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When data is not stationary

• Implication of not stationary: sample ACF or sample PACF do not
rapidly decrease to zero as lag increases

• What shall we do?

− Differencing, then fit an ARMA→ ARIMA
− Transformation, then fit an ARMA
− Seasonal model→ SARIMA
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A non-stationary exmaple: Dow Jones utilities index data

library(itsmr); ## Load the ITSM-R package
par(mfrow = c(1, 3));
plot.ts(dowj, main = 'Raw data');
acf(dowj); pacf(dowj);

Raw data
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After differencing

par(mfrow = c(1, 3));
dowj_diff = dowj[-length(dowj)] - dowj[-1];
plot.ts(dowj_diff, main = 'Data after differencing');
acf(dowj_diff); pacf(dowj_diff);

Data after differencing
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ARIMA model: definition

• Autoregressive integrated moving-average models (ARIMA): Let
d ∈ N, then series {Xt} is an ARIMA(p, d, q) process if

Yt = (1−B)dXt

is a causal ARMA(p, q) process.
• Difference equation (DE) for an ARIMA(p, d, q) process

φ∗(B)Xt = φ(B)(1−B)dXt = θ(B)Zt, {Zt} ∼WN(0, σ2)

− φ(z): polynomial of degree p, and φ(z) 6= 0 for |z| ≤ 1
− θ(z): polynomial of degree q
− φ∗(z) = φ(z)(1− z)d: has a zero of order d at z = 1

• An ARIMA process with d > 0 is NOT stationary!
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ARIMA mean is not dertermined by the DE

• {Xt} is an ARIMA(p, d, q) process. We can add an arbitrary
polynomial trend of degree d− 1

Wt = Xt +A0 +A1t+ · · ·+Ad−1t
d−1

with A0, . . . , Ad−1 being any random variables, and {Wt} still
satisfies the same ARIMA(p, d, q) difference equation

• In other words, the ARIMA DE determines the second-order
properties of {(1−B)dXt} but not those of {Xt}
− For parameter estimation: φ, θ, and σ2 are estimated based on
{(1−B)dXt} rather than {Xt}

− For forecast, we need additional assumptions
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Fit data using ARIMA processes

• Whether to fit a finite time series using

− non-stationary models (such as ARIMA), or
− directly using stationary models (such as ARMA)?

• If the fitted stationary ARMA model’s φ(·) have zeros very close to
unit circles, then fitting an ARIMA model is better

− Parameter estimation is stable
− The differenced series may only need a low-order ARMA

• Limitation of ARIMA: only permits data to be nonstationary in a
very special way

− Non-stationary: can have zeros anywhere on the unit circle |z| = 1
− ARIMA model: only has a zero of multiplicity d at the point z = 1
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Natural log transformation

• When data variance increases with mean, it’s common to apply
log transformation before fitting the data using ARIMA or ARMA.

• When does log transfomation work well? Suppose that

E(Xt) = µt, V ar(Xt) = σ2µ2
t

Then by first-order Taylor expansion of log(Xt) at µt:

log(Xt) ≈ log(µt) + Xt − µt
µt

=⇒ V ar [log(Xt)] ≈
V ar(Xt)

µ2
t

= σ2

The data after log transformation log(Xt) has a constant variance
• Note: log transformation can only be applied to positive data
• Note: If Yt = log(Xt), then because expectation and logarithm are

not interchangeable,
X̂t 6= exp(Ŷt)
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Generalize the log transformation: Box-Cox
transformation

• Box-Cox transformation

fλ(x) =
{
xλ−1
λ , x ≥ 0, λ > 0

log(x), x > 0, λ = 0

− Usual range: 0 ≤ λ ≤ 1.5
− Common values: λ = 0, 0.5

• Note: limλ→0 fλ(x) = log(x)
• Box-Cox transformation can only be applied to non-negative data
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Unit root test for AR(1) process

• {Xt} is an AR(1) process: Xt − µ = φ1(Xt−1 − µ) + Zt
• Equivalent DE:

