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When data is not stationary

+ Implication of not stationary: sample ACF or sample PACF do not
rapidly decrease to zero as lag increases

« What shall we do?

— Differencing, then fit an ARMA — ARIMA
— Transformation, then fit an ARMA
— Seasonal model — SARIMA



A non-stationary exmaple: Dow Jones utilities index data

library(itsmr); ## Load the ITSM-R package
par (mfrow = c(1, 3));

plot.ts(dowj, main = 'Raw data');

acf (dowj); pacf(dowj);
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After differencing

par (mfrow = c(1, 3));

dowj_diff = dowj[-length(dowj)] - dowj[-1];
plot.ts(dowj_diff, main = 'Data after differencing');
acf(dowj_diff); pacf(dowj_diff);
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ARIMA model: definition

+ Autoregressive integrated moving-average models (ARIMA): Let
d € N, then series {X;} is an ARIMA(p, d, q) process if

Y; = (1 - B)4X,

is a causal ARMA(p, q) process.
+ Difference equation (DE) for an ARIMA(p, d, q) process

¢*(B)X; = ¢(B)(1 — B)'X, = 0(B)Z;, {Z:} ~ WN(0,0?)

— ¢(#): polynomial of degree p, and ¢(z) # 0 for |z| <1
— 0(z): polynomial of degree ¢
— ¢*(2) = ¢(2)(1 — 2)%: has a zero of orderd at z = 1

* An ARIMA process with d > 0 is NOT stationary!



ARIMA mean is not dertermined by the DE

« {X,} is an ARIMA(p, d, q) process. We can add an arbitrary
polynomial trend of degree d — 1

Wy =X, + Ao+ At + -+ Ag_1t971

with Ay, ..., Aq—1 being any random variables, and {W,} still
satisfies the same ARIMA(p, d, ¢) difference equation
* In other words, the ARIMA DE determines the second-order
properties of {(1 — B)?X;} but not those of {X;}
— For parameter estimation: ¢, 8, and o2 are estimated based on

{(1 — B)?X,} rather than {X,}
— For forecast, we need additional assumptions



Fit data using ARIMA processes

+ Whether to fit a finite time series using

— non-stationary models (such as ARIMA), or
— directly using stationary models (such as ARMA)?

+ If the fitted stationary ARMA model’s ¢(-) have zeros very close to
unit circles, then fitting an ARIMA model is better

— Parameter estimation is stable
— The differenced series may only need a low-order ARMA

+ Limitation of ARIMA: only permits data to be nonstationary in a
very special way

— Non-stationary: can have zeros anywhere on the unit circle |z| =1
— ARIMA model: only has a zero of multiplicity d at the point z = 1



Natural log transformation

+ When data variance increases with mean, it's common to apply
log transformation before fitting the data using ARIMA or ARMA.

« When does log transfomation work well? Suppose that
E(Xy) = p, Var(Xy) =o’u}
Then by first-order Taylor expansion of log(X;) at y:

X = Var[log(Xy)] = VL(QXO =02

log(X;) =~ log(ut) +
Mt M

The data after log transformation log(X;) has a constant variance
* Note: log transformation can only be applied to positive data

* Note: If Y; = log(X}), then because expectation and logarithm are
not interchangeable,

Xt % exp(f/t)



Generalize the log transformation: Box-Cox
transformation

* Box-Cox transformation

=1
, x>0,A>0
fa(z) = { A

log(z), z>0,A=0

— Usualrange: 0 < A < 1.5
— Common values: A =0,0.5

 Note: limy_,o fa(x) = log(x)

+ Box-Cox transformation can only be applied to non-negative data



Unit root test for AR(1) process

* {X;}isan AR(1) process: X; — = ¢1(Xem1 — 1) + Z4
+ Equivalent DE:

