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Abstract— This paper presents a systematic algorithm to
design time-invariant decentralized feedback controllers to
exponentially stabilize periodic orbits for a class of hybrid
dynamical systems arising from bipedal walking. The algorithm
assumes a class of parameterized and nonlinear decentral-
ized feedback controllers which coordinate lower-dimensional
hybrid subsystems based on a common phasing variable.
The exponential stabilization problem is translated into an
iterative sequence of optimization problems involving bilinear
and linear matrix inequalities, which can be easily solved
with available software packages. A set of sufficient conditions
for the convergence of the iterative algorithm to a stabilizing
decentralized feedback control solution is presented. The power
of the algorithm is demonstrated by designing a set of local
nonlinear controllers that cooperatively produce stable walking
for a 3D autonomous biped with 9 degrees of freedom, 3 degrees
of underactuation, and a decentralization scheme motivated by
amputee locomotion with a transpelvic prosthetic leg.

I. INTRODUCTION
The objective of this paper is to present a systematic

algorithm to design decentralized feedback controllers that
coordinate lower-dimensional subsystems to asymptotically
stabilize periodic orbits for hybrid dynamical systems. The
algorithm considers a class of parameterized and nonlinear
decentralized feedback controllers. It provides cooperation
among subsystems of complex 3D walking models in the
presence of underactuation.

Previous work on bipedal walking made use of multi-
level centralized nonlinear feedback control architectures to
stabilize periodic orbits [1]–[11]. However, human locomo-
tion may employ a decentralized control scheme relying
heavily on local feedback loops [12], [13]. Centralized
control schemes designed for bipedal robots also cannot be
easily transferred to powered prosthetic legs, which act as
decentralized subsystems. In particular, centralized feedback
architectures would require state measurements from both
the prosthesis and human body, i.e., two interconnected sub-
systems. It would not be clinically feasible for users of pros-
thetic legs to wear sensors at all their intact joints. Although
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powered prosthetic legs already use decentralized feedback
controllers related to joint impedance [14], this linear control
method requires different control parameters at different time
periods to handle the nonlinear dynamics of the gait cycle.
The resulting “finite state machine” requires clinicians to
spend significant amounts of time tuning each controller to a
patient [15] and risks instability when perturbations cause the
wrong controller to be used at the wrong time [16]–[18]. The
limitations of this sequential control method could possibly
be addressed by the unifying nonlinear controllers used in
dynamic walking robots. This underlines the importance of
developing decentralized nonlinear feedback algorithms for
stabilizing hybrid periodic orbits.

State-of-the-art decentralized controllers for large-scale
systems pertain to the stabilization of equilibrium points
for ordinary differential equations (ODEs) and not periodic
orbits of hybrid dynamical systems [19]–[23]. The design of
decentralized control schemes for hybrid dynamical mod-
els of bipedal robots is an extremely difficult problem.
Significant complexity arises from the high dimensionality,
strong interactions among subsystems, underactuation, and
hybrid nature of these models. The most basic tool for
analyzing the stability of periodic orbits of hybrid dynamical
systems—the Poincaré return map [2], [22], [24]—must be
estimated numerically, which further complicates the design
of decentralized controllers.

The contribution of this paper is to present a systematic al-
gorithm to design a class of decentralized nonlinear feedback
controllers that asymptotically stabilize periodic orbits for the
hybrid models of bipedal walking. The proposed algorithm
assumes a finite set of parameterized local controllers so
that (1) they are coordinated based on a common phasing
variable, (2) a periodic orbit is induced, and (3) the orbit
is invariant under the choice of controller parameters. These
assumptions are satisfied for several classes of decentralized
feedback controllers including virtual constraints [3]. We
investigate nonlinear stability tools for hybrid systems to
formulate the problem of designing decentralized nonlinear
controllers as an iterative sequence of optimization problems
involving Bilinear and Linear Matrix Inequalities (BMIs
and LMIs). By design these optimization problems can be
solved easily with available software packages. This paper
also presents sufficient conditions on the Poincaré map to
guarantee the convergence of the iterative BMI algorithm at
a finite number of iterations. We previously applied a BMI
algorithm for the systematic design of centralized feedback
controllers in [25]–[27], whereas this paper presents a BMI
framework for designing decentralized controllers. A class of



novel decentralized controllers is first developed and then the
BMI algorithm is improved for tuning the local controllers.
Finally to demonstrate the power of the algorithm, we control
the walking gait of a 3D autonomous robot with 9 degrees
of freedom (DOFs) and 6 actuators, choosing a two-part
decentralization scheme corresponding to a transpelvic (hip
disarticulated) amputee walking with a robotic prosthetic leg.
A byproduct of this work is the first known control strategy
for a powered 3-DOF transpelvic prosthetic leg.

