
Efficiently Detecting All Dangling Pointer Uses in Production Servers∗

Dinakar Dhurjati Vikram Adve
University of Illinois at Urbana-Champaign

201 N. Goodwin Avenue
Urbana, IL - 61801, U.S.A.

{dhurjati, vadve}@cs.uiuc.edu

Abstract

In this paper, we propose a novel technique to detect all
dangling pointer uses at run-time that is efficient enough
for production use in server codes. One idea (previously
used by Electric Fence, PageHeap) is to use a new virtual
page for each allocation of the program and rely on page
protection mechanisms to check dangling pointer accesses.
This naive approach has two limitations that makes it im-
practical to use in production software: increased physical
memory usage and increased address space usage. We pro-
pose two key improvements that alleviate both these prob-
lems. First, we use a new virtual page for each allocation
of the program but map it to the same physical page as the
original allocator. This allows using nearly identical physi-
cal memory as the original program while still retaining the
dangling pointer detection capability. We also show how to
implement this idea without requiring any changes to the
underlying memory allocator. Our second idea alleviates
the problem of virtual address space exhaustion by using
a previously developed compiler transformation called Au-
tomatic Pool Allocation to reuse many virtual pages. The
transformation partitions the memory of the program based
on their lifetimes and allows us to reuse virtual pages when
portions of memory become inaccessible. Experimentally
we find that the run-time overhead for five unix servers is
less than 4%, for other unix utilities less than 15%. How-
ever, in case of allocation intensive benchmarks, we find our
overheads are much worse (up to 11x slowdown).

1 Introduction

Uses of pointers to freed memory (“dangling pointer er-
rors”) are an important class of memory errors responsible
for poor reliability of systems written in C/C++ languages.
These errors are often difficult and time consuming to find
and diagnose during debugging. Furthermore, these dan-

∗This work is supported in part by the NSF Embedded Systems pro-
gram (award CCR-02-09202), the NSF Next Generation Software Program
(award CNS 04-06351), and an NSF CAREER award (EIA-0093426).

gling pointer errors can also be exploited in much the same
way as buffer overruns to compromise system security [21].
In fact, many exploits that take advantage of a subclass of
these errors (double free vulnerabilities) in server programs
have been reported in bugtraq (e.g., CVS server double free
exploit [7], MIT Kerberos 5 double free exploit [2], MySQL
double free vulnerability [1]). Efficient detection of all such
errors in servers during deployment (rather than just during
development) is crucial for security.

Unfortunately, detecting dangling pointer errors in pro-
grams has proven to be an extremely difficult problem. De-
tecting such errors statically in any precise manner is un-
decidable. Detecting them efficiently at run-time while still
allowing safe reuse of memory can be very expensive and
we do not know of any practical solution that has overheads
low enough for use in production code.

A number of approaches (including [3, 8, 9, 13, 16, 15,
17, 19, 20]) have been proposed that use some combination
of static and run-time techniques to detect several kinds of
memory errors, including buffer overflow errors and some
dangling pointer errors. All of these techniques either have
prohibitively high run-time overheads (2x - 100x) or mem-
ory overheads (or both) and are unsuitable for production
software. Purify [8] and Valgrind [17], two of the most
widely used tools for debugging memory access errors,
often have overheads in excess of 1000% and can some-
times be too slow even for debugging long-running pro-
grams. Moreover, most of these approaches (except Fish-
erPatil [15], Xu et al [19] and Electric Fence [16]) employ
only heuristics to detect dangling pointer errors and do not
provide any guarantees about absence of such errors. Fish-
erPatil and Xu et al, detect all dangling pointer errors but
perform software run-time checks on all individual loads
and stores, incurring overheads up to 300% and also caus-
ing substantial increases in virtual and physical memory
consumption (1.6x-4x). Electric Fence uses page protec-
tion mechanisms to detect all dangling pointer errors but
does so at the expense of several fold increase in virtual and
physical memory consumption of the applications.

1.1 Our approach

In this paper, we propose a new technique that can de-
tect dangling pointers in server code with very low over-
heads, low enough that we believe they can be used in pro-
duction code (though theyare also useful for debugging).
Our approach builds on the naive idea (previously used in
Electric Fence [16], PageHeap [13]) of using a a new vir-
tual and physical page for each allocation of the program.
Upon deallocation, we change the permissions on the indi-
vidual virtual pages and rely on the memory management
unit (MMU) to detect all dangling pointer accesses. This
naive idea has two problems that make it impractical for any
use other than debugging: increased address space usage
(one virtual page for each allocation) and increased phys-
ical page usage (one page for each allocation). Our tech-
nique is based on two key insights that alleviates both these
problems. Our first insight is based on the observation that
even when using a new virtual page for each allocation we
can still use the underlying physical page using a different
virtual page that maps to that physical page. Our approach
exploits this idea by using a new virtual page for each allo-
cation of the program but mapping it to the same physical
page as the original program (thus using the same amount
of physical memory as the original program). Upon deal-
location, we can change the permissions on the individual
virtual pages but still use the underlying physical memory
via different virtual pages. We rely on the memory man-
agement unit (MMU) just like in the naive idea to detect
all dangling pointer accesses without any software checks.
If the goal is to guarantee absence of undetected dangling
pointer dereferences, then this basic scheme will not allow
us to reuse a virtual page ever again for any other alloca-
tion in the program. Our second insight is that we can build
on a previously developed compiler transformation called
Automatic Pool Allocation [11] to alleviate the problem of
address space exhaustion. The transformation essentially
partitions the memory used by the program in to pools (sub
heaps) and is able to infer when a partition or a pool is
no longer accessible (using a standard compiler analysis
known as escape analysis that is much simpler, but can be
less precise, than that required for static detection of dan-
gling pointer references). We leverage this information, to
safely reuse address space belonging to a pool, when the
memory corresponding to a pool becomes inaccessible.

