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Abstract— State-of-art powered prosthetic legs are often con-
trolled using a collection of joint impedance controllers designed
for different phases of a walking cycle. Consequently, finite
state machines are used to control transitions between different
phases. This approach requires a large number of impedance
parameters and switching rules to be tuned. Since one set of
control parameters cannot be used across different amputees,
clinicians spend enormous time tuning these gains for each
patient. This paper proposes a virtual constraint-based control
scheme with a smaller set of control parameters, which are
automatically tuned in real-time using an extremum seeking
controller (ESC). ESC, being a model-free control method,
assumes no prior knowledge of either the prosthesis or human.
Using a singular perturbation analysis, we prove that the virtual
constraint tracking errors are small and the PD gains remain
bounded. Simulations demonstrate that our ESC-based method
is capable of adapting the virtual-constraint based control
parameters for amputees with different masses.

I. INTRODUCTION

State-of-art powered prosthetic legs are often controlled
using a predetermined collection of joint impedance control-
lers [1], [2] designed for different phases of a walking cycle.
Finite state machines are, then, employed to control transiti-
ons between each two joint impedance control laws [3]-[5].
In this approach, a gait cycle is typically divided into multiple
(usually 4 or 5) gait phases, where each phase has at least
three joint impedance control parameters (stiffness, viscosity,
and equilibrium angle) for each actuated joint. However,
these parameters do not generalize across amputees due to
physiological differences. The tuning process for each patient
can take around four to five hours due to the large number
of patient-specific parameters [6].

In order to reduce the burden of clinicians, approaches
such as rule-based fuzzy logic inference [7], model-based
methods [8], and cyber expert systems [9] have been used to
automatically find an optimum set of parameters for prosthe-
tic impedance controllers. These approaches, however, have
two main limitations: (i) they do not simultaneously tune
multiple joints; and (ii) they have not demonstrated the
ability to learn different parameters for subjects/models with
different physical attributes.
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Virtual constraints are time-invariant kinematic relations-
hips between a robot’s configuration variables that do not
physically exist in the system but can be enforced via
feedback. They have been successfully employed in several
robotic locomotion control applications such as controlling
underactuated biped robots [10], [11], powered prosthetic
legs [12], [13], and biologically inspired snake robots [14]—
[16]. In the context of powered prosthetic leg control, virtual
constraints were used to unify the gait cycle control of
the stance phase for the first time in [12]. Although these
approaches reduce the number of parameters to be tuned,
the remaining control parameters are still tuned by trial-and-
error. The problem of automatic real-time tuning of virtual
constraint-based controllers for powered prosthetic legs still
remains open. Although progress has been made in model-
based adaptive control of biped robots [17], such model-
based approaches, which rely on input-output feedback line-
arization, cannot be used in powered prosthetic applications.
This limitation is due to the need for measuring socket
interaction forces [13], requiring expensive multi-axis load
cells, and the lack of exact knowledge of the prosthetic leg
dynamical model parameters.

This paper presents a methodology for automatic tuning
of virtual-constraint based controllers for powered prosthetic
legs using a classical perturbation-based extremum seeking
controller (ESC) [18], [19]. Our ESC-based method does
not require explicit knowledge of the relationship between
the control parameters and the joint tracking errors. In this
approach, we enforce virtual constraints using PD controllers
whose gains are automatically tuned in real-time using ESC
loops. This approach relieves the designer from finding the
control parameters by trial-and-error.

The rest of this paper is organized as follows. In Section II
we present the human-prosthesis biped hybrid dynamics,
preliminaries from virtual constraint-based control of prost-
hetic legs, and a brief review of the perturbation-based ESC
scheme that is used in this paper. Section III presents the
structure of our proposed control architecture. In Section IV
we present the main result. Simulation results are presented
in Section V. Concluding remarks are given in Section VI.

II. BACKGROUND

This section presents the human-prosthesis biped dyna-
mical model from [13], [20], the necessary preliminaries
from virtual constraint-based control, and the standard ESC
architecture used in the paper. The planar model of a
transfemoral amputee consists of seven leg segments and a
point mass at the hip, as shown in Fig. 1. The prosthesis can



Fig. 1: Schematic of the unilateral, transfemoral amputee model
during the prosthesis stance period (reproduced from [13]). The
prosthetic and human subsystems are shown in black and gray,
respectively.

be modeled as a dynamical system that interacts with the
human body. The prosthesis subsystem itself consists of a
prosthetic thigh, shank, and foot. The human subsystem, on
the other hand, consists of a residual thigh on the amputated
side, a point mass at the hip, contralateral thigh, shank, and
foot. The kinematic chain for both subsystems are defined
with respect to the same inertial reference frame. Assuming
rigid attachment between the prosthesis and the human thigh,
the prosthesis and human subsystems can be considered as
a single rigid-body kinematic chain.

