Notes: Generalized Additive Models – Ch3 Generalized Linear Models (GLM)

Yingbo Li

03/21/2021

Table of Contents

Theory of GLMs

- Exponential family
- Iteratively re-weighted least square (IRLS)
- Asymptotic consistency of MLE, deviance, tests, residuals

Quasi-likelihood (GEE)

Generalized Linear Mixed Models (GLMM)

GLM overview

 In a GLM, a smooth monotonic link function g(·) connects the expectation μ_i = E(Y_i) with the linear combination of X_i,

$$g(\mu_i) = \eta_i = \mathbf{X}_i \boldsymbol{\beta} \tag{1}$$

In a generalized linear mixed model (GLMM), we have

$$g(\mu_i) = \eta_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}, \quad \mathbf{b} \sim \mathsf{N}(\mathbf{0}, \boldsymbol{\psi})$$

Exponential family of distributions

• The density function for an exponential family distribution

$$f(y) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$
(2)

- -a, b, c: arbitrary functions
- $-\phi$: an arbitrary scale parameter
- $\theta :$ the canonical parameter; completely depend on the model parameter β
- Properties about exponential family mean and variance

 $E(Y) = b'(\theta)$ $var(Y) = b''(\theta)a(\phi)$

- $\$ In most practical cases, $a(\phi) = \phi/\omega$ where ω is a known constant
- We define a function

$$V(\mu) = b''(\theta)/w, \text{ so that } var(Y) = V(\mu)\phi$$

Exponential family examples

	Normal	Poisson	Binomial	Gamma	Inverse Gaussian
f(y)	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{\frac{-(y-\mu)^2}{2\sigma^2}\right\}$	$\frac{\mu^y \exp\left(-\mu\right)}{y!}$	$\binom{n}{y} \left(\frac{\mu}{n}\right)^y \left(1 - \frac{\mu}{n}\right)^{n-y}$	$\frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\mu}\right)^{\nu} y^{\nu-1} \exp\left(-\frac{\nu y}{\mu}\right)$	$\sqrt{\frac{\gamma}{2\pi y^3}} \exp\left\{\frac{-\gamma (y-\mu)^2}{2\mu^2 y}\right\}$
Range	$-\infty < y < \infty$	$y=0,1,2,\ldots$	$y = 0, 1, \ldots, n$	y > 0	y > 0
θ	μ	$\log(\mu)$	$\log\left(\frac{\mu}{n-\mu}\right)$	$-\frac{1}{\mu}$	$-\frac{1}{2\mu^{2}}$
ϕ	σ^2	1	1	$\frac{1}{\nu}$	$\frac{1}{\gamma}$
$a(\phi)$	$\phi(=\sigma^2)$	$\phi(=1)$	$\phi(=1)$	$\phi\left(=\frac{1}{\nu}\right)$	$\phi\left(=\frac{1}{\gamma}\right)$
$b(\theta)$	$\frac{\theta^2}{2}$	$\exp(\theta)$	$n\log\left(1+e^{ heta} ight)$	$-\log(- heta)$	$-\sqrt{-2\theta}$
$c(y, \phi)$	$-\frac{1}{2}\left\{\frac{y^2}{\phi} + \log(2\pi\phi)\right\}$	$-\log(y!)$	$\log \binom{n}{y}$	$\nu \log(\nu y) - \log\{y \Gamma(\nu)\}$	$-\frac{1}{2}\left\{\log(2\pi y^3\phi)+\frac{1}{\phi y}\right\}$
$V(\mu)$	1	μ	$\mu(1-\mu/n)$	μ^2	μ^3
$g_c(\mu)$	μ	$\log(\mu)$	$\log\left(\frac{\mu}{n-\mu}\right)$	$\frac{1}{\mu}$	$\frac{1}{\mu^2}$
$D(y, \hat{\mu})$	$(y - \hat{\mu})^2$	$2y \log \left(\frac{y}{\hat{\mu}} \right) -$	$2\left\{y\log\left(\frac{y}{\hat{\mu}}\right)+\right.$	$2\left\{\frac{y-\hat{\mu}}{\hat{\mu}} - \log\left(\frac{y}{\hat{\mu}}\right)\right\}$	$\frac{(y-\hat{\mu})^2}{\hat{\mu}^2 y}$
		$2(y - \hat{\mu})$	$(n-y)\log\left(\frac{n-y}{n-\hat{\mu}}\right)$		

Table 3.1 Some exponential family distributions. Note that when y = 0, $y \log(y/\hat{\mu})$ is taken to be zero (its limit as $y \to 0$).

