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ABSTRACT
The use of actuators with inherent compliance, such as se-

ries elastic actuators (SEAs), has become traditional for robotic
systems working in close contact with humans. SEAs can reduce
the energy consumption for a given task compared to rigid ac-
tuators, but this reduction is highly dependent on the design of
the SEA’s elastic element. This design is often based on natural
dynamics or a parameterized optimization, but both approaches
have limitations. The natural dynamics approach cannot con-
sider actuator constraints or arbitrary reference trajectories, and a
parameterized elastic element can only be optimized within the
given parameter space. In this work, we propose a solution to
these limitations by formulating the design of the SEA’s elastic
element as a non-parametric convex optimization problem, which
yields a globally optimal conservative elastic element while re-
specting actuator constraints. Convexity is proven for the case
of an arbitrary periodic reference trajectory with a SEA capable
of energy regeneration. We discuss the optimization results for
the tasks defined by the human ankle motion during level-ground
walking and the natural motion of a single mass-spring system
with a nonlinear spring. For all these tasks, the designed SEA re-
duces energy consumption and satisfies the actuator’s constraints.

1 INTRODUCTION
During the last two decades, research in soft robotics has

revolutionized actuation for robotic systems [1]. Within the soft

robotics family, series elastic actuators (SEAs) demonstrate how
elastic elements improve the functionality of prosthetic legs [2–4],
humanoid robots [5], and manufacturing robots working in close
contact with human users [6].

In contrast to rigid actuators, SEAs have an elastic element
connected in series between the actuator and the load [7]. In gen-
eral, the rigid actuator could be an electric motor, or a hydraulic
or pneumatic cylinder. In this work, we only consider electric
motors. When used in SEAs, they are normally connected to a
high-ratio linear transmission, then an elastic element connects
the transmission’s output to the load. This architecture represents
a typical implementation of SEAs [8]. Designs with a low ra-
tio transmission are less common but still possible due to recent
developments in high torque motors [9, 10].

SEA’s architecture offers important benefits to the actuation
of robotic systems, as shown in previous research. The elastic
element in a SEA decouples the reflected inertia of the rigid
actuator from the inertia of the load [5]. In addition, it can store
mechanical energy and release it with enormous power. It also
serves as a soft load cell, suitable for measuring and controlling
force generation [11]. Robots using SEAs exploit these important
characteristics in order to reduce the energy lost during impacts
[5], increase the actuator’s peak power [3], improve the safety of
the human and robots [12], move loads with higher velocities [13],
and/or reduce energy consumption of the system [14, 15].

How can an SEA reduce the energy consumption compared
to rigid actuators? The answer is not intuitive, taking into account
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that the elastic element cannot inject energy from an external
source. As discussed in the initial developments of SEAs [16],
the concept of natural dynamics provides a partial answer to this
question. In this framework, energy consumption is minimized if
the natural frequency of the elastic element matches the desired
motion of the load. For instance, if the motion of the load is
sinusoidal, it is possible to design an elastic element with constant
stiffness that, once connected to the load, produces the required
motion given an adequate initial elongation. In this ideal configu-
ration the motor would stay still. In practice, however, the motor
moves slightly to compensate for the energy lost due to heat and
viscous friction generated by the elastic element and the load. As
experimentally shown in [15, 17], this reduced motion of the mo-
tor consumes less energy than an electric motor driving the same
load without an elastic element. This approach can generalize to
more complex motion if nonlinear elastic elements are used. They
are capable of multiple local natural frequencies based not only
on their stiffness values and the inertia of the load, but also on the
initial elongation and the displacement produced by the electric
motor.