A. Model of the Powered Knee-Ankle Prosthesis

The prosthesis configuration space is given by the set Q =
R? x T3 with configuration variables ¢ = [q1, 42, g3, Gx, @y]
where (gx,qy) is the hip position, ¢; is the absolute thigh
angle, q- is the knee angle, and g3 is the ankle angle. The
joint velocities of the prosthetic leg are given by the vector
G € R5. Therefore, the prosthetic leg state is given by the
vector z = [¢7 ¢T)7 € TQ := Q x R®. The dynamics of
the prosthetic leg are governed by

M(q)i+ C(q, )i+ G(q) + E(q)" X = Bu+J(q)"F, (1)

where M (q) € R5*5 is the mass matrix, C(q, ¢) € R>*? is
the matrix of Coriolis/centrifugal forces, G(q) € R? is the
vector of gravitational forces, F(q) € R°*® is the Jacobian
matrix associated with ¢ physical constraints between the
foot and the ground, and A € R¢ is the Lagrange multiplier
associated with the ground reaction force (GRF). During
the prosthetic leg swing phase, F(q) = 0 and A\ = 0
because the GRF is zero. We assume no foot slipping during
the stance phase. The control torque vector is given by
u = [up us)t € R2, where uj, and u, are the torque
applied to the prosthetic knee and ankle joint, respectively.
The matrix B = [02x1, I2x2,02x2]T € R3*? has full rank 2.
The socket interaction force vector F = [Fy, Fy,, M,]T € R?
is exerted at the mid-thigh, which connects the prosthesis
to the patient’s body (see Fig. 1). The components Fi,
F, of F' are linear forces while the component M, is a
moment in the sagittal plane [12]. The body Jacobian matrix
is J(q) = [J1,03x2] € R3*5, where
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and ¢, is the length of the human’s residual thigh. The body
Jacobian maps the force vector F’, acting at the beginning of
the leg’s kinematic chain, to joint torques/forces. The feet of
the human and the prosthetic leg are modeled as arcs with
constant curvature as in [13], [21].

B. Model of the Human-Prosthesis Biped

The prosthesis-human, viewed as a single biped, has 8
degrees-of-freedom. We denote the extended configuration
vector by ¢ = [q7,q4,q5,q6)7 € Q x T3, where ¢ is
the prosthesis configuration vector, g4 is the human’s hip
(inter-leg) angle, g5 is the human’s knee angle, and ¢g is the
human’s ankle angle.

Following [13], [20], we model bipedal locomotion as a
hybrid dynamical system. During the phases of walking, the
state is governed by one second-order differential equation
during the prosthetic swing phase and another second-order
differential equation during the prosthetic stance phase. The
transitions between these two phases are governed by two
impact maps, which correspond to instantaneous changes in
the joint velocities. In particular, the human-prosthesis biped
dynamics are given by (see [12], [13], [20], [21] for further
details)

MeGe + Cede + Ge + ERAp = Bette, if  pu(ge) > 0

(q:7q~e+) = AH(qe_aq'e7% if pH(qe) =0

Meqé + Ceq.e + Ge + EZIAH = Beu67 if ( ) 0

(¢, de ") = Ar(gs, 4o ), if prp(ge) =
where the subscripts P and H are associated with the
prosthesis and the human, respectively. Also, the vector
EZT Ai» @ € {P, H}, is the ground reaction force exerted on
the human-prosthesis due to the rolling contact constraint
a;(q) = 0 [13]. The vector u, = [ul, uyg,us,us]’ € R®
represents the control torques applied by human and the
prosthesis. In particular, the vector w represents the motor
torque inputs applied to the prosthesis ankle and knee, while
the torques ug4,us,ug are the human inputs applied at the
hip, knee, and ankle joints. The impact mappings relate the
human-prosthesis state just before the impact to just after the
impact. The impact mappings Ay and Ap are associated
with the human heel-strike and the prosthesis heel-strike,
respectively. The function p;(g.) € R gives the height of
the human/prosthetic swing heel, and the superscripts +/-
denote post/pre-impact. Other extended terms are defined as
in Section II-A with respect to the coordinate vector g.