II. HYBRID MODEL OF WALKING

We consider hybrid dynamical systems with one
continuous-time phase as follows

Σ :

{
ẋ = f(x) + g(x)u, x− /∈ S

x+ = ∆(x−), x− ∈ S,
(1)

where x ∈ X denotes the state variables and X ⊂ Rn
represents the state manifold. The continuous-time portion of
the hybrid system is given by the ODE ẋ = f(x)+g(x)u, in
which u ∈ U denotes the continuous-time control inputs and
U ⊂ Rm represents a set of admissible control inputs. The
vector field f : X → TX and columns of g are assumed to
be smooth (i.e., C∞). The discrete-time portion of the hybrid
system is given by the instantaneous reset map x+ = ∆(x−),
where ∆ : X → X is C∞ and x−(t) := limτ↗t x(τ)
and x+(t) := limτ↘t x(τ) represent the left and right
limits of the state trajectory x(t), respectively. The switching
manifold S is then represented by S := {x ∈ X | s(x) =
0 and σ(x) < 0}, where s : X → R is a C∞ switching
function which satisfies ∂s

∂x (x) 6= 0 for all x ∈ S . Finally,
σ : X → R is assumed to be C∞.

A. Hybrid Interconnected Subsystems

Throughout this paper, we shall assume that the hybrid
model of (1) is composed of two interconnected subsystems
Σ1 and Σ2 in which the local state variables and local inputs
of the i-th subsystem are represented by xi ∈ Xi ⊂ Rni
and ui ∈ Ui ⊂ Rmi , respectively, where the subscript i ∈
{1, 2} denotes the subsystem number. Our motivation comes
from biomimetic control of powered prostheses for which the
typical model may consist of two subsystems including the
“human” body and “prosthetic” part (see Fig. 1). The global
state variables and global inputs of (1) are then assumed
to be decomposed as x =

(
x>1 , x

>
2

)>
and u =

(
u>1 , u

>
2

)>
which result in X = X1 ×X2 and U = U1 × U2.

We shall assume that there is a desired period-one orbit for
the hybrid model of (1) which is transversal to the switching
manifold S. To make this notion more precise, we present
the following assumption.

Assumption 1 (Transversal Period-one Orbit): There ex-
ists a bounded scalar T ? > 0 (referred to as the fundamental
period), smooth nominal local control inputs u?i : [0, T ?]→
Ui for i ∈ {1, 2}, and a unique nominal global state solution
ϕ?(t) which satisfy the ODE of the continuous-time portion

Fig. 1: Illustration of the local subsystems and proposed
decentralized feedback control scheme for stabilization of
hybrid periodic orbits for bipedal walking. The subsystem Σ2

(i.e., prosthetic part), shown by the dashed ellipse, includes
the degrees of freedom and actuators for the left leg. Σ1 (i.e.,
human part) consists of the rest of the model.

and periodicity condition as follows

ϕ̇?(t) = f (ϕ?(t)) + g (ϕ?(t)) u?(t), 0 ≤ t ≤ T ?

ϕ?(0) = ∆ (ϕ? (T ?))

ϕ?(t) /∈ S, 0 ≤ t < T ? and ϕ? (T ?) ∈ S,

where u?(t) := (u?>1 (t), u?>2 (t))>. Furthermore, the period-
one orbit O := {x = ϕ?(t) | 0 ≤ t < T ?} is assumed to be
transversal to the switching manifold S , i.e., ṡ(ϕ?(T ?)) 6= 0.

Sections II-B and III will present the class of decentralized
feedback controllers and the iterative BMI optimization
algorithm to exponentially stabilize the desired periodic orbit
O, respectively.

B. Class of Decentralized Feedback Controllers

In our proposed decentralized feedback control structure,
the local controllers are parameterized and general nonlinear
feedback laws which have access to their own local measure-
ments (i.e., local state variables xi) as well as a subset of
measurable global variables. Global variables are defined as
quantities which depend on the global state variables. The
global variable is said to be measurable for a subsystem if
there are sensors to measure it along the solutions of that
subsystem.

Assumption 2 (Measurable Global Variables): It is as-
sumed that the set of measurable global variables for sub-
system Σi, i ∈ {1, 2}, can be written in the form of

Ψi(x) :=
(
ψ>i (x), ψ̇>i (x), · · · , ψ(r−1)>

i (x)
)>
∈ Rrvi (2)

for some smooth measurable global variable ψi(x) ∈ Rvi
and some positive integers vi ≥ 1 and r ≥ 1. We further
assume that the control input u does not explicitly appear in
the equations of ψi(x), ψ̇i(x), · · · , and ψ(r−1)

i (x).
Example 1: For the case of powered prostheses in Fig.

1, without loss of generality let us assume that subsystems
Σ1 and Σ2 represent the human and prosthetic leg parts,
respectively. Suppose further that the human part has global
orientation in its local state vector (assumed to come from
the vestibular system), whereas the prosthetic part has only



shape variables and therefore must utilize external inertial
measurement units (IMUs) for measurements of orientation.
Because orientation is implicitly included in the local state
vector of the human part, its externally measured global
variable set Ψ1(x) can be empty. We assume that the
prosthetic orientation measurements come from two IMUs
attached to the thigh links: one on the human thigh and
the other on the prosthetic thigh. The set of measurable
global variables Ψ2(x) for the prosthetic part Σ2 can then be
chosen as the Euler angles, i.e., ψ2(x), and their first-order
time-derivatives, i.e., ψ̇2(x), from these two IMUs (note that
r = 2). The use of two IMUs by the prosthesis will later
allow the BMI optimization to more easily find stable gaits.
There is precedence for wearing sensors on the sound leg
in prosthetic control methods [28], but we will attempt to
eliminate the need for the second IMU in future work.

