Removing Phase Variables from Biped Robot Parametric Gaits

Alireza Mohammadi'-?, Jonathan Horn'*, and Robert D. Gregg'-?

Abstract— Hybrid zero dynamics-based control is a promi-
sing framework for controlling underactuated biped robots
and powered prosthetic legs. In this control paradigm, stable
walking gaits are implicitly encoded in polynomial output
functions of the robot configuration variables, which are to
be zeroed via feedback. The biped output functions are pa-
rameterized by a suitable mechanical phasing variable whose
evolution determines the biped gait progression during each
step. Determining a proper phase variable, however, might not
always be a trivial task. In this paper, we present a method
for generating output functions from given parametric walking
gaits without any explicit knowledge of the phase variables.
Our elimination method is based on computing the resultant of
polynomials, an algebraic tool widely used in computer algebra.

I. INTRODUCTION

Hybrid zero dynamics-based (HZD) control is a promising
framework for controlling underactuated biped robots [1],
[21, [3], [4], [5]. In this paradigm, stable biped walking
gaits are encoded as relations between the biped generalized
coordinates that can be re-programmed on the fly. Recently,
HZD-based controllers have also been used for controlling
powered prosthetic legs for amputees [6], [7].

Walking gaits in the HZD-based control framework are
trajectories in the configuration space of the robot. These
trajectories are parameterized by means of phase variables
that are kinematic quantities whose monotonic evolution
determines the robotic gait progression during each step. In
order to enforce the HZD-based walking gaits via feedback,
they are implicitly encoded in the zero level set of polynomial
output functions that are invariant with respect to discon-
tinuous impact events (i.e., hybrid invariant) [1], [2], [4],
[5], [6]. Driving these output functions to zero via feedback
corresponds to stabilizing the desired walking gaits.

In some applications such as powered prostheses control,
there are numerous phase variable candidates such as the foot
center of pressure and the hip phase angle [8], [9], [10]. It
has been observed that the choice of phase variable affects
the walking robustness with respect to disturbances [6], [9].
Indeed, some parameterizations provide more human-like
transient responses than the others [9]. However, generating
output functions with closed-form expression from stable
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parametric walking gaits without any explicit knowledge of
the phase variable is not a trivial problem.

Contributions of the paper. In this paper, we present
an elimination method for removing phase variables from
given parametric relations, which represent stable walking
gait trajectories in the biped configuration space. Our method
can be used for generating output functions with closed-form
expressions that are suitable for feedback implementation.
We also provide a necessary and sufficient condition for the
generated outputs to have well-defined vector relative degree.
The key ingredient used in our elimination method is based
on computing the resultant of polynomials, a well-known
algebraic tool widely used in computer algebra that is used
for eliminating one variable from a system of two polynomial
equations [11]. This tool has been used in a few control
applications such as contouring control of multi-axis motion
systems [12] and generating symmetric output functions from
parametric virtual holonomic constraints [13, Chatper 4]. To
the best of our knowledge, this paper employs the resultant
of polynomials in the context of legged locomotion control
for the first time.

The rest of this paper is organized as follows. Section II
reviews preliminaries from biped robot modeling as well
as some results from the HZD-based control framework.
We also discuss the relationship between the implicit re-
presentation of walking gaits via output functions and their
parametric representations. The formal problem statement is
presented in Section III. In Section IV we find the impli-
cit relationship between two given parametric polynomials.
Next, we present our gait implicitization method for biped
robots and provide a necessary and sufficient condition for
the generated output functions to have well-defined relative
degree in Section V. We then present simulation studies in
Section VI. Concluding remarks are provided in Section VII.

Notation. Given two vectors (matrices) a, b of suitable di-
mensions, we denote by [a; b] the vector (matrix) [a",57]T.

II. BIPED ROBOT HYBRID DYNAMICS

In this section we present the dynamic model of un-
deractuated planar biped robots and review some standard
material from the HZD-based control framework [1], [2].
Also, we present the relationship between parametric and
implicit representations of walking gaits.

A. Hybrid dynamical model of biped robots

Given an underactuated planar biped robot with point feet
(see Figure 1), its equations of motion during swing phase,
using the method of Lagrange, can be written as (see [2,



Fig. 1: Three-link and two-link planar bipeds with point feet.