C. Virtual Constraint Control of Powered Prosthetic Legs

Virtual constraints are relations of the form h(q) = 0
among the joint variables of a legged robot that encode stable
walking gaits of the biped [10], [11]. These constraints do
not physically exist in the system but are enforced on the
robot via feedback control. Motivated by the biological ob-
servations in [22], [23], the human behavior is approximated
by virtual constraints in [13]. Using a given virtual constraint
associated with human walking, an output of the form
y = h(q) is designed for the prosthesis, whose stabilization



d(t) = asin(wt)

Fig. 2: Basic ESC structure (reproduced from [26]).

induces stable walking gaits (see [13] for further details).
The analysis in [13] demonstrates that the prosthesis-amputee
biped would be robust to human-like kinematic variations in
the human virtual constraints.

One of the advantages of this control methodology for
powered prostheses is that it relieves the designer from
dividing a walking gait cycle into numerous phases by
considering virtual constraints of the form [13]

y = h(q) = ho(q) — haop(q) =0, 3)

where ho(q) := [02x1 Iax2 O2x2]g, is the vector of the
actuated degrees-of-freedom. The function hg4(-), which is
a collection of two Bézier polynomials, determines the
desired evolution of the actuated joint variables [g2,g3]”
as a function of (q) [13]. The scalar variable p(q) is a
strictly monotonically increasing variable, which is called
the phase variable. Given the virtual constraint in (3), the
control objective is to drive y = h(g) and ¢ = (0h(q)/Iq)q
to zero via a PD feedback control law. In the conventional
approach [12], [24], [25], the PD control gains are found
off-line by trial-and-error. In this paper, we aim to develop
a model-free controller that automatically tunes the virtual
constraint-based PD gains in real time by using a classical
perturbation-based extremum seeking algorithm.

D. Classical Extremum Seeking Algorithm

In order to explain the basic architecture of the standard
perturbation-based ESC scheme used in the paper, we con-
sider a system without dynamics, which is given by a static
map f(-). The system output yes. changes instantaneously
with the input x. Assuming that f(-) is a convex function,
ie., f"(x) > 0 for all z, the objective of the ESC scheme
is to minimize the output f(z) without knowing a priori the
extremum z* of the function f(-).

The ESC scheme block diagram is shown in Fig. 2. In
the block diagram, the signal d(t), which is called the dither
signal, is a periodic perturbation signal (e.g., sin(wt)) that is
added to the current best estimate of the input =, denoted by
Z. Taking z as input, the mapping f(-) generates the output
Yese = f(2), which is passed through a high pass filter (HPF).
The HPF output, denoted by yy(¢), is demodulated by using
the same dither signal d(t). The resulting demodulated signal
is then passed through a low pass filter (LPF) that generates
the output ¢, which is proportional to the gradient of the
current measured output yes.. Next, the signal (¢) is passed
through an integrator with gain k to give Z. Since we aim to
minimize the objective function, k£ should be chosen such that

the inequality kf” < 0 holds. This inequality corresponds
to moving along the gradient directions along which f(-)
decreases. Additional details regarding ESC can be found in
[18].

III. STRUCTURE OF ESC-BASED TUNING OF VIRTUAL
CONSTRAINT-BASED CONTROLLERS

In this section, we present the structure of our automatic
real-time controller tuning method. A rigorous analysis will
be presented in the next section.

Given a properly designed virtual constraint h(g) = 0
for a powered prosthetic leg, it should be enforced by
driving h(g) and (Oh(q)/0q)q towards zero via feedback
(see [10] for further details). In this paper, we use the virtual
constraints that have been obtained via optimization in [13].
Enforcing the virtual constraints given in [13] results in
stable walking of the human-prosthesis biped. In particular,
y = h(q) and § = (0h(q)/0q)q should be driven to zero
using an input-output feedback linearizing control law. Using
such a feedback law is not feasible for implementation on
the prosthetic leg. This limitation is due to the need for
measuring socket interaction forces [13], requiring expensive
multi-axis load cells, and the lack of exact knowledge of
the prosthetic leg dynamical model parameters. Instead, one
can use a PD control law to approximately enforce y and
y (see [12] for further details). In the conventional virtual
constraint-based control algorithms, the PD control gains
are tuned in an off-line manner by trial-and-error [12].
These controllers approximately enforce the virtual constraint
h(q) = 0, making [|h(q)| and [|(Oh(q)/0q)q|| sufficiently
small to stabilize the walking gait. Hence experimental
implementation such as [12], [25] have used a model-free
PD control. For these reasons, our paper focuses on auto-
tuning of PD control laws for the virtual constraints using a
model-free extremum seeking controller.

