performance under disturbances and nonlinearities associated with the 
inner loop, and that control designs can be separated when the upper 
layer works on a sufficiently low frequency range, say a factor of five or 
more in terms of inner close-loop system (Skogestad & Postlethwaite, 
2007). 

9.1.1. Review of applied MPC architectures for HVAC systems 
Centralized MPC in buildings In the building control domain, the 

majority of the theoretical work and simulation-based case studies 
consider centralized MPC architecture. However, there are not many 
truly centralized MPC solutions that have been considered for applica
tion in practice. The main reason is non-standardized use of the 
communication protocols preventing straightforward access to the field 
layer of the SCADA architecture, which will be discussed in the 
following Section 9.2. Moreover, keeping the low-level RBC and PID 
loops intact may improve the operational robustness of the hierarchical 
MPC implementation by avoiding a single point of failure in the control 
system. Despite this fact, the paper (Jorissen et al., 2018b) presents an 
implementation strategy of centralized high-fidelity MPC for the real 
office building in Belgium. 

Decentralized MPC in buildings The design of decentralized MPC for 
thermal control of buildings based on reduced order models and state 
observers was studied in Chandan and Alleyne (2014). A methodology 
determining an appropriate decentralized architectures, which provide 
a satisfactory trade-off between control performance and robustness for 
building control was proposed in Chandan and Alleyne (2013). An 
agent-based approach for distributed monitoring and model-based 
control of an office building was presented in Davidsson and Boman 
(2005). A graph theory-based approach and consensus protocols applied 
to thermal modeling of buildings was presented in Moore, Vincent, 
Lashhab, and Liu (2011). However, all of the aforementioned decen
tralized studies on building modeling and control remain in the simu
lation domain. 

Distributed MPC in buildings An application of non-cooperative MPC 
can be found in Ferrarini, Mantovani, and Costanzo (2014); Moroşan, 
Bourdais, Dumur, and Buisson (2010) and those of cooperative MPC-like 
schemes3 are found in Moroşan et al. (2011); Putta, Zhu, Kim, Hu, and 
Braun (2012); Putta, Kim, Cai, Hu, and Braun (2014). For those studies, 
the objectives are to distribute multi-zone building loads to multiple 
units in an optimal way. The dynamic interactions are due to thermal 
couplings between zones through convective or conductive heat trans
fer. More precisely, in Putta et al. (2012), the case study building has two 
coupled zones and each zone is served by a separate air handling unit 
(AHU). Two local MPCs were designed to control the individual AHUs 
targeting to reduce operating costs for the entire system. in Putta et al. 
(2014), a nine-zone building served by one AHU is considered. Ten local 
MPCs were designed, where nine of them control air flow rates of in
dividual variable air volume boxes (VAVs) to regulate nine zone air 
temperatures. The remaining MPC optimizes the supply air temperature 
setpoint. Similarly, in Moroşan et al. (2011), four distributed MPCs were 
designed where three of them manipulate their own local electric 
heaters while the remaining one controls a central heating system in 
order to optimally reduce the electricity cost while meeting individual 
zonal heating loads. For the last two cases, the control configurations are 
not purely distributed MPC and modifications of the cooperative MPC 
were necessary since there is a global variable which influences all 
subsystems, i.e. the supply air temperature of the central heating unit, 
resulting in a different cost structure compared to that of the cooperative 
MPC. The proposed MPCs have two-level pyramid structures where the 
upper-level controller optimizes the global variable based on informa
tion from lower-level controllers, while multiple lower-level controllers 
solve their own problems in a cooperative-MPC approach using the 
optimized global variable. 

Hierarchical MPC in buildings In the literature of the building control, 
many applications adopt traditional hierarchical control architectures as 
discussed in previous section. Examples of such applications can be 
found in Abreu, Bourdais, and Guéguen (2018); Kim and Braun (2018); 
Ma, Anderson, and Borrelli (2011). in Ma et al. (2011), a three-zone 
building served by a VAV AHU system is considered. A standard dual 
decomposition method (Jamshidi, 1996) for decomposing MPC prob
lems was adopted to design a hierarchical control system where 
lower-level MPCs regulate individual zone air temperatures in an eco
nomic way while the upper-level optimizer coordinates possible con
flicts in local decisions. in Kim and Braun (2018), the hierarchical MPC 
system was designed for optimal demand response for a building served 
by multiple on-off stage HVAC units. The upper layer MPC predicts 
longer-term performance (about a day) and optimizes thermostat tem
perature setpoints to shift building loads in response to a utility price 
signal, while the lower layer MPC predicts short-term performance 

Table 14 
Overview of the most notable optimization software tools suitable to solve MPC problems on embedded platforms.  

Solver Free Code generation LP QP mpLP/mpQP MILP/MIQP NLP 

OOQP (Gertz & Wright, 2003) • – • • – – – 
qpOASES (Ferreau, Kirches, Potschka, Bock, & Diehl, 2014) • – • • – – – 
ECOS (Domahidi, Chu, & Boyd, 2013) • – • • – – – 
CVXGEN (Mattingley & Boyd, 2012) • • • • – – – 
FiOrdOs (Ullmann, 2011) • • • • – – – 
FORCES PRO (Embotech, 2020) – • • • – – – 
Falcopt (Torrisi et al., 2017) • • • • – – •

Toolbox        
ACADO (Houska et al., 2011) • • • • – – •

Hybrid Toolbox (Bemporad, 2004) • • • • • • – 
MPT3 (Herceg et al., 2013) • • • • • • •

MPC Toolbox™ (Mathworks, 2020) – • • • • • •

3 It means that each local MPC has a shared objective function and considers 
influences of neighbors like the cooperative MPC, although decomposition 
methods and implementation details are different. 

