
RCourse: A Robustness Benchmarking Suite for
Publish/Subscribe Overlay Simulations With Peersim

Tobias R. Mayer, David Coquil, Christian Schoernich, Harald Kosch
Department of Distributed Information Systems

University of Passau, Germany
{tobias.mayer, david.coquil, harald.kosch}@uni-passau.de,

schoerni@fim.uni-passau.de

ABSTRACT
This paper introduces the RCourse benchmarking suite, an
extension to the Peersim simulatior environment. RCourse
supports simulative evaluations of Publish/Subscribe sys-
tems with respect to robustness. To this end, it provides
among others mechanisms for the aggregation of measure-
ment values and for an automatic graph generation repre-
senting the extracted results. The design of RCourse is char-
acterized by its highly modular architecture, which enables
the adaptation of each step of the simulation workflow to
specific user needs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.4 [Computer-Communica-
tion Networks]: Distributed Systems; C.4 [Performance
of Systems]: Fault Tolerance, Measurement Techniques

Keywords
simulation, reliability, overlay networks, Publish/Subscribe

1. INTRODUCTION
Publish/subscribe (pub/sub) [?] systems realize multicast
at the application layer. This type of interaction is indeed
well suited to the needs of an event-based middleware, as it is
characterized by a full decoupling in time, space and âĂć.
Pub/sub systems typically base on a logical overlay built
on top of the network layer. Among the options for con-
structing these overlays, peer-to-peer (P2P) based overlay
networks have gained increasing attention in research and
system development in recent years. When such systems
are deployed in large-scale, the risk of failure of participat-
ing nodes increases strongly. Such failures may critically
affect the functioning of the global system [?]. Therefore,
the robustness of P2P systems, i.e. the degree of correct
functioning in presence of erroneous conditions [?], should
be taken into account and evaluated when designing a P2P-
based pub/sub system. A good option to this end is the

Peersim simulator1 [?], which has been developed for the
simulative study of overlay networks. Indeed, omitting the
simulation of the network stack renders Peersim particularly
well-suited for the design of such studies. Moreover, Peersim
is appropriate for large-scale experimentations.
To the best of our knowledge, there is no extension for sta-
tistical result aggregation and analysis available for Peersim.
Thus, performing network simulations requires this addi-
tional work to obtain practically usable results. Moreover,
no benchmarking application for Peersim specifically target-
ing robustness is available. In this context, this paper intro-
duces RCourse, an extension to the Peersim simulator. De-
signed as a combination of a programming library, analysis
scripts and pre-defined simulation scenarios, it aims to sup-
port the user in terms of simulative studies. Thus, RCourse
saves work and time for system designer while facilitating
consistent performance evaluation of systems. RCourse is
specially tailored to studies on pub/sub systems, however,
it is designed to be easily adaptable to simulative evalua-
tions of P2P systems in general.
The RCourse prototype is described in more detail in the
remainder of this paper. The next section ?? describes re-
lated work. Section ?? gives an overview of the design goals
and components of RCourse. Then, section ?? further de-
tails the use of RCourse for simulations with Peersim as well
as the adaptation to record additional user-defined measure-
ment values. Finally, the paper closes with a conclusion in
section ??.

2. RELATED WORK
The first Publish/Subscribe systems (e.g. [?, ?]) provided
a structured dissemination (a deterministic algorithm cal-
culates static dissemination structure) and targeted mainly
core aspects such as subscription type (e.g. topic-, content-
based) or overlay organization. Later works (e.g. [?, ?])
introduced also unstructured systems (non-deterministic al-
gorithms make use of some randomness, realizing a dynamic
dissemination structure), which are inherently more suited
to dynamic environments. Several surveys reviewed pub/-
sub systems and its routing (e.g. [?, ?]).
Introduced in 2009 [?], the Peersim P2P simulator has been
widely used by the research community. This is outlined
by the list of around 140 publications provided by the au-
thors in their website, which includes papers published in
major conferences and journals (see ’Publications’ link on
the Peersim website). Peersim has been used for simulative

