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GLM overview

¢ |In a GLM, a smooth monotonic link function g(-) connects the
expectation u; = E(Y;) with the linear combination of X,

g(pi) = ni = Xip (1)
¢ |n a generalized linear mixed model (GLMM), we have



Exponential family of distributions
e The density function for an exponential family distribution
yb — b(0)

) = exp { s

+elw.6)] @)

— a,b,c: arbitrary functions

— ¢: an arbitrary scale parameter

— #: the canonical parameter; completely depend on the model
parameter 3

® Properties about exponential family mean and variance
E(Y) =1'(0)
var(Y) =b"(0)a(o)
— In most practical cases, a(¢) = ¢/w where w is a known constant
— We define a function

V(p) =0"(0)/w, sothatvar(Y)=V(u)p



Exponential family examples

Normal Poisson Binomial Gamma Inverse Gaussian
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Table 3.1 Some exponential family distributions. Note that when y = 0, ylog(y/ji) is taken to be zero (its limit as y — 0).



Fitting GLMs

¢ For the GLM model (1) and (2), assuming a;(¢) = ¢/w;, the log
likelihood is

sz yz z_ ]/¢+CZ(¢ yz>

® To optimize, we use the Newton’s method, which is an iterative
optimization approach

o0 = 90 — (V1) Wi

— Where both V21 and V! are evaluated at the current iteration #(*)
— Alternatively, we can use the Fisher scoring variant of the Newton’s
method, by replacing the Hessian matrix with its expectation

e Next, we will need to compute the gradient vector and expected
Hessian matrix of [



Compute the gradient vector and expected Hessian of |
e By the chain rule,
00;  00; Ou; O

aB;  Owi O 9B;
1 1

b (6:) (i) "
e Therefore, the gradient vector of [ is
y i1 Y
wz Yi - —2 X
653 2; 3ﬁg ¢ ; g () V (pa) "

e The expected Hessian (expectation taken wrt Y) is

0%l 1 XXk
E . _ gLk
<3ﬁj35k> ) ; 9'(1i)?V (p2)



The Fisher scoring update

e Define the matrices
W = diag{wi}, w; =

G = diag {g'(u:)}

g (1i)V ;)

e The Fisher scoring update for 3 is
—1
B = g0+ (XTWX)  X"WG(y - )

= (X"WX) " X"W [G(y - ) + X

z



Iteratively re-weighted least square (IRLS) algorithm
1. Initialization:
fi = yi +0i, N =g (L)
— ¢, is usually zero, but may be a small constant ensuring 7; is finite

2. Compute pseudo data z; and iterative weights w;:

zi =g (i) (yi — ) + i
1

g (1:)* V (fui)

wy; =
3. Find 8 by minimizing the weighted least squares objective

Zn:wi (2 — XiB)?
i=1

then update
1=XB, =g ()

® Repeat Step 2-3 until the change in deviance is near zero



IRLS example 1: logistic regression

e For logistic regression,

g9(n) = log (15;@) , 9w =

Vi(p) = p(l —p), p=1

¢ Therefore, in Step 2 of IRLS,

1
(1 = p)




IRLS example 2: GLM with independent normal priors
e Assume that the vector 8 has independent normal priors

5N (0.

¢ Log posterior density (we still call it 7, with some abuse of notation)

1 & h\
1(B) == wi[yibi — bi(6;)] — =—B" B + const
0= 2¢
¢ Gradient vector and expected Hessian matrix (wrt 3)
_ !
¢
B (V) = ; (X"WX + L)

Vi [XTWG(y —p) — A,B}

— Here, W and G are the same as in Equation (3) and (4)



¢ |RLS for GLM with independent normal priors
AU = B0 4 (XTWX + L) - (XTWG(y — ) ~ A"

= (XTWX + AI,,)*1 XTW Gy - p) + XB"|

Z

()



Large sample distribution of 3

e Hessian of the negative log likelihood (also called observed

information)
XTwx
¢

¢ Fisher information, also called expected information

7=

7=E(I)

e Asymptotic normality the MLE 3

B ~N (5,2‘1) or B~N (ﬁ,f‘l)



Deviance
e Deviance is the GLM counterpart of the residual sum of squares
in normal linear regression

D=20[1(Buws) ~1(3)]
i)-

“Slu(a-0) (@) @) e

— Here, I (3,,., ) is the maximized likelihood of the saturated model:

the model with one parameter per data point. For exponential
family distribution, it is computed by simply setting i1 = y.