Our algorithm automatically tunes the virtual constraint-
based PD gains in real-time. To achieve this, we consider the
following cost function
2

oh(q) 7 @

Jdq ¢
and use a control structure, depicted in Fig. 3. Thus, there
are two main components: (i) a virtual constraint-based PD
controller, given by I'. The controller I' commands the

prosthetic leg torques via

J(q,4) = ||h(q)|]” +

oh(q) .
u=—01h(q) — —24¢, 5
1h(q) — 02 ag ¢
where
_fer o A

are proportional and damping gain matrices in R?*? whose
diagonal elements are automatically tuned by the ES scheme.
The superscripts k& and a correspond to the knee and ankle
of the prosthesis, respectively; (ii) a perturbation-based ES
scheme whose role is to tune the PD gains given by (6) in
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Fig. 3: Block diagram of the proposed controller. The controller T’
represents a PD controller, which drives y = h(q) and (0h(q)/0q)q
to zero. The PD gains are automatically tuned by four ES loops in
real time such that || (q)||? + ||(8R(q)/dq)¢||* is minimized.
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Fig. 4: The perturbation-based ES scheme used in the paper.

real-time, so that the control input u in (5) can minimize the
cost function (4).

The cost function J in (4) is the Euclidean distance
(squared) of the robot state from the zero dynamics manifold
Z={(¢,q) : h(q) =0, a%—(;)q' = 0}. It can be seen from
(4) that J(-) is a function of g, ¢. The closed-loop control
system trajectories ¢(t), ¢(t) are the solutions of (1) with
control input u, given by (5). Therefore, J(t) is not known
in terms of 61 (t), 62(t), a priori. Aside from being C?, we
do not make any other assumptions on the cost function J.
ESC, as a gradient descent algorithm, finds local minima of
the cost function J(-) such that the prosthesis closed-loop
dynamics are stable.

Assuming that the signal measurements are not noisy,
Fig. 4 shows a simplified version of ESC, without filters,
used in this paper. Further details regarding the choice of
ESC parameters are discussed in Section V.

IV. CLOSED LOOP DYNAMICS AND STABILITY ANALYSIS

In this section we analyze the stability of the virtual
constraint error dynamics along with the ESC dynamics
using singular perturbation methods.

Remark 1 In our stability analysis, we only consider the
continuous phases of walking, i.e., swing and stance, while
ignoring the impacts with the ground. The virtual constraint
taken from [13] induces a stable hybrid zero dynamics.
Therefore, if the virtual constraint tracking errors become
sufficiently small, then the human-prosthesis biped walks in
a stable manner (see [12], [24] for further details). O

For the sake of brevity, we present our analysis for a
symmetric biped. First, we derive the virtual constraint error
dynamics for the prosthetic leg. Accordingly, we take two
derivatives of y along the vector field of (1). We have

Tt (8}52 )‘1) = A(g)u+ N(q, 9), (7

ah7@)M*1B € R2*%2 jg called

the decoupling matrix associated with the virtual constraint
y = h(q). The virtual constraints in [13] are designed such
that this matrix is non-singular and positive definite. Also,
. dOh(q)\. Ohlq), o
N(q,§) = 7( ) - M=o,
(@.d)= (5, )1~ 3, {Clg,9)a+
G(q)+ E(9)" A= J(q)"F},

collects the effect of the nonlinearities in (1).

We denote the PD gain estimates by éj € R? and use
them in (6) to obtain the estimation gain matrices. Next, we
substitute the PD control law

where the matrix A(q) =

®)

. ~ Oh(q) .
— —01h(q) — 6 , 9
u 1h(q) — 02 g ¢ )
into (7) to get
0h(q A ~ Oh
(500 4) = -ata) (Bhlaysd T3 3)4N g, 0). (10

. h(q T

Defining the new state 7 := ahgq)). = [ € RY, the
g T

virtual constraint error dynamics can be written as

&= A(&,0)& + N(q,q), (11
where
Fow gy | O2x2 Ioxa S ooy — | O2x1
Aady=| s G| R {N(q"{)i;

A single integrator ES loop with dither signal a sin(w’t)
is used for tuning the PD gain 0}, where i € {k,a} and
j € {1,2} (see Fig. 4). The ES dynamics for the estimate of
PD gain 6 can be written as

0% = kaJ(Z,0;) sin(wjt).

