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Abstract—Although emerging powered prostheses can enable
people with lower-limb amputation to walk and climb stairs
over different task conditions (e.g., speeds and inclines), the
control architecture typically uses a finite-state machine to switch
between activity-specific controllers. Because these controllers
focus on steady-state locomotion, powered prostheses abruptly
switch between controllers during gait transitions rather than
continuously adjusting leg biomechanics in synchrony with the
users. This paper introduces a new framework for powered
prosthesis control by modeling the lower-limb joint kinematics
over a continuum of variable-incline walking and stair climbing,
including steady-state and transitional gaits. Steady-state models
for walking and stair climbing represent joint kinematics as
continuous functions of gait phase, forward speed, and incline.
Transition models interpolate kinematics as convex combinations
of the two steady-state models, with an additional term to
account for kinematics that fall outside their convex hull. The
coefficients of this convex combination denote the similarity of
the transitional kinematics to each steady-state mode, providing
insight into how able-bodied individuals continuously transition
between ambulation modes. Cross-validation demonstrates that
the model predictions of untrained kinematics have errors within
the range of physiological variability for all joints. Simulation
results demonstrate the model’s robustness to incline estimation
and mode classification errors.

I. INTRODUCTION

Most commercially-available prostheses for above-knee am-
putees are mechanically passive or semi-active, so they can-
not provide the net-positive work that is crucially important
for inclined walking and stair climbing. Powered, or active,
prostheses [1]-[3] can provide positive mechanical work to
reduce the compensations and effort required for the user to
walk [4]. In particular, powered prostheses attempt to mimic
biological leg behavior (often using able-bodied kinematics
as references [S5]-[11]) to restore physiological gait biome-
chanics similar to an able-bodied population. The state-of-
the-art control approach for multi-activity powered prostheses
uses a finite state machine (FSM) to switch between different
controllers for each ambulation mode [1], [12]-[15]. This con-
trol paradigm uses sensors such as inertial measurement units
(IMUs) and/or electromyography signals to predict user intent
in locomotion, including but not limited to level walking,
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ramp ascent/descent, and stair ascent/descent [16]. Therefore,
at least five different controllers corresponding to each mode
of locomotion are constructed separately, often with their
own finite-state machines to represent gait progression [17].
This results in many control parameters that require domain
knowledge to fully configure to each user [18]. Moreover,
accurate and timely estimation of user intent has been a barrier
in the field for years; classification errors can cause falls and
reduce the user’s confidence in the prosthetic leg [19].

In the past few years, researchers have attempted to combine
FSM activity states by continuously parameterizing the joint
kinematics with phase and task variables [7]-[10]. A phase
variable refers to a biomechanical signal that measures the
continuous gait progression during locomotion, such as thigh
angle and its integral [5]. Task variables quantify continuous
variations of an activity such as step length, gait speed, or
ground incline. Based on this concept, Embry et al. [9],
[10] modeled joint kinematics as a continuous function of
gait phase, forward speed, and ground incline. This model
successfully combined level walking and ramp walking under
continuous variations in ground incline, which experimental
implementations [20] have leveraged to continuously adapt to
task conditions. Inspired by this continuously-varying walking
model, we adopt this modeling framework and expand it
to combine stair ascent and stair descent under continuous
variations of stair inclination, in order to further reduce the
number of separate ambulation modes.

The transitions between ambulation modes also remain an
important challenge, as existing prosthesis controllers focus on
steady-state gait. State-of-the-art control strategies discretely
switch the prosthetic leg from one steady-state controller to
another (e.g., walk to stair ascent) [13], [14] after the high-
level controller estimates the intent of the user. However,
switching in this manner can cause abrupt changes in control
behavior, where certain timings within the gait cycle may
result in gait instability [21] and fall risk for the users.
Fortunately, emerging intent recognition algorithms are now
making it possible to predict the transition before it hap-
pens using combinations of several IMUs [22] or a system
consisting of a depth camera and IMU [23] with > 93%
accuracy. This presents an opportunity for the controller to
implement appropriate joint kinematics for a seamless and
smooth transition between ambulation modes, as described in a
recent study of the anticipatory kinematics of transitions from
level walking to stair ascent and descent [24]. However, it
is unclear how to model the continuously-varying kinematics
during the transitions between stair ascent/descent and walk,
let alone the relationships between steady-state and transitional



kinematics under different combinations of walking speed and
ground/stair inclination.

To address these challenges, we present a modeling frame-
work that represents the gait kinematics of steady-state walk-
ing and stair climbing as continuous functions of the phase,
forward speed, and terrain inclination. We further model the
transitional kinematics as a convex combination of these
two steady-state kinematic models plus a conditional offset.
By visualizing the coefficients of this convex combination
and the conditional offset during transitions between walk
and stairs, we establish a biomechanical relationship between
transitional and steady-state kinematics at each phase. We train
and validate our models with an open-source dataset [25].
Furthermore, we evaluate the robustness of the models against
input perturbations and ambulation mode misclassification
using Monte Carlo simulations. We consider this modeling
framework an essential step towards a unified, non-switching,
phase-based controller for powered prosthetic legs. The main
contributions of the paper are summarized as follows:

o Extends the continuously-varying model [9] from
variable-incline walking to variable-incline stair climbing,
accounting for additional activities of daily life.

o Introduces a transition modeling framework to generate
walk to stair and stair to walk models using a convex
combination of the steady-state walk and stair models,
which connects these steady-state activities within a con-
tinuous activity space.

« Introduces a conditional offset that applies at certain
phases where the transition trajectories leave the convex
hull of the two steady-state models, which offers insight
into how transitions differ from the steady-state activities.

o Explores the biomechanical meaning behind the coeffi-
cients of the convex combination and the offset term in
the transition models, which could guide future studies
of locomotion mode transitions.

« Demonstrates the robustness of the continuously-varying
models against perturbations in the inclination input and
misclassification in ambulation mode during walking at
low inclinations.