Chapter 3])

D(q)i+C(q,d)g +G(q) = Bu, (¢;4) ¢S, (D
where the vectors ¢ = [q1,---,qn]" € Q and ¢ =
[41, -+ ,4n]"T € RY denote the joint angles and the joint

velocities, respectively. The set Q, called the biped confi-
guration space, is assumed to be an open and connected
subset of the Euclidean space RY. Therefore, the state
(g,¢) of dynamical system (1), belongs to the state space
TQ := QxRN Moreover, D(q), C(q,q), and G(q), denote
the inertia matrix, the matrix of Coriolis/centrifugal forces,
and the vector of gravitational forces, respectively. The vector
of control inputs u belongs to RY~! and the control input
matrix B € RVX(V=1) i assumed to be constant and of
full rank V — 1. We say that system (1) has one degree of
underactuation. Without loss of generality, we assume that

B = [IN_1;01x(nv-1)]s

where I _1 denotes the identity matrix in ROV-1x(N—1),

The above choice of B implies that the biped’s N degree-
of-freedom, i.e., gy, is unactuated. The vertical height from
the ground and the horizontal position of the swing leg end,
with respect to an inertial coordinate frame, are denoted by
py(q) and ph(q), respectively. The set S, which represents
the biped configurations at which impacts with the ground
happen, is called the switching surface and defined as

S:={(q.4) €TQ:p4(q) =0, ph(q) >0}, (2

with respect to the inertial coordinate frame origin at (0, 0).

The double support phase is assumed to be instantaneous
and modeled by rigid impacts with the ground. In particular,
the impact model is given by

(7547 =[8gq384(¢7)i7 ], (7,47 ) €S, (B

where (¢7,¢~) and (g7, ¢") denote the states of the robot
just before and after impact, respectively. The complete biped
dynamics, subject to rigid impacts with the ground, are
described by the hybrid dynamical system in (1)—(3).

B. Gait Stabilization in the HZD-based control framework

In the HZD-based control framework, a walking gait is
a smooth one-dimensional curve without self-intersections,
i.e., a one-dimensional trajectory in the /N-dimensional robot
configuration space Q. We denote this trajectory by -,,.
The trajectory +,,, which determines the biped configurations
during each step, connects the post-impact, i.e., qar , and the
pre-impact, i.e., ¢, , biped configurations (see Figure 2).

For the purpose of feedback implementation, stable gaits
are implicitly encoded in output functions, which are driven
to zero via feedback. In particular, an output of the form

y = h(q), “4)

is considered for the biped hybrid dynamics (1)—(3), where

h(g) = [h(q); - shy-1(q)],

is a vector of N — 1 polynomial functions h; : @ - R, 1 <
1 < N — 1. Zeroing the output (4) for the hybrid dynamical
system (1)—(3) corresponds to making the biped configura-
tion g converge to the gait trajectory -,,. In other words, the
output function in (4) satisfies h(g) = 0, for all ¢ € ~,,.

Remark 2.1: Robotic gaits similar to (4), which are en-
coded as relations between the generalized coordinates of a
robot, are called virtual constraints [14], [15]. In addition
to biped and powered prostheses control, they have also been
used for controlling biologically-inspired snake robots [16],
[171, [18]. A

In order to guarantee stable walking, the output function
given by (4) should be designed such that a number of hypot-
heses are satisfied (see [2, Chapter 5]). For the development
in this paper, two hypotheses are relevant': (H1) there exists
an open set Q C @ such that h has vector relative degree
{2,-+-,2} everywhere on Q; (H2) there exists a smooth
real-valued function 6(q) such that [h(q);0(q)] : Q — RN
is a diffeomorphism onto its image.

The output function y = h(g) in (4) is designed to be
invariant with respect to impacts with the ground. Such
an output function is said to be hybrid invariant. Hybrid
invariance implies that the biped’s post-impact configurations
belong to the walking trajectory =, if the biped’s pre-impact
configurations belong to the walking trajectory, and that the
vector of post-impact joint velocities is tangent to v,,.