VX =Xe — Xp1 = o5+ 91 X1 + Z4

— where ¢ = u(1— ¢1) and ¢} = ¢y — 1 )
— Regressing VX, onto 1 and X;_;, we get the OLS estimator ¢7
and its standard error SE(¢7)
+ Augmented Dickey-Fuller test for AR(1)
— Hypotheses: Hy: 1 =1 «— Hi:¢1 <1
— Equivalent hypotheses: Hy : ¢7 =0 «— Hy :¢7 <0
— Test statistic: limit distribution under Hy is not normal or t

5
SE(¢7)

7/; f—
— Rejection region: reject H if

# < =257 (90%)
#< —2.86 (95%)
#< —343 (99%)



Unit root test for AR(p) process

* AR(p) process: X; — = ¢1(Xe—1 —p) + - + dp(Xi—p — 1) + Z4
+ Equivalent DE:

VXt - ¢(>§ + (ZSTXt_l + QZS;VXt_l + -+ ¢;VXt_p+1 + Zt

— where ¢5 = p(1 =330, ¢i), o1 =227 i — Land ¢ = =377 oy
forj > 2

— Regressing VX, onto 1, Xy 1, VX1, -+, VX;_,41, We get the
OLS estimator ¢* and its standard error SE(¢?)

+ Augmented Dickey-Fuller test for AR(p)

— Hypotheses: Hy: ¢7 =0 «— Hy:¢7 <0
— Test statistic: .
o1
SE(7)
— Rejection region: same as augmented Dickey-Fuller test for AR(1)

7/\':



Implement augmented Dickey-Fuller test in R

library(tseries);
## Note: the lag k here is the AR order p
adf.test(dowj, k = 2);

##

## Augmented Dickey-Fuller Test

##

## data: dowj

## Dickey-Fuller = -1.3788, Lag order = 2, p-value = 0.8295
## alternative hypothesis: stationary



Forecast an ARIMA(p, 1, q) process
* {X:}is ARIMA(p,1,q), and {Y; = VX,} is a causal ARMA(p, q)

t
Xe=Xo+)> Y, t=1.2...
j=1

* Best linear predictor of X, 11

Pan+1 = Pn(X0+Y1+' : '+Yn+l> - Pn(Xn+Yn+1> - Xn+Pn(Yn+l)7

— P, means based on {1, Xy, X1,..., X,}, or equivalently,
{17X0a}/i7 s aYn}

— Tofind P, (Y,,+1), we need to know E(X¢) and E(X,Y;), for
j=1...,n+1.

+ A sufficient assumption for P, (Y;,+1) to be the best linear predictor
interm of {Y1,...,Y,}: Xy is uncorrelated with Y7, Y5, ...



Forecast an ARIMA(p, d, q) process

+ The observed ARIMA(p, d, q) process {X,} satisfies
Y;=(1-B)X;, t=1,2,..., {Y;}~ causal ARMA(p,q)

+ Assumption: the random vector (X;_g4, ..., Xo) is uncorrelated
with Y; forall ¢ > 0
* One-step predictors Y,, .1 = P,Y,,.1 and X, .1 = P, X010

A A

Xn+1 - Xn+1 - Yn+1 - Yn+1
* Recall: the h-step predictor of ARMA(p, ¢) for n > max(p, q):

p q
PnYn+h = Z ¢iPnYn+h—i + Z en—i—h—l,j (Yn—l—h—j - Yn—i—h—j)

i=1 j=h
* h-step predictor of ARIMA(p, d, q) for n > max(p, q):
p+d q R
PoXnih =Y ¢ PuXninoit+ Y Onin15(Xnsh—j — Xnpn—j)
i=1 j=h

where ¢*(z) = (1 — 2)%¢(z) = 1 — ¢z — --- — @5 420+



Seasonal ARIMA (SARIMA) Model: definition

+ Suppose d, D are non-negative integers. { X;} is a seasonal
ARIMA(p,d, q) x (P, D,Q)s process with period s if the
differenced series

Y, = (1 - B)1 - B*)PX,
is a causal ARMA process defined by
¢(B)®(B*)Y: = 0(B)O(B*)Zt, {Zi} ~ WN(0,0?)

