Notes: Pattern Recognition and Machine Learning – Ch9 Mixture Models and EM Algorithm

Yingbo Li

06/13/2020

1

Table of Contents

K-means Clustering vs Mixtures of Gaussians

K-means clustering

Mixture of Gaussians

EM Algorithm

The general EM algorithm

A different view of the EM algorithm, related to variational inference

K-means clustering: problem

- Data
 - D-dimensional observations: $\mathbf{x}_1, \dots, \mathbf{x}_N$
- Parameters
 - K clusters' means: μ_1, \ldots, μ_K
 - − Binary indicator $r_{nk} \in \{0,1\}$: if object n is in class k
- Goal: find values for $\{\mu_k\}$ and $\{r_{nk}\}$ to minimize the objective function (called a distortion measure)

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

K-means clustering: solution

- Two-stage optimization
 - Update r_{nk} and μ_k alternatively, and repeat until convergence
 - Resembles the E step and M step in the EM algorithm
- 1. E(expectation) step: updates r_{nk} .
 - Assign the nth data point to the closest cluster center

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 \\ 0 & \text{otherwise} \end{cases}$$

- 2. M(maximization) step: updates μ_k
 - Set cluster mean to be mean of all data points assigned to this cluster

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Mixture of Gaussians: definition

Mixture of Gaussians: log likelihood

$$\log p(\mathbf{x}) = \log \left\{ \sum_{k=1}^{K} \pi_k \cdot \mathsf{N} \left(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \right) \right\} \tag{1}$$

• Introduce a K-dim latent indicator variable $\mathbf{z} \in \{0,1\}^K$

$$z_k = \mathbf{1}(\text{if }\mathbf{x} \text{ is from the }k\text{-th Gaussian component})$$

The marginal distribution of z is multinomial

$$p(z_k = 1) = \pi_k$$

 We call the posterior probability as the Responsibility that component k takes for explaining the observation x

$$\gamma(z_k) = p(z_k = 1 \mid \mathbf{x}) = \frac{\pi_k \cdot \mathsf{N} \left(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \right)}{\sum_{j=1}^K \pi_j \cdot \mathsf{N} \left(\mathbf{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j \right)}$$

Mixture of Gaussians: singularity problem with MLE

- Problem with maximum likelihood estimation: presence of singularities: there will be clusters that contains only one data point, so that the corresponding covariance matrix will be estimated at zero, thus the likelihood explodes
 - Therefore, when finding MLE, we should avoid finding such singularity solution and instead seek well-behaved local maxima of the likelihood function: see the following EM approach
 - Alternatively, we can to adopt a Bayesian approach

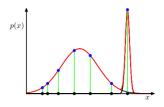


Figure 1: Illustration of singularities

Conditional MLE of μ_k

- Suppose we observe N data points $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
- Similarly, we write the N latent variables as $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$
- Set the derivatives of $\log p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with respect to $\boldsymbol{\mu}$ to zero

$$0 = \sum_{n=1}^{N} \gamma(z_{nk}) \; \mathbf{\Sigma}_k \; (\mathbf{x}_n - \boldsymbol{\mu}_k)$$

Then we obtain

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \; \mathbf{x}_n$$

where N_k is the effective number of points assigned to cluster k

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

Conditional MLE of Σ_k and π_k

ullet Similarly, setting the derivatives of log likelihood wrt $oldsymbol{\Sigma}_k$, we have

$$\mathbf{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k} \right) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{k} \right)^{\top}$$

• Use Lagrange multiplier to maximize log likelihood wrt π_k under the constraint that all π_k add up to one:

$$\log p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)$$

we get the solution

$$\pi_k = \frac{N_k}{N}$$

• The above results on μ_k, Σ_k, π_k are not closed-form solution because the responsibilities $\gamma(z_{nk})$ depend on them in a complex way.