The rest of this paper is organized as follows. Section
IT introduces the formulation and evaluation methods of the
modeling framework. Section III summarizes the results of
model fitting and simulations. Section IV discusses these
results and the future integration of the models with robotic
prosthesis controllers, along with some limitations and future
work. Finally, we conclude in Section V.

II. METHODS

In this section, we explain the modeling frameworks for
the steady-state and transition models. We first describe the
dataset used to train the models and the symbolic definition
of modeling terms. Then, we introduce the constraints of the
objective on the models and formulate the optimizations based
on these constraints. Finally, we describe how we evaluate the
accuracy and robustness of the models using cross-validation
and offline simulations with the dataset. Supplementary Table
S1 summarizes all the symbolic terms we use in this section.

A. Experimental Dataset

We used a publicly available dataset [25] of lower-limb
kinematics and kinetics of ten able-bodied participants (five
female, years: 30.4 £ 14.9, weight: 74.6 £ 9.7 kg, height: 1.73
4 0.94 m) walking at multiple inclines (£ 0°, 5° and 10°) and
speeds (0.8ms™!, Ims~! and 1.2ms™!). It also contains stair
data with multiple stair inclines (& 20°, 25°, 30° and 35°), and
the transitions between walk and stairs at those inclines. Data
were collected using a Vicon motion capture system, and a
Bertec instrumented treadmill was used to actuate different
walking task conditions, i.e., different inclines and speeds.
In this dataset, 0% gait cycle corresponds to heel strike, and
this definition applies to the rest of the paper. The use of the
data was approved by the Institutional Review Board at the
University of Michigan under HUM00166976 on 08/13/2019.

B. Gait Model

We define the inputs to our models as the gait phase,
forward speed, and ground/stair inclinations, and the output
to be the joint angle for the hip, knee, or ankle. Based on
this structure, we set up the following assumptions for our
modeling framework. First, we assume that the gait cycle
is periodic for the steady-state activities (i.e., steady-state
walking and stair climbing). Second, we assume that the input
variables to the models, e.g., forward speeds and ground/stair
inclinations, are continuous. Third, we assume that the input
speed and incline during daily locomotion are within the
boundary values of our training dataset, which can easily
be expanded in future work. Finally, we assume the average
joint kinematics for the steady-state modes before and after
a transition are known. The practical implications of these
assumptions are discussed in Section IV.

We first introduce the steady-state walking (SSW) model
proposed by Embry et al. [9] and the extension to the steady-
state stair (SSS) model. Then, we detail the modeling of
the transitional models, i.e., walk to stair (W2S) and stair to
walk (S2W), based on the two steady states. For the steady-
state models, we represent joint kinematics as a function of
gait phase (¢) and task condition (), where the gait phase
refers to the phase variable. The task condition contains two
dimensions, y = (v,1), where v and 1 are the subject’s forward
speed and the ground/stair inclination, respectively. Since the
speed was self-selected in the steady and transitional stair
kinematics in the training dataset [25], we assume a nominal
forward speed (lms’l) during SSS, W2S, and S2W model
training. Similarly, the W2S and S2W models are generated for
level walking based on the available data. These dimensions
could be expanded once additional training data becomes
available. The stair incline in the dataset [25] was defined
as 1= atan(%), where &, and d; represent the total height and
length of the staircase used to collect the data, respectively.
We map the range of stair inclines (from —35° to 35°) to
a normalized range of 0 to 1, which helps to parameterize
the task function and generalize the modeling framework to
different datasets. We consider level walking as a 0° stairs
condition in order to connect stair ascent and descent, despite
missing data for absolute stair inclines less than 20°.



As in Embry et al. [9], the steady-state kinematics are
modeled as a weighted sum of N basis functions of gait phase,
bi(¢), and the weight of each basis function is described by
the task function ¢ (). The basis functions by(¢) are finite
Fourier series of degree F = 10, and the task functions are
parameterized as Bernstein basis polynomials [9]. Therefore,
we express the joint angle 6 of the hip, knee, and ankle as
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bi(¢) = Book + Y, (Brixcos(i®) + B sin(ig)),  (2)
i=1
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where the basis functions are indexed by k =1,...,N in (1),

Brix € R in (2) are the Fourier coefficients to optimize, and A,
Kk are the binomial coefficients described next.

We chose the order of Bernstein polynomial in order to
capture the complexity of the input dimension without over-
fitting. The order of Bernstein polynomial is given by A, and
K is the set of integers that goes from O to A to form the
Bernstein basis. For example, if A = 3, the Bernstein basis
contains four terms as k = {0,1,2,3} (details in [9]). Although
we were unable to train the SSS on different speeds, we used
second-order Bernstein basis polynomials to model the speed
dimension as in the SSW walking model. However, due to
the increasing complexity of kinematic changes between stair
ascent, level walking, and stair descent across inclines, we
chose 4, 7" and 6" order of Bernstein basis polynomial for
the hip, knee, and ankle, respectively. For SSW, 3™ order is
enough to describe the kinematic changes with inclines [9].

To formulate a convex optimization program, we define the
optimization variable x as

¢ = [Book Bk Bai --- Birk Bora)” € R

x=[x1x ... xn] € RUH2F)XN
A matrix L stores the phase dependent terms in (2):
6 =1 cos(¢;) sin(¢) ... cos(F¢;) sin(F¢;)] € RP*U+2F)
L=l 6 ... 6p)" e RPXIH2E)

where P is the number of discrete gait phases indexed by i. A
matrix U stores the terms of N task functions in (3):

wj=le1 () e2(xj) --- en ()" € RV,

U=[uuz ... ug) e RVXC,

where G is the number of discrete task conditions indexed by
j. G is equal to 15 for the walking model and 9 for the stair
and transition models based on the available dataset [25].