Although natural dynamics provide intuition about the possi-
ble benefits of elastic elements, there are many cases where the
optimal choice of elastic element is not so obvious. For instance,
the desired motion of the load may not correspond to the natural
frequency of a conservative elastic element. Even if the required
motion matches a natural frequency of oscillation, holding the
motor’s initial position dissipates energy by Joule heating (i.e.,
copper losses) if the system is backdrivable. For this configura-
tion, a more accurate formulation considers the natural frequency
of the double-mass spring system formed by the elastic element,
the motor, and load inertia. Note that the natural frequency of this
system may not have an analytic solution once nonlinear elastic
elements are considered. Natural dynamics also do not explain
how to design the elastic element in the presence of actuator con-
straints. Maximum deflection of the elastic element, maximum
torque, and maximum velocity of the motor are typical constraints
imposed by the construction of the device.

Computing the energy cost associated with different elastic
elements is a common alternative to the natural dynamics method-
ology. This approach parameterizes the behavior of the elastic
element and evaluates the energy consumption across values of
the parameters. For instance, if the elastic element is defined as a
linear spring, then its stiffness is the optimization parameter [2].
In contrast to natural dynamics, constraints can be included explic-
itly in the optimization problem. However, this method can only
guarantee a minimum value within the scope of the parameter’s
grid, but it may not be a global solution. It is also computation-
ally expensive to evaluate all the points in a dense grid of the
parameter space. This becomes problematic once multiple de-
grees of freedom are considered. In addition, assuming an specific
shape for the elastic element function limits the elastic elements
that can be considered. For instance, it is possible that a non-

linear conservative spring could reduce the energy consumption
further compared to a parameterized linear spring. Because of
these limitations, the design of elastic elements that reduce energy
consumption for SEAs remains an open question.

Our contribution
In this paper the elastic element is defined, in the most general

conservative form, as the function

τela = f (δ ), (1)

where δ is the elongation and τela the torque of the elastic element.
Our contribution is to specify f (δ ) as the optimal solution of
a convex quadratically constrained quadratic program (convex-
QCQP) subject to actuator constraints. We constrain f (δ ) to be
any monotonically increasing function to ensure that it represents
a conservative elastic element. In contrast to previous methods,
we do not assume a specific parameterization of f (δ ) or that the
reference motion of the load resembles natural dynamics. As a
result, our method identifies the optimal elastic element, linear or
nonlinear, that minimizes energy consumption for backdrivable
SEAs following arbitrary periodic trajectories subject to actuator
constraints. Using this optimization tool, we show how motor
inertia, transmission ratio, and non-linearity of the elastic element
affect energy consumption.

The content is organized as follows. A description of the
energy flow and modeling of an SEA is provided in Sec. 2. This
technical introduction will be used to formulate the design of an
elastic element as a convex optimization problem in Sec. 3. Simu-
lation examples with multiple reference trajectories are analyzed
in Sec. 4, followed by conclusions.

2 SYSTEM DESCRIPTION AND MODELING
SEAs are mechatronic devices that transduce electrical en-

ergy into mechanical and vice versa. From the energy perspective,
they are similar to traditional electric motors; however, their ca-
pability to store and release elastic energy creates an additional
opportunity to reduce their energy consumption. This section
describes the energy flow of SEAs as an initial step of our formu-
lation.

In this work, we analyze SEAs powered by a battery and
an electric motor, a typical scenario for a wearable robot. The
corresponding energy flow and main components are illustrated
in Fig. 1. In practice, every component in the system is capable
of dissipating energy. For example, the battery self-discharges,
the motor drive produces Joule heat, friction in the transmission
generates heat, and the elastic elements are not purely elastic
(i.e., dissipate energy through their viscous behavior). We will
concentrate on the energy consumed by the motor since it is the
largest consumption in the system.
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FIGURE 1. Energy flow of an SEA: Dashed lines indicate that the
energy path may or may not exist depending on the construction of
the device. For instance, energy flowing from the drive to the battery
requires drivers capable of regeneration. Energy flowing from the trans-
mission to the electric motor requires the motor-transmission system to
be backdrivable.

