
1

Deep Learning Based Code Generation from
Requirements Text: Are We There Yet?

Hui Liu, Mingzhu Shen, Jiaqi Zhu, Nan Niu, Ge Li and Lu Zhang

Abstract—To release developers from time consuming software development, many approaches have been proposed to generate
source code automatically according to software requirements. With significant advances in deep learning and natural language
processing, deep learning based approaches are proposed to generate source code from natural language descriptions. The key
insight is that given a large corpus of software requirements and their corresponding implementations, advanced deep learning
techniques may learn how to translate software requirements into source code that fulfill such requirements. Although such
approaches are reported to be highly accurate, they are evaluated on datasets that are rather small, lack of diversity, and significantly
different from real-world software requirements. To this end, we build a large scale dataset that is composed of longer requirements as
well as validated implementations. We evaluate the state-of-the-art approaches on this new dataset, and the results suggest that their
performance on our dataset is significantly lower than that on existing datasets. Evaluation results also suggest that the generated
programs often contain syntactic and semantical errors, and none of them can pass even a single predefined test case. Further
analysis reveals that the state-of-the-art approaches learn little from software requirements, and most of the successfully generated
statements are popular statements in the training programs. Based on this finding, we propose a popularity based approach that
always generates the most popular statements in training programs regardless of the input (software requirements). Evaluation results
suggest that none of the state-of-the-art approaches can outperform this simple statistics-based approach. As a conclusion, deep
learning based code generation requires significant improvement in future, and our dataset may serve as a basis for future research in
this direction.

Index Terms—Software Requirements, Code Generation, Deep Learning, Data Set

F

1 INTRODUCTION

Software development is the process of writing and main-
taining source code according to software requirements [1]. The
resulting source code is in turn compiled automatically into exe-
cutable applications that finally fulfill the requirements. However,
with the increase in software complexity, software development
is often expensive and error-prone [1] although many engineering
approaches have been proposed to guide the development.

To release human beings from challenging, time consuming,
and error-prone software development (especially coding), many
approaches have been proposed to generate source code auto-
matically. During the last twenty years of the twentieth century,
researchers proposed mathematics based formal methods [2], [3]
and tools [4], [5] to generate source code automatically according
to formal specifications [6], [7]. Although formal methods are
highly reliable, it remains challenging to create formal specifica-
tions that should be described in formal languages, e.g., Z [8].
Consequently, researchers turn to less formal approaches, e.g.,
Model Driven Architecture (MDA) [9]. MDA attempts to generate
source code [10] according to models described in modeling
languages, e.g., Unified Modelling Language (UML) [11]. UML

• H. Liu, M. Shen, and J. Zhu are with the School of Computer Science and
Technology, Beijinag Institute of Technology, Beijing 100081, China. E-
mail: liuhui08@bit.edu.cn, 3120181025@bit.edu.cn, zhujiaqi@bit.edu.cn

• N. Niu is with Department of Department of Electrical Engineering and
Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA.
E-mail: nan.niu@uc.edu

• G. Li and L. Zhang are with the Key Laboratory of High Confidence
Software Technologies, Ministry of Education (Peking University), Beijing
100871. E-mail: lige@pku.edu.cn, zhanglu@sei.pku.edu.cn.

is a graphical modelling language, and shares most of the con-
cepts with object-oriented programming languages. Consequently,
developers are willing to use UML compared to formal languages.
However, because UML models usually focus on the architecture
of the system under development, it is quite often that MDA
generates nothing but sketch (e.g., signature of methods) of the
system. Detailed implementation, especially the body of methods,
still has to be typed in manually in most cases. Extending UML
with action semantics [12] makes it possible to present more
detailed semantics in UML models, and thus we may generate
more complete source code from UML models. However, they
often employ DSMLs instead of general purpose languages. It is
also challenging and time consuming to construct action semantics
with the extended UML.

With significant advances in deep learning, researchers are
turning to learning based approaches to generate source code.
The key insight of such approaches is that given a corpus of
software requirements and their corresponding implementation
(source code), advanced deep learning techniques may learn
how to translate software requirements into source code that
fulfill such requirements [13], [14]. Existing approaches have
successfully generated source code from software requirements
in natural language descriptions [15], [16], images of Graphical
User Interface (GUI) [17], [18], and input-output examples [19],
[20]. In this paper, we focus on natural language requirements
(requirements text) because in most cases software requirements
in the industry are described in natural languages [21]. Deep
learning based code generation approaches have been reported
to be highly accurate. For example, the syntactic neural model
(SNM) proposed by Yin and Neubig [22] reaches a high BLEU
(Bilingual Evaluation Understudy) [23] (0.845) in translating

2

natural language descriptions into Python programs. In contrast,
Google neural machine translation (GNMT), the widely used state-
of-the-practice language translator, results in much smaller BLEU
(0.4) in translating English into French [24]. For example, if the
reference translation is “I know tomorrow is another day” and
the generated translation is “I know tomorrow is a new day”, the
resulting BLEU is 0.42.

However, such deep learning based code generation ap-
proaches have not yet been extensively evaluated, which prevents
us from knowing the state of the art. The reported evaluation
of such approaches is often conducted on datasets that are
rather small, lack of diversity, and significantly different from
real-world software requirements. For example, the widely used
dataset HS [14] is composed of source code (and the associated
‘requirements’) from a single software project, which results in
poor diversity. The average length of the source code in dataset
Django [25] is 33 characters only, suggesting that the software
programs in the dataset have very limited complexity. Natural lan-
guage descriptions in dataset CoNaLa [16] are how-to questions
automatically extracted from Stack Overflow, instead of real-world
software requirements. As a result, evaluating existing approaches
on such datasets may fail to reveal the state of the art.

To this end, in this paper, we build a large scale dataset and
evaluate deep learning based code generation approaches on it.
Compared to existing datasets, our dataset is composed of longer
and more comprehensive software requirements accompanied with
their validated implementations (source code). We also develop an
assisting tool to assess comprehensively the quality of generated
source code instead of simply counting the lexical similarity
between generated source code and reference implementations.
The benefits of this dataset and its assisting tool are twofold. On
one side, we can reassess the state of the art of deep learning
based code generation with the resulting dataset and assisting
tool. On the other side, the resulting data set may serve as a
publicly available training/testing dataset for future research in
code generation. Lacking of large scale and high quality datasets is
preventing deep learning based code generation approaches from
reaching their maximal potential. The resulting dataset is an initial
attempt to solve this problem.

We reassess the state of the art in code generation with our new
dataset. Evaluation results suggest that performance of the state-
of-the-art approaches on our dataset is significantly lower than that
on existing datasets. The programs generated by such approaches
are significantly different from reference implementations, often
contain syntactic and semantical errors, and fail to pass even a sin-
gle predefined test case. We replace the input (requirements) with
random noise, and the performance of the evaluated approaches is
still comparable to that before the replacement. It may suggest that
the evaluated approaches learn little from software requirements.
Further analysis on the generated source code suggests that most
of the successfully generated statements are popular statements
in the training programs. Based on this finding, we propose a
popularity based approach that always generates the most popular
statements in the training programs regardless of the input (soft-
ware requirements). Evaluation results suggest that none of the
state-of-the-art approaches can outperform this simple statistics
based approach.

The paper makes the following contributions:
• A large scale dataset for learning based code generation.

Compared to existing ones, it is larger and has improved
diversity as well as validated programs. Besides that, the

requirements in the dataset are longer than those in existing
datasets.

• An assisting tool kit to assess the quality of generated
programs. Unlike existing approaches that heavily rely on
lexical similarity, the tool kit employs static syntactic check-
ing, dynamic cross validation, and lexical comparison to
comprehensively assess the quality of generated source code.

• A comprehensive reassessment of the state of the art of
deep learning based code generation. Based on the new
dataset and associated tool kit, we evaluate the state-of-the-
art approaches. Evaluation results suggest that the generated
programs are significantly different from references, and none
of them can pass even a single test case associated with
the dataset. It may suggest that deep learning based code
generation requires significant improvement in future. Our
dataset, as well as the assisting tool, may serve as a basis for
future research in this direction.

The rest of the paper is structured as follows. Section 2
introduces related research. Section 3 introduces how we construct
a new dataset. Section 4 specifies how we assess the state-of-the-
art approaches on the resulting dataset whereas Section 5 presents
the results. Section 6 discusses related issues. Section 7 makes
conclusions.

2 RELATED WORK

2.1 Generating Source Code from Requirements Text
As introduced in the preceding section, automatic generation of
source code from requirements text has recently been a hot topic in
both software engineering and artificial intelligence communities.
To reduce the complexity of code generation, researchers try to
limit the complexity of programming languages. As a result, many
code generation approaches employ domain specific languages
(DSLs) to describe the generated source code [26], [27], [28],
[29]. DSLs are much simpler than general purpose programming
languages, and thus DSL based approaches often result in high
accuracy in generating source code. However, DSLs are specific
to predefined domains, and it is challenging to apply them to other
domains [14].

Compared to DSLs, generating source code in general purpose
programming languages is more challenging. However, employing
such languages results in a number of significant advantages [14].
First, such languages, e.g., Java, are well-known and widely used
by developers, and thus developers can read and modify generated
source code expediently. Second, such languages are broadly
applicable across domains. Third, such programming languages
have better expression ability than DSLs, and thus could describe
complex applications. Because of such significant advantages,
researchers have proposed a number of approaches to generating
source code in general purpose programming languages [14], [22],
[29], [30]. Ling et al. [14] propose a latent predictor network
based approach (called LPN) to generate source code in Python or
Java. Evaluation results on MTG, HS, and Django suggest that the
approach is accurate and the average BLEU is up to 0.776. To the
best of our knowledge, it is the first one that generates source code
in general purpose programming languages. Yin and Neubig [22]
propose a syntactic neural model (SNM), which for the first
time leverages the syntax of target language as prior knowledge.
Later, they propose TRANX that generalizes SNM from Python to
other languages [31]. Rabinovich et al. [29] propose an abstract
syntax network based approach (called ASN). To the best of

3

TABLE 1
Existing Datasets for Requirements Text based Code Generation

Dataset Explanation Programming
Language

#REQs # Programs Average Length of
REQs (in tokens)

Average Length of
Programs character/LOC

ATIS database query of
traveling info

Lambda-style
DSL

5,373 5,373 11 64 / 1

JOBS database query of jobs Prolog-style
DSL

640 640 9 52 / 1

GEO database query of
geography

Lambda-style
DSL

880 880 7 45 / 1

IFTTT IF-this-THEN-that
applets

If-Then
Recipes

86,960 86,960 7 62 / 1

MTG features from Magic the
Gathering

Java 13,297 13,297 58 981 / 31.4

HS features from Hearthstone Python 665 665 34 300 / 7.4

Django pseudo-code vs. code Python 18,805 18,805 14 33 / 1

StaQC how-to questions
Python 1,441 2,169 10 247 / 10.1

SQL 1,221 2,056 10 218 / 10.2

CoNaLa how-to questions Python 2,879 2,879 14 39 / 1.1
*REQs: Requirements.

our knowledge, they are the first to employ multiple decoders
in code generation, where different types of elements in abstract
syntax trees are generated by different decoders. Stehnii [30]
proposes a tree-to-tree model for code generation. The key insight
of the approach is that requirements in English could be parsed
into trees as well, and the parsing can help neural networks to
better understand the requirements. Dong and Lapata [32] propose
a structure-aware neural architecture (called Coarse-to-Fine) for
code generation. They are the first to divide the decoding process
of code generation into two stages: generating a sketch on the
first stage, and generating other information (e.g., variables and
parameters) on the second stage. Hayati et al. [33] propose an
approach called ReCode. For the first time, they leverage the
nearest neighbors for code generation. The key insight of the
approach is that two highly similar requirements are likely to result
in highly similar implementations. GrammerCNN [34] proposed
by Sun et al. is the first to employ CNN based decoders in code
generation. Their evaluation results suggest that their approach
improves the state of the art by five percentage.