1http://peersim.sourceforge.net/

evaluations of several pub/sub systems, e.g. [?, ?].
In a previous paper [?], we have shown that the few works
dealing with the robustness of pub/sub environments fail to
properly characterise existing systems. We argue that this is
in particular due to the lack of proper benchmarking tools.
Considering for example the case of Peersim, despite a large
body of extensions and additional libraries, no such tool is
available to the best of our knowledge; moreover, tools to
support the results analysis of simulation-based evaluation
are also missing. This clearly shows the need for a more
standardised approach supported by dedicated software.

3. RCOURSE OVERVIEW
In this section, we introduce the RCourse benchmarking
suite by describing its design goals, general functioning and
architectural components.

3.1 Design Goals
For the development of the RCourse simulation library, we
defined several design goals:

(i) Time/work savings: As many tasks as possible shall
be automated in order to spare work/time to the user.

(ii) Architectural modularity : Each step of a simulative
study shall be adaptable to specific user needs.

(iii) Stand-alone simulations in terms of robustness and
performance: The RCourse library shall enable com-
plete simulative studies in terms of robustness and per-
formance without requiring other software products or
further calculations.

(iv) Free tool for research community : RCourse shall be
designed as a free tool, i.e. the library itself (as well
as further software) shall be freely available under an
open-source license.

Let us now consider how these goals are reached in the pro-
totype. In order to save time and work for the user, RCourse
aims to support each step of the simulation workflow (goal
(i)). This can be seen in figure ??, which describes the
global workflow of a simulative study with steps supported
by RCourse being placed in the middle row (continuous
lines, white background). For example, RCourse provides
means for data aggregation and write-out in the form of
Java classes, a result analysis functionality by means of R
scripts, and can automatically generate result graphs as pdf
files. Thus, the user can concentrate on the development of
the algorithm to be evaluated by the simulation, as all other
steps may be taken over by RCourse components.
The design goal (ii) is reached by providing a support for
each step in the workflow independently from the other ones.
This loose coupling in the workflow results in a modular
architecture and facilitates the adaptation of the different
steps to specific needs (possible adaptations are indicated
by dashed boxes in figure ??).
The RCourse library is complete (goal (iii)) in the sense that
a simulative study can be directly performed using Peersim
and RCourse. In particular, no further specifications such
as scenario definitions are needed: pre-defined scenarios are
provided. To reach this goal, two pub/sub systems have

Figure 1: Workflow of simulative studies supported
by RCourse.

been developed for use with RCourse. They are bundled
with the library and serve as reference implementations.
The first system is Scribe [?], representing a DHT-based
approach. The Scribe implementation is based on the Pas-
try implementation of M. Cortella, which is also seperately
available on the Peersim homepage. The second system is
a gossiping system, which realizes a clique network with its
non-deterministic dissemination. The gossiping system is
developed as basic and informed gossiping and comes with
Cyclon [?] and HyParView [?] as membership protocols.
RCourse has been developed in order to ease simulative stud-
ies of overlay networks (especially pub/sub systems), pri-
marily targeting the research community. Thus, in order to
fulfill design goal (iv), it makes only use of free software –
indeed, this is only Peersim and the programming language
R2 – and is itself published as open source under the GPLv2
license. The RCourse library as well as additional files (sce-
nario/graph overview, example result files etc.) are available
for download on the RCourse project homepage hosted at
sourceforge3.

3.2 Overview of RCourse Components

General Overview. RCourse is realized as a loose coupling
of three components:

a) A set of Java classes supports the user in collectiong
measurements values and writing them out to SQLite
result files (optionally: to csv files).

b) Pre-defined simulation scenarios provided as Peersim
configuration files can be used directly to simulate and
evaluate a system after finishing the development of
the algorithm.

c) Analysis scripts written in the R programming lan-
guage aggregate the SQLite result files, analyse the
result data and generate result graphs as pdf files.