Thus, the augmented closed-loop dynamical equations for
the virtual constraint error dynamics are

- {m = A(&,6)% + N(q,d),
0 = kaJ(z,0%) sin(wit), for i € {k,a},j € {1,(211;)

13)

The following result uses a singular perturbation analysis to
show that the proposed ESC scheme results in bounded PD
gains and small virtual constraint errors.

Proposition 1 Consider the prosthesis virtual constraint er-
ror dynamics in (7) along with the ESC-based PD gain
update laws in (13). Let éi* be the quasi-steady state gain
Then, there exist suﬁ?czently small dither frequenczes w]
such that for all 0 < wj < wj , 9;(wjt) - 9;» (Wit)] =
O(w?). Furthermore, 9; (wit) satisfies:

JU . C\1/3

Flwit) < ((03(0))3+35Ka||m|2(1-cosw;.t))

0y (wit) = 07 (wit) + 05(0) — 0;(0) (15)
where R = A(q)"'N(q,q). Also, T(wit) — *(wit) —

2(t) = O(w ;) where the quasi-steady state tracking error T*
satisfies A(%,0)i* + N(q,q) = 0, and z(t) is the solution



to the boundary layer model z = [1(:5, é)z, which is locally
asymptotically stable.

Proof: The stability of the error dynamics in (14) is ana-
lyzed by a singular perturbation method [27]. To perform
the singular perturbation analysis, we bring the closed-loop
dynamics in (14) to a standard singular perturbation form.
Accordingly, we perform the change of coordinates

2= F— &, (16)
where Z* is the solution! to
A(#*,0)&" + N(g,4) = 0. (17)

Expressing the error dynamics given by (14) in terms of
the new coordinates in (16), we get

A(z+*,0)(z+3*) + N(q,§)
= A(z+3",0)z+ N(q,4) + A(z + *,0)3"
(0,0) is an

2 =

(18)

In the new coordinates (z, #), the origin (z,0) =
equilibrium point because

= A(E*,0) 2 +N(qq§) + A@E*,0)i* = 0.
=0 -0

(19)

The overall error dynamics in the new coordinates are
Z“:{%=Au+@tmz+ﬁmny+éu+f%®ﬁ
0} = kaJ(z + ", 07) sin(wjt).
| (20)
Defining 7 := wjt (see Remark 2) and expressing (20) in
the new time scale given by 7, we get

w‘i—A(Hx 0)z + N(q,§)+A(z + &*,0)%*

"no.__ J d
o dal—aK J(z + @*,0%)si
e alJ(z+2*,0;)sinT
(21
where k := w;iéK and 6 is a small positive constant.

According to the singular perturbation theory, we first need
to find the quasi-steady state value of z = [z 25]7 in (21).
Accordingly, we set w;» = 0, corresponding to instantaneous
changes of the fast dynamics, and solve the resulting alge-
braic equations. The algebraic equations, which hold during
the quasi-steady state, are given by

A(z+7,0)2+ N(q,§) + A(z + 7*,0)7* = 0.
Substituting A(z+ Z*,6) and ]\7(q, ¢) from (12) in (22), we

(22)

have
[ O2x2 12><2A:| [21} n [ O2x1 }
—A(9)0h  —A(g9)02] |22 N(q,q)
i (23)
n O2x2 Ioxa | (27| _ |O2x1
—A(q)0h  —A(q)02] %5 Ox1|”
Solving for z, we get
Z9 = 71’2 , R1 = 0 R — £E17 (24)

where R = A(q)~'N(q,q). Having found the quasi-steady
state values of z; and 29, the objective function J(-) in (21),

ISince A is invertible, by implicit function theorem a solution to (11)
exists.

denoted by J,,, evaluated at the quasi-steady state is
s (01,02) = |21 + F5 )17 + [|22 + 357 = 107" RI, (25)

where R is a constant vector in the slow time-scale 7 = w}t.
Note that J,, is only a function of ;. It remains to show that
the ESC dynamics for 6; at the quasi-steady state is stable.
The ESC dynamics (21) can then be written as

d0i

W = (5KanS(91) sin 7,

where 93* is the gain evaluated at the quasi-steady state.
Equation (26) represents a reduced system. Plugging the
value of J,, in (26), we get

(26)

doi . .
d—; = §Kal|0;"R|*sinT.