Text based code generation is also a hot topic in the soft-
ware engineering community. Gvero and Kuncak [35] propose an
approach, called anyCode, to synthesize Java expressions from
free-form queries containing a mixture of English and Java. The
purpose of anyCode is to help developers, especially new devel-
opers, to achieve a task of interest by leveraging related APIs. For
example, the developer may type in “copy file fname to bname”
where fname and fname are given file names. AnyCode would
return Java expressions like “FileUtils.copyFile(new File(fname),
new File(bname))”. For a given query, anyCode selects a set of
most likely API declarations according to the query and unigram
models. After that, anyCode leverages probabilistic context free
grammar and unigram model to unfold the declaration arguments
of the selected APIs. Raghothaman et al. [36] propose another
approach, called SWIM, to generate code snippets for given API-
related natural language queries such as “generate md5 hash
code”. Different from anyCode that generates a single expression,
SWIM can generate a code snippet containing a few statements.
SWIM maps textual query into a set of APIs by leveraging a statis-

tical model. To construct code snippets from the suggested APIs,
SWIM collects structural call sequences for each API data type
in projects on Github. From such pre-extracted call sequences,
SWIM retrieves the one that is most similar to the suggested APIs
based on cosine similarity. T2API proposed by Nguyen et al. [37]
is also a statistics based approach to synthesize API code snippets
from textual queries. It differs from SWIM in the following
aspects. First, it conducts context expansion to expand the related
APIs. For example, if Socket.open() is in the initial set of APIs
associated with the given query, T2API will add Socket.close() as
related APIs as well because it frequently follows Socket.open().
Second, T2API presents code snippets as graphs, and generates
code graphs instead of retrieving graphs/code snippets from a
given library. Consequently, it may generate new API usages. Such
approaches differ from the evaluated approaches in that they are
often confined to APIs [35], [36], [37] and generate short code
snippets (or even a single expression) only.

2.2 Datasets for Code Generation from Requirements
Text

It is well recognized that high quality datasets are critical for
learning based code generation [14]. Consequently, researchers
have built a number of datasets that contain textual description
(requirements) as well as their implementations (source code).
Table 1 presents an overview of existing datasets. The first column
presents the names of the datasets. The second column presents a
short explanation. The third column present the program languages
employed to describe the programs. The fourth and fifth columns
present the numbers of software requirements and software pro-
grams, respectively. The last two columns present the average
length of requirements and programs, respectively. Sample items
(both requirements and their corresponding implementations) are
presented in Table 2.

According to the programming languages involved in the
datasets, existing datasets could be classified into two categories.
The first category of datasets (i.e., ATIS, GEO, JOBS, and IFTTT)
describes source code in domain specific languages. ATIS [13]
was initially built to evaluate air travel information systems. It

4

TABLE 2
Sample Requirements and Implementations from Existing Datasets

Dataset Sample Requirements Corresponding Implementations

ATIS dallas to san francisco leaving after 4 in the
afternoon please

(lambda $0 e (and (>(departure time $0) 1600:ti) (from $0 dallas:ci) (to $0 san francisco:ci)))

JOBS what microsoft jobs do not require a bscs? answer(company(J,‘microsoft’), job(J), not((req deg(J, ‘bscs’))))

GEO what is the population of the state with the
largest area?

(population:i (argmax $0 (state:t $0) (area:i $0)))

IFTTT Turn on heater when temperature drops be-
low 58 degree

TRIGGER:Weather - Current temperature drops below - ((Temperature (58)) (Degrees in (f)))

ACTION: WeMo Insight Switch - Turn on - ((Which switch? (“”)))

MTG

NAME: Mox Jet

ATK: NIL

DEF: NIL

COST: 0

DUR: NIL

TYPE: Artifact

PLAYER CLS: Limited Edition Alpha

RACE: 262

RARITY: R

TAP: Add B to your mana pool.

public class MoxJet extends CardImpl {
public MoxJet(UUID ownerId) {

super(ownerId, 262, “Mox Jet”, Rarity.RARE, new

CardType[]CardType.ARTIFACT, “{0}”);

this.expansionSetCode = “LEA”;

this.addAbility(new BlackManaAbility());

}
public MoxJet(final MoxJet card) {

super(card);

}
@Override

public MoxJet copy() {
return new MoxJet(this);

}
}

HS

NAME: Acidic Swamp Ooze

ATK: 3

DEF: 2

COST: 2

DUR: -1

TYPE: Minion

PLAYER CLS: Neutral

RACE: NIL

RARITY: Common

Battlecry: Destroy your opponent’s weapon.

class AcidicSwampOoze(MinionCard):

def init (self):

super(). init (“Acidic Swamp Ooze”, 2, CHARACTER CLASS.ALL,

CARD RARITY.COMMON, battlecry=Battlecry(Destroy(),

WeaponSelector(EnemyPlayer())))

def create minion(self, player):

return Minion(3, 2)

Django call the function conf.copy, substitute it for
params.

params = conf.copy()

StaQC How to limit a number to be within a speci-
fied range?

def clamp(n, minn, maxn):

return max(min(maxn, n), minn)

CoNaLa How to convert a list of multiple integers
into a single integer?

r = int(‘’.join(map(str, x)))

is composed of database queries in English and the source code
to accomplish the queries. Later, it is employed as a dataset for
code generation [28] where the queries are taken as software
requirements and the Lambda style source code is taken as
reference implementation. GEO [38] and JOBS [15] are similar to
ATIS [13] in that all of them are composed of database queries
and their accomplishing source code in DSLs. IFTTT [39] is
another DSL based dataset. Source code (applets) within IFTTT
follows a predefined pattern: IF this THEN that, and it is the
reason why the dataset is called IFTTT. Such kind of applets
are widely used to control devices (e.g., watches, smart phone,

and lights). These DSL based datasets together have significantly
advanced research in code generation [28]. However, such datasets
are domain specific, and thus models trained on such datasets may
not work in other domains.

The second category of datasets (i.e., Django, MTG, HS,
StaQC, and CoNaLa) describes source code in general pur-
pose programming languages, e.g., Java and Python. Oda et
al. [25] propose an automatic approach to generating pseudo-
code from source code. They collect source code (Python state-
ments) of a Python web framework called Django (available at
https://www.djangoproject.com/), and generate pseudo-code auto-

5

matically for each of the downloaded Python statements. Such
Python statements accompanied with corresponding pseudo-code
are later employed as code generation dataset [14], [22], [30],
[30]. Different from Django that is a byproduct of a pseudo-
code generation approach, MTG and HS are intentionally built
for code generation [14]. MTG is built on a trading card game
called Magic the Gathering [40]. Each item in MTG is composed
of two parts: Textual description of a card (in English) and the
source code associated with the card. HS is highly similar to MTG.
The only difference is that HS is based on another card game
called Hearthstone [41]. MTG and HS are frequently used in code
generation tasks [14], [22], [29], [30]. Different from MTG and HS
that are built on a given software project, StaQC [42] and CoNaLa
[16] are created by mining QA forums (e.g., Stack Overflow [43]),
i.e., extracting how-to questions and their code fragments in
accepted answers. Although such datasets employ general purpose
programming languages, they still have the following limitations:
• First, software requirements included in such datasets are

essentially different from real ones in the industry. The
‘requirements’ in Django are pseudo-code that is highly
similar to the associated source code. Such pseudo-code is
significantly different from requirements text. Translating
requirements text into source code is much more challeng-
ing than the translation from pseudo-code to source code.
Although programs in MTG are longer than those in our
dataset, the ‘requirements’ in MTG (and HS as well) are
rather special: all of the ‘requirements’ in the dataset together
constitute the real complete requirements for a single appli-
cation (Magic the Gathering). Consequently, models trained
on MTG can generate only additional source code (i.e.,
expansion) for the given program. It is unlikely for them to
generate programs that are irrelevant to the given program
(Magic the Gathering). The ‘requirements’ in StaQC and
CoNaLa are automatically extracted how-to questions that
are significantly different from common requirements text.

• Second, the requirements and their associated source code
may not match exactly. For example, the source code ex-
tracted automatically from QA forums may not exactly fulfill
the how-to questions in StaQC and CoNaLa.

• Finally, as shown in Table 1, programs within such datasets
are rather short. It may suggest that programs in such datasets
are of limited complexity.

As a result of the limitations, models trained on such datasets may
fail to generate complex implementation for real-world software
requirements. Assessing the state of the art on such datasets also
suffers from significant threats to external validity.

2.3 Code Generation Based On Examples and Con-
texts
Code complete is to generate code expressions or short code
snippets based on contexts, e.g., the source code preceding the
locations where the suggested code should be inserted. Type based
code complete is widely supported by IDEs. For example, while
developers type in “System.”, IDEs like Eclipse would suggest
a list of members (fields and methods) that could be accessed
via System. More advanced approaches, like statistical language
models, have been proposed to improve the accuracy of code
complete [44], [45]. Such approaches are based on the assumption
that source code, like natural languages, is likely to be repetitive
and predictable [46]. To this end, the statistical language models,

Dataset

Data

Collection

Removing

Duplication

Static

Checking

Cross

Validation

Programming

Contest Platforms

Fig. 1. Dataset Creation

like n-gram, are employed to predict the next token or the next
expression in code complete. Besides such generic code complete
approaches, some task-specific approaches have been proposed
successfully to suggest specific tokens, like method names [47],
[48] and arguments [49]

Code generation is also closely related to program synthesis
that generates programs automatically according to input/output
examples [50]. For example, researchers have successfully syn-
thesize string editing programs according to input/output exam-
ples [51], [52]. Neural network based program synthesis is one
of the most promising directions in program synthesis [53], [50].
Balog et al. [54], however, propose DeepCoder that combines neu-
ral network based program synthesis and search-based program
synthesis. Their evaluation results suggest that the combination
leads to an order of magnitude speedup over the Recurrent Neural
Network approaches. The performance of such learning based
program synthesis approaches depends heavily on the performance
of training data [53]. To improve the quality of training data, Shin
et al. [53] propose an automatic approach to generate high quality
dataset so that models trained on the resulting dataset could learn
the full semantics of the selected DSL.

Representation of source code is also closely related to code
generation [55]. The intuitive and straightforward representation
of source code is to take it as natural language text (tokens) [46].
However, such plain text-based representation ignores the seman-
tics of programs and the structures of source code. To this end, new
approaches have been proposed to represent source code based
on abstract syntax trees (AST) [55]. More advanced approaches
can event leverage the paths within the AST trees [56], [57] and
dependency among different source code elements [58].

3 NEW DATASET

As introduced in Section 2.2, existing datasets are preventing
deep learning based code generation approaches from reaching
their maximal potential. To this end, in this section we build new
dataset, as well as an assisting tool kit, for learning based code
generation.

3.1 Overview

Fig. 1 presents an overview on how we create the dataset for
code generation. First, we extract task descriptions (software
requirements) and their associated submissions from programming
contest platforms. Second, we detect and remove duplicate tasks
and duplicate implementations from the resulting dataset. Third,
we compile the downloaded source code to make sure that the
remaining source code is compilable. Third, we apply cross
validation to exclude incorrect implementations. Details of the
creation are presented in the following sections.

6

3.2 Data Collection
We collect data from two programming contest platforms, i.e.,
Codeforces [59] and HackerEarth [60] because of the following
reasons:
• First, the contests (software requirements) and their corre-

sponding submissions (source code) on such platforms are
publicly available;

• Second, the contests cover different topics instead of being
confined to a specific domain, which may increase the diver-
sity of the resulting dataset;

• Third, such platforms have manually designed test cases
for each of the contests to ensure the correctness of the
submissions, which may reduce the likelihood to include
incorrect implementations in the resulting dataset;

• Finally, the contests are moderately challenging for automatic
code generation. On one side, they are much more complex
than most of the existing datasets whose implementation is
often composed of only a couple of lines. Consequently,
compared against existing datasets, the resulting dataset is
more complex. On the other side, such contests are inten-
tionally designed for beginners, and thus the complexity is
limited. The limited complexity makes it potentially practical
for deep learning techniques to generate the source code
automatically.

With a Python based crawler, we collect programming tasks (in
English) from the selected platforms. We also collect their submis-
sions (implementations) that have passed all of the associated test
cases. The submissions are described in different programming
languages, e.g., Java, Python, and C/C++. Comments within the
source code are removed automatically because we focus only on
code generation in our current work. Notably, for a single contest,
there are often a large number (hundreds) of submissions. We
only download its first N submissions for each programming
language. This number (empirically set to ten) is a result of
the balance between the diversity of implementations and the
size of the resulting dataset. We manually check the diversity of
implementations and find that the diversity increases significantly
when N increases from 1 to 10 whereas the diversity increases
slightly when N increases from 10. Consequently, we empirically
set N to 10. Notably, the diversity of dataset is not to increase
the challenges in code generation, but to prevent overfitting of
machine learning models.

An illustrating example task1 is presented as follows:
You are given array consisting of n integers. Your task is
to find the maximum length of an increasing subarray of
the given array. A subarray is the sequence of consecu-
tive elements of the array. Subarray is called increasing
if each element of this subarray strictly greater than
previous.
Input: The first line contains single positive integer n
— the number of integers. The second line contains n
positive integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Output: Print the maximum length of an increasing
subarray of the given array.

