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Abstract—Powered prosthetic legs can improve the quality of
life for people with transfemoral amputations by providing net
positive work at the knee and ankle, reducing the effort required
from the wearer, and making more tasks possible. However, the
controllers for these devices use finite state machines that limit
their use to a small set of pre-defined tasks that require many
hours of tuning for each user. In previous work, we demonstrated
that a continuous parameterization of joint kinematics over
walking speeds and inclines provides more accurate predictions
of reference kinematics for control than a finite state machine.
However, our previous work did not account for measurement
errors in gait phase, walking speed, and ground incline, nor
subject-specific differences in reference kinematics, which occur
in practice. In this work, we conduct a pilot experiment to
characterize the accuracy of speed and incline measurements
using sensors onboard our prototype prosthetic leg and simulate
phase measurements on ten able-bodied subjects using archived
motion capture data. Our analysis shows that given demonstrated
accuracy for speed, incline, and phase estimation, a continuous
parameterization provides statistically significantly better predic-
tions of knee and ankle kinematics than a comparable finite state
machine, but both methods’ primary source of predictive error
is subject deviation from average kinematics.

Index Terms—Human locomotion, optimization, predictive
models, prosthetic limbs, robot control.

I. INTRODUCTION

People with above-knee amputations face many unique
challenges to their quality of life. The vast majority use
conventional, unpowered prosthetic legs. These devices can
vary widely in purpose and complexity [1]], [2]], but none can
provide the net positive work required at the joints for many
daily activities [3[]-[5]]. This forces the user to expend more
energy on compensatory behaviors while walking, which can
quickly cause fatigue, limit walking range, [6] and cause lower
back pain [7]]. Limited mobility can also impact social activity,
a major component of quality of life [§].

Powered knee and ankle prosthetic legs strive to improve
the quality of life of people with transfemoral amputations
by using actuators to perform net positive work. There are
currently no commercially available powered knee and ankle
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prostheses, but several research prototypes show promising re-
sults [9]—[11]. For example, powered prostheses have enabled
more normative gait kinematics while reducing back muscle
activation [12] and hip compensations [[13[], which are both
associated with overuse injuries.

Powered devices must employ intelligent control strategies
to best leverage their actuation technology to justify their
increased weight. One core control challenge is quickly and
accurately determining what ambulation mode or task a user
wishes to perform, in order to keep up with the user in real
time. For many types of controllers, this is accomplished via
a high-level task finite state machine (FSM). In an FSM task
controller, the range of tasks a user can perform is broken into
discrete activities, and custom control parameters are tuned to
perform just those activities [[14]. Then, classification algo-
rithms are used to determine what available state is closest to
the task the user is currently performing, and that set of param-
eters is selected [[15]—[17]. In the case of prosthetic trajectory-
following controllers, which enforce predefined kinematic
trajectories for the knee and ankle joint (usually based on
experimentally recorded average subject trajectories [18]]), a
high-level FSM task controller is used to switch between
task-dependent trajectories [[19]. Changing these trajectories
to perform new tasks is important for providing normative
biomechanical trends like increased ankle work and power at
higher speeds, and greater power production in both joints
while walking uphill [19]. For all finite state machines, as the
number of available states increases, classification accuracy
declines, and the time and expertise needed to tune the system
to a user increases [14].

There are three main methods to estimate walking speed
using sensors onboard a prosthesis: abstraction models, human
gait models, and direct integration [20]. Abstraction models
use machine learning to infer the relationship between sensor
readings and speed, so they require few modeling assumptions
and are flexible to sensor placement, but accuracy often de-
pends on the subject unless there is a huge amount of training
data [21]. Human gait models use sensor readings as input
to simple gait models to predict speed. This technique rarely
requires subject-specific training, but the quality deteriorates
if model assumptions are not met [22f, [23]. Lastly, direct
integration integrates the accelerometer measurements in the
world frame to determine velocity [24]]. This method requires
no training or modeling assumptions but is highly sensitive to
sensor noise [25], [26]. Almost all walking incline algorithms,
on the other hand, rely on taking measurements of the foot
angle during midstance. Midstance is usually defined either
by simultaneous contact of the heel and forefoot [3], [27] or



by minima in foot angular velocity [28]—[31]. Foot angle can
be measured by accelerometers alone [32]] or the fusion of
accelerometer and gyroscope signals [28].

Our previous work showed that a continuous parameteriza-
tion more accurately predicts average human joint kinematics
over a range of speeds and inclines than a finite state machine
[33]] or linear interpolation [[34]], particularly when trained on a
sparse set of data. This continuous kinematic parameterization
over walking speeds and inclines could constitute a significant
improvement to trajectory-following controllers by allowing
for continuous adaptation to the task being performed (no
need to round to the nearest available state) and by providing
more accurate kinematic predictions for tasks without any
training data. However, our previous work with a continuously
varying kinematic model (referred to hereafter as the basis
model) benefited from several factors that are not present
in practical applications: perfect measurements of percent
gait, walking speed, and incline, as well as disregarding the
differences between subjects that distinguish subject-specific
kinematics from across-subject averages. Individual gait pat-
terns are unique [35]], [36] and used in many applications from
individualized medical diagnostics [36] to prosthetic motion
[37]. Recently, researchers have determined how factors such
as gender, age, walking speed, and BMI contribute to an indi-
vidual’s gait [38]], [39]]. These factors could have a significant
impact on the performance of a robotic prosthetic leg and must
be understood.