J. Drgoňa et al.                                                                                                                                                                                                                                  



Annual Reviews in Control xxx (xxxx) xxx

27

(about an hour) and supervises multiple units to prevent simultaneous 
unit activation during a precooling period, which could cause an un
necessarily higher demand charge. in Abreu et al. (2018), the upper 
layer MPC optimizes the setpoint while the lower layer MPCs track the 
setpoint. Recently, studies of applying ADMM to decompose MPC or 
general optimization problems for buildings become popular and are 
found in Cai, Braun, Kim, and Hu (2016a,b); Cai, Kim, Putta, Braun, and 
Hu (2015); Gupta, Kar, Mishra, and Wen (2015); Hou, Xiao, Cai, Hu, and 
Braun (2017); Moroşan et al. (2011); Xiao, Hou, Cai, and Hu (2018). 

Concluding remarks on MPC architecture in buildings Despite a large 
number of MPC studies, distributed or hierarchical-distributed MPC 
schemes got relatively little attention from the building HVAC control 
field. This may be due to lack of practical needs of distributing 
computational loads. In other words, many MPC problems in building 
HVAC systems could be handled in a centralized way. In addition, the 
sufficient conditions for convergence, i.e. convex functions for objective 
and inequality constraints and a linear structure for equality constraints, 
make it difficult to use distributed algorithms for practical building 
controls where HVAC systems exhibit nonlinear and non-convex char
acteristics and constitute nonlinear equality constraints. However, 

because building systems need to be integrated with renewable energy 
resources, energy storage systems and networks (electric, thermal, gas), 
and because the study of convex approximations is progressing, e.g. 
(Atam & Helsen, 2015), in the near future it is expected that there are 
more opportunities of applying distributed and/or hierarchical MPCs for 
building controls. 

9.2. SCADA architecture 

Supervisory control and data acquisition (SCADA) is a standard ar
chitecture to define the different layers of hierarchical control systems. 
SCADA systems are widely used in various fields, such as process con
trol, energy, and power systems operation, and have recently gained a 
lot of importance for the control and data acquisition of the so-called 
Building Automation Systems (BAS). One of the main advantages of 
using a SCADA configuration is that the different layers of control and 
communication flows can be depicted sequentially, in a much more 
structured and organized way. Another advantage is that other auto
mated systems used in the building can be integrated into one single 
platform (i.e. HVAC, security, lighting or gas automation systems), 

Fig. 9. General framework for the MPC implementation in buildings.  

Fig. 10. Schematic of a centralized (a), hierarchical (b), distributed (c) and decentralized (d) MPC control configuration. Extension of figure given in Serale 
et al. (2018). 
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which makes the management of the whole installation more effective 
(Figueiredo & Costa, 2012). A SCADA system for building control and 
operation typically consists of four different layers (see Fig. 11): 

Supervisory layer: the highest layer of the control architecture, 
where MPC is normally executed. It also includes all clients that 
interact with the system for the purpose of top-management activ
ities. For example, supervisory control or data-analysis by means of 
visual interfaces used to monitor the whole building’s performance. 
Management layer: includes one or several servers that allow the 
interaction between the higher and the lower layers of the control 
architecture. It is also used to conduct preliminary monitoring and 
preprocessing of information, as well as to store data by means of 
local or online databases. This layer includes all Building Manage
ment Systems (BMS) that are normally used to manage and control 
modern building installations. 
Automation layer: integrates all local controllers that allow the 
execution of primary plant control by using conventional control 
strategies, like PID and RBC. All different modules collecting the 
measurements from the building process downstream are also 
included in this layer. 
Field layer: the lowest layer of the control architecture. It includes all 
physical components, sensors and actuators. 

It is important to outline that the division between layers of control 
can be apparent in software, hardware or a combination of both. This 
will depend on the communication infrastructure which is tackled in the 
next section. 

9.3. Communication infrastructure 

Communication is yet another crucial element of any practical con
trol implementation. The importance can be emphasized if we would put 
the whole building control concept it into a human body analogy. The 
building envelope would then be the torso, heating/cooling capacities 
the digestive system, air handling units (AHU) the respiratory system, 
piping the blood vessels, and pumps the heart. The SCADA infrastructure 
would be the nervous system, control configuration the wiring of the 
brain, and the MPC formulation its mental program. The communication 
infrastructure would represent the electrochemical signals traveling 
throughout the pathways of the nervous system, carrying the informa
tion from the subconscious level of low-level control to the conscious 
level of supervisory applications, while storing the data in the memory 
represented by a database. 

9.3.1. MPC deployment 
In SCADA-based control systems, the interaction between MPC and 

the building is implemented in a client-server model. A client can be 
defined as a device or computer program that executes the MPC 
formulation and accesses the building by means of a server; which can be 
seen as a device or computer program that acts as a bridge of commu
nication between MPC and the rest of the building installation. There are 
two main configurations and networking typologies for the imple
mentation of MPC in a client-server model: local and remote 
configuration. 