Energy flow in an electric motor occurs in two principal
modes of operation: actuator and generator mode. As an actuator,
the electric motor receives electrical energy from the battery/driver
and converts it into mechanical energy and heat. Traditional
motor drives and mechanical transmissions are designed so that
the electric motor can always operate in this mode. A more
interesting scenario occurs when the motor is also allowed to
work as a generator. Suppose the motor is decelerating the load.
In this case, the energy of the load and elastic element move the
actuator’s rotor and generate electrical energy to be stored in the
battery.

However, traditional SEAs may not function in generator
mode. These designs typically have linear transmissions with
high reduction ratios. The reflected inertia of the motor after the
transmission, which is proportional to the reduction ratio squared,
is normally very high compared to the load. For example, three
recent SEA designs reflect output inertia of 360 kg, 270 kg, and
294 kg for the UT-SEA [8], Valkyrie’s SEA [18], and THOR-
SEA [19] respectively, as indicated by [10]. As a consequence,
the system requires a high load to backdrive. If the system is
not backdrivable, no electric energy can be recovered from the
motion of the load. An additional but less common limitation
is the motor driver. In order to regenerate energy, motor drivers
should be selected such that the electrical energy recovered from
the motion of the rotor can flow back to charge the battery.

In this work, we assume the SEA has been designed such that
energy can flow from the load to the energy source and vice versa.

FIGURE 2. Diagram of a SEA. Eqns. 3-4 illustrate the system’s equa-
tions of motion.

In other words, it is backdrivable and adequate electronics allow
energy to flow to and from the battery. In this case, the energy it
consumes, Em, is given by

Em =
∫ t f

t0

τ2
m

k2
m︸︷︷︸

Winding
Joule

heating

+ τmq̇m︸ ︷︷ ︸
Rotor

mechanical
power

dt, (2)

where t0 and t f are the initial and final times of the trajectory
respectively, km is the motor constant, τm the torque produced by
the motor, and q̇m the motor’s angular velocity. Notice that energy
associated with Joule heating can be also written as i2mR, since
τm = imkmt and km = kmt/

√
R, where im is the electric current

flowing through the motor, R the motor terminal resistance, and
kmt the motor torque constant. As a comparison, consider the case
where the motor driver does not regenerate energy. In this case,
the rotor mechanical power would be expressed as max(τmq̇m,0)
instead of τmq̇m, in Eqn. 2, meaning that the motor only consumes
energy. When the motor acts as a generator, the energy it converts
does not transfer to the battery but instead dissipates as heat
through the motor driver electronics.

Figure 2 illustrates the configuration of an SEA. Using the
Newton-Euler method, the corresponding balance of torques at the
motor and load side provides the following equations of motion

Imq̈m =−bmq̇m + τm +
τela

ηr
, (3)

τela = g(ql , q̇l , q̈l ,τext), (4)

where Im is the inertia of the motor, bm its viscous friction coef-
ficient, τela the torque produced by the elastic element, r the
transmission ratio, η the efficiency of the transmission, and
g(ql , q̇l , q̈l ,τext) defines the load dynamics as a function of the
corresponding load position ql , load velocity q̇l , load acceleration
q̈l , and the external torque applied to the load τext. For instance, in
the case of an inertial load with viscous friction the load dynamics
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are defined by

g(ql , q̇l , q̈l ,τext) =−Il q̈l +bl q̇l , (5)

where Il is the inertia of the load, and bl its corresponding viscous
friction coefficient. The elongation of the elastic elastic element
is defined as

δ = ql−
qm

r
. (6)

As seen in Eqns. 3-4, the elastic element cannot modify the torque
required to perform the motion, τela, but it can modify the position
of the motor such that Imq̈m + bmq̇m reduces the torque of the
motor, τm.