The model in (1) fits the experimental data by optimal
design of the parameters x. For each gait phase (¢;) and task
(), the model is linear with respect to the parameters and
the joint angle can be expressed as

N
lixuj = Z bi(9i)cr(x;))- S
k=1

(a) Hip Joint for W2S at 35°

70
Walk Stair Transition
60 &
50 -
E’ 40
-
2
2301
<
E
5 20f
S
10
ok
10 . . . . , . . . . )
0 10 20 30 40 50 60 70 80 90 100
Gait Percentage [%]
°
0 (b) Ankle Joint for S2W at -35
Walk Stair Transition
30
'§7 20r Singularity Point
% Conditional
T Offset
DO === = === =
<
-
£
) N
1
1
-10 1
1
1
-20 & I 1 I I 1, |

. . . )
0 10 20 30 40 50 60 70 80 90 100
Gait Percentage [%]

Fig. 1. (a) Ideal case: For W2S, transitional kinematics are close to walking
kinematics at the beginning but tend to stair kinematics towards the end of the
gait cycle. This plot demonstrates that the transition trajectory is within the
convex hull created by the walking and stair trajectories (red shaded area). (b)
Non-ideal case: The transition trajectory is outside the convex hull region to
show the necessity of the conditional offset term (e.g., the gray double arrow).
The singularity point on the plot occurs when the walk and stair trajectories
intercept at ~ 0° while the transition trajectory is higher than both trajectories,
which would create discontinuities without the conditional offset term.

To generate the transition models as functions of the
steady-state models, we model the S2W and W2S transitional
kinematics using a convex combination of SSW and SSS
kinematics with a conditional offset (Fig. 1(a)):

em((P’X) :a(¢a)c)9w(¢7xw)
+ (1 - a(‘Pv%))BY((P’XS) +0(¢?X)Y(¢a%)a @)

6" (¢, %) > max(6"(9,x"),6%(9,1")),

1
0(¢7%): 1 615(¢a%) <mi“(ew(@lw%es(@f))’
0 otherwise,
(6)
M
(X((Z),X)Z Zak(qb)ck()oa (7N
k=1
M
1(0.0) = Y e(9)ex(), ®)
k=1



where 0%, 60", 6° are the joint angles of the W2S/S2W, SSW,
and SSS models, respectively. O is the indicator function that
determines whether the transition joint angle is outside the
convex hull created by steady-state walk and stair models at
each point in time. We introduced the conditional offset term
O(¢,x)v(¢,x) based on the observation that the transition
trajectories are not always in between the corresponding walk
and stair trajectories (e.g., Fig. 1(b)). Because the dataset had
only a discrete set of inclines, we linearly interpolated the
conditional offset term when generating the final transition
models across a continuum of inclinations. ", x* represent
the measured task condition inputs to the SSW and SSS
models, respectively, before or after the transition.  is the
non-negative convex coefficient and 7y is the offset angle,
which are both weighted summations of M functions of gait
phase and task conditions. c;()) here is a 2"¢-order Bernstein
basis polynomial, while a;(¢) and r;(¢) are undefined phase
functions that need to be solved with the convex optimization.
To formulate a convex optimization program, we define a
matrix V to store M task functions in (7) and (8):
vi=ler () e2(x)) - em ()" € R,
V=W ... vg] € RM*C

Similar to (4), at each gait phase (¢;) and task condition
(x;), the coefficients o and ¥ can be expressed as

M
yivi =Y a(9i)er(x)); )
k=1
M
zvi= Y r()cr(x)), (10)
k=1
where y; € RUM and z; € RM are the i row of the

optimization variables y € R”*M and z € R”*M respectively.
Substituting (9) and (10) into (5), we can write

0 = 0°(0nx) = [ 3 @ | {

where w = 6"(¢;,x}") and s = 6°(¢;,x;) are the known joint
angles from SSW, SSS at given task condition and phase, o =
O(¢;, ;) is either O or 1 depending on whether the transition
joint angle is outside the convex hull region, @:j is the "
row and j column of the transitional joint kinematics matrix
@' € RP*G. Therefore, the transitional joint kinematics are
affine functions of the optimization variables y and z. Note
that we fix y, = (Ims~',0°) for the later analysis on the
transition models.

vi(w—s)
VjO

]Jrs, an

C. Model Training

We formulate a convex optimization problem to train all
the models, ensuring that each optimum is a global optimum.
As a prerequisite, we set up the objective and all constraints
to be convex functions [26]. We then solve the optimization
variable x for the steady-state models (SSW and SSS), and the
optimization variables y and z for the transition models (W2S
and S2W). The variables x, y, and z store the coefficients of
the task and/or basis functions, as discussed in Section II-B.
This subsection focuses on the model training process for the

transition models; we will only briefly introduce the steady-
state models as the detailed modeling is available in [9].

1) Fitting to Averaged Kinematics: All the steady-state and
transition training share the same main optimization objective:
fitting the models to the average able-bodied kinematics for
a range of task conditions. Because the variance in the
experimental kinematics is non-constant over phase, we divide
the difference between the model output and the average
joint angle by the standard deviation at each phase and task
condition to weight measurements according to uncertainty.
To that end, we define the first minimization objective as

(Ao — LxU) 2 SD(dgy )|

2 (12)
where © is the element-wise matrix division known as
Hadamard Division [27], dy, € R"*C is the inter-subject mean
of joint kinematics, SD(dy,) € RP*C is the standard deviation,
and LxU € RP*Y is the model’s predicted joint kinematics
across all phases (¢;) in the row and task conditions ();) in
the column with each element calculated by (4).