3.3 Removing Duplication
First, we detect and remove duplicate or nearly duplicate tasks
from the resulting dataset. To avoid the pairwise comparison

1. http://codeforces.com/problemset/problem/702/A

among thousands of tasks, we employ the well-known fingerprint
algorithm SimHash [61] to transform textual description of each
task into a fixed length hash value (called fingerprint). The
algorithm guarantees that fingerprints of nearly duplicate texts
differ from each other in a small number of bit positions [61].
For each pair of the highly similar fingerprints, we manually
check the corresponding tasks to exclude duplicate tasks only.
Manual checking is conducted because two different tasks may
happen to be lexically similar to each other, but the functionality
of the intended software applications are essentially different.
Consequently, the first two authors manually check the highly
similar tasks. Two tasks ts1 and ts2 are duplicate if applications
conforming to ts1 conform to ts2 as well, and vice versa.

Second, we detect and remove duplicate implementations. For
each of the tasks, we compare each pair of its submissions to
exclude duplicate or nearly duplicate submissions. The compari-
son is based on the well-known edit distance [62] between two
source code fragments2: if the distance is small, i.e., changing a
few characters in one fragment can turn it into the other fragment,
they are reported as potentially redundant implementations. Before
removing such potentially duplicate implementations, the first two
authors also manually check them to exclude false positives: two
implementations of the same task are duplicate if and only if they
are identical except for the difference in format (e.g., blank lines)
and/or code comments.

3.4 Static Checking

Both of the websites have long history, and thus some of the old
submissions to the websites may be out of date and cannot be
compiled with the up to date compilers. Assuming that up-to-date
code generation approaches may target up-to-date compilers only,
we filter out such outdated submissions by compiling them with
the up-to-date compilers.

By compiling the submissions, we also remove low quality
submissions that result in warnings. Such submissions could be
compiled and thus may be executed. However, warnings (e.g.,
dead code) reported by compilers suggest that such submissions
deserve improvement. Consequently, to guarantee high quality of
the resulting dataset, we exclude such submissions that result
in compiler’s warnings. The exclusion in turn may improve the
quality of code generation models trained on the resulting dataset
(i.e., fewer compiler’s warnings on the generated source code).

3.5 Cross Validation by Software Testing

One of the biggest challenges in building code generation datasets
is to guarantee that the included programs act exactly the same
as what their associated software requirements specify. In other
words, such programs should be accepted as correct implemen-
tations by users who propose the requirements. In our case, all
submissions are specifically designed for the given tasks, and
the websites have run some manually predefined test cases to
guarantee that the submissions satisfy the requirements in the most
common scenarios. This helps to improve the reliability of the
resulting dataset. However, the number of such manually designed
test cases are rather small, and thus it is likely that some buggy
submissions can still pass such test cases.

2. More advanced tools like MOSS (http://theory.stanford.edu/ aiken/moss/)
may ease the work.

7

TABLE 3
Resulting Dataset

Dataset Explanation #REQs # Programs Programming
Language

Average Length of
REQs (in tokens)

Average Length of
Programs

charactor/LOC

ReCa
from

programing contests
5,149

20,554 C

185

458 / 35.7
35,092 C++ 578 / 37.2
32,306 Java 1,121 / 63.8
16,673 Python 205 / 13.9

To further improve the reliability, we carry out cross validation
by software testing. For each of the task t, the cross validation is
conducted as follows:
• First, according to the requirements we manually create a

template to specify the input parameters, including their data
types and value ranges.

• Second, based on the template, we automatically create test
cases with fuzz testing, i.e., create random data as inputs to
the programs under test.

• Third, for each test case, we automatically run each of the
submissions (to the given task t) with the inputs in the test
case. If the submissions result in different output, we manu-
ally check the results and remove the buggy submissions.

Notable, we do not employ popular test case generation tools like
EvoSuite. The downloaded programs often receive input from con-
sole with statements like ‘input()’ (Python) and ‘scanf ’ (C/C++).
However, existing test case generation tools like EvoSuite generate
test cases (more specially, input of the programs) according to
parameters instead of console input. As a result, applying such
tools to the downloaded programs results in few test cases. To
this end, we manually create a template for each task to explicitly
specify its input (including those from console), and generate test
cases automatically based on the template.

3.6 Resulting Dataset
We call the resulting dataset large scale dataset for Requirements
text based Code generation (ReCa). Details of the dataset is pre-
sented in Table 3. By comparing Table 3 against existing datasets
in Table 1 (especially MTG, HS, Django, StaQC, and CoNala
that describe implementations in general purpose programming
languages), we observe that our dataset has the following advan-
tages:
• First, ReCa is composed of longer requirements of inde-

pendent software applications. The average length of re-
quirements in our dataset is significantly longer than that
of existing datasets. As analyzed in preceding sections, the
textual descriptions in MTG, HS, Django, StaQC, or CoNala
are not real-world software requirements. Instead, they are
incremental features of a single software project (MTG and
HS), pseudo-code (Django), or how-to questions (StaQC
and CoNala). In contrast, each of the textual descriptions
in our dataset represents a requirement of an independent
software application. Software engineers have developed the
intended applications successfully according to such textual
descriptions.

• Second, ReCa contains more programs. Our dataset contains
more than one hundred thousand software programs, much
larger than existing datasets.

• Third, ReCa has longer programs. For example, the average
length of Java programs in our dataset is 63.8 (LOC), much
longer (at least twice) than that of existing datasets. Notably,
however, such programs are still significantly smaller than
real-world software applications in the industry. These real-
world applications may contain millions of lines of source
code, which makes them extremely challenging (if not im-
possible) to be generated automatically by up-to-date deep
learning models.

• Fourth, the implementations in ReCa are in multiple general
purpose programming languages. For most of the require-
ments in our dataset, we provide corresponding implementa-
tions in different programming languages at the same time,
e.g., Java and Python. It may facilitate the research on cross
language code generation, as well as research on the impact
of programming languages on code generation.

• Fifth, the implementations in ReCa are validated. Each of the
implementations in our dataset has been validated by static
checking as well as dynamic software testing to guarantee
that they satisfy the declared requirements and they are of
high quality.

• Sixth, ReCa provides multiple implementations for the same
requirements. A single requirement has up to ten independent
implementations in the same language (e.g., Java). Trained
on such a dataset, learning based code generation algorithms
may learn equivalence among different code fragments, and
thus may be smarter in appreciating the context while gen-
erating the next code token. Multiple reference implementa-
tions also facilitate more reasonable and more comprehensive
quality assessment on generated programs by comparing
them against diverse references. Existing approaches often
assess the quality of a generated program by computing its
lexical similarity (e.g., BLEU) with a single reference be-
cause existing datasets often provide a single reference only.
The assessment is risky because two semantically equivalent
programs may happen to be significantly different in text.
Providing a number of diverse references helps to reduce the
risk.

3.7 Quality Assessment and Tool Kit

To facilitate research on code generation, we develop an assisting
tool to comprehensively assess the quality of generated programs.
The tool computes automatically a list of quality metrics for
the generated program against its reference programs. The first
quality metrics are BLEU (bilingual evaluation understudy) [23]
that is widely employed by existing approaches. BLEU was
initially proposed to assess the quality of machine translation [23].
For code generation, BLEU scores are calculated by comparing

8

generated source code against a set of reference programs. The
scores range between 0 and 1, suggesting how lexically similar the
generated program is to the reference programs. Notably, BLEU
for a generated program p is the maximal similarity (BLEU)
between p and any of its reference programs: If it is highly similar
(or event identical) to any of its reference programs, the generated
program is of high quality even if it is essentially different from
other reference programs.

The second code metrics are the number of errors and warn-
ings compilers produce on the generated source code. Existing
approaches rarely employ such metrics because most of the
generated source code cannot be compiled successfully at all, i.e.,
they often contain syntactic errors. One of the reasons for such
syntactic errors is that most of the reference programs (e.g., code
fragments from Stack Overflow) in existing datasets are incom-
plete and thus cannot be compiled successfully. Consequently,
code generation models trained on such datasets rarely generate
compilable programs.

The third code metrics are the percentage of passed test cases,
i.e., what percentages of the test cases the generate program has
passed. In our dataset, we have generated automatically a large
number of test cases for each of the tasks (requirements). Con-
sequently, we can run such test cases on the generated programs
to assess the extent to which the generated programs satisfy the
functional requirements.

The fourth quality metrics are the edit distance based lexical
similarity. Levenshtein distance is widely employed to measure
the minimum number of single-character edits (i.e., insertions,
deletions or substitutions) required to change one text (the gen-
erated source code in our case) into the other (reference imple-
mentation in our case). The edit distance based lexical similarity
(noted as Sed) turns the Levenshtein distance (note as dis)
into a similarity varying from zero to one: Sed(gc, ref) =
1−dis(gc,ref)/max(|gc|, |ref |) where gc is the generated source
code and ref is a reference implementation.

BLEU is selected because it is widely employed by existing
approaches to evaluate the quality of code generation [23]. The
number of compiler error and warnings (the second metrics) is
selected because it represents the syntactic quality of the generated
source code. The percentage of passed test cases (the third metrics)
is selected because it represents the functional quality of the
generated source code. The edit distance is selected because it is
widely used to measure the similarity between source code. BLEU
and edit distance concern the lexical similarity between generated
programs and references whereas the number of compiler error
and the percentages of passed test cases concerns the syntactics
and functionality of the generated programs, respectively. Conse-
quently, employing such diverse metrics facilitates comprehensive
assessment of the generated programs. To facilitate more compre-
hensive assessment, however, the tool kit also provides additional
metrics, i.e., NIST, WER, and Subtree Metric [63].

We employ additional quality metrics (as introduced in pre-
ceding paragraphs) besides BLEU for assessing the quality of
generated source code because of the following reasons:
• First, although BLEU is frequently employed to assess the

quality of generated source code, it has significant limi-
tations [64] for assessing source code. Unlike nature lan-
guages, source code has less tolerance for noise and poor
syntax/semantics. Consequently, programs with high BLEU
could be syntactically incorrect and essentially different from
reference programs in semantics.

• Second, even the implementations for the same task (require-
ments) are often diverse in text. Consequently, computing
the lexical similarity between the generated source code and
its diverse reference implementations may fail to reveal the
quality of code generation.

4 EXPERIMENTAL SETUP

As introduced in Section 2, researchers have achieved great
advances recently in deep learning based code generation. A
number of approaches have been proposed, and evaluation re-
sults on different datasets suggest that they are highly accurate.
For example, the syntactic neural model proposed by Yin and
Neubig achieves a high BLEU (0.845) on Django dataset [22],
which suggests that the generated source code is very close
to the reference implementation. However, as introduced in the
preceding sections, such datasets employed in the evaluations have
significant limitations and thus good performance on such datasets
may not necessarily lead to good performance in handling real-
world software requirements. To assess the state of the art, in this
section we evaluate such approaches on our new dataset.

4.1 Validation Questions
The evaluation investigates the following questions:
• Q1: How accurate are the state-of-the-art approaches on the

new dataset?
• Q2: How often do the generated programs pass syntactic

checking?
• Q3: How often do the generated programs pass predefined

test cases?
• Q4: Is the generated source code useful for developers?
• Q5: Where and why do state-of-the-art approaches succeed?
• Q6: To what extent do state-of-the-art approaches understand

software requirements?
• Q7: Can we propose a simple and intuitive approach whose

performance is comparable to (or even better than) that of the
state-of-the-art approaches?

• Q8: Can we improve the performance of the evaluated
approaches if we keep only a single solution per requirement?

• Q9: Can we improve the performance of the evaluated ap-
proaches by unifying identifer in requirements and associated
source code?

Research question Q1 concerns the performance of the state-of-
the-art approaches on our new dataset. Many of the state-of-the-
art approaches are reported to be highly accurate on existing
datasets [22]. Answering this question may reveal whether the
reported high performance is owned to the limitations of the
involved datasets.

Research question Q2 investigates how often the deep learning
based approaches generate syntactically correct programs, and
how often such programs could be executed without exceptions.
Investigating Q2 would reveal to what extent such approaches
learn automatically the syntax of target programming languages.

Research question Q3 investigates to what extent the generated
programs are semantically correct, i.e., consistent with the given
software requirements. The investigation would reveal to what
extent the approaches can learn the semantics of requirements that
are described in English, and turn such semantics into implemen-
tations.

Research question Q4 investigates the usefulness of the gener-
ated programs. It is likely that developers cannot use the generated

9

code as-is. However, if the effort to modify it to make it work is
much smaller than the effort to write the correct code from scratch,
the generated source code (and the generation approaches) could
be considered useful.