Local: The MPC algorithm is executed in the same building instal
lation where the control is performed. Hence, the division between 
client and server is only apparent in software (Afram & 
Janabi-Sharifi, 2017; Skeledzija et al., 2014). Local configurations, 
however, lack flexibility, since MPC developers need to be present in 
the building during the commissioning phase. Moreover, any modi
fications in the controller’s formulation will have to be applied 
locally to the building, which might result in a quite tedious and 
ineffective process. 

Remote: The MPC algorithm is executed remotely from the building 
installation where the control is performed. The division between 
client and server is apparent in software but also in hardware, as two 
separate devices are normally implemented. Internet or other wire
less communications are used to interact with the building, see e.g. 
(Gwerder, Gyalistras, Sagerschnig, Smith, & Sturzenegger, 2013; Ma, 
2012). Remote configurations have several advantages, such as 
increased flexibility and interoperability from multiple platforms 
and devices. However, the disadvantage is the need for secure and 
stable communication channels. 

Regarding MPC solvers, for practical installations, they are being 
deployed using several programming languages, such as C++, Python, 
Julia, or even JavaScript. In the research domain, however, the MPC 
algorithm can often run in MATLAB, with limited industrial applicability 
due to the associated software costs. 

9.3.2. Communication protocols 
In general we can differentiate between two levels of communication 

and their corresponding protocols, bottom and upper-level: 

Bottom level: communication on the lowest layers of control, for 
example local controllers and HVAC actuators. 
Upper level: communication on the highest layers between MPC and 
the local controllers of the building by means of a server. Servers can 
be understood as ’interpreters’ that translate all inputs coming from 
the MPC into a language that local controllers can understand, and 
vice-versa (Nyvlt, 2011). 

In recent years, plenty of communication protocols have been 
developed for the purpose of Building Automation Systems (BAS). They 
can be grouped into two main categories: closed and open protocols. 

Closed protocols: based on proprietary communication structures 
developed by each manufacturer separately, usually tailored to 
particular applications, hence they often lack versatility and flexi
bility (Bovet, Ridi, & Hennebert, 2014). 

Fig. 11. SCADA-based control architecture for building control and operation 
using MPC. 
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Open protocols: based on standard specifications which leads to clear 
advantages, such as greater flexibility of implementation and inter
operability of devices from hundreds of different vendors (Nyvlt, 
2011). 

Table 15 provides a compact overview and classification of selected 
communication protocols specifically designed or reported to be used in 
building control applications. 

The communication challenges in real buildings proliferate with the 
scale, use of multi-vendor devices, different protocols, and geographical 
distribution of the units. In recent years, modern communication plat
forms for distributed sensing and control systems have been under 
development to mitigate those challenges. Examples of such platforms 
are the commercial Niagara Framework® (Tridium, 2019) developed by 
Tridium’s Inc. belonging to the Honeywell group, or open-source Volt
tron™ (Akyol et al., 2016) developed by Pacific Northwest National 
Laboratory. 

9.3.3. Supervisory applications 
Supervisory applications are implemented by means of Human Ma

chine Interfaces (HMIs), which allow monitoring the MPC performance 
using visual and graphical interfaces. In a SCADA-based architecture, 
HMIs act as clients that connect to the building server. They can be 
divided into two groups: desktop, and web-based applications. 

Desktop applications: stand-alone software tailored to one particular 
computer, which only can be accessed by a restricted number of 
users. They offer more privacy, security, and usually also better 
performance than web-applications, but they lack the portability, 
scalability, and flexibility of implementation (Pop, 2008), which are 
crucial for integration with other automation systems, using the 
same BMS. 
Web-based applications: accessed through the network by multiple 
clients and devices simultaneously, exploiting the use of internet and 
web-services. They are much more flexible because they are 
platform-independent and are not tailored to one specific device. 
Moreover, they are more scalable and can be easily integrated into 
the whole BMS of the building. For obvious reasons, they are more 
suitable in a remote configuration. Some disadvantages of using web- 
applications are slower performance, internet-dependency, or secu
rity risks compared to a desktop application (Pop, 2008). 

9.3.4. Data storage 
The storage of data has significant importance for the implementa

tion of MPC in buildings. MPC developers make use of historical data for 
three main purposes: (i) to develop and calibrate the building model 
used by MPC; (ii) to keep track of variables that are used as parameters 
in the MPC formulation (i.e. weather-data, electricity prices, etc.); (iii) 
and to analyze the performance of the controller. Regarding their 
implementation, databases can be classified into local and cloud 
dtabased. 

Local databases: stored in a dedicated device or computer and can 
only be accessed by a limited number of applications. 
Cloud databases: make use of a web-server to store data, which is 
connected to the Internet and can be accessed remotely by multiple 
applications. 

For MPC implementations cloud databases are usually preferred 
above local databases due to their flexibility of operation and less 
tedious setting-up phase. Moreover, a common practice today is to 
outsource the storage of data using an external server from a third-party, 
normally referred to as a cloud provider. As a result, cloud services 
provide a reduction in the creation and maintenance costs of the data
base, better scalability, and more safety towards losing backups (Li, Li, 
Vrabie, Bengea, & Mijanovic, 2014). The downsides of the cloud-based 

solutions are potential cyber-security issues, which may often impose 
more secure local implementation. 