If periodic motion is considered, τm from Eqn. 3 can be re-
placed in the expressions of energy, Eqn. 2, to make the following
simplification∫ t f

t0
τmq̇mdt =

∫ t f

t0

(
Imq̈m +bmq̇m−

τela

ηr

)
q̇mdt,

=

∫ t f

t0

(
bmq̇2

m−
τelaq̇m

ηr

)
dt +

∫ t f

t0
Imq̇m

dq̇m

dt
dt,

=

∫ t f

t0

(
bmq̇2

m−
τelaq̇m

ηr

)
dt +

∫ q̇m f

q̇m0

Imq̇mdq̇m,

=

∫ t f

t0

(
bmq̇2

m−
τela

ηr
(q̇m− rq̇l + rq̇l)

)
dt,

=

∫ t f

t0

(
bmq̇2

m +
τelaq̇l

η

)
dt−

∫
δ f

δ0

τela

η
dδ ,

=

∫ t f

t0

(
bmq̇2

m +
τelaq̇l

η

)
dt, (7)

for periodic motion, q̇m f = q̇m0 , and δ f = δ0. This simplification
illustrates two concepts. First, the energy associated with the
inertia of the motor is zero for periodic motion. This will be
useful to show convexity of the optimization problem. Second,
the mechanical energy provided to or absorbed from the motion
of the load (i.e.,

∫ t f
t0

τelaq̇l
η

dt) will be provided or absorbed by the
electric motor regardless of the elastic element.

3 STIFFNESS DESIGN AS A CONVEX OPTIMIZATION
PROBLEM
In this section, the elastic element will be defined such that

it minimizes the energy consumption of the motor for a given

task. Specifically, the optimization will define the function f (δ )
in Eqn. 1 such that the expression in Eqn. 2 is minimized and
satisfies specific constraints. In simple terms, this is equivalent to

minimize
f (δ )

Energy consumed by the motor,

subject to Dynamics of the system,

Actuator constraints.

In this work, the given task is defined as a reference trajectory
qlref(t), its corresponding time derivatives q̇lref(t), q̈lref(t), and the
external torque τext(t). In order to draw conclusions independent
of the controller design, we will assume perfect tracking, i.e.
ql(t)≡ qlref(t), q̇l(t)≡ q̇lref(t), and q̈l(t)≡ q̈lref(t).

Dynamics of the system
Equations (3-4) illustrate the dynamics of the system. They

consider continuous time derivatives of qm. In order to formulate
this in a convex optimization framework, we approximate the con-
tinuous time derivative with a discrete time representation. This
can be expressed as the following matrix operation ˙̂qm ≈ Dq̂m,
where q̂m, ˙̂qm ∈ Rn is the discrete representation of qm and q̇m, n
the number of samples, D ∈ Rn×n is defined as

D =


0 1 0 0 · · · −1
−1 0 1 0 · · · 0

...
. . .

...
0 · · · −1 0 1
1 · · · −1 0


1

2∆t
, (8)

and ∆t is the sample rate. Dq̂m is the discrete time derivative of
q̂m, based on the central difference method, a similar definition
of D can be done for trajectories with variable sample rates. For
the sake of this analysis, we assume a fixed sample time without
loss of generality. The first and last rows of D assume that qm̂
represents a periodic trajectory, i.e. q̂m(n+1) = q̂m(1). Then the
equations of motion, Eqns. 3-4, can be approximated as

τ̂m = (ImDD+bmD)q̂m− τ̂ela
1

ηr
, (9)

τ̂ela = ĝ(q̂l , ˙̂ql , ¨̂ql , τ̂ext), (10)

δ̂ = q̂l− q̂m
1
r
, (11)

where τ̂m, τ̂ela, q̂l , ˙̂ql , ¨̂ql , τ̂ext ∈ Rn represent the discrete sampled
versions of the motor torque, torque of the elastic element, load
position, load velocity, load acceleration, and external torque
applied to the load, respectively.
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The objective in our optimization is to define the elastic
element, which is equivalent to finding the function f (δ ). The
function g(·) defines the required values of torque of the elastic
element given a reference trajectory but it does not relate them
with the elongation of the elastic element. The optimization is then
focused on the relationship of the given τela and the elongation
δ . Since the elongation is partially defined by the reference load
position, Eqn. 11, the optimization problem can be interpreted
as finding the position of the motor, qm, such that the energy
consumption of the motor is minimized. Once the position of
the motor is established, the deflection of the elastic element is
defined and can be used in conjunction with the given τela to
generate f (δ ).

