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GLM overview

• In a GLM, a smooth monotonic link function g(·) connects the
expectation µi = E(Yi) with the linear combination of Xi,

g(µi) = ηi = Xiβ (1)

• In a generalized linear mixed model (GLMM), we have

g(µi) = ηi = Xiβ + Zib, b ∼ N(0,ψ)
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Exponential family of distributions
• The density function for an exponential family distribution

f(y) = exp
{
yθ − b(θ)
a(φ) + c(y, φ)

}
(2)

− a, b, c: arbitrary functions
− φ: an arbitrary scale parameter
− θ: the canonical parameter; completely depend on the model

parameter β

• Properties about exponential family mean and variance

E(Y ) = b′(θ)
var(Y ) = b′′(θ)a(φ)

− In most practical cases, a(φ) = φ/ω where ω is a known constant
− We define a function

V (µ) = b′′(θ)/w, so that var(Y ) = V (µ)φ
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Exponential family examples
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Fitting GLMs

• For the GLM model (1) and (2), assuming ai(φ) = φ/ωi, the log
likelihood is

l(β) =
n∑
i=1

ωi [yiθi − bi(θi)] /φ+ ci(φ, yi)

• To optimize, we use the Newton’s method, which is an iterative
optimization approach

θ(t+1) = θ(t) −
(
∇2l

)−1
∇l

− Where both ∇2l and ∇l are evaluated at the current iteration θ(t)

− Alternatively, we can use the Fisher scoring variant of the Newton’s
method, by replacing the Hessian matrix with its expectation

• Next, we will need to compute the gradient vector and expected
Hessian matrix of l
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Compute the gradient vector and expected Hessian of l

• By the chain rule,

∂θi
∂βj

= ∂θi
∂µi
· ∂µi
∂ηi
· ∂ηi
∂βj

= 1
b′′(θi)

· 1
g′(µi)

·Xij

• Therefore, the gradient vector of l is

∂l

∂βj
= 1
φ

n∑
i=1

ωi
[
yi − b′i(θi)

] ∂θi
∂βj

= 1
φ

n∑
i=1

yi − µi
g′(µi)V (µi)

Xij

• The expected Hessian (expectation taken wrt Y ) is

E

(
∂2l

∂βj∂βk

)
= − 1

φ

n∑
i=1

XijXik

g′(µi)2V (µi)
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The Fisher scoring update

• Define the matrices

W = diag{wi}, wi = 1
g′(µi)2V (µi)

(3)

G = diag
{
g′(µi)

}
(4)

• The Fisher scoring update for β is

β(t+1) = β(t) +
(
XTWX

)−1
XTWG(y− µ)

=
(
XTWX

)−1
XTW

[
G(y− µ) + Xβ(t)

]
︸ ︷︷ ︸

z
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Iteratively re-weighted least square (IRLS) algorithm

1. Initialization:
µ̂i = yi + δi, η̂i = g (µ̂i)

− δi is usually zero, but may be a small constant ensuring η̂i is finite

2. Compute pseudo data zi and iterative weights wi:

zi = g′ (µ̂i) (yi − µ̂i) + η̂i

wi = 1
g′ (µ̂i)2 V (µ̂i)

3. Find β̂ by minimizing the weighted least squares objective
n∑
i=1

wi (zi −Xiβ)2

then update
η̂ = Xβ̂, µ̂i = g−1 (η̂i)

• Repeat Step 2-3 until the change in deviance is near zero
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IRLS example 1: logistic regression

• For logistic regression,

g(µ) = log
(

µ

1− µ

)
, g′(µ) = 1

µ(1− µ)
V (µ) = µ(1− µ), φ = 1

• Therefore, in Step 2 of IRLS,

zi = yi − µ̂i
µ̂i (1− µ̂i)

+ η̂i

wi = µ̂i (1− µ̂i)
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IRLS example 2: GLM with independent normal priors
• Assume that the vector β has independent normal priors

β ∼ N
(

0, φ
λ

Ip
)

• Log posterior density (we still call it l, with some abuse of notation)

l(β) = 1
φ

n∑
i=1

ωi [yiθi − bi(θi)]−
λ

2φβ
Tβ + const

• Gradient vector and expected Hessian matrix (wrt β)

∇l = 1
φ

[
XTWG(y− µ)− λβ

]
E
(
∇2l

)
= − 1

φ

(
XTWX + λIp

)
− Here, W and G are the same as in Equation (3) and (4)
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• IRLS for GLM with independent normal priors

β(t+1) = β(t) +
(
XTWX + λIp

)−1 [
XTWG(y− µ)− λβ(t)

]
=
(
XTWX + λIp

)−1
XTW

[
G(y− µ) + Xβ(t)

]
︸ ︷︷ ︸

z

(5)
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Large sample distribution of β̂

• Hessian of the negative log likelihood (also called observed
information)

Î = XTWX
φ

• Fisher information, also called expected information

I = E
(
Î
)

• Asymptotic normality the MLE β̂

β̂ ∼ N
(
β, I−1

)
or β̂ ∼ N

(
β, Î−1

)
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Deviance
• Deviance is the GLM counterpart of the residual sum of squares

in normal linear regression

D = 2φ
[
l
(
β̂max

)
− l

(
β̂
)]

=
n∑
i=1

2ωi
[
yi
(
θ̃i − θ̂i

)
− b

(
θ̃i
)

+ b
(
θ̂i
)]

(6)

− Here, l
(
β̂max

)
is the maximized likelihood of the saturated model:

the model with one parameter per data point. For exponential
family distribution, it is computed by simply setting µ̂ = y.