Using submultiplicative property of 2-norm, we get

A’L,.*

—L < §Kallf; 2R sin T
5Ka||R||2 SKa||RI? .
Amaz (9 91) max (07", 07")
Analyzing (28) for ¢ = a, we have
g’ _ 0Ka|[R|?
dr = (01" (r))?
Setting j = 1 and integrating both sides of (29) from 7 =0
to T = w;»t, we get,

27)

(28)

sin 7. 29)

. e . ) 1/3
05 (wit) < ((81(0))+30Kal[RI2(1-cos(wit)) )~ (30)

Similar argument holds for ¢ = k. From (27), it is clear that

dei  aoy

dr dr 1)
since the right hand side of (27) is a only a function of él.
Integrating both sides of (31) from 7 = 0 to 7 = w;-t, we

get,

0y (Wit) = 6] (wit) +05(0) - 05(0) (32

Thus, equation (30), (32) shows that the stiffness and dam-
ping gains always remain bounded, as claimed in (15).

Now we perform a boundary layer model analysis. Taking
the time derivative of (16), we get

;= i-1"=A,0)%+ N(q,q),
A(3,0)7 — A@z",0)i", (33)
where N(q,§) = —A(#*,0)&* from (17). Equation (33) can

be written in terms of z as

i=A(z47",0)z + [A(z + 7*,0) — A(&",0)]z*. (34
The first order Taylor series expansion of the right hand side
of (34) about z =0 is

. d - JUPPN
z= ($A(z+x ,0)z




which can be shown to be

s = (d%fi(z +i*,0)2 )z =A@, 0)z.  (36)

z=0
Since A(q) is positive definite, A(Z*,f) is negative definite,
proving the boundary layer model to be locally asymptoti-
cally stable. Using Theorem 11.1 in [27] concludes the proof.

Remark 2 In the standard ES perturbation-based schemes,
the ES loop dynamics need to be run much slower than the
plant dynamics. This is achieved by choosing a small dither
frequency such that a time scale separation holds between
the ES loop and the plant dynamics.

V. SIMULATION RESULTS

A complete biped system comprising the human and the
prosthesis subsystem was simulated as in [13]. The human
subsystem was controlled using input-output feedback linea-
rization with fixed PD gains to enforce the virtual constraints
defined in [13], which predict certain features of human
walking. The prosthesis subsystem was controlled by the
model-free output PD controller (5), which assumes no
knowledge of the human system. The total leg length of the
model was 90.1 cm, and the mass of the prosthetic leg was
5.7 kg. The Cartesian coordinate of the hip position, i.e.,
Gz, was chosen as a phase variable. The ESC method from
Section IIT was used to continuously modify the PD gains. To
demonstrate the effectiveness of ESC in adapting the gains,
simulations were carried out on two different models with its
total mass equal to 69.1 and 103.1 kg. The dither amplitude
was selected as a = 2 with dither frequencies w! = 1.4,
wf = 1.8, wk = 1.6, and w$ = 1.2 rad/s, and the integrator
gains were selected as k¥ = 350. The initial values of PD
gains were selected as 0F = 0¢ = 10 and 05 = 03 = 1. The
frequency of the dither was chosen small for two reasons:
(i) Theoretically, this allows sufficient time-scale separation
between the ESC dynamics [18] and the plant dynamics
(human and prosthesis), which have frequencies from 167
to 327 rad/s during walking [28]; (ii) Practically, choosing
the dither frequency much smaller than the joint motion
frequencies induced by virtual constraints does not result in
erratic changes in the control input.

The stabilizing effect of the PD controller, coupled with
ESC adaptation, is acutely illustrated in Fig. 5. The amputee
biped using fixed PD gains falls after a few steps. However,
the amputee biped controlled with a PD controller coupled
with ESC adaptation is able to walk stably over 60 steps with
the initial gains much lower than the fixed PD controller. Fig.
6 shows the adaptation of PD gains for amputees of different
weights. A supplemental simulation video can be found
at https://youtu.be/c-D_h63NnZw. As opposed to
[7], which does not tune the damping gains, our method helps
find the optimum values for different amputees.