In this work, we address all of these factors to determine
the effectiveness of the basis model when applied with im-
perfect measurements of phase and task, and without specific
knowledge of the user’s kinematics. This study is conducted
in two parts. As speed and incline measurements are sensitive
to the sensor hardware and algorithms used [20], we first
conduct a pilot study to determine the error distribution of
these quantities for our low-impedance robotic prosthetic leg
[10], used by three able-bodied subjects walking at a variety of
speeds and inclines. Second, we use archival motion capture
data to train the basis model and evaluate how accurately it
predicts the joint kinematics of 10 able-bodied subjects [40].
For each subject, and all 27 speed/incline combinations in
this dataset, we use recorded thigh motion to simulate inertial
measurement unit (IMU) readings and force plates in the
treadmill to simulate ground contact sensors in the prosthesis.
Using these simulated sensor inputs to calculate phase, and
taking samples from our speed and incline measurement
error distributions for each stride, we use the basis model
to predict knee and ankle kinematics and compare them to
the measured angles for each subject. We analyze how errors
in speed, incline, and phase measurement, model fit, and the
individual’s kinematic differences from average kinematics
all contribute to the overall prediction accuracy. Lastly, we
use statistical parametric mapping to compare basis model
predictions with that of an FSM to determine the potential
benefits of the continuously varying task approach over the
state-of-art approach for controlling robotic prosthetic legs.

presents a review of preliminaries (e.g., the
basis model), the experimental protocol for the collection
of task measurement pilot data, a description of the sensors

Fig. 1. Definitions of subject coordinates: the angles of the thigh (6y,) and
foot (6f) segments are defined relative to the world frame, and the knee (6x)
and ankle (0,) angles are defined in the frame of the proximal limb segment.
All angles are zero when the subject is standing upright.

and algorithms used to measure walking speed, incline, and
phase, and how the predictive accuracy of the basis model
was evaluated. reports the accuracy of our speed,
incline, and phase measurements, and how they affect the
overall predictive accuracy of the basis model vs. a finite state
machine. [Section TV] discusses how various measurement er-
rors affect predictive accuracy, how the basis model compares
to the finite state machine, and limitations of the study. Finally,

concludes the paper and identifies future plans.

II. METHODS

A. Preliminaries

This section reviews three prerequisites 1) a publicly avail-
able dataset that will be used to train and test our model, 2) the
format of the basis model and how to solve for the optimal
coefficients given kinematic training data, and 3) the phase
variable that will be used to parameterize the basis model.

1) Archival Data: Kinematics Dataset: To compare our
predictions of joint kinematics to experimentally recorded
kinematics during a variety of walking speeds and inclines,
we used archival data from a related study [34]. This data,
which is available on IEEE DataPort [40], will be referred
to as the kinematics dataset. All 10 able-bodied subjects (5
female) provided written informed consent. The subjects had
a mean age of 23 years (SD = 2.8 years), mean height of
170 cm (SD = 8.2 cm), and mean weight of 64 kg (SD
= 7.7 kg). A 10-camera Vicon T40 motion capture system
(Vicon, Oxford, UK) recorded the subjects’ kinematics at
100 Hz while they walked at a steady speed and grade on
an instrumented treadmill (Bertec Corp., Columbus, OH) for
one minute. For each test, data were collected while the
subject walked at a constant speed of 0.8, 1.0, or 1.2 m/s
and a constant ground slope ranging from -10° to +10° at
2.5° increments. All subjects walked at every combination of
speed and slope, resulting in 27 different tasks with unique
identifiers, x; with j = 1,2,...,27. The order of trials was
randomized and subjects took breaks to prevent fatigue. In
the dataset, strides were normalized over stride time and
interpolated over 150 points in percent gait. Angle definitions

are shown in



2) Format and Solution of Basis Model: Embry et al. [34]
created a predictive model that represents inter-subject mean
gait kinematics as a continuous function of gait phase and task.
Gait phase is measured by a phase variable, ¢ € {R|0 < p <
1,4 > 0}, which is a monotonic scalar that increases from 0
to 1 once per stride. Task is represented by x = (v, «), where
v is the subject’s speed linearly mapped from a range of 0.6
m/s to 1.4 m/s to a range of 0 to 1, and « is the ground slope,
linearly mapped from -10° to 10° to a range of O to 1.

Gait kinematics are modeled as the weighted summation
of N basis functions of phase, bx(w). The weight of each
basis function changes for each unique task, as determined by
the task functions ¢ (x). This yields the following separable
expression for the joint angle g of the knee or ankle:

N
= bilp)er(x), ()
k=1

where the number of basis functions is N, indexed by k.