Fitting GLMs

• For the GLM model (1) and (2), assuming $a_i(\phi) = \phi/\omega_i$, the log likelihood is

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} \omega_i \left[y_i \theta_i - b_i(\theta_i) \right] / \phi + c_i(\phi, y_i)$$

To optimize, we use the Newton's method, which is an iterative optimization approach

$$\theta^{(t+1)} = \theta^{(t)} - \left(\nabla^2 l\right)^{-1} \nabla l$$

- Where both $\nabla^2 l$ and ∇l are evaluated at the current iteration $\theta^{(t)}$
- Alternatively, we can use the Fisher scoring variant of the Newton's method, by replacing the Hessian matrix with its expectation
- Next, we will need to compute the gradient vector and expected Hessian matrix of *l*

Compute the gradient vector and expected Hessian of *l*

• By the chain rule,

$$\begin{aligned} \frac{\partial \theta_i}{\partial \beta_j} &= \frac{\partial \theta_i}{\partial \mu_i} \cdot \frac{\partial \mu_i}{\partial \eta_i} \cdot \frac{\partial \eta_i}{\partial \beta_j} \\ &= \frac{1}{b''(\theta_i)} \cdot \frac{1}{g'(\mu_i)} \cdot X_{ij} \end{aligned}$$

• Therefore, the gradient vector of *l* is

$$\frac{\partial l}{\partial \beta_j} = \frac{1}{\phi} \sum_{i=1}^n \omega_i \left[y_i - b'_i(\theta_i) \right] \frac{\partial \theta_i}{\partial \beta_j} = \frac{1}{\phi} \sum_{i=1}^n \frac{y_i - \mu_i}{g'(\mu_i)V(\mu_i)} X_{ij}$$

• The expected Hessian (expectation taken wrt Y) is

$$E\left(\frac{\partial^2 l}{\partial\beta_j\partial\beta_k}\right) = -\frac{1}{\phi}\sum_{i=1}^n \frac{X_{ij}X_{ik}}{g'(\mu_i)^2 V(\mu_i)}$$

The Fisher scoring update

• Define the matrices

$$\mathbf{W} = \operatorname{diag}\{w_i\}, \quad w_i = \frac{1}{g'(\mu_i)^2 V(\mu_i)}$$
(3)
$$\mathbf{G} = \operatorname{diag}\{g'(\mu_i)\}$$
(4)

The Fisher scoring update for β is

$$\beta^{(t+1)} = \beta^{(t)} + \left(\mathbf{X}^T \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W} \mathbf{G}(\mathbf{y} - \boldsymbol{\mu})$$
$$= \left(\mathbf{X}^T \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W} \underbrace{\left[\mathbf{G}(\mathbf{y} - \boldsymbol{\mu}) + \mathbf{X} \beta^{(t)}\right]}_{\mathbf{z}}$$

Iteratively re-weighted least square (IRLS) algorithm

1. Initialization:

$$\hat{\mu}_i = y_i + \delta_i, \quad \hat{\eta}_i = g\left(\hat{\mu}_i\right)$$

 $-\delta_i$ is usually zero, but may be a small constant ensuring $\hat{\eta}_i$ is finite

2. Compute pseudo data z_i and iterative weights w_i :

$$z_i = g'(\hat{\mu}_i)(y_i - \hat{\mu}_i) + \hat{\eta}_i$$
$$w_i = \frac{1}{g'(\hat{\mu}_i)^2 V(\hat{\mu}_i)}$$

3. Find $\hat{\beta}$ by minimizing the weighted least squares objective

$$\sum_{i=1}^{n} w_i \left(z_i - \mathbf{X}_i \boldsymbol{\beta} \right)^2$$

then update

$$\hat{\boldsymbol{\eta}} = \mathbf{X}\hat{\boldsymbol{\beta}}, \quad \hat{\mu}_i = g^{-1}\left(\hat{\eta}_i\right)$$