Regarding the model they implement, databases can be classified 
into relational and non-relational databases (Gyorodi, Gyorodi, & Sotoc, 
2015). 

Relational databases: are based on a Structure Query Language (SQL) 
to store and retrieve data from the database in a really organized way 
using tables. They count on rigid schemes that need to be designed 
before data is stored and are quite difficult to change afterward. 
Non-relational databases: do not use relational management systems, 
hence data is not stored using tables, nor rigid schemes. They offer 
big advantages compared to relational databases, such as superior 
performance, better scalability and more flexibility of 
implementation. 

Relational databases are widely implemented for all kinds of appli
cations showing a pretty good performance. However, recent studies 
have proven that they present some limitations, especially when dealing 
with large amounts of data and transaction (Gyorodi et al., 2015). Thus, 
big-data organizations (e.g. Google, Amazon or Facebook) are starting to 
use non-relational databases to store their data. However, this is still yet 
a relatively new direction and the majority of MPC implementations 
reported in the literature opted for the relational databases, see. e.g. 
(Fabietti, 2014; Skeledzija et al., 2014). However, for the future 
implementation of MPC, non-relational databases seem to be a better 
candidate, since the controller is expected to deal with big volumes of 
data, especially in large-scale buildings where a central database might 
be used for the whole installation. 

9.4. Practical guidelines 

This section summarizes practical aspects discussed in detailed in 
previous sections and extracts step by step guidelines for developing and 
implementing a successful MPC application for a real building. A general 
methodology is systematically shown in Fig. 12 covering the high-level 
workflow, starting with setting up the communication infrastructure, 
followed by control-oriented modeling, control configuration with MPC 
design and tuning, finalized by MPC deployment as a supervisory 
application in modern SCADA systems and closing the loop with 
communication setup in case of necessary modifications. 

A more detailed and practically oriented flowchart is presented in 
Fig. 13. It encompasses the necessary actions and decisions of the whole 
MPC workflow from scratch to implementation in a real building. The 
preliminary phase starts with a feasibility analysis which should be 
based on controllability and measurability of the building via the 

Table 15 
Summary and classification of selected communication protocols used in 
building control.  

Protocol Standard Bottom 
level 

Upper 
level 

Closed Open BAS 
oriented 

Nikobus  • – • – – 
iNels  • – • – •

BACnet ISO 
16484-5 

• – – • •

KNX ISO/IEC 
14,543 

• – – • •

Modbus  • – – • •

LonWorks ANSI/ 
CEA-709.1 

• – – • •

M-bus EN 13,757 • – – • •

OPC  • • – • – 
TCP/IP IETF – • – • – 
UDP RFC 768 – • – • – 
FTP RFC 2428 – • – • – 
HTTP/ 

HTTPS 
RFC 7230 – • – • –  
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installed building automation system (BAS). The second step is to 
evaluate the economic potential for a building of interest via return on 
investment analysis. 

The design phase starts with the third step of the flowchart by setting 
up the real-time communication between the BAS and the supervisory 
computer for automated data logging and storage, as summarized in 
Section 9.3. This automated communication functionality is a must for 
any real-time dynamic optimization scheme such as MPC, while his
torical data stored in databases serve for modeling and tuning purposes. 
Necessary data points need to be selected based on the design of the 
model and control architecture. However, today, such functionality still 
represents a bottleneck due to the large variety of used protocols, in
terfaces and BAS vendors with closed solutions. 

The fourth step consists of modeling, as elaborated in Section 3. First, 
engineers need to define the objectives, constraints and key performance 
indicators (KPIs) for performance assessment of the models and control 
strategies. Subsequently, a control-oriented model needs to be devel
oped via dedicated software tools partially listed in Section 8.1.3 and 
evaluated with respect to selected performance measures. 

After construction of a sufficiently accurate model, a control 
configuration needs to be defined in the fifth step. If the selected 
configuration is realizable within the current communication infra
structure, then we proceed to the next step, else either control config
uration is modified, or a list of available data points is extended. 

In the sixth step, a control engineer initiates MPC design by formu
lating the optimal control problem, identifying the problem class and 
selecting the solution paradigm as described in Sections 2, 5, and 6, 
respectively. Subsequently, appropriate design tools and solvers are 
selected, e.g. based on the lists given in Sections 8.2, and 8.3, respec
tively. The implementation of MPC algorithms presented in Section 4 
follows. 

After tuning and performance evaluation in closed-loop simulation 
studies, controllers with acceptable quality are selected for deployment 
in the seventh step of the workflow. MPC solvers need to be installed 
either locally or on a remote computational platform and integrated in 
the SCADA system of the building (see Section 9.2). The deployment 
phase consists of functionality tests, and installation of the user interface 
and backup solutions, such as watchdog timers, alarms and automatic 
fallback controller for recovering operation after failures. Only after 
this, the operation phase can be initiated in the final eighth step. The 
installed applications continuously monitor MPC functionality and if 
error handling logic is triggered, the operation autonomously switches 
to the fallback control strategy, typically represented by simple RBC 
logic or PID loops. Each operational failure is typically accompanied 
with alarm messages to the building operators. 

