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Overview of Gaussian processes (GP)

e The problem is learning in GP is exactly the problem of finding
suitable properties for the covariance function

¢ In this book, design matrix is defined slightly differently from
common statistical textbooks. Rather, each column in a design
matrix is a case, and each row is a covariate



A regression model with basis functions

¢ Basis function ¢(x): maps a D-dimensional input vector x into an
N-dimensional feature space

®(X) € RV*": the aggregation of columns ¢(x) for all n cases in
the training data

® A regression model

fx)=ox)"w, y=Ff(x)+e e~N(0,02)

* We use a zero mean Gaussian prior on the N-dimensional
unknown weights w (aka regression coefficients)

w~ N(0,%,)



Predictive distribution

e For a new test point x., the predictive distribution is

1 _ —
flxe Xy~ N (ela ey, olATe,).

1
@' + 3!

e When make predictions, we need to invert the N x N matrix A,

which may not be convenient if N, the dimension of the feature
space, is large



Rewriting the predictive distribution using the matrix
inversion lemma

e Marix inversion lemma: Z € R™*", W € R™*™ U,V ¢ R"*™
T\t ~1 1 1 To—1r7) ' vTrm-1
(z+uwv') =z '-z'U(W'+ViZzlU) VzZ
e We can rewrite the predictive distribution on the previous page as
—1
folxe Xy ~ N (93,8 (K4 021) . (1)

—1
Ol E,0. 95,8 (K+ o) 87%,0.),

K=%'%,®



Kernel and the kernel trick

¢ In the predictive distribution on the previous page, the feature
space always enters in the form of the kernel (-, -):

k(x,x') = ¢(x) Z,pp(x),
where x,x’ are in either the training or the test sets
* Moreover, we can define
Y(x) = 2,29 (),
so that the kernel has a simple dot product representation

k(x,x') = (x) - h(x)

e Kernel trick: if an algorithm is defined solely in terms of inner
products in input space, the it can be lifted into feature space by
replacing occurrences of those inner products by k(x,x’)



Gaussian process: definition

e A Gaussian process(GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution

e A GP is completely specified by its mean function m(x) and
covariance function k(x,x’)

f(X) ~GP (m(x)a k‘(X, X,))
e Usually the prior mean function is set to zero
e Bayesian linear regression as a Gaussian process
fx)=d(x)'w, w~N(0OZ)
Here, the GP mean function and the covariance function are

m(x) =0, k(x,x)=¢(x) Z,0(x)



The squared exponential covariance function

¢ |n this chapter, squared exponential (SE) covariance function will
be used

cov (100, 1)) = k. ) = exp (4 x - )

— By replacing |x — x'| by |x — x’| /¢ for some positive constant ¢, we
can change the characteristic length-scale of the process

— Note that the covariance between the outputs is written as a
function of the inputs

— The squared exponential covariance function corresponds to a
Bayesian linear regression model with a infinite number of basis
functions

— Actually for every positive definite covariance function k(-, -), there
exists a (possibly infinite) expansion in terms of basis functions



Three functions drawn at random from a GP prior (left)
and their posteriors (right)
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¢ |n both plots, shaded area are the pointwise mean plus and minus
two times the standard deviation from each input value



Prediction with noise-free observations

e Suppose we have noise-free observations {(x;, fi) : i =1,...,n}

e According to the GP prior, the joint distribution of the training
outputs f and the test outputs f, is

f K(X,X) K(X,X,)
l £, ] NN(”’ l K(X,,X) K(X, X,) D

¢ By conditioning the joint Gaussian prior on the observations, we
get the posterior distribution

o | X, X, f ~ V(K (X, X)K (X, X) 7',
K(X..X,) - K(X., X)K(X,X) 'K (X, X*))



Prediction with noisy observations

¢ With noisy observations y = f(x) + ¢, the covariance becomes
cov(y) = K(X,X) + 021
e Thus, the joint prior distribution becomes

K(X,X)+02I K(X,X,)
i ] NN<O’ [ K(X,,X) K(X,,X,) D

¢ Key predictive equation for GP regression
. | X, X, f ~ N (£, cov(f.)), where )
_ -1
f.= K(X.,X) [K(X,X)+02] 'y

cov(f,) = K(X,.X.) - K(X.,X) [K(X,X) + o2 KX, X.)
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Correspondence with weight-space view

e Connection between the function-space view, Eq (2), and the
weight-space view, Eq (1)

K(C,D)=®(C)"'x,®(D)
where C, D stand for either X or X,

® Thus, for any set of basic functions, we can compute the
corresponding covariance function as

k(x,x') = ¢p(x) " Zpp(x')

¢ On the other hand, for every positive definite covariance function
k, there exists a possibly infinite expansion in terms of basis
functions



Predictive distribution for a single test point x,

¢ Denote K = K(X,X) and k, = K(X, x.), then the mean and
variance of the posterior predictive distribution are

1
Y, (3)

V@J:Mmmg—kI@CHﬁQAk* (4)

£ = k! (K +020)



Predictive distribution mean as a linear predictor

* The mean prediction Eq (3) is a linear predictor, i.e., it'’s a linear
combination of observations y

¢ Another way to look at this equation is to see it as a linear
combination of n kernel functions

f(x,) = iaik(xi,x*), a= (K +UZI>71y
i=1



About the predictive distribution variance

® The predictive variance Eq (4) does not depend on the observed
targets y, but only the inputs. This is a property of the Gaussian
distribution

e The noisy prediction of y..: simply add ¢21I to the variance

Vi | %, Xiy ~ N (ﬂ,V(f*) + UZI)



Cholesky decomposition

Cholesky decomposition of a symmetric, positive definite matrix A
A=LL",

where L is a lower triangular matrix, called the Cholesky factor

Cholesky decomposition is useful for solving linear systems with
symmetric, positive definite coefficient matrix: to solve Ax =b

— First solve the triangular system Ly = b by forward substitution
— Then the triangular system LT x = y by back substitution

Backslash operator: A\b is the vector x which solves Ax = b
— Under Cholesky decomposition,
x=A\b=L"\(L\b)

The computation of the Cholesky factor L is considered
numerically extremely stable, and takes time’ n3/6



Algorithm: predictions and log marginal likelihood for
GP regression

e Input: X,y, k,02,x,

1.

o o A 0P

s Ymo

L = cholesky (K + 021)

a=L"\(L\y)
v = L\k.

V(f) = k(x4,%X:) — V' v
logp(y | X) = —%yTa — > ;log Li; — 5 log 27
Return: f,,V(f.),logp(y | X)

Computational complexity: n3/6 for the Cholesky decomposition
in Line 1, and n?/2 for solving triangular systems in Line 2, 4



Hyperparameters

e One-dimensional squared-exponential covariance function

1

2 2
272(% —2¢)"| +0,0pq

ky(xp, zq) = UJ% exp |—
e |t has three hyperparameters

— Length-scale ¢
— Signal variance o7

— Noise variance o2

o After selected /, the rest two hyperparameters are set by
optimizing the marginal likelihood

1 -1 1 n
logp(y | X) = —in (K + 07211> y— §log ’K—i— agl‘ — 510g27r



References

e Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian
Processes for Machine learning, MIT press.

— http://www.gaussianprocess.org/gpml/chapters/RW.pdf

20


http://www.gaussianprocess.org/gpml/chapters/RW.pdf

	
	Weight-space View
	Function-space View
	Prediction with noise-free observations
	Prediction with noisy observations
	Cholesky decomposition and GP regression algorithm
	Hyperparameters

	Smoothing, Weight Functions, and Equivalent Kernels