2) Jerk Minimization: Jerk minimization is important to
guarantee the smoothness of the model outputs and ensure the
predicted trajectories can reflect natural human motions [9],
[28]. Because the jerk can be calculated by the third derivative
of the actual trajectories, and we train the model based on
discretized phases and task conditions, we define a discrete
unitless derivative operator D as a matrix:

-1 1 0 0
0o -1 1 0
D= 0 0 0 ERPXP.
0o -1 1
0 0 0 o0 0

By multiplying the D matrix three times with the joint
kinematics matrix LxU € RP*G we can minimize the discrete
jerk for the steady-state models as our second objective:

ISLeU ., (13)
where S = DDD € RP*P,

In addition to the joint jerk minimization in the steady-state
models, we also want to minimize the jerk of the & and 7y terms
for the transition models. Since the convex optimization tends
to find the solution that fits the training data best by sacrificing
the smoothness of «, we minimize its jerk to avoid abrupt
changes over phase. Otherwise, biomechanically infeasible
motion such as instantaneous ambulation mode transition may
arise. Minimizing the jerk of y helps to further smooth the
model outputs when the conditional offset applies. Therefore,
we write the last minimization objective as

||SyV||] + ||SZVH| ) (14)

In this case we use the L norm, as it is more robust against
outliers in order to keep the overall jerk of the interpolation
coefficients small.



3) Optimization Constraints: For the steady-state models,
we set up box constraints on the range of motion ([Ryin, Rinax])
for each joint by constraining the magnitude of each task func-
tion before we solve for x [9]. For the transition models, we
apply alternative constraints on ¢ and Y to ensure uniqueness
and biomechanical meaning of the solution. Those constraints
can also guarantee the range of motion is well-bounded since
we model transition kinematics as a convex combination of
walk and stair and the jerk of 7y is minimized. First, since we
set up the transitional kinematics as the convex combination of
the walk and stair kinematics with conditional offsets, based on
Jensen’s inequality [26], we introduce 0 < ¢ < 1. In this way,
we constrain the transition trajectories to be inside the convex
hull created by the walking and stair trajectories. Second, we
intuit that the transition trajectories should start at the state
from which they are transitioning and converge to the state to
which they are transitioning. Based on this, we constrain ¢ to
be close to 1 at the beginning of the walk to stair transition
and o to be close to 0 at the beginning of the stair to walk
transition. Third, we constrain ¢ to be strictly monotonically
increasing during S2W or strictly monotonically decreasing
during W2S to model unidirectional transitions.

4) Convex Optimization Formulation: Given the objectives
and constraints in Section II-C up to this point, we formulate
the convex optimization programs to find the optimal model
parameters for the steady-state and transition models sepa-
rately. For the steady-state models, we have

milgl. p+8|SLxU|,,

) —

s.t. —pSD (d(lej) < d‘Pin —Llixuj < pSD (d¢in) ,
Rmin < R;nm» (15)
Ripax > R™,

i=1,2,....,Pand j=1,2,....G,

where p characterizes the accuracy of data fitting, and 6 is the
weight on jerk minimization. Following [9], § = 10~ was se-
lected for the steady-state models. R™®, RM" are the maximum
and minimum joint positions, respectively, at discrete phase ¢;.

The transition models are similar to the optimization pro-
gram (15), but with additional jerk minimization and con-
straints on the o and 7y coefficients. For example, the W2S
model training is set up as follows:

min. o+ p+8[|SO° |, +ellSyVIl +nlIszVy,

st —pSD (dgy) < dy, O < pSD (dgy,)
Oéy,-ngl, (16)
ly1vi — 1H2 <o,
DyV <0,

i=1,2,...,Pand j=1,2,...,G,

where 0, €, and N are the weighting coefficients for the jerk
minimization of the joint and interpolation coefficients. DyV
gives the discrete first-order derivative of the a coefficient to
constrain the monotonicity.

For the S2W modeling, the optimization program is the
same as (16) except the constraints on the initial condition of o
are close to O instead of 1, and ¢ is monotonically increasing
instead of decreasing.

For both transition models, we tuned the weighting coeffi-
cients based on the smoothness of the model output and the
priority of each jerk minimization term, resulting in § = 1072,
€=1, and 1 =7 x 107>, The optimization programs (15)
and (16) reach a global minimum because they are convex
optimization programs [26]. For the program (15), a(pl.xj —lixu;
is affine with respect to the optimization variable x, so the
upper bound pSD (dgy;) and lower bound —p SD (dg,y;)
form affine constraints [9]. For the jerk minimization term,
¢ixuj is linear with respect to vector x, and the L, norm of
linear expression SLxU is convex. The positive sum of this
convex function and the affine expression p yields a convex
objective. The convexity analysis for the program (16) follows
the same logic as (15).

D. Model Evaluation

Each model is trained and evaluated using MATLAB
R2019a (MathWorks, USA) on an Intel(R) Core(TM) i7-
8700 CPU @ 3.00GHz, 8-Core processor (Intel Corporation,
USA). We perform leave-one-out cross-validation to evalu-
ate the models in terms of accuracy and robustness over
inclines. Since no speed information is available for stairs
and associated transitions in the dataset, model performance
at different speeds for the SSS, W2S, and S2W models cannot
be evaluated. Thus, we fix the speed input to those models and
focus the analysis on the incline dimension.

1) Cross-Validation: To evaluate the predictive perfor-
mance and generalizability of each model, we perform a leave-
one-out cross-validation by removing one incline condition
from the training data for use as testing data, and repeat
this process for different inclinations. Let H,, = £+{0,5,10}°
and H; = +£{0,20,25,30,35}° denote the ground (i.e., walk)
and stair inclinations in the dataset. Since we assumed the
incline input to the model is always within the boundary,
we focus the analysis on interpolation of the joint kinematics
for (left out) walking inclines strictly between +10° and stair
inclines strictly between +35°. We do not leave out 0° in the
stair model, which corresponds to the level walking trajectory,
because its primary purpose was to connect the positive and
negative inclines in order to help the model fitting.

Take the W2S model for example: in the first it-
eration, we separate H, into the training set H! =
{-35,-25,-20,0,20,25,30,35}° and validation set H' =
{-30}°. Then, H is used to fit the W2S model, and the
kinematics data at HY is used for comparison with the model
output at the same inclination. In this way, we obtain the
model performance under interpolation. For the SSW model,
we repeat the validation step for each fixed speed.

