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Introduction of GAM

• In general the GAM model has a following structure

g(µi) = Aiθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + · · ·

− Yi follows some exponential family distribution: Yi ∼ EF (µi, φ)
− µi = E(Yi)
− Ai is a row of the model matrix, and θ is the corresponding

parameter vector
− fj are smooth functions of the covariates xk

• This chapter

− Illustrates GAMs by basis expansions, each with a penalty
controlling function smoothness

− Estimates GAMs by penalized regression methods

• Takeaway: technically GAMs are simply GLM estimated
subject to smoothing penalties
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Representing a function with basis expansions

• Let’s consider a model containing one function of one covariate

yi = f(xi) + εi, εi
iid∼ N(0, σ2)

• If bj(x) is the jth basis function, then f is assumed to have a
representation

f(x) =
k∑

j=1
bj(x)βj

with some unknown parameters βj

− This is clearly a linear model
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The problem with polynomials
• A kth order polynomial is

f(x) = β0 +
k∑

j=1
βkx

k

• The polynomial oscillates wildly in places, in order to both
interpolate the data and to have all derivatives wrt x continuous

Figure 1: Left: the target function f(x). Middle: polynomial interpolation.
Right: piecewise linear interpolant
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Piecewise linear basis

• Suppose there are k knots x∗1 < x∗2 < · · · < x∗k

• The tent function representation of piecewise linear basis is

− For j = 2, . . . , k − 1,

bj(x) =


x−x∗

j−1
x∗

j
−x∗

j−1
, if x∗

j−1 < x ≤ x∗
j

x∗
j+1−x

x∗
j+1−x∗

j
, if x∗

j < x ≤ x∗
j+1

0, otherwise

− For the two basis functions on the edge

b1(x) =
{

x∗
2−x

x∗
2−x∗

1
, if x ≤ x∗

2

0, otherwise

bk(x) =
{

x−x∗
k−1

x∗
k

−x∗
k−1

, x > x∗
k−1

0, otherwise
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Visualization of tent function basis
• bj(x) is zero everywhere, except over the interval between the

knots immediately to either side of x∗j
• bj(x) increases linear from 0 at x∗j−1 to 1 at x∗j , and then

decreases linearly to 0 at x∗j+1

Figure 2: Left: tent function basis, for interpolating the data shown as black
dots. Right: the basis functiosn are each multiplied by a coefficient, before
being summed
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Control smoothness by penalizing wiggliness

• To choose the degree of smoothness, rather than selecting the
number of knots k, we can use a relatively large k, but control the
model’s smoothness by adding a “wiggliness” penalty

− Note that a model based on k − 1 evenly spaced knots will not be
nested within a model based on k evenly spaced knots

• Penalized likelihood function for piecewise linear basis:

‖y−Xβ‖2 + λ
k−1∑
j=2

[
f(x∗j−1)− 2f(x∗j ) + f(x∗j+1)

]2

− Wiggliness is measured as a sum of squared second differences of
the function at the knots

− This crudely approximates the integrated squared second
derivative penalty used in cubic spline smoothing

− λ is called the smoothing parameter
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Simplify the penalized likelihood

• For the tent function basis, βj = f(x∗j )

• Therefore, the penalty can be expressed as a quadratic form

k−1∑
j=2

(βj−1 − 2βj + βj+1)2 = βT DT Dβ = βT Sβ

− The (k − 2)× k matrix D is

D =


1 −2 1 0 . . .
0 1 −2 1 0 . .
0 0 1 −2 1 0 .
. . . . . . .
. . . . . . .


− S = DT D is a square matrix
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Solution of the penalized regression
• To minimize the penalized likelihood

β̂ = arg min
β
‖y−Xβ‖2 + λβT Sβ

= (XT X + λS)−1XT y

• The hat matrix (also called influence matrix) A is thus

A = X(XT X + λS)−1XT

and the fitted expectation is µ̂ = Ay

• For practical computation, we can introduce imaginary data to
re-formulate the penalized least square problem to be a regular
least square problem

‖y−Xβ‖2 + λβT Sβ =
∥∥∥∥∥
[

y
0

]
−
[

X√
λD

]
β

∥∥∥∥∥
2
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Hyper-parameter tuning

• Between the two hyper-parameters: number of knots k and the
smoothing parameter λ, the choice of λ plays the crucial role

• We can always use a k large enough, more flexible then we
expect to need to represent f(x)

• In mgcv package, the default choice is k = 20, and knots are
evenly spread out over the range of observed data
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Choose λ by leave-one-out cross validation
• Under linear regression, to compute leave-one-out cross

validation error (called the ordinary cross validation score), we
only need to fit the full model once

Vo = 1
n

n∑
i=1

(
yi − f̂ [−i]

i

)2
= 1
n

n∑
i=1

(
yi − f̂i

)2

(1−Aii)2

− f̂
[−i]
i is the model fitted to all data except yi

− f̂i is the model fitted to all data, and Aii is the ith diagonal entry of
the corresponding hat matrix

• In practice, Aii are often replaced by their mean tr(A)/n. This
results in the generalized cross validation score (GCV)

Vg =
n
∑n

i=1

(
yi − f̂i

)2

[n− tr(A)]2
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From the Bayesian perspective

• The wiggliness penalty can be viewed as a normal prior
distribution on β

β ∼ N

(
0, σ2 S−

λ

)

− Because S is rank deficient, the prior covariance is proportional to
the pseudo-inverse S−

