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The primary goal of this paper is to develop an analytical
framework to systematically design dynamic output feedback
controllers that exponentially stabilize multi-domain peri-
odic orbits for hybrid dynamical models of robotic locomo-
tion. We present a class of parameterized dynamic output
feedback controllers such that (1) a multi-domain periodic
orbit is induced for the closed-loop system, and (2) the orbit
is invariant under the change of the controller parameters.
The properties of the Poincaré map are investigated to show
that the Jacobian linearization of the Poincaré map around
the fixed point takes a triangular form. This demonstrates
the nonlinear separation principle for hybrid periodic orbits.
We then employ an iterative algorithm based on a sequence
of optimization problems involving bilinear matrix inequal-
ities to tune the controller parameters. A set of sufficient
conditions for the convergence of the algorithm to stabiliz-
ing parameters is presented. Full state stability and stability
modulo yaw under dynamic output feedback control are ad-
dressed. The power of the analytical approach is ultimately
demonstrated through designing a nonlinear dynamic output
feedback controller for walking of a 3D humanoid robot with
18 state variables and 325 controller parameters.

Nomenclature
Λ, V , E Graph of the hybrid model, set of vertices, set of

edges
X ,U,D State space, admissible controls set, domain of ad-

missibility
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∆,S Discrete-time dynamics, guards of the hybrid system
x,u,y,x?,u? State variables, control inputs, measurable out-

puts, nominal state variables, nominal control
inputs

( f ,g,h) Vector fields for continuous-time dynamics
s Switching function
µ,T ? Next domain function, fundamental period
(·)v,(·)v→µ(v) Variables for the continuous-time domain v,

variables for the discrete-time transition v→
µ(v)

(·)−,(·)+ Variables right before and after the discrete tran-
sition

T Discrete set of switching times
x̂,ŷ Estimated state variables, estimated outputs
z,Γ Controlled functions, state feedback law
ξ,η,H,L Controller parameters, observer parameters, out-

put matrix, observer gain
Ξ Set of admissible controller parameters
n,m,ζ Number of state variables, controls, and outputs
pc, po Number of controller and observer parameters
e,ω,Ω Estimation error, continuous-time dynamics of the

error, discrete-time dynamics of the error
ϕ,T State solution, time-to-switching function
(·)a Augmented variables
(·)x,(·)e Variables corresponding to the state variables x,

variables corresponding to the estimation error e
(·)ol,(·)cl Open-loop and closed-loop variables
P,A Poincaré map, Jacobian linearization of the Poincaré

map



N,ρ Number of vertices and executed sequence of vertices
on the graph

Π,Φ,J,D Saltation matrix, trajectory sensitivity matrix, Ja-
cobian linearization of continuous-time dynam-
ics, Jacobian linearization of discrete-time dy-
namics

(·)? Periodic orbit variables
(·)11,(·)22 Variables for the controller synthesis, variables

for the observer synthesis
W ,γ,δ Decision variables for the BMI optimization
∆ξ,∆η Increment in controller and observer parameters
Â,A Approximate Jacobian matrix, convex hull of Jacobian

matrices

1 Introduction
This paper presents an analytical foundation to synthe-

size dynamic output feedback controllers that exponentially
stabilize periodic orbits for multi-domain hybrid dynamical
systems of robotic locomotion. We consider a general family
of parameterized dynamic output feedback controllers with
full-order observer portions. Based on the Poincaré sections
analysis, this paper extends the nonlinear separation princi-
ple to the stabilization problem of multi-domain hybrid pe-
riodic orbits. We use an approach based on an iterative se-
quence of optimization problems involving bilinear and lin-
ear matrix inequalities (BMIs and LMIs) to tune the state
feedback and observer parameters. The convergence of the
algorithm to a set of stabilizing parameters at a finite num-
ber of iterations is addressed. The framework can ameliorate
particular challenges in the design of dynamic output feed-
back controllers for increasingly sophisticated legged robots
with high dimensionality, underactuation, and hybrid nature.

1.1 Motivation
Knowing the system state is necessary to solve many

nonlinear control theory problems, e.g., feedback lineariza-
tion. In the case of legged locomotion, dynamic output
feedback control is desirable for several reasons. Although
legged robots are becoming more mechanically sophisticated
with higher degrees of freedom (DOFs), state-of-the-art non-
linear control approaches cannot deal with possible encoder
failures. In addition, the lack of velocity sensors is a ubiq-
uitous problem in the design of state feedback controllers
for legged machines. Numerical differentiation to extract
velocity components of legged robots is well known to be
an ill-conditioned problem in the sense that small perturba-
tions on encoder measurements may induce large changes in
the derivatives [1]. In particular, the velocity components
of legged robots may go under abrupt changes according to
the contacts of the feet with the walking surface. Conse-
quently, the position profiles over the infinitesimal periods
of rigid impacts is continuous, but not continuously differen-
tial. More specifically, the velocity components right before
and after the impact are not same. Finally, it is not clinically
feasible for human users of prosthetic legs to wear sensors
at their intact joints. This underlines the need to systemati-

cally develop dynamic output feedback controllers to stabi-
lize gaits for models of autonomous and rehabilitation legged
machines with high degrees of freedom, underactuation, and
a limited set of available measurements.

1.2 Related Work for Legged Locomotion
Hybrid systems exhibit characteristics of both

continuous- and discrete-time dynamical systems [2–5]
and have become a very powerful approach to study legged
locomotion and mechanical systems subject to impacts [6,7].
Models of legged robots are hybrid with continuous-time
domains representing the Lagrangian dynamics and
discrete-time transitions representing the changes in physi-
cal constraints (i.e., a nonstance leg contacting the walking
surface). Steady-state robotic locomotion corresponds to
periodic solutions of these hybrid models. State-of-the-art
nonlinear control approaches for robotic walking such as
the zero moment point (ZMP) criterion [8, 9], controlled
symmetries [10], hybrid reduction [11, 12], transverse lin-
earization [13], and hybrid zero dynamics (HZD) [14–16]
assume that all state variables are available for feedback
in real time. The ZMP criterion supposes full actuation
and generates time trajectories to be tracked for quasi-static
and flat-footed walking. Feedback control algorithms
that directly deal with the hybrid nature of legged loco-
motion have come out of controlled symmetries, hybrid
reduction, transverse linearization, and HZD. Controlled
symmetries and hybrid reduction typically assume full
actuation and make use of potential energy and Lagrangian
shaping, respectively. However, transverse linearization
and HZD-based controllers are the only controllers of the
above-mentioned methods that explicitly deal with general
cases of underactuation. HZD-based controllers have
been validated numerically and experimentally for (i) 2D
and 3D bipedal robots, including RABBIT [17, 18], MA-
BEL [19–21], ERNIE [22], AMBER [23], ATRIAS [24–27],
and DURUS [28, 29] prototypes, (ii) powered prosthetic
legs [30–33], (iii) exoskeletons [34], (iv) monopedal
robots [35, 36], and (v) quadruped robots [37]. In the HZD
approach, a set of output functions, referred to as virtual
constraints, is defined for the continuous-time dynamics
of the system and asymptotically driven to zero by partial
linearizing feedback controllers [38].

