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Abstract— Recent work has extended the control method
of virtual constraints, originally developed for autonomous
walking robots, to powered prosthetic legs for lower-limb
amputees. Virtual constraints define desired joint patterns as
functions of a mechanical phasing variable, which are typically
enforced by torque control laws that linearize the output
dynamics associated with the virtual constraints. However, the
output dynamics of a powered prosthetic leg generally depend
on the human interaction forces, which must be measured and
canceled by the feedback linearizing control law. This feedback
requires expensive multi-axis load cells, and actively canceling
the interaction forces may minimize the human’s influence over
the prosthesis. To address these limitations, this paper proposes
a method for projecting virtual constraints into the nullspace
of the human interaction terms in the output dynamics. The
projected virtual constraints naturally render the output dy-
namics invariant with respect to the human interaction forces,
which instead enter into the internal dynamics of the partially
linearized prosthetic system. This method is illustrated with
simulations of a transfemoral amputee model walking with
a powered knee-ankle prosthesis that is controlled via virtual
constraints with and without the proposed projection.

I. INTRODUCTION

A quintessential challenge in human-machine interaction
is controlling a powered prosthetic leg to cooperate with its
human user. A prosthetic leg and its user interact through
forces at the socket, which is the intersection of the human’s
residual limb and the prosthesis. Through these interaction
forces the human is able to influence the dynamics of the
prosthesis and vice versa. These forces thus determine the
level of cooperation between human and machine, which
must be considered when designing a prosthesis controller.

Previous control system designs for powered prosthetic
legs have dealt with human interaction in different ways.
In the traditional paradigm of impedance control [1]-[3],
stiffness and viscosity gains for different phases of the gait
cycle are tuned with implicit consideration of the interaction
forces typically encountered in those phases, e.g., load accep-
tance during early stance. A more recent approach explicitly
considers the interaction forces when designing controllers
that are robust to them under normal circumstances [4], [5].
Although these two approaches have the practical benefit of
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not requiring interaction force measurements for feedback
control, they are unable to accommodate unexpected inter-
actions associated with changes in the human user’s behavior.

A third approach, based on input-output feedback lin-
earization [6], directly measures the human interaction forces
in real time to actively cancel their influence on control
objectives [7], [8]. In this paradigm the control objective is
to enforce virtual constraints, which define desired joint tra-
jectories as functions of a mechanical phasing variable. The
desired constraints are enforced by torque control laws that
linearize and stabilize the input-output dynamics associated
with the constraint outputs. This method has been widely
successful in controlling autonomous walking robots without
human interaction [9]-[17]. In the application to powered
prosthetic legs, the input-output dynamics generally depend
on the human interaction forces, through which the human
can influence the behavior of the leg. For example, the human
could force desired changes in the prosthetic joint kinematics
as the task or environment changes. However, linearizing the
prosthesis input-output dynamics through active cancelation
of the human interaction forces would ensure that the pros-
thesis tracks the fixed reference trajectories regardless of the
human’s intent. This strategy would also require expensive
multi-axis load cells to measure the interaction forces.

To address these limitations with feedback linearizing
control of prosthetic legs, this paper proposes a method for
projecting virtual constraints into the nullspace of the human
interaction terms in the input-output dynamics. The projected
virtual constraints naturally render the input-output dynamics
invariant with respect to the human interaction forces, which
instead enter into the internal dynamics of the partially
linearized prosthetic system. We prove controllability of the
projected input-output dynamics during the prosthesis swing
period and demonstrate controllability for a partial projection
during the prosthesis stance period. This method is illustrated
with simulations of a transfemoral amputee model walking
with a powered knee-ankle prosthesis that is controlled via
virtual constraints with and without the proposed projection.
These simulations support the hypothesis that projected
virtual constraints could provide lower-limb amputees with
more control over (or less resistance from) their prosthesis.