EM algorithm for mixture of Gaussians

- 1. Initialize μ_k, Σ_k, π_k , usually using the K-means algorithm.
- 2. **E step**: compute responsibilities using the current parameters

$$\gamma(z_{nk}) = \frac{\pi_k \cdot \mathsf{N}\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)}{\sum_{j=1}^K \pi_j \cdot \mathsf{N}\left(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\right)}$$

3. **M step**: re-estimate the parameters using the current responsibilities, where $N_k = \sum_{n=1}^N \gamma(z_{nk})$

$$\begin{split} & \boldsymbol{\mu}_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \; \mathbf{x}_n \\ & \boldsymbol{\Sigma}_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \; \left(\mathbf{x}_n - \boldsymbol{\mu}_k\right) \left(\mathbf{x}_n - \boldsymbol{\mu}_k\right)^\top \\ & \boldsymbol{\pi}_k^{\text{new}} = \frac{N_k}{N} \end{split}$$

4. Check for convergence of either the parameters or the log likelihood. If not converged, return to step 2.

Connection between K-means and Gaussian mixture model

- K-means algorithm itself is often used to initialize the parameters in a Gaussian mixture model before applying the EM algorithm
- Mixture of Gaussians: soft assignment of data points to clusters, using posterior probabilities
- K-means can be viewed as a special case of mixture of Gaussian, where covariances of mixture components are $\epsilon \mathbf{I}$, where ϵ is a parameter shared by all components.
 - In the responsibility calculation,

$$\gamma(z_{nk}) = \frac{\pi_k \exp\{-\|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 / 2\epsilon\}}{\sum_i \pi_i \exp\{-\|\mathbf{x}_n - \boldsymbol{\mu}_i\|^2 / 2\epsilon\}}$$

In the limit $\epsilon \to 0$, for each observation n, the responsibilities $\{\gamma(z_{nk}), k=1,\ldots,K\}$ has exactly one unity and all the rest are zero.

EM algorithm: definition

- Goal: maximize likelihood p(X | θ) with respect to the parameter θ, for models having latent variables Z.
- Notations
 - X: observed data; also called incomplete data
 - $-\theta$: model parameters
 - Z: latent variables, usually each observation has a latent variable
 - $-\{X,Z\}$ is called complete data
- Log likelihood

$$\log p(\mathbf{X} \mid \boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \right\}$$

- The sum over Z can be replaced by an integral if Z is continuous
- The presence of sum prevents the logarithm from acting directly on the joint distribution. This complicates MLE solutions, especially for exponential family.

General EM algorithm: two-stage iterative optimization

- 1. Choose the initial parameters θ^{old}
- 2. **E step**: since the conditional posterior $p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}\right)$ contains all of our knowledge about the latent variable \mathbf{Z} , we compute the expected complete-data log likelihood under it.

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathsf{old}}) = E_{\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}} \{ \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \}$$
$$= \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$$

3. M step: revise parameter estimate

$$\boldsymbol{\theta}^{\mathsf{new}} = \arg\max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathsf{old}})$$

- Note in the maximizing step, the logarithm acts driectly on the joint likelihood $p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$, so the maximizating will be tractable.

12

4. Check for convergence of the log likelihood or the parameter values. If not converged, use θ^{new} to replace θ^{old} , and return to step 2.

Gaussian mixtures revisited

• Recall that latent variables $\mathbf{Z} \in \mathbb{R}^{N \times K}$:

$$z_{nk} = \mathbf{1}(\text{if }\mathbf{x}_n \text{ is from the } k\text{-th Gaussian component})$$

Complete data log likelihood

$$\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \log \mathsf{N} \left(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \right) \right\}$$

— Comparing this with incomplete data log likelihood in Eq (1), we have the sum over k and logarithm interchanged. Thus, the logarithm acts on Gaussian density directly.

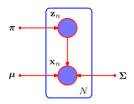


Figure 2: Mixture of Gaussians, treating latent variables as observed

Continue: Gaussian mixtures revisited

Conditional posterior of Z

$$p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k \mathsf{N} (\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{nk}}$$

Thus, the conditional posterior of $\{z_n\}$ are independent

Conditional expectations

$$E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\mu}^{\mathrm{old}},\boldsymbol{\Sigma}^{\mathrm{old}},\boldsymbol{\pi}^{\mathrm{old}}} z_{nk} = \gamma(z_{nk})^{\mathrm{old}}$$

• Thus the objective function in the M-step

$$\begin{split} &E_{\mathbf{Z}\mid\mathbf{X},\boldsymbol{\mu}^{\mathsf{old}},\boldsymbol{\Sigma}^{\mathsf{old}},\boldsymbol{\pi}^{\mathsf{old}}}\ \log p(\mathbf{X},\mathbf{Z}\mid\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\pi}) \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk})^{\mathsf{old}} \left\{ \log \pi_k + \log \mathsf{N}\left(\mathbf{x}_n \mid \boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k\right) \right\} \end{split}$$

A different view of the EM algorithm

Goal: maximize the incomplete data likelihood

$$p(\mathbf{X} \mid \boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$$

- Suppose that optimization of $p(\mathbf{X} \mid \boldsymbol{\theta})$ is difficult, but optimization of $p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$ is significantly easier.
- An important decompsition: holds for any arbitrary distribution
 q(Z)

$$\log p(\mathbf{X} \mid \boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + \mathsf{KL}(q \parallel p) \tag{2}$$

where $\mathcal{L}(q, \theta)$ is called a lower bound on $\log p(\mathbf{X} \mid \theta)$:

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$
$$\mathsf{KL}(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

Note: this formula will appear again in variational inference.