In order to coordinate the local controllers, we now
consider a common set of measurable global variables for
both subsystems Σ1 and Σ2 in the following assumption.

Assumption 3 (Measurable Phasing Variable): There ex-
ists a smooth and scalar global variable θ(x), referred to as
the phasing variable, which satisfies the following condi-
tions:

1) θ(x) is strictly monotonic (i.e., strictly increasing or
decreasing) along the periodic orbit O;

2) the control input u does not explicitly appear in the
equations of θ(x), θ̇(x), · · · , and θ(r−1)(x); and

3) the sequence of θ and its time-derivatives up to the
order (r − 1), i.e.,

Θ(x) :=
(
θ(x), θ̇(x), · · · , θ(r−1)(x)

)>
∈ Rr

are measurable global variables for both subsystems
Σ1 and Σ2.

From Item 1 of Assumption 3, the phasing variable can
replace time, which is a key to obtaining time-invariant
controllers that realize asymptotic orbital stability of the
periodic orbit O. Item 2 states that the relative degree of
θ(x) and ψi(x) for i ∈ {1, 2} with respect to the control
input u are the same and equal to r. Our motivation for
this assumption will be clarified in local output functions
(7). For mechanical systems, the phasing variable is usually
taken as a holonomic quantity and hence, r = 2. Item 3
of Assumption 3 is not restrictive for models of bipedal
walking. In particular, one can define a proper phasing
variable based on the absolute stance hip angle in the sagittal
plane. This angle θ and its first-order time-derivative θ̇ may
be measured for Σ2 by the IMUs attached to the thigh links
in Example 1. It is further reasonable to assume that this
angle is available to the human through proprioception of
the residual thigh.

Now we propose a class of parameterized local feedback
controllers as follows

ui = Γi (xi,Θ(x),Ψi(x), ξi) , i = 1, 2, (3)

where ξi ∈ Ξi ⊂ Rpi denotes the parameters of the
local controller i to be determined. Here, Γi : Xi × Rr ×

Rrvi × Ξi → Ui is a general smooth function of local
state variables xi, measurable phasing variable and its time-
derivatives Θ(x), measurable global variables Ψi(x) for the
subsystem Σi, and local parameters ξi. We remark that
the local controllers of (3) depend on two different sets
of measurable global variables. The first set is common
between Σ1 and Σ2 and includes Θ(x), consisting of the
phasing variable and its time-derivatives, to coordinate the
local controllers. In particular, the phasing variable represents
the progress of the system (e.g., robot) on the periodic
orbit (e.g., gait). The second set includes the individual
measurable global variables Ψi(x) to improve the stability
of the periodic orbit O. For instance in Example 1, the
prosthetic leg controller may improve the frontal stability
by having access to the roll angles from the IMUs attached
to the thigh links.

Remark 1: In the case of amputee locomotion in Example
1, mathematical models for the local controller of the human
part are not known. However for the purpose of this paper,
we assume that the human local controller can be modeled
as a phase-dependent nonlinear feedback law in a similar
manner to [18]. Evidence suggests that phase-dependent
models reasonably predict human joint behavior even across
perturbations [13]. Since the human part controller does not
have access to the external IMUs attached to both thighs
(Ψ1 = ∅ but orientation is implicitly included in x1), it is
better to show the local controllers of (3) as follows:

u1 = Γ1 (x1,Θ(x), ξ1) (4)
u2 = Γ2 (x2,Θ(x),Ψ2(x), ξ2) . (5)

To have a unified notation, however, we make use of (3) for
the rest of the paper. We remark that the objective of this
paper is to show that the local feedback control structure of
(4) and (5) can yield asymptotically stable 3D walking gaits.

C. Closed-Loop Hybrid Model

By employing the local feedback laws of (3), the param-
eterized closed-loop hybrid model becomes

Σcl
ξ :

{
ẋ = f cl(x, ξ), x− /∈ S

x+ = ∆(x−, ξ), x− ∈ S,
(6)

where ξ := (ξ>1 , ξ
>
2 )> ∈ Ξ ⊂ Rp, Ξ := Ξ1 × Ξ2

denotes the set of admissible parameters, p := p1 + p2,
f cl(x, ξ) := f(x) + g(x)Γ(x, ξ), and Γ := (Γ>1 ,Γ

>
2 )>. The

unique solution of the parameterized ODE ẋ = f cl(x, ξ) with
the initial condition x(0) = x0 is denoted by ϕ(t, x0, ξ) for
all t ≥ 0 in the maximal interval of existence. The time-to-
reset function, T : X × Ξ → R>0, is then defined as the
first time at which the ODE solution intersects the switching
manifold S, i.e., T (x0, ξ) := inf {t > 0 |ϕ(t, x0, ξ) ∈ S}.