Research question Q5 investigates what kind of tokens could
be generated correctly, and potential reasons for the success. The
investigation will reveal the strength of existing approaches, and
the rational for the strength.

Research question Q6 investigates the influence of the input
(textual requirements) on the output (generated source code). It is
challenging for computers to fully understand natural languages.
Consequently, it is likely that the deep learning based code
generation approaches cannot fully understand the requirements
in English. Answering this question may reveal whether natural
language understanding is the major obstacle to deep learning
based code generation.

Research question Q7 concerns the substitutability of the state-
of-the-art deep learning based complex approaches. Answering
this question may reveal whether such deep learning based com-
plex approaches are really better (or much better) than simple and
intuitive approaches.

Research question Q8 concerns the effect of removing redun-
dant implementations for the same requirement. While answer-
ing the preceding research questions, we provide the evaluated
approaches with multiple code snippets/solutions for the same
requirement. However, this has not been done by the authors of
the evaluated approaches and the loss function of the approaches
is not prepared for this. Consequently, such neural networks may
fail to lean anything from such different implementations. To this
end, we repeat the evaluation after removing the redundant imple-
mentations, i.e., we keep only a single solution per requirement.

Research question Q9 concerns the identifiers in requirements
and their associated implementation (source code). Such iden-
tifiers do not influence the syntax or semantics of programs.
However, replacing them with unified tokens e.g., var0 and var1,
could significantly reduce the size of vocabularies employed by
automated code generation approaches. Research question Q9
investigates the effect of the preprocessing.

4.2 Evaluated Approaches

We select Seq2Seq [28], SNM [22], Tree2Tree [30], TRANX [31]
and Coasr-to-Fine [32] for the evaluation because of the following
reasons.

• First, they could generate source code in general purpose
programming languages according to software requirements
in English, which makes it practical for them to work on our
dataset.

• Second, their implementation is publicly available, which
significantly facilitate the evaluation. Some well-known ap-
proaches [14], [29], [34] that could generate source code from
requirements text are not selected for evaluation because we
either fail to get their implementations [14], [29] or fail to
make them work on our dataset [34].

• Third, SNM [22], Tree2Tree [30], TRANX [31] and Coarse-
to-Fine [32] were proposed recently, and represent the state
of the art. To the best of our knowledge, they are the latest
approaches that 1) have publicly available implementations
and 2) can work on our dataset to generate Python programs
according to requirements text.

1 /* Code before preprocessing */:
2 # get number
3 w = int(input())
4 if w%2 == 0 and w!=2:
5 print(’YES’)
6 else:
7 print(’NO’)
8
9 /* Code after preprocessing */:

10 w = int(input())
11 if w % 2 == 0 and w != 2:
12 print(’YES’)
13 else:
14 print(’NO’)

Listing 1. Example of Source Code Preprocessing

• Although Seq2Seq [28] was initially proposed for semantic
parsing, it is widely employed as a baseline in code gener-
ation [33]. Consequently, we include it for the evaluation as
well.

4.3 Process

To investigate the first four questions (i.e., Q1, Q2, Q3, and Q5),
we conduct the first empirical study as follows:

• First, we select all tasks for evaluation from our dataset that
are accompanied with Python source code. To the best of
our knowledge, no publicly available deep learning based
models/implementations can transform requirements text into
programs in general-purposed programming languages other
than Python. Although LPN [14] generates Java programs,
its implementation is unavailable. Consequently, we select
only Python programs for the empirical study. The resulting
dataset is noted as selected dataset. It is composed of 2,740
tasks (requirements) and 16,673 Python programs.

• Second, from the selected dataset, we randomly select 300
tasks as testing dataset, 200 tasks as validation dataset, and
other as training dataset.

• Third, the selected dataset is preprocessed. For the textual
requirements, we replace acronyms (e.g.,“ what’s”) with sep-
arated words (e.g., “what is”), turn characters into lowercase,
split the text into a sequence of word by word segmentation
and special characters (e.g., splitting “Java.System” accord-
ing to “.”), remove stop words, and apply lemmatization on
the resulting words. For example, the requirement:

“Some natural number was written on the board. Its
sum of digits was not less than k. But you were distracted
a bit, and someone changed this number to n, replacing
some digits with others. It’s known that the length of
the number didn’t change.You have to find the minimum
number of digits in which these two numbers can differ.”

is finally turned into:
“some natural number write on board. its sum of

digit not less than k. but you distract bit, someone
change number to n, replace some digit with others. it
know length of number do not change. you have to find
minimum number of digit in which these two number
can differ.”

after the preprocessing. For the selected source code, we
remove comments and copyright declarations, and format
the source code (with Autopep8 [65]). Listing 1 presents an

10

TABLE 4
Final Parameters for Evaluated Approaches

Approaches
Parameters

Embedding Size Hidden Size Epoch Batch Size Decoder Dropout Learning Rate Learning Rate Decay

Seq2Seq 200 N/A 120 20 0.4 0.01 0.98

SNM 256 256 100 7 0.4 0.001 N/A

Tree2Tree 300 256 100 8 0.2 0.001 N/A

TRANX 128 256 100 10 0.3 0.001 0.5

Coarse-to-Fine 250 N/A 75 10 0.3 0.002 0.99

illustrating example of source code preprocessing: the code
before an after preprocessing.

• Fourth, for each of the selected approaches, we train it on
the training and validation datasets, and test it on the testing
dataset.

• Finally, we evaluate the quality of generated source code
with the tool kit introduced in preceding sections. The quality
metrics generated by the tool kit are subsequently employed
to answer the research questions.

To maximize the potential of the evaluated approaches, we per-
form hyper parameter tuning for each of the evaluated approaches.
Basically, we follow the grid-search tuning approach [66] but pick
up grids (i.e., to-be-tested values of parameters) dynamically and
empirically to speed up the tuning process. Notably, for each of the
to-be-tested setting, we train the selected approach with the given
setting on the given training data (all of the requirements-code
pairs regardless of their topics), and then validate the performance
on validation set. Based on the validation, we select the next
to-be-tested setting. For a given setting, we train the associated
approach with the setting once and for all (instead of repeating the
training and validation for several times) because the training is
highly time-consuming: For each of the evaluated approaches, it
takes more than one week to tune its hyper parameters on a GUP
server (OS: Ubuntu 14.04.5; CPU: 56 * Intel(R) Xeon(R) CPU
E5-2683 v3 @ 2.00GHz; GPU: 2* TITAN Xp; RAM: 64GB). The
final parameters are presented in Table 4 where N/A suggests that
the implementation of the given approach does not contain the
parameter or the parameter does not deserve tuning.

To investigate question Q4, we randomly select eleven tasks
from the dataset and invite thirty developers to conduct a con-
trolled experiment. The participants have rich experience in
Python. They did not known the intent of the experiment in
advance, which helps to reduce potential bios. The experiment
is conducted as follows:

• First, each of the participants is requested to code from
scratch for a selected task (noted as preTestTask), and we
record the time that developers take to finish the assigned
task. Notably, a task is finished only if the submitted program
has past all predefined test cases. The top five (who spend
the shortest time in finishing the given task) and the bottom
five (who spent the longest time) are excluded from further
evaluation. The other twenty participants are divided into
two equally sized groups according to their coding speed:
participants in Group A is faster than anyone from Group B.
The purpose of this step is to construct two participant groups
where participants within the same group has similar coding
speed.

• Second, for each of the selected participants, we request

him/her to code from scratch for five out the remaining ten
tasks (i.e., all selected tasks except for preTestTask), and to
complete the other five tasks based on programs generated
by SNM. SNM is selected because it achieves the best perfor-
mance among the evaluated approaches (see Section 5.1 and
Table 5 for details). The assignments of the tasks guarantees
that exactly half of the participants from each group finish
a task from scratch and another half the participants from
the same group finish the same task by modifying generated
program.

• Third, we record the time that developers take to finish the
assigned tasks, and analyze the results of the two groups.

To investigate question Q6, i.e., to what extent the input (soft-
ware requirements) is exploited by code generation approaches,
we conduct the third empirical study as follows:

• First, for each of the selected approaches, we train it on the
training and validation datasets, and test it on the testing
dataset (noted as tdata). We compute their performance, and
call it original performance (noted as Porig). Notably, it is
the same as we do in the previous empirical study.

• Second, for each item (composed of requirements and their
implementations) in the testing dataset tdata, we replace the
requirements with random noise. The noise is generated au-
tomatically by picking tokens randomly from a large corpus.
The length (in tokens) of the noise is equal to the original
requirements. The resulting testing dataset is noted as tdata′.

• Third, on the revised testing dataset tdata′, we evaluate
the resulting models that are trained on the first step. The
resulting performance (noted as Pnoise) is compared against
the original one (i.e., Porig).

If replacing requirements with random noise fails to reduce the
performance significantly, it is likely that the code generation
approaches learn little from the requirements.

To investigate question Q8, i.e., the effect of removing re-
dundant implements, we conduct the fourth empirical study as
follows:

• First, for each of the tasks in the dataset, we randomly select
and keep one of its implementations. Other implementations
are removed from the dataset. We call the resulting dataset as
nonredundant dataset

• Second, we repeat the first empirical study on the nonredun-
dant dataset.

• Third, we compare the resulting performance on nonre-
dundant dataset against that on the original dataset where
multiple implementations for the same tasks are exploited.

11

TABLE 5
Evaluation Results on Our Dataset

Approaches
BLEU on

BLEU on Django BLEU on HS
Syntactically Executable Functionally

New Dataset Correct Programs Programs Correct Programs
Seq2Seq 0.138 0.673 0.550 44.7% 6.0% 0%

SNM 0.188 0.845 0.758 93.0% 16.7% 0%
Tree2Tree 0.150 0.825 0.716 83.7% 14.3% 0%
TRANX 0.184 0.856 0.695 81.7% 9.0% 0%

Coarse-to-Fine 0.176 0.854 0.640 10.0% 2.7% 0%
Average 0.167 0.811 0.672 62.6% 9.7% 0%

Fig. 2. Visual Comparison between Reference Implementation (Left)
and Generated Program (Right)

5 RESULTS AND ANALYSIS

5.1 Q1: Significant Reduction in BLEU

To answer question Q1, we evaluate the state-of-the-art code
generation approaches on our new dataset, and evaluation results
are presented in Table 5. The first column presents the eval-
uated approaches. The second column presents BLEU of such
approaches on our new dataset. To facilitate comparison, we also
present their BLEU on existing datasets (i.e., Django and HS) on
the third and fourth columns. Columns 5-7 present the syntactical
and semantic checking results of the generated source code (on
our dataset). From the first four columns, we make the following
observations:
• First, BLEU of the evaluated approaches is rather low. It

varies from 0.138 to 0.188, with an average of 0.167. Such
a low BLEU suggests that the generated source code is often
significantly different from reference implementations, i.e.,
the validated implementations in the dataset.

• Second, switching from existing datasets to our new dataset
reduces BLEU significantly. The average BLEU is reduced
significantly from 0.811 (on Django) and 0.646 (on HS) to
0.167. The reduction is up to 79%=(0.811-0.167)/0.811, and
75%=(0.672-0.167)/0.672, respectively.

To figure out the reason for low BLEU, we employ diff, a
popular and powerful tool, to visualize the difference between
the generated programs and their references. A typical example
is presented in Fig. 2. The right part of the figure presents the
program generated by SNM. The left part presents a reference
implementation that has the greatest BLEU with the generated
one. The common part (i.e., successfully generated statements) is
shown on white background. Missing part (i.e., statements that
should have been generated) is shown on red background, added

TABLE 6
Mismatch between Generated Programs and References

Approaches Missing Tokens Irrelevant Tokens
Seq2Seq 81.8% 87.5%

SNM 71.2% 74.8%
Tree2Tree 75.4% 81.0%
TRANX 74.4% 81.5%

Coarse-to-Fine 81.6% 88.5%
Average 76.9% 82.7%

part (i.e., statements that should not have been generated) is on
green background, and modified part is on yellow background.

We randomly sample 100 generated programs for visual
comparison. Based on the comparison, we make the following
observations:
• First, most statements are not generated successfully. Around

75% of the statements in reference programs are missing
in the generated programs. For example, in Fig. 2 sixteen
out of the nineteen (84%=16/19) lines of source code in the
reference implementation are on red background, suggesting
that the evaluated approach fails to generate the majority of
the reference implementation.

• Second, most of the generated source code is irrelevant,
i.e., having no counterparts in the reference implementations.
Around 81% of the generated source code is irrelevant (on
green background). For example, in Fig. 2 three out of the
six (50%=3/6) lines of source code in generated program are
on green background.

