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Complete-case (CC) analysis

e Complete-case (CC) analysis: use only data points (units) where
all variables are observed

¢ |oss of information in CC analysis:

— Loss of precision (larger variance)
— Bias, when the missingness mechanism is not MCAR. In this case,
the complete units are not a random sample of the population

e |n this notes, | will focus on the bias issue

— Adjusting for the CC analysis bias using weights
— This idea is closed related to weighting in randomization inference
for finite population surveys



Notations

Population size N, sample size n

Number of variables (items): K
Data: Y = (y;;), wherei=1,...,.Nandj=1,..., K

¢ Design information (about sampling or missingness): Z

Sample indicator: I = (I, ..., Iy)’; for unit 4,

I = 1{unit i included in the sample}

Sample selection processes can be characterized by a distribution
for I given Y and Z.



Probability sampling

e Properties of probability sampling
1. Unconfounded: selection doesn’t dependonY, i.e.,

fIY,z2)=f(I'2)

2. Every unit has a positive (known) probability of selection

m=PI;=1|2)>0, forall:

¢ |In equal probability sample design, ; is the same for all ¢



Stratified random sampling

® 7 is a variable defining strata. Suppose Stratum Z = j has IV,
unitsintotal, for j =1,...,J

e |n Stratum j, stratified random sampling takes a simple random
sample of n; units

e The distribution of I under stratified random sampling is
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Example: estimating population mean Y

¢ An unbiased estimate is the stratified sample mean

J —

Yst = N

where y; is the sample mean in stratum j

e Sampling variance approximation

) 1K (1 1),
’U(yst)“mZNg’ *—ﬁj 5j
j=1
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where s; is the sample variance of Y in stratum j

* A large sample 95% confidence interval for Y is

Qst +1.96 U(gst)



Weighting methods

* Main idea: A unit selected with probability =; is "representing” 7rz-_1
units in the population, hence should be given weights «;*.

e For example, in stratified random sample

— A selected unit 7 in stratum j represents N;/n; population units

— Thus by Horvitz-Thompson estimate, the population mean can be
estimated by the weighted sum

—1

n
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It is not hard to show that



Weighting with nonresponses

e |f the probability of selecting unit i is 7;, and the probability of
response for unit i is ¢;, then

P(unit ¢ is observed) = m;¢;

* Suppose there are r units observed (respondents). Then the
weighted estimate for Y is

(migi) ™

_ 1$
Yo =—) WY, Wi=T =7

e Usually ¢; is unknown and thus needs to be estimated



Weighting class estimator

Weighting class adjustments are used primarily to handle unit
nonresponse

Suppose we partition the sample into J “weighting classes”. In the
weighting class C = j:

— ny: the sample size
— r;: number of observed samples
— A simple estimator for ¢; is ¢; = -2

g

For equal probability designs, where 7; is constant, the weighting
class estimator is

J
_ 1 _
Ywe = — Z n;YiR
n -
j=1
where ;g is the respondent mean in class j

The estimate is unbiased under the following form of MAR
assumption (Quasirandomization): data are MCAR within
weighting class j



More about weighting class adjustments

e Pros: handle bias with one set of weights for multivariate Y

e Cons: weighting is inefficient and can increase in sampling
variance, if Y is weakly related to the weighting class variable C

* How to choose weighting class adjustments: weighting is only
effective for outcomes (Y') that are associated with the adjustment
cell variable (C). See the right column in the table below.