II. PROSTHETIC VIRTUAL CONSTRAINTS

This paper considers the case of a unilateral above-knee
amputee walking with a powered knee-ankle prosthesis. The
prosthetic leg depicted in Fig. 1 is rigidly attached to the
residual thigh (i.e., stump) of the “human” body, so these two
parts can be modeled as separate dynamical systems that are
coupled through interaction forces. The kinematic chains for
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Fig. 1. Schematic of the unilateral, transfemoral amputee model during
the prosthesis stance period (reproduced from [8]). The prosthetic part is
shown in black and the human part is shown in gray. The g terms define
the generalized coordinates of the model. Absolute angle g1 is unactuated
and relative angles g2-ge¢ have ideal actuators. Dorsiflexion/plantarflexion
of the stance ankle and extension/flexion of the stance knee are defined in
the positive/negative directions.

both parts are defined with respect to the same inertial refer-
ence frame on the ground (Fig. 1). Because the prosthesis is
rigidly attached to the human’s residual thigh, the prosthesis
and human models can share the same global coordinates
defined at the residual thigh. The generalized coordinates of
both parts begin with the Cartesian coordinates (g, gy) of
the hip and the absolute angle ¢; of the residual thigh. The
rest of this section focuses on the modeling and control of
the prosthesis, but the human part will be considered for the
purpose of simulation in Section IV.

A. Modeling a Powered Knee-Ankle Prosthesis

The dynamical system of the prosthetic leg is modeled as
in [7], [8]. The configuration of the prosthesis in configura-
tion space Q = R? x T3 is given by q = [gx, ¢y, q1,92, 93]
where ¢ is the absolute thigh angle, g5 is the knee angle,
and g3 is the ankle angle. The system state is then given by
the vector = = [¢7,¢T]T € TQ, where ¢ € R® contains the
joint velocities. The state trajectory evolves according to a
differential equation of the form

M(q)i+ C(q, )i+ G(q) + A(q)" A= Bu+ J(¢)"F (1)

where M € R®%5 is the inertia/mass matrix, C' € R®*5 is
the matrix of Coriolis/centrifugal terms, G € R? is the vector
of gravitational forces, A € R*5 is the matrix modeling
¢ physical constraints between the foot and ground, and
A € RC is the Lagrange multiplier used to calculate the
contact forces. The external forces on the right-hand side
of (1) respectively comprise actuator torques and interaction
forces with the body. Ankle and knee actuation from torque
input u € R? are mapped into the leg’s coordinate system
by B = [02x3,lax2]T € R®*2. The interaction force
F = [F, Fy,M,)" € R? at the socket—the connection
between the prosthesis and body at the mid-thigh in Fig.
1—comprises two linear forces and a moment in the sagittal

bl

plane [7]. Force vector F' acts at the beginning of the leg’s
kinematic chain and is mapped to joint torques/forces by the
body Jacobian matrix J(q) = [J1,03x2] € R3*®, where

1 0 /lrescos(qr)
0 1 Yleessin(q) 2)
0 O 1

Ji =

and £, is the length of the human’s residual thigh.

The presence of contact forces depends on whether the
prosthetic leg is in stance or swing. The prosthetic part is in
stance when the human part is in swing, and vice versa.

1) Swing Period: The prosthetic foot is not in contact
with the ground during the prosthesis swing period, so no
contact constraints are invoked in the prosthesis dynamics,
ie., A=0and A = 0in (1). The interaction force vector F'
in prosthesis dynamics (1) suspends the prosthetic leg from
the human’s residual thigh.

2) Stance Period: The physical forces associated with
contact between the prosthetic foot and ground are modeled
during the prosthesis stance period. These contact forces
prevent the foot from slipping and falling through the ground,
which constitute at least two physical constraints on dynam-
ics (1). Therefore, foot geometry is commonly modeled (e.g.,
[71, [8], [14], [18], [19]) as a vector holonomic constraint

a(g) = 0, 3)

where a : Q — R¢ for ¢ > 2. We will employ the rocker
foot depicted in Fig. 1 for one continuous stance phase (c =
2), but other contact models such as heel, flat foot, and toe
contact [19] could similarly be modeled in this framework.
Given the rolling contact constraint a(q) = 0 from [8],
[14], [18], we follow the method in [7], [20] to compute the
constraint matrix A = V,a and the Lagrange multiplier

A= X—FXu—&—;\F, where 4)
A=V(Aj— AM~Y(Ci+ G)),
A=VAM™'B, \=VAM-1JT

for V.= (AM~1AT)~!. These terms enter into dynamics
(1) only during the stance period of the prosthetic leg.