The function 6 : @ — R in Hypothesis H2 is called the
phase function. For the biped configurations ¢ belonging to
the walking gait trajectory +,,, the parameter

§= 9(‘])7 )

is called the phase variable. Knowing the phase variable &
during walking, when the output function is zeroed, uniquely
determines the biped configuration (Figure 2).

Under Hypothesis H1, a given hybrid invariant output
function can be zeroed for the biped hybrid dynamics (1)—
(3) using a proper control input u, e.g., a standard input-
output feedback linearizing control law (see [2, Chapter 5]).
Once the outputs associated with a stable periodic orbit
are zeroed, the resulting closed-loop motion is governed
by lower-dimensional dynamics, called the hybrid zero
dynamics (HZD). It can be shown that if there exists an
exponentially stable periodic orbit in the state space of the
biped that is induced by zeroing the output function h(-)

'Hypotheses H1 and H2 are regularity conditions for the existence of the
zero dynamics associated with the output y = h(g) for the biped robot.
Exponential stability of the periodic orbit in the HZD framework requires
additional conditions, which we assume to hold in this paper.



Fig. 2: The walking gait of every biped, in the HZD-based control
framework, is a one-dimensional trajectory in the configuration
space Q. As the parameter ¢ evolves from 6% to 6, the biped
configuration evolves from g7 to gq; .

in (4), then the phase variable time trajectories £(t) =
0(q(t)), are strictly monotonic during each step of the robot
([2, Proposition 5.1]). Thus, £(t) achieves its minimum and
maximum at the beginning and the end of each single support
phase. In particular, it can be shown that £(t) varies between
the two values

0" :=0(qq ), 07 == 0(q7), (6)

where ¢, and qf = A,q, are the pre- and post-impact
configurations of the biped, respectively. Without loss of
generality, we assume that 6+ < —.

C. Parametric representations of biped walking gaits

Since every walking gait trajectory <, is a one dimen-
sional smooth curve, it can be represented via parametric
relationships. We let

q = Ha(§), (7

be an arbitrary parametric relationship, representing -,
where Hy : [07,07) — ~, is a smooth bijective function
(i.e., one-to-one and onto), and 6~ , #T, given by (6), are
the post-and pre-impact phase variable values, respectively.
Additionally, we assume that the parameterization in (7)
satisfies H}(§) # 0 for all £ € [#T,07). This condition
guarantees that the curve <, is traversed once and only
once as the phase variable ¢ evolves from 61 to #~ and
that the curve v, does not have any self-intersections (see
Figure 2). We call the parametric relation in (7) a parametric
representation of the walking gait ~,,.

Example 2.2 (Active compass gait biped): Consider the
two-link biped in Figure 1. We let the leg length, the leg
center of mass (COM) location, the leg mass, and the leg
inertia about leg COM be [ = 1 m, [, = 0.8 m, m = 0.3
kg, and I = 0.03 kg.m?, respectively. The two-link biped
has one actuated variable ¢; and one unactuated variable gs.
Its hybrid dynamics, which are of the form (1)-(3), can be
derived using standard methods (see, e.g., [2, Chapter 2]).
The following stable walking gait for the two-link biped
with these physical parameters is taken from [2, Chapter 6]:

a=Hi (&), g2=¢, (8)

where H{ () is the polynomial

Hi(€) = ao(l—s(8)" +4a1s(©)(1 - s(6)* +
Barzs(€)*(1 — s(£))* + 4ass(€)*(1 - () +
ass(€)”,

£-6"
s(§) = p )
with coefficients a; = —0.42, oo = 1.4, a3 = 0.8, and
a4 = —ag = /7. As the parameter ¢ evolves from 67 to

6, its normalized form s(§) changes from 0 to 1. In order
to enforce the gait in (8), the output

y=q — Hj(q2), (10)

should be zeroed via an input-output linearizing feedback
control law. A

In summary, walking gaits in the HZD framework can
either be represented by zero level set of an output function
y = h(q) or by a parametric relationship of the form ¢ =
H, (&), as in (7).

III. PROBLEM STATEMENT

In most of the HZD-based controllers (see, e.g., [2], [6]),
outputs of the form

y = Hoq — ha(coq)

are considered, where co € R is a row vector. However,

it is possible that a stable walking gait trajectory <, in
the biped configuration space, is given by a parametric
relationship. Such parametric relationships are encountered
in applications such as powered prostheses control [6], [9].