As our experimental results indicate, our approach works
extremely well for server programs. This is because most
server programs seem to follow a simple memory allocation
and usage paradigm: They have low or moderate frequency
of allocations and deallocations but do have many memory
accesses. Our approach fits well with this paradigm: we
move all the run-time overheads to allocation and dealloca-
tion points (since we require extra system call per allocation

and deallocation), and do not perform any checks on indi-
vidual memory accesses themselves.

Our approach has several practical strengths. First, we
do not use fat pointers or meta-data for individual pointers.
Use of such meta-data complicates interfacing with existing
libraries and requires significant effort to port programs to
work with libraries. Second, if reuse of address space is not
important 1, particularly during debugging, our technique
can be directly applied on the binaries and does not require
source code; we just need to intercept all calls to malloc
and free from the program. Finally, we do not change the
cache behavior of the program; so carefully memory-tuned
applications can benefit from our approach without having
to retune to a new memory management scheme.

There are two main limitations to our approach. First,
since we use a system call on every memory allocation, ap-
plications that do in fact perform a lot of allocations and
deallocations will have a big performance penalty (our ap-
proach can still be used for debugging such applications).
However, we expect many security critical server software
to not exhibit this behavior. Second, since each allocation
has a new virtual page, our approach has more TLB (“trans-
lation lookaside buffer”) misses than the original program.
We are currently investigating simple architectural improve-
ments that can mitigate both of these problems by changing
the TLB structure.

We briefly summarize the contributions of this paper:

• We propose a new technique that can effectively de-
tect all dangling pointer errors by making use of the
MMU, while still using the same physical memory as
the original program.

• We propose the use of previously developed compiler
transformation called Automatic Pool Allocation to re-
duce the problem of address space exhaustion.

• We evaluate our approach on five unix utilities, five
daemons and on an allocation intensive benchmark
suite. Our overheads on unix utilities are less than 15%
and on server applications are less than 4%. However,
our overheads on allocation intensive benchmark suite
are much worse (up to 11x slowdown).

The rest of this paper is organized as follows. The next
section gives the necessary background for the rest of the
paper. Section 3 contains a detailed description of our over-
all approach and our implementation. Section 4 gives ex-
perimental evaluation of our approach. Section 5 discusses
related work and Section 6 concludes with possible future
directions of this work.

1As shown later in Section 3.4, on 64-bit systems programs will run for
at least 9 hours before running out of virtual pages

2 Background

2.1 Memory errors in C : Terminology

Using terminology from SafeC [3], memory errors in C
programs can be classifieds into two different types: (1)
Spatial memory errors and (2) Temporal memory errors

Spatial memory errors in C programs include array
bounds violations (i.e., buffer overrun) errors, uninitialized
pointer dereferences (causing an access to an invalid ad-
dress), invalid type conversion errors, format string errors,
etc. Temporal memory errors include uses of pointers to
freed heap memory and uses of pointers to an activation
record after the function invocation completes.

In this work, we focus on detecting uses of pointers to
freed heap memory. In previous work, we have described
techniques for detecting spatial errors with very low over-
head, which also exploits Automatic Pool Allocation to re-
duce run-time overhead [4]. Those techniques (and other
approaches that detect spatial errors) are complementary to
our approach here because our approach here does not use
any metadata on individual pointers or objects and does
not restrict adding such metadata. For dangling pointer
accesses to stack objects, some combination of compile-
time escape analysis, run-time checks, or converting pos-
sibly escaping stack allocations to heap allocations can be
used [5, 14]. In the rest of this paper, by dangling pointer er-
rors we mean use of pointers to freed heap memory, where
use of a pointer is a read, write or free operation on that
pointer.

2.2 Background on Automatic Pool Allo-
cation

Given a program containing explicit malloc and free
operations, Automatic Pool Allocation transforms the pro-
gram to segregate data into distinct pools on the heap [11].
It uses the points-to graph of the program (essentially a
static partitioning of the heap and stack objects in the pro-
gram and the connectivity of these objects) to perform the
segregation. Each node in the points-to graph represents a
set of memory objects of the original program. Pool alloca-
tion creates a distinct pool, represented by a pool descriptor
variable, for each points-to graph node that represents heap
objects.

We explain the pool allocation transformation with the
help of a simple example shown in Figure 1 2. In this ex-
ample, function f calls g, which first creates a linked list of
10 nodes, initializes them, and then calls h to do some com-
putation. g then frees all of the nodes except the head and
then returns. Note that the program has a dangling pointer

2The same example was used in our previous work [6], but that work
did not detect dangling dereferences

f() {
struct s *p = 0;
// p is local
g(p);
p->next->val =...; // p->next is dangling

}

g(struct s *p) {
p->next = malloc(sizeof(struct s));
create_10_Node_List(p);
initialize(p);
h(p);
free_all_but_head(p);

}

Figure 1. Running example

error: the reference to p->next->val tries to access the
second node in the list, which has been freed.