1.3 Related Work for Observer Design
State-of-the-art observer design approaches for nonlin-

ear dynamical systems pertain to the estimation of state vari-
ables around equilibrium points and not hybrid periodic or-
bits. The design of an observer for nonlinear dynamical sys-
tems is a significant challenge. This challenge has been ad-
dressed in the literature of dynamical systems through the de-
velopment of different techniques including Luenberger-like
observers [39–41], the use of LMIs [39, 40, 42] and BMIs
[43–45], and the use of high-gain observers [46–49]. The
separation principle has also been extended to the stabiliza-
tion problem of equilibrium points for nonlinear systems. In
particular, this has been done for Lipschitz nonlinear systems



[40], circle-criterion-based observer design approaches [41],
high-gain observers [46], feedback linearization-based ob-
server design techniques [50], variable design methodology
[51], globally Lipschitz systems [52], global stabilizable and
observable systems [53], uniformly completely observable
systems [54], modified circle-criterion-based observer de-
sign techniques [55], and systems with incremental quadratic
inequality [56]. Asymptotic observers that deal with periodic
orbits of underactuated bipedal robots have been designed
based on two different approaches. The first approach em-
ploys sliding mode observers to estimate the absolute orien-
tation of planar bipedal robots when the robot’s shape (i.e.,
internal joint) variables are measurable [57–59]. The sec-
ond approach makes use of high gain full- and reduced-order
observers to estimate generalized velocity components when
position variables are measurable [60]. However, these ap-
proaches cannot address the general problem of designing
observer-based output feedback controllers for a given set of
measurements.

1.4 Challenges
The most basic tool to investigate the stability of hybrid

periodic orbits is the method of Poincaré sections [4, 16, 26,
61, 62] that describes the evolution of the hybrid system on
a hyperplane transversal to the orbit by a discrete-time sys-
tem, referred to as the Poincaré return map. One drawback
of Poincaré sections analysis is the lack of a closed-form ex-
pression for the Poincaré map and its Jacobian linearization,
which complicates the design of continuous-time controllers
for hybrid models of legged robots. To tackle this problem,
we have recently presented an iterative algorithm based on
BMI optimizations to choose stabilizing state feedback laws
from a family of parameterized controllers [25, 33, 63]. This
algorithm was numerically and experimentally verified to de-
sign centralized [64, 65] as well as decentralized controllers
[33] for hybrid models of biped robots. However, there is
not any systematic algorithm to design observer-based out-
put feedback controllers for these increasingly sophisticated
machines. We would like to present an analytical founda-
tion to extend the BMI algorithm for the design of dynamic
output feedback controllers that exponentially stabilize given
hybrid periodic orbits.

1.5 Goals, Objectives, and Contributions
The primary goal of this paper is to present an analyti-

cal foundation to systematically design dynamic output feed-
back controllers that stabilize underactuated gaits for high-
dimensional and multi-domain hybrid models of legged lo-
comotion. This goal will be achieved through the following
objectives (contributions): 1) The paper presents a class of
parameterized, smooth, and nonlinear dynamic output feed-
back controllers for different domains of robotic locomotion;
2) The exponential stabilization problem under dynamic out-
put feedback control is addressed; 3) The properties of the
multi-domain Poincaré map are investigated to extend the
nonlinear separation principle for the stabilization problem
of hybrid periodic orbits; 4) The state feedback and observer

design problems are separately solved through the applica-
tion of an offline algorithm based on an iterative sequence
of BMI optimization problems; 5) Sufficient conditions are
presented to guarantee the convergence of the BMI algorithm
to a set of stabilizing controller and observer parameters at a
finite number of iterations; 6) The power of the analytical
framework is demonstrated through designing a set of HZD-
based controllers integrated with an observer for dynamic
walking of a 3D humanoid model with 18 state variables,
3 degrees of underactuation, 54 state feedback parameters,
and 271 observer parameters; 7) The yaw stability under dy-
namic output feedback control is addressed; and 8) The ex-
ponential stability and robustness of the underactuated gait
against external disturbances are finally illustrated through
numerical simulations. Some parts of the nonlinear separa-
tion principle together with the BMI algorithm for single-
domain hybrid systems were already presented in a confer-
ence paper [66] without dealing with the convergence anal-
ysis and proof, yaw stability, and robustness of the closed-
loop system. The current paper extends the Poincaré sections
analysis, dynamic output feedback control design problem,
and separation principle to multi-domain hybrid systems. It
further presents more mathematical details and adds suffi-
cient conditions to guarantee the convergence of the algo-
rithm. The yaw stability and robustness of the closed-loop
system against external disturbances are also investigated.
Unlike the sufficient conditions in [33] that require exten-
sive computational techniques based on higher-order deriva-
tives of the Poincaré map, the new conditions only depend
on the first- and second-order derivatives of the Poincaré
map and thereby can be effectively and numerically veri-
fied. Existing approaches that address the separation prin-
ciple for nonlinear dynamical systems are tailored to the sta-
bilization of equilibrium points, but not multi-domain hybrid
periodic orbits. In particular, the extension to periodic or-
bits is not trivial. The current paper extends the separation
principle to these hybrid periodic orbits via the Poincaré sec-
tions analysis. The other contribution of the paper is that the
proposed framework can systematically synthesize observer-
based output feedback controllers for underactuated legged
robots. In particular, unlike state-of-the-art computed torque
control or augmented PD control actions that work for fully-
actuated and flat-footed gaits, the proposed approach can ad-
dress underactuated and dynamic gaits. Furthermore, by de-
sign, the proposed controllers can be effectively synthesized
via available software packages, making the algorithms eas-
ily transferable to other robots.