where

P(2)=1—¢rz— - —p2P, B(2)=1—Bz—---—Dpzl
0(2) =1+02+-- 40,27, O(2)=1+0z+---+0gz?
+ {Y,} is causal if and only if neither ¢(z) or ®(z) has zeros inside

the unit circle
+ Usually, s = 12 for monthly data



Special case: seasonal ARMA (SARMA)

+ Between-year model: for monthly data, each one of the 12 time
series is generated by the same ARMA(P, Q) model

®(B®)Y; = 0(B®)U;,  {Ujpaar,t € Z} ~ WN(0,077)

+ SARMA(P, Q) with period s: in the above between-year model,
the period 12 can be changed to any positive integer s

— If {U;,t € Z} ~ WN(0, 0% ), then the ACVF ~(h) = 0 unless h
divides s evenly. But this may not be ideal for real life application!
E.g., this Feb is correlated with last Feb, but not this Jan.

+ General SARMA(p, q) x (P, Q) with period s: incorporate
dependency between the 12 series by letting {U,} be ARMA:

O(B°)Y; = O(B)Uy,  ¢(B)Uy = 0(B)Z, {Z} ~ WN(0,0?)
— Equivalent DE for the general SARMA:
(B)®(B*)Y, = 0(B)O(B")Z,



Fit a SARIMA Model

* Period s is known

. Find d and D to make the difference series {Y;} to look stationary

2. Examine the sample ACF and sample PACF of {Y;} at lags being
multiples of s, to find orders P, )

3. Use p(1),...,p(s —1) to find orders p, g
4. Use AICC to decide among competing order choices

5. Given orders (p,d, q, P, D, Q), estimate MLE of parameters
(¢7 07 (Pa @7 02)



Regression with ARMA errors: OLS estimation

+ Linear model with ARMA errors W = (W, ..., W,)"

Yi=x;8+W,;, t=1,...,n, {W;} ~ causal ARMA(p,q)

— Note: each row is indexed by a different time ¢!
— Error covariance T',, = E(WW’)

+ Ordinary least squares (OLS) estimator
Bois = (X'X)'X'Y

— Estimated by minimizing (Y — X83) (Y — X3)
— OLS is unbiased, even when errors are dependent!



Regression with ARMA errors: GLS estimation

* Generalized least squares (GLS) estimator
Bals = (X'T,'X)"'X'T,'Y
— Estimated by minimizing the weighted sum of squares
(Y -XB)T. (Y - XB)

— Covariance
Cov (ﬁew) = (X'T,'X)"!

— GLSis the best linear unbiased estimator, i.e., for any vector ¢ and
any unbiased estimator 3, we have

Var(c’,BGLS) < Var(c'B)

20



When {11} is an AR(p) process

+ We can apply ¢(B) to each side of the regression equation and
get uncorrelated, zero-mean, constant-variance errors

P(B)Y = ¢(B)XB + ¢(B)W = ¢(B)XB + Z
+ Under the transformed target variable
Y =¢(B)Y;, t=p+1,...,n
and the transformed design matrix
X/, =¢(B)Xy;, t=p+1,....n, j=1,...k

the OLS estimator is the best linear unbiased estimator

* Note: after the transformation, the regression sample size reduces
ton—p

21



Regression with ARMA errors: MLE

« MLE of 3, ¢, 0, 02 can be estimated by maximizing the Gaussian
likelihood with error covariance T,

* An iterative scheme

1. Compute B¢ s and regression residuals Y — X8g.s

2. Based on the estimated residuals, compute MLE of the ARMA(p, q)
parameters

3. Based on the fitted ARMA model, compute B¢ s

4. Compute regression residuals Y — X355, and return to Step 2
until estimators stabilize

+ Asymptotic properties of MLE: If {I;} is a causal and invertible
ARMA, then

— MLEs are asymptotically normal
— Estimated regression coefficients are asymptotically independent of
estimated ARMA parameters

22
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