10. Comparison and performance assessment 

Comparison and performance assessment of MPC approaches are 
important to identify the most promising approaches and guide transi
tion of MPC strategies from research to industry. However, a number of 
challenges exist that make such comparisons difficult. Therefore, this 
section outlines these challenges, reviews the literature on studies that 
have compared MPC approaches, and suggests the needs of a more 
unifying framework for such assessment. 

10.1. Challenges 

An initial challenge of comparing MPC approaches is the large 
variation any implementation can take compared to another. As pre
sented in this paper, there are a number of factors and methods to 
consider for each of the many components of the MPC, creating a very 
large solution space. In addition, each application, whether it be a single 
zone, building, campus, or neighborhood, presents its own set of design 
and operation characteristics that may promote the use of one method 
over another. These include architectural design and construction, 

climate, HVAC and lighting system design, occupancy and usage, system 
controllability, available measurements, data management, and control 
objective. 

A second challenge of comparing MPC approaches is the relatively 
small number of field tests available, compared to the solution space of 
available approaches and applications. In such field tests reported in 
literature, it is common to document the performance of a single 
implementation for a particular application to demonstrate performance 
advantages over a more conventional method of control. It is important 
to point out that the choice and tuning of the benchmark controller has a 
direct influence on the improvements calculated for MPC. It is uncom
mon to consider and compare a range of methods. In addition, the real 
implementations are often not long-term studies, lasting weeks to 
months and not years, limiting the insight on how MPC strategies 
perform during all seasons, holidays, and other specialty types of days, 
as well as how much maintenance is required over time. Moreover, few 
studies report on or discuss implementation costs and payback periods. 

A final challenge is defining the grounds for comparison. Common 
metrics are used in the literature associated with energy savings, oper
ating costs savings, and occupant comfort improvement. However, other 
important bases of comparison of implementation and performance 
include computer hardware and software requirements, computation 
time, robustness to changing conditions, sensitivity to model and fore
cast uncertainty, data requirements, implementation effort, and installer 
expertise. Such a broad range of factors makes objective comparison 
difficult. 

10.2. Literature 

Studies that have compared specific MPC formulations are summa
rized in Table 16. All studies were performed using simulation and the 
baseline for comparison tended to be a centralized, linear, deterministic 
MPC implementation, except for one study that compared the use of two 
different nonlinear optimization solver algorithms. Each study utilized 
metrics related to energy use or cost and thermal comfort, while some 
other metrics included computational burden and setpoint tracking 
error. The results of each study were consistent with the hypotheses 
presented for each test implementation. For instance, stochastic and 
robust MPC can significantly improve the handling of disturbance or 
model uncertainty with respect to maintaining comfort compared to 
deterministic MPC, with only a small loss in energy savings potential. 
Another example is that distributed MPC can lessen the computational 
burden and communication requirements of a centralized MPC, with 
only small losses in energy savings potential and comfort. Differences in 
the studies, however, make it difficult to compare the implementations 
among each other and to evaluate the scalability of each technique in 
practice. First, each study considered a different building design, con
struction, climate, and HVAC system. In addition, each study considered 
different periods of operation, ranging from one hour to one year. 

Other studies have focused on comparing various factors and tech
niques related to thermal envelope model development for the MPC. In 
(Blum et al., 2019b) seven factors affecting the accuracy of thermal 
envelope models were identified and their subsequent effect on MPC 
performance was tested, including building design, model structure, 
model order, identification data set, identification data quality, identi
fication algorithm, and software tool-chain. The study showed that 
model order and initial parameter guesses during identification have 
strong influences. In (Sourbron et al., 2013b) the effects of model order 
and training data on final MPC performance for a concrete core acti
vated HVAC system were studied. Studies in Picard et al. (2017, 2016) 
showed that linearizing detailed models, rather than building grey-box 
models, is a technique that works well. Other authors Harb, Boyanov, 
Hernandez, Streblow, and Müller (2016); Reynders et al. (2014) studied 
the effect of building and HVAC system type, training data, model order, 
noise, and measured inputs on parameter identification accuracy. Study 
in Reynders et al. (2014) found that a fourth order model was 
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acceptable, while Harb et al. (2016) found that a second order model 
was acceptable, though neither tested these models in an MPC 
controller. Finally, (Vande Cavey et al., 2014) compared MPC perfor
mance with and without proper state estimation, showing the impor
tance of using a well-tuned state estimator. Similar to the studies 
comparing specific MPC formulations, these studies suffer from not 
utilizing the same building cases or evaluation periods, making 
inter-study comparison difficult. 

In addition to academic studies, Zurich (2020) and Cigler, Tomáško, 
and Široký (2013c) present tools developed to assess the performance of 
MPC. The BACTool (Zurich, 2020) represents a web-based tool that 
utilizes a large number of pre-calculated, yearly building energy simu
lation results to display performance indicators using MPC and one of 
two rule-based controllers. Users can build cases to compare from a 
number of inputs, including among them building construction, orien
tation, climate, HVAC system, and control type. Performance metrics 
that can be compared include energy use [kWh/m2], comfort [K-h], and 
peak demand [W/m2], as well as timeseries of indoor temperature, 
illuminance, blind position, and power demand of HVAC and lighting 
system components. In this way, users can evaluate the potential ben
efits of using MPC over rule-based control in a similar building project. 
Cigler et al. (2013c) presents BuildingLAB, a tool for illustrative and 
educational purposes related to MPC control in buildings. Users can 
change parameters such as prediction horizon, initial conditions, con
straints, and objective function weights (e.g. of operating cost and 
discomfort) and execute simulations of building control using MPC, with 
optimal control results calculated upon execution using the given pa
rameters. In this way, users can see the differences that result from 
changing parameters and gain intuition on expected performance. 