Table 3.1 Example 3.6: effect of weighting adjustments on bias and sampling variance

of a mean, by strength of association of the adjustment cell variables with nonresponse
and outcome

Association with outcome

Association with nonresponse Low (L) High (H)
Low (L) Bias: — Bias: —

Var: — Var: |

High (H) Bias: — Bias: |

Var: 1 Var: |




Propensity weighting

e The theory of propensity scores provides a prescription for
choosing the coarsest reduction of X to a weighting class variable
C so that quasirandomization is roughly satisfied

e | et X denote the variables observed for both respondents and
nonrespondents

e Suppose data are MAR, with ¢ being unknown parameters about
missing mechanism

P(M [ X,Y,¢) = P(M | X, )

Then quasirandomization is satisfied when C'is chosen to be X



Response propensity stratification

e Define response propensity for unit : as

p(zi, @) = P (m; = 0| p(x;, $), $)

i.e., respondents are a random subsample within strata defined by
the propensity score p(X, ¢)

e Usually ¢ is unknown. So a practical procedure is
(i) Estimate ¢ from a binary regression of M on X, based on
respondent and nonrespondent data

(ii) Let C be a grouped variable by coarsening p (X, g?)) into 5 or 10
values

e Thus, within the same adjustment class, all respondents and
nonrespondents have the same value of the grouped propensity
score



An alternative procedure: propensity weighting

¢ An alternative procedure is to weight respondents 7 directly by the
A\ —1
inverse propensity score p (X , qS)

e This method removes nonresponse bias

e But it may yield estimates with extremely high sampling variance
because respondents with very low estimated response
propensities receive large nonresponse weights

¢ Also, weighting directly by inverse propensities place may reliance
on correct model specification of the regression of M on X



Example: inverse probability weighted generalized
estimating equations (GEE)

Let z; be covariates of GEE, and z; be a fully observed vector that
can predict missing mechanism

If P(m; = 1| x4,9i,2,6) = P(m; = 1| x4, ¢), then the unweighted
completed case GEE is unbiased

i Di(x;, B) lyi — g(xi, B)] = 0
=1

If P(m; =11 i, ys, i, ) = P(mi = 1| x4, 2, ¢), then the inverse
probability weighted GEE is unbiased
1

p(xi, zi | &)

sz xla ) [yl - g(l‘l?ﬁ)] =0, wl(d) -

where p(z;, z; | &) is the probability of being a complete unit,
based on logistic regression of m; on z;, z;



Poststratification
¢ The weighting class estimator
17
Ywe = — Z ;YR
n -
7j=1
uses the sample proportion n;/n to estimate the population

proportion N;/N.

e |f from an external resource (e.g., census or a large survey), we
know the population proportion of weighting classes, then we can
use the post stratified mean to estimate Y':

J
_ 1 _
s = > NigjR
=1



Summary of weighting methods

¢ Weighted CC estimates are often simple to compute, but the
appropriate standard errors can be hard to compute (even
asymptotically)

¢ Weighting methods treat weights as fixed and known, but these
nonresponse weights are computed from observed data and
hence are subject to sampling uncertainty

¢ Because weighted CC methods discard incomplete units and do
not provide an automatic control of sampling variance, they are
most useful when

— Number of covariates is small, and
— Sample size is large



Available-case (AC) analysis

¢ Available-case analysis: for univariate analysis, include all unites
where that variable is present

— Sample changes from variable to variable according to the pattern

of missing data
— This is problematic if not MCAR
— Under MCAR, AC can be used to estimate mean and variance for a

single variable

* Pairwise AC: estimates covariance of Y; and Y, based on units ¢
where both y;; and y;;, are observed

— Pairwise covariance estimator:
] _(7k _(1k
@0 =37 (v =) (v =5 / (n99 —1)
iEIjk

where I;;, is the set of n(/%) units with both Y; and Y}, observed



Problems with pairwise AC estimators on correlation

e Correlation estimator 1:

(Jkk)

* J

T]k =
S

— Problem: it can lie outside of (—1,1)

¢ Correlation estimator 2 corrects the previous problem:

$Uk)
r(gﬂk) _ jk
J Sg‘]jk)sl(cjkk)

e Under MCAR, all these estimators on covariance and correlation
are consistent

e However, when K > 3, both correlation estimators can yield
correlation matrices that are not positive definite!

— An extreme example: 1o = 1,713 = 1,793 = —1



Compare CC and AC methods

e When data is MCAR and correlations are mild, AC methods are
more efficient than CC

e When correlations are large, CC methods are usually better
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