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Overview of Gaussian processes (GP)

• The problem is learning in GP is exactly the problem of finding
suitable properties for the covariance function

• In this book, design matrix is defined slightly differently from
common statistical textbooks. Rather, each column in a design
matrix is a case, and each row is a covariate
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A regression model with basis functions

• Basis function φ(x): maps a D-dimensional input vector x into an
N -dimensional feature space

• Φ(X) ∈ RN×n: the aggregation of columns φ(x) for all n cases in
the training data

• A regression model

f(x) = φ(x)>w, y = f(x) + ε, ε ∼ N (0, σ2
n)

• We use a zero mean Gaussian prior on the N -dimensional
unknown weights w (aka regression coefficients)

w ∼ N (0,Σp)
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Predictive distribution

• For a new test point x∗, the predictive distribution is

f∗ | x∗,X,y ∼ N
( 1
σ2

n

φ>∗ A−1Φy, φ>∗ A−1φ∗

)
,

φ∗ = φ(x∗), Φ = Φ(X), A = 1
σ2

n

ΦΦ> + Σ−1
p

• When make predictions, we need to invert the N ×N matrix A,
which may not be convenient if N , the dimension of the feature
space, is large
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Rewriting the predictive distribution using the matrix
inversion lemma

• Marix inversion lemma: Z ∈ Rn×n, W ∈ Rm×m, U,V ∈ Rn×m

(
Z + UWV>

)−1
= Z−1 − Z−1U

(
W−1 + V>Z−1U

)−1
V>Z−1

• We can rewrite the predictive distribution on the previous page as

f∗ | x∗,X,y ∼ N
(
φ>∗ ΣpΦ

(
K + σ2

nI
)−1

y, (1)

φ>∗ Σpφ∗ − φ>∗ ΣpΦ
(
K + σ2

nI
)−1

Φ>Σpφ∗

)
,

K = Φ>ΣpΦ
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Kernel and the kernel trick
• In the predictive distribution on the previous page, the feature

space always enters in the form of the kernel k(·, ·):

k(x,x′) = φ(x)>Σpφ(x′),

where x,x′ are in either the training or the test sets

• Moreover, we can define

ψ(x) = Σ1/2
p φ(x),

so that the kernel has a simple dot product representation

k(x,x′) = ψ(x) ·ψ(x′)

• Kernel trick: if an algorithm is defined solely in terms of inner
products in input space, the it can be lifted into feature space by
replacing occurrences of those inner products by k(x,x′)
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Gaussian process: definition

• A Gaussian process(GP) is a collection of random variables, any
finite number of which have a joint Gaussian distribution

• A GP is completely specified by its mean function m(x) and
covariance function k(x,x′)

f(x) ∼ GP
(
m(x), k(x,x′)

)
• Usually the prior mean function is set to zero

• Bayesian linear regression as a Gaussian process

f(x) = φ(x)>w, w ∼ N (0,Σp)

Here, the GP mean function and the covariance function are

m(x) = 0, k(x,x′) = φ(x)>Σpφ(x′)
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The squared exponential covariance function

• In this chapter, squared exponential (SE) covariance function will
be used

cov
(
f(x), f(x′)

)
= k(x,x′) = exp

(
−1

2
∣∣x− x′

∣∣2)

− By replacing |x− x′| by |x− x′| /` for some positive constant `, we
can change the characteristic length-scale of the process

− Note that the covariance between the outputs is written as a
function of the inputs

− The squared exponential covariance function corresponds to a
Bayesian linear regression model with a infinite number of basis
functions

− Actually for every positive definite covariance function k(·, ·), there
exists a (possibly infinite) expansion in terms of basis functions
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Three functions drawn at random from a GP prior (left)
and their posteriors (right)

• In both plots, shaded area are the pointwise mean plus and minus
two times the standard deviation from each input value
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Prediction with noise-free observations

• Suppose we have noise-free observations {(xi, fi) : i = 1, . . . , n}

• According to the GP prior, the joint distribution of the training
outputs f and the test outputs f∗ is[

f
f∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])

• By conditioning the joint Gaussian prior on the observations, we
get the posterior distribution

f∗ | X∗,X, f ∼ N
(
K(X∗,X)K(X,X)−1f ,

K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)
)
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Prediction with noisy observations