A simulation that makes full use of these components is com-
pletely reduced to the development of the algorithm. During
this development (or the adaptation of an already existing
algorithm), the only additional step that is required is to use
the RCourse API for recording measurement values. Simu-
lations can then be executed using the pre-defined scenarios
and result graphs created by means of R analysis scripts.

2http://www.r-project.org
3http://rcourse.sourceforge.net

Table 1: RCourse standard scenarios are based on
the taxonomy of faults presented in [?].

Fault Type Experimentation Scenario

 ES1.1 Standard Operation

 ES1.2 Standard Operation (Network Size Variation)

 ES1.2 Standard Operation (Fanout Variation)

 ES2.1 Catastropic Node Crash

 ES2.2 Catastropic Node Crash (Crash Size Variation)

 ES3.1 Catastropic Message Loss

 ES3.2 Catastropic Message Loss (Malicious Nodes Variation)

 ES3.3 Message Loss

 ES3.4 Message Loss (Message Loss Variation)

Fault C
Message Tampering

 ES4 Message Tampering

Fault D
Message Generation

 ES5 ---

 ES6.1 Node Churn

 ES6.2 Node Churn (no publish)

 ES6.3 Node Churn (with publish)

 ES6.4 Node Churn (Churn Rate Variation, no publish)

 ES6.5 Node Churn (Churn Rate Variation, with publish)

Fault F
Information Leak

 ES7 ---

 ES8.1 Selfish Message Loss

 ES8.2 Selfish Message Tampering

Fault G
Selfish Behaviour

no faults

Fault E
Node Churn

Fault A
Link/Node Crash

Fault B
Message Loss

RCourse aims especially to easily let the users define their
own measurement values to be recorded during the simula-
tion; therefore, the needed work for the adaptation has been
strongly reduced. Section ?? presents the essential steps to
adapt RCourse to user-defined values. An overview of the
RCourse scenarios is given in table ?? (a complete list of
possible result graphs can be found on the project home-
page). The scenarios are based on our previous work [?],
which provides a taxonomy of elementary faults for peers in
a pub/sub system and discusses robustness issues for pub/-
sub from a comprehensive point of view. Two entries of the
taxonomy are however ignored: fault D (Message Genera-
tion) considers the injection of protocol-coherent messages
with arbitrary content and F (Information Leak) deals with
the privacy in terms of protecting the message content from
prohibited reading. The reason for not considering these
faults is that they can be avoided by means of techniques
such as access control or cryptography mechanisms.
Although the scenarios are derived from further robustness
studies, they are rather simplistic and serve as proposals
for experimentations. For representative results, the use of
real-world workload and failure traces is recommended, e.g.
those of the Failure Trace Archive4. This is currently not yet
supported by RCourse but indeed an interesting possibility
for future work. Thanks to the architectural modularity,
an implementation is facilitated (only the RCTrafficGener-
ator as well as RCTurbulenceGenerator need to be adapted,
which are outlined in the next paragraph).

Main Components. The Java classes of RCourse mainly
provide six essential components to support the user in the

4http://fta.inria.fr/apache2-default/pmwiki/index.php

Figure 2: Architectural overview of RCourse shows
the interaction with a pub/sub system.