B. Definition of a Virtual Constraint

Although defined in a similar manner to physical/contact
constraints, virtual constraints are enforced by actuator
torques rather than external physical forces. The vast major-
ity of virtual constraints used in bipedal robots are holonomic
[9]-[17], so we consider virtual holonomic constraints

h(g) = 0, ®)

where h : Q — R? for an actuated knee and ankle, i.e., one
virtual constraint per actuated degree-of-freedom (DOF).
Virtual constraints, i.e., output functions h(g), can be
defined in a variety of ways. In previous work on bipedal
robots (e.g., [9]-[17]), virtual constraints are used to control
the actuated joints specified by ho(q) = (g2, ¢3)7 to a desired
trajectory hq(©(q)) € T? as a function of a monotonic



quantity O(g) € R. This quantity, known as the phase vari-
able (or timing variable), provides a unique representation
of the gait cycle phase to drive forward the desired joint
patterns in a time-invariant manner. The output function on
the left-hand side of constraint (5) is typically defined as
h(q) = ho(q) — ha(O(q)), but we will introduce another
definition via nullspace projection in Section III.

Given a desired virtual constraint (5) defined by an output
function h(q), the goal of the controller is to drive h(q) to
zero. Therefore, the control system output y = h(q) is the
tracking error from the desired constraint (5).

C. Normal Form of the Prosthesis Dynamics

The temporal behavior of any given output y = h(q) € R?
can be determined from its input-output dynamics, hereafter
referred to as the output dynamics. These dynamics are
obtained by taking time-derivatives of y until the input u
appears. The first derivative is trivially given by y = (V,h)q,
implying the output y has relative degree greater than one (cf.
[6]) and another time-derivative is needed. Letting H = V h,
the output dynamics are obtained by

j o= Hi+Hj
= H{+HM Y (-C4—G— A" \+ Bu+JTF).
Plugging in (4) for A\, we obtain the form
Hg— HM ™ (Cq+ G+ AT)) (6)
+HM 'Byu+ HM ' JI'F,

:i/.:

where we have adopted from [19] the notation

(B—AT)X) = UB (7)
(JT —ATHT = JuT ®)

with U = T — ATV AM 1. 1t is clear that By and .J reduce
to B and J, respectively, in the absence of ground contact.

These output dynamics account for 4 of the 10 dimensions
of the system defined by (1). The remaining dimensions
correspond to the internal dynamics of the input-output
system. A decomposition of the output and internal dynamics
can be obtained through a straight-forward generalization of
a classical result in [21]. Given sufficiently smooth vector
fields over a compact subset D C TQ, for every state
zo € D there exists a map T'(z) = (n7,&7)T such that
T'(z) is a local coordinate transformation of system (1) on a
neighborhood of x( to the normal form

§ - ‘ACS + BCpO(nu 5) (u - CYO(% 5) - 50(777 é-)F) ) (10)

where 7 € RS are the coordinates of the internal dynamics
©), and ¢ = [yT, yT]T € R* are the coordinates of
the normal output dynamics (10), which is the first-order
representation of (6). These two coupled systems are defined
by vector fields f; € R6X, j, € R6*3, py € R2*2
ap € R?*! and By € R?*3 and a matrix pair (A, B.),
which is the canonical form representation of a 2-integrator
chain (see [21] for details). It is important to note that the

By =
I =

human interaction force F' enters both subsystems, but the
control input u only enters the output dynamics (10).