To validate whether the observations could be generalized
to all generated programs, we compute automatically how often
tokens in reference implementations are missed (i.e. shown on
red or yellow background), and how often tokens in the gen-
erated programs are irrelevant (i.e. shown on green or yellow
background). Results are presented in Table 6. The first column
presents evaluated approaches. The second column presents the
percentages of the tokens in the reference programs that are
missed by the generated programs. The third column presents
the percentages of the tokens in the generated programs that are
irrelevant, i.e., having no counterparts in the reference implemen-
tations. From this table, we observe that on average, 76.9% of the
tokens in reference implementations are missed, and 82.7% of the
tokens in generated programs are irreverent. In other words, only
23.1%(=1-76.9%) of the tokens in the reference implementations
are generated successfully, and only 17.3%=(1-82.7%) of the
generated programs tokens are really useful. The statistics confirm
our preceding observation that the generated programs are often

12

TABLE 7
Evaluation Results with Additional Metrics

Approaches
Metrics

NIST WER Subtree

Seq2Seq 1.369 8.089 0.117

SNM 1.453 0.785 0.200

Tree2Tree 1.185 0.866 0.139

TRANX 1.721 1.179 0.160

Coarse-to-Fine 1.988 1.643 0.116

Average 1.543 2.513 0.146

significantly different from references.
We also employ additional metrics [63] (i.e., NIST, WER, and

Subtree Metric) besides BLEU. Evaluation results are presented
in Table 7. The results confirm the conclusions drawn on the pre-
ceding paragraphs: the performance of the evaluated approaches
is not promising on the new dataset.

One potential cause of the low accuracy could be the ir-
regularity of the tokens in the dataset. If tokens in the testing
dataset are often missing in the training dataset, it is likely that
machine learning model cannot generate tokens accurately. To
this end, we compare the vocabularies of the training dataset
and testing dataset. The comparison results suggest that 96% of
the (requirements) text tokens in the testing dataset are actually
observed in the training dataset whereas 79% of the source code
tokens are observed in the training dataset. The results may
suggest that the difference in vocabularies of training data and
testing data is not the major reason for low accuracy.

It is quite intuitive that the longer the text and programs are, the
lower the generation accuracy would be. To quantitatively verify
this, we partition the tasks into four equally sized groups according
to their length of requirements and length of reference programs,
respectively. Notably, for a single task we have multiple reference
implementations (programs). Consequently, we classify the task
based on the average length of its reference programs (instead of
the length of a single reference program). Evaluation results are
presented on Table 8 and Table 9. On Table 8, we present how
the length of requirements influences the performance (BLEU).
Q1 contains 75=300/4 tasks that have the shortest requirements
whereas Q4 contains 75 tasks with the longest requirements. Each
row of the table presents the performance (BLEU) of an evaluated
approach on different groups of tasks. From this table, we make
the following observations:
• First, all of the evaluated approaches result in the lowest

performance on Q4 group that is composed of the longest re-
quirements. It may suggest that extremely long requirements
(varying from 228 tokens to 391 tokens) have significant
negative impact on the performance of code generation.

• Second, all of the evaluated approaches result in the highest
performance on Q2 group where the length of requirements
varies from 125 tokens to 171 tokens. In contrast, they result
in significantly lower performance on Q1 that is composed
of the shortest requirements (varying from 16 tokens to 125
tokens). The results may suggest that the following assump-
tion is not necessarily true: the shorter the requirements text
is, the higher the generation accuracy would be.

Table 9 presents the influence of programs’ length where Q1
contains 75 tasks with the shortest reference programs. From this
table, we observe that the performance decreases with the increase

TABLE 8
Impact of Requirements’ Length on BLEU

Approaches

Length of
Requirements Q1 Q2 Q3 Q4

Seq2Seq 0.131 0.157 0.141 0.125

SNM 0.195 0.214 0.185 0.156

Tree2Tree 0.155 0.173 0.146 0.125

TRANX 0.198 0.204 0.177 0.158

Coarse-to-Fine 0.164 0.192 0.182 0.167

Average 0.1686 0.188 0.1662 0.1462

TABLE 9
Impact of Programs’ Length on BLEU

Approaches

Length of
Reference
Programs

Q1 Q2 Q3 Q4

Seq2Seq 0.150 0.181 0.146 0.076

SNM 0.287 0.240 0.170 0.054

Tree2Tree 0.257 0.192 0.120 0.029

TRANX 0.223 0.231 0.194 0.088

Coarse-to-Fine 0.173 0.215 0.201 0.116

Average 0.218 0.2118 0.1662 0.0726

of programs’ length. The average BLUE reduces from 0.218 on Q1
(where the length of programs varies from 6 tokens to 77 tokens)
to 0.0726 on Q4 (where the length of programs varies from 199
to 822 tokens). The evaluation results may suggest that the length
of programs has significant negative impact on the performance of
automated code generation.

Based on the preceding analysis, we conclude that the state-
of-the-art code generation approaches cannot reach a high perfor-
mance on the new dataset as they do on existing datasets. Most
tokens in reference implementations are missed whereas most of
the generated tokens are irreverent. One possible reason for the
significant reduction in performance is that the new dataset is more
complex and more diverse than existing ones.

5.2 Q2: Syntactic Checking
To answer question Q2, we conduct syntactic checking on the
generated programs. The checking is composed of two parts.
In the first part, we conduct static syntactic checking on the
generated programs with the state-of-the-practice tool Pylint [67].
For convenience, we call programs that pass the static checking
as syntactically correct programs. In the second part, we try
to execute the programs (with sample input specified in the
requirements) that pass the static checking on the first step. If
the execution results in any syntactic error or runtime exception,
the programs are non-executable. Results of the static syntactic
checking are presented in the fifth column of Table 5 whereas the
execution results are presented in the sixth column. From these
two columns, we make the following observations.

The first observation is that most (up to 93.0%) of the pro-
grams generated by AST based approaches (i.e., SNM, Tree2Tree,
and TRANX) pass the static syntactic checking whereas pro-
grams generated by other approaches have significantly smaller

13

Fig. 3. Undefined-Variable in Generated Program

chance (less than fifty percentage) to pass the static syntactic
checking. The results may suggest that generating ASTs (and
then transferring them into source code) helps much in avoiding
syntactic errors. In contrast, generating source code (as generic
text) directly is much more risky because the state-of-the-art
approaches could not yet automatically recognize the complete
syntax of programming languages that is embedded in the training
programs.

To figure out what kind of syntax such approaches fail to learn
automatically, we manually analyze the syntactic errors generated
by such approaches. In general, the syntactic checking on gen-
erated programs (i.e., to compute how many of the generated
programs are syntactically correct and how many of them are
executable) is completely automated, and no manual checking
is required. Manual checking is only employed to empirically
reveal the common syntax errors in the generated programs. The
results of the manual analysis suggest that undefined-variable is
dominating. Undefined variable refers to usage of variables that
have not yet been defined before the usage. An illustrating example
is presented in Fig. 3 where s on Line 7 is undefined. Undefined-
variable accounts for 59%, 78%, 70%, 53%, and 82% of the
syntactical errors generated by Seq2Seq, SNM, Tree2Tree, TRANX,
and Coarse-to-Fine, respectively. On average, it accounts for
68%(=2003/2965) of the syntactical errors we encounter during
the evaluation. Consequently, to further improve the state of the
art, researchers in future should pay more attention to such kind
of syntactic errors. For example, to reduce Undefined-variable
errors, we may request the deep learning models to select from
a short list of variables declared in the generated source code
when variables are expected. In contrast, exiting models always
select tokens from a generic large vocabulary, which often results
in undefined-variables.

The second observation is that only a small part (less than
10%) of the generated programs could be executed without ex-
ceptions. Notably, Python is a dynamically typed programming
language, and thus many type errors could not be identified by
static syntactic checking. As a result, programs that pass static
syntactic checking may still fail to run successfully. To figure
out what kind of problems are preventing such programs from
successful execution, we manually analyze the runtime exceptions
that we encounter while executing such programs. Notably, we
do not execute those who fail to pass static syntactic checking
because they are bound to fail. Results of our analysis suggest
that most of exceptions are ValueError. According to Python
documents [68], ValueError exception is ‘raised when an oper-
ation or function receives an argument that has the right type
but an inappropriate value, and the situation is not described
by a more precise exception such as IndexError’. An illustrating
example is presented in Fig. 4. The first input statement on Line
1 expects a string that could be parsed into an integer. However,
the actual input “RYBGRYBGR” fails, and thus a ValueError is

Fig. 4. VauleError Exception Thrown by Generated Program

(a) Generated Program (b) Failed Test Case

Fig. 5. Sample Program and Failed Test Case

raised. ValueError exceptions account for 72.5%(=578/797) of the
exceptions encountered during the evaluation.

Based on the preceding analysis, we conclude that AST
based code generation approaches have great chance to generate
syntactically correct Python programs. However, such programs
are often non-executable because of various runtime exceptions.

5.3 Q3: Dynamic Validation

To answer question Q3, we run test cases in the dataset on the
generated programs. Results are presented in the last column
of Table 5. From this column, we observe that none of the
generated programs passes any test case in the dataset. The results
may suggest that even if some of the generated programs are
syntactically correct and executable, they fail to fulfill the given
requirements. One of the possible reasons for the failure is that
the evaluated approaches do not really understand the software
requirements (details are presented in Section 5.6). As a result of
the incomprehension, such approaches cannot generate programs
that fulfill the requirements. An illustrating example is presented
in Fig. 5 where the expected output is a sequence of ‘+’ and ‘-’.
However, the generated program outputs a single integer (ans on
Line 7).

Notably, the requirements in the dataset have explicitly speci-
fied the format of programs’ input and output, and thus the failure
should not be owned to the flexibility in the design of program
interfaces. For the given example in Fig. 5, developers could
figure out the exact format of the expected output based on the
specification: “Output: In a single line print the sequence of n
characters ‘+’ and ‘-’, where the i-th character is the sign that is
placed in front of number ai”

Based on the preceding analysis, we conclude that the gener-
ated programs have little chance to pass the associated test cases.
Consequently, manual interference (especially code revision and
validation) is indispensable even if such state-of-the-art automatic
code generation approaches are employed.

14

Fig. 6. Usefulness of Generated Programs (Group A)

5.4 Q4: Usefulness of Generated Programs
To answer question Q4, we recode the time that developers
take to finish the tasks, with and without generated programs,
respectively. Results are presented as box plots in Fig. 6 (for
Group A) and Fig. 7 (for Group B). The blue boxes are associated
with cases where developers create source code from scratch. The
red ones are associated with cases where generated programs are
modified to make them work.

From the box plots, we fail to observe significant difference
between the two development models (i.e., coding from scratch
or based on generated programs). For Group A, coding from
scratch took 652 minutes in total whereas revision based on
generated programs took 655.5 minutes. For Group B, coding from
scratch took 714.5 minutes whereas revision based on generated
programs took 707.4 minutes. Overall, the difference between the
two coding models is minor. We also perform significance test
on the resulting data. Results suggest that there is no significant
difference between the two coding models: the p-value=0.9696
and F=0.0015 for Group A and p-value=0.9318 and F=0.0074 for
Group B. For both groups, the p-value is significantly greater than
0.05. We also compute the effect size (Cohen’s d), and results
suggest the effect size (-0.0077 for Group A and 0.0173 for Group
B) is small.

We conclude based on the preceding analysis that the gen-
erated source code cannot significantly reduce the cost (time) of
programming, i.e., modification of the generated programs is not
significantly easier than creating programs from scratch.

5.5 Q5: Where and Why They Succeed
To answer question Q5, we manually analyze the generated source
code. It is highly challenging and time consuming to manually
compare all of the 1500 (=300 × 5) generated programs against
3000 (=300 × 10) reference implementations. Consequently, we
take the following measures to simplify the manual checking.
First, we randomly select 30 (out of 300) software requirements
from the testing dataset, and confine the manual checking to this
subset. Second, for each generated program on this subset, we only
compare it against one of its reference implementations that has
the greatest similarity (BLEU) with it. We employ diff to visualize

Fig. 7. Usefulness of Generated Programs (Group B)

the difference (and common ground as well) between a generated
program and its reference implementation. A typical example is
presented in Fig. 2.