A different view of the EM algorithm: E step

- In E step, the lower bound $\mathcal{L}(q, \theta^{\text{old}})$ is maximized with respect to $q(\mathbf{Z})$ while keeping θ^{old} fixed
- The solution is when the KL divergence $\mathsf{KL}\left(q(\mathbf{Z}) \parallel p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}\right)\right)$ is zero, i.e.,

$$q(\mathbf{Z}) = p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}\right)$$

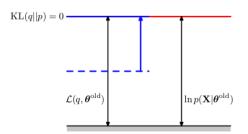


Figure 3: In the E step, the lower bound moves to the same value as the old incomplete data log likelihood

A different view of the EM algorithm: M step

- In M step, the distribution $q(\mathbf{Z})$ is held fixed and the lower bound $\mathcal{L}(q, \boldsymbol{\theta}^{\mathsf{old}})$ is maximized wrt $\boldsymbol{\theta}$ to give some new value $\boldsymbol{\theta}^{\mathsf{new}}$. Thus, the lower bound increases.
- Since $q(\mathbf{Z})$ is fixed at $\boldsymbol{\theta}^{\mathsf{old}}$, it will not equal the new posterior $p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathsf{new}})$. Therefore, the KL divergence becomes nonzero.

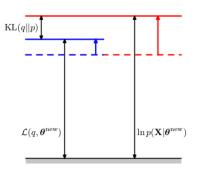


Figure 4: In the M step, both the lower bound and the KL divergence increase.

EM algorithm illustration

- Red curve: incomplete data log likelihood
- Blue curve: lower bound $\mathcal{L}(\theta, \theta^{\mathsf{old}})$
- Green curve: lower bound $\mathcal{L}(\theta, \theta^{\text{new}})$
- The lower bounds have tangential contacts with the log likelihood

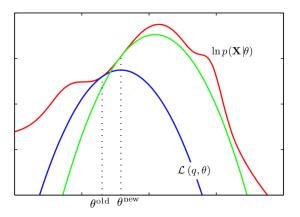


Figure 5: Illustration of EM algorithm, in the parameter space

EM algorithm in Bayesian statistics

- EM algorithm can be used to estimate maximum posterior (MAP)
- In this case, the objective function is

$$p(\boldsymbol{\theta} \mid \mathbf{X}) \propto p(\mathbf{X} \mid \boldsymbol{\theta}) \ p(\boldsymbol{\theta})$$

Hence, the expectation in Step 2 becomes

$$\begin{split} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathsf{old}}) &= E_{\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}} \left\{ \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) \right\} \\ &= E_{\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}} \left\{ \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \right\} + \log p(\boldsymbol{\theta}) \end{split}$$

EM algorithm and missing data

- The latent variables can be the missing values in the data
- This is valid is the data are missing at random

EM algorithm for IID data with N latent variables

- Suppose N data points $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ are IID
- Each observation \mathbf{x}_n has its corresponding latent variable \mathbf{z}_n
- Then the conditional posterior of Z also factorizes wrt n:

$$p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) = \prod_{n=1}^{N} p(\mathbf{z}_n \mid \mathbf{x}_n, \boldsymbol{\theta})$$

- Exploit this structure: using incremental form of EM that at each cycle only process one data point
 - Benefit: no need to wait for the whole data set to finish processing

Extensions of EM algorithms

- For complex models, E step and/or M step can be intractable
- Generalized EM (GEM): address an intractable M step
 - Instead of maximizing the objective function in the M step, just changing the parameter to increase its value
 - E.g., using nonlinear optimization methods such as conjugate gradients algorithm
 - E.g., expected conditional maximization (ECM), constrained optimization
- We can also generalize the E step: find $q(\mathbf{Z})$ to partially, rather than completely, optimize $\mathcal{L}(q, \theta)$

References

 Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.