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Complete-case (CC) analysis

• Complete-case (CC) analysis: use only data points (units) where
all variables are observed

• Loss of information in CC analysis:

− Loss of precision (larger variance)
− Bias, when the missingness mechanism is not MCAR. In this case,

the complete units are not a random sample of the population

• In this notes, I will focus on the bias issue

− Adjusting for the CC analysis bias using weights
− This idea is closed related to weighting in randomization inference

for finite population surveys
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Notations

• Population size N , sample size n

• Number of variables (items): K

• Data: Y = (yij), where i = 1, . . . , N and j = 1, . . . ,K

• Design information (about sampling or missingness): Z

• Sample indicator: I = (I1, . . . , IN )′; for unit i,

Ii = 1{unit i included in the sample}

• Sample selection processes can be characterized by a distribution
for I given Y and Z.
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Probability sampling

• Properties of probability sampling

1. Unconfounded: selection doesn’t depend on Y , i.e.,

f(I | Y, Z) = f(I | Z)

2. Every unit has a positive (known) probability of selection

πi = P (Ii = 1 | Z) > 0, for all i

• In equal probability sample design, πi is the same for all i
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Stratified random sampling

• Z is a variable defining strata. Suppose Stratum Z = j has Nj

units in total, for j = 1, . . . , J

• In Stratum j, stratified random sampling takes a simple random
sample of nj units

• The distribution of I under stratified random sampling is

f(I | Z) =
J∏

j=1

(
Nj

nj

)−1
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Example: estimating population mean Ȳ

• An unbiased estimate is the stratified sample mean

ȳst =
∑J

j=1Nj ȳj

N

where ȳj is the sample mean in stratum j

• Sampling variance approximation

v(ȳst) ≈
1
N2

J∑
j=1

N2
j

(
1
nj
− 1
Nj

)
s2

j

where sj is the sample variance of Y in stratum j

• A large sample 95% confidence interval for Ȳ is

ȳst ± 1.96
√
v(ȳst)
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Weighting methods

• Main idea: A unit selected with probability πi is "representing" π−1
i

units in the population, hence should be given weights π−1
i .

• For example, in stratified random sample

− A selected unit i in stratum j represents Nj/nj population units
− Thus by Horvitz-Thompson estimate, the population mean can be

estimated by the weighted sum

ȳw = 1
n

n∑
i=1

wiyi, πi = nj

Nj
, wi = n · π−1

i∑
k π
−1
k

− It is not hard to show that

ȳw = ȳst
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Weighting with nonresponses

• If the probability of selecting unit i is πi, and the probability of
response for unit i is φi, then

P (unit i is observed) = πiφi

• Suppose there are r units observed (respondents). Then the
weighted estimate for Ȳ is

ȳw = 1
r

r∑
i=1

wiyi, wi = r · (πiφi)−1∑
k(πkφk)−1

• Usually φi is unknown and thus needs to be estimated
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Weighting class estimator
• Weighting class adjustments are used primarily to handle unit

nonresponse

• Suppose we partition the sample into J “weighting classes”. In the
weighting class C = j:

− nj : the sample size
− rj : number of observed samples
− A simple estimator for φj is φ̂j = rj

nj

• For equal probability designs, where πi is constant, the weighting
class estimator is

ȳwc = 1
n

J∑
j=1

nj ȳjR

where ȳjR is the respondent mean in class j

• The estimate is unbiased under the following form of MAR
assumption (Quasirandomization): data are MCAR within
weighting class j
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More about weighting class adjustments
• Pros: handle bias with one set of weights for multivariate Y

• Cons: weighting is inefficient and can increase in sampling
variance, if Y is weakly related to the weighting class variable C

• How to choose weighting class adjustments: weighting is only
effective for outcomes (Y ) that are associated with the adjustment
cell variable (C). See the right column in the table below.
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Propensity weighting

• The theory of propensity scores provides a prescription for
choosing the coarsest reduction of X to a weighting class variable
C so that quasirandomization is roughly satisfied

• Let X denote the variables observed for both respondents and
nonrespondents

• Suppose data are MAR, with φ being unknown parameters about
missing mechanism

P (M | X,Y, φ) = P (M | X,φ)