Remark 2: In the closed-loop hybrid model of (6), the re-
set map ∆ is also parameterized by ξ. Our motivation for this
is to extend the iterative BMI algorithm for hybrid systems
with multiple continuous-time phases. In particular, for these
systems, the reset map can be expressed as a composition



of the flows for the remaining continuous- and discrete-
time phases. Consequently, ∆ includes the parameters of the
controllers employed during other continuous-time phases.

D. Invariant Periodic Orbit Assumption

Throughout this paper, we shall assume that the local
feedback laws of (3) satisfy the invariance assumption.
The invariance assumption states the periodic orbit O is
invariant under the choice of the controller parameters ξ =
(ξ>1 , ξ

>
2 )> ∈ Ξ. This helps us to preserve the orbit while

tuning the parameters to improve its stability behavior. This
assumption becomes more clear in the following assumption.

Assumption 4 (Invariant Periodic Orbit): The closed-
loop hybrid model (6) satisfies the following invariance
conditions: 1) ∂f cl

∂ξ (x, ξ) = 0 for all (x, ξ) ∈ O × Ξ, and
2) ∂∆

∂ξ (x?, ξ) = 0 for all ξ ∈ Ξ, where O denotes the set
closure of O and {x?} := O ∩ S .

To clarify the idea, we now present a family of the
proposed decentralized controllers in (3) which satisfies the
invariance assumption.

Local Output Zeroing Controllers: This family of local
controllers is developed based on the output regulation
problem for local subsystems Σi, i ∈ {1, 2}. We define a
set of parameterized local outputs as follows

yi (xi,Θ(x),Ψi(x), ξi) = Hi(ξi) (xi − xd,i (θ))

+ Ĥi(ξi) (ψi − ψd,i (θ)) ,
(7)

where dim(yi) = dim(ui) = mi, and Hi(ξi) ∈ Rmi×ni
and Ĥi(ξi) ∈ Rmi×vi are local output matrices, to be
determined, which are parameterized by ξi. In addition,
xd,i(θ) and ψd,i(θ) represent the desired evolutions of the
local state variables xi and measurable global variables ψi
on the periodic orbit O, respectively, in terms of the phasing
variable θ. According to the construction procedure, the local
outputs (7) vanish on the desired orbit O. Furthermore, we
assume that r is the relative degree of the local output yi
with respect to the local input ui. The family of local output
zeroing controllers can then be chosen as1

Γi (xi,Θ(x),Ψi(x), ξi) = u?i (θ)−D−1
i (xi, ξi)

r−1∑
j=0

kjy
(j)
i

 ,

where the term u?i (θ) denotes the nominal local inputs
of Assumption 1, regressed in terms of the phasing vari-
able θ to preserve the periodic orbit O for the full-
order model, Di(xi, ξi) represents a smooth local (lower-
dimensional) decoupling matrix2, and the coefficients kj for
j = 0, 1, · · · , r−1 are chosen such that the polynomial λr+
kr−1λ

r−1 + · · ·+ k0 becomes Hurwitz. We remark that this
family of local controllers is a decentralized approximation
of centralized I/O linearizing controllers. In addition, it can

1We remark that y
(j)
i is a function of (θ, θ̇, · · · , θ(j)) and

(ψi, ψ̇i, · · · , ψ
(j)
i ) for all j = 0, 1, · · · , r − 1. This underlines the

importance of having Θ(x) and Ψi(x) measurable in Assumptions 2 and
3.

2It is assumed that Di(xi, ξi) for i ∈ {1, 2} is invertible on O× Ξ for
some Ξ ⊂ Rp.

be easily shown that ∂f cl

∂ξ (x, ξ) = g(x)∂Γ
∂ξ (x, ξ) = 0 for all

(x, ξ) ∈ O × Ξ, and hence, the invariance assumption is
satisfied. For the case of Example 1 as stated in Remark 1, we
choose Ĥ1 = 0 (or Ψ1 = ∅) to have u1 = Γ1(x1,Θ(x), ξ1).

E. Poincaré Map and Exponential Stabilization

In order to exponentially stabilize the periodic orbit O
for the closed-loop system (6), we define the parameterized
Poincaré map as P : X × Ξ → X by P (x, ξ) :=
ϕ (T (∆(x, ξ), ξ) ,∆(x, ξ), ξ). This map describes the evo-
lution of the closed-loop hybrid system (6) on the Poincaré
section S according to the discrete-time system

x[k + 1] = P (x[k], ξ) , k = 0, 1, 2, · · · . (8)

From the invariance assumption, x? is an invariant fixed
point for the Poincaré map, that is P (x?, ξ) = x? for all
ξ ∈ Ξ. Linearization of (8) around the invariant fixed point
x? then results in

δx[k + 1] = A(ξ) δx[k], k = 0, 1, 2, · · · , (9)

where δx[k] := x[k]− x? and A(ξ) := ∂P
∂x (x?, ξ). Next we

are interested in the following problem.
Problem 1 (Exponential Stabilization): The problem of

exponential stabilization of the periodic orbit O for the
closed-loop hybrid system (6) consists of finding the param-
eter vector ξ such that the Jacobian matrix A(ξ) becomes
Hurwitz.

