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Notations

• We are interested in the causal effect of some treatment A on
some outcome Y

• Treatment: A, binary

− A = 1 if receive treatment; and A = 0 if receive control

− Example: A = 1 if receive active drug; and A = 0 if receive placebo

• Outcome: Y , can be binary or continuous

− Example: Y = 1 if dead; Y = 0 otherwise
− Example: Y can be time until death

• Pre-treatment covariates: X
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Potential outcomes

• Potential outcome Y a is the outcome we would see if treatment
was set to A = a

• Each person has potential outcome Y 0, Y 1
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Counterfactuals

• Conterfactual outcomes: the outcomes would have been
observed, had the treatment been different

− If my treatment is A = 1, then my counterfactual outcomes is Y 0

− If my treatment is A = 0, then my counterfactual outcomes is Y 1

• Connection between potential and conterfactuals outcomes

− Before the treatment decision is made, any outcome is a potential
outcome, Y 0 and Y 1

− After the study, there is an observed outcome Y A, and
counterfactual outcome Y 1−A
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Immutable variables

• Variables that we cannot control (or change), such as race,
gender, age, are immutable variables

• For immutable variables, causal effects are not well defined

• In this course, we focus on treatments that could be thought of as
interventions
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Causal effects

• Definition: treatment A has a causal effect on the outcome Y , if
Y 1 differs from Y 0

• Example

− Y : headache gone one hour from now (yes= 1, no= 0)
− A: take ibuprofen (A = 1) or not (A = 0)
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Fundamental problem of causal inference

• Fundamental problem of causal inference: we can only observe
one potential outcome for each person

• However, with certain assumptions, we can estimate population
level (average) causal effects E(Y 1 − Y 0)
− Average value of Y if everyone was treated with A = 1 minus

average value of Y if everyone was treated with A = 0

• Headache example:

− Hopeless: What would have happened to me had I not taken
ibuprofen? (Unit level causal effect)

− Hopeful: What would the rate of headache remission be if everyone
took ibuprofen when they had a headache versus if no one did?
(Population level causal effect)
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Visualization of population average causal effect

9



Population average causal effect versus conditioning on
treatment/control

E(Y 1 − Y 0) 6= E(Y | A = 1)− E(Y | A = 0)

• In the left hand side, E(Y 1) is the mean of Y if the whole
population was treated with A = 1

• In the right hand side, E(Y | A = 1) is restricting to the
subpopulation of people who actually had A = 1
− This subpopulation may differ from the whole population in

important ways
− For example, people at higher risk for flu are more likely to choose

to get a flu shot

• E(Y | A = 1)− E(Y | A = 0) is not a causal effect, because it is
comparing two different populations of people
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Visualization of real world
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Other causal effects

• E(Y 1/Y 0): causal relative risk

• E(Y 1 − Y 0 | A = 1): causal effect of treatment on the treated

• E(Y 1 − Y 0 | V = v): average causal effect in the subpopulation
with covariate V = v
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Visualization of causal effect of treatment on the treated
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Most common causal assumptions

• Stable Unit Treatment Value Assumption (SUTVA)

• Consistency

• Ignorability

• Positivity
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Stable Unit Treatment Value Assumption (SUTVA)

• SUTVA involves two assumptions

1. No interference

− Units do not interfere with each other
− Treatment assignement of one unit does not affect that outcome of

another unit
− Spillover or contagion are also terms for interference

2. One version of treatment

• SUTVA allows us to write potential outcome for a person in terms
of only that person’s treatments
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Consistency assumption

• Consistency assumption: the potential outcome under treatment
A = a, Y a, is equal to the observed outcome if the actual
treatment received is A = a

Y = Y a if A = a, for all a
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Ignorability assumption

• Ignorability assumption: given pre-treatment covariates X,
treatment assignment is independent from the potential outcomes

Y 0, Y 1 ⊥ A | X

• Among people with the same values of X, we can think of
treatment A as being randomly assigned

• Example: Y 0 and Y 1 are not independent from A marginally, but
within levels of X, treatment might be randomly assigned

− X: age; can take values ‘younger’ or ‘older’
− Y : hip fracture
− Older people are more likely to get treatment A = 1
− Older people are also more likely to have the outcome, regardless

of treatment
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Positivity assumption

• Positivity assumption: for every set of values of X, treatment
assignment was not deterministic

P (A = a | X = x) > 0, for all a and x

• If for some values of X, treatment was deterministic, then we
would have no observed values of Y for one of the treatment
groups for those values of X
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Observed data and potential outcomes

• Under all above assumptions, the observed data average
outcome E(Y | A = a, X = x) equals the potential outcomes
E(Y a | X = x)

E(Y | A = a, X = x) = E(Y a | A = a, X = x) by consistency
= E(Y a | X = x) by ignorability

• If we want a marginal causal effect, we can average over X

E(Y a) =
∑

x

E(Y | A = a, X = x)P (X = x)
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Standardization

• Standardization involves stratifying and then averaging

− First obtain the mean treatment effect within each stratum
E(Y | A = a, X = x)

− Then pool across stratum, weighing by the probability (size) of each
stratum P (X = x)
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Standardization example: two diabetes treatments

• Treatments: saxagliptin (new medicine) vs sitagliptin

• Outcome: major adverse cardiac event (MACE)

• Covariate: past use of oral antidiabetic (OAD) drug

• Challenge

− Saxa users were more likely to have past use of OAD drug
− Patients with past use of OAD drugs are at higher risk of MACE

• Stratify parents in two subpopulations by whether having prior
OAD use

− Within levels of the prior OAD use variable, treatment can be
thought of as randomized (ignorability)
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Example continued: unstratified

Table 1: Unstratified raw data

MACE=yes MACE=no Total

Saxa=yes 350 3650 4000
Saxa=no 500 6500 7000
Total 850 10150 11000

P (MACE | Saxa = yes) = 350/4000 = 0.088
P (MACE | Saxa = no) = 500/7000 = 0.071
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Example continued: subpopulation without prior OAD
use

Table 2: Prior OAD use = no

MACE=yes MACE=no Total

Saxa=yes 50 950 1000
Saxa=no 200 3800 4000
Total 250 4750 5000

P (MACE | Saxa = yes) = 50/1000 = 0.05
P (MACE | Saxa = no) = 200/4000 = 0.05
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Example continued: subpopulation with prior OAD use

Table 3: Prior OAD use = yes

MACE=yes MACE=no Total

Saxa=yes 300 2700 3000
Saxa=no 300 2700 3000
Total 600 5400 6000

P (MACE | Saxa = yes) = 300/3000 = 0.10
P (MACE | Saxa = no) = 300/3000 = 0.10
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Example continued: mean potential outcome for Saxa

E(Y saxa)
= E(Y | A = saxa, X = prior OAD use yes)P (prior OAD use yes)

+ E(Y | A = saxa, X = prior OAD use no)P (prior OAD use no)
=(300/3000)(6000/11000) + (50/1000)(5000/11000)
=0.077

• Similarly, E(Y sita) = 0.077

• Hence, the treatment Saxa or not has no causal effects on the
MACE outcome
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Problems with standardization

• There will be many X variables needed to achieve ignorability

• Stratification would lead to many empy cells

• Alternative to standardization: matching inverse probability of
treatment weighting (IPTW), etc
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