Recent work in prosthetics [7], [8] has utilized input-
output feedback linearization to stabilize the output dynamics
(10) and drive y to zero exponentially fast, but this approach
has two key problems that we wish to address in this
paper. These prior control strategies depend on real-time
measurements of the interaction force vector F' to cancel out
its effect on the output dynamics, requiring expensive (and
noisy) multi-axis force sensors. Given that the interaction
forces are the human’s control inputs to the prosthetic leg,
the cancellation of these forces in (10) may also reduce the
human’s control authority over the prosthesis. The human
would not be able to force adjustments in the prosthesis
kinematics to accommodate changes in task or environment.

The goal of the next section—the main contribution of the
paper—is to render the open-loop output dynamics (6) and
(10) invariant with respect to the human interaction forces
through the design of the output matrix H. By making the
output dynamics invariant, the interaction forces will only
enter the internal dynamics (9) of the prosthesis, which are
untouched by the input-output linearization. We speculate
that the human will have more control over (or less resistance
from) the prosthesis when their interaction forces are not
actively canceled in either subsystem (9)—(10).

III. PROJECTION OF VIRTUAL CONSTRAINTS

In this section a desired/reference virtual constraint will
be projected into the human interaction nullspace to define
a new virtual constraint that will ultimately be enforced by
feedback control. Assume that the reference virtual constraint
has been previously defined with a reference output o =
hret(q) and its gradient Hyer = Vg hyer. Without loss of
generality we will consider the form

hret(q) = ho(q) —ha(O(q)) (11)

as discussed in Section II-B. This reference output will
be used to define the regulated/enforced output y = h(q)
associated with the output dynamics (6), but h(g) will not
have the same form as (11).

A. Swing Period

During the swing period the dynamics simplify with A =
0, By = B, and J) = J. To prevent the interaction forces
from appearing in the open-loop output dynamics (6), we
wish to convert h.¢(q) € R? into h(q) € R? such that HT =
(Voh)T € N(JM~1), where N(:) is the nullspace [22],
ie., JM~THT = 0352. We will follow the intuition behind
hierarchical operational space control [23]-[25] to achieve a
secondary task (enforcing the reference virtual constraint) to
the extent possible while complying with the primary task
(constrained to the human interaction nullspace).

Letting J, = JM ! € R3*?, the nullspace projector

N=1-JJ. (12)
is defined with the generalized pseudo-inverse
Jo = WIS (JWIH)™! (13)



and a full-rank weight matrix W. It can be verified that the
nullspace projector N has the property J.NHZL. = 0 for
any H,.¢. Therefore the nullspace projector N maps a refer-
ence output matrix H..¢, corresponding to a desired virtual
constraint h.ef(g) = 0, into the human interaction nullspace.
The output matrix that enforces the desired constraint to the
extent possible in the interaction nullspace is given by

HT = NHZ,. (14)

Choosing W = M results in the following simplifications:
Jo o= Jtamtgh)! (15)

N = I1—-J'ugM YNt gm—1, (16)

We can further simplify the nullspace projector based on the
interaction Jacobian (2) of a knee-ankle prosthesis. Defining

- | My My | . 4 . .
M = MI M | T M~" for notational convenience,
the nullspace projector becomes
[0 —M' M,
N = { 0 7 . 17)

Letting M; € R3*3, M, € R3*2, and M3 € R?*2 be
the top-left, top-right, and bottom-right submatrices of M,
respectively, a blockwise inverse [26] gives

My, = (M;— MyMg M)
My = —(M;— MoyMg'MI) " MyMyt,

Noting that M;'M, = —M,yM;", the projected output
matrix simplifies to
pr - [
HT
ref2

_ { MMy 'HE, }

T (18)

}i}ef2

where HZ., is the lower 2 x 2 submatrix of HZ,. These
simplifications to the projection (12) resulted in the inversion
of a 2 x 2 matrix instead of the entire A/ matrix. Thus the
projected virtual constraints should not significantly increase
computational costs or sensitivity to modeling errors [23].
The new output y = h(g) must be chosen such that V,h
is equal to the H(q) derived in (18), but the function h(q)
can be difficult to obtain analytically. Given that y = Hg
is easily determined, the output trajectory can be calculated
as y(t) = y(0) + Jo H(q(7))d(r)dr. The initial condition
can be chosen as y(0) = yre(0), where yroe(q) is known.
However, we will later avoid this step by trying to zero the
original output y,.¢(t) in the projected output dynamics.