development of a simulative study (figure ??). The class RC-
ParamStorage holds simulation-wide parameters for RCourse
and is accessible by the peers. These parameters include the
configuration of the simulation as well as other global val-
ues. RCTrafficGenerator and RCTurbulenceGenerator are
helper classes for the simulation. RCTrafficGenerator gener-
ates an appropriate workload. RCTurbulenceGenerator cre-
ates different stressful situations such as crashing nodes and
node churn. Other types of failures, for example message
loss, are realized by configuration file parameters in combi-
nation with the peer’s implementation. The workload gen-
eration is realized by an injection of messages through the
pub/sub service. Therefore, RCTrafficGenerator requires
the implementation of a pub/sub protocol interface (see the
file util/PubSubProtocol.java). The workload generation is
based on a foregoing empirical study and aims to focus on
the corresponding fault situation. For example, the publish-
ing phase is started after a subscription phase for the study
of node crash impact, while subscriptions and publishing of
messages are done simultaneously for the node churn scenar-
ios. For more details please refer to the Peersim simulation
scenarios of RCourse. The class RCStatsCont represents
the container for measurement values. Each peer of the net-
work must hold one instance of this class; the algorithm
implementation must add/update the values that are to be
recorded. In this context, the RCObserver plays a key role
in RCourse. This class collects at specified time points all
measurement containers and passes them (after some pro-
cessing) to the RCResultWriter. This class extends RCRe-
sultWriterBase (not shown in figure ??). It generates the
SQLite result file as well as the csv file output.
When developing the algorithm, the user only has to con-
sider RCStatsCont and RCParamStorage in his source code.
The interaction with the other classes is specified in the
configuration files, and an interface (implementing for ex-
ample basic pub/sub operations) must be provided. For
more details, please refer to the reference implementations
of RCourse, which are available on the project’s website.

4. SIMULATIONS WITH PEERSIM AND
RCOURSE

public void publish(String groupid, Object content) {
...

msgStats.increaseMsgSentCounter_Notify();
mypastry.send(Util.strToPastryID(groupid), sdm);

...
}

private void deliverToChildren(ScribeDataMessage sdm,
 boolean deliverToMyself) {

...
// delivery to upper layer
if (rlistener != null){
 rlistener.receive(sdm);
}
msgStats.getMsgDeliveryHops().add(sdm.deliveryHops);

// set information for delivery percentage calculation
if(ps.isComplexDlvPrctCalc()) {
 // complex delivery calculation
 // (more precise, for dynamic networks)
 msgStats.getDeliveredList().add(new MLEntry(sdm));
} else {
 // simple delivery (# of receivers is known a priori)
 msgStats.increaseMsgCounter_Delivered();
}

...
}

Figure 3: Two examples of the additional RCourse
code (italic/blue) to record measurement values in
the RCourse data container object (RCStatsCont).

After a general overview of RCourse, we now more precisely
describe its use for simulations with Peersim.

4.1 Utilization and Experimentation
In an optimal case in terms of time/work savings, a user can
completely rely on RCourse after developing the algorithm.
Then, the combination of pre-defined scenarios and analysis
scripts enables the automatic generation of a broad range of
result graphs. Here, we outline the use of RCourse through
the steps of the simulation workflow of figure ??.

Setting Up the RCourse Library. To set up the RCourse
library, its folders must be copied into the Peersim project
folder and referenced by the source code. In more detail,
RCourse provides three important folders. The src/ folder
contains the example algorithms (scribe, gossiping). It is
further divided into application and overlay. The folder con-
fig/ contains the pre-defined scenarios and configuration files
for the Peersim simulation and analysis/ the R scripts for
result analysis and graph generation.

Algorithm Development. A crucial task required to used
RCourse is to extend the pub/sub algorithm to record mea-
surement values. To this end, each peer must maintain a
RCStatsCont container object and implement all method
calls for value updates. Figure ?? shows the interaction with
the data container for two examples with the Scribe system,
showing the RCourse related code in blue/italic. The first
example records the amount of published messages and the
second example the dissemination time in terms of overlay
hops as well as the delivery completion as a percentage. Note
that RCourse provides two types of calculation for this value.
The simple method uses the configuration parameters to cal-
culate the number of packets that should be delivered. Here,
publishing must start after a subscription phase (plus some

stabilization time) to provide correct values. The complex
method calculates delivery completion based on the current
situation of subscriptions and published messages. There-
fore, it is slower and computationally more intensive, but
also more suitable for dynamic workload situations such as
node churn. The two examples of figure ?? are only meant to
outline the interaction with RCourse in order to collect mea-
surement values. For the full spectrum of interactions with
the statistical container of RCourse, we refer to the source
codes of the exemplary applications to the Scribe and gos-
siping systems. As mentioned before, they come together
with the RCourse source codes and serve as reference for
implementation and library interaction.