10.3. Framework development 

While the literature review presents a number of studies that 
compare two or more MPC formulation and modeling methods as well as 
tools that were designed to compare MPC performance among various 
conditions and parameter settings, performance and assessment of MPC 
lacks a unified framework designed to tackle the challenges outlined in 
the previous section. The literature studies are limited to the specific 
implementations and conditions under which they were compared, 
while the tools are limited to the building models and MPC approaches 
implemented by the tool designers. Instead, the framework needs to 
provide representative, yet bounded, testing conditions and scenarios 
which any control developer can use to test his/her individual approach. 
Such a framework is similar to the BESTEST (American Society of 
Heating Refrigerating & Air Conditioning Engineers, 2008), a set of 
building specifications and operating scenarios developed for bench
marking and comparison of building energy simulation tools. This can 
be implemented in the form of reference building models and simulation 
scenarios that represent a range of building and system types, are 

implemented with the necessary dynamics for controls design and 
testing represented, are available for use by all MPC researchers and 
control developers regardless of expertise in building simulation 
modeling, can be simulated within a controlled, yet distributable, 
computing environment, and are independent from the control imple
mentation. In addition, the framework needs a reference set of perfor
mance indicators to objectively compare MPC controllers with respect to 
all or a chosen subset of these metrics. The metrics should include 
operational performance, such as energy, cost, and comfort, as well as 
implementation metrics, such as computational requirements and data 
needs. In this way, as MPC developers use such a common framework to 
test their implementations, true comparison and assessment can be done 
relative to other approaches, and development of high-performing, 
cost-effective MPC approaches can be accelerated. 

While development of such a simulation framework presents its own 
set of challenges, the task is being undertaken in Blum et al. (2019a), 
presenting a BOPTEST framework (Building Operation Performance 
Test) consisting of various building types and software platform for the 
testing of advanced control strategies. The approach is similar to an 
existing platform called Alfalfa (National Renewable Energy Labora
tory, 2020), which utilizes OpenStudio models for building simulation, 
implements a Project Haystack (2020) API to connect with potential test 
controllers and other data analytics platforms, and is designed to be a 
scalable web-service. The BOPTEST framework differs in that it utilizes 
FMI and Modelica for building simulation, will have an API for also 
providing disturbance forecasts to MPC controllers, utilizes a 
controller-blocked synchronization scheme rather than a real-time 
synchronization scheme, and also produces reports on key perfor
mance indicators. In the future, the BOPTEST framework aims to 
leverage the Alfalfa architecture to provide an industrial-strength tool 
for controls testing that provides the functionality of BOPTEST with the 
scalable architecture of Alfalfa. 

11. Conclusions 

This paper provides a complete overview and unified framework of 
MPC for building climate control applications. 

MPC theory and problem classification The process of MPC formulation 
starts with the definition of control loop variables and its in
terconnections via constraints, objective functions, and a control- 
oriented building model. The theory behind this process is compactly 
summarized at the start of this paper. The paper presents three algo
rithmic principles behind MPC which are essential for real-time imple
mentation. In particular, we talk about receding horizon control (RHC), 
state estimation, and optimal control solution methods. The details of 
the particular case, such as building model type (e.g., linear, nonlinear), 
comfort index (e.g., comfort zone, PMV), and other factors penalized in 
the objective function, together with imposed constraints are the key 
building blocks of the MPC formulation. Based on these features, MPC 

Fig. 12. A general methodology for modeling, design, and implementation of MPC in buildings based on (Drgoňa, Picard, & Helsen, 2020).  
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problems are classified into three important problem classes (linear, 
nonlinear, hybrid). Moreover, translation methods for direct optimal 
control and its use in association with each MPC class are discussed. A 
linear MPC formulation is computationally least demanding and thus 
easiest to implement. Many modeling tools support linear MPC with a 

wide variety of examples and tutorials. Even though it has certain lim
itations regarding the formulation flexibility, it is the most commonly 
used MPC class in the building sector, mainly because the building en
velope can be accurately approximated by linear dynamics. Nonlinear 
MPC provides us with higher flexibility in formulation and possibly 
increased performance, due to the incorporation of the nonlinear HVAC 
model. On the other hand, this comes with the cost of more elaborate 
modeling and increased computational demands for implementation. 
Hybrid MPC is useful when one needs to deal with integer decision 
variables or switching dynamics like heat pump modes, etc., a situation 
very common in building applications. For the cost of increased 
computational demands, it can provide increased performance 
compared to the more straightforward linear case. 