B. Stance Period

When A # 0 in the open-loop output dynamics (6), we
must design h(q) such that HT = (V,h)T € N(JyM 1),
ie, LM PHT = 03x9. Let Jox = JAM~! and W =
(UTM~1)~1. Noting that J., = JW !, the generalized
pseudo-inverse takes the form

JN = WILK(JawJh)™

JE(gw =gt (19)

Then we obtain the nullspace projector following the same
procedure as before:

Ny = I-Jrogw=tghH-tgw-1 (20)
For the prosthesis model the projector simplifies to
I R Y
Ny = [ o 1t | 1)
so the projected output matrix becomes
—177T
BT = NEL, = | VW e | (o
e }q;efQ

The output function y = h(q) can then be defined as in the
contact-free case. It is clear that (22) reduces to (18) in the
absence of ground contact because U becomes identity.

This choice of output function results in the projected
second-order output dynamics

j=Hi— HM Y(Cq+G+ATA\)+ HM "By, (23)

which are invariant with respect to the interaction force
vector. The projected output dynamics of the swing period
have the same form with By = B and A = 0.

A variety of control methods (e.g., proportional-derivative
control [27], finite-time control [9], acceleration-based in-
verse dynamics [25], control Lyapunov functions [28], [29],
and/or input-output feedback linearization [7]) can be em-
ployed to drive output y to zero. In all cases the interaction
forces have no effect on the transient or steady-state behavior
of the closed-loop output dynamics after the projection.

C. Controllability of Projected Output Dynamics

We wish to project the virtual constraints into the hu-
man interaction nullspace without losing control in the
projected output dynamics (23). If any column of H7 is
in N(BT M~1), then the decoupling matrix

Dy, = HM !B, (24)

is singular, and some (or all) control authority is lost in (23).
This situation is avoided if H7 lies in an orthogonal vector
space to N(BT M 1), which is the range space R(M ~1B,)
[22]. Therefore, the goal is to ensure

HT ¢ R(M™'By)nN(JLM™). (25)

Theorem 1: During the swing period (A = 0), condition
(25) is guaranteed by H defined as (18). L.e., the prosthesis
output dynamics (6) are controllable by actuator torques and
invariant with respect to the human interaction forces.

Proof: By inspection of model terms in Section II-A,
B € R°*2 and JT € R®*3 lie in orthogonal vector spaces,
i.e., JB = 03x2. This implies that R(M ~1B) = N(JM 1)
given the invertibility of M ~1. Because (18) satisfies H? €
N(J\M 1), condition (25) is equivalently satisfied. [ |

However, the stance period is not so obvious. From
(7)—(8) we can see that J{ and B, may not lie in or-
thogonal vector spaces. In fact, it may be possible that
R(M~1By\) N N(JyM~1) is an empty set during stance. In



other words, the decoupling matrix D) may become singular
in the presence of nullspace constraints (3 dimensions) and
contact constraints (2 dimensions) for the 5-dimensional
configuration space. Removing the nullspace constraint(s)
corresponding to certain interaction force direction(s) may
restore controllability to the output dynamics.

Let matrix S € R¥*3, 1 < k < 3, be a selector matrix!
that selects the interaction force directions that will define
the nullspace projection. (Previously all three force directions
were utilized, corresponding to S = I.) The new nullspace
projection is defined by (20) with Jg = SJ so that the
selected directions in F' vanish in the output dynamics (6).
Noting that N(JyM~1) € N(SJyM~1), the design of H in
(22) must now satisfy the relaxed condition

HT ¢ R(M™'By)NN(SJLM™1). (26)

Because virtual constraints must be linearly independent [9],
the dimension of the intersection set in (26) must be at least
2, the rank of H. The dimension of this set depends on the
choice of S, which will be discussed in the following section.