Example 3.1 (Active compass gait biped): Consider the
two-link biped in Example 2.2 and its stable walking gait
given by (8)—(9). In [2], the phase variable 0(q) = ¢s is
considered, which corresponds to the linear progression of
the unactuated degree-of-freedom ¢, with the phase variable
& = 0(q). However, it is also possible to consider the more
general relation

q2 = H(12 (E)a

where H} (5) is some polynomial in the phase variable & of
order greater than one, such that 6= = Hg (9*) and T =
H? (9*). For instance, if

(€)= 507 —0) (&) + £©) +67, D

where s(€) := (£ — 07)/(0~ — 1), then the unactuated
variable go is a nonlinear quadratic function of &. A

The underlying challenge for stabilizing a walking gait in
parametric form, is that finding the output function y = h(q)
for the biped hybrid dynamics (1)—(3) requires solving a
collection of N nonlinear polynomial equations to obtain
N — 1 output functions, which are independent of the para-
meter . Although, solving such a nonlinear equation using
numerical methods is often possible, the resulting solution
is not suitable for feedback implementation. Rather it is
desired to find an output function y = h(q) with a closed-
form expression. Finding such a closed-form expression, in



general, is impossible. In order to address this challenge, we
solve the following problem in this paper.
Parametric Gait Implicitization Problem. Consider

q= Hd(f)a

where Hy : [#7,07) — Q is a smooth function, whose
image represents the gait trajectory vy, given by

Tw = Hd([9+’ 07))

Suppose that the components of the function Hy(-) are

12)

13)

ni
Hi(€) =) bieh 1<i <N, (14)
k=0
which are IV polynomials of the real variable & such that the
degree of the i" polynomial is equal to n;. Find an output
function y = h(q), h(q) = [h1(q); - ; hn—1(q)], such that
it becomes zero on the gait trajectory v, . In other words,

h(Ha(€)) = 0, (15)

for all £ € [#T,607). Furthermore, determine necessary and
sufficient conditions for the output y = h(g) to have vector
relative degree {2,--- ,2} for the biped dynamics. A
Finding the output y = h(q), which implicitly represents
the walking gait trajectory -y, through (15), enables us
to enforce the given parametric representation in (12) by
zeroing the output y = h(q). We call the process of bringing
a parametric gait to its implicit form gait implicitization.
Solution Strategy. Our strategy for solving the parametric
gait implicitization problem unfolds in two steps. In the first
step, presented in Section IV, we use a symbolic algebraic 2-
by-2 elimination method, which is based on computing the
resultant of polynomials, to eliminate the phase variable £
and find the implicit relationship between H} () and Hj (£),
i # j, in terms of the configuration variables ¢; and g;.
Next, in Section V, we construct an output vector function
y = h(g) with N — 1 components such that it becomes zero
whenever ¢ belongs to the walking gait ~y, . The generated
output implicitly represents the walking gait. We also find a
necessary and sufficient condition for the constructed output
function y = h(q) to have well-defined vector relative
degree. A

I'V. IMPLICITIZATION OF TWO PARAMETRIC
POLYNOMIALS

This section will establish the implicit relationship bet-
ween any two given biped configuration variables that are
given by parametric polynomials. We achieve this goal by
removing the phase variable using resultant of polynomials, a
tool which is frequently used in computer algebra. Necessary
preliminaries are provided in the Appendix.

Consider an arbitrary biped configuration represented by
the symbolic variable ¢ and the walking gait curve +,, in (13)
with parametric polynomial representation (14). We define
the polynomials

in the real variable £, where g¢; is the i™ element of the vector
q. Indeed, b} — ¢; is the constant term of the polynomial
P (€), ie., the coefficient of £ in (14). The parametric
relationship

Pl(€) = 0= ¢; = Hy(9),

gives the trajectory of the ™ joint variable during each wal-
king step, as the parameter ¢ varies in the interval [, 67).
Now, we consider two arbitrary polynomials P{*(¢) and
P;” (€), 1 <4,j < N, from the collection of polynomials
in (16). In order to remove the phase variable ¢ and to find
the implicit relationship between the joint variables ¢; and

g; during each step of the walking gait, we compute
hij(q) = Res(H{(€) — ai, HF (€) — 45),

where Res(+,-), defined by (A-2) in the Appendix, is the
resultant of the polynomials P/ (§) and Pf" (&) in (16).

