Notes: Generalized Additive Models – Ch4 Introducing GAMs

Yingbo Li

01/16/2022

Table of Contents

Univariate Smoothing

Piecewise linear basis: tent functions

Penalty to control wiggliness

Additive Models

Generalized Additive Models

Introducing Package mgcv

Introduction of GAM

In general the GAM model has a following structure

 $g(\mu_i) = \mathbf{A}_i \boldsymbol{\theta} + f_1(x_{1i}) + f_2(x_{2i}) + f_3(x_{3i}, x_{4i}) + \cdots$

- Y_i follows some exponential family distribution: $Y_i \sim EF(\mu_i, \phi)$ - $\mu_i = E(Y_i)$
- A_i is a row of the model matrix, and θ is the corresponding parameter vector
- $-f_j$ are smooth functions of the covariates x_k
- This chapter
 - Illustrates GAMs by basis expansions, each with a penalty controlling function smoothness
 - Estimates GAMs by penalized regression methods
- Takeaway: technically GAMs are simply GLM estimated subject to smoothing penalties

Representing a function with basis expansions

Let's consider a model containing one function of one covariate

$$y_i = f(x_i) + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$$

• If $b_j(x)$ is the *j*th basis function, then *f* is assumed to have a representation

$$f(x) = \sum_{j=1}^{k} b_j(x)\beta_j$$

with some unknown parameters β_j

- This is clearly a linear model

The problem with polynomials

• A kth order polynomial is

$$f(x) = \beta_0 + \sum_{j=1}^k \beta_k x^k$$

• The polynomial oscillates wildly in places, in order to both interpolate the data and to have all derivatives wrt *x* continuous

Figure 1: Left: the target function f(x). Middle: polynomial interpolation. Right: piecewise linear interpolant

Piecewise linear basis

- Suppose there are k knots $x_1^* < x_2^* < \cdots < x_k^*$
- The tent function representation of piecewise linear basis is

- For
$$j = 2, ..., k - 1$$
,

$$b_j(x) = \begin{cases} \frac{x - x_{j-1}^*}{x_j^* - x_{j-1}^*}, & \text{if } x_{j-1}^* < x \le x_j^* \\ \frac{x_{j+1} - x}{x_{j+1}^* - x_j^*}, & \text{if } x_j^* < x \le x_{j+1}^* \\ 0, & \text{otherwise} \end{cases}$$

- For the two basis functions on the edge

$$b_1(x) = \begin{cases} \frac{x_2^* - x}{x_2^* - x_1^*}, & \text{if } x \le x_2^* \\ 0, & \text{otherwise} \end{cases}$$
$$b_k(x) = \begin{cases} \frac{x - x_{k-1}^*}{x_k^* - x_{k-1}^*}, & x > x_{k-1}^* \\ 0, & \text{otherwise} \end{cases}$$

Visualization of tent function basis

- b_j(x) is zero everywhere, except over the interval between the knots immediately to either side of x^{*}_i
- b_j(x) increases linear from 0 at x^{*}_{j-1} to 1 at x^{*}_j, and then decreases linearly to 0 at x^{*}_{j+1}

Figure 2: Left: tent function basis, for interpolating the data shown as black dots. Right: the basis functiosn are each multiplied by a coefficient, before being summed

Control smoothness by penalizing wiggliness

- To choose the degree of smoothness, rather than selecting the number of knots *k*, we can use a relatively large *k*, but control the model's smoothness by adding a "wiggliness" penalty
 - Note that a model based on k 1 evenly spaced knots will not be nested within a model based on k evenly spaced knots
- Penalized likelihood function for piecewise linear basis:

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{j=2}^{k-1} \left[f(x_{j-1}^*) - 2f(x_j^*) + f(x_{j+1}^*) \right]^2$$

- Wiggliness is measured as a sum of squared second differences of the function at the knots
- This crudely approximates the integrated squared second derivative penalty used in cubic spline smoothing
- $-\lambda$ is called the smoothing parameter