2) Model Accuracy and Efficiency: For each iteration in
the cross-validation, we quantify the model accuracy by the
difference between the predicted kinematics 6(¢;, x;) with the
reference average kinematics dg,; using the validation set.
First, the root-mean-square error (RMSE) is calculated down
to the nearest hundredth of a degree, which is within the
resolution of the joint angle estimates from the Plug In Gait
model from Vicon [29]. Next, to account for the inter-subject
variation, we normalize the absolute difference by the standard



TABLE I
SUMMARY STATISTICS OF MEANS, MAXIMUMS, AND RMSE OF CROSS-VALIDATION*

Hip Knee Ankle
Ny N RMSE (°) Ny Ny RMSE (°) Ny N RMSE (°)
SSS | 0.15(0.09) 0.36(0.12)  1.64(0.89) | 0.22(0.14)  0.71(0.29)  1.72(0.93) | 0.16(0.07)  0.46(0.17)  1.34(0.63)
SSW | 0.24(0.04) 0.57(0.14)  2.39(0.57) | 0.45(0.24) 1.16(0.56)  2.99(1.19) | 0.47(0.10) 1.13(0.29)  2.16(0.44)
Ww2S | 0.21(0.10)  0.51(0.23)  2.21(0.89) | 0.32(0.17)  0.98(0.70)  3.59(2.27) | 0.29(0.10)  0.88(0.26)  1.80(0.61)
S2W | 0.13(0.05)  0.34(0.11)  1.40(0.43) | 0.28(0.07)  0.70(0.15)  2.67(0.90) | 0.31(0.11)  0.87(0.42)  1.77(0.66)

* Table entries are in the form of mean (standard deviation) of the cross-validation for each evaluation metric and each joint. N, is the mean and N, is the

maximum of the normalized error, as defined in (17) and (18), respectively.
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Fig. 2. Final continuously-varying walk (top) and stair (bottom) models for the hip, knee, and ankle joint generated using all the training data (blue lines).
The four-dimensional walk model is projected onto one speed (1.0ms~!) in the top figure. The stair model assumes a single nominal speed (1.0ms~!), but
it can easily be expanded when training data with different speeds become available. Note that level walking data was included in the stair model to connect
stair ascent and stair descent and enable extrapolation of stair trajectories at lower inclinations (i.e., less than 20°).

deviation of the reference kinematics across all subjects at each
phase and find the mean and maximum of the normalized
error over phase. We denote the normalized mean error as N,
and the normalized max error as N,. Specifically, for each
iteration, these errors are calculated as

a‘l’ilj - (‘Pi?lj)

N{ =

e S (ag) |7 (17)
i=1,2,....,PjclV, and c=1,2,...r,

. doz;—0(9127)
NE = iXj

m mlaX <D <d¢ixj ) ( 1 8)

i=12,....,Pjcl", and c=1,2,...r,

where c refers to the iteration number and r is the total number
of iterations for the cross-validation.

Model efficiency is evaluated by examining the model
training time (time to generate an individual model from
training data) and the model computation time (time for a
trained model to output the joint angles given model inputs).

3) Robustness Analysis: We evaluate the robustness of the
models from two perspectives: 1) robustness under perturbed
model input, and 2) robustness under misclassification in
ambulation modes. This first evaluation considers inevitable
errors in the incline estimate. To that end, we perform a
Monte Carlo simulation analysis at each incline in the dataset,
where incline estimates are randomly sampled from a uniform
distribution with a maximum error range of +3.0° for SSS
and transition models and £1.5° for SSW. We select this
error range based on the reported errors in previous systems
for ramp incline estimation [20], [30] and for stair height
estimation [31]. We convert the stair height to stair inclina-
tion based on the relationship reported in the supplementary
documents of [25], which contains the recorded stair height
corresponding to each stair inclination. Then, we repeat the
Monte Carlo simulation with an increasing number of samples
until convergence of the mean RMSE (normalized by joint
ROM). Finally, the worst-case scenario with the maximum
normalized RMSE among all the iterations is analyzed.

Our previous work in activity recognition [32] suggests
that activity mode misclassifications most frequently occur



TABLE II
SUMMARY STATISTICS OF MEANS, MAXIMUMS, AND RMSE OF FINAL MODEL*

Hip Knee Ankle
Ny N RMSE (°) Ny Ny RMSE (°) Ny N RMSE (°)
SSS | 0.11(0.04)  0.23(0.01)  1.12(0.30) | 0.15(0.06)  0.34(0.01) 1.17(0.41) | 0.08(0.02)  0.15(0.01) 0.63(0.20)
SSW | 0.18(0.031) 0.32(0.10)  1.74(0.37) | 0.35(0.10) 0.75(0.19)  2.21(0.29) | 0.21(0.02)  0.43(0.04)  0.94(0.06)
W28 | 0.19(0.07)  0.42(0.10)  2.11(0.69) | 0.30(0.14)  0.68(0.18)  3.05(1.47) | 0.27(0.09) 0.62(0.18)  1.72(0.60)
S2W | 0.12(0.03)  0.26(0.03)  1.30(0.26) | 0.30(0.08)  0.66(0.17)  2.78(0.92) | 0.28(0.09)  0.77(0.35)  1.59(0.52)

*Table entries are in the form of mean (standard deviation) for each evaluation metric and each joint. N, is the mean and N, is the maximum of the

normalized error, as defined in (17) and (18), respectively.
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Fig. 3. Final continuously-varying W2S (top) and S2W (bottom) model for the hip, knee, and ankle joint generated using all the training data (blue lines).
Level walking data was included to enable the extrapolation of transition walking trajectories at lower inclinations (i.e., lower than 20°).

between walking and walk to stair transitions, so we also
study how such errors will affect the predicted joint kinematics
at different ground inclinations (—10° to 10°). We compare
the simulated output results from the W2S model with the
SSW model at the same inclinations based on the RMSEs
normalized with the range of motion (ROM) for each joint.