The basis functions by(¢) model how joint kinematics
progress through the gait cycle. Basis functions are param-
eterized as finite Fourier series of degree F' = 10, and these
coefficients will be chosen to solve the upcoming optimization
problem. The scalar task functions ci(x) model how joint
kinematics change in response to speed and slope. Task
functions are modeled as 2" or 3" degree Bernstein basis
polynomials for the terms that operate on speed or slope (see
[34, (3)] for details). Together, these basis and task functions
create a kinematic model ¢(, x) that parameterizes how gait
cycle, speed, and slope affect the joint kinematics.

The basis model is linear with respect to the parameters of
the basis functions, meaning that for a given ¢; and x;:

N
Aije =Y br(s)er(x), 2)

k=1

where z € RN(+2F) js a concatenation of the Fourier
coefficients from by for k = 1,..., N. All other terms, which
are constants for a given value of ¢; and Y, are collected in
vector A;; € RM>NU+2E) See [34) (5)] for details. Lastly, in
an effort to reduce model complexity and improve predictive
performance, automated model order reduction is used to
minimize the number of non-zero basis functions. This process
is outlined in [34} (7)], and the same reduced set of bases (with
coefficients A7;) will be used in this study.

The klnematlc dataset includes thigh, knee, and ankle an-
gular positions at a variety of phases and tasks as described
in [40]. We can solve for = such that [(D)] optimally fits this
data. Optimality is defined by this objective function and
constraints:

minimize p + 6||vec(aa A2, 3)
such that  — pSE(dy,y;) < doy,y, — Afjx < pSE(dg,y; ),

min A * max A *
Ruyin < 7)) Az, and Ry > . AT x,

Vi=1,..150,Ym=1,...,100,Vj = 1,...,27,

where a%.xj represents the inter-subject mean joint angular
position of the knee or ankle recorded at a discrete phase ¢;

and task xj, and SE(d,,,, ) represents the standard error of all
of the subjects at the given task. This optimization problem
seeks to minimize two objectives, p and Hvec(g)—;A;‘jx)Hg.
Scalar p acts as a bound on the absolute difference between
the inter-subject mean d.,, and the value of the basis model
evaluated at the same point in phase and task, A} ;2 (note how
p appears on both sides of the first inequality constralnt). The
difference in these two tasks is multiplied by the reciprocal of
the inter-subject standard error SE(d,, ). The logic behind
this term is that, if all of our subjects had very similar
kinematics at a given point (small standard error), it is more
important for our mean kinematic surface to match closely at
these points. The second objective term, [|vec(7— ‘9 sAS7)|]2,
is a measurement of the jerk in the phase dlmensmn of
the basis model. The human body tends to move with jerk-
minimized trajectories, and this objective strives to improve
biomimicry [41]], [42]]. The relative weight between our two
objectives, fitting the available data and reducing model jerk, is
determined by the coefficient §. Lastly, we also constrain that
the model always stays within range of motion bounds Ry,
and Rpnax. We check this bound at 100 evenly spaced values
of speed and grade, indexed by m. This optimization problem
can easily be solved with a convex optimization solver like
[43]], and has a guaranteed globally optimal solution.

3) Phase Variable Definition: A phase variable is a me-
chanical signal which grows monotonically with the gait cycle,
and can be used to estimate gait cycle percentage in real-
time applications for prostheses [44] or biped robots [45]. A
phase variable is preferable to normalized stride time because
it provides a more robust parameterization of kinematics in
the presence of perturbations [46]]. The phase variable used
in this study is based on the fact that the phase portrait
of thigh angle 6y(¢t) and the shifted thigh angle integral

) = fot (0m(T) — xo)dT form an ellipse over the course
of one stride period [19]], [47]. The phase variable @y (t) is
defined as the polar angle of this phase portrait:

oa(t) = (atan2(k®(t), 0 (t) — z0) + 1) /27, (&)
B ‘emax _ ezﬂin‘ /
k - ‘(I)max _ (I)min|’ eth

where 7' is the time period of the stride and the scaling
parameter k changes the phase portrait into approximately
a circle instead of an ellipse, and the shifting parameter xg
centers the phase portrait at the origin. These scale and shift
parameters are important for maintaining the monotonicity and
approximate linearity of the phase variable during steady state
walking. For real-time application, at every heel strike tys,
we define that ®(tys) = 0 and ¢u(tys) = 0 and update
gmin_gmax @min Gmax - and 7z, based on their values in the
previous stride. This ensures that these constant parameters
adapt to changing conditions with the subject. As discussed in
[47], changing these parameters too quickly can have negative
effects on walking stability in practice. To mitigate this issue
for real-time phase calculation, we saturated each of these
parameters to £1 unit change from their previous value each
stride. For offline (non-causal) calculation, these parameters
are determined by recording the true value of these parameters



over an entire gait cycle before calculating the phase variable.
This offline approach is referred to as the ideal phase variable.
The ideal phase variable is used to parameterize the training
data because it has the same average trajectory as the real-time
phase variable, as will be shown in