Figure 2 shows the running example after the Pool Al-
location transformation. The transformation first identifies
points-to graph nodes that do not “escape” a function using
a traditional escape analysis (reachability analysis from
function arguments, globals and return values) and creates
pools for those nodes at the function entry and destroys
them at the function exit. In the running example, the
data structure pointed to by p never escapes the function
f(), so the transformation inserts code to create a pool
PP within f using poolinit and destroys at the function
exit using pooldestroy. For a function where the
pool “escapes” (e.g, function g in the running example)
the transformation automatically modifies the function to
take in extra pool descriptor arguments (see function g in
Figure 2). Pool allocation then ensures that all allocations
and deallocations for the data structure happen out of the
corresponding pool – it converts malloc and free calls
to use poolalloc and poolfree with the appropriate
pool descriptors in the program. This is illustrated by the
change of malloc call in function in g to poolalloc.
Similarly malloc calls in create 10 Node list()
and free calls in free all but head (not shown
here) are also changed appropriately to use the corre-
sponding pool calls. Finally all function invocations are
modified to pass in the extra pool descriptor arguments
(see invocations of g(), create 10 Node list(),
free all but head() in Figure 2).

Note that explicit deallocation via poolfree can return
freed memory to its pool and then back to the system, which
can then allocate it to a different pool. Thus dangling point-
ers to the freed memory in the original program continue to
exist in the transformed program.

In our previous work, we have used Automatic Pool Al-
location to improve memory hierarchy performance [11]
and to enforce memory safety [6] and sound alias analy-
sis [5]. None of these detected dangling pointers. The cur-

f() {
Pool PP;
poolinit(&PP, sizeof(struct s));
g(p, PP);
p->next->val = ... ; //p->next is dangling
pooldestroy(PP);

}

g(struct s *p, Pool *PP) {
p->next = poolalloc(PP, sizeof(struct s));
create_10_Node_List(p, PP);
initialize(p);
h(p);
free_all_but_head(p, PP);

}

Figure 2. Example after pool allocation trans-
formation

rent work is the first to consider how automatic pool alloca-
tion can be used to detect dangling pointer references.

3 Our Approach

3.1 Overview of the Approach

The memory management unit (MMU) in most modern
processors performs a run-time check on every memory ac-
cess (by looking at the permission bits of each page). De-
bugging tools like Electric Fence [16] and PageHeap [13]
exploit this check to detect dangling pointer accesses at run-
time. Since the MMU does checks only at page level, these
tools allocate only one object per (virtual and physical) page
and change the permissions at a free operation to protect the
page. Any dangling pointer access will then result in a hard-
ware trap, which can be caught. However, allocating only
one object per physical page would quickly exhaust physi-
cal memory. Further more, changing the allocation pattern
this way would potentially lead to poor cache performance
in physically indexed caches. Our first insight addresses this
drawback:
Insight1: Mapping multiple virtual pages to the same phys-
ical page enables us to set the permissions on each indi-
vidual virtual page separately while still allowing use and
reuse of the entire physical page via different virtual pages.

With this approach, the consumption of physical mem-
ory would be (nearly) identical to the original program, and
the multiple objects could be contiguous within the page,
preserving spatial locality in physically indexed caches.
Moreover, as we show later, with a minor increase in mem-
ory allocation (one word per allocation) this scheme can be
implemented without requiring any changes to the underly-
ing memory allocator. In a practical system, this is likely
to be significant, since programs that are already tuned to
an existing memory allocation strategy do not need to be

retuned again.
Virtual memory pages, however, still cannot be reused

(to ensure that any access to a previously freed object is
detected arbitrarily far in the future). As noted previously
in Section 2, the Automatic Pool Allocation transformation
provides bounds on the lifetimes of pools containing heap
objects, such that there are no live pointers to a pool after
the pooldestroy operation on the pool. This yields:
Insight2: For a program transformed using Automatic Pool
Allocation, it is safe to release all the virtual pages assigned
to a pool at the pooldestroy operation on the pool.

The main remaining limitation of this approach is that
long lived pools (e.g., pools reachable via a global pointer,
or pools created and destroyed in the main function for
other reasons) effectively live throughout the execution and
their virtual pages cannot be reused. In Section 3.4, we dis-
cuss three strategies to avoid this problem in practice.

Overall, we now have the ability to reuse physical pages
as well as the original program does and reuse virtual mem-
ory pages partially. Nevertheless, there are several key im-
plementation and performance issues that must be consid-
ered to make this approach practical for realistic production
software. These issues are addressed as we describe the de-
tails of the approach below.

3.2 Page mapping for detecting dangling
pointer errors

The primary mechanism we use for detecting dangling
pointer references (i.e., a load, store, or free to a previously
freed object) is to use a distinct virtual page or sequence
of pages for every dynamically allocated object. When an
object is freed, the protected bit is set for the page or pages
using the mprotect system call so that any subsequent
reference to the page causes an access violation, which is
handled by our run-time system.

We assume in this subsection that a standard heap alloca-
tor is used. A useful property of our basic approach is that
it can work with an arbitrary memory allocator and further-
more, requires only a small addition to the metadata for the
allocator and no change to the allocation algorithm itself. In
fact, the underlying allocator is completely unaware of the
page remapping used to ensure unique virtual pages. The
basic approach works as follows, assuming malloc and
free are the interface for the underlying system allocator.
Allocation: An allocation request is passed to malloc
with the size incremented by sizeof(addr t) bytes; the
extra bytes at the start of the object will be used to record
an address for bookkeeping purposes. Let a be the ad-
dress returned by malloc, Page(a) = a & ∼ (2p − 1)
and Offset(a) = a & (2p − 1), where p is log2 of the
VM page size. The latter two denote the start address of
the page containing a and the offset of a relative to the

start of the page. We then invoke a system call to as-
sign a fresh virtual page (or pages) that share the same
physical memory as the page(s) containing a. On Linux,
we do this using mremap(old address, old size,
new size, flags), with old size = 0, which re-
turns a new page-aligned block of virtual memory at least
as large as new size.3 If the new page address is Pnew,
we return Pnew(a) + Offset(a) + sizeof(addr t) to
the caller.