Repeat Step 2-3 until the change in deviance is near zero

IRLS example 1: logistic regression

• For logistic regression,

$$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right), \quad g'(\mu) = \frac{1}{\mu(1-\mu)}$$
$$V(\mu) = \mu(1-\mu), \qquad \phi = 1$$

• Therefore, in Step 2 of IRLS,

$$z_i = \frac{y_i - \hat{\mu}_i}{\hat{\mu}_i (1 - \hat{\mu}_i)} + \hat{\eta}_i$$
$$w_i = \hat{\mu}_i (1 - \hat{\mu}_i)$$

IRLS example 2: GLM with independent normal priors

• Assume that the vector β has independent normal priors

$$oldsymbol{eta} \sim \mathsf{N}\left(\mathbf{0}, rac{\phi}{\lambda} \mathbf{I}_p
ight)$$

• Log posterior density (we still call it *l*, with some abuse of notation)

$$l(\boldsymbol{\beta}) = \frac{1}{\phi} \sum_{i=1}^{n} \omega_i \left[y_i \theta_i - b_i(\theta_i) \right] - \frac{\lambda}{2\phi} \boldsymbol{\beta}^T \boldsymbol{\beta} + \text{const}$$

Gradient vector and expected Hessian matrix (wrt β)

$$\nabla l = \frac{1}{\phi} \left[\mathbf{X}^T \mathbf{W} \mathbf{G} (\mathbf{y} - \boldsymbol{\mu}) - \lambda \boldsymbol{\beta} \right]$$
$$E \left(\nabla^2 l \right) = -\frac{1}{\phi} \left(\mathbf{X}^T \mathbf{W} \mathbf{X} + \lambda \mathbf{I}_p \right)$$

- Here, W and G are the same as in Equation (3) and (4)

• IRLS for GLM with independent normal priors

$$\beta^{(t+1)} = \beta^{(t)} + \left(\mathbf{X}^T \mathbf{W} \mathbf{X} + \lambda \mathbf{I}_p \right)^{-1} \left[\mathbf{X}^T \mathbf{W} \mathbf{G} (\mathbf{y} - \boldsymbol{\mu}) - \lambda \beta^{(t)} \right]$$
$$= \left(\mathbf{X}^T \mathbf{W} \mathbf{X} + \lambda \mathbf{I}_p \right)^{-1} \mathbf{X}^T \mathbf{W} \underbrace{\left[\mathbf{G} (\mathbf{y} - \boldsymbol{\mu}) + \mathbf{X} \beta^{(t)} \right]}_{\mathbf{z}}$$
(5)

Large sample distribution of $\hat{oldsymbol{eta}}$

Hessian of the negative log likelihood (also called observed information)

$$\hat{\mathcal{I}} = \frac{\mathbf{X}^T \mathbf{W} \mathbf{X}}{\phi}$$

• Fisher information, also called expected information

$$\mathcal{I} = E\left(\hat{\mathcal{I}}\right)$$

• Asymptotic normality the MLE \hat{eta}

$$\hat{\boldsymbol{eta}} \sim \mathsf{N}\left(\boldsymbol{eta}, \mathcal{I}^{-1}
ight) \quad ext{or} \quad \hat{\boldsymbol{eta}} \sim \mathsf{N}\left(\boldsymbol{eta}, \hat{\mathcal{I}}^{-1}
ight)$$

Deviance

 Deviance is the GLM counterpart of the residual sum of squares in normal linear regression

$$D = 2\phi \left[l\left(\hat{\beta}_{\max}\right) - l\left(\hat{\beta}\right) \right]$$

= $\sum_{i=1}^{n} 2\omega_i \left[y_i \left(\tilde{\theta}_i - \hat{\theta}_i\right) - b\left(\tilde{\theta}_i\right) + b\left(\hat{\theta}_i\right) \right]$ (6)