III. ITERATIVE BMI ALGORITHM

This section creates a systematic numerical algorithm to
overcome specific difficulties arising from the lack of a
closed-form expression for the Poincaré map, high dimen-
sionality, and underactuation in tuning the decentralized feed-
back controllers of Section II-B for the hybrid model of (1).
The objective is to tune the parameters of the decentralized
feedback control structure of (3), i.e., ξ = (ξ>1 , ξ

>
2 )>, such

that the desired orbit O becomes exponentially stable. Our
iterative algorithm designs a sequence of controller param-
eters {ξ`}, where the superscript ` ∈ {0, 1, · · · } represents
the iteration number. The objective is then to converge to a
set of parameters ξ` that solves Problem 1. In what follows,
we present the steps of the algorithm.

A. Step 1: Sensitivity Analysis and BMI Optimization

During iteration number `, based on the Taylor series
expansion of the Jacobian matrix around ξ`, i.e.,

A
(
ξ` + ∆ξ

)
≈ A

(
ξ`
)

+ Ā
(
ξ`
)

(I ⊗∆ξ) , (10)

a sensitivity analysis is employed to translate Problem 1 into
an approximate exponential stabilization problem which can
be expressed in terms of BMIs. In (10), ∆ξ is an increment
in controller parameters with a sufficiently small norm ‖∆ξ‖,
“⊗” represents the Kronecker product, and Ā(ξ`) is referred
to as the sensitivity of the Jacobian matrix with respect to
ξ. Effective numerical approaches to calculate the Jacobian
matrix A(ξ`) as well as the sensitivity matrix Ā(ξ`) have



been developed in [25, Theorems 1 and 2]. Next we present
the approximate stabilization problem.

Problem 2 (Approximate Exponential Stabilization):
The problem of approximate exponential stabilization
consists of tuning/incrementing the controller parameters
∆ξ` := ξ`+1 − ξ` such that the first-order approximation of
the Jacobian matrix, i.e.,

Â
(
ξ`,∆ξ`

)
:= A

(
ξ`
)

+ Ā
(
ξ`
) (
I ⊗∆ξ`

)
(11)

becomes Hurwitz.
In this paper, we follow the BMI optimization approach

of [25] to solve Problem 2. However unlike [25], we repeat
this approach in an iterative manner to converge to a set of
stabilizing parameters3. In particular, during each iteration,
we set up the following optimization problem

min
W,∆ξ`,µ,η

− wµ+ η (12)

s.t.
[
W Â

(
ξ`,∆ξ`

)
W

? (1− µ)W

]
> 0 (13)[

I ∆ξ`

? η

]
> 0 (14)

µ > 0, (15)

in which W = W> is a positive definite symmetric matrix,
µ > 0 is a scalar to tune the spectral radius of Â, and
η is a dynamic upper bound on ‖∆ξ`‖22 to have a good
approximation based on the Taylor series expansion in (10)4.
Finally, w > 0 is a weighting factor as a trade-off between
increasing µ (i.e., decreasing the spectral radius of Â) and
decreasing η in the cost function (12). We remark that (13)
and (14) represent BMI and LMI constraints, respectively.

B. Step 2: Iteration

Let (W `?,∆ξ`?, µ`?, η`?) represent a local minimum for
the BMI optimization problem (12)-(15)5. If the requirements
of Problem 1 are satisfied at

ξ`+1 = ξ` + ∆ξ`?, (16)

the algorithm terminates. Otherwise, the algorithm continues
by coming back to the step of the sensitivity analysis and
BMI optimization around the updated parameter ξ`+1. In
case the BMI optimization is not feasible, then the search
process is not successful and the algorithm terminates.

C. Sufficient Conditions for Convergence of the Algorithm

The objective of this section is to present a set of sufficient
conditions under which the iterative algorithm stabilizes the
periodic orbit O for the closed-loop hybrid model (6) at
a finite number of iterations. The conditions are presented
in terms of the Poincaré map and its first-, second-, and

3We have observed that for decentralized control problems one need to
apply the BMI algorithm iteratively to converge to a stabilizing solution.

4In particular, V (δx) = δx>W−1δx is a Lyapunov function for δx[k+
1] = Â(ξ`,∆ξ`) δx[k] and

√
1− µ represents an upper bound for the

spectral radius of Â(ξ`,∆ξ`).
5More details about the local solutions will be presented in Section IV-B.

third-order derivatives. For this goal, we present a non-
smooth optimization problem which is equivalent to the BMI
optimization problem (12)-(15). It is important to remak
that we will not solve the non-smooth optimization problem
numerically during the iterative algorithm. However, we will
make use of this equivalent problem for the proof of the
convergence in Theorems 1 and 2.