Note that the underlying allocator still believes that the
allocated object was at address a, whereas the caller sees
the object on a different page but at the same location within
the page. We refer to virtual page Page(a) as the canonical
page (the one assumed by the allocator) and the actual vir-
tual page Pnew as the shadow page for the object. We have
to record the original page Page(a) for the object to support
deallocation; we do this in the extra sizeof(addr t)
bytes we allocated above. Note that malloc implementa-
tions usually add a header recording the size of the object
just before the object itself so we are effectively extending
that header to also record the value of Page(a).

The net result of this approach is that multiple objects
can live in a single physical page and the underlying alloca-
tor believes they live in a single virtual page (the canonical
page). The program, however, is given a distinct virtual
page (a shadow page) for each object in the physical page.
Deallocation: On a deallocation request for address f , we
first look up the canonical page for this object which was
recorded at f−sizeof(addr t). Note that this read
operation will cause a run-time error if the object has al-
ready been freed because the virtual page containing this
memory will have been protected as explained next. We
read the size of the object using the metadata recorded by
malloc, use this size to compute how many pages the ob-
ject spanned, and use the system call mprotect to set the
protection status of the page(s) containing f to the state
PROT NONE. This will cause any future read or write of
the page to trap. If the canonical page is Pagef

C , we invoke
free(Pagef

C + Offset(f)) to free the object. The al-
locator marks the object within the canonical page as free,
allowing that range of virtual memory (and therefore the
underlying physical memory) to be reused for future alloca-
tions. The shadow page(s) containing the object at f cannot
be reused, at least with the approach as described so far.

To illustrate the primary mechanism described so far,
consider the dangling pointer example in Figure 1. With
our page remapping scheme, each list node will be allo-
cated to a fresh virtual page but will share the underlying
physical pages with other nodes. At the end of g, all pages
except the one for the head node will be marked protected,

3This behavior is undocumented in the man page but is described
here [18]. On systems where this feature is not available, we can use mmap
with an in-memory file system.

so that the dangling pointer reference will cause a trap. The
physical memory used by this code will be identical to the
original program, except for the small extra metadata on
each live object that has not been freed. Unfortunately, ev-
ery call to f() will construct a new list, consuming new
virtual pages each time and these virtual pages will not be
reused. The next technique, however, solves this problem
completely for this example.

3.3 Reusing virtual pages via Automatic
Pool Allocation

In Automatic Pool Allocation, each pool created by the
program at run-time is essentially a distinct heap, managed
internally using some allocation algorithm. We can use the
remapping approach described above within each pool cre-
ated by the program at run-time. The key benefit is that, at
a pool destroy, we can release all (shadow and canon-
ical) virtual memory pages of the pool to be reused by fu-
ture allocations. Note that physical pages will continue to
be reused just as in the original program, i.e., the physical
memory consumption remains the same as in the original
program (except for minor differences potentially caused by
using the pool allocator on top of the original heap [11]).

The only significant change in the Allocation and Deal-
location operations described above is for reusing virtual
pages. This is slightly tricky because we need to reuse
virtual pages that might have been aliased with other vir-
tual pages previously. One simple solution would be to
use the unmap system call to release previous virtual-to-
physical mappings for all pages in a pool after a pool de-
stroy. unmap would work for both canonical and shadow
pages because these are obtained from the Operating Sys-
tem (OS) via mmap and mremap respectively. Canonical
pages are obtained in contiguous blocks from the underly-
ing system (via mmap) and the blocks can be unmapped ef-
ficiently. The shadow pages, however, are potentially scat-
tered around in the heap, and in the worst case may require
a separate unmap operation for every individual object al-
located from the pool (in addition to the earlier mprotect
call when the object was freed). This could be expensive.

We avoid the explicit munmap calls by maintaining a
free list of virtual pages shared across pools and adding
all pool pages to this free list at a pool destroy. We
modified the underlying pool allocator to obtain (canoni-
cal) pages from this free list, if available. If this free list is
empty, we use mmap to obtain fresh pages from the system
as before. For each allocated object, the shadow page(s)
is(are) obtained using mremap as before to ensure a distinct
virtual memory page.

A pool free operation works just like the Dealloca-
tion case described previously, and invokes the underlying
pool free on the canonical page. A pool destroy

operation simply returns all canonical and shadow pages in
the pool to the shared free list of pages.

Considering the example again but after pool allocation
(Figure 2), a fresh pool is created for each list on entry to
f() and destroyed before returning from f(). Within this
pool, nodes are allocated on separate pages, the pages are
protected on free, and the dangling pointer reference is de-
tected as before. On return from f(), however, all the vir-
tual pages of the pool will be released to the free list and
reused for future allocations (in future invocations of f()
or elsewhere). The key property is that the compiler was
able to prove that no pointers to the pool are reachable af-
ter f() returns. This is much simpler than compile-time
detection of dangling pointers, which would have required
predicting at the reference to p->next->val that specific
objects within the list have been freed.