Cost function: Energy consumed by the motor
Based on the discrete formulation of the dynamics, Eqns. 9-

11, the energy required by the motor, Eqn. 2, can be approximated
in discrete form as

Em ≈
n

∑
i=1

(
τ̂2

mi

k2
m
+ τ̂mi

˙̂qmi

)
∆t,

=

(
τ̂T

m τ̂m

k2
m

+ τ̂
T
mDq̂m

)
∆t. (12)

Actuator constraints
The definition of the elastic element relies on the definition

of f (δ ). For conservative elastic elements, the function f (δ )
imposes two specific constraints. First, f (δ ) is a function that
lies on the I and III quadrants of the torque-elongation Cartesian
frame. Considering elongation and torque as the corresponding
input and output of the elastic element, this implies that it is a
passive system. Second, we consider that the function f (δ ) is
bijective, a given elongation produces a unique torque and a given
torque is being produced by a unique elongation.

These two constraints can be expressed mathematically as set
of equality and inequality constraints. Specifically, we define the
vector α1 to constraint f (δ ) to lie in the I and III quadrants of the
torque-elongation Cartesian frame. The vector α2 will indicate
that a given torque is generated by a unique elongation. Recall
that the torque of the elastic element is a constant vector given
from the reference trajectory, Eqn. 4. The inequality and equality
constraints are

α1 ≤ 0, (13)
α2 = 0, (14)

where

α1i :=

{
−δ̂i if τ̂elai ≥ 0

δ̂i if τ̂elai < 0
, i = 1, ...,n,

α2l := δ̂i− δ̂ j if τ̂elai = τ̂ela j , i, j = 1, ...,n,

(15)

and l is the number of times that τ̂elai = τ̂ela j . In addition to
these constraints, traditional actuator constraints such as maxi-
mum elongation of the elastic element, maximum and minimum
torque of the motor, as well as bounds on the motor velocity are
considered in our formulation.

The optimization problem
The optimization problem is then written in discrete form as

minimize
q̂m

(
τ̂T

m τ̂m

k2
m

+ τ̂
T
mDq̂m

)
∆t,

subject to

τ̂m = (ImDD+bmD)q̂m− τ̂ela
1

ηr
,

‖τ̂m‖∞
≤ τmax,

‖Dq̂m‖∞
≤ q̇max,∥∥∥δ̂m

∥∥∥
∞

≤ δmax,

α1 ≤ 0,
α2 = 0,

(16)

where δmax, τmax, q̇max, are the corresponding maximum values
for the elongation of the elastic element, torque, and velocity of
the motor respectively. Inequality and equality for vectors are
considered to be componentwise.

Convexity of the optimization problem
The optimization problem in Eqn. 16 is convex if the cost is

a convex function and the constraints represent a convex set of
the optimization variable, q̂m, [20]. We use the fact that the sum
of two convex functions is a convex function to analyze each term
in Eqn. 12, [20]. Using the definition of torque from the discrete
dynamics, Eqn. 9, the cost associated with winding Joule heating
can be written as

τ̂T
m τ̂m

k2
m

∆t =
∆t
k2

m

(
q̂T

mAT Aq̂m +2βAq̂m +β
T

β
)
, (17)
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where

A := (ImDD+bmD) ,

β :=−τ̂ela
1

ηr
.

The Hessian of the quadratic function in Eqn. 17,(
∂ 2

∂ 2qmd

τ̂T
md τ̂md

k2
m

∆t
)
= AT A, is the Gramian matrix of A. This is a

positive semi-definite matrix, as can be seen from its singular
value decomposition. This shows that the quadratic equation is
convex with respect to q̂m.