2 Multi-Domain Hybrid Systems
We consider multi-domain hybrid models of legged lo-

comotion as follows:

H L ol = (Λ,X ,U,D,S ,∆,FGH) , (1)

in which Λ := (V ,E) denotes a directed cycle with the ver-
tices set V and the edges set E ⊆V ×V . The vertices stand



for the continuous-time dynamics of locomotion, referred
to as domains or phases. The evolution of the system dur-
ing each domain is expressed by ordinary differential equa-
tions (ODEs) stemming from the Lagrangian dynamics. The
edges represent the discrete-time transitions between two
continuous-time domains arising from the change in physical
constraints (e.g., a new contact point is added to the exiting
set of contact points). The evolution of the mechanical sys-
tem during discrete-time transitions is assumed to be instan-
taneous. In this paper, we suppose that µ : V → V describes
the index of the next domain function for the studied loco-
motion pattern. Using this notation, the set of edges can be
precisely described as E := {e = (v→ µ(v)) |v ∈ V }. The
set of state manifolds for (1) is represented by X := {Xv}v∈V
with Xv ⊆Rn for some positive integer n. The set of admissi-
ble controls is denoted by U := {Uv}v∈V with Uv ⊆ Rm for
some positive integer m < n. D := {Dv}v∈V represents the
set of domains of admissibility as a family of smooth mani-
folds Dv ⊆ Xv×Uv. FGH := {( fv,gv,hv)}v∈V then denotes
the set of control systems, in which ( fv,gv,hv) is a control
system on Dv. In particular, the evolution of the continuous-
time domain v ∈ V is expressed by the following equations:

ẋ = fv(x)+gv(x)u

y = hv(x), (2)

for (x,u) ∈Dv with fv, hv, and columns of the gv matrix be-
ing smooth (i.e., C ∞) on Xv. For later purposes, we remark
that y = hv(x) ∈ Yv ⊆ Rζ represents the measurement vector
for some positive integer ζ < n. The set of guards for the
hybrid system (1) is then given by S := {Se}e∈E on which
the discrete transitions e = (v→ µ(v)) occur when the state
trajectory intersects the guard Sv→µ(v) ⊂ Xv. Throughout this
paper, we shall assume that the guards can be expressed as
Sv→µ(v) := {x ∈ Xv |sv→µ(v)(x) = 0, σv→µ(v)(x) < 0}, where
sv→µ(v) : Xv→R is a C ∞ and switching function satisfying the
regularity condition ∂sv→µ(v)/∂x(x) 6= 0 for all x ∈ Sv→µ(v).
Furthermore, σv→µ(v) : Xv→R is a C ∞ and real-valued func-
tion to specify feasible switching points as σv→µ(v)(x) < 0.
For bipedal locomotion on flat ground, sv→µ(v) can represent
the height of the swing leg end with respect to the ground. In
particular, events happen when sv→µ(v)(x) = 0. In addition,
since the height of the swing leg end is zero at the begin-
ning and end of the step, one can exclude the case for the
beginning of the step by having the vertical velocity of the
swing leg end being downwards. This can be expressed as
σv→µ(v)(x)< 0. ∆ := {∆e}e∈E is finally a set of reset laws to
describe discrete-time transitions, where ∆v→µ(v) is a smooth
discrete-time system represented by x+ = ∆v→µ(v) (x−) for
v ∈ V . In our notation, x−(t) := limτ↗t x(τ) and x+(t) :=
limτ↘t x(τ) denote the left and right limits of the state tra-
jectory x(t), respectively. Section 6.1 will utilize this hy-
brid systems approach for modeling of an underactuated 3D
bipedal walker.

Remark 1. Models of legged locomotion can be illustrated
by directed graphs including directed cycles or acyclic

graphs. Directed cycles demonstrate steady-state and peri-
odic locomotion whereas acyclic graphs illustrate transient
and aperiodic locomotion (e.g, starting from point A and
going towards point B and stopping there). This paper ad-
dresses stability of periodic locomotion via dynamic output
feedback controllers and thereby, we model locomotion as
directed cycles.

Remark 2. To simplify the presentation of the main idea,
we assume that the state variables and control inputs over
different domains of the hybrid system have the same dimen-
sion, i.e., dimXv = n and dimUv = m for all v ∈V . It can be
shown that the results of the paper can be easily extended to
hybrid models for which each domain has its own dimensions
for the state variables and control inputs, i.e., dimXv = nv
and dimUv = mv for some positive integers nv and mv.

Solutions of the hybrid model (1) are constructed by
piecing together the flows of the continuous-time domains
such that the discrete-time transitions occur when the state
trajectories cross the switching manifolds. To make this con-
cept more precise, we parameterize the solutions by the con-
tinuous time t as well as the vertex number v and present the
following definition.

Definition 1 (Solutions). x : [0, t f )×V → X , t f ∈ R>0∪
{∞} is said to be a solution for (1) if there exists u : [0, t f )×
V →U such that

1. x(t,v) and u(t,v) are right continuous on [0, t f ) for every
v ∈ V ;

2. The left and right limits x−(t,v) := limτ↗t x(τ,v) and
x+(t,v) := limτ↘t x(τ,v) exist for every t ∈ (0, t f ) and
v ∈ V ; and

3. There exists a closed discrete subset T := {t0 < t1 <
t2 < · · ·} ⊂ [0, t f ), referred to as the switching times,
such that (a) for every (t,v) ∈ [0, t f ) \T ×V , x(t,v) is
differentiable with respect to t, ∂x

∂t (t,v) = fv(x(t,v)) +
gv(x(t,v))u(t,v), x−(t,v) /∈ Sv→µ(v), and (b) for t = t j ∈
T , x−(t j,v) ∈ Sv→µ(v), x+(t j,µ(v)) = ∆v→µ(v)(x−(t j,v)).

Throughout this paper, we shall assume that there is a
period-one orbit for the open-loop hybrid system (1) that is
transversal to the guard S . We make the following assump-
tions.

Assumption 1 (Periodic Solution). There exist (i) a
u? : [0,∞)×V → U and (ii) a corresponding nominal so-
lution x? : [0,∞)×V → X to (1) as well as (iii) a funda-
mental period T ? > 0 such that x?(t +T ?,v) = x?(t,v) and
u?(t +T ?,v) = u?(t,v) for every (t,v) ∈ R≥0×V . The cor-
responding periodic orbit is then defined as

O :=
{

x = x?(t,v) |(t,v) ∈ [0,T ?)×V
}
. (3)

For later purposes, the projection of O onto the state mani-
fold Xv is denoted by Ov.



Assumption 2 (Transvsersality). We suppose that Ov is
transversal to the switching manifold Sv→µ(v) for all v ∈ V .
In particular,

{x?v} := Ov∩Sv→µ(v) (4)

is a singleton and ṡv→µ(v)(xv) 6= 0 for all v ∈ V . We remark
that in our notation, Ov denotes the set closure of Ov.

The objective of this paper is to systematically design
nonlinear and time-invariant dynamic output feedback con-
trollers that exponentially stabilize the desired orbit O for the
closed-loop hybrid system. For this purpose, we make use
of the concept of the phasing variable. The phasing variable
represents the system’s (i.e., robot’s) progression through the
orbit (i.e., walking cycle), replacing the role of time in time-
invariant feedback controllers. The following assumption
makes this idea more precise.