• With noisy observations y = f(x) + ε, the covariance becomes

cov(y) = K(X,X) + σ2
nI

• Thus, the joint prior distribution becomes[
y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])

• Key predictive equation for GP regression

f∗ | X∗,X, f ∼ N
(
f̄∗, cov(f∗)

)
, where (2)

f̄∗ = K(X∗,X)
[
K(X,X) + σ2

n

]−1
y

cov(f∗) = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2

n

]−1
K(X,X∗)
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Correspondence with weight-space view

• Connection between the function-space view, Eq (2), and the
weight-space view, Eq (1)

K(C,D) = Φ(C)>ΣpΦ(D)

where C,D stand for either X or X∗
• Thus, for any set of basic functions, we can compute the

corresponding covariance function as

k(x,x′) = φ(x)>Σpφ(x′)

• On the other hand, for every positive definite covariance function
k, there exists a possibly infinite expansion in terms of basis
functions
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Predictive distribution for a single test point x∗

• Denote K = K(X,X) and k∗ = K(X,x∗), then the mean and
variance of the posterior predictive distribution are

f̄∗ = k>∗
(
K + σ2

nI
)−1

y, (3)

V(f∗) = k(x∗,x∗)− k>∗
(
K + σ2

nI
)−1

k∗ (4)

14



Predictive distribution mean as a linear predictor

• The mean prediction Eq (3) is a linear predictor, i.e., it’s a linear
combination of observations y

• Another way to look at this equation is to see it as a linear
combination of n kernel functions

f̄(x∗) =
n∑

i=1
αik(xi,x∗), α =

(
K + σ2

nI
)−1

y
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About the predictive distribution variance

• The predictive variance Eq (4) does not depend on the observed
targets y, but only the inputs. This is a property of the Gaussian
distribution

• The noisy prediction of y∗: simply add σ2
nI to the variance

y∗ | x∗,X,y ∼ N
(
f̄∗,V(f∗) + σ2

nI
)
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Cholesky decomposition

• Cholesky decomposition of a symmetric, positive definite matrix A

A = LL>,

where L is a lower triangular matrix, called the Cholesky factor

• Cholesky decomposition is useful for solving linear systems with
symmetric, positive definite coefficient matrix: to solve Ax = b

− First solve the triangular system Ly = b by forward substitution
− Then the triangular system L>x = y by back substitution

• Backslash operator: A\b is the vector x which solves Ax = b

− Under Cholesky decomposition,

x = A\b = L>\ (L\b)

• The computation of the Cholesky factor L is considered
numerically extremely stable, and takes time’ n3/6
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Algorithm: predictions and log marginal likelihood for
GP regression

• Input: X,y, k, σ2
n,x∗

1. L = cholesky
(
K + σ2

nI
)

2. α = L>\ (L\y)

3. f̄∗ = k>∗ α

4. v = L\k∗
5. V(f∗) = k(x∗,x∗)− v>v

6. log p(y | X) = −1
2y>α−

∑
i logLii − n

2 log 2π

• Return: f̄∗,V(f∗), log p(y | X)

• Computational complexity: n3/6 for the Cholesky decomposition
in Line 1, and n2/2 for solving triangular systems in Line 2, 4
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Hyperparameters

• One-dimensional squared-exponential covariance function

ky(xp, xq) = σ2
f exp

[
− 1

2`2 (xp − xq)2
]

+ σ2
nδpq

• It has three hyperparameters

− Length-scale `
− Signal variance σ2

f

− Noise variance σ2
n

• After selected `, the rest two hyperparameters are set by
optimizing the marginal likelihood

log p(y | X) = −1
2y>

(
K + σ2

nI
)−1

y− 1
2 log

∣∣∣K + σ2
nI
∣∣∣− n

2 log 2π

19



References

• Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian
Processes for Machine learning, MIT press.

− http://www.gaussianprocess.org/gpml/chapters/RW.pdf

20

http://www.gaussianprocess.org/gpml/chapters/RW.pdf

	
	Weight-space View
	Function-space View
	Prediction with noise-free observations
	Prediction with noisy observations
	Cholesky decomposition and GP regression algorithm
	Hyperparameters

	Smoothing, Weight Functions, and Equivalent Kernels