Lemma 1: The BMI optimization problem (12)-(15) is
equivalent to

min
∆ξ`,γ

1

2
w γ2 +

1

2
‖∆ξ`‖22 (17)

s.t. ρ
(
Â
(
ξ`,∆ξ`

))
< γ (18)

γ < 1, (19)

where ρ(.) represents the spectral radius.
Proof: See Appendix.

Let us consider the Jacobian matrix A(ξ) ∈ Rn×n. For
later purposes, we define the vectorization of the real and
approximate Jacobian matrices as a(ξ) := vec(A(ξ)) ∈ Rn2

and â(ξ,∆ξ) := vec(Â(ξ,∆ξ)) ∈ Rn2

, where “vec(.)”
represents the matrix vectorization operator. For the scalar
case, i.e., n = 1, one can present a closed-form expression
for the global solution of the equivalent problem (17)-(19).
This helps us to present a set of sufficient conditions to
guarantee the convergence of the iterative algorithm to a
stabilizing set of parameters at a finite number of iterations.

Theorem 1 (Convergence of Algorithm for n = 1):
Consider the C∞ scalar function a : R → R and suppose
that there is ξ̄ ∈ R such that a(ξ̄) = 0. Let B represent a
compact (closed and bounded) ball around ξ̄ such that 1)
a′(ξ) 6= 0 for all ξ ∈ B, and 2)

max
ξ∈B

|a(ξ)|
w (a′(ξ))

2
+ 1

< 1, (20)

where a′(ξ) denotes the first-order derivatives of a(ξ). Then,
there are δ > 0 and N <∞ such that for all initial guesses
ξ0 ∈ B with the property |ξ0− ξ̄| < δ, the iterative algorithm
stabilizes the origin for (9) at N iterations, that is, |a(ξ`)| < 1
for all ` > N .

Proof: See Appendix.
For the multi-dimensional case, i.e., n > 1, there is not

a closed-form expression for the optimal solution of (17)-
(19) or for that of (12)-(15) to investigate the convergence
of the algorithm similar to that presented in Theorem 1.
However from Lemma 1, one can still present an alternative
set of sufficient conditions to guarantee the stability of the
real Jacobian matrix during iteration `+ 1 based on a local
optimal solution obtained during iteration `. For this purpose,
let χ(z) := det(zI−A) represent the characteristic equation
of a given matrix A. Then ρ(A) < γ is equivalent to the
monic polynomial 1

γnχ(γz) = det(zI− 1
γA) being Hurwitz.

From Jury stability criterion, this is also equivalent to the
existence of n + 1 smooth inequality constraints on (a, γ)
with γ 6= 0 as follows:

Fα(a, γ) < 0, α = 1, · · · , n+ 1, (21)



where a := vec(A) ∈ Rn2

. This enables the following result.
Theorem 2 (Convergence of Algorithm for n > 1):

Assume that the BMI optimization problem (12)-(15) is
feasible during iteration `. Suppose further that (∆ξ`?, µ`?)
denotes a local optimal solution (not necessarily the global
solution). Then there is ε > 0 such that if 1) ‖∆ξ`?‖ < ε,
and 2) the conditions

n2∑
β=1

∂Fα
∂aβ

(
a
(
ξ`
)
,
√

1− µ`?
) ∂2aβ
∂ξ2

(
ξ`
)
≤ 0 (22)

for α = 1, · · · , n + 1 are satisfied, then the algorithm
terminates at the iteration `+1, that is, A(ξ`+∆ξ`?) becomes
Hurwitz. Here aβ(ξ) represents the β-th component of a(ξ)

and ∂2aβ
∂ξ2 (ξ) denotes the corresponding Hessian matrix.
Proof: See Appendix.

We remark that the inequality conditions (22) can be
viewed as n + 1 LMI conditions on n2 Hessian matrices
∂2aβ
∂ξ2 (ξ`) for β = 1, · · · , n2. Hence, one can interpret these

conditions as convexity requirements on the elements of a(ξ)
at ξ = ξ`.

IV. APPLICATION TO ROBOTIC WALKING

Virtual constrains are kinematic relations among the gen-
eralized coordinates enforced asymptotically by continuous-
time feedback control [2], [3], [7], [16], [17], [25], [26],
[29]–[33]. They are defined to coordinate the links of the
bipedal robot within a stride. In this approach, holonomic
output functions y(x) define desired virtual constraints, i.e.,
y ≡ 0, that are typically enforced by centralized input-output
(I/O) linearizing feedback laws during the continuous-time
portion of the hybrid system. Virtual constraint controllers
have been validated numerically and experimentally for
stable 2D and 3D underactuated bipedal robots [8], [29],
[30], [34], [35] as well as 2D powered prosthetic legs [16]–
[18]. The stability of walking gaits in the virtual constraints
approach depends on the choice of the output functions
[25]. The application of virtual constraints to prosthetics
presents some challenges not previously encountered in
autonomous robots, because centralized virtual constraint
controllers would require state feedback from the human
body. To overcome this problem associated with human in-
teraction, [16] has approximated virtual constraint controllers
using local high-gain PD controllers in simulations of a 2D
powered prosthetic leg, but safety concerns limited the exper-
imental implementation to inaccurate low-gain controllers.
The local output functions for the prosthetic subsystem were
also defined based on physical intuition. A recent approach
measures the human interaction forces for exact local virtual
constraint control [18], but multi-axis force sensors that are
light enough for prosthetic limbs are extremely expensive.