The cost associated with the mechanical energy of the rotor
can be analyzed in a similar manner; however, an important dis-
tinction will be made for periodic and non periodic motion. Using
the simplified expression for the mechanical energy of the motor,
Eqn. 7, this cost can be written as

τ̂
T
mDq̂m∆t = (Aq̂m +β )T Dq̂m∆t,

= bmq̂T
mDT Dq̂m∆t +β

T Dq̂m∆t. (18)

Then, convexity can be shown in a similar manner as before:
the Hessian of the quadratic equation, Eqn. 18, is DT D, which is
the positive semi-definite Gramian matrix of D. If the reference
motion is not periodic, then the objective function is in general
not convex, the eigenvalues of the matrix AT D can be positive
or negative. However, the problem can be formulated as a non-
convex QCQP [21]. For this, note that q̂T

mAT Dq̂m = 1
2 q̂T

m(A
T D+

DT A)q̂m. Defining the symmetric matrix B = 1
2 (A

T D + DT A),
we rewrite Eqn. 18 as

τ̂
T
mDq̂m∆t = q̂T

mBq̂m∆t +β
T Dq̂m∆t. (19)

With this analysis we conclude that the cost function in Eqn. 16
is convex for periodic motion and is non-convex quadratic for
non-periodic motion.

Once the constraints in Eqn. 16 are written with respect to q̂m,
they define a set of inequality and equality constraints of the form
Cq̂m ≤ d and Pq̂m = r, where C,P ∈ Rn×n and d,r ∈ Rn. These
constraints represent a convex set of q̂m, as seen in [20], which
are equivalent to a polyhedra.

4 EXAMPLE CASES
In this section, we solve the optimization problem in Eqn. 16

to define the SEA’s elastic element for two different reference
trajectories: natural oscillation of a nonlinear spring, and motion
of the ankle during level ground human walking. For each case,
the trajectory of the load (i.e., ql , q̇l , q̈l , and τext in Eqn. 4) is given

FIGURE 3. (a) Single mass-spring system. The elastic element de-
scribes the nonlinear spring with τe = kq3

l . (b) Double mass-spring
system. The equilibrium position of the elastic element is ql = qm/r,
elongation is defined as δ = ql − qm/r. Motor and transmission are
considered to be backdrivable.

and the optimization problem is numerically solved using CVX,
a package for specifying and solving convex programs [22, 23].
In all simulations, CVX executed the solver Mosek [24] with
precision settings cvx_precision best.

We used the parameters of a commercial frameless motor
(Model: ILM 85x26, RoboDrive, Seefeld, Germany), for the task
representing the natural oscillation of a nonlinear spring. This
motor has a high nominal and peak torque, requiring a lower
reduction ratio. This configuration favors backdrivability of the
SEA. For the motion of the ankle, we used the parameters of the
motor (Model: EC30, Maxon motor, Sachseln, Switzerland) and
transmission used in the ankle joint actuator of the powered pros-
thetic leg designed and build at the University of Texas at Dallas
(UTD) [25]. The parameters of the two systems are summarized
in Table 1.

Natural oscillation of a nonlinear spring
Figure 3-(a) describes a single mass-spring system with a

nonlinear spring, τela = αq3
l , and corresponding equation of mo-

tion τela = −Il q̈l , where Il = 125gm2 is the inertia of the load
and α = 40Nm/rad3. No actuator constraints are considered for
this trajectory. Given an initial displacement, ql(0) = π/2rad, the
position of the load will oscillate as shown in Fig. 4. This natural
vibration is defined as our reference motion.

For analysis, we solve the optimization problem for the sys-
tem in Fig. 3-(b), which represents an SEA driving the same
inertial load as in Fig. 3-(a). The SEA can generate the reference
motion with the motor holding its initial position if the elastic ele-
ment matches the nonlinear spring in Fig. 3-(a), i.e., τela = αδ 3.
However, this approach may not be energetically efficient. If the
system is backdrivable, the motor must apply a reactionary torque
to hold its initial position. This torque requires a current that gen-
erates heat losses at the motor’s winding due to Joule heating. In
contrast, we can solve the optimization problem in Eqn. 16 to find

6 Copyright c© 2017 by ASME



0 50 100 150 200 250

−1

0

1

q l
[r

ad
]

0 50 100 150 200 250

−100

0

100

Time [ms]

τ
ex

t
[N

m
]

FIGURE 4. The reference trajectory of the load is defined by the
natural oscillation of the single mass-spring system in Fig. 3-(a) with
α = 40Nm/rad3, Il = 125gm2, and ql(0) = π/2rad.