IV. APPLICATION TO AMPUTEE LOCOMOTION

For demonstration purposes we utilize the knee-ankle
virtual constraints in [8] as the reference output function
heet(q) = ho(q) — ha(©(q)) € R? that defines H.ef,
where different output functions are used for the stance
and swing periods of the prosthesis. These outputs were
manually chosen to approximate the joint kinematics of
healthy human gait and were parameterized using fifth-order
Bézier polynomials [8]:

ha(©(q)) = Z Z‘!(?E!i)!si(l -

=0

27)

where s = (0@ —©1) /(07 — ©7) is the normalized phase
variable such that 0 < s < 1, a; are the polynomial
coefficients, the superscript ‘—’ indicates the end of a stance
period, and the superscript ‘4’ indicates the start of a stance
period. The horizontal hip position was chosen as the phase
variable, i.e., ©(¢q) = ¢x, but other options exist [30].

A. Input-Output Linearizing Control Law

Our goal is to define a feedback control law for input v that
drives output y to zero in the projected output dynamics (23).
Input-output feedback linearization [6] can be utilized for this
purpose. If the 2 x 2 decoupling matrix D, is invertible over
feasible walking configurations, we can solve for the control
law that inverts the projected output dynamics (23):

Wing = DY H(=Hg+ HM ™Y (Cg+ G + ATX) + vpa), (28)

which does not depend on the interaction force vector F'.
The projected output dynamics then become the double-
integrator §j = vpq, Which can be stabilized with a linear
input vpq. This input is typically chosen as proportional-
derivative (PD) corrections of y to exponentially drive it to
zero [7]. In our case, better tracking of the reference joint

'Each row of S can have only a single non-zero entry, equal to one.

trajectories might be achieved using PD corrections of the
reference output Yyet:

Upd = _prref - Kdyref
== *Kphref(q) - KdHref(q)q
with positive-definite K,, Kq € R?*2. The interaction forces
only appear in the second derivative of 3¢, SO interaction

invariance is maintained when setting the projected acceler-
ation ¢ equal to (29) for the closed-loop output dynamics

(30)

(29)

Zj = _prref_Kdyref~

Because the acceleration on the left-hand side of (30) does
not exactly correspond to the position and velocity on the
right-hand side, exponential stability cannot be guaranteed.
However, if y and ..t are sufficiently close and the PD gains
are sufficiently large, reasonable (but not perfect) tracking
of Yyt about zero can be achieved. This claim will be
demonstrated in the simulations of Section IV-C.

In summary, exact enforcement of the reference virtual
constraints has been sacrificed in order to avoid active cance-
lation of the human interaction forces. Only experiments with
human subjects can tell whether this strategy is preferred
over stricter enforcement of virtual constraints, but the sim-
ulations of Section IV-C will show that the inexact approach
is at least sufficient for maintaining a stable walking gait.

1) Swing Control: The reference swing output matrix
Hgwret = Vghswrer 1s obtained from [8]. According to
Theorem 1, the decoupling matrix D) in (24) is invertible
with Hg, obtained from the nullspace projection (18) of
Hgrer in all interaction force directions (S = I). Therefore
the swing control law ug,, is given by (28).

2) Stance Control: Given the rolling contact constraint
matrix A and the stance output matrix Hggrer = Vghistres
from [8], numerical analysis suggests that D, is invertible
when projecting into the nullspace of the Fy direction, i.e.,
Sy = [1 0 0]. Thus we define Hyy = Hgret Ny with
Jx = SxJ in (20), resulting in a modified control law for
the prosthesis stance period:

Uy = DyY—Huq+ HoM Y(Ci+G+ATX) (1)
7HstM71J§yz[F}”MZ}T +vpd)’
where Jyy, = [02x1  Iax2]Jx. This modified control law

requires a two-axis load cell to measure the vertical force
and the moment, i.e., no measurement of the horizontal
force. Because the horizontal force is approximately in the
direction of locomotion, the human user may have more
control over walking speed when this force direction is not
actively canceled by the prosthesis controller.