• The posterior of β is still normal

β | y ∼ N
(
β̂, (XT X + λS)−1σ2

)
• Given the model this extra structure opens up the possibility of

estimating σ2 and λ using marginal likelihood maximization or
REML (aka empirical Bayes)
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A simple additive model with two univariate functions

• Let’s consider a simple additive model

yi = α+ f1(xi) + f2(vi) + εi, εi
iid∼ N(0, σ2)

• The assumption of additive effects is a fairly strong one

• The model now has an identifiability problem: f1 and f2 are each
only estimable to within an additive constant

− Due to the identifiability issue, we need to use penalized regression
splines
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Piecewise linear regression representation

• Basis representation of f1() and f2()

f1(x) =
k1∑

j=1
bj(x)δj

f2(v) =
k2∑

j=1
Bj(v)γj

− The basis functions bj() and Bj() are tent functions, with evenly
spaced knots x∗

j and v∗
j , respectively

• Matrix representations

f1 = [f1(x1), . . . , f1(xn)]T = X1δ, [X1]i,j = bj(xi)
f2 = [f2(v1), . . . , f2(vn)]T = X2γ, [X2]i,j = Bj(xi)
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Sum-to-zero constrains to resolve identifiability issues
• We assume

n∑
i=1

f1(xi) = 0⇐⇒ 1T f1 = 0

This is equivalent to 1T X1δ = 0 for all δ, which implies 1T X1 = 0

• To achieve this condition, we can center the column of X1

X̃1 = X1 − 1 1T X1
n

, f̃1 = X̃1δ

• Column centering reduces the rank of X̃1 to k1 − 1, so that only
k1 − 1 elements of the k1 vector δ can be uniquely estimated

• A simple identifiability constraint:

− Set a single element of δ to zero
− And delete the corresponding column of X̃1 and D

• For notation simplicity, in what follows the tildes will be dropped,
and we assume that the Xj , Dj are the constrained versions
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Penalized piecewise regression additive model

• We rewrite the penalized regression as

y = Xβ + ε

where X = (1,X1,X2) and βT = (α, δT ,γT )

• Wiggliness penalties

δT DT
1 D1δ = δT S̄1δ = βT S1β, S1 =

 0 0 0
0 S̄1 0
0 0 0


γT DT

2 D2γ = γT S̄2γ = βT S2β,
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Fitting additive models by penalized least squares

• Penalized least squares objective function

‖y−Xβ‖2 + λ1βT S1β + λ2βT S2β

• Coefficient estimator

β̂ =
(
XT X + λ1S1 + λ2S2

)−1
XT y

• Hat matrix

A = X
(
XT X + λ1S1 + λ2S2

)−1
XT

• Conditional posterior distribution

β | y ∼ N
(
β̂, V̂β

)
, V̂β =

(
XT X + λ1S1 + λ2S2

)−1
σ̂2
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Choosing two smoothing parameters

• Since we now have two smoothing parameters λ1, λ2, grid
searching for the GCV optimal values starts to become inefficient

• Instead, R function optim can be used to minimize the GCV score

• We can use log smoothing parameters for optimization to ensure
that estimated smoothing parameters are non-negative
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Generalized additive models

• Generalized additive models (GAMs): additive models + GLM

g(µi) = α+ f1(xi) + f2(vi) + εi

• Penalized iterative least squares (PIRLS) algorithm: iterate the
following steps to convergence

1. Given the current η̂ and µ̂, compute

wi = 1
V (µ̂i)g′(µ̂i)2 , zi = g′(µ̂i)(yi − µ̂i) + η̂i

2. Let W = diag(wi), we obtain the new β̂ by minimizing

‖
√

Wz−
√

WXβ‖2 + λ1βT S1β + λ2βT S2β
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Introducing package mgcv

• Main function: gam(), very much like the glm() function

• Smooth terms: s() for univariate functions and te() for tensors

• A gamma regression example

log (E [Volumei]) = f1(Heighti)+f2(Girthi), Volumei ∼ Gamma

library(mgcv) ## load the package data(trees)
ct1 <- gam(Volume ~ s(Height) + s(Girth),

family=Gamma(link=log),data=trees)

• By default, the degree of smoothness of the fj is estimated by
GCV
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summary(ct1)

##
## Family: Gamma
## Link function: log
##
## Formula:
## Volume ~ s(Height) + s(Girth)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27570 0.01492 219.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Height) 1.000 1.000 31.32 7.07e-06 ***
## s(Girth) 2.422 3.044 219.28 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.973 Deviance explained = 97.8%
## GCV = 0.0080824 Scale est. = 0.006899 n = 31
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Parital residuals plots

• Pearson residuals added to the estimated smooth terms

ε̂partial
1i = f1(Heighti) + ε̂pi

par(mfrow = c(1, 2))
plot(ct1,residuals=TRUE)
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* The number in the y-axis label: effective degrees of freedom
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Finer control of gam(): choice of basis functions

• Default: thin plat regression splines

− It has some appealing properties, but can be somewhat
computationally costly for large dataset

• We can select penalized cubic regression spline by using

s(..., bs = "cr")

• We can change the dimension k of the basis

− The actual effective degrees of freedom for each term is usually
estimated from the data by GCV or another smoothness selection
criterion

− The upper bound on this estimate is k − 1, minus one due to
identifiability constraint on each smooth term

s(..., bs = "cr", k = 20)
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Finer control of gam(): the gamma parameter

• GCV is known to have some tendency to overfitting

• Inside the gam() function, the argument gamma can increase the
amount of smoothing

− The default value for gamma is 1
− We can use a higher value to avoid overfitting, gamma = 1.5,

without compromising model fit
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