Based on the manual checking, we observe that the evaluated
approaches often succeed or partially succeed in generating input,
output, and for statements. As suggested by Fig. 2, SNM generates
the input statement correctly (‘n,m = map(int, input().split())’),
and places it in the right place, i.e., the very beginning of the pro-
gram. It also succeeds in generating output statement ‘print(val)’
and for statement (Line 3 on the left part of Fig. 2) except for
the variable names. Table 10 presents how often input, output,
and for statements are generated successfully. The first column
of Table 10 presents different approaches. The second column
presents how often the evaluated approaches succeed or partially
succeed (inside parentheses) in generating input statements. If
the generated input statement is identical to that in the reference
implementation, we say the generation is correct. Otherwise, we
manually assess whether the generation is partially correct (with
slight difference) or incorrect. The third and the fourth columns
present how often the evaluated approaches succeed or partially
succeed in generating for and output statements, respectively.
From this table, we observe that all of the evaluated approaches are
good at generating such statements. On average, around one fifth
of the input and for statements are generated correctly, and more
than half of them are generated partially successfully. Although
output statements are more difficult to generate correctly (because
of variables involved in the statements), in most cases (84% on
average) the evaluated approaches know that an output statement
(i.e., ‘print(*)’) should be generated and placed at the end of the
generated programs.

One of the possible reasons for the success in generating
input, output, and for statements is that such statements are highly
popular in the training data. Popularity of related statements are
presented in Table 11. The first column presents the popular
statement (or part of a statement). The second column presents
their popularity in training programs, i.e., how many percentages
of the programs in the training dataset contain such statements.
The third column presents their popularity in testing programs.
Columns 4-8 present their popularity in programs generated by

15

TABLE 10
Well Generated Statements

Approaches Input Statement
correct (partially correct)

For Statement
correct (partially correct)

Output Statement
correct (partially correct)

Seq2Seq 17% (83%) 24% (60%) 3% (90%)
SNM 17% (83%) 26% (67%) 7% (83%)

Tree2Tree 13% (87%) 11% (54%) 7% (83%)
TRANX 30% (70%) 22% (59%) 3% (83%)

Coarse-to-Fine 27% (70%) 26% (70%) 7% (83%)
Average 21% (79%) 22% (62%) 5% (84%)

TABLE 11
Popularity of Well Generated Statements

Statements In Training
Programs

In Testing
Programs

In Generated Programs
Seq2Seq SNM Tree2Tree Tranx Coarse-to-Fine

input() 97% 97% 99% 100% 99% 100% 98%
print(*) 99% 99% 86% 86% 95% 89% 91%
for * in * 76% 75% 84% 83% 67% 89% 92%
for i in range 50% 47% 77% 79% 57% 85% 85%

TABLE 12
Change of BLEU When Normal Input Is Replaced with Random Noise

Seq2Seq SNM Tree2Tree TRANX Coarse-to-Fine Average
Normal Input 0.138 0.188 0.150 0.184 0.176 0.167

Random Noise 0.152 0.173 0.147 0.178 0.169 0.164

TABLE 13
Popularity of Well Generated Statements (Random Noise)

Statements Seq2Seq SNM Tree2Tree Tranx Coarse-to-Fine
input() 99% 100% 99% 99% 99%
print(*) 97% 90% 95% 90% 97%
for * in * 82% 80% 76% 85% 96%
for i in range 78% 76% 64% 82% 88%

different approaches. From the table, we observe that the output
statement "print(*)" (where * is a wildcard character) appears
in almost all of the training and testing programs, and thus the
deep learning based approaches learn to generate this statement
frequently. For example, SNM and TRANX include this statement
in each of their generated programs. The same is true for input
statement "input()" and for statement "for * in *"

Based on the preceding analysis, we conclude that the state-
of-the-art approaches have the ability to generate highly popular
statements, like input, output, and for statements.

5.6 Q6: Little Learned from Requirements

To investigate to what extent the evaluated approaches understand
software requirements (input of the approaches), we replace the
requirements in the testing data with random noise, and repeat
the evaluation. The random noise is created as follows. First, we
collect all unique tokens from requirements in the training data,
noted as Stoken. Second, for each requirement ri in the testing
data, we generate an empty noise noise(ri). Third, we randomly
select a token from Stoken, and append it to noise(ri). This step
is repeated until noise(ri) and ri are equally sized.

Evaluation results are presented in Table 12 where the second
and third rows present the BLEU of the evaluated approaches with
normal input and noise input, respectively. From this table, we

observe that replacing normal input with random noise results in
small changes in BLEU of the evaluated approaches. The average
BLEU (0.164) with random noise is comparable to that (0.167)
with normal input. We also notice that the random noise even
increases the performance of Seq2Seq, improving its BLEU from
0.138 to 0.152.

We also investigate how often the most popular statements
(e.g., input, print, and for statements) are generated by the evalu-
ated approaches when normal input is replaced with random noise.
Results are presented in Table 13. From this table, we observe
that such popular statements are generated frequently as well. By
comparing Table 13 against Table 11, we conclude that replacing
requirements text with random noise does not prevent the evalu-
ated approaches from generating the most popular statements.

Based on the preceding analysis, we conclude that the evalu-
ated approaches learn little from input requirements.

5.7 Q7: Simple Alternative Approach

As suggested by the preceding analysis in Section 5.5, the eval-
uated approaches work well in generating popular statements.
Consequently, an intuitive and simple way to simulate the eval-
uated approaches is to generate popular statements only. We call
it popularity based approach.

16

TABLE 14
Evaluation Results on Nonredundant Dataset

Approaches
BLEU on

New Dataset
NIST WER Subtree

Syntactically
Correct Programs

Executable
Programs

Functionally
Correct Programs

Seq2Seq 0.108 0.667 5.886 0.060 19.7% 4.3% 0%

SNM 0.151 0.738 0.873 0.133 27.3% 10.0% 0%

Tree2Tree 0.129 0.642 0.968 0.133 59.0% 0.3% 0%

TRANX 0.149 0.836 1.292 0.113 41.0% 9.3% 0%

CoasetoFine 0.155 1.006 1.602 0.029 3.0% 1.0% 0%

Average 0.138 0.778 2.124 0.093 30.0% 5.0% 0%

TABLE 15
Effect of Unifying Identifiers

Applications
Unifying Identifiers Without Unifying Identifiers (Default Setting)

BLEU Syntactically Executable Functionally BLEU Syntactically Executable Functionally

Seq2Seq 0.135 47.3% 7.7% 0% 0.138 44.7% 6.0% 0%

SNM 0.181 80.0% 16.3% 0% 0.188 93.0% 16.7% 0%

Tree2Tree 0.177 72.3% 12.0% 0% 0.150 83.7% 14.3% 0%

TRANX 0.187 84.3% 4.0% 0% 0.184 81.7% 9.0% 0%

Coarse-to-Fine 0.151 3.3% 0.1% 0% 0.176 10.0% 2.7% 0%

Average 0.166 57.4% 8.0% 0% 0.167 62.6% 9.7% 0%

The approach works as follows. First, it computes the average
length of the programs in training data. In our case, the average
length is 13 lines of source code, noted as n = 13. Second,
for each unique line of source code in the training data, the
approach computes its popularity, i.e., how often it appears in
the training programs. Third, it sorts the unique lines according to
their popularity, and inserts the top n lines into a new program p.
Finally, the approach always returns this program (p) as the gener-
ated program regardless of the input (requirements). Notably, this
approach completely ignores the input (requirements), and thus
it is of little value in practise. However, it may intuitively reveal
the state of the art by comparing it against the state-of-the-art
approaches.

We apply this simple popularity based approach to our dataset.
Evaluation results suggest it achieves a BLEU of 0.211, sig-
nificantly higher than any of the evaluated deep learning based
approaches (as shown in Table 5). The comparison intuitively
reveals the state of the art: the advanced deep learning based code
generation approaches cannot even outperform this intuitive and
impractical approach.

Based on the preceding analysis, we conclude that it is likely
for simple and intuitive approaches to outperform the state-of-the-
art deep learning based approaches.

5.8 Q8: Removing Redundant Implementations Does
Not Help
Evaluation results on nonredundant dataset are presented in Ta-
ble 14. By comparing this table against Table 5 (performance on
the original dataset where multiple implementations for the same
tasks are exploited), we make the following observations:
• First, removing redundant implementations does not help.

For example, all of the evaluated approaches result in lower
BLEU on the nonredundant dataset than that on the original
dataset. It reduces from 0.138 to 0.108 (Seq2Seq), from 0.188

to 0.151 (SNM), from 0.15 to 0.129 (Tree2Tree), from 0.176
to 0.149 (TRANX), and from 0.167 to 0.155 (CoasetoFine).
The same is true for other performance metrics.

• Second, no functionally correct programs could be generated
even if the evaluated approaches are fed with the nonredun-
dant dataset.

Based on the preceding analysis, we conclude that removing
redundant implementations from the dataset may not improve the
performance of code generation.

5.9 Q9: Impact of Unifying Identifiers

To investigate the impact of identifier unification, we unify iden-
tifiers in requirements and source code (in the same way as
TRANX unifies identifiers [31]), and repeat the first empirical
study as introduced in Section 4.3. First, we replace constant
strings (like “URL is required”) that appear in both requirements
and associated source code with unified tokens “stri”. Second, we
replace variables that appear in both requirements and associated
source code with unified tokens “vari”. The variables are not
further divided according to their types because Python is not a
statically typed programming language (like Java).

Evaluation results of the identifier unification are presented
in Table 15. To facilitate the comparison, we also present the
performance of the default setting (i.e., do not unifying identifiers).
From Table 15, we make the following observations:

• First, unifying identifiers has minor and diverse impact on
the performance of the evaluated approaches. For example,
it improves the BLEU of TRANX and Tree2Tree slightly
from 0.184 to 0.187 and from 0.15 to 0.177, respectively.
In the same time, however, it also decreases BLUE of
Seq2seq (from 0.138 to 0.135), SNM (from 0.188 to 0.181),
and Coarse-to-Fine (from 0.176 to 0.151). Overall, unifying
identifiers slightly reduces the average BLEU of the evaluated

17

approaches from 0.167 to 0.166. The same is true for other
performance metrics, e.g., syntactically correct programs.

• Second, no functionally correct programs could be generated
regardless of the application of unifying identifiers.

6 DISCUSSIONS

6.1 Potential Reasons for Reduced Performance
Evaluation results in Section 5 suggest that switching from ex-
isting datasets to ours significantly reduces the performance of
existing approaches. Potential reasons are discussed as follows.

First, some special characters in existing datasets facilitate
learning based code generation. For example, the requirements
(pseudo-code) in Django are quite similar to their implemen-
tations. On average, 49.4% of the tokens in a program (source
code) could be copied from the requirements associated with the
program. As a result, learning based approaches may achieve high
performance by copying tokens from requirements to generated
programs. In HS, different programs are highly similar to each
other, which also significantly facilitates code generation. Because
of the similarity, learning based approaches can learn the common
structures (also known as templates), and frequently generate
source code successfully by ‘filling learned code templates from
training data with arguments copied from input’ [22].

Second, the requirements in our dataset are much more com-
plex than the existing ones. As discussed in Section 5.6, a great
challenge in code generation is natural language understanding
(NLU), i.e., to understand requirements. The longer the require-
ments are, the harder NLU is. Compared to existing datasets,
our dataset is composed of much longer and more complex
requirements. The average length of such requirements is 185
tokens compared to 14 and 34 in Django and HS, respectively.

Third, the diversity of our dataset has significant negative
impact on the evaluated approaches. Such approaches have been
trained on a specific domain with similar requirements. However,
our dataset has very diverse requirements with no common tasks.
As a result, except for the generic programming skills (especially
algorithm related programming skills), little could be learned
about the implementation of specific tasks. However, learning the
generic programming skills (i.e., the ability of turning textual re-
quirements into source code as a human developer does) is highly
challenging. As a result, the performance of code generation is
significantly reduced.

Fourth, the size of our dataset may have prevented the
evaluated approaches from reaching their maximal potential. In
total, the dataset is composed of 16,673 requirements-code pairs,
making it comparable to other data sets that have been employed
by the authors of the evaluated approaches. For example, SNM
was originally evaluated on JBOS (with 640 items), GEO (with
880 items), ATIS (with 5,373 items), and IFTTT (with 86,960
items), independently. Our dataset is significantly bigger than such
datasets except for IFTTT. However, our dataset contains 2,740
unique requirements only, which makes it smaller than ATIS and
IFTTT concerning the number of unique requirements. Besides
that, the increased complexity of the requirements and source
code, together with the limited number of unique requirements,
could prevent the evaluated approaches from reaching their maxi-
mal potential.