3.4 Avoiding costs of long-lived pools

As noted earlier in Section 3.1, the main limitation of our
approach as described so far is that virtual pages in pools
with lifetimes spanning the entire execution will never be
reused. Our examination of several Unix daemons in Sec-
tion 4.3 shows that this problem arises in very few cases.

If it occurs in a specific program, it would impose two
costs in practice: (1) A long-running program may even-
tually run out of virtual memory. (2) Small operating sys-
tem resources (the page table entry) are tied up for each
non-reusable virtual page. The page cannot be unmapped
to prevent reuse of the virtual addresses. We propose three
solutions to avoid these problems in practice.

The simplest solution is to start reusing virtual pages
when we run out of virtual addresses, or at some regular (but
large) interval. A simple calculation shows that on a 64-bit
Linux system (and assuming a maximum of 247 bytes of vir-
tual memory for a user program), even an extreme program
that allocates a new 4K-page-size object every microsecond,
with no reuse of these pages, can operate for 9 hours before
running out of virtual pages (247/(212×106×86, 400)). In
practice, even with no reuse at all, we expect typical servers
to be able to operate for days before running out. The small
probability of not detecting a dangling pointer in such situa-
tions appears unimportant. In practice, therefore, the second
cost above (tying up OS resources) appears to pose a tighter
constraint than the first. For this reason, real-world applica-
tions would likely choose to reuse memory after a shorter
(but still infrequent) interval.

An alternative approach is to run a conservative garbage
collector (GC) at the same infrequent intervals (based on
the same criteria above) to release the tied-up virtual ad-
dresses. This is much simpler and less expensive than us-
ing garbage-collection for overall memory management for
two reasons. Most importantly, since the actual physical

memory consumption is not an issue and GC only needs
to ameliorate the two problems above, we can run garbage
collection quite infrequently (e.g., once every few hours)
and when there is a light load on the server. Second, we
only need to use GC to collect memory from the long-lived
pools (which are known to the pool allocation transforma-
tion). We already have a very simple facility in our system
for each run-time pool descriptor to record exactly which
currently live pools point to it, i.e., a “dynamic pool points-
to graph” [12]. By knowing which pools need to be col-
lected, the collector can use this information to traverse only
a subset of the heap.

If the first solution is not acceptable for some reason, and
conservative GC is not available or unattractive, a third al-
ternative is that the programmer could modify the applica-
tion so that fewer heap objects are reachable from global
pointers. This is similar to, but a subset of, the tuning
needed to reduce memory consumption of applications that
use GC for memory management, since the latter also re-
quires resetting local and global pointer variables to null as
data structures are freed.

Overall, we believe that with one or more of these tech-
niques, the potential costs of lack of reuse in globally live
pools is likely to be unimportant in real-world systems.

3.5 Implementation

We have implemented the techniques described in this
paper in the pool allocation run-time system developed over
the course of our previous work on performance optimiza-
tion [11] and on memory safety [6, 5, 4].

We use the LLVM compiler infrastructure [10] to ap-
ply Automatic Pool Allocation to C programs, using the
existing version of this transformation with no changes.
We modified the pool allocator run-time in minor ways to
implement the techniques described earlier. We modified
pooldestroy to return all pages to a shared free list of
pages. We also modified poolfree so it did not return un-
used blocks to this free list. We modified poolalloc to
try to obtain fresh pages from the free list first when it needs
fresh pages (and falling back on mmap as before, if the free
list is empty). Finally, we wrap the calls to poolalloc
and poolfree to remap objects from canonical to shadow
pages and vice-versa, as described earlier.

4 Experimental Evaluation

We present an experimental evaluation of our approach
for unix utilities, server applications and some allocation
intensive applications. The goal of these experiments is to
measure the net run-time overhead of our approach, a break-
down of these overheads contributed by different factors,

Benchmark LOC Execution time in Secs Slowdown ratios
native LLVM (base) PA PA + dummy Our approach Ratio 1 Ratio 2

syscalls
Utilities
enscript 8514 1.135 1.077 1.177 1.143 1.238 1.15 1.09
jwhois 10702 0.539 0.534 0.539 0.535 0.534 1.00 0.99
patch 11669 0.174 0.176 0.177 0.179 0.179 1.02 1.03
gzip 8163 4.509 5.419 5.01 4.91 4.943 0.91 1.10
Servers
ghttpd 6036 4.385 4.507 4.398 4.461 4.486 1.00 1.02
ftpd 23033 2.236 2.293 2.267 2.318 2.291 1.00 1.02
fingerd 1733 1.238 1.285 1.277 1.278 1.285 1.00 1.04
tftpd 880 2.246 2.281 2.289 2.293 2.287 1.00 1.02

Table 1. Runtime overheads of our approach. Ratio 1 is the ratio of execution time of our approach
with respect to base LLVM, Ratio 2 is the ratio of execution time of our approach to native code. (Two
other applications, telnetd and less, are discussed in text)

and the potential for unbounded growth in the virtual ad-
dress space usage incurred in our approach. Note that our
physical memory consumption is almost exactly the same as
the original program (except for minor differences when us-
ing the pool allocation runtime library) and we do not eval-
uate the physical memory consumption experimentally.