− θ̃ and θ̂ are the maximum likelihood estimates of the canonical
parameters for the saturated model and the model of interest,
respectively

• From the second equality, we can see that deviance is
independent of φ

• For normal linear regression, deviance equals the residual sum of
squares
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Scaled deviance
• Scaled deviance does depend on φ

D∗ = D

φ

• If the model is specified correctly, then approximately

D∗ ∼ χ2
n−p

• To compare two nested models,

− If φ is known, then under H0, we can use

D∗0 −D∗1 ∼ χ2
p1−p0

− If φ is unknown, then under H0, we can use

F = (D0 −D1)/(p1 − p0)
D1/(n− p1) ∼ Fp1−p0,n−p1
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Canonical link functions
• The canonical link gc is the link function such that

gc(µi) = θi = ηi

where θi is the canonical parameter of the distribution

• Under canonical links, the observed information Î and the
expected information I matrices are the same

• Under canonical links, since ∂θi
∂βj

= Xij , the system of equations
that the MLE satisfies becomes

∂l

∂βj
=

n∑
i=1

ωi(yi − µi)Xij = 0

Thus, if ωi = 1, we have

XTy = XT µ̂

− For any GLM with an intercept term and canonical link, the
residuals sum to zero, i.e.,

∑
i yi =

∑
i µ̂i
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GLM residuals

• Model checking is perhaps the most important part of applied
statistical modeling

• It is usual to standardize GLM residuals so that if the model
assumptions are correct,

− the standardized residuals should have approximately equal
variance, and

− behave like residuals from an ordinary linear model

• Pearson residuals

ε̂pi = yi − µ̂i√
V (µi)

− In practice, the distribution of the Pearson residuals can be quite
asymmetric around zero. So the deviance residuals (introduced
next) are often preferred.
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Deviance residuals

• Denote di as the ith component in the deviance definition (6), so
that the deviance is D =

∑n
i=1 di

• By analogy with the ordinary linear model,we define the deviance
residual

ε̂di = sign(yi − µ̂i)
√
di

− The sum of squares of the deviance residuals gives the deviance
itself
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Quasi-likelihood
• Consider an observation yi, of a random variable with mean µi

and known variance function V (µi)
− Getting the distribution of Yi exactly right is rather unimportant, as

long as the mean-variance relationship V (·) is correct

• Then the log quasi-likelihood for µi, given yi, is

qi(µi) =
∫ µi

yi

yi − z
φV (z) dz

− The log quasi-likelihood for the mean vector µ of all the response
data is q(µ) =

∑n
i=1 qi(µi)

• To obtain the maximum quasi-likelihood estimation of β, we can
differentiate q wrt βj , for ∀j

0 = ∂q

∂βj
=

n∑
i=1

yi − µi
φV (µi)

∂µi
∂βj

=⇒
n∑
i=1

yi − µi
V (µi)g′(µi)

Xij = 0

this is exactly the GLM maximum likelihood solution, which can be
obtained through IRLS 19



Generalized linear mixed models (GLMM)

• A GLMM model for an exponential family random variable Yi

g(µi) = Xiβ + Zib, b ∼ N (0,ψθ)

• Difficulty in moving from linear mixed models to GLMM: it is no
longer possible to evaluate the marginal likelihood analytically

• One effective solution is Taylor expansion around b̂, the
posterior mode of f(b | y,β)

f(y | β) ≈
∫

exp
{

log f(y, b̂ | β)

+ 1
2
(
b− b̂

)T ∂2 log f(y,b | β)
∂b∂bT

(
b− b̂

)}
db
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Laplace approximation of GLMM marginal likelihood

• For GLM, note that the expected Hessian is

−ZTWZ
φ

−ψ−1

− W is the IRLS weight vector (3) based on the µ implied by b̂ and β

• Therefore, the approximate marginal likelihood is

f(y | β) ≈ f(y, b̂ | β) (2π)p/2∣∣∣ZT WZ
φ +ψ−1

θ

∣∣∣1/2
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Penalized likelihood and penalized IRLS
• The point estimators β̂ and b̂ are obtained by optimizing the

penalized likelihood

β̂, b̂ = arg max
β,b

log f(y,b | β)

= arg max
β,b

{
log f(y | b,β)− bTψ−1

θ b/2
}

• To simplify notation, we denote

BT = (b,β)T

X = (Z,X), S =
[
ψ−1
θ 0
0 0

]

• A penalized version of the IRLS algorithm (PIRLS) : by (5), a
single Newton update step is

B(t+1) =
(
X TWX + φS

)−1
X TW

[
G (y− µ̂) + XB(t)

]
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Penalized quasi-likelihood method

• Since optimizing the Laplace approximate marginal likelihood can
be computationally costly, it is therefore tempting to instead
perform a PIRLS iteration, estimating θ, φ at each step based on
the working mixed model

z | b,β ∼ N
(
Xβ + Zb,W−1φ

)
, b ∼ N (0,ψθ)
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