- Here, $l(\hat{\beta}_{\max})$ is the maximized likelihood of the saturated model: the model with one parameter per data point. For exponential family distribution, it is computed by simply setting $\hat{\mu} = \mathbf{y}$.
- $\tilde{\theta}$ and $\hat{\theta}$ are the maximum likelihood estimates of the canonical parameters for the saturated model and the model of interest, respectively
- From the second equality, we can see that deviance is independent of ϕ
- For normal linear regression, deviance equals the residual sum of squares

Scaled deviance

• Scaled deviance does depend on ϕ

$$D^* = \frac{D}{\phi}$$

· If the model is specified correctly, then approximately

$$D^* \sim \chi^2_{n-p}$$

- To compare two nested models,
 - If ϕ is known, then under H_0 , we can use

$$D_0^* - D_1^* \sim \chi_{p_1 - p_0}^2$$

- If ϕ is unknown, then under H_0 , we can use

$$F = \frac{(D_0 - D_1)/(p_1 - p_0)}{D_1/(n - p_1)} \sim F_{p_1 - p_0, n - p_1}$$

Canonical link functions

• The canonical link g_c is the link function such that

$$g_c(\mu_i) = \theta_i = \eta_i$$

where θ_i is the canonical parameter of the distribution

- Under canonical links, the observed information
 Î and the expected information
 I matrices are the same
- Under canonical links, since $\frac{\partial \theta_i}{\partial \beta_j} = X_{ij}$, the system of equations that the MLE satisfies becomes

$$\frac{\partial l}{\partial \beta_j} = \sum_{i=1}^n \omega_i (y_i - \mu_i) X_{ij} = 0$$

Thus, if $\omega_i = 1$, we have

$$\mathbf{X}^T \mathbf{y} = \mathbf{X}^T \hat{\boldsymbol{\mu}}$$

- For any GLM with an intercept term and canonical link, the residuals sum to zero, i.e., $\sum_i y_i = \sum_i \hat{\mu}_i$

GLM residuals

- Model checking is perhaps the most important part of applied statistical modeling
- It is usual to standardize GLM residuals so that if the model assumptions are correct,
 - the standardized residuals should have approximately equal variance, and
 - behave like residuals from an ordinary linear model
- Pearson residuals

$$\hat{\epsilon}_{i}^{p} = \frac{y_{i} - \hat{\mu}_{i}}{\sqrt{V\left(\mu_{i}\right)}}$$

 In practice, the distribution of the Pearson residuals can be quite asymmetric around zero. So the deviance residuals (introduced next) are often preferred.

Deviance residuals

- Denote d_i as the *i*th component in the deviance definition (6), so that the deviance is D = ∑ⁿ_{i=1} d_i
- By analogy with the ordinary linear model, we define the deviance residual

$$\hat{\epsilon}_i^d = \operatorname{sign}(y_i - \hat{\mu_i})\sqrt{d_i}$$

The sum of squares of the deviance residuals gives the deviance itself

Quasi-likelihood

- Consider an observation y_i , of a random variable with mean μ_i and *known* variance function $V(\mu_i)$
 - Getting the distribution of Y_i exactly right is rather unimportant, as long as the **mean-variance relationship** $V(\cdot)$ is correct
- Then the log quasi-likelihood for μ_i , given y_i , is

$$q_i(\mu_i) = \int_{y_i}^{\mu_i} \frac{y_i - z}{\phi V(z)} dz$$

- The log quasi-likelihood for the mean vector μ of all the response data is $q(\mu) = \sum_{i=1}^n q_i(\mu_i)$
- To obtain the maximum quasi-likelihood estimation of β, we can differentiate q wrt β_j, for ∀j

$$0 = \frac{\partial q}{\partial \beta_j} = \sum_{i=1}^n \frac{y_i - \mu_i}{\phi V(\mu_i)} \frac{\partial \mu_i}{\partial \beta_j} \Longrightarrow \sum_{i=1}^n \frac{y_i - \mu_i}{V(\mu_i)g'(\mu_i)} X_{ij} = 0$$

this is exactly the GLM maximum likelihood solution, which can be obtained through IRLS

Generalized linear mixed models (GLMM)

• A GLMM model for an exponential family random variable Y_i

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}, \quad \mathbf{b} \sim \mathsf{N}(\mathbf{0}, \boldsymbol{\psi}_{\boldsymbol{\theta}})$$