Assumption 3 (Phasing Variable). There exists a real-
valued function τ : X ×V → R, referred to as the phasing
variable, which is (i) C ∞ with respect to x and (ii) strictly
increasing function of time along the orbit Ov for every v ∈
V .

For later purposes, one can define the desired evolution
of the state variables on the orbit O in terms of the phasing
variable τ rather than t as x?(τ,v).

Remark 3. We remark that Assumptions 1-3 are not restric-
tive for models of legged robots. In particular, transversality
states that the leg ends touch the ground with nonzero verti-
cal velocity. A typical phasing variable can be taken as the
angle of the virtual stance leg, where the virtual stance leg is
a virtual line connecting the stance leg end to the stance hip.
For normal forward and backward walking, the angle of the
virtual leg with respect to the horizontal line in the sagittal
plane is strictly monotonic [14].

3 Dynamic Output Feedback Controllers
In this section, we present a class of dynamic output

feedback controllers to stabilize the desired orbit O for the
closed-loop hybrid system. For every continuous-time do-
main v ∈ V , we consider a general form of parameterized
and smooth dynamic output feedback controllers with a full-
order observer portion as follows:

Σ
c
v :


u = Γv (x̂,ξv) , x ∈ Xv \Sv→µ(v)

˙̂x = fv (x̂)+gv (x̂) u+Lv (ηv)(y− ŷ)

ŷ = hv (x̂)

x̂+ = ∆v→µ(v)
(
x̂−
)
, x− ∈ Sv→µ(v).

(5)

Here, the superscript “c” and the subscript “v” stand for the
controller and domain v, respectively. The class of dynamic

controllers Σc
v is parameterized by 1) a set of adjustable con-

troller parameters ξv ∈ Ξv ⊂ Rpc as well as 2) a set of ad-
justable observer parameters ηv ∈ Rpo for some positive in-
tegers pc and po, where Ξv ⊂Rpc denotes the set of admissi-
ble controller parameters. The full-order observer dynamics
in (5) are taken from [60], in which the observer is a multi-
domain hybrid system consisting of copies of the continuous-
and discrete-time dynamics of the original model (1) as well
as measurement injections. The switching conditions for the
observer dynamics are demonstrated in terms of the switch-
ing instants of the original hybrid system. More specifically,
we suppose that the switching events of the multi-domain
system (1) are detectable. In practice, this assumption can be
achieved by employing the contact sensors attached to the leg
ends in the application of legged machines. The estimates of
the state vector x and measurement vector y are then denoted
by x̂ and ŷ := hv (x̂), respectively. The observer gains are
represented by Lv(ηv) ∈ Rn×ζ,v ∈ V that are parameterized
by the observer parameters ηv. Finally, Γv : Xv×Ξv → Uv
denotes the smooth state feedback laws parameterized by the
controller parameters ξv.

Assumption 4 (Invariant Periodic Orbit). The peri-
odic orbit O for the closed-loop hybrid system is invariant
under the choice of the controller parameters ξ, i.e.,

Γv (x?(t,v),ξv) = u? (t,v) , ∀(t,v,ξv) ∈ [0,T ?)×V ×Ξv.

Example 1 (I-O Linearizing Controllers). This exam-
ple presents a family of state feedback laws that satisfy the
invariance condition. For a given periodic orbit O, we con-
sider a set of controlled functions that is supposed to be reg-
ulated. Then, we design nonlinear controllers that asymp-
totically derive the controlled functions to zero. This can
be considered as an input-output linearization (I-O) prob-
lem. Our previous work [25] shows that the stability of the
periodic gaits in the I-O linearization approach depends on
the proper selection of the output functions. For this reason,
we consider a family of parameterized outputs that are zero
on the desired orbit. We will then look for the stabilizing
paramerters in the controller synthesis step. More precisely,
let us consider the following family of parameterized con-
trolled functions to be regulated

zv (x,ξv) := Hv (ξv)(x− x? (τ,v)) , (6)

where zv ∈ Rm represents the controlled functions with the
property dim(zv) = dim(u) = m. Hv (ξv) ∈ Rm×n that is pa-
rameterized by ξv denotes the controlled matrix to be deter-
mined. We remark that on the orbit O, zv is identically zero
according to the construction procedure. To design the con-
troller, suppose further that for every ξv ∈ Ξv, zv(x,ξv) has
uniform relative degree r with respect to u on an open neigh-
borhood of Ov, shown by N (Ov). The partial feedback lin-



earizing controller then takes the form

Γv (x,ξv) =−
(

LgvLr−1
fv zv

)−1
(

Lr
fvzv +

r−1

∑
j=0

k j L j
fvzv

)
, (7)

where the constants k j, 0 ≤ j ≤ r−1 are selected such that
the polynomial λr +kr−1 λr−1+ · · ·+k1 λ+k0 becomes Hur-
witz. In our notation, Lgv(·) and L fv(·) denote the Lie deriva-
tives with respect to gv and fv, respectively. We remark that
Lgv Lr−1

fv zv is an m×m square decoupling matrix that is as-
sumed to be invertible on the periodic orbit according to the
uniform relative degree r assumption. By employing (7), the
output dynamics become

dr

dtr zv + kr−1
dr−1

dtr−1 zv + · · ·+ k1
d
dt

zv + k0zv = 0 (8)

which results in limt→∞ zv(t) = 0. Reference [25, Example 2]
shows that the feedback law (7), confined to Ov, is invariant
under the choice of ξv which satisfies Assumption 4.

4 Stabilization Problem for Multi-Domain Orbits
This section addresses the exponential stabilization

problem of the periodic orbit O under dynamic output feed-
back control. For this goal, we make use of the Poincaré sec-
tion analysis and extend the nonlinear separation principle
to the stabilization of multi-domain hybrid periodic orbits.
The state feedback and observer portions will be separately
synthesized in Section 5 through the application of the BMI
algorithm.

4.1 Multi-Domain Closed-Loop Hybrid System
Let us define the estimation error and augmented state

vector as e := x− x̂ ∈ Rn and xa := col(x,e), respectively.

Remark 4. We remark that one can define an alternative
augmented vector as xa := col(x, x̂). However, our choice
of augmented state variables would explicitly show the sep-
aration principle in Theorem 1. In particular, the choice
xa := col(x,e) would result in an upper triangular structure
for the Jacobian linearization of the Poincaré map.