B. Kinematic Surface Parameterized by Thigh Phase Variable

The results of [34] used percent gait, I', to parameterize
the evolution of joint trajectories during a gait cycle, but real-
time phase variables such as [(4)] are used in practice [19].
While the phase variable [(4)] tends to increase monotonically
through the gait cycle, the progression is not linear with time.
In this work, we explicitly synchronize our encoded joint
progression with the expected evolution of our phase variable
under various conditions. To do so, we determined the time-
evolution of the phase variable for each walking task, and
parameterize the joint kinematics by phase instead of percent
gait before refitting the model to the kinematic data using
We calculated a phase variable based on the across-subject
average thigh trajectory as described in [(4)] using the ideal
offline values for k and x. If the phase variable for a task
was not strictly monotonic, strict monotonicity was enforced
using a rate-limiting filter that enforced a minimum slope of
+0.5 dpy/dT. The phase variable almost always exceeded this
rate, but the filter was critical for enabling reparameterization
in a few examples where strict monotonicity was briefly
violated. After phase variable calculation, the knee and ankle
trajectories were reinterpolated to 150 points evenly-spaced in
phase instead of time, and these new trajectories were used to
solve the optimization problem again. This reinterpolation
preserved the amplitude of the knee and ankle trajectories,
but phase shifts them based on the nonlinear evolution of
the phase variable. See for an example of how this
reparameterization affected average trajectories. Note that the
uphill phase trajectories are more linear because the thigh
phase portrait is more circular [48]], which more closely
matches the assumptions in the phase variable derivation [46].

C. Task Measurement Pilot Experiment

Data were collected to determine the accuracy of walking
speed and incline estimation using only sensors onboard our
prototype robotic knee-ankle prosthesis [10]]. The experimental
protocol was approved by the Institutional Review Board at the
University of Texas at Dallas. Informed consent was provided
by three able-bodied subjects with mean age 30 years (SD =
7.9 years), mean height 181 cm (SD = 7 cm), and mean
weight 84.6 kg (SD = 11.9 kg). Subjects were equipped with
a bypass adapter to wear the robotic prosthetic leg. Subjects
were given time to acclimate to walking with the prosthesis
before data collection. During each trial, the subjects walked
on a commercial treadmill at a constant speed of 0.63, 0.85, or
1.07 m/s and a constant ground slope of -1.9, 0.3, or 5.5 deg.
Motion capture markers on the prosthetic foot were used to
externally verify the walking speed during the stance period,
and markers on the treadmill frame were used to verify incline.
Subjects walked for one minute at every combination of these
speeds and inclines, for a total of nine trials.
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Fig. 2. Parameterization by phase variable (¢, solid lines) vs. percent gait (PG,
dashed lines) for three example tasks: walking at 1 m/s on a -10° (blue), 0°
(red), and +10° (green) incline. Trajectories represent across-subject averages.
The phase variable plot (top) shows both ¢ and PG scaled from 0 to 100%
on the vertical axis.

During the task measurement pilot experiment, the proto-
type leg was controlled using the impedance-based controller
described in [10]. The impedance parameters were changed
before each trial to ensure the subject could walk safely at that
speed and incline. The trial order was randomized and frequent
breaks were offered to mitigate the effects of fatigue. During
every trial, data were recorded using IMUs built into the foot
and thigh segments of the leg, as well as the joint encoders
and load cells in the ankle. Our prototype was equipped with
3DM-CX5-25 and 3DM-GX4-25 IMUs, (LORD Microstrain,
VT, USA) on the thigh and instep, respectively. The instep
IMU was connected directly to the carbon fiber prosthetic
foot, beneath the cosmesis, to ensure rigid alignment with
the foot segment. The knee and ankle encoders were optical
quadrature encoders, ES and EC35 (US Digital, WA, USA),
respectively, and provided high-precision measurements of
joint angles. Lastly, the ankle load cell was a M3564F 6-axis
load cell (Sunrise Instruments, Nanning, China) and was used
exclusively for stance detection in this experiment. Estimates
of the subjects’ walking speed and incline were made offline
based on sensor recordings.

D. Task Variable Measurement

In the task measurement pilot experiment, average speed
estimates were made once per stride and filtered with a
moving average filter. The speed estimates are based on
a double-pendulum model of human walking, and utilized
measurements of the thigh angle (from a thigh-mounted IMU),



knee angle (from a joint encoder), and measurements of
the subject’s thigh and tibia lengths (measured before the
experiment), in a manner similar to [49]]. This model assumed
that the distance travelled by the subject during one stride is
equal to the summation of the foot’s displacement with respect
to the hip during stance and swing. The foot’s position with
respect to the hip joint center pg, is

cos (O (t)) cos(On (t) + 6k(t))

t) = . + L | . , (5
pm(t) = L Lm(em(t)) 0 sin(@(t) + 6 (0) | © O
where Ly, and Ly are the lengths of the subject’s thigh and
tibia. The displacement during stance and swing are measured

at every ipsilateral heel strike (HS) or toe-off (TO) event:
if ¢ = tro,
if t = tys,

dstance = ||pm(tT0) — pﬂl(t}_{s)”% (6)

dswing = ”pth(tHS) _pfh(tT_o)”%

where t1, and t,q are the times of the previous TO or HS

event, respectively. Then at every HS event the average speed

of the stride can be updated:

V(t) = (dslance + dswing)/(tHS - t[}s)v @)
v(t)=v(t—1).

if t = tys,

otherwise,

The walking speed was assumed constant until updated at the
next HS event. A moving average filter based on the current
and two previous strides reduced noise in the speed estimation.
Incline estimates were updated once per stride, based on
measurements of foot angle during midstance, similar to [31]].
The stance foot was determined to be in midstance if the foot
gyroscope signal had an absolute value less than 0.4 rad/s.
After TO, the mean of all foot angles that occurred during
midstance was used to estimate the incline of that stride.