Simplify the penalized likelihood

- For the tent function basis, $\beta_j = f(x_j^*)$
- Therefore, the penalty can be expressed as a quadratic form

$$\sum_{j=2}^{k-1} (\beta_{j-1} - 2\beta_j + \beta_{j+1})^2 = \boldsymbol{\beta}^T \mathbf{D}^T \mathbf{D} \boldsymbol{\beta} = \boldsymbol{\beta}^T \mathbf{S} \boldsymbol{\beta}$$

- The $(k-2) \times k$ matrix **D** is

 $- \mathbf{S} = \mathbf{D}^T \mathbf{D}$ is a square matrix

Solution of the penalized regression

• To minimize the penalized likelihood

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \boldsymbol{\beta}^T \mathbf{S}\boldsymbol{\beta}$$
$$= (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{S})^{-1} \mathbf{X}^T \mathbf{y}$$

• The hat matrix (also called influence matrix) A is thus

$$\mathbf{A} = \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{S})^{-1} \mathbf{X}^T$$

and the fitted expectation is $\hat{\mu} = A \mathbf{y}$

 For practical computation, we can introduce imaginary data to re-formulate the penalized least square problem to be a regular least square problem

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda\boldsymbol{\beta}^T \mathbf{S}\boldsymbol{\beta} = \left\| \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda}\mathbf{D} \end{bmatrix} \boldsymbol{\beta} \right\|^2$$

Hyper-parameter tuning

- Between the two hyper-parameters: number of knots k and the smoothing parameter λ, the choice of λ plays the crucial role
- We can always use a *k* large enough, more flexible then we expect to need to represent *f*(*x*)
- In mgcv package, the default choice is k = 20, and knots are evenly spread out over the range of observed data

Choose λ by leave-one-out cross validation

 Under linear regression, to compute leave-one-out cross validation error (called the ordinary cross validation score), we only need to fit the full model once

$$\mathcal{V}_o = \frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{f}_i^{[-i]} \right)^2 = \frac{1}{n} \sum_{i=1}^n \frac{\left(y_i - \hat{f}_i \right)^2}{(1 - A_{ii})^2}$$

 $-\hat{f}_i^{[-i]}$ is the model fitted to all data except y_i

- $-\hat{f}_i$ is the model fitted to all data, and A_{ii} is the *i*th diagonal entry of the corresponding hat matrix
- In practice, A_{ii} are often replaced by their mean tr(A)/n. This results in the generalized cross validation score (GCV)

$$\mathcal{V}_g = \frac{n \sum_{i=1}^n \left(y_i - \hat{f}_i\right)^2}{\left[n - \operatorname{tr}(\mathbf{A})\right]^2}$$

From the Bayesian perspective

• The wiggliness penalty can be viewed as a normal prior distribution on β

$$\boldsymbol{\beta} \sim \mathsf{N}\left(\mathbf{0}, \sigma^2 \frac{\mathbf{S}^-}{\lambda}\right)$$

- $-\,$ Because ${\bf S}$ is rank deficient, the prior covariance is proportional to the pseudo-inverse ${\bf S}^-$
- The posterior of β is still normal

$$\boldsymbol{\beta} \mid \mathbf{y} \sim \mathsf{N}\left(\hat{\boldsymbol{\beta}}, (\mathbf{X}^T\mathbf{X} + \lambda\mathbf{S})^{-1}\sigma^2\right)$$

 Given the model this extra structure opens up the possibility of estimating σ² and λ using marginal likelihood maximization or REML (aka empirical Bayes)

A simple additive model with two univariate functions

• Let's consider a simple additive model

$$y_i = \alpha + f_1(x_i) + f_2(v_i) + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$$

- The assumption of additive effects is a fairly strong one
- The model now has an identifiability problem: *f*₁ and *f*₂ are each only estimable to within an additive constant
 - Due to the identifiability issue, we need to use penalized regression splines

Piecewise linear regression representation

• Basis representation of $f_1()$ and $f_2()$

$$f_1(x) = \sum_{j=1}^{k_1} b_j(x)\delta_j$$
$$f_2(v) = \sum_{j=1}^{k_2} \mathcal{B}_j(v)\gamma_j$$