Algorithmic solutions of MPC Three MPC solution techniques based on 
direct methods, i.e., implicit, explicit, and approximate MPC, have been 
discussed with their pros and cons. MPC approaches have been further 
differentiated based on their problem class, solution approach, and 
dimensionality of the problem defining the computational complexity of 
the optimization problem, and thus determining the feasibility, as well 
as hardware and software requirements for real implementation. 
Building climate control applications have specific characteristics, such 
as a large number of state variables and slow dynamics resulting in 
longer sampling times. For these reasons, and increased availability of 
computation power, in recent years, MPC is most often being imple
mented by solving a corresponding optimization problem online in an 
implicit way. The drawback of this approach is the necessity of available 
computation power and software dependencies associated with dedi
cated optimization solvers. Such a method is universally applicable, 
with the biggest return of investment potential associated with larger 
tertiary buildings due to the smaller ratio on the investment cost 
compared to the overall construction or renovation costs. Explicit MPC 
has been proven to be feasible so far only for small case studies, limiting 
its applicability in practice in multi-zone building control problems. The 
potential use of this approach is within low-level control tasks or 
decentralized single-zone control strategies, e.g. for individual apart
ments within a block or small residential houses. Approximate explicit 
MPC solutions appear to be a promising alternative also for large-scale 
problems providing memory-based control policies with low computa
tional footprints. The main strength of this approach is its numerically 
robust operation due to lightweight computation requirements with 
minimal software dependencies and its applicability even on lower-level 
hardware. The main drawback of such an approach, however, is the 
requirement of the original MPC and the need for larger training data
sets, which can be computationally demanding and hence time- 
consuming to generate. The theoretical part of the paper is finalized 
by the formalism of uncertainties in the MPC problem and methods 
conventionally used for their mitigation. In particular, these methods 
are offset-free MPC via state augmentation, robust MPC, stochastic MPC, 
adaptive MPC, and learning-based MPC. 

Software tools for building modeling and control For all types of MPC 
formulations and implementation approaches, a wide variety of 
modeling and design tools and solvers are available. The wide variety of 
used modeling tools reflects the lack of understanding of what model 
formulation and level of detail is best suited for MPC in buildings. The 
practical part of this paper summarizes an extensive overview and 
conceptual comparison of dedicated software tools used for building 
modeling, (co-)simulation, MPC design tools, and available optimization 
solvers for both desktop as well as embedded platforms. The aim of this 
overview is to help the reader with a selection of the most appropriate 
tool from the broad range of options. 

Practical deployment of MPC in buildings To facilitate a faster transfer 
of the technology into practice, a whole section is dedicated to key 
building blocks and aspects of practical implementation. The underlying 
implementation framework is defined consisting of the MPC configu
ration, SCADA architecture, and communication infrastructure. Four 
conceptual types of MPC configuration are considered, namely 

Fig. 13. Flowchart of MPC implementation in real buildings.  
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centralized, decentralized, distributed, and hierarchical configurations, 
and their usability is discussed. Centralized MPC controls an entire 
system and is currently the most commonly used configuration in 
building applications. Decentralized configurations with multiple local 
MPCs are less favorable for buildings due to the loss of dynamic coupling 
between controlled subsystems. Distributed MPC represents a more 
favorable configuration and is based on solving a decoupled problem by 
communicating the local solutions to other sub-controllers to improve 
the entire system performance. Meanwhile, hierarchical configurations 
improve the overall performance when controlling the system over 
different time scales and including the subsystems with notable differ
ences in their time constants. Examples of such systems are demand 
response control or long-term behavior of a ground source heat 
exchanger coupled to the short-term behavior of the building. The 
SCADA architecture defines the standards for modern industrial hier
archical control systems with four basic levels, which are widely adop
ted in modern buildings. In practice, this functionality is provided by the 
building automation systems (BAS) via commercial vendors like Hon
eywell, Johnson Controls, Priva, Siemens, Schneider Electric, ABB, or 
Delta Controls, to name the most prominent ones. A functional, auto
mated, and full-scale communication outside the commercial BAS ap
pears to be currently one of the tedious tasks of real MPC 
implementation. Although they can be built mostly on open standards, 
the problem lies in a large number of used communication protocols, 
closed commercial BAS software solutions, and lack of standardized 
interfaces which make the integration of hardware components from 
different vendors a real challenge. With practical cases in mind, clear 
guidelines and a flowchart for MPC implementation are provided for 

researchers and early adopters of the technology. The fundamental steps 
of any successful application are based on preliminary feasibility and 
economic studies guiding the decision of whether to implement the MPC 
for a particular case or not. The design phase consists of setting up the 
communication, followed by control-oriented building modeling, con
trol configuration selection, and MPC design and tuning. The operation 
phase consists of testing and deployment of the MPC algorithm with 
backup solutions. 

Performance assessment of MPC in buildings Comparison and perfor
mance assessment of MPC in buildings plays an important role during 
the selection of an appropriate strategy for a particular application. 
However, due to the large solution space, there remain a number of 
challenges to be tackled on the roadmap towards generalized perfor
mance assessment methodology and tools. First initiatives are being 
taken to standardize this process in a scalable framework built upon 
next-generation building energy modeling tools that emulate the 
response of the building system to the MPC controller, using predefined 
performance indicators and application programming interfaces, all 
brought together in the BOPTEST. 

Market potential and future of MPC in buildings The practical aspects of 
integration of MPC algorithms with contemporary BAS create an op
portunity for startup companies to deliver customized MPC solutions 
backed by universal SCADA platforms with multi-protocol, multi- 
manufacturer compatibility. Examples of such companies are e.g. Del
taQ, IES, BuildingIQ, Feramat Cybernetics, Energocentrum with their 
Mervis control as a service platform, or QCoefficient, Inc. which suc
cessfully operates cloud-based real-time white box MPC based on 
EnergyPlus models in a number of large commercial office buildings in 

Table 16 
Studies comparing two or more MPC formulations.  

