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K-means clustering: problem

e Data
— D-dimensional observations: x1,...,xy
e Parameters

— K clusters’ means: pq,..., g
— Binary indicator r,,;, € {0, 1}: if object n is in class &

e Goal: find values for {u;.} and {r,x} to minimize the objective
function (called a distortion measure)

N K
J = Z Zrnkan - Nkz”z

n=1k=1



K-means clustering: solution

e Two-stage optimization

— Update r,x and p,, alternatively, and repeat until convergence
— Resembles the E step and M step in the EM algorithm

1. E(expectation) step: updates r,.
— Assign the nth data point to the closest cluster center
1 if k = argmin; ||x,, — p, )
T'nk = .
i 0 otherwise
2. M(maximization) step: updates p,

— Set cluster mean to be mean of all data points assigned to this
cluster 5
n 'nkXn
LS
Zn Tnk



Mixture of Gaussians: definition
e Mixture of Gaussians: log likelihood

K
Ing(X)ZIOg{Zﬂ'k'N(X|Hkazkz)} (1)

k=1

e Introduce a K-dim latent indicator variable z € {0, 1}

z, = 1(if x is from the k-th Gaussian component)

The marginal distribution of z is multinomial
plzr =1) =7y

e We call the posterior probability as the Responsibility that
component k takes for explaining the observation x

Tk - N (X | p’kvzk)
Zgl'(:l m; - N (X | “jazj)

Y(zk) =plze =1 x) =



Mixture of Gaussians: singularity problem with MLE

¢ Problem with maximum likelihood estimation: presence of
singularities: there will be clusters that contains only one data
point, so that the corresponding covariance matrix will be
estimated at zero, thus the likelihood explodes

— Therefore, when finding MLE, we should avoid finding such
singularity solution and instead seek well-behaved local maxima of
the likelihood function: see the following EM approach

— Alternatively, we can to adopt a Bayesian approach

p(x)

T

Figure 1: lllustration of singularities



Conditional MLE of y,

e Suppose we observe N data points X = {x1,...,xn}

e Similarly, we write the N latent variables as Z = {z;,...,zn}

e Set the derivatives of log p(X | 7, u, ) with respect to p to zero

N
0= 7(znr) ke (Xn — p)

n=1
Then we obtain
1 N
Ry = Ny nZ::l”Y(an) Xn
where Ny is the effective number of points assigned to cluster &

N
Ni = > v(znk)

n=1



Conditional MLE of X, and
e Similarly, setting the derivatives of log likelihood wrt 3;., we have

5= 3 ’
k—mav(znk) (%n — my) (Xn — )

e Use Lagrange multiplier to maximize log likelihood wrt 7, under
the constraint that all 7, add up to one:

K
logp(X | 7, p, 2) + A (Z T — 1)
k=1

we get the solution
_ N

7Tk—N

¢ The above results on py, 3, 7 are not closed-form solution
because the responsibilities v(z,x) depend on them in a complex
way.



EM algorithm for mixture of Gaussians

1. Initialize py, Xy, 71, usually using the K-means algorithm.

2. E step: compute responsibilities using the current parameters
T - N (xn | gy, Bie)

Z]K:I m;-N (Xn | 1222 2]’)

’Y(an> -

3. M step: re-estimate the parameters using the current
responsibilities, where Nk =N y(zar)

new _ Z an

n—l

N
1
nnew — § Y(zak) (% — p) (Xn — p1y,) "
n—l

new __ &
K N
4. Check for convergence of either the parameters or the log
likelihood. If not converged, return to step 2.



Connection between K-means and Gaussian mixture
model

e K-means algorithm itself is often used to initialize the parameters
in a Gaussian mixture model before applying the EM algorithm

e Mixture of Gaussians: soft assignment of data points to clusters,
using posterior probabilities

e K-means can be viewed as a special case of mixture of Gaussian,
where covariances of mixture components are eI, where ¢ is a
parameter shared by all components.

— In the responsibility calculation,

N (ong) = = exp{—|xn — ]|/ 2¢}
225 ™ exp{—|[xn — p;[/2€}

In the limit e — 0, for each observation n, the responsibilities
{v(znk), k = 1,..., K} has exactly one unity and all the rest are
zero.



EM algorithm: definition

e Goal: maximize likelihood p(X | @) with respect to the parameter
0, for models having latent variables Z.

e Notations

— X: observed data; also called incomplete data

— 0: model parameters

— Z: latent variables, usually each observation has a latent variable
— {X,Z} is called complete data

¢ Log likelihood
log p(X | 8) = log {ZP(X,Z | 9)}
Z

— The sum over Z can be replaced by an integral if Z is continuous

— The presence of sum prevents the logarithm from acting directly on
the joint distribution. This complicates MLE solutions, especially for
exponential family.

1



General EM algorithm: two-stage iterative optimization

1.
2.