IIT. RESULTS

We now summarize the cross-validation results for the
steady-state and transition models and present the final models
and associated errors when trained with all available data in the
dataset [25]. Next, we show the simulation results to evaluate
the robustness of the models against incline input perturbations
and ambulation mode misclassification during walking. Note
that the SSW model is based on the same methods in [9] but
evaluated with a different multi-activity dataset.

A. Model Performance

Table I contains the leave-one-inclination-out validation
results for each model, while Table II summarizes the final
model errors evaluated with all the training data to show how
the proposed modeling framework fits the complete training

dataset. The maximum (over all joints and all models) of
the mean RMSE value was 3.59° and 3.05° for the cross-
validation and final model errors, respectively. Both of the
maximum RMSE values occur at the knee joint in the W2S
model. Over all the models, the knee joint tended to have
higher errors than the other two joints. The W2S model had
the worst mean RMSE over all joints in the final model. The
final continuously-varying kinematic surfaces of the hip, knee,
and ankle joints trained (using all the available training data)
for the steady-state and transition models are shown in Fig. 2
and Fig. 3, respectively.

The mean training times for the SSW model were 6.62 s
for the hip, 6.68 s for the knee, and 6.76 s for the ankle. For
the SSS model, the mean training times were 7.89 s, 9.75 s,
and 6.44 s for the hip, knee, and ankle, respectively. Finally
for the transition models, including both W2S and S2W, the
mean training time was 0.84 ms for the hip, 0.82 ms for the
knee, and 0.83 ms for the ankle. These quick training times
illustrate one advantage of the convex modeling framework,
requiring at most a few seconds to generate the entire model.

The resulting models only involve matrix multiplication and
addition to output joint angles given required inputs, so the
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Fig. 4. Visualization of the interpolation coefficients for the W2S model. & equals 1 and 0 when the transition trajectory is close to the steady-state walk and
stair trajectory, respectively. The offset term 7y applies only when the transition trajectory is outside the convex hull created by those two steady-state models.
Lines in cold colors (e.g., grey and blue) represent the negative stair inclines (stair descent), whereas the lines in warm colors (e.g., yellow and red) represent
the positive stair inclines (stair ascent). The units of the stair incline legend are in degrees.

average computation time was 0.011 ms, 0.012 ms, 0.043 ms,
and 0.043 ms for the SSW, SSS, W2S, and S2W models,
respectively. These times demonstrate the feasibility of real-
time computation for future control applications.

B. Interpolation Coefficients of Transition Models

Fig. 4 shows the profiles of the interpolation coefficients
used to formulate the transition models at different inclinations
over phase. The coefficients of the convex combination (o)
are plotted above the conditional offset () for each joint of
the W2S and S2W models. The coefficient & demonstrates
the (nonlinear) progression from one steady-state model to
the other, which can be interpreted as the transition variable
describing how close the transition kinematics are to each
steady-state model. A clear separation can be seen between the
transition rates for stair ascent vs. stair descent in both W2S
and S2W. While most of the conditional offsets (y) appear
towards the end of the gait cycle for the W2S model, they
tend to occur at the beginning of the S2ZW model. The ankle
joint for the S2W model is a special case with significant y
(in both duration and magnitude).

C. Model Robustness Simulation Results

The mean normalized RMSE (RMSE/ROM) of the steady-
state and transition models converged after 12,000 Monte
Carlo iterations with perturbed incline inputs. The SSW model
yields a maximum RMSE/ROM of 5.97% for the hip joint,
6.78% for the knee joint, and 8.04% for the ankle joint, while
the SSS model yields 7.35%, 5.26%, and 6.25% for the hip,
knee, and ankle joints, respectively. The W2S model has a
maximum RMSE/ROM of 2.99%, 3.88%, and 2.50% for the
hip, knee, and ankle joints, respectively. The S2W model

demonstrates a similar error for the hip (3.07%) and knee
(4.02%) joints compared to the W2S model, but shows a higher
error for the ankle (4.46%) joint. Example plots for the worst-
case results during the simulations for the transition models
are shown in Fig. 5. Supplementary Table S2 summarizes the
inclines (nominal and perturbed) where the worst cases are
found over all the models and joints.

Considering ambulation mode misclassification, the normal-
ized RMSEs (RMSE/ROM) between the SSW output and the
output of W2S are shown in Fig. 6. The normalized RMSEs
increase with the inclination for all the joints with a maximum
error of 19.43%, 18.93%, and 27.32% and minimum error of
2.75%, 3.25%, and 4.41% for the hip, knee, and ankle joints,
respectively.

IV. DISCUSSION
A. Fitting Performance

In Section II-D2, we evaluated the ability of our models to
interpolate untrained trajectories within the bounds of known
inclinations. The results in Table I demonstrate the high model
fitting performance for all the models with mean RMSEs
of 2.04 £+ 0.74°, 2.95 £ 1.44°, and 1.87 + 0.59° for the
hip, knee, and ankle during cross-validation. The other model
errors (i.e., Ny and N,) are normalized by the inter-subject
standard deviation of the experimental data. Therefore, they
give a direct comparison between modeling error and subject
variations. From Table I, the mean normalized error (V) is
always within half of the subject variation (¥, < 0.5), while
the maximum normalized error (N,,) is always within the
subject variation, except for the ankle joint of SSW model.
The final maximum (over all joints) of the mean RMSEs for
the knee (3.05°) and ankle (1.72°) of all the models are less
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Fig. 5. Kinematic deviations for the worst-case scenario with perturbed incline input for the W2S and S2W joint models. For all the joints, the worst case
occurs at the maximum simulated input error. Black solid lines indicate the nominal trajectories while the dashed lines represent the perturbed trajectories.

than the mean joint angle change that humans can perceive
(knee ~ 3.56° [33], ankle =~ 2.33° [34]). Hence, we conclude
that the proposed modeling framework can adequately fit the
training data. Note that the cross-validation errors for SSW
are higher than SSS mainly because the available training
data (Section II-D1) for the SSW model comprises a sparser
set of inclinations. In addition, our SSW model has similar
fitting performance as the walking model generated with a
different dataset in [9], which indicates the proposed modeling
framework has a degree of invariance to the training dataset.