Finally, our tuning of the hyper parameters for the evaluated
approaches could be less effective than the tuning conducted by
the original authors of the evaluated approaches. Such approaches

have been fine-tuned on given datasets that were leveraged for
evaluation by their authors, which often results in high per-
formance on the given dataset. The original tuning is effective
because the experts who tuned the parameters were familiar with
the approaches. In contrast, we tuned the parameters without deep
understanding of the evaluated approaches, and thus the tuning
could be more time-consuming and less effective. This, in turn,
prevents the evaluated approaches from reaching their maximal
potential.

6.2 Experiment on More Datasets
There is a clear need for an empirical study on various datasets
with the proposed approach and evaluate them by comparing it
with other approaches. The experiment is conducted on a single
dataset that we create in Section 3, which may limit its validity.
As introduced in Section 2.2, existing datasets have significant
limitations, and thus assessing the state of the art on such datasets
may result in severe threats to validity. To this end, we create a
new dataset. With this dataset, we assess the state of the art in
code generation. To reduce threats to external validity, however,
we should conduct similar experiments on other qualified datasets
in future when such datasets are available. Notably, we fail to
compare the proposed approach (popularity based code genera-
tion) against other approaches on existing datasets. For example,
each of the reference programs in Django is composed of a single
unique statement, which makes it impractical to select the most
popular statements in the dataset. As a result, the popularity based
approach cannot work on Django.

Other threats to validity exist as well, e.g., bias of human
beings involved in the manual checking, size of the involved
dataset, and the representativeness of the evaluated approaches.
Because of space limitation, however, we do not discuss such
threats in detail here.

6.3 Limited Diversity of the New Dataset
As specified in Section 3, the new dataset is created based on
programming contest platforms, which may limit its diversity. Al-
though the programming contest platforms do not post any explicit
limitations on the domain of contests, most of the contests concern
data structures, sorting algorithms, mathematic computation, text
processing, or database management. They are rarely related to
any specific application domains, e.g., financial systems, office
software, or image processing. As a result, the diversity of the
resulting dataset is limited. Approaches trained on such dataset
may fail to generate applications whose creation strongly depends
on domain knowledge.

Besides the limited diversity, the source code within the
dataset could be different from applications in the industry in the
following ways. First, most of the code in the new dataset is coded
by novice programmers and the skillset levels of these developers
are low when compared with industry standards. Second, most of
the code written by programmers participating in such contests
tend to algorithm driven and end up being implementations of
some data structures. Third, real world systems have lot of inter-
dependencies among the task whereas a majority of tasks in
programming contests tend to be orthogonal in nature. Finally,
there is lot of importance given to certain qualities in programming
contests which is not necessarily true in real world systems.

One future work to strength the dataset is to exploit additional
data source. Extracting additional data will increase both the size

18

and diversity of the resulting dataset, and thus may help to facili-
tate the training of deep learning based code generation models. It
is also interesting to include non-English software requirements,
and to investigate multiple-language code generation.

Although it is not novel to create dataset by crawling web
pages, creating and publishing the dataset is valuable. On one
side, the resulting dataset has significant advantages compared
to existing ones. On the other side, publishing it releases other
researchers from grueling and time consuming dataset creation.

6.4 Performance Metrics for the Empirical Study
Besides BLEU, we also employ the number of compilation errors,
number of compilation warnings, and number of failed/passed
test cases to assess the quality of generated programs as pre-
sented in Table 5. However, such metrics are not suitable for
existing datasets (e.g., Django and HS) because the reference
programs (code fragments) within such datasets are incomplete
and incompilable. Consequently, it is unfair/unpractical to require
models trained on such datasets to generate complete and compi-
lable/runnable programs. However, programs in our new dataset
are complete and syntactically correct, and thus we compute such
performance metrics for the evaluation on the new dataset.

6.5 Threats to Validity
Besides the threats (limitations) discussed in the preceding sec-
tions, the evaluation (especially the case study to evaluate the
usefulness of generated programs) is subjected to the following
threats to validity. A threat to external validity is that only ten
programming tasks and twenty participants were involved in the
evaluation. Conclusions drawn on such limited number of subjects
may not be generalizable. We failed to increase the number of
programming tasks or participants because it is time consuming
for participants to finish the selected programming tasks, and
it is challenging for us to recruit a large number of qualified
participants. A threat to internal validity is that the observations
(coding speed) could be significantly influenced by the characters
(e.g., knowledge in Python and programming skills) besides the
investigated factor (i.e., with or without the generated programs).
To reduce the threat, we recruited thirty participants, excluded
the top and bottom ones (concerning their performance) with
a pretest, and divided the remaining participants into two in-
depeDBLP:conf/icml/DengKLR17ndent groups according to their
performance in the pretest. As a results, the participants within the
same group had similar performance in the pretest.

7 CONCLUSIONS AND FUTURE WORK

Deep learning based code generation is potentially promising,
and a few approaches have been proposed. Although existing
evaluations suggest that such approaches are highly accurate, they
are evaluated on small datasets where ‘requirements’ are quite
different from real-world requirements in the industry. To assess
the state of the art, in this paper, we build a large scale dataset.
Compared to existing ones, it is larger and more diverse. Besides
the dataset, we also build an assisting tool to measure the quality
of generated programs. We not only compute the widely used plain
text based metrics (BLEU), but also employ syntax sensitive static
checking as well as test based dynamic cross validation. Based on
the resulting dataset and assisting tool, we reassess the state of the
art in natural language based code generation. Evaluation results

suggest that the state-of-the-art approaches successfully learn to
generate popular statements. However, the generated programs are
often significantly different from their references. Besides that,
they often contain syntactic and semantical errors, and none of
them can pass even a single test case. Further analysis suggests
that they learn little from the input (requirements). Consequently,
to further improve the state of the art, researchers should pay more
attention to the encoders of the neural networks that are in charge
of requirements’ interpretation. The resulting dataset, the assisting
tool, and evaluated approaches (all of them are publicly available
at https://github.com/ds4an/CoDas4CG) could serve as a basis for
future research in this direction.

One future work is to design more effective metrics for assess-
ing quality of code generation. It is well-known that BLEU alone
is insufficient for assessing the quality of code generation [64]
because source code has little tolerance for poor syntax or seman-
tics. To this end, in this paper we propose additional metrics to
assess the syntax and semantics of generated programs, i.e., the
number of compilation errors, number of compilation warnings,
and number of failed/passed test cases. However, as suggested
by the empirical study in Section 5, most of the programs
generated by the state-of-the-art approaches are not executable,
which significantly prevents the proposed execution-based metrics
from reaching their maximal potential. Consequently, it remains an
open question to design effective metrics in future to accurately
and quantitatively assess the quality of programs automatically
generated by the state-of-the-art approaches.

ACKNOWLEDGMENTS

The work is partially supported by the National Natural Science
Foundation of China (61690205,61772071), and the National
Science Foundation (CCF-1350487) .

REFERENCES

[1] I. Sommerville, Software Engineering. Addison-Wesley, 1992.
[2] M. W. Whalen, “An approach to automatic code generation for safety-

critical systems,” in Proceedings of the 14th IEEE International Confer-
ence on Automated Software Engineering (ASE’99), 1999, pp. 315–318.

[3] ——, “High-integrity code generation for state-based formalisms,” in
Proceedings of the 2000 International Conference on Software Engi-
neering (ICSE 2000), June 2000, pp. 725–727.

[4] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sher-
man, A. Shtull-Trauring, and M. Trakhtenbrot, “Statemate: a working
environment for the development of complex reactive systems,” IEEE
Transactions on Software Engineering, vol. 16, no. 4, pp. 403–414, April
1990.

[5] H. Mei and L. Zhang, “Can big data bring a breakthrough for software
automation?” Science China Information Sciences, vol. 61, no. 5, 2018.

[6] G. O’Regan, Concise Guide to Formal Methods: Theory, Fundamentals
and Industry Applications. Springer, 2017.

[7] J. M. Wing, “A specifier’s introduction to formal methods,” Computer,
vol. 23, no. 9, pp. 8–22, Sept 1990.

[8] P. Linz, An Introduction to Formal Languages and Automata. Jones and
Bartlett Learning, 2011.

[9] R. Soley and the OMG Staff Strategy Group, “Model driven architecture,”
Object Management Group, Tech. Rep., Nov. 2000.

[10] F. A. Kraemer, “Engineering Android applications based on uml activ-
ities,” in Proceedings of the 14th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2011), J. Whittle,
T. Clark, and T. Kühne, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 183–197.

[11] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modelling Lan-
guage User Guide. Addison-Wesley Professional, 2005.

[12] G. Sunyé, A. L. Guennec, and J.-M. Jézéquel, “Using uml action
semantics for model execution and transformation,” Information
Systems, vol. 27, no. 6, pp. 445 – 457, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306437902000145

http://www.sciencedirect.com/science/article/pii/S0306437902000145

19

[13] D. A. Dahl, M. Bates, M. Brown, W. M. Fisher, K. Hunicke-Smith, D. S.
Pallett, C. Pao, A. I. Rudnicky, and E. Shriberg, “Expanding the scope
of the ATIS task: The ATIS-3 corpus,” in Proceedings of a Workshop
held at Plainsboro on Human Language Technology, 1994, pp. 43–48.
[Online]. Available: http://aclweb.org/anthology/H/H94/H94-1010.pdf

[14] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kociský,
F. Wang, and A. W. Senior, “Latent predictor networks for code
generation,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL), 2016, pp. 599–609.
[Online]. Available: http://aclweb.org/anthology/P/P16/P16-1057.pdf

[15] L. R. Tang and R. J. Mooney, “Using multiple clause constructors in
inductive logic programming for semantic parsing,” in Proceedings of
the 12th European Conference on Machine Learning (ECML), 2001, pp.
466–477. [Online]. Available: https://doi.org/10.1007/3-540-44795-4 40

[16] P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig, “Learning to
mine aligned code and natural language pairs from stack overflow,”
in Proceedings of the 15th International Conference on Mining
Software Repositories (MSR), 2018, pp. 476–486. [Online]. Available:
http://doi.acm.org/10.1145/3196398.3196408

[17] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, “Image-to-markup
generation with coarse-to-fine attention,” in Proceedings of the 34th
International Conference on Machine Learning (ICML), 2017, pp. 980–
989. [Online]. Available: http://proceedings.mlr.press/v70/deng17a.html

[18] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design image
to GUI skeleton: a neural machine translator to bootstrap mobile GUI
implementation,” in Proceedings of the 40th International Conference on
Software Engineering (ICSE), 2018, pp. 665–676. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180240

[19] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26-28, 2011, 2011, pp. 317–330. [Online].
Available: http://doi.acm.org/10.1145/1926385.1926423

[20] C. Shu and H. Zhang, “Neural programming by example,” in Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI
2017), February 4-9, 2017, San Francisco, California, USA., 2017, pp.
1539–1545.

[21] J. Dick, E. Hull, and K. Jackson, Requirements Engineering. Springer;
4th Edition, August 23, 2017.

[22] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL), 2017, pp. 440–450.
[Online]. Available: https://doi.org/10.18653/v1/P17-1041

[23] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a
method for automatic evaluation of machine translation,” in
Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), 2002, pp. 311–318. [Online].
Available: http://www.aclweb.org/anthology/P02-1040.pdf

[24] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean, “Google’s neural machine translation system: Bridging the gap
between human and machine translation,” CoRR, vol. abs/1609.08144,
2016. [Online]. Available: http://arxiv.org/abs/1609.08144

[25] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda,
and S. Nakamura, “Learning to generate pseudo-code from source
code using statistical machine translation (T),” in Proceedings
of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015, pp. 574–584. [Online]. Available:
https://doi.org/10.1109/ASE.2015.36

[26] P. Liang, M. I. Jordan, and D. Klein, “Learning dependency-based
compositional semantics,” in Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics (ACL), 2011, pp. 590–599.
[Online]. Available: http://www.aclweb.org/anthology/P11-1060

[27] A. Wang, T. Kwiatkowski, and L. S. Zettlemoyer, “Morpho-syntactic
lexical generalization for CCG semantic parsing,” in Proceedings
of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1284–1295. [Online]. Available:
http://aclweb.org/anthology/D/D14/D14-1135.pdf

[28] L. Dong and M. Lapata, “Language to logical form with neural
attention,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL), 2016, pp. 33–43. [Online].
Available: http://aclweb.org/anthology/P/P16/P16-1004.pdf

[29] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks
for code generation and semantic parsing,” in Proceedings of

the 55th Annual Meeting of the Association for Computational
Linguistics (ACL), 2017, pp. 1139–1149. [Online]. Available:
https://doi.org/10.18653/v1/P17-1105

[30] A. Stehnii, “Generation of code from text description with syntactic pars-
ing and tree2tree model,” Master’s thesis, Ukrainian Catholic University,
2018.