Performing Simulations with RCourse and Peersim.
Once the code of the algorithm has been extended with capa-
bilities for recording metrics, a simulation with Peersim and
RCourse is ready to be executed. To this end, RCourse re-
quires peersim.rangesim.RangeSimulator as main class since
several experimentation scenarios use value ranges for spe-
cific parameters. With this main class, the user only needs to
specify the value range in the configuration file. The variable
range.malNodeP rcourse.malNodeProb;0:1|0.1 means for ex-
ample, that the variable range.malNodeP varies from 0 to 1
with steps of 0.1. Thus, RangeSimulator performs 11 sim-
ulation, each one with a different parameter value, and in-
dependent from the other simulations. Once the main class
has been specified, RCourse can be started with two configu-
ration files as arguments plus the rcourse.distrProcId value,
which is a parameter needed for multi-process simulations
(see next section). Configuration files have been separated
for ease of understanding. For example, a simulation with
Peersim and RCourse for scenario ES8.1 (selfish message
loss) is started with the following three arguments (note that
- as an argument - the parameter and their values must be
assigned by character ’=’).

• config/RCourse Base.txt
This configuration file defines the general network setup
and the structure of each peer’s stack of protocols.

• config/Scribe/ES8.1-SelfishMessageLoss.txt
The second config file represents the scenario and com-
prises all scenario-related parameters such as time steps
for the observer execution or workload generation.

• rcourse.distrProcId = 1
The distrProcId parameter defines the id for the cur-
rent simulation in case of parallel processing. See sec-
tion ?? for more information.

To clarify the meaning of the result file naming scheme (e.g.
ES1.1-StandardOperation expRun6 DP1.sqlite), let us pre-
cisely define the terms simulation run and experiment repe-
tition. A simulation run is the execution of one simulation
with a specific set of fixed parameters, whereas an experi-
ment repetition consists of one or more simulation runs that
are related to each other. In more details, simulation sce-
narios may be specified with parameter ranges (e.g. varying
amount of malicious peers). This causes multiple simulation
runs, which altogether represent one experiment repetition.

Figure 4: Examples of graphs generated by RCourse (results for basic gossiping with cyclon); more examples
are available on the RCourse project’s homepage.

Therefore, a scenario definition describes an experiment rep-
etition, while the amount of repetitions can be defined with
the simulation.experiments parameter. Each SQLite result
file encapsulates the result values of one experiment repe-
tition. Therefore, multiple simulations can be performed
independently from each other (and even on different ma-
chines) to achieve more representative average simulation
results. The R scripts then aggregate the result files for
analysis and graph generation.

Result Data Analysis and Graph Generation. After a
simulation with RCourse, i.e. once the SQLite database re-
sult files have been generated, the R scripts can be used
for data analysis and result graph generation. To this end,
RCourse provides a script for each simulation scenario. Each
of these files (e.g. analysis/diRgram ES8.1.r) calls the ac-
tual analysis scripts corresponding to the scenario. Fur-
thermore, the configuration files in analysis/config/ as well
as analysis/util/default values.r should be checked before
starting the analysis. After a successful execution, the R
scripts generate several result graphs. Figure ?? shows two
examples of graphs generated by RCourse for basic gossiping
with Cyclon. The left graph shows the (sorted) clustering
coefficients of peers in case of a catastrophic node crash sce-
nario (30%, 50% and 80% of the nodes crashing at once),
the right one the impact of message drops due to the selfish
goal of reduced resource usage (messages are dropped with
probability of 0.33, 0.66 and 1.0).