There is currently no algorithm to systematically design
decentralized virtual constraints to induce stable walking in
bipedal robots and powered prosthetic legs. The objective
of this section is to employ the iterative BMI optimization
to search for stabilizing local virtual constraints. We remark
that the BMI optimization takes into account the interactions

among the subsystems while searching for the optimized
virtual constraints, preventing the need to employ impractical
high-gain local controllers or expensive force sensors to deal
with interactions.

A. 3D Underactuated Bipedal Robot

We apply the iterative BMI algorithm to tune the local
output matrices for a set of decentralized virtual constraints
in the form of (7) to exponentially stabilize the walking
gait of a 3D underactuated bipedal robot. The model of the
robot consists of a rigid tree structure with a torso and two
identical legs with point feet6. Each leg includes 3 actuated
DOFs: a 2 DOF hip (ball) joint with roll and pitch angles
plus a 1 DOF knee joint in the sagittal plane (see Figs. 1
and 2). During the single support phase, the model has 9
DOFs with 6 actuators. In particular, the roll, pitch and yaw
angles associated with the torso frame are unactuated. The
kinematic and dynamic parameter values for the links are
taken according to those reported in [36] for a 3D human
model. The continuous-time portion of the hybrid system in
(1) is constructed based on the right stance phase Lagrangian
dynamics with 18 state variables. The discrete-time portion
is then taken as the composition of the right-to-left impact,
left stance phase, and left-to-right impact models. The impact
maps assume rigid and instantaneous contact models [37]. A
desired periodic gait O is then designed using the motion
planning algorithm of [8] for walking at 0.6 (m/s) with the
cost of mechanical transport CMT = 0.07.

The two-part decentralization scheme in Fig. 2 is moti-
vated by a transpelvic amputee (the “human” part) walking
with a prosthetic left leg (the “prosthetic” part). The pros-
thetic subsystem Σ2 includes the 3 DOFs of the left leg
with the corresponding 3 actuators and hence, dim(x2) =
6 and dim(u2) = 3. The human subsystem Σ1 consists
of the rest of the model, including the torso and right
leg, with dim(x1) = 12 and dim(u1) = 3. The set of
measurable global variables Ψ2(x) = (ψ>2 (x), ψ̇>2 (x))> for
subsystem Σ2 includes two roll and yaw angles as well
as their velocities provided by the two IMUs attached to
the model thighs (i.e., dim(ψ2) = 4 and dim(Ψ2) = 8).
Next the local output matrices to be determined then include
H1(ξ1) ∈ R3×6, H2(ξ2) ∈ R3×3, and Ĥ2(ξ2) ∈ R3×4,
or equivalently 39 parameters7. However, since the typical
walking period includes two steps, we need to determine
these matrices for the right and left stance phases and hence,
the total number of parameters is 39×2 = 78, i.e., ξ ∈ R78.

B. PENBMI Solver and Numerical Results

BMIs are NP-hard problems. However, available software
packages like PENBMI [38] are general purpose, local
solvers which guarantee the convergence to a critical point

6We make use of the point foot assumption to simplify the hybrid model
of walking, but the results can be applied to hybrid models of walking with
nontrivial feet.

7We remark that Ĥ1 = 0. In addition, since the outputs in (7) need to be
holonomic, we replace xi and xd,i(θ) in (7) with the local configuration
variables qi and the corresponding desired evolution qd,i(θ), respectively.



satisfying the first-order Karush-Kuhn-Tucker (KKT) con-
ditions. An initial set of local virtual constraints with the
parameter vector ξ0 ∈ R78 is assumed based on physical
intuition to initiate the iterative algorithm. For this set of local
virtual constraints, the dominant eigenvalues of the 17× 17
Jacobian of the Poincaré map and the corresponding spectral
radius become {0.1029 ± 1.7223i,−0.4683,−0.4178} and
1.7253, respectively. Hence, the orbit is unstable. To stabilize
the orbit, we employ the iterative BMI algorithm with the
weighting factor w = 1. The BMI optimization problem
(12)-(15) during each iteration of the algorithm is then solved
with the PENBMI solver from TOMLAB [39] integrated
with MATLAB environment through YALMIP [40]. The
BMI optimization procedure on a computer with a dual 2.3
GHz Intel Xeon E5-2670 v3 processor takes approximately
15 minutes. The iterative algorithm successfully converges
to a stabilizing set of parameters after 5 iterations. For
the BMI optimized parameters, the dominant eigenvalues
and spectral radius of the Poincaré map Jacobian become
{0.4908,−0.0058± 0.4681i,−0.3153} and 0.4908, respec-
tively, and hence, the desired periodic gait O becomes
exponentially stable (71.56% decrease in the spectral radius).
Figure 2 depicts the phase portraits of the BMI optimized
closed-loop system. Here, the simulation starts off of the
orbit at the beginning of the right stance phase with an initial
error of −2 (deg/s) in the velocity components. Convergence
to the periodic orbit is clear. The animation of this simulation
can be found at [41].