TABLE 1. Simulation parameters based on the motor ILM85x26 from
RoboDrive and EC30 from Maxon motor.

Parameter ILM85 EC30 Units

x26

Motor torque constant, kt 0.24 0.0136 N m/A

Motor terminal resistance, R 323 102 mΩ

Rotor inertia, Imr 1.15 0.0333 kgcm2

Rotor assembly, Ima 0.131 0 kgcm2

Motor inertia, Im = Imr + Ima 1.246 0.0333 kgcm2

Gear ratio, r 22 720

Efficiency transmission, η 1 1

Motor viscous friction, bm 60 6.66 µN m s/rad

the elastic element that minimizes the total energy expenditure
(i.e., winding losses and viscous friction). In order to evaluate the
performance of the proposed methodology, we solve the problem
in Eqn. 3 to minimize three different cost functions: the energy
dissipated by winding Joule heating, the energy dissipated by
viscous friction, or the total energy consumption. The resulting
elastic elements, torques, and positions of the motor are illustrated
in Fig. 5. Table 2 summarizes the energy balance.

Minimizing viscous friction leads to the same elastic element
as in Fig. 3-(a). The energy required to produce the motion is
then 20.174 J which is all dissipated in the motor’s winding. In
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τ
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a
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m
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FIGURE 5. Optimization results considering natural oscillation of a
nonlinear spring as the reference motion. The solid line corresponds to
the elastic element that minimizes the energy consumption due to viscous
friction (VF). It matches τela = αδ 3, the nonlinear spring used in the
single mass-spring system. The dotted line describes the elastic element
that minimizes winding losses (WL) due to Joule heating. The dashed
line describes the elastic element that minimizes both winding losses
and viscous friction, i.e., total energy (TE). The corresponding energy
expenditure is shown in Table 2.

contrast, minimizing the total energy consumption results in a cost
of 9.66 J; 52% less compared to the previous case. The elastic
element is nonlinear but is not defined by τela = 40δ 3 and the
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TABLE 2. Energy expenditure with different cost functions. V.F. is
the cost associated with viscous friction, W.L. winding losses due to
Joule heating, and T.E. is the total energy consumption. As a comparison
a motor without elastic element will consume 50.101 J for the same
trajectory.

Cost Energy Energy Total

function dissipated dissipated by Energy

by Joule viscous expenditure

heating [J] friction [J] [J]

V.F. 20.174 0 20.174

W.L. 0.007 20.759 20.766

T.E. 5.099 4.558 9.657

TABLE 3. Actuator constraints as defined in Eqn. 16.

Constraint Value Units

Maximum motor peak torque, τmin 283.8 mN m

Maximum motor angular velocity, q̇max 20000 rpm

Maximum elastic element elongation, δmax π/6 rad

motor no longer remains stationary. Minimizing only the energy
dissipated by the motor’s winding leads to an elastic element
that requires almost no torque for the electric motor, as seen in
Fig. 5. This elastic element approximates the natural dynamics
of the double mass-spring system defined by the inertia of the
load and the motor; however, due to viscous friction the energy
required increases to 20.766 J. In conclusion, minimizing the total
energy expenditure leads to the lower consumption. It provides
the best balance between the energy dissipated by Joule heating
and viscous friction.

Human level ground walking. The ankle joint
One important advantage of our methodology is the ability

to analyze arbitrary periodic trajectories. In this section, the refer-
ence motion (i.e., ql , q̇l , q̈l , and τext) is defined by the kinematics
and kinetics of the human ankle during level ground walking, as
described in [26]. In particular, we analyze the ankle trajecto-
ries for slow, normal, and fast walking speeds and three subject
weights: 65, 75, and 85 kg. These reference trajectories are shown
in Fig. 6. Actuator constraints for the optimization problem are
defined in Table 3.