According to the definition of resultant in (A-2), the functi-
ons h;;(+) in (17) are independent of the phase variable £ and
only depend on the coefficients of the polynomials P (¢)
and Pfj (€) in (16), i.e., bi, b, ¢;, and g;. The coefficients
b};, bfc are numerical, while ¢;, g; are symbolic variables.
Computer algebra systems such as the MATLAB Symbolic
Math Toolbox are capable of computing (17) symbolically
(see Example 4.1). The resultant of the polynomials P/ (€)
and P} (€) has the form

hij(q) = Braldb,
ol

a7

which is a symbolic bivariate polynomial (i.e., of two vari-
ables), independent of the phase variable &.

Example 4.1 (Active compass gait biped): Consider the
biped gait walking trajectory in Example 3.1. Consider a
parametric representation of the walking gait curve with
@ = H}() and ¢o = HZ (&), where Hj(-) and HZ(-)
are given by (9) and (11), respectively. Consider the two
polynomials P; (&) and P> (), defined by (16), in the real
variable . The variables ¢; and ¢, which are considered
to be the coefficients of &Y, are symbolic. Computing the
resultant of the two polynomials P;(-) and Py(-) would
remove the parameter £ and give us a bivariate polynomial
in the joint variables ¢; and ¢,. The implicit function l~112(-)
in (17) is

hia(q1,q2) = 0.003+0.27¢% + 1.49¢1¢3
—4.99¢1q> — 13.85¢; + 47.13¢5

—0.36¢5 — 1.41¢3 — 0.68¢s, (18)

which is a function of the symbolic variables ¢; and ¢o, and
independent of the parameter &. A

The functions ?L,]() defined by (17) satisfy a fundamental
property at the biped configurations that belong to the wal-
king gait curve (13), as stated in the following proposition.

Proposition 4.2: Consider the biped walking gait curve
vy in (13) with parametric polynomial representation (14).
Consider the collection of polynomials in (16), arbitrary



integers 1 <4, < N, and the output function Bij(q) given
by (17). Then, h;;(Ha(€)) =0, for all £ € [#7,67).
Proof: Suppose that (g;, q;) = (H(&), Hj(&)), for
an arbitrary &, € [#T,07). Therefore, &y is a common root
of the two polynomials P (¢) and P;“ (€) defined by (16).
By Part 2 of Lemma Al in the Appendix, h;;(Hq(&)) = 0,
because the two polynomials P and P;-“ have a common
root at & = &. [ |
Proposition 4.2 states that the functions h;;(q) in (17),
which are generated by taking the resultant of the parametric
polynomials P;(£) and P;(§), become zero whenever the
configuration g belongs to the walking gait trajectory 7.
Thus, the function h;;(¢) can be considered as an output for
the biped and driven to zero via feedback. Driving h;;(q) to
zero corresponds to making the desired relationship between
g; and g;, which is prescribed by the given parametric
representation Hy(-), hold during each walking step.

V. SOLUTION TO THE GAIT IMPLICITIZATION PROBLEM

In this section we solve the parametric gait implicitization
problem formulated in Section III. In particular, using the
functions obtained in Section IV, we construct an output
vector function with NV — 1 components such that it becomes
zero on the walking gait curve v, given by (13). Next, we
provide a necessary and sufficient condition for the generated
output function to have well-defined vector relative degree.

Given the walking gait curve -, in (13) with parametric
polynomial representation (14), we construct /N —1 functions

hi(q) = hips1(q), 1 <k <N -1, (19)

where the functions ﬁk7k+1(-) are defined by (17). Using the
functions hg(¢q) in (19), we construct the output function
y = h(q), where

h(q) = [ha(q); -+ s hv—1(q)],

for the biped hybrid dynamics (1)—(3).