— 6 and 6 are the maximum likelihood estimates of the canonical
parameters for the saturated model and the model of interest,
respectively

e From the second equality, we can see that deviance is
independent of ¢

e For normal linear regression, deviance equals the residual sum of
squares



Scaled deviance
e Scaled deviance does depend on ¢

D* ==
¢

¢ |f the model is specified correctly, then approximately

2
D* ~ Xn—p

e To compare two nested models,
— If ¢ is known, then under H,, we can use
D = D ~ X3, _p,
— If ¢ is unknown, then under H,, we can use

(Do — D1)/(p1 — po) ~F

F: — n—
Dl/(n_pl) P1—PpPo,n—p1




Canonical link functions
e The canonical link g. is the link function such that
ge(pi) = 0 = m;
where 6; is the canonical parameter of the distribution

e Under canonical links, the observed information Z and the
expected information Z matrices are the same

e Under canonical links, since gg; — X;;, the system of equations
that the MLE satisfies becomes

wi (yi =0
0 ; X
Thus, if w; = 1, we have

X'y =X"

— For any GLM with an intercept term and canonical link, the
residuals sum to zero, i.e., Y . yi = >, fis



GLM residuals

e Model checking is perhaps the most important part of applied
statistical modeling

e |t is usual to standardize GLM residuals so that if the model
assumptions are correct,

— the standardized residuals should have approximately equal
variance, and
— behave like residuals from an ordinary linear model

e Pearson residuals

’ V(i)
— In practice, the distribution of the Pearson residuals can be quite

asymmetric around zero. So the deviance residuals (introduced
next) are often preferred.



Deviance residuals

¢ Denote d; as the ith component in the deviance definition (6), so
that the deviance is D = Y | d;

¢ By analogy with the ordinary linear model,we define the deviance
residual

& = sign(y; — i)V/d:

— The sum of squares of the deviance residuals gives the deviance
itself



Quasi-likelihood
¢ Consider an observation y;, of a random variable with mean y;
and known variance function V' (1;)

— Getting the distribution of Y; exactly right is rather unimportant, as
long as the mean-variance relationship V(-) is correct

e Then the log quasi-likelihood for y;, given y;, is

Hi gy — z

wlki) = | - ovi)

— The log quasi-likelihood for the mean vector p of all the response
datais ¢(p) = 31, ¢i(1)

¢ To obtain the maximum quasi-likelihood estimation of 3, we can
differentiate ¢ wrt 3;, for Vj

99 <= Yi— i Op Y — i

0 = — = ﬁ -

;= oV (i) 08; ; V(pi)g' (pi)

this is exactly the GLM maximum likelihood solution, which can be
obtained through IRLS

Xij:()
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Generalized linear mixed models (GLMM)

¢ A GLMM model for an exponential family random variable Y;

g(pi) = XiB +Zib, b ~N(0,1y)

¢ Difficulty in moving from linear mixed models to GLMM: it is no
longer possible to evaluate the marginal likelihood analytically

e One effective solution is Taylor expansion around b, the
posterior mode of f(b |y, 8)

118~ [exp{log (v.5 | B)

N (b—B)T 0*log f(y,b | B) (b_6>}db

DO |

ObobT
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Laplace approximation of GLMM marginal likelihood

e For GLM, note that the expected Hessian is

ZTWZ
@

_ w—l

— W is the IRLS weight vector (3) based on the p implied by b and 8
* Therefore, the approximate marginal likelihood is
(2m)P/2

ZTWZ —1
232 1|

fy|B8) ~ f(y,b]|B)

1/2
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Penalized likelihood and penalized IRLS

e The point estimators 3 and b are obtained by optimizing the
penalized likelihood

B.b = arg maxlog f(y,b | B)
_ R NAVES
= argmax {log f(y | b,B) —b v, b/2}
¢ To simplify notation, we denote
B = (b,B)"

_ _ | ¥t o
X = (Z,X), s_l v 0]

e A penalized version of the IRLS algorithm (PIRLS) : by (5), a
single Newton update step is

B = (XTWX +48) ATW[G (y — ju) + XBY)]

22



Penalized quasi-likelihood method

¢ Since optimizing the Laplace approximate marginal likelihood can
be computationally costly, it is therefore tempting to instead
perform a PIRLS iteration, estimating 6, ¢ at each step based on
the working mixed model

2|b,B8~N(XB+2ZbW6), b~N(0,pp)
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