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Introduction of GAM
¢ |n general the GAM model has a following structure
g(pi) = Ai@ + fi(x1;) + fa(was) + fa(@si, 2ai) + -

— Y; follows some exponential family distribution: Y; ~ EF(u;, ¢)
ni = E(Y;)

A, is a row of the model matrix, and 6 is the corresponding
parameter vector

— f; are smooth functions of the covariates z;,

¢ This chapter

— lllustrates GAMs by basis expansions, each with a penalty
controlling function smoothness
— Estimates GAMs by penalized regression methods

e Takeaway: technically GAMs are simply GLM estimated
subject to smoothing penalties



Representing a function with basis expansions

e |et’'s consider a model containing one function of one covariate
iid
yi = f(z:) + &, € ~N(0,0?)

e If b;(x) is the jth basis function, then f is assumed to have a
representation

k
fla) =) bj(2)B
j=1

with some unknown parameters j3;

— This is clearly a linear model



The problem with polynomials
¢ A kth order polynomial is
k
fl@) =B+ Bra”
j=1

® The polynomial oscillates wildly in places, in order to both
interpolate the data and to have all derivatives wrt x continuous
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Figure 1: Left: the target function f(z). Middle: polynomial interpolation.
Right: piecewise linear interpolant



Piecewise linear basis

® Suppose there are k knots =] < 25 < --- <z},
® The tent function representation of piecewise linear basis is
— Forj=2,...,k—1,

z_m;—l ek *
P if ;g <z <7
. — $;+1_3: H * *
bj () 2T if i <w <y
0, otherwise

— For the two basis functions on the edge

x5—x . %
2 ifr<ax
bl(ZC) = {%%’ 2

0, otherwise

T—Tp *

- xr>x
bk(;c) = Tmr ] k=1
0, otherwise



Visualization of tent function basis

® b;(x) is zero everywhere, except over the interval between the
knots immediately to either side of z

* b;(z) increases linear from 0 at z7_, to 1 at z7, and then
decreases linearly to 0 at =,

< D <
.
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Figure 2: Left: tent function basis, for interpolating the data shown as black
dots. Right: the basis functiosn are each multiplied by a coefficient, before
being summed



Control smoothness by penalizing wiggliness

® To choose the degree of smoothness, rather than selecting the
number of knots &, we can use a relatively large k, but control the
model’s smoothness by adding a “wiggliness” penalty

— Note that a model based on k — 1 evenly spaced knots will not be
nested within a model based on k evenly spaced knots

¢ Penalized likelihood function for piecewise linear basis:
k—1 9
ly = XBI2+ A" [f(250) — 2f(2) + (@)
j=2

— Wiggliness is measured as a sum of squared second differences of
the function at the knots

— This crudely approximates the integrated squared second
derivative penalty used in cubic spline smoothing

— M\ is called the smoothing parameter



Simplify the penalized likelihood

* For the tent function basis, 3; = f(z})

e Therefore, the penalty can be expressed as a quadratic form
k—1

S (Bj—1 — 285+ Bi1)? = BTDTDB = BT'Sp

J=2

— The (k —2) x k matrix D is

— S =DTD is a square matrix



Solution of the penalized regression
¢ To minimize the penalized likelihood
B = argmin |y — XB|* + \8"SB

= (XX +x8)"'X"y

¢ The hat matrix (also called influence matrix) A is thus
A = X(XTX 4 A8)1xT
and the fitted expectation is it = Ay

e For practical computation, we can introduce imaginary data to
re-formulate the penalized least square problem to be a regular
least square problem

ly = XBI* + 8T8 = H p




Hyper-parameter tuning

® Between the two hyper-parameters: number of knots £ and the
smoothing parameter ), the choice of A plays the crucial role

e We can always use a k large enough, more flexible then we
expect to need to represent f(x)

¢ In mgcv package, the default choice is £ = 20, and knots are
evenly spread out over the range of observed data



Choose )\ by leave-one-out cross validation

e Under linear regression, to compute leave-one-out cross
validation error (called the ordinary cross validation score), we
only need to fit the full model once

- fi[’i] is the model fitted to all data except y;
— f; is the model fitted to all data, and 4;, is the ith diagonal entry of
the corresponding hat matrix

e In practice, A;; are often replaced by their mean tr(A)/n. This
results in the generalized cross validation score (GCV)

n Z?:l (yz - fz)2
[n — tr(A)]”

Vy =



From the Bayesian perspective

® The wiggliness penalty can be viewed as a normal prior
distribution on g
q-
2
B8 ~N <0,a 5y )

— Because S is rank deficient, the prior covariance is proportional to
the pseudo-inverse S~

® The posterior of g is still normal

Bly~N(B (XTX+28)"0?)