B. Interpretation of Interpolation Coefficients

One of the advantages of modeling transitions based on
the associated steady-state models is to visualize how the
transition occurs from the biomechanical perspective. In Fig. 4,
the « coefficients describe how the joint kinematics transition
from walk or stairs at each phase when there is no conditional
offset. For example, we observed that some of the a trajecto-
ries indicate a relatively binary switch from one steady-state
to the other (e.g., negative inclines for S2ZW at knee joint)
while other trajectories demonstrate a more linear transition
(e.g., positive inclines for S2W at knee joint).

For the walk to stair transition, the transition trajectory is
close to walking first and tends to be more similar to stairs
as the phase increases. Ideally, we expect & to end at O,
which indicates the transition is completed and the next stride
will enter stair mode. However, for all joints and most of
the inclines, o¢ does not reach O at the end of the transition,
especially for the hip and knee joints at negative inclines and
the ankle joint at positive inclines. Even for those positive
inclines that end close to O for the hip joint, e.g., 35°, the
conditional offset is positive, which means the transition joint
position at that point is higher than both walk and stair joint
positions. One possible reason is that the transition is not
completed within the first transition stride we analyzed, i.e.,
the subjects do not enter the steady-state stair mode with
a one-stride transition. In fact, the subjects may not enter
steady-state after the first two or even three steps based on

the streaming data for the transition cycle in [25], as the
trajectories in these strides are not fully periodic. However,
these trajectories are close enough to periodic to facilitate
stair ascent with a periodic model as seen in [35]. Increasing
the number of transition strides in our transition models may
facilitate even smoother transitions. In addition, we observe
some conditional offsets during mid-swing for the hip joint
at negative inclines and during push-off for the ankle joint at
both positive and negative inclinations, indicating potentially
exaggerated motion during the transition. For example, the
subject could over- or under-estimate the pushoff required
to rise the stairs during the transition stride. Finally, some
transition trajectories leave the convex hull between steady-
state trajectories at certain gait events due to phase shifts (e.g.,
maximum hip flexion for W2S at —35° occurs between the
corresponding phases of the walk and stair cases).

In contrast with the walk to stair transition, the stair to walk
transition tends to have a conditional offset at the beginning
of the stride for the hip and knee joints, while the offsets are
more significant for the ankle joint in terms of both magnitude
and duration. The conditional offset applies if and only if the
transition trajectory is outside the convex hull created by the
walk and stair trajectories, suggesting the transition joint angle
at those early phases is out of the bound. One possible reason
is that the subject may leave the steady-state gait before the
transition occurs in order to prepare for the transition, which
results in different kinematics during the pre-transition step
[22]. The knee joint has some conditional offsets during mid-
swing due to the shift in gait phase at maximum knee flexion.
Finally, the ankle joint is the worst-case since the transition
trajectories are outside the convex hull of the walk and stair
trajectories at many phases and inclinations. An extreme case
occurs at the singularity point in Fig. 1(b), where the walk and
stair trajectories intersect at 0° while the transition joint angle
has a higher value. In this situation, the model cannot fit the
transition trajectory without an offset. However, most of the
o trajectories tend to end at 1, and there are only a few small
conditional offsets at the end of the gait cycle for the S2W
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model. This means the transition joint angle matches with the
walk model very well and it is possible to finish the transition
with one stride for this case.

Another possible reason for non-zero conditional offsets
at the extremes of the gait cycle is gait segmentation errors
from the experiment data processing in [25]. In this dataset,
although walking was segmented automatically based on the
treadmill force plates, the stair trials required manual segmen-
tation based on heel markers, introducing more uncertainty.
According to Fig. 4, the offsets occur frequently towards the
end of the gait cycle for W2S and at the beginning of the gait
cycle for S2W, showing that offsets are more likely to occur
on the stairs compared to the ground. Post-processing analysis
shows that time-shifting the x-axis by 8 ms can result in joint
angle changes of approximately 2 degrees at the ankle joint
in certain tasks. Those joint angle differences are compatible
with the magnitude of the offsets at the extremes of the gait
cycle in Fig. 4, which demonstrates that small segmentation
errors can possibly contribute to the offsets at heel strikes.
However, this would not explain the offset in the middle of
the gait cycle, such as in Fig. 1(b).

C. Integration with Robotic Prosthesis Controllers

The presented models provide the basis for a position-based
prosthetic leg controller that continuously spans ambulation
modes (walk vs. stairs) and their task conditions (i.e., speed,
inclines). The transition models are trained based on the
steady-state models to parameterize the continuum between
steady-state ambulation modes according to the interpolation
coefficient o, which we call a transition variable. This transi-
tion variable equals zero for stairs, one for walk, or an inter-
mediate value corresponding to the progression of a transition
between modes. A finite state machine using activity/intent
recognition methods (e.g., [32], [36]) can determine which
model to employ and when to begin calculating a transition
variable. Once a transition stride has been detected, the transi-
tion variable can be determined by a phase variable (in place

of percent gait) and the monotonic relationships established
in Fig. 4. The task condition inputs can be determined using
speed/incline detection methods. We next discuss the practical-
ity of task variable estimation and activity mode classification
for future implementations and the potential consequences for
individuals with lower-limb amputation.