B. Modeling an Amputee Biped

In this section we model the complete amputee biped in
Fig. 1 in order to simulate a prosthetic leg under control law
(28). These simulations require us to consider the coupled
dynamics of the human body and the prosthesis for a total
of 8 DOFs. The extended configuration vector is denoted by
g = [q7,q1,q5,q6]7 € Q x T2, where ¢ is the prosthesis



configuration vector, g4 is the body’s hip (inter-leg) angle, g5
is the body’s knee angle, and gg is the body’s ankle angle.
The human and prosthetic feet are modeled as arcs with
constant curvature as in [8], [14], [18]. After imposing the
rolling contact constraints on the stance leg, the full biped
has one degree of underactuation, the absolute angle ¢ .

The human musculoskeletal control is modeled using
input-output feedback linearization [18]. The human state
dynamics modeled in [8] correspond to an equation with the
same form as (1). Because the human virtual constraints do
not lie in the prosthesis nullspace, the control law is

Ug = D;l(—HHqH—FHHM_l(OqH+G+AT/)\\)
—~HagM ' JIF + vp4), (32)

where the terms are the same as in (1) except defined for the
human [8]. Similar to the prosthesis, the virtual constraints
are defined separately for human stance and swing and are
parameterized using fifth-order Bézier polynomials. Define
T, € RS as the concatenation of the prosthesis controller
(given by (31) for the prosthesis stance period and (28) for
the prosthesis swing period) and the human controller (32).
Bipedal locomotion involves both continuous and discrete
dynamics, which constitute a hybrid dynamical system. The
biped’s continuous dynamics are governed by a differential
equation of the form (1) with generalized coordinate vector
ge- One gait cycle comprises a sequence of the prosthetic
stance period (continuous), human heel-strike (discrete with
impact map Apg), the human stance period (continuous), and
prosthetic heel-strike (discrete with impact map Ap):

MGy + Coge + Go + ALAp = Bete, if  pr(ge) >0
(¢F,de%) = Anulgs g™ ), if prlge) =0
MeG + Cee + Ge + AfjAu = Bete, if  pp(ge) >0
(¢F,de%) =Ap(q7,de7), if pp(ge) =0

which then returns to the beginning of the sequence for the
next step [7]. The dynamics account for the leg in contact
with the ground by utilizing a constraint matrix A; and GRF
vector \; specific to the prosthetic leg (¢ = P) or human leg
(¢ = H), which are modeled as in [8], [14], [18]. The function
pi(ge) € R gives the height of the human or prosthetic swing
heel, and the superscripts +/— respectively denote post/pre-
impact. Other extended dynamics terms are defined as in
Section II-A with respect to the coordinate vector ¢e.

The stability of a hybrid dynamical system can be analyzed
with the method of Poincaré sections [9], [31]. Letting
2o = [¢F, Go"]" be the state vector of the full biped, walking
gaits are cyclic and correspond to solution curves x.(t) of
the hybrid system such that z.(t) = x.(¢t + T), for all
t > 0 and some minimal 7" > 0. These solutions, known
as hybrid periodic orbits, correspond to equilibria of the
Poincaré map P : Gp — Gp, where the Poincaré section
Gp = {ze|pr(ge) = 0} corresponds to prosthesis heel strike.
The function P(z.) models two full steps of the biped,
mapping the state from a prosthesis heel strike event to the
subsequent prosthesis heel strike event. A periodic solution
Zo(t) then has a fixed point =} = P(z}), about which the

e

TABLE I
ORIGINAL VS. PROJECTED GAIT FEATURES

Original Gait Prosthesis Stance | Prosthesis Swing
Step Length [m] 0.719 0.723
Step Duration [s] 0.448 0.434
Step Speed [m/s] 1.604 1.666
Projected Gait Prosthesis Stance | Prosthesis Swing
Step Length [m] 0.696 0.738
Step Duration [s] 0.810 0.877
Step Speed [m/s] 0.859 0.842

Poincaré map can be linearized to analyze local stability. If
the eigenvalues are within the unit circle, then the discrete
system is locally stable, and we conclude that the hybrid
periodic orbit is also locally stable.