- The basis functions $b_j()$ and $\mathcal{B}_j()$ are tent functions, with evenly spaced knots x_j^* and v_j^* , respectively
- Matrix representations

$$\mathbf{f}_{1} = [f_{1}(x_{1}), \dots, f_{1}(x_{n})]^{T} = \mathbf{X}_{1}\boldsymbol{\delta}, \quad [\mathbf{X}_{1}]_{i,j} = b_{j}(x_{i})$$
$$\mathbf{f}_{2} = [f_{2}(v_{1}), \dots, f_{2}(v_{n})]^{T} = \mathbf{X}_{2}\boldsymbol{\gamma}, \quad [\mathbf{X}_{2}]_{i,j} = \mathcal{B}_{j}(x_{i})$$

Sum-to-zero constrains to resolve identifiability issues

• We assume

$$\sum_{i=1}^{n} f_1(x_i) = 0 \iff \mathbf{1}^T \mathbf{f}_1 = 0$$

This is equivalent to $\mathbf{1}^T \mathbf{X}_1 \boldsymbol{\delta} = 0$ for all $\boldsymbol{\delta}$, which implies $\mathbf{1}^T \mathbf{X}_1 = \mathbf{0}$

• To achieve this condition, we can center the column of \mathbf{X}_1

$$\tilde{\mathbf{X}}_1 = \mathbf{X}_1 - \mathbf{1} \ \frac{\mathbf{1}^T \mathbf{X}_1}{n}, \quad \tilde{\mathbf{f}}_1 = \tilde{\mathbf{X}}_1 \boldsymbol{\delta}$$

- Column centering reduces the rank of X
 ₁ to k₁ 1, so that only k₁ 1 elements of the k₁ vector δ can be uniquely estimated
- A simple identifiability constraint:
 - Set a single element of δ to zero
 - And delete the corresponding column of $\tilde{\mathbf{X}}_1$ and \mathbf{D}
- For notation simplicity, in what follows the tildes will be dropped, and we assume that the X_j, D_j are the constrained versions

Penalized piecewise regression additive model

We rewrite the penalized regression as

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $X = (\mathbf{1}, \mathbf{X}_1, \mathbf{X}_2)$ and $\boldsymbol{\beta}^T = (\alpha, \boldsymbol{\delta}^T, \boldsymbol{\gamma}^T)$

• Wiggliness penalties

$$\begin{split} \boldsymbol{\delta}^T \mathbf{D}_1^T \mathbf{D}_1 \boldsymbol{\delta} &= \boldsymbol{\delta}^T \bar{\mathbf{S}}_1 \boldsymbol{\delta} = \boldsymbol{\beta}^T \mathbf{S}_1 \boldsymbol{\beta}, \quad \mathbf{S}_1 = \begin{bmatrix} 0 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{S}}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \\ \boldsymbol{\gamma}^T \mathbf{D}_2^T \mathbf{D}_2 \boldsymbol{\gamma} &= \boldsymbol{\gamma}^T \bar{\mathbf{S}}_2 \boldsymbol{\gamma} = \boldsymbol{\beta}^T \mathbf{S}_2 \boldsymbol{\beta}, \end{split}$$

Fitting additive models by penalized least squares

Penalized least squares objective function

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda_1 \boldsymbol{\beta}^T \mathbf{S}_1 \boldsymbol{\beta} + \lambda_2 \boldsymbol{\beta}^T \mathbf{S}_2 \boldsymbol{\beta}$$

Coefficient estimator

$$\hat{oldsymbol{eta}} = \left(\mathbf{X}^T \mathbf{X} + \lambda_1 \mathbf{S}_1 + \lambda_2 \mathbf{S}_2
ight)^{-1} \mathbf{X}^T \mathbf{y}$$

Hat matrix

$$\mathbf{A} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X} + \lambda_1 \mathbf{S}_1 + \lambda_2 \mathbf{S}_2 \right)^{-1} \mathbf{X}^T$$