VI. CONCLUSION

In this paper, we presented an automatic tuning scheme
for virtual constraint-based control laws for a powered knee

and ankle prosthesis. The proposed algorithm, which is
based on a standard perturbation-based ESC, runs in real-
time and does not require knowing the parameters of the
human-prosthesis biped. Simulation studies demonstrate the
effectiveness of our control methodology. In our future work,
a real-time, model-free multi-objective optimization will be
used to consider multiple conflicting objectives, e.g., tracking
error vs. energy consumed. We will also test our approach
on a real powered prosthetic leg against a wider range of
uncertain amputee physiological parameters.

ACKNOWLEDGEMENT

We would like to thank Dr. Anne Martin for creating the
original simulation code used in this paper.

REFERENCES

[1] N. Hogan, “Impedance control: An approach to manipulation: Part II -
Implementation,” J. Dyn. Syst. Meas. Contr., vol. 107, no. 1, pp. 8-16,
1985.

[2] M. R. Tucker, J. Olivier, A. Pagel, H. Bleuler, M. Bouri, O. Lambercy,
J. del R Millan, R. Riener, H. Vallery, and R. Gassert, “Control
strategies for active lower extremity prosthetics and orthotics: a
review,” J. Neuroeng. Rehabil., vol. 12, no. 1, 2015.

[3] F. Sup, H. A. Varol, and M. Goldfarb, “Upslope walking with a
powered knee and ankle prosthesis: initial results with an amputee
subject,” IEEE Trans. Neur. Syst. Rehab. Eng., vol. 19, no. 1, pp. 71—
78, 2011.

[4] A. Shultz, B. Lawson, and M. Goldfarb, “Running with a powered
knee and ankle prosthesis,” IEEE Trans. Sys. Rehab. Eng., vol. 23,
no. 3, pp. 403-412, 2015.

[5] B. Lawson, H. Varol, A. Huff, E. Erdemir, and M. Goldfarb, “Control
of stair ascent and descent with a powered transfemoral prosthesis,”
IEEE Trans. Neur. Sys. Rehab. Eng., vol. 21, no. 3, pp. 466473, 2013.

[6] A. M. Simon, K. A. Ingraham, N. P. Fey, S. B. Finucane, R. D.
Lipschutz, A. J. Young, and L. J. Hargrove, “Configuring a powered
knee and ankle prosthesis for transfemoral amputees within five
specific ambulation modes,” PloS one, vol. 9, no. 6, p. €99387, 2014.

[71 D. Wang, M. Liu, F. Zhang, and H. Huang, “Design of an expert
system to automatically calibrate impedance control for powered knee
prostheses,” in IEEE Int. Conf. Rehabil. Robot., 2013, pp. 1-5.

[8] N. Aghasadeghi, H. Zhao, L. J. Hargrove, A. D. Ames, E. J. Perreault,
and T. Bretl, “Learning impedance controller parameters for lower-
limb prostheses,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2013, pp. 4268-4274.

[9] H. Huang, D. L. Crouch, M. Liu, G. S. Sawicki, and D. Wang, “A cyber
expert system for auto-tuning powered prosthesis impedance control
parameters,” Annals of Biomedical Engineering, vol. 44, no. 5, pp.
1613-1624, 2016.

[10] E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris,
Feedback Control of Dynamic Bipedal Robot Locomotion. New York,
NY: CRC Press, 2007.

[11] K. Sreenath, H. W. Park, I. Poulakakis, and J. W. Grizzle, “A compliant
hybrid zero dynamics controller for stable, efficient and fast bipedal
walking on MABEL,” Int. J. Robot. Res., vol. 30, no. 9, pp. 1170-
1193, 2011.

[12] R. D. Gregg, T. Lenzi, L. J. Hargrove, and J. W. Sensinger, “Virtual
constraint control of a powered prosthetic leg: From simulation
to experiments with transfemoral amputees,” IEEE Trans. Robotics,
vol. 30, no. 6, pp. 1455-1471, 2014.

[13] A. E. Martin and R. D. Gregg, “Stable, robust hybrid zero dynamics
control of powered lower-limb prostheses,” IEEE Trans. Automat.
Contr., 2017.