¢ Given the model this extra structure opens up the possibility of
estimating o2 and \ using marginal likelihood maximization or
REML (aka empirical Bayes)



A simple additive model with two univariate functions

e Let’s consider a simple additive model
yi = a+ fi(xi) + fa(vi) + e, € < N(0,0?)
¢ The assumption of additive effects is a fairly strong one

e The model now has an identifiability problem: f; and f> are each
only estimable to within an additive constant

— Due to the identifiability issue, we need to use penalized regression
splines



Piecewise linear regression representation

e Basis representation of f() and f»()
k1
fi(z) = bj(x)9;
=1
.
fa(v) = ZBJ‘(U)’YJ’
j=1

— The basis functions b;() and B;() are tent functions, with evenly
spaced knots z; and v}, respectively

e Matrix representations

£ =[fi1), ..., fulzn)]" =X468,  [Xiliy = (i)
fo = [fa(v1), ..., fa(va)]" = Xov, [Xalij = Bj(x:)



Sum-to-zero constrains to resolve identifiability issues

e \We assume .
Zfl(xl) =0« le1 =0
1=1
This is equivalent to 17X ;8 = 0 for all §, which implies 17X, =0

To achieve this condition, we can center the column of X;

17X,

X1:X1—1 s ﬁ:f{ld

Column centering reduces the rank of X; to k; — 1, so that only
k1 — 1 elements of the k; vector  can be uniquely estimated

A simple identifiability constraint:

— Set a single element of § to zero 3
— And delete the corresponding column of X; and D

For notation simplicity, in what follows the tildes will be dropped,
and we assume that the X;, D; are the constrained versions



Penalized piecewise regression additive model

e We rewrite the penalized regression as
y=XB+e

where X = (1,X1,X5) and 87 = (a, 67 ,~7)

* Wiggliness penalties

0'DID,6 = 67S,6 = B7S18, S| =

Y DiDyy = v"'Soy = B7'S,8,

o o o

o o
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Fitting additive models by penalized least squares

e Penalized least squares objective function

ly — XB|* + MBTS18 + 1287828

e Coefficient estimator

A

-1
B=(X"X+ NS+ X8s) Xy

e Hat matrix

-1
A=X (XTX S+ AQSQ) X7

e Conditional posterior distribution

Bly~N(B.Vs). Vi=(X"X+N8 +18,) &7



Choosing two smoothing parameters

¢ Since we now have two smoothing parameters A;, A2, grid
searching for the GCV optimal values starts to become inefficient

¢ Instead, R function optim can be used to minimize the GCV score

e We can use log smoothing parameters for optimization to ensure
that estimated smoothing parameters are non-negative



Generalized additive models
¢ Generalized additive models (GAMs): additive models + GLM

g(pi) = a+ fi(z) + fa(vi) + €

¢ Penalized iterative least squares (PIRLS) algorithm: iterate the
following steps to convergence

1. Given the current 7) and [, compute

zi =g (i) (yi — ) + 0

2. Let W = diag(w;), we obtain the new 3 by minimizing
IVWz — VWXB|? + \BTS18 + 187828

20



Introducing package mgcv

e Main function: gam(), very much like the glm() function
e Smooth terms: s () for univariate functions and te () for tensors

e A gamma regression example

log (E [Volume;]) = fi(Height,)+ f2(Girth;), Volume; ~ Gamma

library(mgcv) ## load the package data(trees)
ctl <- gam(Volume ~ s(Height) + s(Girth),
family=Gamma(link=log) ,data=trees)

¢ By default, the degree of smoothness of the f; is estimated by
GCV
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summary (ctl)

#it
#it
#i#
#it
#it
#i#
#i
#i#t
#i#
#it
#i#
#i#
#it
#i#t
#i#
#it
#i#
#i#
#it
#i#
#i#
#it

Family: Gamma
Link function: log

Formula:

Volume ~ s(Height) + s(Girth)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t])
<2e-16 *x*

(Intercept) 3.27570

0.01492 219.6

Signif. codes: 0O '#¥x' 0.001 'xx' 0.01 'x*'

Approximate significance of smooth terms:

edf Ref.df

s(Height) 1.000 1.000 31.32 7.07e-06 *x*
s(Girth) 2.422 3.044 219.28 < 2e-16 **x*

F p-value

Signif. codes: O '*¥x' 0.001 '#x' 0.01 'x*'

R-sq.(adj) = 0.973
GCV = 0.0080824 Scale est.

= 0.006899 n

0.05 '.

0.05 '.

Deviance explained = 97.8%

31
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Parital residuals plots

e Pearson residuals added to the estimated smooth terms

par (mfrow

<
-

0.5

s(Height,1)
0.0

-0.5

~partial
€1

c(1, 2))
plot(ctl,residuals=TRUE)

= fi1(Height,) + &
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* The number in the y-axis label: effective degrees of freedom




Finer control of gam () : choice of basis functions

e Default: thin plat regression splines

— It has some appealing properties, but can be somewhat
computationally costly for large dataset

* We can select penalized cubic regression spline by using

s(..., bs = "cr")

¢ We can change the dimension k of the basis

— The actual effective degrees of freedom for each term is usually
estimated from the data by GCV or another smoothness selection
criterion

— The upper bound on this estimate is £ — 1, minus one due to
identifiability constraint on each smooth term

s(..., bs = "cr", k = 20)
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Finer control of gam() : the gamma parameter

e GCV is known to have some tendency to overfitting

¢ Inside the gam() function, the argument gamma can increase the
amount of smoothing

— The default value for gamma is 1
— We can use a higher value to avoid overfitting, gamma = 1.5,
without compromising model fit
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