The control method of hybrid zero dynamics (HZD)—used
to design our reference gait—enables an analytical proof of
orbital stability [8]. However, the virtual constraint projection
does not preserve hybrid invariance, so this analytical proof
is not valid for our projected gait. We will instead use
the perturbation analysis procedure described in [31], [32]
to numerically calculate these eigenvalues after observing
convergence to a fixed point (i.e., periodic orbit).

C. Simulation Results

For comparison both the original (reference) virtual con-
straints and the projected virtual constraints were imple-
mented on the prosthetic leg of the amputee biped model.
Both simulations converged to (different) two-step periodic
orbits. A numerical analysis found that the maximum ab-
solute eigenvalue of the linearized Poincaré map was 0.79
about the original periodic orbit and 0.55 about the projected
periodic orbit, implying both gaits are (locally) stable. Hence,
the projection did not significantly alter the stability proper-
ties of the HZD-based virtual constraints.

The projection provided slight flexibility in the joint kine-
matics but did not significantly interfere with the prosthetic
leg’s ability to track the reference virtual constraints. Little
tracking error can be seen in the prosthetic joint trajectories
plotted over the phase variable in Fig. 2 (left). The projection
also did not significantly change the magnitudes of the
joint torques except immediately after impact events (Fig. 2,
right). However, temporal differences are clear in the phase
variable trajectory (Fig. 3) and phase portraits (Fig. 4) of the
prosthetic leg. Although the prosthesis reasonably tracked
the reference joint angles over the phase variable, the small
deviations in Fig. 2 were sufficient to slow the phase variable
and the prosthetic leg’s progression through its joint patterns.
In fact, the projected gait had a slower step velocity and
longer step period compared to the original gait, whereas
the step length was largely unchanged in Table I.

V. DISCUSSION AND CONCLUSION

Although we achieved our goal of output invariance with
respect to all interaction force directions during swing, only
one direction could be nullified during stance. In the presence
of two contact constraints during stance, the dimension of the
internal dynamics (9) reduces from 6 to 2, corresponding
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to the position and velocity of the unactuated DOF ¢;. It
is possible that only one direction of the interaction forces
can be fully embedded in 2-dimensional internal dynamics,
which would explain why we were only able to satisfy
condition (26) for the nullspace in the F} direction. This
analytical question will be the topic of future investigation.

The observed effect of the projection on walking speed
might be explained by the choice of nullspace in the Fy di-

rection, which is approximately the direction of locomotion.
In theory this could allow the human user to determine the
walking speed without resistance from the prosthesis, which
would no longer produce forces to exactly track the reference
trajectories in opposition to the horizontal interaction force.
Because the amputee model’s controller was not designed to
maintain a particular speed, the walking speed of the biped
model decreased when the prosthesis no longer forced the
original walking speed. Alternatively, it is possible that this
projection could prevent propulsion by the prosthesis, which
would have undesirable energetic consequences in amputee
gait. More investigation is needed, but these simulations
provide initial evidence that interaction nullspace projection,
even in one force direction during stance, could substantially
affect the cooperation between the prosthesis and its user.

This paper utilized input-output feedback linearization to
enforce the projected virtual constraints, but other nonlinear
output regulation techniques could also benefit from the
projection (e.g., acceleration-based inverse dynamics [25],
adaptive control [29], or robust control methods [5]). Fu-
ture work will attempt to analytically prove the possible
directions of nullspace projection during stance. Notions of
hybrid invariance and hybrid zero dynamics could also be
investigated with projected virtual constraints. Finally, only
experiments with a prosthetic leg can determine whether or
not human subjects prefer virtual constraints that have been
projected into the interaction nullspace.
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