4.2 A Note on Multi-Process Simulations
Modern processors have multiple cores and/or CPUs, a fea-
ture that should be used for simulations by implementing
parallel processing. However, Peersim only allows the single-
threaded execution of a simulation. To make use of the re-
maining processing power, RCourse enables parallel process-
ing through parallel execution of independent simulations.
For example, multiple simulation runs are processed simul-
taneously, which represent altogether one or more experi-
ment repetition(s). Parallel processing can even take place
on different machines since each result file independently
stores all result data of one experiment repetition. This

workaround makes sense since a simulation should usually
be repeated a few times to achieve reliable results. Let us
assume for instance that we have five cores at our disposal
and a simulation that should be repeated ten times, i.e. ten
overall experiment repetitions. Then, each core could per-
form two simulations sequentially (starting the second one
after finishing the first). This can be realized by setting the
rcourse.distrProcId and simulation.experiments parameters
in the configuration file. The first parameter only affects
the name of the result file (important for R analysis scripts),
while simulation.experiments corresponds to a parameter of
Peersim that defines the number of experiment repetitions
for the corresponding execution of Peersim. This results in
parallel processing on all cores and in the generation of ten
SQLite result files. These files are then aggregated by the R
scripts and used for result graph generation. The function-
ing of this multi-process example is shown in figure ??.

4.3 Adaptation to User-defined Values
Out of the box, RCourse supports a wide range of measure-
ment values, which are clearly arranged in the file RCRe-
sultWriter.java. In addition, it was specifically designed to
enable users to easily define their own additional measure-
ment values. To this end, they can use the RCourse data
container. Then, only two components of RCourse have to
be modified to let it record a new value.
First, the RCStatsCont class must be extended by the new
value to be recorded. This may include writing appropriate
methods to add data to the container object. Please note
that the RCStatsCont.mergeStats(...) method may have to
be modified as well depending on the type of value. This
method is indeed called by the RCObserver to merge the
statistical values of all peers into one data container with
global values. Hence, it must be adapted if the new value
considers network-wide values such as the average dissemi-
nation delay or average message transfers per time cycle.
The second component to modify is the RCResultWriter
class, which is responsible for writing out all values. The
required modification consists in adding the new value as an
additional database column.
With these two extensions, RCourse is able to record and

Figure 5: Even though Peersim is single-threaded,
RCourse can be executed in a parallel way: each in-
dependent simulation is affected to its own process.

write out the new value. To make use of the R scripts
for reading in, analysing and generating graphs, the en-
trycols (columns of a database entry) and/or the csv file-
header variable must be changed to the new value in the
file analysis/util/default values.r. Finally, an appropriate
R script can be adapted for data analysis and result graph
generation of the new value.

5. CONCLUSION
This paper introduced RCourse, an extension library for the
Peersim simulation environment. RCourse aims to support
the user in each step of the simulation workflow in order to
spare her/him time and work. The program particulary tar-
gets Publish/Subscribe systems. RCourse facilitates among
others measurement value aggregation as well as data anal-
ysis, and also provides automated result graph generation.
A simulative study can be directly launched once the core
algorithm is available as other steps may be taken over by
RCourse. The RCourse library is freely available as open-
source software and comes with several pub/sub algorithms.
In future versions, we plan to extend the software to support
real-world workload and failures traces. This will be facili-
tated by RCourse’s architectural modularity, which provides
an easy adaptability to specific user needs in each step of the
simulation workflow such as defining new simulation metrics.

6. ACKNOWLEDGEMENTS
This work was conducted in the framework of the Multime-
dia Distributed and Pervasive Secure Systems (MDPS) doc-
toral college5, a French-German-Italian collaboration. Sup-
port was received by the Université Franco-Allemande (CDFA-
05-08) and from the Région Rhône Alpes.

5http://mdps.dimis.fim.uni-passau.de