E. Simulation Overview

To study the use of the basis model in a trajectory-following
controller, we made predictions of knee and ankle kinematics
for all 10 able-bodied subjects and all 27 speed/incline combi-
nations recorded in the kinematics dataset [40]. Each trial is 60
seconds long and recorded at 100 Hz, giving us approximately
1.6 million timesteps to evaluate. The accuracy of the basis
model was determined by measuring the difference between
the basis model’s kinematic predictions and the recorded
kinematics at each timestep.

The basis model requires three inputs to estimate joint kine-
matics: phase, speed, and incline. As the archival kinematic
dataset does not include IMU data, we used motion capture
thigh angle measurements and treadmill force plate signals
to calculate the real-time phase variable [(4)] at each timestep
in the dataset. While not equivalent measurements, motion
capture is often used as ground truth for kinematics, and the
3DM-CX5-25 IMU has a rated angular position accuracy of
0.25 deg RMS [50]. We believe this substitution is accept-
able for the goals of this study because even less accurate
IMU sensors have nearly 99.58% correlation with motion
capture thigh angle measurements [51]. Speed and incline
measurements, however, are sensitive to the exact sensors and
algorithms used [20], so there are no appropriate substitutes in
the archival kinematic dataset. To simulate speed and incline

measurement error, we randomly sampled measurement errors
once per stride from the error distributions determined in the
task measurement pilot experiment (subsection II-C)). With all
three inputs determined, we used the basis model to predict
joint kinematics at every timestep of the archival dataset.

Lastly, we also used our phase, speed, and incline estimates
to calculate joint kinematics using a finite state machine. This
FSM rounded the incline measurement (with simulated error)
to the nearest of these three inclines: [-7.5, 0, 7.5] degrees, and
assumed the walking speed was always 1.0 m/s. These states
were selected due to their centrality within the tasks that will
be tested: the finite state machine will never have to round
incline more than 2.5 degrees, or speed by more than 0.2 m/s.
Once a state is selected, kinematics are calculated using the
real-time phase variable input to an 8th order Fourier fit of the
average kinematics of the corresponding state.

F. Analysis Overview

Beyond determining the overall predictive accuracy, we
determined what factors play a dominant role in causing the
overall predictive error. We identified five error factors that
affect the overall predictive accuracy: 1) speed measurement
error, 2) incline measurement error, 3) phase measurement
error, 4) model fitting errors, and 5) subject deviations from
the across-subject average kinematics. The first three factors
are related to errors in the input of the basis model, which
naturally cause errors in the output. However, these effects are
highly nonlinear, e.g, using +1 deg as the input when the true
incline is O deg changes the kinematic prediction differently
than using +10 deg when the true incline is 49 deg. To
normalize the kinematic effect of input errors, we calculated
several versions of predicted kinematics, each with only one
factor in error. For example, to determine the kinematic effect
of speed measurement error, we calculated the basis model’s
output with speed measurement errors but perfect incline and
phase measurement. We then find the difference between these
predictions and model predictions with no input errors and call
this difference the kinematic speed error. Analogous steps are
used to determine the incline and phase kinematic error.

Model fitting error exists because the basis model is a low-
rank predictive model, not an interpolant. This means that it
does not match the training data it is given exactly, but makes
compromises in fitting to encourage smoothness in output and
decrease the complexity of the fitting terms. As shown in
[34], this approach provides statistically significantly better
prediction of untrained tasks than a linear interpolant. Model
fitting error is therefore defined as the difference between the
value of the basis model with no input errors, and the value
of the average subject kinematics (the training data for the
basis model) at the exact same point in speed, incline, and
phase. This quantity was calculated for every timestep in the
experiment. To determine the average kinematics at arbitrary
points in phase, the average kinematic trajectories were fit with
an 8th order Fourier function for every task.

Lastly, subject deviations from the average kinematics have
two causes: the differences between the mean kinematics of a
given subject compared to the across-subject average, and the



stride-to-stride variations that cause a subject’s kinematics to
vary from their mean. To measure the combined effect of these
two causes, we define “individuality” as the difference between
the kinematics of an individual at a given timestep, and the
kinematics of the average subject at the same value of speed,
incline, and phase (again, using an 8th order Fourier function).
The basis model was fit to across-subject average kinematics,
so an individual’s deviation will result in a predictive error.

To determine each factor’s relationship with the overall fit-
ting error, we constructed a linear mixed-effects model. Linear
mixed-effect models represent a response variable as a linear
function of several independent variables, which can be fixed
or random [52]]. In our case, the overall predictive error was
the response variable, kinematic error factors were modeled
as fixed variables, and an intercept unique to each subject
was modeled as a random variable. This analysis returned
a coefficient describing the linear relationship between the
independent variables and response variables (for an optimal
model that considers the effect of all independent variables) as
well as confidence intervals for that coefficient and a p-value
that reports the likelihood that this coefficient is different from
zero. Overall, this gave us a better understanding of how the
five error factors contribute to the overall error.