∇Xt = Xt −Xt−1 = φ∗0 + φ∗1Xt−1 + Zt

− where φ∗0 = µ(1− φ1) and φ∗1 = φ1 − 1
− Regressing ∇Xt onto 1 and Xt−1, we get the OLS estimator φ̂∗1

and its standard error SE(φ̂∗1)
• Augmented Dickey-Fuller test for AR(1)
− Hypotheses: H0 : φ1 = 1 ←→ H1 : φ1 < 1
− Equivalent hypotheses: H0 : φ∗1 = 0 ←→ H1 : φ∗1 < 0
− Test statistic: limit distribution under H0 is not normal or t

τ̂ = φ̂∗1

SE(φ̂∗1)
− Rejection region: reject H0 if

τ̂ < −2.57 (90%)
τ̂ < −2.86 (95%)
τ̂ < −3.43 (99%) 11



Unit root test for AR(p) process

• AR(p) process: Xt − µ = φ1(Xt−1 − µ) + · · ·+ φp(Xt−p − µ) + Zt

• Equivalent DE:

∇Xt = φ∗0 + φ∗1Xt−1 + φ∗2∇Xt−1 + · · ·+ φ∗p∇Xt−p+1 + Zt

− where φ∗0 = µ(1−
∑p

i=1 φi), φ∗1 =
∑p

i=1 φi − 1, and φ∗j = −
∑p

i=j φi

for j ≥ 2
− Regressing ∇Xt onto 1, Xt−1,∇Xt−1, · · · ,∇Xt−p+1, we get the

OLS estimator φ̂∗1 and its standard error SE(φ̂∗1)

• Augmented Dickey-Fuller test for AR(p)
− Hypotheses: H0 : φ∗1 = 0 ←→ H1 : φ∗1 < 0
− Test statistic:

τ̂ = φ̂∗1

SE(φ̂∗1)
− Rejection region: same as augmented Dickey-Fuller test for AR(1)

12



Implement augmented Dickey-Fuller test in R

library(tseries);
## Note: the lag k here is the AR order p
adf.test(dowj, k = 2);

##
## Augmented Dickey-Fuller Test
##
## data: dowj
## Dickey-Fuller = -1.3788, Lag order = 2, p-value = 0.8295
## alternative hypothesis: stationary
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Forecast an ARIMA(p, 1, q) process

• {Xt} is ARIMA(p, 1, q), and {Yt = ∇Xt} is a causal ARMA(p, q)

Xt = X0 +
t∑

j=1
Yj , t = 1, 2, . . .

• Best linear predictor of Xn+1

PnXn+1 = Pn(X0+Y1+· · ·+Yn+1) = Pn(Xn+Yn+1) = Xn+Pn(Yn+1),

− Pn means based on {1, X0, X1, . . . , Xn}, or equivalently,
{1, X0, Y1, . . . , Yn}

− To find Pn(Yn+1), we need to know E(X2
0 ) and E(X0Yj), for

j = 1, . . . , n+ 1.

• A sufficient assumption for Pn(Yn+1) to be the best linear predictor
in term of {Y1, . . . , Yn}: X0 is uncorrelated with Y1, Y2, . . .
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Forecast an ARIMA(p, d, q) process

• The observed ARIMA(p, d, q) process {Xt} satisfies

Yt = (1−B)dXt, t = 1, 2, . . . , {Yt} ∼ causal ARMA(p, q)
• Assumption: the random vector (X1−d, . . . , X0) is uncorrelated

with Yt for all t > 0
• One-step predictors Ŷn+1 = PnYn+1 and X̂n+1 = PnXn+1:

Xn+1 − X̂n+1 = Yn+1 − Ŷn+1

• Recall: the h-step predictor of ARMA(p, q) for n > max(p, q):

PnYn+h =
p∑
i=1

φiPnYn+h−i +
q∑

j=h
θn+h−1,j(Yn+h−j − Ŷn+h−j)

• h-step predictor of ARIMA(p, d, q) for n > max(p, q):

PnXn+h =
p+d∑
i=1

φ∗iPnXn+h−i +
q∑

j=h
θn+h−1,j(Xn+h−j − X̂n+h−j)

where φ∗(z) = (1− z)dφ(z) = 1− φ∗1z − · · · − φ∗p+dz
p+d
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Seasonal ARIMA (SARIMA) Model: definition

• Suppose d,D are non-negative integers. {Xt} is a seasonal
ARIMA(p, d, q) × (P,D,Q)s process with period s if the
differenced series