4.1 Run-time overheads for system soft-
ware

We evaluated our approach using some commonly used
unix utilities and five server codes – ghttpd-1.4, wu-ftpd-2.6
, bsd-finged-0.17, netkit-telnet-0.17, netkit-tftp-0.17. The
characteristics of these applications are listed in Table 1.
We compiled each program to the LLVM compiler interme-
diate representation (IR), perform our analyses and transfor-
mations, then compile LLVM IR back to C and compile the
resulting code using GCC 3.4.2 at -O3 level of optimization.
We performed our experiments on a (32-bit) Intel Xeon with
Linux as the operating system. For each of the server appli-
cations, we generated a list of client requests and measured
the response time for the requests. We ran the server and
the client on the same machine to eliminate network over-
head. We conducted each experiment five times and report
the median of the measured times. In case of utilities, we
chose a large input size to get reliable measurements. We
successfully applied our approach to two interactive appli-
cations netkit-telnetd and unix utility less and did
not notice any perceptible difference in the response time.
We do not report detailed timings for these two applications.

The “native” and “LLVM (base)” columns in the ta-
ble represent execution times when compiled directly with
GCC -O3 and with the base LLVM compiler (without pool
allocation or any of our mmap system calls) using the
LLVM C back-end. LLVM uses a different set of optimiza-

tions than GCC so there is a (minor) difference in the two
execution times. Using LLVM (base) times as our baseline
allows us to isolate the affect of the overheads added by
our approach. The “native” column shows that the LLVM
(base) code quality is comparable to GCC and reasonable
enough to use as a baseline. The “PA” column shows the
time when we only run the pool allocator and do not use
our virtual memory technique, i.e., it shows the effect of
pool allocation alone on execution time.

As noted earlier in Section 1, overheads in our approach
could be due to two reasons: (1) use of a system call on
every allocation (mremap) and deallocation (mprotect)
(2) TLB miss penalty because we use far more virtual pages
than the original program. The “PA + dummy syscalls”
column shows the execution time when we do a dummy
mremap system call on every allocation and a dummy
mprotect system call on deallocation. This allows us to
isolate the overheads due to system calls from that of TLB
misses. The “Our approach” column gives the total execu-
tion time with our approach.

Ratio 1 gives the ratio of execution time of our approach
to that of LLVM (base). Ratio 2 gives the ratio of execution
time of our approach to that of native code.

As we can see from column Ratio1, our overheads are
negligible for most applications. Only one application,
enscript, has a 15% overhead. These overheads are
much better than the any one of the previous approaches
for detecting dangling pointers [16, 19, 15]. enscript
does many allocations and deallocations (in fact, when used
with electric fence, enscript runs out of physical mem-
ory). From the “PA + dummy syscalls” column, we can see
that the overhead in enscript due to system calls is about
6%. We attribute the remaining component of the overhead
(around 9%) to TLB miss penalty. Automatic Pool Allo-
cation transformation can sometimes speedup applications

Benchmark Execution time (Secs) Slowdown ratios
Our Valgrind Our Valgrind

approach slowdown slowdown
enscript 1.238 29.931 1.15 26.37
jwhois 0.534 1.336 1.00 2.48
patch 0.179 1.461 1.02 8.40
gzip 4.943 94.483 0.91 20.95

Table 2. Comparison with Valgrind. Our slow-
down ratio is Ratio 1 from Table 1

.

(e.g., gzip) because of better cache performance [11].
Overall, we believe our low overheads are due to the

patterns of memory allocation and use that servers seem
to obey: there are relatively few allocations/deallocations
(keeping our system call overheads low) but potentially
many uses of the allocated memory (we do not incur over-
heads due to hardware checks).

4.2 Comparison with Valgrind

We compared the overheads of our approach with Val-
grind [17] (a widely used open source debugging tool) on
the four Unix utilities. The servers are spawned off the
xinetd process for every client request and we were un-
able to run them under Valgrind. The results are shown in
Table 2. Valgrind attempts to detect both spatial errors and
some dangling pointer errors. We cannot isolate Valgrind
overhead for temporal errors, so the comparison is only
meant to give a rough indication of the magnitude of dif-
ference in overhead. It is worth noting that Valgrind uses a
heuristic to detect dangling pointer errors (see Section 5 for
more discussion) and does not guarantee detection of dan-
gling pointer accesses. The overheads for Valgrind range
from 148% to 2537%, which is orders-of-magnitude worse
than ours. In contrast, our approach detects only dangling
pointer errors, but our overheads are negligible for three of
the applications and 15% for one application. In our pre-
vious work [4, 5], we detect all memory errors except dan-
gling pointer errors and if those techniques were combined
with ours, our cumulative overheads would still be much
lower than that of Valgrind for these applications.

4.3 Address space wastage due to long-
lived pools

We studied the usage (and wastage) of virtual address
space incurred by our technique by tracing three of the
server programs (ftpd, telnetd, ghttpd) using gdb.
We focused on the servers since they are long-running (as
well as security-critical) programs. We found that a com-
mon programming model used by these servers is to fork a

new process to service each new connection. Although we
did not trace fingerd and tftpd, it is clear from the comments
in the source code that they follow exactly the same pro-
gramming model; in fact, in case of tftpd every command
from the client (e.g, get filename) forks off a new process.
This model of forking a new process to service requests fits
well with our approach. Any wastage in address space in
one connection is not carried over to the other connections
handled by the server. We expect each individual connec-
tion to be of short duration even though all the servers them-
selves are long running.

We then measured the usage of virtual address space
within each individual connection for the three servers.
ghttpd is a webserver designed for small memory foot

print and performs only one dynamic allocation per con-
nection. Consequently, there is no virtual memory wastage
when we use our approach.