The evolution of the closed-loop system can then be de-
scribed by the following multi-domain hybrid system

H L cl = (Λ,Xa,Sa,∆a,Fa) , (9)

where Xa := {Xa,v := Xv × Rn}v∈V and Sa := {Sa,e :=
Se ×Rn}e∈E denote the set of augmented state manifolds
and set of augmented guards, respectively. Fa := { f cl

a,v :=
col( f cl

v ,ωv)} represents the set of augmented continuous-
time dynamics, i.e.,

ẋa =

[
ẋ
ė

]
=

[
f cl
v (x,e,ξv)

ωv (x,e,ξv,ηv)

]
=: f cl

a,v (xa,ξv,ηv) ,

where

f cl
v (x,e,ξv) := fv (x)+gv (x) Γv (x− e,ξv) (10)

ωv (x,e,ξv,ηv) := fv (x)− fv (x− e)

+gv (x) Γv (x− e,ξv)

−gv (x− e) Γv (x− e,ξv)

−Lv (ηv)(hv (x)−hv (x− e)) . (11)

Finally, ∆a := {∆a,e := col(∆e,Ωe)}e∈E denotes the set of
augmented discrete-time dynamics, i.e.,

x+a =

[
x+

e+

]
=

[
∆v→µ(v) (x−)

Ωv→µ(v) (x−,e−)

]
=: ∆a,v→µ(v)

(
x−a
)
,

in which Ωv→µ(v)(x,e) := ∆v→µ(v)(x)−∆v→µ(v)(x− e). For
later purposes, the unique solution of the smooth closed-loop
ODE ẋa = f cl

a,v(xa,ξv,ηv) with the initial condition xa(0) :=
col(x(0),e(0)) ∈ Xa,v is denoted by

ϕa,v(t,xa(0),ξv,ηv) :=
[

ϕx,v(t,xa(0),ξv,ηv)
ϕe,v(t,xa(0),ξv,ηv)

]
for all t ≥ 0 in the maximal interval of existence,
where the subscripts “x” and “e” represent the x- and e-
components of the state solution, respectively. The time-to-
switching function Tv : Xa,v ×Ξv ×Rpo → R>0 is then de-
fined by Tv (xa(0),ξv,ηv) := inf{t > 0 |ϕa,v (t,xa(0),ξv,ηv)∈
Sa,v→µ(v)} as the first time at which the state trajectory
ϕa (t,xa(0),ξv,ηv) intersects the guard Sa,v→µ(v).

4.2 Multi-Domain Poincaré Map
In order to exponentially stabilize the multi-domain pe-

riodic orbit, we make use of the Poincaré sections analysis
that describes the evolution of the closed-loop system on a
manifold transversal to the orbit, called the Poincaré section,
by a discrete-time system, referred to as the Poincaré return
map. For this purpose, the generalized Poincaré map for
the domain v ∈ V , denoted by Pa,v : Xa,µ−1(v)×Ξv×Rpo →
Sv→µ(v), is first defined as the flow of the augmented closed-
loop domain v ∈ V evaluated on Sv→µ(v), i.e.,

Pa,v (xa,ξv,ηv) :=

ϕa,v

(
Tv

(
∆a,µ−1(v)→v (xa),ξv,ηv

)
,∆a,µ−1(v)→v (xa),ξv,ηv

)
.

We next define the controller and observer parameters as
ξ := col{ξv}v∈V ∈ Ξ ⊂ RN pc and η := col{ηv}v∈V ∈ RN po ,
where N := |V | represents the cardinal number of V , and
Ξ := Ξv1 ×Ξv2 ×·· ·ΞvN . Suppose further that

ρ := {v1,µ(v1),µ2(v1), · · · ,µN−1(v1)}

represents the executed sequence of the vertices for the de-
sired locomotion pattern O, in which µk(v1) := µ(µk−1(v1))



for k = 1,2, · · · and µ0(v1) := v1. We remark that according
to the periodicity of the desired gait, µN(v1) = v1. The aug-
mented Poincaré return map is finally taken as the composi-
tion of the generalized maps Pa,v along the switching path ρ,
i.e.,

Pa (xa,ξ,η) := Pa,v1 ◦Pa,µN−1(v1)
◦ · · · ◦Pa,µ(v1). (12)

By taking the Poincaré section as Sa,v1 , the evolution of the
system can be described by the following system:

xa[k+1] = Pa (xa[k],ξ,η) , k = 0,1, · · · , (13)

where k represents the step number. For later purposes, we
decompose Pa into the x- and e-components as follows:

Pa(xa,ξ,η) :=
[

Px (x,e,ξ,η)
Pe (x,e,ξ,η)

]
. (14)

The following lemma investigates the properties of the aug-
mented closed-loop hybrid system.

Lemma 1 (Properties of the Poincaré Map). Assume
that Assumptions 1-4 are satisfied. Then, the augmented
orbit

Oa := O×{0}
:=
{
(x,e) = (x?(t,v),0) |(t,v) ∈ [0,T ?)×V

}
is an invariant periodic orbit for the closed-loop system (9),
for all (ξ,η), that is transversal to the guards Sa. In particu-
lar, by defining the singletons

{
x?a,v
}

:= col(x?v ,0) :=
(
Ov∩Sv→µ(v)

)
×{0},

the generalized maps Pa,v,v ∈V satisfy the following invari-
ance condition:

Pa,v

(
x?a,µ−1(v),ξv,ηv

)
= x?a,v, ∀(ξv,ηv) ∈ Ξv×Rpo .

We remark that in our notation, the superscript “?” denotes
the variables corresponding to the periodic orbit.

Proof. The proof is immediate according to the construction
procedure.

One immediate consequence of Lemma 1 is the exis-
tence of invariant fixed point x?a,v1

for Pa (·,ξ,η), i.e.,

Pa
(
x?a,v1

,ξ,η
)
= x?a,v1

, ∀(ξ,η) ∈ Ξ×RN po . (15)

Linearization of the discrete-time system (13) around the
fixed point x?a,v1

then results in

δxa[k+1] =
∂Pa

∂xa

(
x?a,v1

,ξ,η
)

δxa[k] (16)

where δxa[k] := xa[k]− x?a,v1
.

Problem 1 (Exponential Stability). The problem of ex-
ponential stabilization of the periodic orbit Oa consists of
finding the controller and observer parameters (ξ,η) such
that the Jacobian matrix ∂Pa

∂xa

(
x?a,v1

,ξ,η
)

becomes Hurwitz.
For later purposes, we define the compact notation for the
Jacobian matrix as A(ξ,η) := ∂Pa

∂xa
(x?a,v1

,ξ,η).