Then quasirandomization is satisfied when C is chosen to be X

12



Response propensity stratification

• Define response propensity for unit i as

ρ(xi, φ) = P (mi = 0 | ρ(xi, φ), φ)

i.e., respondents are a random subsample within strata defined by
the propensity score ρ(X,φ)

• Usually φ is unknown. So a practical procedure is

(i) Estimate φ̂ from a binary regression of M on X, based on
respondent and nonrespondent data

(ii) Let C be a grouped variable by coarsening ρ
(
X, φ̂

)
into 5 or 10

values

• Thus, within the same adjustment class, all respondents and
nonrespondents have the same value of the grouped propensity
score
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An alternative procedure: propensity weighting

• An alternative procedure is to weight respondents i directly by the

inverse propensity score ρ
(
X, φ̂

)−1

• This method removes nonresponse bias

• But it may yield estimates with extremely high sampling variance
because respondents with very low estimated response
propensities receive large nonresponse weights

• Also, weighting directly by inverse propensities place may reliance
on correct model specification of the regression of M on X
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Example: inverse probability weighted generalized
estimating equations (GEE)
• Let xi be covariates of GEE, and zi be a fully observed vector that

can predict missing mechanism

• If P (mi = 1 | xi, yi, zi, φ) = P (mi = 1 | xi, φ), then the unweighted
completed case GEE is unbiased

r∑
i=1

Di(xi, β) [yi − g(xi, β)] = 0

• If P (mi = 1 | xi, yi, zi, φ) = P (mi = 1 | xi, zi, φ), then the inverse
probability weighted GEE is unbiased

r∑
i=1

wi(α̂)Di(xi, β) [yi − g(xi, β)] = 0, wi(α̂) = 1
p(xi, zi | α̂)

where p(xi, zi | α̂) is the probability of being a complete unit,
based on logistic regression of mi on xi, zi
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Poststratification

• The weighting class estimator

ȳwc = 1
n

J∑
j=1

nj ȳjR

uses the sample proportion nj/n to estimate the population
proportion Nj/N .

• If from an external resource (e.g., census or a large survey), we
know the population proportion of weighting classes, then we can
use the post stratified mean to estimate Ȳ :

ȳps = 1
N

J∑
j=1

Nj ȳjR
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Summary of weighting methods

• Weighted CC estimates are often simple to compute, but the
appropriate standard errors can be hard to compute (even
asymptotically)

• Weighting methods treat weights as fixed and known, but these
nonresponse weights are computed from observed data and
hence are subject to sampling uncertainty

• Because weighted CC methods discard incomplete units and do
not provide an automatic control of sampling variance, they are
most useful when

− Number of covariates is small, and
− Sample size is large
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Available-case (AC) analysis

• Available-case analysis: for univariate analysis, include all unites
where that variable is present

− Sample changes from variable to variable according to the pattern
of missing data

− This is problematic if not MCAR
− Under MCAR, AC can be used to estimate mean and variance for a

single variable

• Pairwise AC: estimates covariance of Yj and Yk based on units i
where both yij and yik are observed

− Pairwise covariance estimator:

s
(jk)
jk =

∑
i∈Ijk

(
yij − ȳ(jk)

j

)(
yik − ȳ(jk)

k

)
/
(
n(jk) − 1

)
where Ijk is the set of n(jk) units with both Yj and Yk observed
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Problems with pairwise AC estimators on correlation
• Correlation estimator 1:

r∗jk =
s

(jk)
jk√
s

(j)
jj s

(k)
kk

− Problem: it can lie outside of (−1, 1)

• Correlation estimator 2 corrects the previous problem:

r
(jk)
jk =

s
(jk)
jk√

s
(jk)
jj s

(jk)
kk

• Under MCAR, all these estimators on covariance and correlation
are consistent

• However, when K > 3, both correlation estimators can yield
correlation matrices that are not positive definite!

− An extreme example: r12 = 1, r13 = 1, r23 = −1
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Compare CC and AC methods

• When data is MCAR and correlations are mild, AC methods are
more efficient than CC

• When correlations are large, CC methods are usually better
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