V. CONCLUSIONS

This paper introduced an algorithm to systematically de-
sign time-invariant decentralized feedback controllers for
exponential stabilization of periodic orbits for a class of
hybrid dynamical systems arising from bipedal walking. The
algorithm is developed based on an iterative sequence of
optimization problems involving BMIs and LMIs. It can
address a general form of parameterized and nonlinear local
controllers in which the coordination of lower-dimensional
subsystems is done by a common measurable phasing vari-
able. The algorithm accounts for high degrees of underac-
tuation and strong interactions among subsystems and can
be solved effectively with available software packages. The
numerical results illustrate the power of the algorithm in
designing stabilizing local nonlinear controllers for a hybrid
model of walking with 18 state variables and 78 control
parameters. For future research, we will investigate the
scalability of the algorithm and its capability in stabilizing
larger size interconnected systems. We will also investigate
the design of robust decentralized feedback solutions against
uncertainties in the hybrid models.

APPENDIX

Proof of Lemma 1

For a given matrix A, ρ(A) < γ for some positive γ is
equivalent to matrix 1

γA being Hurwitz. This is equivalent
to the existence of Y = Y > > 0 such that 1

γ2A
>Y A−Y <

0. Pre and post multiplying this latter inequality by W =
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Fig. 2: Phase portraits for the torso Euler angles (yaw, roll
and pitch) during 50 consecutive steps of 3D walking by
the BMI optimized decentralized feedback control scheme
together with the structure of the 9 DOFs autonomous
bipedal robot. The model consists of three unactuated Euler
angles and 6 actuated revolute joints. Subsystems Σ1 and Σ2

with the corresponding DOFs have been shown in the figure.

Y −1 > 0 and employing Schur’s complement Lemma results
in [W AW ; ? γ2W ] > 0. Finally choosing γ2 := 1−µ < 1
in the BMI problem (12)-(15) together with η > ‖∆ξ`‖22
from the LMI (14) completes the proof.

Proof of Theorem 1

For the scalar case, ρ(â(ξ`,∆ξ`)) < γ is equivalent
to |â(ξ`,∆ξ`)| = |a(ξ`) + a′(ξ`)∆ξ`| < γ. Using this
fact, the Lagrange multipliers and assumption (20), it can
be shown that the global optimal solution of (17)-(19) is
given by ∆ξ`? = − w a` a′`

w(a′`)2+1
, where a` := a(ξ`) and

a′` := a′(ξ`). This results in the parameter update law
ξ`+1 = ξ` − w a` a′`

w(a′`)2+1
=: Q

(
ξ`
)

with an equilibrium point
at ξ = ξ̄. It can also be shown that under assumption
a′(ξ) 6= 0 for ξ ∈ B, 0 < ∂Q

∂ξ (ξ̄) = 1

w(a′(ξ̄))
2
+1

< 1 and

hence, the equilibrium point ξ̄ is exponentially stable. This
implies the existence of δ > 0 such that for all ξ0 ∈ B with
the property |ξ0 − ξ̄| < δ, lim`→∞ ξ` = ξ̄. Furthermore,
|ξ` − ξ̄| ≤ |ξ0 − ξ̄| < δ for ` = 0, 1, · · · which follows
that ξ` ∈ B for ` = 0, 1, · · · . Finally, since a(ξ) is smooth,
lim`→∞ a(ξ`) = a(lim`→∞ ξ`) = a(ξ̄) = 0 which implies
that there is N > 0 such that for all ` > N , |a(ξ`)| < 1.

Proof of Theorem 2

The proof is similar to that presented in [27, Theorem 2].
During iteration `, we define an error function E(∆ξ) ∈
Rn+1 with the components

Eα(∆ξ) := Fα
(
a
(
ξ` + ∆ξ

)
, γ`
)
− Fα

(
â
(
ξ`,∆ξ

)
, γ`
)



for α = 1, · · · , n + 1, where γ` :=
√

1− µ`?. This
function satisfies E(0) = 0 and ∂E

∂∆ξ (0) = 0. The conditions

(22) imply that ∂2Eα
∂∆ξ2 (0) ≤ 0 for α = 1, · · · , n + 1

which are second-order optimality conditions under which
the components of E reach a local maximum at ∆ξ = 0.
Hence, for ‖∆ξ`?‖ < ε, Eα(∆ξ`?) ≤ Eα(0) = 0 or
Fα
(
a
(
ξ` + ∆ξ`?

)
, γ`
)
≤ Fα

(
â
(
ξ`,∆ξ`?

)
, γ`
)
< 0 for

α = 1, · · · , n + 1. Hence, ρ(A(ξ` + ∆ξ`?)) < γ`. Finally,
from the feasibility assumption of the BMI problem and the
equivalent problem in Lemma 1, γ` =

√
1− µ`? < 1.
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