4.3 Multi-Domain Nonlinear Separation Principle
This section addresses the separation principle for expo-

nential stabilization of multi-domain hybrid periodic orbits.
The objective is to demonstrate that the problem of design-
ing a dynamic output feedback controller for hybrid periodic
orbits can be solved by designing an optimal observer for the
state variables, which feeds into an optimal nonlinear con-
troller for the hybrid system. This reduces the dynamic out-
put feedback control synthesis problem for the augmented
system into two separate parts including controller and ob-
server syntheses.

Theorem 1 (Nonlinear Separation). Given the multi-
domain hybrid system model (1) satisfying Assumptions 1-4,
the following statements are correct.

1. The Jacobian matrix A(ξ,η) has an upper triangular
structure as follows:

A(ξ,η) =
[

A11(ξ) A12(ξ,η)
0 A22(η)

]
, (17)

in which A11 := ∂Px
∂x (x

?
v1
,0,ξ,η), A12 := ∂Px

∂e (x
?
v1
,0,ξ,η),

and A22 := ∂Pe
∂e (x

?
v1
,0,ξ,η). Here, Px(·) and Pe(·) denote

the state and error decomposition of the Poincaré return
map as defined in (14).

2. The submatrices A11(ξ) and A22(η) are only functions
of the controller and observer parameters, respectively.

Proof. Let us define vk+1 = µ(vk) for k = 1,2, · · · ,N −
1. We further assume that the augmented switch-
ing manifolds Sa,v→µ(v) can be expressed as Sa,v→µ(v) :=
{xa ∈ Xa |sa,v→µ(v)(xa) = 0,σa,v→µ(v)(xa) < 0}, where
sa,v→µ(v)(xa) := sv→µ(v)(x) and σa,v→µ(v)(xa) := σv→µ(v)(x).
From (12) and the chain rule, the Jacobian linearization of
the augmented Poincaré map Pa at x?a,v1

can be given by

DPa
(
x?a,v1

,ξ,η
)
= DPa,v1

(
x?a,vN

,ξv1 ,ηv1

)
×DPa,vN

(
x?a,vN−1

,ξvN ,ηvN

)
×·· ·
×DPa,v2

(
x?a,v1

,ξv2 ,ηv2

)
. (18)



We remark that according to [62, Appendix D], the Jacobian
matrix DPa,v(x?a,µ−1(v),ξv,ηv) for every v ∈ V can be com-
puted as follows

DPa,v(x?a,µ−1(v),ξv,ηv) = Πa,v Φa,v (T ?
v ,ξv,ηv)Da,v, (19)

in which Πa,v represents the saltation matrix for the aug-
mented closed-loop system defined by

Πa,v := I−
f cl
a,v
(
x?a,v,ξv,ηv

)
ψ

ψ f cl
a,v
(
x?a,v,ξv,ηv

) ∈ R2n×2n, (20)

and ψ := ∂sa,v→µ(v)
∂xa

(
x?a,v
)

is the normal vector to the guard at
the singleton. In our notation, Da,v denotes the Jacobian lin-
earization of the augmented reset law ∆a,µ−1(v)→v at x?a,µ−1(v),
that is,

Da,v :=
∂∆a,µ−1(v)→v

∂xa

(
x?a,µ−1(v)

)
∈ R2n×2n. (21)

Furthermore, T ?
v denotes the time elapsed for the nominal

orbit Ov to intersect Sv→µ(v). Φa,v(t,ξv,ηv) also represents
the augmented trajectory sensitivity matrix along Ov, that is,

Φa,v (t,ξv,ηv)

:=
∂ϕa,v

∂xa(0)

(
t,∆a,µ−1(v)→v

(
x?a,µ−1(v)

)
,ξv,ηv

)
∈ R2n×2n

which satisfies the following linear time-varying matrix dif-
ferential equation, referred to as the variational equation
(VE),

Φ̇a,v (t,ξv,ηv) = Ja,v (t,ξv,ηv)Φa,v (t,ξv,ηv) , 0≤ t ≤ T ?
v

Φa,v (0,ξv,ηv) = I. (22)

In (22), Ja,v(t,ξv,ηv) is the Jacobian linearization of the aug-
mented vector field f cl

a,v(xa,ξv,ηv) along the nominal orbit
Ov, i.e.,

Ja,v(t,ξv,ηv) :=
∂ f cl

a,v

∂xa
(xa,ξv,ηv)

∣∣∣
x=x?(t,v),e=0

=

[
∂ f cl

v
∂x (x,e,ξv)

∂ f cl
v

∂e (x,e,ξv)
∂ωv
∂x (x,e,ξv,ηv)

∂ωv
∂e (x,e,ξv,ηv)

]∣∣∣∣∣
x=x?(t,v),e=0

for all (t,ξv,ηv) ∈ [0,T ?
v ] × Ξv × Rpo . From (11),

∂ωv
∂x (x,0,ξv,ηv) ≡ 0, and consequently, one can conclude

that the Jacobian matrix Ja,v(t,ξv,ηv) has an upper triangular
structure as follows:

Ja,v (t,ξv,ηv) =

[
J11,v (t,ξv) J12,v (t,ξv)

0 J22,v (t,ηv)

]
, (23)

in which

J11,v (t,ξv) :=
∂ f cl

v

∂x
(x,e,ξv)

∣∣∣
x=x?(t,v),e=0

=
∂

∂x
( fv(x)+gv(x)Γv (x,ξv))

∣∣∣
x=x?(t,v)

J12,v (t,ξv) :=
∂ f cl

v

∂e
(x,e,ξv)

∣∣∣
x=x?(t,v),e=0

=−gv(x)
∂Γv

∂x
(x,ξv)

∣∣∣
x=x?(t,v)

are solely functions of the controller parameters ξv. In addi-
tion, we claim that J22,v only depends on the observer param-
eters ηv. To make this clear, we remark that

J22,v(t,ηv) :=
∂ωv

∂e
(x,e,ξv,ηv)

∣∣∣
x=x?(t,v),e=0

=
∂ fv

∂x
(x)
∣∣∣
x=x?(t,v)

+
m

∑
j=1

gv, j(x)
(

∂Γv, j

∂x
(x,ξv)−

∂Γv, j

∂x
(x,ξv)

)∣∣∣
x=x?(t,v)

+
m

∑
j=1

∂gv, j

∂x
(x)Γv, j (x,ξv)

∣∣∣
x=x?(t,v)

−Lv(ηv)
∂hv

∂x
(x)
∣∣∣
x=x?(t,v)

=
∂ fv

∂x
(x)
∣∣∣
x=x?(t,v)

+
m

∑
j=1

∂gv, j

∂x
(x)
∣∣∣
x=x?(t,v)

u?j(t,v)

−Lv(ηv)
∂hv

∂x
(x)
∣∣∣
x=x?(t,v)