To compare the predictive accuracy of the basis method to
a finite state machine, we used statistical parametric mapping,
or SPM. SPM incorporates random field theory to compare
groups of time-trajectories while explicitly accounting for
temporal correlation [S3]. In our case, we used SPM to
perform a paired, two-tailed ¢-test on the absolute predictive
error presented by the basis method and an FSM. The result
indicates which method has statistically significantly lower
predictive error over different regions of the gait cycle. This
analysis was performed for all subjects and tasks simultane-
ously, allowing us to obtain a very high-level understanding
of how each method is performing over a gait cycle.

III. RESULTS
A. Phase Variable Reparameterization and Accuracy

The across-subject average joint trajectories (used in the
FSM or to train the basis model) were first reparameterized
by the expected trajectory of a phase variable to maintain syn-
chronization between the subject and kinematic predictions,
as discussed in In practice, errors in real-time
phase parameter estimation cause the phase variable trajectory
to vary from the ideal phase variable in curvature or final value.
To determine how much these parameter estimates affect real-
time implementation, we calculated the phase variable for
every subject, trial, and timestep in the kinematics dataset us-
ing both real-time parameter estimation, and non-causal, ideal
identification of parameters. The kinematics dataset contains
approximately 4.5 hours of motion capture data at 100 Hz, or
about 1.6 million timesteps. The difference in phase variable
was defined as phase variable error, shown in Note
that to improve the readability of this histogram, only the inner
99% percent of phase errors are plotted. The remaining 1%
lie between the bounds shown and the full range of possible
phase errors, [-1,1).
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Fig. 3. Histogram showing the inner 99% of phase errors in the simulation.

B. Task Variable Accuracy

Speed estimation during the task measurement pilot exper-
iment was based on a two-link model of human walking,
using measurements of segment lengths and joint angles to
estimate a stride length, which was divided by stride time
to determine average speed. For every stride, we determined
speed estimation accuracy by subtracting the speed estimate
from the true speed measured with motion capture (positive
errors are over-estimates, negative errors are under-estimates).
The three subjects individually had mean speed errors of
0.007, 0.018, and -0.033 m/s. The three walking speeds tested
(0.63, 0.85, 1.07 m/s) had mean speed errors of 0.030, 0.025,
and -0.052 m/s, respectively. Because these subject-specific
and speed-specific means are small and the overall error is
centered at zero, every trial in the simulation sampled errors
from a normal distribution with p = 0 deg, SD = 0.066. After
concatenating the set of error values for all subjects, inclines,
and speeds, (top) shows a histogram and the best-fit
normal distribution that approximates the overall error for all
749 strides with speed estimations.

Incline estimation during the task measurement pilot ex-
periment was based on measuring of the foot angle during
midstance. However, it was noted after the experiment that
some of the trials encountered foot angular rotation rates over
8.4 radians/second, which caused saturation of our IMU’s
gyroscope. This did not impact midstance detection which is
based on very small gyroscope measurements. However, the
complementary filter running onboard the IMU cannot over-
come the saturated gyroscope signal, resulting in unreliable
foot orientation measurements. Future work can overcome this
limitation by using a different version of the LORD Micros-
train IMU 3DM-CX5-25, which has a 15.7 rad/s gyroscope.
Due to this implementation issue, only trials where the foot
gyroscope saturated less than 10% of the time are considered
for accuracy analysis. Specifically, all of the 0.85 and 1.07 m/s
trials exceeded the gyroscope’s limit, as well as the 0.63 m/s
uphill trial of one subject, leaving eight trials left which can
be analyzed for incline accuracy. For all of the 180 remaining
strides, we determined accuracy by subtracting the incline
estimate from the true incline measured with motion capture
(positive errors are over-estimates, negative errors are under-
estimates). The three subjects individually had mean errors of
0.006, -0.370, and 0.290 deg. The three inclines tested (-1.9,
0.3, 5.5 deg) had mean errors of 0.014, -0.086, and 0.100
deg, respectively. Because these subject-specific and incline-
specific means are small and the overall error is centered at
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Fig. 4. Histograms and normal distribution approximation of all errors
encountered in the task measurement pilot experiment. The frequency count
of the incline graph (bottom) is lower than the speed graph (top) due to the
number of trials eliminated for saturating the foot IMU gyroscope.

zero, every trial in the simulation sampled errors from a normal
distribution with u = 0 deg, SD = 0.52. (bottom)
shows a histogram and the best-fit normal distribution that
approximates the overall error.

C. Kinematic Error Factors

As previously stated, five major factors contribute to error in
kinematic predictions: measurement error in the three required
inputs (speed, incline, and phase), errors in fitting a model to
average subject data, and subject-specific differences from the
average subject. shows a violin plot of the errors from
each source, compared to the total error. These violin plots
show the kernel density estimate of each factor; for every point
on the y-axis, the width of the plot show what percentage of
data exhibits that much error (similar to a probability density
function) [54]. These factors exhibit different results in terms
of probability distribution and maximum errors.