Choose the initial parameters §°

E step: since the conditional posterior p (Z | X, Oo'd) contains all
of our knowledge about the latent variable Z, we compute the
expected complete-data log likelihood under it.

Q(0700|d> = Ez|X,0°'d {logp(X,Z | 6)}
=> " p(Z1X,60°) logp(X,Z | 6)
Z

. M step: revise parameter estimate

0" = arg max Q(6, 6°d)

— Note in the maximizing step, the logarithm acts driectly on the joint
likelihood p(X,Z | 8), so the maximizating will be tractable.

. Check for convergence of the log likelihood or the parameter

values. If not converged, use 8™ to replace 6°9, and return to
step 2. 12



Gaussian mixtures revisited
¢ Recall that latent variables Z € RV*K .

znk = 1(if x,, is from the k-th Gaussian component)

e Complete data log likelihood

N K
logp(X,Z | p, B,m) = D> > 2k {log mi + log N (x| g, Ti) }
n=1k=1
— Comparing this with incomplete data log likelihood in Eq (1), we
have the sum over k and logarithm interchanged. Thus, the
logarithm acts on Gaussian density directly.

Figure 2: Mixture of Gaussians, treating latent variables as observed



Continue: Gaussian mixtures revisited
e Conditional posterior of Z

K
p(Z | X, p, 2, ) H [N (% | g, Ze)] ™"

u,":12

Thus, the conditional posterior of {z,,} are independent

¢ Conditional expectations
EZ|X,u°'d,)3°'d,7r°|d “nk = V(an)OId
® Thus the objective function in the M-step
EZ|X u°'d sl o 10g (X, Z | p, 3, )

_ Z Z 2ni) 29 {log 7 + log N (x5 | g, )}



A different view of the EM algorithm
e Goal: maximize the incomplete data likelihood
p(X[0)=> pX,Z]06)
Z

e Suppose that optimization of p(X | ) is difficult, but optimization
of p(X,Z | 6) is significantly easier.

e An important decompsition: holds for any arbitrary distribution

q(Z)
logp(X | 0) = L(q,0) + KL(¢q || p) (2)

where L(q, 0) is called a lower bound on log p(X | 0):
B oo [ PXZ16)
—szq(z)l g{ 2 }
KLia | 7)== Y a(z)1og { "2 2500

Z

— Note: this formula will appear again in variational inference.



A different view of the EM algorithm: E step

¢ In E step, the lower bound L(q, 0°'d) is maximized with respect to
q(Z) while keeping 6° fixed

e The solution is when the KL divergence
KL (q(Z) | p (Z | X, 9°'d)) is zero, i.e.,

a(z) =p (2| X,6°)

KL(gllp) =0

L(q.0°") Inp(X|0°")

Figure 3: In the E step, the lower bound moves to the same value as the
old incomplete data log likelihood



A different view of the EM algorithm: M step

¢ In M step, the distribution ¢(Z) is held fixed and the lower bound
L(q,0°9) is maximized wrt 6 to give some new value 6"". Thus,

the lower bound increases.

e Since ¢(Z) is fixed at #°9, it will not equal the new posterior
p(Z | X, 0""). Therefore, the KL divergence becomes nonzero.

KL(gllp) l
I I

L(q,0™) Inp(X|0"")

Figure 4: In the M step, both the lower bound and the KL divergence
increase.



EM algorithm illustration

Red curve: incomplete data log likelihood

Blue curve: lower bound £(8, 6°)

Green curve: lower bound £(6, 0™")

The lower bounds have tangential contacts with the log likelihood

001d 0new

Figure 5: lllustration of EM algorithm, in the parameter space



EM algorithm in Bayesian statistics

e EM algorithm can be used to estimate maximum posterior (MAP)
¢ |n this case, the objective function is
p(6 | X) < p(X | 0) p(0)
Hence, the expectation in Step 2 becomes

Q(6,0°%) = Eyx gos {logp(X, Z | 6) + log p(6)}
= Eyz/x o {logp(X,Z | )} +log p(0)



EM algorithm and missing data

e The latent variables can be the missing values in the data
e This is valid is the data are missing at random

20



EM algorithm for IID data with N latent variables

e Suppose N data points {xi,...,xy} are lID

Each observation x,, has its corresponding latent variable z,

Then the conditional posterior of Z also factorizes wrt n:

p(Z|X,0)= szn|xn,

n=1

Exploit this structure: using incremental form of EM that at each
cycle only process one data point

— Benefit: no need to wait for the whole data set to finish processing

21



Extensions of EM algorithms

e For complex models, E step and/or M step can be intractable

e Generalized EM (GEM): address an intractable M step

— Instead of maximizing the objective function in the M step, just
changing the parameter to increase its value

— E.g., using nonlinear optimization methods such as conjugate
gradients algorithm

— E.g., expected conditional maximization (ECM), constrained
optimization

e We can also generalize the E step: find ¢(Z) to partially, rather
than completely, optimize L(q, 0)

22
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