The output function (20) has the property that it becomes
zero whenever ¢ = Hy(§), due to Proposition 4.2. If this
output also satisfies a certain rank condition, then it can
be zeroed using an input-output feedback linearizing control
law, as stated in the following proposition.

Proposition 5.1: Consider the gait curve ~,, in (13) with
parametric polynomial representation (14). Consider the N —
1 functions hg(q), 1 < k < N —1, in (19) and the output
function y = h(q), where h(q) is given by (20). Suppose
that B-D(H,(§))H!(&) # 0 for all £ € [0F,07], where
Bt = 015 (n—1) 1]. If

(20)

rank(@) =N -1,

21
9q (21)
for all g € ~,,, then the output y = h(q) can be zeroed using
oh __ -1 . a ,0h .
u=(5-D"q)B) v(y.9) — 5= (5-9)4+
dq dq " 9q 22)

oh

@D*mmw@m+am}

for the biped dynamics and v(y,y) is a high-gain PD
feedback or a continuous finite time stabilizer of the double
integrator §j = v(y,9)>.

The proof is omitted for the sake of brevity.

Remark 5.2: 1If the rank condition (21) is not satisfied for a
generated output y = h(q) associated with a given parametric
representation ¢ = Hy(€) for some configurations ¢ € ,,
it is still possible to zero the output using the constraint
augmentation approach introduced in [2, Chapter 5]. A

VI. SIMULATION STUDIES

Two-link walker. Consider the active two-link biped robot
in Example 2.2 and the stable walking gait trajectory -y,, in
Figure 1. The polynomial H} (&), given by (9), determines
the desired evolution of the joint variable ¢; during each step.
The unactuated variable is ¢, which varies between 61 =
—0.22 radians and 6~ = 0.22 radians during each walking
step. We consider the following three parameterizations for
the unactuated variable

Hi (€) =€,
(€)= 507 —0%)(s(6) + 2©) +07, (23
HE(E) = £(07 —0%)(s(6) + 26() +67,

where s() is defined in (11). Also, HZ%(:), H(-), and
Hdzc(~) correspond to a linear, a quadratic from (11), and
a cubic parameterization of the unactuated variable g, by
the parameter &, respectively.

In order to be able to enforce each of these parametric
representations, we need to find an output with closed-form
expression for each of the above parametric representations.
For the linear parametric representation H37(-), one can
easily set go = ¢ and find its associated output y, = h,(q)
given by (10). For the other two parametric representations,
we use the methodology presented in the paper. First, we
form the two polynomials Poy(-) and Pa.(-) given by (16).
Next, using (17) and (19), we obtain two different outputs
y = hp(q) and y = hc(q), associated with the parametric
representations H3°(-) and H7(-). The function hy(q) is
given by (18). The function h.(q), whose expression has
been omitted for the sake of brevity, can also be computed
using any symbolic computer algebra system, similar to
Example 4.1. All of these outputs satisfy the rank condition
in Theorem 5.1. Therefore, they can be zeroed via an
input-output feedback linearizing control input. The time
profiles of the biped joints and their associated phase portraits
are demonstrated in Figures 3 and 4, respectively. In this
example, different parameterizations of the unactuated degree
of freedom results in different biped walking speeds. A

Three-link walker. Consider the three-link biped robot
shown in Figure 1. We let the torso length, the leg length,
the torso mass, the hip mass, and the leg mass to be [ = 0.5
m, r = 1.0 m, My = 10 kg, Mg = 15 kg, and m = 5 kg,
respectively. The three-link biped has two actuated variables

2A possible choice for v(y,y) is the Bhat-Bernstein’s continuous time
double integrator in [19], which is used on biped robots in [2].
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Fig. 3: Temporal progression of the two-link biped configuration
variables. The blue, red, and black curves correspond to zeroing the
outputs ya = ha(q), y» = hv(q), and ye = he(q), respectively.
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Fig. 4: Phase portraits of the two-link biped resulting from zeroing
three different outputs. The blue, red, and black orbits correspond to
the outputs y. = ha(q), yo = hv(q), and y. = hc(q), respectively.

and one unactuated variable. Its hybrid dynamics have the
form (1)- (3) and can be derived using standard methods
(see, e.g., [2, Chapter 2]). The following stable walking gait
for the three link biped with these physical parameters is
taken from [2, Chapter 6]

