Notes: Computer Age Statistical Inference – Ch 9 Survival Analysis

Yingbo Li

06/13/2020

Table of Contents

Survival Analysis

Life Table and Kaplan-Meier Estimate

Cox's Proportional Hazards Model

Life table

- An insurance company's life table shows information of clients by their age. For each age *i*, it contains
 - n_i : number of clients
 - y_i : number of death
 - $-\hat{h}_i = y_i/n_i$: hazard rate
 - $-\hat{S}_i$: survival probability estimate
- An example life table

Age	n	y	\hat{h}	\hat{S}
34	120	0	0.000	1.000
35	71	1	0.014	0.986
36	125	0	0.000	0.986

Discrete survival analysis: notations

- A client's lifetime (time until event): random variable X
 - Also called failure time, survival time, or event time
- Probability of dying at age *i*

$$f_i = P(X = i)$$

Probability of surviving past age i

$$S_i = \sum_{j \ge i+1} f_j = P(X > i)$$

Hazard rate at age i: conditional probability

$$h_i = \frac{f_i}{S_{i-1}} = P(X = i \mid X \ge i)$$

Life table estimations

· Hazard rate estimation: binomial proportions

$$\hat{h}_i = \frac{y_i}{n_i}$$

- Typical frequentist inference: probabilistic results h_i is estimated by the plug-in principle
- Probability of surviving past age *j* given survival past age *i*:

$$P(X > j \mid X > i) = \prod_{k=i+1}^{j} P(X > k \mid X \ge k) = \prod_{k=i+1}^{j} (1 - h_k)$$

• Probability of survival estimation

$$\hat{S}_j = \prod_{k=i_0}^j \left(1 - \hat{h}_k \right)$$

where i_0 is the starting age

Continuous survival analysis: notations

- Time until event T: a continuous positive random variable, with pdf f(t) and cdf F(t)
- Survival function (i.e., reverse cdf)

$$S(t) = \int_{t}^{\infty} f(x)dx = P(T > t) = 1 - F(t)$$

Hazard rate, also called hazard function

$$h(t) = \frac{f(t)}{S(t)} = \lim_{\Delta t \to 0} \frac{P(t < T \le t + \Delta t \mid T > t)}{\Delta t}$$

- In some other books, hazard rate is denoted as $\lambda(t)$

Hazard rate and cumulative hazard function

• Connection between hazard rate h(t) and survival function S(t)

$$h(t) = -\frac{\partial \log S(t)}{\partial t} \quad \Longleftrightarrow \quad S(t) = \exp\left\{-\int_0^t h(x)dx\right\}$$

Cumulative hazard function

$$\Lambda(t) = \int_0^t h(x) dx = -\log S(t)$$

- Knowing any of S(t), h(t), $\Lambda(t)$ allows one to derive the other two
- Example: exponential distributed T

$$f(t) = \lambda e^{-\lambda t} \implies S(t) = e^{-\lambda t}, \quad h(t) = \lambda$$

Constant hazard rate: menoryless

Censored data

- Censored data: survival times known only to exceed the reported value
 - E.g., lost to followup, experiment ended with some patients still alive
 - Usually denoted as "number+"
- Observation z_i for censored data:

 $z = (t_i, d_i),$

where t_i is the survival time, and d_i is the indicator

 $d_i = \begin{cases} 1 & \text{if death observed} \\ 0 & \text{if death not observed} \end{cases}$

Kaplan-Meier estimate

• Among the censored data z_1, \ldots, z_n , we denote the ordered survival times as

$$t_{(1)} < t_{(2)} < \ldots < t_{(n)},$$

assuming no ties.

• The Kaplan-Meier estimate for survival probability $S_{(j)} = P(X > t_{(j)})$ is the life table estimate

$$\hat{S}_{(j)} = \prod_{k \le j} \left(\frac{n-k}{n-k+1} \right)^{d_{(k)}}$$

• Life table curves are nonparametric: no relationship is assumed between the hazard rates *h_i*

A parametric approach

• Death counts y_k are independent Binomials

$$y_k \stackrel{ind}{\sim} \mathsf{B}(n_k, h_k)$$

• Logistic regression

$$\log\left(\frac{h_k}{1-h_k}\right) = \boldsymbol{\alpha} \mathbf{x}_k$$

- E.g., cubic regression:

$$x_k = (1, k, k^2, k^3)'$$

- E.g., cubic-linear spline:

$$x_k = (1, k, (k - k_0)^2, (k - k_0)^3)'$$

where $x_{-} = x \cdot \mathbf{1}_{x \leq 0}$

Cox's proportional hazards model

Proportional hazards model assumes

$$h_i(t) = h_0(t) \cdot e^{\mathbf{x}_i'\boldsymbol{\beta}},$$

where $h_0(t)$ is a baseline hazard, which we don't need to specify

• Denote $\theta_i = e^{\mathbf{x}'_i \boldsymbol{\beta}}$, then

$$S_i(t) = S_0(t)^{\theta_i},$$

where $S_0(t)$ is the baseline survival function

- Larger value of θ_i indicates more quickly declining (i.e., worse) survival curves
- Positive value of the coefficient β_j indicates increase of the corresponding covariate x_j associating with worse survival curves

Proportional hazards model: key results

• Let J be the number of observed deaths, occurring at times

$$T_{(1)} < T_{(2)} < \ldots < T_{(J)}$$

assuming no ties

• Just before time $T_{(j)}$ there is a risk set of individuals still under observation

$$R_j = \{i, t_i \ge T_{(j)}\}$$

 Key results of the proportional hazards model: given one person dies at time T_(j), the probablity it is person *i*, among the set of people at risk, is

$$P(i_j = i \mid R_j) = \frac{e^{\mathbf{x}'_i \beta}}{\sum_{k \in R_j} e^{\mathbf{x}'_j \beta}} = \frac{\theta_i}{\sum_{k \in R_j} \theta_j}$$

Parameter estimation: based on the partial likelihood

• Estimation of β is to maximize the partial likelihood

$$L(\boldsymbol{\beta}) = \prod_{j=1}^{J} \frac{e^{\mathbf{x}'_{i_j}\boldsymbol{\beta}}}{\sum_{k \in R_j} e^{\mathbf{x}'_j\boldsymbol{\beta}}}$$

where individual i_j dies at time $T_{(j)}$

• Semi-parametric: we do not need to specify the baseline $h_0(t)$, since it is not contained in the objective function

References

• Efron, Bradley and Hastie, Trevor (2016), *Computer Age Statistical Inference*. Cambridge University Press