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K-means clustering: problem

• Data

− D-dimensional observations: x1, . . . ,xN

• Parameters

− K clusters’ means: µ1, . . . ,µK

− Binary indicator rnk ∈ {0, 1}: if object n is in class k

• Goal: find values for {µk} and {rnk} to minimize the objective
function (called a distortion measure)

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2
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K-means clustering: solution

• Two-stage optimization

− Update rnk and µk alternatively, and repeat until convergence
− Resembles the E step and M step in the EM algorithm

1. E(expectation) step: updates rnk.

− Assign the nth data point to the closest cluster center

rnk =
{

1 if k = arg minj ‖xn − µk‖2

0 otherwise

2. M(maximization) step: updates µk

− Set cluster mean to be mean of all data points assigned to this
cluster

µk =
∑

n rnkxn∑
n rnk
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Mixture of Gaussians: definition
• Mixture of Gaussians: log likelihood

log p(x) = log
{

K∑
k=1

πk · N (x | µk,Σk)
}

(1)

• Introduce a K-dim latent indicator variable z ∈ {0, 1}K

zk = 1(if x is from the k-th Gaussian component)

The marginal distribution of z is multinomial

p(zk = 1) = πk

• We call the posterior probability as the Responsibility that
component k takes for explaining the observation x

γ(zk) = p(zk = 1 | x) = πk · N (x | µk,Σk)∑K
j=1 πj · N

(
x | µj ,Σj

)
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Mixture of Gaussians: singularity problem with MLE

• Problem with maximum likelihood estimation: presence of
singularities: there will be clusters that contains only one data
point, so that the corresponding covariance matrix will be
estimated at zero, thus the likelihood explodes

− Therefore, when finding MLE, we should avoid finding such
singularity solution and instead seek well-behaved local maxima of
the likelihood function: see the following EM approach

− Alternatively, we can to adopt a Bayesian approach

Figure 1: Illustration of singularities
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Conditional MLE of µk

• Suppose we observe N data points X = {x1, . . . ,xN}

• Similarly, we write the N latent variables as Z = {z1, . . . , zN}

• Set the derivatives of log p(X | π,µ,Σ) with respect to µ to zero

0 =
N∑

n=1
γ(znk) Σk (xn − µk)

Then we obtain

µk = 1
Nk

N∑
n=1

γ(znk) xn

where Nk is the effective number of points assigned to cluster k

Nk =
N∑

n=1
γ(znk)
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Conditional MLE of Σk and πk

• Similarly, setting the derivatives of log likelihood wrt Σk, we have

Σk = 1
Nk

N∑
n=1

γ(znk) (xn − µk) (xn − µk)>

• Use Lagrange multiplier to maximize log likelihood wrt πk under
the constraint that all πk add up to one:

log p(X | π,µ,Σ) + λ

(
K∑

k=1
πk − 1

)

we get the solution

πk = Nk

N

• The above results on µk,Σk, πk are not closed-form solution
because the responsibilities γ(znk) depend on them in a complex
way.
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EM algorithm for mixture of Gaussians

1. Initialize µk,Σk, πk, usually using the K-means algorithm.

2. E step: compute responsibilities using the current parameters

γ(znk) = πk · N (xn | µk,Σk)∑K
j=1 πj · N

(
xn | µj ,Σj

)
3. M step: re-estimate the parameters using the current

responsibilities, where Nk =
∑N

n=1 γ(znk)

µnew
k = 1

Nk

N∑
n=1

γ(znk) xn

Σnew
k = 1

Nk

N∑
n=1

γ(znk) (xn − µk) (xn − µk)>

πnew
k = Nk

N

4. Check for convergence of either the parameters or the log
likelihood. If not converged, return to step 2. 9



Connection between K-means and Gaussian mixture
model

• K-means algorithm itself is often used to initialize the parameters
in a Gaussian mixture model before applying the EM algorithm

• Mixture of Gaussians: soft assignment of data points to clusters,
using posterior probabilities

• K-means can be viewed as a special case of mixture of Gaussian,
where covariances of mixture components are εI, where ε is a
parameter shared by all components.

− In the responsibility calculation,

γ(znk) = πk exp{−‖xn − µk‖2/2ε}∑
j πj exp{−‖xn − µj‖2/2ε}

In the limit ε→ 0, for each observation n, the responsibilities
{γ(znk), k = 1, . . . ,K} has exactly one unity and all the rest are
zero.
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EM algorithm: definition
• Goal: maximize likelihood p(X | θ) with respect to the parameter

θ, for models having latent variables Z.

• Notations

− X: observed data; also called incomplete data
− θ: model parameters
− Z: latent variables, usually each observation has a latent variable
− {X,Z} is called complete data

• Log likelihood

log p(X | θ) = log
{∑

Z
p(X,Z | θ)

}

− The sum over Z can be replaced by an integral if Z is continuous

− The presence of sum prevents the logarithm from acting directly on
the joint distribution. This complicates MLE solutions, especially for
exponential family.
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General EM algorithm: two-stage iterative optimization

1. Choose the initial parameters θold

2. E step: since the conditional posterior p
(
Z | X,θold

)
contains all

of our knowledge about the latent variable Z, we compute the
expected complete-data log likelihood under it.