, (24)

where we have made use of the invariance condition in the
sixth line of (24) as Γv, j(x?(t,v),ξv) = u?j(t,v) for all ξv ∈ Ξv
and u?(t,v) is the nominal control input defined in Assump-
tion 1. According to the triangular form of the Jacobian ma-
trix Ja,v(t,ξv,ηv) in (23) and the structure of the VE in (22),
one can conclude that the augmented trajectory sensitivity
matrix can be decomposed as follows:

Φa,v (t,ξv,ηv) :=
[

Φ11,v(t,ξv) Φ12,v(t,ξv,ηv)
0 Φ22,v(t,ηv)

]
. (25)

In particular,

d
dt

[
Φ11,v Φ12,v

0 Φ22,v

]
=

[
J11,v J12,v

0 J22,v

][
Φ11,v Φ12,v

0 Φ22,v

]
(26)

and hence, the submatrices Φ11,v ∈ Rn×n, Φ12,v ∈ Rn×n, and
Φ22,v ∈ Rn×n satisfy the following matrix differential equa-



tions

Φ̇11,v(t,ξv) = J11,v(t,ξv)Φ11,v(t,ξv) (27)

Φ̇22,v(t,ηv) = J22,v(t,ηv)Φ22,v(t,ηv) (28)

Φ̇12,v(t,ξv,ηv) = J11,v(t,ξv)Φ12,v(t,ξv,ηv)

+ J12,v(t,ξv)Φ22,v(t,ηv) (29)

with the initial conditions Φ11(0,ξv) = I, Φ22(0,ηv) = I, and
Φ12(0,ξv,ηv) = 0. From the construction procedure, we can
show that the saltation matrix Πa,v and the reset map Jaco-
bian Da,v take block diagonal forms as follows:

Πa,v = block diag{Π11,v, I}
Da,v = block diag{D11,v,D11,v} ,

(30)

in which

Π11,v := I−
f cl
v (x?v ,0,ξv)

∂sv→µ(v)
∂x (x?v)

∂sv→µ(v)
∂x (x?v) f cl

v (x?v ,0,ξv)

D11,v :=
∂∆µ−1(v)→v

∂x

(
x?µ−1(v)→v

)
.

Furthermore from the invariance condition in Assumption 4,
Π11,v and D11,v are independent of the choice of the con-
troller and observer parameters (ξv,ηv). Substituting (30)
and (25) into (19) then results in

Av (ξv,ηv) := DPa,v(x?a,µ−1(v),ξv,ηv)

=

[
A11,v(ξv) A12,v(ξv,ηv)

0 A22,v(ηv)

]
, (31)

for which

A11,v(ξv) = Π11,v Φ11,v (T ?
v ,ξv)D11,v (32)

A12,v(ξv,ηv) = Π11,v Φ12,v (T ?
v ,ξv,ηv)D11,v (33)

A22,v(ηv) = Φ22,v (T ?
v ,ηv)D11,v. (34)

Equation (31) together with (i) the chain rule in (18) and (ii)
the fact that the product of upper triangular matrices is an
upper triangular matrix completes the proof.

Remark 5. Although the proof of the separation principle
for multi-domain periodic orbits is established based on the
Poincaré map Jacobian linearization, it addresses the stabi-
lization of these orbits for nonlinear hybrid dynamical sys-
tems. In particular, the dynamic output feedback control syn-
thesis for the nonlinear hybrid systems can be reduced into
the synthesis problems of the nonlinear state feedback laws
and observers.

Remark 6. Theorem 1 illustrates the nonlinear separation
principle for multi-domain hybrid periodic orbits. In par-
ticular, eig(A(ξ,η)) = eig(A11(ξ))∪eig(A22(η)). Therefore,
Oa is exponentially stable for the augmented hybrid system,
if and only if, |eig(A11(ξ))|< 1 and |eig(A22(η))|< 1.

5 BMI Algorithm for the Stabilization Problem

The objective of this section is to solve the state feed-
back and observer design problems through the application
of an iterative algorithm based on a sequence of optimization
problems involving BMIs. We also address the finite-time
convergence of the algorithm to a set of stabilizing solutions.

5.1 Iterative BMI Algorithm

In order to solve for the controller and observer parame-
ters satisfying Problem 1, we separately employ an iterative
algorithm based on BMI optimizations for the state feed-
back and observer design problems. The BMI algorithm
was developed in [25, 33] to systematically design central-
ized as well as decentralized nonlinear control algorithms
for bipedal locomotion. Here, we employ the algorithm to
design nonlinear dynamic output feedback controllers for
multi-domain hybrid models of legged locomotion. The al-
gorithm generates a sequence of controller and observer pa-
rameters, shown by {ξ`} and {η`}, that would eventually
solve Problem 1. In our notation, ` ∈ {0,1,2, · · ·} represents
the iteration number. In what follows, we briefly present the
steps of the iterative algorithm adapted for the observer and
state feedback synthesis. Section 5.2 will present sufficient
conditions for the convergence of the algorithm to a stabiliz-
ing set of parameters at a finite number of iterations.

Step 1 (Sensitivity Analysis): During iteration ` of the algo-
rithm, the Jacobian matrix A22(η

`+∆η) (resp., A11(ξ
`+∆ξ))

is replaced by its first-order approximation, based on the Tay-
lor series expansion, which is affine in ∆η (resp., ∆ξ). Here,
∆η (resp., ∆ξ) is a sufficiently small increment in the ob-
server (resp., controller) parameters and the approximate Ja-
cobian matrix is shown by Â22(η

`,∆η) (resp., Â11(ξ
`,∆ξ)).

In particular,

A22

(
η
`+∆η

)
≈ A22

(
η
`
)
+ Ā22

(
η
`
)
(I⊗∆η)

=:Â22

(
η
`,∆η

)
(35)

A11

(
ξ
`+∆ξ

)
≈ A11

(
ξ
`
)
+ Ā11

(
ξ
`
)
(I⊗∆ξ)

=:Â11

(
ξ
`,∆ξ

)
, (36)

where “⊗” represents the Kronecker product. Ā11 and Ā22
are called sensitivity matrices that can be computed effec-
tively using the numerical approach of [25, Theorem 2].