[14] A. Mohammadi, E. Rezapour, M. Maggiore, and K. Y. Pettersen,
“Maneuvering control of planar snake robots using virtual holonomic
constraints,” IEEE Trans. Contr. Syst. Technol., vol. 24, no. 3, pp.
884-899, 2016.

[15] A. M. Kohl, E. Kelasidi, A. Mohammadi, M. Maggiore, and K. Y.
Pettersen, “Planar maneuvering control of underwater snake robots
using virtual holonomic constraints,” Bioinspiration & Biomimetics,
vol. 11, no. 6, p. 065005, 2016.



M = 69.1kg, th = 30012, 6> = 5015

100
=
S 50
=
L .
0 2 4 6 8 10
No. of Steps
M = 103.1kg, 61 = 30012, 05 = 501>
100 i : . :
=
S 50
=
0 A
0 2 4 6 8 10

No. of Steps

M = 69.1kg, ¢ = 101,62 = Iy

0 \\\\\\\‘\\\\\\\‘\\\\\\\\\\
0 20 40 60
No. of Steps

M =103.1kg, 01 = 10L,,05 = I

N I RRRRRREARRANN AN RRRRRRRNN
0 20 40 60
No. of Steps

Fig. 5: Plots of the objective function for models with two different masses. Left: fixed PD gains. Right: proposed ESC-tuned gains.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

400
300
e 200 /‘\_W
100 —M=69.1 Kg
0 —M=103.1 Kg
0 20 40 60
No. of Steps
400
300
45200 M
100 —M=69.1 Kg
0 ‘ —M=103.1 Kg
0 20 40 60
No. of Steps

200

&'200 -

400

300 -

100 —M=69.1 Kg
—M=103.1 Kg
0 20 40 60
No. of Steps

400

300 -

100 —M=69.1 kg
—M=103.1 kg

0 20 40 60
No. of Steps

Fig. 6: Optimization of stiffness and damping gains of a impedance controller for amputees of different weights.

E. Rezapour, A. Hofmann, K. Y. Pettersen, A. Mohammadi, and
M. Maggiore, “Virtual holonomic constraint based direction following
control of planar snake robots described by a simplified model,” in
IEEE Conf. Contr. Applicat., 2014, pp. 1064-1071.

Q. Nguyen and K. Sreenath, “L! adaptive control for bipedal robots
with control lyapunov function based quadratic programs,” in Ameri-
can Contr. Conf., 2015, pp. 862-867.

M. Krsti¢ and H.-H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4,
pp- 595-601, 2000.

K. B. Ariyur and M. Krstic, Real-time optimization by extremum-
seeking control. John Wiley & Sons, 2003.

R. D. Gregg and A. E. Martin, “Prosthetic leg control in the nullspace
of human interaction,” in American Contr. Conf., 2016, pp. 4814-4821.
A. Martin, D. Post, and J. Schmiedeler, “Design and experimental
implementation of a hybrid zero dynamics controller for planar bipeds
with curved feet,” Int. J. Robot. Res., vol. 33, no. 7, pp. 988-1005,
2014.

R. D. Gregg, E. J. Rouse, L. J. Hargrove, and J. W. Sensinger,
“Evidence for a time-invariant phase variable in human ankle control,”
PloS one, vol. 9, no. 2, p. 89163, 2014.

D. J. Villarreal, H. A. Poonawala, and R. D. Gregg, “A robust parame-

[27] H. K. Khalil, Noninear Systems.
[28] D. A. Winter, Biomechanics and motor control of human movement.

terization of human gait patterns across phase-shifting perturbations,”
IEEE Trans. Neur. Sys. Rehab. Eng., vol. 25, no. 3, pp. 265-278, 2017.

[24] D. Quintero, A. E. Martin, and R. D. Gregg, “Toward unified control

of a powered prosthetic leg: A simulation study,” IEEE Trans. Contr.
Syst. Technol., vol. PP, no. 99, pp. 1-8, 2017.

[25] D. Quintero, D. J. Villarreal, and R. D. Gregg, “Preliminary experi-

ments with a unified controller for a powered knee-ankle prosthetic
leg across walking speeds,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
2016, pp. 5427-5433.

[26] S. Kumar and N. Gans, “Extremum seeking control for multi-objective

optimization problems,” in IEEE Conf. Dec. Contr., 2016, pp. 1112—
1118.
Prentice-Hall, New Jersey, 1996.

John Wiley & Sons, 2009.