Ref MPC comparison Case Metric(s) Result 

Oldewurtel et al. (2012) Stochastic (SMPC) vs. 
Deterministic (DMPC) 

Single room with six variants of 
HVAC system, European 
locations, and building 
construction. Simulation period 
is one year. 

Energy use [kWh/m2/y] and comfort 
violations [Kh] 

SMPC had comparable energy use (slightly 
higher) and comfort violations to best case 
DMPC. 

Drgoňa et al. (2013) Stochastic (SMPC) vs. 
Deterministic (DMPC) 

Single room with simple heating 
and cooling. Simulation period is 
nine days. 

Energy use [kWh] and comfort 
violations [% Simulation Samples] 

SMPC had comparable energy use (slightly 
higher) and comfort violations to best case 
DMPC. 

Ma et al. (2015) Stochastic (SMPC) vs. 
Deterministic (DMPC) 

Multizone VAV HVAC system in 
Berkeley, CA, USA. Simulation 
period is 55 days. 

Energy savings compared to rule- 
based control [%], comfort 
improvement compared to rule-based 
control [%], thermal efficiency of 
HVAC system [− ] 

SMPC had comparable energy savings 
(slightly less) and comfort improvement 
over rule-based control to best case DMPC. 

Maasoumy et al. (2014) Robust (RMPC) vs. 
Deterministic (DMPC) 

Single room in Houghton, 
Michigan, USA with ground- 
source heat-pump heating 
system. Simulation period is one 
day. 

Energy use [kWh] and comfort 
violations [∘C-h] 

For intermediate levels of model 
uncertainty, RMPC outperformed DMPC, 
while DMPC is preferred for low levels of 
model uncertainty. If model uncertainty is 
very high, rule-based control is preferred. 

Scherer et al. (2014) Distributed (DisMPC) vs. 
Centralized (CenMPC) 

Multiple zones each served by fan 
coil units served by common hot 
and chilled water central plants. 
Simulation period is one hour. 

Integral of squared setpoint error 
[∘C2] 

DisMPC was able to have similar setpoint 
tracking performance to CenMPC when 
central plant resources are limited. 

Walker, Lombardi, 
Lesecq, and 
Roshany-Yamchi 
(2017) 

Distributed (DisMPC) vs. 
Centralized (CenMPC) 

Three-zone open office in Cork, 
Ireland where each zone has 
radiator and window operation. 
Simulation period is nine hours. 

Energy use [kWh], temperature and 
CO2 setpoint tracking (visually in 
plots), and normalized computational 
time [− ]. 

DisMPC had comparable energy use to 
CenMPC (slightly higer) and similar 
temperature and CO2 tracking with less 
computational burden on each local 
controller. 

Pcolka, Zacekova, 
Robinett, Celikovsky, 
and Sebek (2014) 

Nonlinear (NLMPC) vs. 
Linear (LMPC) 

One zone building with radiant 
ceiling HVAC system in Prague, 
Czech Republic. Simulation 
period is three months. 

Energy cost [Euro], maximal comfort 
violation [∘C], and hours of comfort 
violation larger than 0.2 ∘C [h]. 

NLMPC outperforms LMPC by using less 
energy, having less maximum comfort 
violation, and having less total hours of 
discomfort. 

Putta, Zhu, Kim, Hu, 
and Braun (2013) 

Affine Quadratic Regulator 
(AQR) vs. Sequential 
Quadratic Programming 
(SQP) 

Single room in Indiana, USA with 
VAV AHU and cooling plant. 

Energy cost [$/day], discomfort cost 
[$/occupant/day, and computational 
time [s/decision] 

AQR saved significantly on discomfort 
costs compared to SQP due to SQP 
sensitivity to initial guesses and local 
minima. 

Drgoňa and Kvasnica 
(2013) 

Setpoint Tracking (ST) vs. 
Comfort Tracking (CT) vs. 
Number Comfort Violation 
Min (CM) 

Single room with simple heating 
and cooling. 

Energy use [kWh], energy savings 
compared to rule-based control [%], 
and comfort violations [% Simulation 
Samples] 

ST used most energy with good comfort 
control. CT used less energy with worse 
comfort control. CM used least energy with 
good comfort control.  
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the US. 
A big leap forward in MPC market penetration can also be made by 

implementing MPC applications into integrated software platforms, 
enabling the communication management and control of diverse sys
tems regardless of manufacturer or protocol. The most notable of such 
communication platforms are the commercial Niagara Framework®, or 
the open-source Volttron™. It is very hard to make predictions, espe
cially about the future. However, based on the advanced stage of basic 
research tackling the current bottlenecks of MPC, several pilot case 
studies, emerging startups, and awareness of the major companies in the 
field of building controls, the large-scale market penetration of MPC 
technology for newly built buildings can be optimistically expected to 
happen within the next decade. 
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Lorenzen, M., Dabbene, F., Tempo, R., & Allgöwer, F. (2017c). Constraint-tightening and 
stability in stochastic model predictive control. IEEE Transactions on Automatic 
Control, 62(7), 3165–3177. https://doi.org/10.1109/TAC.2016.2625048. 
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Tugores, C. (2016). Buildingsystems - Eine modular hierarchische Modell-Bibliothek 
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