D. Predictive Kinematics Accuracy

shows the relationship between each of our kine-
matic error factors and the overall error for all subjects and
tasks. The (Intercept) field shows the value of the constant
error offset, which was small for both joints. The estimates
column shows the regression coefficient for each factor. These
regression coefficients are the slope of the linear relationship
between error factors and kinematic prediction error. Most
of our error factors have values around 0.95, indicating that
when any error factor changes by one degree, the overall
error changes by about 0.95 deg. The positive slope indicates
that the changes are proportionate. The p-values shown in
the table indicate that the regression coefficients are signif-
icant, and the 95% confidence interval shows the range of
possible coefficient values. Random effects report standard
deviation and accompanying 95% confidence interval instead.
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Fig. 5. Violin plots comparing total error to the expected error due to all five

major error factors. For visibility, only the inner 97% of errors are plotted for
Phase, Subject, and Total. Subject is the largest error source by far.

The (Intercept):Subject field shows the SD of the random
intercepts fitted to each subject, which is small for both joints.
The Residual SD field shows the SD of the residuals after
accounting for fixed and random effects. For reference, the
total knee kinematic error had a SD of 12.33, while the
total ankle kinematic error had a SD of 4.68. The residual
SD of 3.351 and 0.340 show that the mixed linear model is
accounting for the majority of the experimental variance.

E. Statistical Parametric Mapping, Basis vs. FSM

shows the result of the SPM analysis comparing the
basis method accuracy with that of an FSM, for all subjects
and tasks. The black line indicates the ¢-value for a paired,
two-tailed SPM t¢-test. When the ¢-value is greater than the
critical value z* (blue line), the basis method has statistically
significantly less error than the FSM method, and the y = 0
line is highlighted blue. Conversely, when the ¢-value is less
than —z* (red line), the FSM method has significantly less
error, and the y = 0 line is highlighted red. If there is no
highlight, neither method is statistically significant.

IV. DISCUSSION
A. Kinematic Factors that Affect Model Predictions

One interesting finding from this work is that our linear
mixed-effect model was able to explain most of the total kine-
matic error variance using coefficients close to one for all error
factors. This would imply that for future work, we may be able
to estimate the total error by simply summing the average
effect of each factor. If errors become significantly larger, the
nonlinear effects of the model may become more dominant
and this approximation would no longer be appropriate.

Our reported speed estimation residual standard deviation
(SD=0.066, also known RMSE) was nearly identical to the
errors reported in the source of our algorithm (0.06 m/s



TABLE I

MIXED LINEAR EFFECT RESULTS

Knee R? = 0.9261 Ankle R? = 0.9947
Fixed Effects estimate 95% CI1 J estimate 95% CI1 J2
(Intercept) 0.444 0.349 /0.540 <<0.001 -0.007 -0.009 / -0.005  <<0.001
speed 0.923 091370932 <<0.001 0.949 0.948 /0950 <<0.001
incline 0.983 0.977 /0990 <<0.001 1.003 1.001 / 1.004  <<0.001
phase 0.952 0.952/0.953 <<0.001 0.987 0.987 /0987 <<0.001
individuality 0.967 0.966 / 0.967 <<0.001 1.000 1.000 / 1.000  <<0.001
model fit 1.059 1.056 / 1.061 <<0.001 1.000 1.000 / 1.001  <<0.001
Random Effects SD 95% CI SD 95% CI1
(Intercept):Subject 0.153 0.099 / 0.237 0.003 0.002 / 0.005
Residual SD 3.351 3.348 / 3.355 0.340 0.340 / 0.341
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Fig. 6. The SPM t-value indicating which method creates statistically

significantly less error for the gait cycle of the knee (top) or ankle (bottom).
The colored bars across y = 0 indicate which method has statistically lower
error in that region of the gait cycle, as determined by an SPM two-tailed
t-test. 62% gait is highlighted to show the expected end of the stance period.

RMSE) [49]. This places our measurement on par or better
than many alternative methods [[S5[]-[|57]]. Our incline estima-
tion algorithm produced an RMSE error of 0.52 deg, and a
maximum error of 2.04 degrees. This places it among similar
methods like [55]], which reports 0.64 - 1.00 deg RMSE for
incline detection (depending on the subject, see [55, Table
I]) and other IMU-based methods [3]], [32]. Our errors are
somewhat higher than those presented by [30], which uses
an interesting IMU / EMG fusion algorithm to determine
ground slope. Our kinematic error analysis indicates
that these state-of-the-art speed and incline measurements are
sufficiently accurate to not play a dominant role in creating
error in kinematic predictions.

The model fit kinematic factor has a qualitatively different
distribution than other factors due to the choice of maximum
absolute error between the model and data as the objective
function in the optimization. Its resulting error distribution
shows that the model fit has the smallest maximum error
of any factor, but the error is more uniformly distributed
throughout the total range. Model fitting error is not due
to random changes in input measurement but is the result
of the compromises necessary to fit many different tasks

with a low-rank model. Large errors in model fitting would
indicate consistently large kinematic errors at some point in
the phase/task space rather than random occurrences.