Q(θ,θold) = EZ|X,θold {log p(X,Z | θ)}

=
∑
Z
p
(
Z | X,θold

)
log p(X,Z | θ)

3. M step: revise parameter estimate

θnew = arg max
θ
Q(θ,θold)

− Note in the maximizing step, the logarithm acts driectly on the joint
likelihood p(X,Z | θ), so the maximizating will be tractable.

4. Check for convergence of the log likelihood or the parameter
values. If not converged, use θnew to replace θold, and return to
step 2. 12



Gaussian mixtures revisited
• Recall that latent variables Z ∈ RN×K :

znk = 1(if xn is from the k-th Gaussian component)
• Complete data log likelihood

log p(X,Z | µ,Σ,π) =
N∑

n=1

K∑
k=1

znk {log πk + log N (xn | µk,Σk)}

− Comparing this with incomplete data log likelihood in Eq (1), we
have the sum over k and logarithm interchanged. Thus, the
logarithm acts on Gaussian density directly.

Figure 2: Mixture of Gaussians, treating latent variables as observed
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Continue: Gaussian mixtures revisited
• Conditional posterior of Z

p(Z | X,µ,Σ,π) ∝
N∏

n=1

K∏
k=1

[πkN (xn | µk,Σk)]znk

Thus, the conditional posterior of {zn} are independent

• Conditional expectations

EZ|X,µold,Σold,πold znk = γ(znk)old

• Thus the objective function in the M-step

EZ|X,µold,Σold,πold log p(X,Z | µ,Σ,π)

=
N∑

n=1

K∑
k=1

γ(znk)old {log πk + log N (xn | µk,Σk)}
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A different view of the EM algorithm
• Goal: maximize the incomplete data likelihood

p(X | θ) =
∑
Z
p(X,Z | θ)

• Suppose that optimization of p(X | θ) is difficult, but optimization
of p(X,Z | θ) is significantly easier.

• An important decompsition: holds for any arbitrary distribution
q(Z)

log p(X | θ) = L(q,θ) + KL(q ‖ p) (2)

where L(q,θ) is called a lower bound on log p(X | θ):

L(q,θ) =
∑
Z
q(Z) log

{
p(X,Z | θ)

q(Z)

}

KL(q ‖ p) = −
∑
Z
q(Z) log

{
p(Z | X,θ)

q(Z)

}

− Note: this formula will appear again in variational inference.
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A different view of the EM algorithm: E step
• In E step, the lower bound L(q,θold) is maximized with respect to
q(Z) while keeping θold fixed

• The solution is when the KL divergence
KL
(
q(Z) ‖ p

(
Z | X,θold

))
is zero, i.e.,

q(Z) = p
(
Z | X,θold

)

Figure 3: In the E step, the lower bound moves to the same value as the
old incomplete data log likelihood
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A different view of the EM algorithm: M step
• In M step, the distribution q(Z) is held fixed and the lower bound
L(q,θold) is maximized wrt θ to give some new value θnew. Thus,
the lower bound increases.

• Since q(Z) is fixed at θold, it will not equal the new posterior
p (Z | X,θnew). Therefore, the KL divergence becomes nonzero.

Figure 4: In the M step, both the lower bound and the KL divergence
increase.
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EM algorithm illustration
• Red curve: incomplete data log likelihood
• Blue curve: lower bound L(θ,θold)
• Green curve: lower bound L(θ,θnew)
• The lower bounds have tangential contacts with the log likelihood

Figure 5: Illustration of EM algorithm, in the parameter space
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EM algorithm in Bayesian statistics

• EM algorithm can be used to estimate maximum posterior (MAP)

• In this case, the objective function is

p(θ | X) ∝ p(X | θ) p(θ)

Hence, the expectation in Step 2 becomes

Q(θ,θold) = EZ|X,θold {log p(X,Z | θ) + log p(θ)}

= EZ|X,θold {log p(X,Z | θ)}+ log p(θ)
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EM algorithm and missing data

• The latent variables can be the missing values in the data
• This is valid is the data are missing at random
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EM algorithm for IID data with N latent variables

• Suppose N data points {x1, . . . ,xN} are IID

• Each observation xn has its corresponding latent variable zn

• Then the conditional posterior of Z also factorizes wrt n:

p(Z | X,θ) =
N∏

n=1
p(zn | xn,θ)

• Exploit this structure: using incremental form of EM that at each
cycle only process one data point

− Benefit: no need to wait for the whole data set to finish processing
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Extensions of EM algorithms

• For complex models, E step and/or M step can be intractable

• Generalized EM (GEM): address an intractable M step

− Instead of maximizing the objective function in the M step, just
changing the parameter to increase its value

− E.g., using nonlinear optimization methods such as conjugate
gradients algorithm

− E.g., expected conditional maximization (ECM), constrained
optimization

• We can also generalize the E step: find q(Z) to partially, rather
than completely, optimize L(q,θ)
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