[31] P. Yin and G. Neubig, “TRANX: A transition-based neural abstract
syntax parser for semantic parsing and code generation,” in Conference
on Empirical Methods in Natural Language Processing (EMNLP)
Demo Track, Brussels, Belgium, November 2018. [Online]. Available:
https://arxiv.org/abs/1810.02720

[32] L. Dong and M. Lapata, “Coarse-to-fine decoding for neural semantic
parsing,” in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2018, pp. 731–742. [Online]. Available:
http://aclweb.org/anthology/P18-1068

[33] S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and G. Neubig,
“Retrieval-based neural code generation,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, 2018, pp. 925–930.
[Online]. Available: https://www.aclweb.org/anthology/D18-1111/

[34] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A grammar-
based structural cnn decoder for code generation,” in Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI 2019), vol. 33, 2019,
pp. 7055–7062.

[35] T. Gvero and V. Kuncak, “Synthesizing java expressions from
free-form queries,” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: ACM, 2015, pp. 416–432. [Online]. Available: http:
//doi.acm.org/10.1145/2814270.2814295

[36] M. Raghothaman, Y. Wei, and Y. Hamadi, “Swim: Synthesizing what i
mean - code search and idiomatic snippet synthesis,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), May
2016, pp. 357–367.

[37] A. T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and T. N.
Nguyen, “Statistical translation of english texts to api code templates,”
in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Sep. 2018, pp. 194–205.

[38] J. M. Zelle and R. J. Mooney, “Learning to parse database
queries using inductive logic programming,” in Proceedings of the
13th National Conference on Artificial Intelligence (AAAI), 1996,
pp. 1050–1055. [Online]. Available: http://www.aaai.org/Library/AAAI/
1996/aaai96-156.php

[39] C. Quirk, R. J. Mooney, and M. Galley, “Language to code:
Learning semantic parsers for if-this-then-that recipes,” in Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics (ACL), 2015, pp. 878–888. [Online]. Available: http:
//aclweb.org/anthology/P/P15/P15-1085.pdf

[40] Magic the Gathering. (2016) http://github.com/magefree/mage/.
[41] Hearthstone. (2016) http://github.com/danielyule/hearthbreaker/.
[42] Z. Yao, D. S. Weld, W. Chen, and H. Sun, “Staqc: A systematically mined

question-code dataset from stack overflow,” in Proceedings of the World
Wide Web Conference on World Wide Web (WWW), 2018, pp. 1693–1703.
[Online]. Available: http://doi.acm.org/10.1145/3178876.3186081

[43] Stack OverFlow. (2019) https://stackoverflow.com/.
[44] V. Raychev, M. Vechev, and E. Yahav, “Code completion with

statistical language models,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’14. New York, NY, USA: ACM, 2014, pp. 419–428. [Online].
Available: http://doi.acm.org/10.1145/2594291.2594321

[45] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code completion
with neural attention and pointer networks,” in Proceedings of
the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization, 7 2018, pp. 4159–4165. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/578

[46] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 837–847. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337322

[47] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786849

http://aclweb.org/anthology/H/H94/H94-1010.pdf
http://aclweb.org/anthology/P/P16/P16-1057.pdf
https://doi.org/10.1007/3-540-44795-4_40
http://doi.acm.org/10.1145/3196398.3196408
http://proceedings.mlr.press/v70/deng17a.html
http://doi.acm.org/10.1145/3180155.3180240
http://doi.acm.org/10.1145/1926385.1926423
https://doi.org/10.18653/v1/P17-1041
http://www.aclweb.org/anthology/P02-1040.pdf
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/ASE.2015.36
http://www.aclweb.org/anthology/P11-1060
http://aclweb.org/anthology/D/D14/D14-1135.pdf
http://aclweb.org/anthology/P/P16/P16-1004.pdf
https://doi.org/10.18653/v1/P17-1105
https://arxiv.org/abs/1810.02720
http://aclweb.org/anthology/P18-1068
https://www.aclweb.org/anthology/D18-1111/
http://doi.acm.org/10.1145/2814270.2814295
http://doi.acm.org/10.1145/2814270.2814295
http://www.aaai.org/Library/AAAI/1996/aaai96-156.php
http://www.aaai.org/Library/AAAI/1996/aaai96-156.php
http://aclweb.org/anthology/P/P15/P15-1085.pdf
http://aclweb.org/anthology/P/P15/P15-1085.pdf
http://doi.acm.org/10.1145/3178876.3186081
http://doi.acm.org/10.1145/2594291.2594321
https://doi.org/10.24963/ijcai.2018/578
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://doi.acm.org/10.1145/2786805.2786849

20

[48] L. Jiang, H. Liu, and H. Jiang, “Machine learning based automated
method name recommendation: How far are we,” in Proceedings of
The 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2019), 2019, pp. 602–614.

[49] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen
est omen: Exploring and exploiting similarities between argument
and parameter names,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York,
NY, USA: ACM, 2016, pp. 1063–1073. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884841

[50] X. Chen, C. Liu, and D. Song, “Towards synthesizing complex
programs from input-output examples,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=Skp1ESxRZ

[51] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P. Kohli,
“Robustfill: Neural program learning under noisy i/o,” in 34th Interna-
tional Conference on Machine Learning (ICML 2017), March 2017, pp.
990–998.

[52] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and
P. Kohli, “Neuro-symbolic program synthesis,” in 5th International
Conference on Learning Representations (ICLR 2017), February
2017. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/neuro-symbolic-program-synthesis-2/

[53] R. Shin, N. Kant, K. Gupta, C. Bender, B. Trabucco, R. Singh,
and D. Song, “Synthetic datasets for neural program synthesis,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=ryeOSnAqYm

[54] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow,
“Deepcoder: Learning to write programs,” in Proceedings of ICLR’17,
March 2017.

[55] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), May 2019, pp. 783–794.

[56] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” in Precedings of the 46th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL
2019). New York, NY, USA: ACM, 2019, pp. 1–29. [Online].
Available: http://doi.acm.org/10.1145/3290353

[57] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang, “TBCNN: A tree-based
convolutional neural network for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI-16), 2016, pp. 1287–1293.

[58] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” CoRR, vol. abs/1711.00740, 2017.
[Online]. Available: http://arxiv.org/abs/1711.00740

[59] Codeforces. (2019) http://codeforces.com/.
[60] HackerEarth. (2019) https://www.hackerearth.com/.
[61] G. S. Manku, A. Jain, and A. D. Sarma, “Detecting near-duplicates

for web crawling,” in Proceedings of the 16th International Conference
on World Wide Web (WWW), 2007, pp. 141–150. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242592

[62] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[63] D. Liu and D. Gildea, “Syntactic features for evaluation of machine
translation,” in ACL 2005 Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, pp. 25—-32.

[64] S. Karaivanov, V. Raychev, and M. Vechev, “Phrase-based statistical
translation of programming languages,” in Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, ser. Onward! 2014. New
York, NY, USA: ACM, 2014, pp. 173–184. [Online]. Available:
http://doi.acm.org/10.1145/2661136.2661148

[65] autopep8. (2018) https://pypi.org/project/autopep8/.
[66] P. M. Lerman, “Fitting segmented regression models by grid search,”

Applied Statistics, vol. 29, no. 1, 1980.
[67] Pylint. (2018) https://www.pylint.org/.
[68] Python Documents. (2019) https://docs.python.org/3/library/exceptions.html.

Hui Liu is a professor at the School of Com-
puter Science and Technology, Beijing Institute
of Technology, China. He received BS degree
in control science from Shandong University
in 2001, MS degree in computer science from
Shanghai University in 2004, and PhD degree in
computer science from the Peking University in
2008. He was a visiting research fellow in centre
for research on evolution, search and testing
(CREST) at University College London, UK. He
served on the program committees and organiz-

ing committees of prestigious conferences, such as ICSME, RE, ICSR,
and COMPSAC. He is serving as associate editor for IET Software,
and guest editor for Empirical Software Engineering and Journal of
Systems and Software. He is particularly interested in deep learning-
based software engineering, software refactoring, and software quality.
He is also interested in developing practical tools to assist software
engineers.

Minzhu Shen received BS degree from the In-
formation Management and System Program,
Northwest A&F University in 2018. She is cur-
rently working toward a master’s degree at the
School of Computer Science and Technology,
Beijing Institute of Technology, under the su-
pervision of Dr. Hui Liu. Her current research
interests include software testing and AI-based
software engineering.

Jiaqi Zhu received BS degree from the Col-
lege of Information Engineering, Northwest A&F
University in 2017. She is currently working to-
ward a master’s degree at the School of Com-
puter Science and Technology, Beijing Institute
of Technology, under the supervision of Dr. Hui
Liu. Her current research interests include code
generation and software evolution.

Nan Niu received the B.Eng. degree in com-
puter science and engineering from the Beijing
Institute of Technology, Beijing, China, in 1999,
the M.Sc. degree in computing science from the
University of Alberta, Edmonton, AB, Canada,
in 2004, and the Ph.D. degree in computer sci-
ence from the University of Toronto, Toronto, ON,
Canada, in 2009. He is currently an Associate
Professor with the Department of Electrical En-
gineering and Computer Science, University of
Cincinnati, Cincinnati, OH, USA. His current re-

search interests include software requirements engineering, information
seeking in software engineering, and human-centric computing. Dr.
Niu was a recipient of the U.S. National Science Foundation Faculty
Early Career Development (CAREER) Award, the IEEE International
Requirements Engineering Conference’s Best Research Paper Award
in 2016, and the Most Influential Paper Award in 2018.

http://doi.acm.org/10.1145/2884781.2884841
https://openreview.net/forum?id=Skp1ESxRZ
https://openreview.net/forum?id=Skp1ESxRZ
https://www.microsoft.com/en-us/research/publication/neuro-symbolic-program-synthesis-2/
https://www.microsoft.com/en-us/research/publication/neuro-symbolic-program-synthesis-2/
https://openreview.net/forum?id=ryeOSnAqYm
http://doi.acm.org/10.1145/3290353
http://arxiv.org/abs/1711.00740
http://doi.acm.org/10.1145/1242572.1242592
http://doi.acm.org/10.1145/2661136.2661148

21

Ge Li is an associate professor in the De-
partment of Computer Science and Technology,
School of EECS. He obtained his Ph.D from
Peking University in 2006, and had been a visit-
ing associate professor at Stanford University in
2013-2014. He is currently the deputy secretary
general of CCF Software Engineering Society
and the founder of the Software Program Gen-
eration Study Group. He was one of the earliest
researchers engaged in the study of the com-
puter program language model based on deep

neural network, and the study of end-to-end program code generat-
ing techniques. His current research mainly concerns applications of
probabilistic methods for machine learning, including program language
process, natural language process, and software engineering.

Lu Zhang is a professor at the School of
Electronics Engineering and Computer Science,
Peking University, P.R. China. He received both
PhD and BSc in Computer Science from Peking
University in 2000 and 1995 respectively. He
was a postdoctoral researcher in Oxford Brookes
University and University of Liverpool, UK. He
served on the program committees of many
prestigious conferences, such as FSE, OOP-
SLA, ISSTA and ASE. He was a program co-
chair of SCAM2008 and a program co-chair of

ICSM17. He has been on the editorial boards of Journal of Software
Maintenance and Evolution: Research and Practice and Software Test-
ing, Verification and Reliability. His current research interests include
software testing and analysis, program comprehension, software main-
tenance and evolution, software reuse, and program synthesis.

	Introduction
	Related Work
	Generating Source Code from Requirements Text
	Datasets for Code Generation from Requirements Text
	Code Generation Based On Examples and Contexts

	New Dataset
	Overview
	Data Collection
	Removing Duplication
	Static Checking
	Cross Validation by Software Testing
	Resulting Dataset
	Quality Assessment and Tool Kit

	Experimental Setup
	Validation Questions
	Evaluated Approaches
	Process

	Results and Analysis
	Q1: Significant Reduction in BLEU
	Q2: Syntactic Checking
	Q3: Dynamic Validation
	Q4: Usefulness of Generated Programs
	Q5: Where and Why They Succeed
	Q6: Little Learned from Requirements
	Q7: Simple Alternative Approach
	Q8: Removing Redundant Implementations Does Not Help
	Q9: Impact of Unifying Identifiers

	Discussions
	Potential Reasons for Reduced Performance
	Experiment on More Datasets
	Limited Diversity of the New Dataset
	Performance Metrics for the Empirical Study
	Threats to Validity

	Conclusions and Future Work
	References
	Biographies
	Hui Liu
	Minzhu Shen
	Jiaqi Zhu
	Nan Niu
	Ge Li
	Lu Zhang