In case of ftpd, we found that in a few cases, the pool
allocation transformation helps in reuse of address space.
For example, the fb real path function in ftpd, which
resolves sym links, first creates a pool, allocates some mem-
ory out of the pool, does some computation, frees the mem-
ory, and finally destroys the pool. Any virtual addresses
used by this pool are reusable after the pool destroy. How-
ever, there are other allocations in ftpd that are out of
global pools and do not benefit from pool allocation. We
found that for each ftp command (e.g., get filename), there
are 5-6 allocations from global pools, so that virtual mem-
ory usage increases at the rate of 5-6 pages per command.
Although this problem could be alleviated using the tech-
niques described in Section 3.4, this problem is unlikely to
be important for ftpd because the process is killed at end
of a user connection.
telnetd performs 45 small allocations (and dealloca-

tions) before giving control to the shell in each session (pro-
cess). It does not do any more (de)allocations and just waits
for the session to end. Using our approach we just use 45
virtual pages for each session. In all these cases, we guaran-
tee the absence of any undetected dangling pointer accesses.

4.4 Overheads for allocation intensive ap-
plications

We measured the run-time overheads of our approach
when applied to allocation intensive Olden benchmarks.
These benchmarks have high frequency of allocations and
are a worst case scenario for our approach. While the over-
heads for three of the Olden benchmarks were less than
25%, the overheads for the remaining six are high (slow-
downs from 3.22 to 11.24). As can be noted from sev-
eral programs, including bisort, health, and mst),
the overheads can be attributed to both the system call
overheads and TLB misses. Our approach can be used

native LLVM PA + Our Ratio 3
(base) dummy approach

sys call
bh 15.090 9.723 11.035 12.127 1.25
bisort 2.803 2.641 4.740 8.495 3.22
em3d 9.774 6.830 7.366 7.801 1.14
health 0.319 0.305 2.355 3.429 11.24
mst 0.285 0.166 1.040 1.582 9.53
perimeter 0.187 0.210 1.428 2.188 10.42
power 5.698 2.903 2.959 3.168 1.09
treeadd 0.277 0.293 0.455 1.0777 3.68
tsp 1.753 1.637 3.647 6.749 4.12

Table 3. Overheads for allocation intensive
Olden benchmarks, Ratio 3 is the slow down
of our approach with respect to LLVM base.

for such allocation (and deallocation) intensive applications
only during debugging.

5 Related Work

Detecting memory errors in C/C++ programs is a well re-
searched area. A number of previous techniques focus only
on spatial memory errors (buffer overflow errors, uninitial-
ized pointer uses, arbitrary type cast errors, etc). As ex-
plained in Section 2.1, detecting spatial errors is comple-
mentary to our approach. In this section, we compare our
approach to only to those techniques that detect or eliminate
dangling pointer errors.

One way to eliminate dangling pointer errors is to use au-
tomatic memory management (garbage collection) instead
of explicit memory allocation and deallocation. Where ap-
propriate, that solution is simple and complete, but it can
significantly impact the memory consumption of the pro-
gram and perhaps lead to unacceptable pause times. For C
and C++ programs that choose to retain explicit frees in the
program, an alternative solution is required. We focus here
on comparing those approaches that detect dangling point-
ers in the presence of explicit deallocation.

5.1 Techniques that rely on heuristics to
detect dangling pointer bugs

A number of systems have been proposed that use heuris-
tic run-time techniques to detect heap errors, including
some dangling pointer errors [20, 17, 9, 8]. As noted in
the Introduction, these techniques do not provide any guar-
antees about the absence of such errors. The limitation is
indeed significant: in fact, these techniques can detect dan-
gling memory errors only as long as the freed memory is not
reused for other allocations in the program. Furthermore, all

of them rely on heuristics to delay reuse of freed memory,
which can increase the physical memory consumption.

5.2 Techniques that guarantee absence of
dangling pointer references

SafeC [3] is one of the earliest systems to detect (with
high probability) all memory errors including all dangling
pointer errors in C programs. SafeC creates a unique capa-
bility (a 32-bit value) for each memory allocation and puts it
in a Global Capability Store (GCS). It also stores this capa-
bility with the meta-data of the returned pointer. This meta-
data gets propagated with pointer copying, arithmetic. Be-
fore every access via a pointer, its capability is checked for
membership in the global capability store. A free removes
the capability from the global capability store and all dan-
gling pointer accesses are detected. FisherPatil [15] and Xu
et. al [19] propose improvements to the basic scheme by
eliminating the need for fat-pointers and storing the meta-
data separately from the pointer for better backwards com-
patibility. To be able to track meta-data they disallow arbi-
trary casts in the program, including casts from pointers to
integers and back. Their overheads for detecting only the
temporal errors on allocation intensive Olden benchmarks
are much less than ours – about 56% on average (they do
not report overheads for system software).

However, the GCS can consume significant memory:
they report increases in (physical and virtual) memory con-
sumption of factors of 1.6x - 4x for different benchmarks
sets [19]). For servers in particular, we believe that such
significant increases in memory consumption would be a
serious limitation.