Hi* (&) =& HF(§) =a) + -+ +a}&,
H3(€) = =& + (a3 + -+ a3&®) (€ + a}) (€ — ),

where the vector of coefficients ag := [ad; - - - ;a3] and ag :=
[ad; - - - ;a?] are given by ag = [0.512;0.073;0.035; —0.819)
and a1 = [—2.27;3.26;3.11;1.89], respectively. The pa-
rametric representation in (24) corresponds to the linear
parameterization of ¢; with the phase variable £. The outputs
associated with this parametric representation can be readily
found to be y, = [h3(q); h3(q)] = 02— HE (01); ¢3—H§ (a1)]-
Now, we consider the following nonlinear parameterizations
of the joint variable ¢; with the phase variable &

(24)

HP(€) = 20— 6%)(s(6) + 35(6)) + 6%,
Hi(¢) = é(e* —01)(s(€) +s(£)* +3s*(&)) + 67,

(25)
where s(&) := (£ —07)/(0~ — 0T) is defined in (11), and
H jb(-) and H J°(-) respectively correspond to a quadratic and
a cubic progression of the joint variable ¢;, along the walking

trajectory +,,. Using the methodology presented in the paper,
we find outputs associated with the parametric representati-
ons HZ2°(-) and HZ(-) of the walking gait trajectory -,,. The
time profiles of the biped joints and their associated phase
portraits are shown in Figures 5 and 6, respectively. A

q3(t) [rad]

t [sec]

Fig. 5: Temporal progression of the three-link biped configuration
variables. The blue, red, and black orbits correspond to the outputs
Ya = ha(q), Yo = hv(q), and ye = he(q), respectively.

VII. CONCLUDING REMARKS AND FUTURE RESEARCH

Using the resultant of polynomials, we presented a method
for removing phase variables from given stable parametric
walking gaits and generating output functions suitable for
feedback implementation. We provided a necessary and
sufficient condition for the generated output to have well-
defined vector relative degree. In the next step, we plan to
examine the applicability of our proposed methodology for
powered prostheses control.

APPENDIX. MATHEMATICAL PRELIMINARIES

Given two polynomials

ni n2
P =Y "ald’, =Y al, (A-1)
=0 =0

g3 [rad/sec|

e
05A— “0
0.4 . —_—
0.2 o —

q1 [rad]
Gy [rad/sec|
Fig. 6: Phase portraits of the three-link biped resulting from zeroing
three different outputs. The blue, red, and black orbits correspond to
the outputs ya = ha(q), y»o = hv(q), and y. = hc(q), respectively.
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Sylvester matrix associated with the two polynomials P; =
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1
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. N2 TOWS
ag
= = = == ()
ag
2 71 TOWS
ag 1
2
ag
ni 1. n2 2 i
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in the real variable £, with a # 0 and a # 0, thelr
associated Sylvester matrix, "denoted by Syl(Pl,Pz)
given by (x). The resultant of the two polynomials P, and
P, in (A-1) is a function of the coefficients of the two
polynomials, and defined as

Res(Pl,Pg) ;= det (Syl(P17P2)) (A-Z)

Note that the resultant of polynomials given by (A-2) is
independent of the parameterizing variable £, since the
Sylvester matrix in (x) is independent of the variable &.
Lemma Al ([20]): Consider the two polynomials P (&)
and P»(§) in (A-1) of degrees n; and nao, respectively. Let

R(P;) and R(Ps) be the sets of real roots of P;(£) and
P5(&), respectively. Let
k
P =a, J[ (€-¢),
5?6R(P¢)

be the factorization of P;(&), ¢ = 1, 2, over the field of real
numbers, where 7% is the multiplicity of the root £F € R(P;).
Then,

1) the resultant of Pj(§) and P»(&), defined in (A-2),

satisfies
Res(Pr, Py) = (a,)” [ (Pa(eh)™
EFER(Py)
=(-D)mm2(a,)" T (PER)™, (a3

EEER(P2)

2) Res(P1, P;) =0 if and only if P; (&) and P5(&) have
at least a common root.

REFERENCES

[11 E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped robots,” IEEE Trans. Automat. Contr., vol. 48, no. 1,
pp. 42-56, 2003.