This study provides a unique analysis of phase variable ac-
curacy by comparing online and offline phase algorithms. We
showed that while phase input errors are a small portion of the
overall predictive error, there exist infrequent measurements
that cause large kinematic errors. While this analysis has not
been performed previously, the algorithm used is very similar
to previous work [47[]. These results could likely be improved
by filtering techniques that determine the certainty of each
phase parameter while estimating their values.

Finally, subject individuality played the most critical role
in determining the overall predictive accuracy. This finding is
congruent with previous work, as the basis method (and the
comparable finite state machine used in this study) are de-
signed to predict average kinematics, with no accommodation
for stride-to-stride variance or the specific subject using the
prosthesis. Previous work has shown that providing average-
subject kinematics is still an effective method for improving
amputee gait [13[], [[19], and that it is possible, and practical,
to tune the kinematic trajectories of individual tasks to better
match a subject in a clinical setting [18]]. Concurrently, recent
work has shown that the continuous format of the basis model
can be leveraged to improve the tuning of all tasks, given
one tuned task [58]]. This work is particularly promising, as it
demonstrated that for most subjects it provides a reduction in
mean and max individualization error for all joints based on a
very simple tuning procedure. This kinematic tuning method
could enable us to use clinician feedback to better determine
the mean kinematic trajectory preferences of an individual
within one visit to their clinician. Leveraging that information,
we can create new kinematic models that are custom-made to
the individual, reducing the individuality kinematic error. It
should be noted that this subject-specific tuning can be applied
to an FSM with predefined kinematics also, but improving both
methods in this fashion would still leave the basis method at a
relative advantage due to its superior modeling of the effects
of task on human gait.

To demonstrate this idea, we conducted a secondary analysis
for predicting one subject’s kinematics with a basis model
trained using only data from the same subject. We found
that the subject individuality term (which now only represents
stride-to-stride variance from the subject’s mean kinematics)
was about 40% smaller than the individuality error found using



the across-subject average model, in terms of mean absolute
error. This reduced the overall error by about 20%. These
results imply that subject-specific tuning could be capable
of reducing the predictive error of the basis method by a
significant amount. Future work on tuning propagation may
prove critical in reducing the largest remaining hurdle to
accurate kinematic predictions for individuals.

B. Comparison to Finite State Machine

The results of show that the basis model provides a
relatively small but statistically significant improvement over
the predictions made by an FSM. There are several reasons
for this difference. Both of these algorithms share the phase
and subject individuality kinematic error factors, which are
the largest sources of the overall error. If these two factors
can be reduced, by tuning and improving the phase variable
calculation and employing subject-specific tuning techniques
[18]], [58], the relative advantage of the basis method would
be more significant. Lastly, three of the test tasks in this study
matched the available tasks in the state machine exactly. For
those three tests, the FSM would have effectively zero speed
kinematic error, incline kinematic error, or kinematic model
error. In more practical applications, users will rarely choose
to walk at the exact speed and inclination that the prosthetic
controller was designed for.

C. Limitations and Future Work

While we did analyze what kinematic errors result from
using a real-time measurable phase variable instead of an
ideal phase variable, we did not study how a phase variable
calculated from a motion capture thigh angle varies from
one calculated on a wearable IMU. While similar, these
orientation measurements are not identical and will suffer
from different failure modes. Another limitation is that the
speeds and inclines that were tested for accuracy in the task
measurement pilot experiment do not exactly match the speeds
and inclines analyzed in simulation. Since the error of both
measurements did not vary greatly with respect to speed
or incline, we believe this did not have a great impact on
the conclusion. The issues we encountered with gyroscope
saturation limit the thoroughness of our incline estimation
error at all speeds. However, we have verified that there
are commercially available IMUs with sufficient gyroscopic
range to measure all activities discussed in this paper. Lastly,
the results of this paper only indicate that the basis method
generally provides statistically significantly better predictions
of kinematics than an FSM. Further clinical testing will be
required to determine clinical significance.

V. CONCLUSION

This study reported speed measurements with less than
0.06 m/s RMSE and incline measurements with less than
0.52 degs RMSE, using only sensors onboard a prosthetic
leg. This accuracy is very comparable to other state-of-the-
art IMU approaches. Using these task measurements, we
demonstrated that the basis method provides more accurate

predictions of kinematics for individual subjects than a finite
state machine for most of the gait cycle. The primary factors
reducing predictive accuracy are speed measurement error,
incline measurement error, phase measurement error, model
fit, and subject individuality. A linear mixed-effects model
proved that subject individuality was by far the largest source
of predictive error, meaning that future work should focus on
individualizing kinematics for each user. Promising work in
this field has already begun, including visual techniques for in-
clinic kinematic tuning of a prosthesis [[18]], and using the basis
model to predict variable-activity kinematics for individual
subjects based on very little subject-specific data [5§].

There are several avenues for continued work. We aim to
model other ambulation modes using the methods described in
this study, create transitional task variables to aid in switching
between gait controllers, and utilize expert clinical tuning and
task propagation to quickly improve the gait performance of
users across all tasks. All of these systems will be tested in
real-time controllers on our robotic leg prototype.
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