Yt = (1−B)d(1−Bs)DXt

is a causal ARMA process defined by

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt, {Zt} ∼WN(0, σ2)

where

φ(z) = 1− φ1z − · · · − φpzp, Φ(z) = 1− Φ1z − · · · − ΦP z
P

θ(z) = 1 + θz + · · ·+ θqz
q, Θ(z) = 1 + Θz + · · ·+ ΘQz

Q

• {Yt} is causal if and only if neither φ(z) or Φ(z) has zeros inside
the unit circle

• Usually, s = 12 for monthly data
16



Special case: seasonal ARMA (SARMA)

• Between-year model: for monthly data, each one of the 12 time
series is generated by the same ARMA(P,Q) model

Φ(B12)Yt = Θ(B12)Ut, {Uj+12t, t ∈ Z} ∼WN(0, σ2
U )

• SARMA(P,Q) with period s: in the above between-year model,
the period 12 can be changed to any positive integer s
− If {Ut, t ∈ Z} ∼WN(0, σ2

U ), then the ACVF γ(h) = 0 unless h
divides s evenly. But this may not be ideal for real life application!
E.g., this Feb is correlated with last Feb, but not this Jan.

• General SARMA(p, q) × (P,Q) with period s: incorporate
dependency between the 12 series by letting {Ut} be ARMA:

Φ(Bs)Yt = Θ(Bs)Ut, φ(B)Ut = θ(B)Zt, {Zt} ∼WN(0, σ2)

− Equivalent DE for the general SARMA:

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt
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Fit a SARIMA Model

• Period s is known

1. Find d and D to make the difference series {Yt} to look stationary
2. Examine the sample ACF and sample PACF of {Yt} at lags being

multiples of s, to find orders P,Q
3. Use ρ̂(1), . . . , ρ̂(s− 1) to find orders p, q
4. Use AICC to decide among competing order choices
5. Given orders (p, d, q, P,D,Q), estimate MLE of parameters

(φ, θ,Φ,Θ, σ2)
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Regression with ARMA errors: OLS estimation

• Linear model with ARMA errors W = (W1, . . . ,Wn)′:

Yt = x′tβ +Wt, t = 1, . . . , n, {Wt} ∼ causal ARMA(p, q)

− Note: each row is indexed by a different time t!
− Error covariance Γn = E(WW′)

• Ordinary least squares (OLS) estimator

β̂OLS = (X′X)−1X′Y

− Estimated by minimizing (Y−Xβ)′(Y−Xβ)
− OLS is unbiased, even when errors are dependent!
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Regression with ARMA errors: GLS estimation

• Generalized least squares (GLS) estimator

β̂GLS = (X′Γ−1
n X)−1X′Γ−1

n Y

− Estimated by minimizing the weighted sum of squares

(Y−Xβ)′Γ−1
n (Y−Xβ)

− Covariance
Cov

(
β̂GLS

)
= (X′Γ−1

n X)−1

− GLS is the best linear unbiased estimator, i.e., for any vector c and
any unbiased estimator β̂, we have

Var(c′β̂GLS) ≤ Var(c′β̂)
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When {Wt} is an AR(p) process

• We can apply φ(B) to each side of the regression equation and
get uncorrelated, zero-mean, constant-variance errors

φ(B)Y = φ(B)Xβ + φ(B)W = φ(B)Xβ + Z

• Under the transformed target variable

Y ∗t = φ(B)Yt, t = p+ 1, . . . , n

and the transformed design matrix

X∗t,j = φ(B)Xt,j , t = p+ 1, . . . , n, j = 1, . . . , k

the OLS estimator is the best linear unbiased estimator
• Note: after the transformation, the regression sample size reduces

to n− p
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Regression with ARMA errors: MLE

• MLE of β,φ,θ, σ2 can be estimated by maximizing the Gaussian
likelihood with error covariance Γn

• An iterative scheme

1. Compute β̂OLS and regression residuals Y−Xβ̂OLS
2. Based on the estimated residuals, compute MLE of the ARMA(p, q)

parameters
3. Based on the fitted ARMA model, compute β̂GLS
4. Compute regression residuals Y−Xβ̂GLS, and return to Step 2

until estimators stabilize

• Asymptotic properties of MLE: If {Wt} is a causal and invertible
ARMA, then

− MLEs are asymptotically normal
− Estimated regression coefficients are asymptotically independent of

estimated ARMA parameters
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