Conditional posterior distribution

$$\boldsymbol{\beta} \mid \mathbf{y} \sim \mathsf{N}\left(\hat{\boldsymbol{\beta}}, \hat{\mathbf{V}}_{\boldsymbol{\beta}}\right), \quad \hat{\mathbf{V}}_{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{X} + \lambda_1 \mathbf{S}_1 + \lambda_2 \mathbf{S}_2\right)^{-1} \hat{\sigma}^2$$

Choosing two smoothing parameters

- Since we now have two smoothing parameters λ₁, λ₂, grid searching for the GCV optimal values starts to become inefficient
- Instead, R function optim can be used to minimize the GCV score
- We can use log smoothing parameters for optimization to ensure that estimated smoothing parameters are non-negative

Generalized additive models

Generalized additive models (GAMs): additive models + GLM

$$g(\mu_i) = \alpha + f_1(x_i) + f_2(v_i) + \epsilon_i$$

- Penalized iterative least squares (PIRLS) algorithm: iterate the following steps to convergence
- 1. Given the current $\hat{\eta}$ and $\hat{\mu}$, compute

$$w_i = \frac{1}{V(\hat{\mu}_i)g'(\hat{\mu}_i)^2}, \quad z_i = g'(\hat{\mu}_i)(y_i - \hat{\mu}_i) + \hat{\eta}_i$$

2. Let $\mathbf{W} = \text{diag}(w_i)$, we obtain the new $\hat{\boldsymbol{\beta}}$ by minimizing

$$\|\sqrt{\mathbf{W}}\mathbf{z} - \sqrt{\mathbf{W}}\mathbf{X}oldsymbol{eta}\|^2 + \lambda_1oldsymbol{eta}^T\mathbf{S}_1oldsymbol{eta} + \lambda_2oldsymbol{eta}^T\mathbf{S}_2oldsymbol{eta}$$

Introducing package mgcv

- Main function: gam(), very much like the glm() function
- Smooth terms: s() for univariate functions and te() for tensors
- A gamma regression example

 $\log (E[Volume_i]) = f_1(\text{Height}_i) + f_2(\text{Girth}_i), \quad Volume_i \sim \text{Gamma}$

 By default, the degree of smoothness of the *f_j* is estimated by GCV

```
summary(ct1)
```

```
##
## Family: Gamma
## Link function: log
##
## Formula:
## Volume ~ s(Height) + s(Girth)
##
## Parametric coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27570 0.01492 219.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
              edf Ref.df F p-value
##
## s(Height) 1.000 1.000 31.32 7.07e-06 ***
## s(Girth) 2.422 3.044 219.28 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.973 Deviance explained = 97.8%
\#\# GCV = 0.0080824 Scale est. = 0.006899 n = 31
```

Parital residuals plots

· Pearson residuals added to the estimated smooth terms

$$\hat{\epsilon}_{1i}^{\mathsf{partial}} = f_1(\mathtt{\texttt{Height}}_i) + \hat{\epsilon}_i^p$$

par(mfrow = c(1, 2))
plot(ct1,residuals=TRUE)

* The number in the *y*-axis label: effective degrees of freedom

Finer control of gam(): choice of basis functions

- Default: thin plat regression splines
 - It has some appealing properties, but can be somewhat computationally costly for large dataset
- · We can select penalized cubic regression spline by using

s(..., bs = "cr")

- We can change the dimension k of the basis
 - The actual effective degrees of freedom for each term is usually estimated from the data by GCV or another smoothness selection criterion
 - The upper bound on this estimate is k 1, minus one due to identifiability constraint on each smooth term

s(..., bs = "cr", k = 20)

Finer control of gam(): the gamma parameter

- GCV is known to have some tendency to overfitting
- Inside the gam() function, the argument gamma can increase the amount of smoothing
 - $-\,$ The default value for <code>gamma</code> is 1
 - We can use a higher value to avoid overfitting, gamma = 1.5, without compromising model fit

References

• Wood, Simon N. (2017), *Generalized Additive Models: An Introduction with R.* Chapman and Hall/CRC