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Life table

• An insurance company’s life table shows information of clients by
their age. For each age i, it contains

− ni: number of clients
− yi: number of death
− ĥi = yi/ni: hazard rate
− Ŝi: survival probability estimate

• An example life table

Age n y ĥ Ŝ

34 120 0 0.000 1.000
35 71 1 0.014 0.986
36 125 0 0.000 0.986
. . . . . . . . . . . . . . .
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Discrete survival analysis: notations

• A client’s lifetime (time until event): random variable X

− Also called failure time, survival time, or event time

• Probability of dying at age i

fi = P (X = i)

• Probability of surviving past age i

Si =
∑
j≥i+1

fj = P (X > i)

• Hazard rate at age i: conditional probability

hi = fi
Si−1

= P (X = i | X ≥ i)
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Life table estimations
• Hazard rate estimation: binomial proportions

ĥi = yi
ni

− Typical frequentist inference: probabilistic results hi is estimated by
the plug-in principle

• Probability of surviving past age j given survival past age i:

P (X > j | X > i) =
j∏

k=i+1
P (X > k | X ≥ k) =

j∏
k=i+1

(1− hk)

• Probability of survival estimation

Ŝj =
j∏

k=i0

(
1− ĥk

)
where i0 is the starting age
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Continuous survival analysis: notations

• Time until event T : a continuous positive random variable, with
pdf f(t) and cdf F (t)

• Survival function (i.e., reverse cdf)

S(t) =
∫ ∞
t

f(x)dx = P (T > t) = 1− F (t)

• Hazard rate, also called hazard function

h(t) = f(t)
S(t) = lim

∆t→0

P (t < T ≤ t+ ∆t | T > t)
∆t

− In some other books, hazard rate is denoted as λ(t)
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Hazard rate and cumulative hazard function

• Connection between hazard rate h(t) and survival function S(t)

h(t) = −∂ logS(t)
∂t

⇐⇒ S(t) = exp
{
−
∫ t

0
h(x)dx

}

• Cumulative hazard function

Λ(t) =
∫ t

0
h(x)dx = − logS(t)

• Knowing any of S(t), h(t), Λ(t) allows one to derive the other two

• Example: exponential distributed T

f(t) = λe−λt =⇒ S(t) = e−λt, h(t) = λ

− Constant hazard rate: menoryless
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Censored data

• Censored data: survival times known only to exceed the reported
value
− E.g., lost to followup, experiment ended with some patients still

alive
− Usually denoted as “number+”

• Observation zi for censored data:

z = (ti, di),

where ti is the survival time, and di is the indicator

di =
{

1 if death observed
0 if death not observed
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Kaplan-Meier estimate

• Among the censored data z1, . . . , zn, we denote the ordered
survival times as

t(1) < t(2) < . . . < t(n),

assuming no ties.

• The Kaplan-Meier estimate for survival probability
S(j) = P (X > t(j)) is the life table estimate

Ŝ(j) =
∏
k≤j

(
n− k

n− k + 1

)d(k)

• Life table curves are nonparametric: no relationship is assumed
between the hazard rates hi
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A parametric approach

• Death counts yk are independent Binomials

yk
ind∼ B(nk, hk)

• Logistic regression

log

(
hk

1− hk

)
= αxk

− E.g., cubic regression:

xk = (1, k, k2, k3)′

− E.g., cubic-linear spline:

xk = (1, k, (k − k0)2
−, (k − k0)3

−)′

where x− = x · 1x≤0
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Cox’s proportional hazards model

• Proportional hazards model assumes

hi(t) = h0(t) · ex′
iβ,

where h0(t) is a baseline hazard, which we don’t need to specify

• Denote θi = ex′
iβ, then

Si(t) = S0(t)θi ,

where S0(t) is the baseline survival function

− Larger value of θi indicates more quickly declining (i.e., worse)
survival curves

− Positive value of the coefficient βj indicates increase of the
corresponding covariate xj associating with worse survival curves
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Proportional hazards model: key results

• Let J be the number of observed deaths, occurring at times

T(1) < T(2) < . . . < T(J)

assuming no ties

• Just before time T(j) there is a risk set of individuals still under
observation

Rj = {i, ti ≥ T(j)}

• Key results of the proportional hazards model: given one person
dies at time T(j), the probablity it is person i, among the set of
people at risk, is

P (ij = i | Rj) = ex′
iβ∑

k∈Rj
ex′

jβ
= θi∑

k∈Rj
θj
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Parameter estimation: based on the partial likelihood

• Estimaiton of β is to maximize the partial likelihood

L(β) =
J∏
j=1

e
x′

ij
β∑

k∈Rj
ex′

jβ

where individual ij dies at time T(j)

• Semi-parametric: we do not need to specify the baseline h0(t),
since it is not contained in the objective function

13



References

• Efron, Bradley and Hastie, Trevor (2016), Computer Age
Statistical Inference. Cambridge University Press

14


	
	Survival Analysis
	Life Table and Kaplan-Meier Estimate
	Cox's Proportional Hazards Model