- Difficulty in moving from linear mixed models to GLMM: it is no longer possible to evaluate the marginal likelihood analytically
- One effective solution is **Taylor expansion** around $\hat{\mathbf{b}}$, the posterior mode of $f(\mathbf{b} \mid \mathbf{y}, \beta)$

$$\begin{split} f(\mathbf{y} \mid \boldsymbol{\beta}) &\approx \int \exp\left\{\log f(\mathbf{y}, \hat{\mathbf{b}} \mid \boldsymbol{\beta}) \right. \\ &+ \frac{1}{2} \left(\mathbf{b} - \hat{\mathbf{b}}\right)^T \frac{\partial^2 \log f(\mathbf{y}, \mathbf{b} \mid \boldsymbol{\beta})}{\partial \mathbf{b} \partial \mathbf{b}^T} \left(\mathbf{b} - \hat{\mathbf{b}}\right) \right\} d\mathbf{b} \end{split}$$

Laplace approximation of GLMM marginal likelihood

For GLM, note that the expected Hessian is

$$-rac{\mathbf{Z}^T\mathbf{W}\mathbf{Z}}{\phi}-oldsymbol{\psi}^{-1}$$

- W is the IRLS weight vector (3) based on the μ implied by $\hat{\mathbf{b}}$ and eta
- Therefore, the approximate marginal likelihood is

$$f(\mathbf{y} \mid \boldsymbol{\beta}) \approx f(\mathbf{y}, \hat{\mathbf{b}} \mid \boldsymbol{\beta}) \frac{(2\pi)^{p/2}}{\left|\frac{\mathbf{Z}^T \mathbf{W} \mathbf{Z}}{\phi} + \boldsymbol{\psi}_{\boldsymbol{\theta}}^{-1}\right|^{1/2}}$$

Penalized likelihood and penalized IRLS

- The point estimators $\hat{\beta}$ and $\hat{\mathbf{b}}$ are obtained by optimizing the penalized likelihood

$$\hat{\boldsymbol{\beta}}, \hat{\mathbf{b}} = \arg \max_{\boldsymbol{\beta}, \mathbf{b}} \log f(\mathbf{y}, \mathbf{b} \mid \boldsymbol{\beta})$$
$$= \arg \max_{\boldsymbol{\beta}, \mathbf{b}} \left\{ \log f(\mathbf{y} \mid \mathbf{b}, \boldsymbol{\beta}) - \mathbf{b}^T \boldsymbol{\psi}_{\boldsymbol{\theta}}^{-1} \mathbf{b}/2 \right\}$$

• To simplify notation, we denote

$$egin{aligned} \mathcal{B}^T &= (\mathbf{b}, eta)^T \ \mathcal{X} &= (\mathbf{Z}, \mathbf{X}), \quad \mathbf{S} = \left[egin{array}{cc} oldsymbol{\psi}_{ heta}^{-1} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{array}
ight] \end{aligned}$$

 A penalized version of the IRLS algorithm (PIRLS) : by (5), a single Newton update step is

$$\mathcal{B}^{(t+1)} = \left(\mathcal{X}^T \mathbf{W} \mathcal{X} + \phi \mathbf{S}\right)^{-1} \mathcal{X}^T \mathbf{W} \left[\mathbf{G} \left(\mathbf{y} - \hat{\boldsymbol{\mu}}\right) + \mathcal{X} \mathcal{B}^{(t)}\right]$$

Penalized quasi-likelihood method

• Since optimizing the Laplace approximate marginal likelihood can be computationally costly, it is therefore tempting to instead perform a PIRLS iteration, estimating θ , ϕ at each step based on the working mixed model

$$\mathbf{z} \mid \mathbf{b}, \boldsymbol{\beta} \sim \mathsf{N}\left(\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{b}, \mathbf{W}^{-1}\boldsymbol{\phi}\right), \quad \mathbf{b} \sim \mathsf{N}\left(\mathbf{0}, \boldsymbol{\psi}_{\boldsymbol{\theta}}\right)$$

References

• Wood, Simon N. (2017), *Generalized Additive Models: An Introduction with R.* Chapman and Hall/CRC