E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris,
Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor &
Francis, CRC Press, 2007.

K. A. Hamed and J. W. Grizzle, “Event-based stabilization of periodic
orbits for underactuated 3-d bipedal robots with left-right symmetry,”
IEEE Trans. Robot., vol. 30, no. 2, pp. 365-381, 2014.

K. A. Hamed, B. G. Buss, and J. W. Grizzle, “Exponentially stabilizing
continuous-time controllers for periodic orbits of hybrid systems:
Application to bipedal locomotion with ground height variations,” Int.
J. Robot. Res., vol. 35, no. 8, pp. 977-999, 2016.

K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “A compliant
hybrid zero dynamics controller for stable, efficient and fast bipedal
walking on mabel,” Int. J. Robot. Res., vol. 30, no. 9, pp. 1170-1193,
2011.

[2]

[3]

[5]

[6]

[8]

[9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. E. Martin and R. D. Gregg, “Stable, robust hybrid zero dynamics
control of powered lower-limb prostheses,” IEEE Trans. Automat.
Contr., 2017, in press. doi: 10.1109/TAC.2017.2648040.

D. Quintero, D. J. Villarreal, and R. D. Gregg, “Preliminary experi-
ments with a unified controller for a powered knee-ankle prosthetic
leg across walking speeds,” in /[EEE/RSJ Int. Conf. Intell. Robots Syst.,
2016, pp. 5427-5433.

D. J. Villarreal and R. D. Gregg, “A survey of phase variable
candidates of human locomotion,” in /[EEE Conf. Eng. Med. Biol. Soc.
(EMBC), 2014, pp. 4017-4021.

D. J. Villarreal, H. A. Poonawala, and R. D. Gregg, “A robust parame-
terization of human gait patterns across phase-shifting perturbations,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 3, pp. 265-278,
2017.

R. D. Gregg, E. J. Rouse, L. J. Hargrove, and J. W. Sensinger,
“Evidence for a time-invariant phase variable in human ankle control,”
PloS one, vol. 9, no. 2, p. 89163, 2014.

J. Von Zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed.
Cambridge University Press, 2013.

S.-L. Chen and C.-Y. Chou, “Contouring control of multi-axis motion
systems for nurbs paths,” IEEE Trans. Automat. Sci. Eng., vol. 13,
no. 2, pp. 1062-1071, 2016.

A. Mohammadi, “Virtual holonomic constraints for Euler-Lagrange
control systems,” Ph.D. dissertation, University of Toronto, 2016.

C. Canudas-de Wit, “On the concept of virtual constraints as a tool
for walking robot control and balancing,” Annual Reviews in Control,
vol. 28, no. 2, pp. 157-166, 2004.

M. Maggiore and L. Consolini, “Virtual holonomic constraints for
Euler-Lagrange systems,” IEEE Trans. Automat. Contr., vol. 58, no. 4,
pp. 1001-1008, 2013.

A. Mohammadi, E. Rezapour, M. Maggiore, and K. Y. Pettersen,
“Maneuvering control of planar snake robots using virtual holonomic
constraints,” IEEE Trans. Contr. Syst. Technol., vol. 24, no. 3, pp.
884-899, 2016.

E. Rezapour, A. Hofmann, K. Y. Pettersen, A. Mohammadi, and
M. Maggiore, “Virtual holonomic constraint based direction following
control of planar snake robots described by a simplified model,” in
IEEE Conf. Contr. Appl., 2014, pp. 1064-1071.

A. M. Kohl, E. Kelasidi, A. Mohammadi, M. Maggiore, and K. Y.
Pettersen, “Planar maneuvering control of underwater snake robots
using virtual holonomic constraints,” Bioinspiration & Biomimetics,
vol. 11, no. 6, p. 065005, 2016.

S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization
of the translational and rotational double integrators,” IEEE Trans.
Automat. Contr., vol. 43, no. 5, pp. 678-682, 1998.

C. E. Wee and R. N. Goldman, “Elimination and resultants. 1.
elimination and bivariate resultants,” IEEE Trans. Comput. Graph.
App., vol. 15, no. 1, pp. 69-77, 1995.