Our approach, on the other hand, provides better back-
wards compatibility: we allow arbitrary casts including
casts from pointers to integers and back. Furthermore,
our approach uses the memory management unit to do a
hardware runtime check and does not incur any per access
penalty. Our overheads in our experiments on system soft-
ware, with low allocation frequency, are negligible in most
cases and less than 15% in all the cases. However, for pro-
grams that perform frequent memory allocations and deal-
locations like the Olden benchmarks, our overheads are sig-
nificantly worse (up to 11x slowdown). It would be an in-
teresting experiment to see if a combination of these two
techniques can work better for general programs.

5.3 Techniques that check using MMU

As mentioned earlier, Electric Fence [16] and Page-
Heap [13] are debugging tools that make use of the mem-
ory management unit (MMU) to detect dangling pointer er-
rors (and some buffer overflow errors) without inserting any
software checks on individual loads/stores. However, both

the tools allocate only one memory object per virtual and
physical page, and do not attempt to share a physical page
through different virtual pages. This means that even small
allocations use up a page of actual physical memory. This
results in several fold increase in memory consumption of
the applications. In turn, the applications exhibit very bad
cache behavior increasing the overheads of the tools. These
overheads effectively limit the usefulness of the tools to
debugging environments. In contrast, we share and reuse
physical memory, and use automatic pool allocation to reuse
virtual addresses.

6 Conclusion and Future Work

In this paper, we have presented a novel technique to de-
tect uses of pointers to freed memory that relies on two sim-
ple insights: (1) Using a new virtual page for every alloca-
tion but mapping it to the same physical page as the orig-
inal allocator. (2) Using a compiler transformation called
automatic pool allocation to mitigate the problem of virtual
address space exhaustion. We evaluated our approach on
several Unix utilities and servers and we showed that our
approach incurs very low overhead for all these cases – less
than 4% for the server codes and less than 15% for the utili-
ties. These overheads are low enough to be acceptable even
in production code (although our techniques could be very
effective for debugging as well). We believe this is the first
time such a result has been demonstrated for the run-time
detection of dangling pointer errors.

For C or C++ programs that have frequent allocations
and deallocations, two main performance problems remain
— the system call overhead for allocations and dealloca-
tions, and the TLB miss overhead. As an extension to this
work, we plan to investigate simple OS and architectural en-
hancements that can reduce both these kinds of overheads
and make our approach applicable to these other kinds of
software. We also plan to combine this approach with tech-
niques for detecting other kinds of memory errors from our
previous work [4, 5], to build a comprehensive safety check-
ing tool. We believe this will be straightforward as the com-
piler and run-time techniques are complementary, and have
been implemented in a common infrastructure.

References

[1] MySQL double free heap corruption vulnerability. http:
//www.securityfocus.com/bid/6718/info,
Jan 2003.

[2] MITKRB5-SA: double free vulnerabilities. http:
//seclists.org/lists/bugtraq/2004/sep/
0015.html, Aug 2004.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detec-
tion of all pointer and array access errors. In ACM SIGPLAN

Conf. on Programming Language Design and Implementa-
tion (PLDI), June 1994.

[4] D. Dhurjati and V. Adve. Backwards-compatible array
bounds checking for C with very low overhead. In Proc.
28th Int’l Conf. on Software Engineering (ICSE), Shanghai,
China, May 2006.

[5] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: En-
forcing alias analysis for weakly typed languages. In ACM
SIGPLAN Conf. on Programming Language Design and Im-
plementation (PLDI), June 2006.

[6] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Mem-
ory safety without garbage collection for embedded applica-
tions. ACM Transactions on Embedded Computing Systems,
Feb. 2005.

[7] I. Dobrovitski. Exploit for cvs double free() for linux
pserver. http://seclists.org/lists/bugtraq/
2003/feb/0042.html, Feb 2003.

[8] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Winter USENIX, 1992.

[9] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in c programs. In
Automated and Algorithmic Debugging, pages 13–26, 1997.

[10] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation. In Proc.
Int’l Symp. on Code Generation and Optimization (CGO),
San Jose, Mar 2004.

[11] C. Lattner and V. Adve. Automatic pool allocation: Improv-
ing performance by controlling data structure layout in the
heap. In Proc. ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation (PLDI), Chicago, IL, Jun
2005.

[12] C. Lattner and V. Adve. Transparent Pointer Compression
for Linked Data Structures. In MSP, Chicago, IL, Jun 2005.

[13] Microsoft. How to use Pageheap.exe in Windows
XP and Windows 2000. http://support.
microsoft.com/?kbid=286470 .

[14] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. Ccured: type-safe retrofitting of legacy soft-
ware. ACM Transactions on Programming Language and
Systems, 27(3):477–526, 2005.

[15] H. Patil and C. Fischer. Low-cost, concurrent checking of
pointer and array accesses in c programs. Software–Practice
and Experience, 27(1):87–110, 1997.

[16] B. Perens. Electric fence malloc debugger. http://
perens.com/FreeSoftware/ElectricFence/ .

[17] J. Seward. Valgrind, an open-source memory debugger for
x86-gnu/linux.

[18] L. Torvalds. mremap feature discussion, see
http://lkml.org/lkml/2004/1/12/265.

[19] W. Xu, D. C. DuVarney, and R. Sekar. An efficient
and backwards-compatible transformation to ensure mem-
ory safety of C programs. In Proc. 12th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages
117–126, 2004.

[20] S. H. Yong and S. Horwitz. Protecting C programs from
attacks via invalid pointer dereferences. In Foundations of
Software Engineering, 2003.

[21] Y. Younan. An overview of common programming security
vulnerabilities and possible solutions. Master’s thesis, Vrije
Universiteit Brussel, 2003.