1) Task Condition Measurement and Prediction: State-of-
the-art methods can measure the forward speed and inclina-
tion/height for ramp and stair ambulation in real-time [20],
[31] in order to provide task condition inputs to the steady-
state models (and thus the transition models). However, to
begin a stride with the correct trajectories, it is desirable to
have all the input information by the start of the stride. A
Deep Convolutional Neural Network and 2D point cloud [37]
can obtain the ramp inclination or stair height before each
stride (including transitions). Although the speed estimators
in [20], [31] focused on the walking case, those methods can
be theoretically extended to the stair case. These speed and
incline estimators can enable the steady-state and transition
models to predict appropriate joint kinematics in real-time to
ensure seamless multi-activity locomotion.

In addition, the simulation under perturbed input from
Section III demonstrates the robustness of the models against
input estimation errors. The maximum normalized RMSE with
respect to the range of motion for the steady-state models
is 8.04%, which occurs at the ankle joint of SSW. The
normalized RMSEs for SSW are high mainly because the
range of perturbations is large relative to the range of possible
inclines. During the simulation on the SSS model, we observed
a phase shift for the perturbed trajectory compared to the
nominal trajectory for inclines around +20°, which caused
higher normalized RMSEs compared to the other simulated
inclinations. This is likely because the timings of gait events
(e.g., maximum hip flexion) start to resemble walking as in-
clines decrease below 20° (recall that level walking kinematics
were used to connect stair ascent and stair descent in SSS).
However, gait events are fairly consistent in SSW because of
the similarity in kinematics between level walking and inclined
walking. Therefore, we did not observe phase shifts in SSW
during these simulations.

The transition models are even more robust under input
perturbation than the steady-state models, noting the lower
maximum normalized RMSEs for both transition models in
Fig. 5. The additional jerk minimization on the interpolation
coefficients further smoothed the continuously-varying sur-
faces in Fig. 3. The maximum normalized RMSE over all
conditions is 4.46% at the ankle joint for the stair to walk
transition. The transition models can still generate reasonably
accurate trajectories at the boundary of the incline error
range (i.e., 3.0°). Therefore, even if we do not have the stair
inclination before the transition, we can assume a nominal stair
incline as the initial input and correct that during 60% — 80%
of the transition stride using the correlation between hip range
of motion and the stair inclination. Because our models are
continuously-varying across inputs, we could still generate the
continuous kinematics trajectories by linearly varying the input
from the nominal to the actual value during the transition.



2) Ambulation Mode Classification: Machine learning or
deep learning algorithms have shown promising results in in-
tent recognition. Some existing methods predict the transition
before it happens [22], [23], [37], which could be used to
implement the transition model and initiate calculation of the
transition variable at the beginning of the transition stride.

Moreover, Fig. 6 demonstrates the robustness of the model
against the misclassification. That is, if the ambulation mode is
incorrectly estimated during walking (e.g., falsely switches to
W28S), the resulting kinematic trajectory will be similar to the
correct trajectory at low inclinations. Although the difference
between trajectories generated by these two models is more
significant at higher inclinations (maximum normalized RMSE
of 27.32%), it is also more likely to have an accurate esti-
mation of the ambulation mode using the transition prediction
methods mentioned above due to the larger difference between
the kinematics of steady states and transitions.

3) Implications for Amputee Subjects: The main objective
of using able-bodied data to train the kinematic model for
prosthesis control is to emulate able-bodied leg biomechanics,
which in turn may help restore physiological gait in individuals
with lower-limb amputation. Our prior and recent studies have
shown that able-bodied references for controlling powered
prosthetic legs can enable above-knee amputee users to walk
in a more normative manner over variable inclines [5], [20],
[38]. Preliminary results with an able-bodied bypass user
indicate similar potential for stair ascent [35]. Therefore, the
kinematic models generated by the presented framework could
yield similarly promising results over a continuum of walking
and stair climbing activities, including both steady-state and
transitional gaits.

D. Limitations and Future Work

The proposed modeling framework has several limitations.
First, it requires at least some labeled data at different task
conditions and at the extremes of the task condition space
to generate the continuously-varying models. Since the stair
and transition data are unlabeled for speed in the training
dataset used in this paper, we could not predict the trend of
speed change for those models. Second, the able-bodied data
used to generate the models may not account for anatomical
changes due to limb amputation (e.g., muscle atrophy) that
contribute to permanently altered gait biomechanics. Thirdly,
the model would likely perform better for specific users if
it was trained using individualized kinematic data [39], as
we assumed average instead of subject-specific kinematics
during model training. However, the presented framework can
be used to quickly retrain the models within a few seconds
(Section III-A) during clinical sessions for tuning the reference
kinematics for high-priority activities [40].

Future work includes the real-time implementation of the
activity mode classifiers and task condition estimators needed
to use the presented models, and the experimental valida-
tion of the unified position-based controller on a powered
prosthetic leg (e.g., [3]). These implementations could in-
clude environment feature inputs such as the distance from
obstacles or stairs (with LiDar or depth camera) to enable

timely transitions. Joint kinetics could also be considered by
expanding the suggested framework to model continuously-
varying impedance parameters, as exemplified by the walking
controller in [38]. Such an impedance framework would ac-
count for physical interaction with the environment in a more
compliant and biomimetic manner.

V. CONCLUSIONS

This paper presents a modeling framework based on av-
eraged able-bodied kinematics to generate steady-state and
transition models. Both the steady-state models (SSS, SSW)
parameterize human locomotion as a function of gait phase,
forward speed, and inclines, while both the transition models
(W2S, S2W) are set up as a convex combination of those
two steady-state models with a conditional offset. The cross-
validation results illustrate that all models have the abil-
ity to accurately interpolate untrained trajectories, and the
simulation results demonstrate the robustness of the models
against perturbed input and ambulation model misclassifica-
tion. The interpolation coefficients visualize the connection be-
tween transitional kinematics and steady-state kinematics and
demonstrate biomechanical meaning behind the transitions.
These models will also enable a new continuously-varying
paradigm for position-based control of powered prosthetic legs
over different task conditions and ambulation modes, which
can be adapted for impedance control in future work.
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