The optimal elastic elements along with the torques and posi-
tions of the motor are illustrated in Fig. 7. As shown in Eqn. 7,
the energy of the load (i.e.,

∫ t f
t0

τelaq̇l
η

dt) is always provided by
the motor regardless of the SEA’s elastic element. Therefore,
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FIGURE 6. Motion of the human ankle during level ground walking
as shown in [26]. Slow, normal, and fast walking speeds are equivalent
to cadences of 87, 105, and 123 steps per minute. The gait cycle begins
with heel contact of one foot and finishes with the subsequent occurrence
of the same foot [26]. In average, the ankle of a 75 kg subject walking at
normal speed provides about 17 J during a single gait cycle. In the lower
figure, translucent regions denote the minimum and maximum external
torques corresponding to 65 kg and 85 kg subjects.

energy savings for an SEA will be considered as the reduction of
dissipated energy between a rigid motor without elastic element
and an SEA. For example, during normal speed the ankle of a
75 kg subject provides about 17 J per stride; however, the EC30
motor with the characteristics described in Table 1, without an
elastic element, requires 33 J. The extra 16 J are dissipated in the
motor’s winding by Joule heating and viscous friction. In con-
trast, the same motor connected in series with our optimal elastic
element requires about 25 J per stride. The energy dissipated will
be 8 J, a reduction of about 50% compared to a motor without an
elastic element. A similar analysis for different walking speeds
and subject weights is summarized in Fig. 8. Energy reduction is
shown for all the cases considered. The optimal elastic element
is nonlinear as shown in Fig. 7. This indicates that, for the given
electric motor and transmission, a quadratic elastic element would
be the most efficient to generate the ankle motion. Manufacturing
of this nonlinear elastic element can be achieved using design
methodologies such as [27].
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FIGURE 7. Optimization results considering motion of the ankle as
the reference trajectory. Dotted, solid, and dashed lines indicate results
for slow, normal, and fast level-ground walking speeds, respectively.
Translucent regions denote upper and lower bounds corresponding to
85 kg and 65 kg subjects.

5 CONCLUSION
The proposed methodology reduced energy in all the cases,

but the amount of energy saved should be analyzed in an indi-
vidual basis depending on the reference motion and mechanical

65 kg 75 kg 85 kg

40

45

50

55

60

65

48.25

44.89

41.17

54.52
52.18

50.26

60.24
58.38

56.41

R
ed

uc
tio

n
of

di
ss

ip
at

ed
en

er
gy

[%
]

Slow Normal Fast

FIGURE 8. Energy savings for the ankle reference trajectory. Re-
sults for slow, normal, and fast level-ground walking for three different
subject’s weights.

configuration of the device. The inertia, torque constant, terminal
resistance, and viscous friction coefficient of the motor as well
as the transmission ratio played an important role in the amount
of energy that the elastic element could reduce. For instance, the
ankle trajectory was also analyzed using the RoboDrive’s motor.
Including actuator constraints, the elastic element could reduce
only 2.65% of the energy dissipated. Neglecting actuator con-
straints could reduce 6.75% instead. This indicates as well the
importance of actuator constraints on the design of the elastic
element.

Notice that using an elastic element to save energy can de-
crease or increase the peak power of the motor. Actuator con-
straints in the optimization guarantee that the peak power is
bounded but may be higher than the peak power of a motor that
does not use an elastic element. In the case of the ankle trajectory,
for level ground walking at normal speed for an 75 kg subject, the
elastic element reduced the peak power of the Maxon motor from
450 W to 132 W. Using the RoboDrive motor the peak power
increased depending on the actuator constraints. Future work will
extend the proposed methodology in order to reduce peak power
of the motor in a SEA.
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