Notes: Computer Age Statistical Inference —
Ch 9 Survival Analysis

Yingbo Li

06/13/2020



Table of Contents

Survival Analysis
Life Table and Kaplan-Meier Estimate

Cox’s Proportional Hazards Model



Life table

* An insurance company’s life table shows information of clients by
their age. For each age i, it contains

— ny;: number of clients

— y;: number of death

— h; = y;/n;: hazard rate

— S;: survival probability estimate

¢ An example life table

Age n y h S

34 120 O 0.000 1.000
35 71 A 0.014 0.986
36 125 0 0.000 0.986




Discrete survival analysis: notations

e A client’s lifetime (time until event): random variable X

— Also called failure time, survival time, or event time

e Probability of dying at age i

e Probability of surviving past age i

Si= Y f=PX > 1)

j>i+1

e Hazard rate at age i: conditional probability

_ i
Si—1

=P(X=i|X >



Life table estimations
¢ Hazard rate estimation: binomial proportions

b= U
n;
— Typical frequentist inference: probabilistic results &; is estimated by
the plug-in principle
e Probability of surviving past age j given survival past age i:
J
PX>j|X>i)= H PX>k|X>k)= ] (1—h)
k=i+1 k=i+1

e Probability of survival estimation

where i is the starting age



Continuous survival analysis: notations

e Time until event T": a continuous positive random variable, with
pdf f(t) and cdf F'(t)

e Survival function (i.e., reverse cdf)
/ f(x)de = P(T > t) =1 — F(t)

e Hazard rate, also called hazard function

Cft) . PE<T<t+At|T>t)
hlt) = S(t) Alglo At

— In some other books, hazard rate is denoted as A(¢)



Hazard rate and cumulative hazard function

¢ Connection between hazard rate h(t) and survival function S(t)

h(t):—alogf(t) — S(t):exp{—/oth(x)da:}

e Cumulative hazard function

A(t) = /0 h(z)dz = —log S(t)

e Knowing any of S(t), h(t), A(t) allows one to derive the other two

e Example: exponential distributed T’

ft)=xe — S{t)=eM, h(t)=\

— Constant hazard rate: menoryless



Censored data

e Censored data: survival times known only to exceed the reported

value
— E.g., lost to followup, experiment ended with some patients still
alive
— Usually denoted as “number+”
e Observation z; for censored data:

z = (ti,di),
where t; is the survival time, and d; is the indicator

& — 1 if death observed
" 10 if death not observed



Kaplan-Meier estimate

e Among the censored data z1, ..., z,, we denote the ordered
survival times as
t(l) < t(2) < ... < t(n),

assuming no ties.

e The Kaplan-Meier estimate for survival probability
Sy = P(X > t;) is the life table estimate

. n—=k \4%m»
S(j):H(n—k—l-1>

7)

¢ Life table curves are nonparametric: no relationship is assumed
between the hazard rates h;



A parametric approach

e Death counts y; are independent Binomials

yr B(ng, hi)

e Logistic regression

log( I )zaxk
1— hg

— E.g., cubic regression:

xp = (1,k, k% B3

— E.g., cubic-linear spline:
zp = (1, k, (k — ko), (k — ko)2)’

where z_ =z - 1,<9



Cox’s proportional hazards model

® Proportional hazards model assumes
hi(t) = ho(t) - €92,
where hy(t) is a baseline hazard, which we don’t need to specify
e Denote 6; = ¢Xif, then
Si(t) = So(t)*,

where Sy(t) is the baseline survival function

— Larger value of 0, indicates more quickly declining (i.e., worse)
survival curves

— Positive value of the coefficient 3; indicates increase of the
corresponding covariate «; associating with worse survival curves



Proportional hazards model: key results
e |et J be the number of observed deaths, occurring at times
T(l) <T(2) < ... <T(J)

assuming no ties

* Just before time 7{; there is a risk set of individuals still under
observation

e Key results of the proportional hazards model: given one person
dies at time 7{;, the probablity it is person i, among the set of
people at risk, is

ex;ﬂ . 91
2 keR; o’ 2ker; U

P(ij=1i| R;) =



Parameter estimation: based on the partial likelihood

e Estimaiton of 3 is to maximize the partial likelihood

where individual i; dies at time 7}

e Semi-parametric: we do not need to specify the baseline hy(t),
since it is not contained in the objective function
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