Step 2 (BMI Optimization): In this step, we look for the
increment ∆η (resp. ∆ξ) such that the approximate Jaco-
bian matrix Â22(η

`,∆η) (resp. Â11(ξ
`,∆ξ)) becomes Hur-

witz. For this purpose, we set up a BMI condition in terms
of ∆η (resp. ∆ξ) which can be solved with available software
packages such as PENBMI [67]. In particular, we solve the



following BMI problem for the observer synthesis:

min
(∆η,W2,γ2,δ)

−wγ2 +δ (37)

s.t.
[
W2 Â22(η

`,∆η)W2
? (1− γ2)W2

]
> 0 (38)[

I ∆η

? δ

]
> 0 (39)

γ2 > 0. (40)

Inequality (38) represents a BMI in terms of ∆η and W2 to
guarantee that Â22 is a Hurwitz matrix. In particular from
the Schur complement lemma, V (δx) = δx>W−1

2 δx is a Lya-
punov candidate function for δx[k+ 1] = Â22 δx[k] such that
V [k+1]−V [k]<−γ2 V [k], in which 0 < γ2 < 1 is a scalar to
tune the convergence rate. Here, “?” denotes the transpose
of the block (1,2). From the Schur complement lemma and
LMI (39), δ is an upper bound on the 2-norm of ∆η, i.e.,
δ > ‖∆η‖2

2. In addition, w > 0 is a weighting factor as a
trade-off between improving the convergence rate (i.e., min-
imizing (1−γ2)) and minimizing ‖∆η‖2

2 to have a good first-
order approximation. The motivation for the optimization
problem (37)-(40) is to look for the increment in the observer
parameters ∆η such that the approximated Jacobian matrix
Â22(η

`,∆η) has all eigenvalues inside the unit circle to en-
sure exponential stability. In addition, it tries to minimize the
2-norm of the increment ∆η such that Â22(η

`,∆η) becomes a
good approximation for the real Jacobian matrix. We remark
that by minimizing (1− γ2), the eigenvalues of the approx-
imate Jacobian matrix get closer to the origin. In addition,
by minimizing δ, the 2-norm of ∆η becomes smaller. For
higher values of the weighting factor w in the cost function
(37), we are interested more in convergence while for lower
values of w, we would like to get smaller increments ∆η. An
analogous BMI optimization problem can be solved for the
state feedback synthesis as follows:

min
(∆ξ,W1,γ1,δ)

−wγ1 +δ (41)

s.t.
[
W1 Â11(ξ

`,∆ξ)W1
? (1− γ1)W1

]
> 0 (42)[

I ∆ξ

? δ

]
> 0 (43)

γ1 > 0. (44)

Step 3 (Iteration): Let us assume that (∆η`?,W `?
2 ,γ`?2 ,δ`?)

(resp., (∆ξ`?,W `?
1 ,γ`?1 ,δ`?)) represents a local optimal solu-

tion (not necessarily the global solution) for the BMI op-
timization problem (37)-(40) (resp., (41)-(44)). The local
minimum solution is then used to update the observer (resp.,
controller) parameters as η`+1 = η` + ∆η`? (resp., ξ`+1 =
ξ`+∆ξ`?)) for the next iteration. If the conditions of Remark
6 are satisfied at η = η`+1 (resp., ξ = ξ`+1), the algorithm is
successful and stops. Otherwise, it continues by coming back
to Step 1 (sensitivity analysis around η`+1 (resp., ξ`+1)). If

the BMI optimization problem in Step 2 is not feasible, the
algorithm is not successful and stops.

5.2 Finite-Time Convergence of the BMI Algorithm
Our previous work in [33] presented sufficient condi-

tions to guarantee the convergence of the iterative BMI al-
gorithm to a stabilizing feedback solution. These condi-
tions were derived based on higher-order derivatives of the
Poincaré map that require extensive computational burden.
In this section, we present alternative sufficient conditions
for the convergence of the algorithm that can be effectively
verified without using higher-order derivatives. We assume
a convex-hull of the approximate Jacobian matrices during
the previous iterations and if the current real Jacobian matrix
takes values in this convex-hull, the algorithm successfully
converges.

Theorem 2 (Convergence of the Algorithm). Assume
that Assumptions 1-4 are satisfied. Suppose further that
the BMI optimization problem (37)-(40) for the observer
synthesis (resp., (41)-(44) for the state feedback synthesis)
is feasible during M iterations for some positive integer M.
Let {η`}M

`=0 (resp., {ξ`}M
`=0) denote the generated sequence

of observer (resp., controller) parameters from the initial
guess η0 (resp., ξ0), i.e., η` = η0 + ∑

`−1
j=0 ∆η j?, (resp.,

ξ` = ξ0 + ∑
`−1
j=0 ∆ξ j?) for 1 ≤ ` ≤ M. Define the compact

notation Â`
22 := Â22(η

`,∆η`?) (resp., Â`
11 := Â11(ξ

`,∆ξ`?))
for 0≤ `≤M−1 and consider the following convex-hull of
approximated Jacobian matrices:

Aii := Conv
{

Â`
ii

}M−1

`=0

:=

{
M−1

∑
`=0

α` Â`
ii

∣∣∣α` ≥ 0,0≤ `≤M−1,
M−1

∑
`=0

α` = 1

}

for i ∈ {1,2}. If A22(η
M) ∈ A22 (resp., A11(ξ

M) ∈ A11), then
η = ηM (resp., ξ = ξM) forms a set of stabilizing observer
(resp., controller) parameters.

Proof. We present the proof for the finite-time convergence
of the BMI algorithm to synthesize the observer. An analo-
gous reasoning can be presented for the state feedback syn-
thesis. From the feasibility of the BMI optimization problem
(37)-(40), V `(δx) = δx>

(
W `?

2
)−1

δx is a Lyapunov candi-
date for the discrete-time system δx[k+1] = Â`

22 δx[k]. Since
A22
(
ηM
)
∈ A22, there are constants α` ≥ 0 for 0 ≤ ` ≤

M−1 with the property ∑
M−1
`=0 α` = 1 such that A22

(
ηM
)
=

∑
M−1
`=0 α` Â`

22. From [68, Theorem 2], one can then conclude
that

V (δx) :=
M−1

∑
`=0

α`V ` (δx) = δx>
(

M−1

∑
`=0

α`

(
W `?

2

)−1
)

δx

is Lyapunov candidate for δx[k + 1] = A22(η
M)δx[k], i.e.,

V [k + 1]−V [k] < 0. In particular, the observer parameters



during the iteration M, that is ηM , can stabilize the real Ja-
cobian matrix A22(η

M) in the sense that |eig(A22(η
M))|< 1.

More specifically, the iterative algorithm converges to stabi-
lizing observer parameters which completes the proof.

Remark 7. We remark that the conditions of Theorem 2 are
not restrictive. In particular, BMIs are nonconvex and NP-
hard problems [69], and hence convergence to global solu-
tions is a real challenge. Theorem 2 only requires a feasible
solution of the BMI optimization for each iteration to satisfy
the BMI and LMI conditions. In fact, it does not need any
global solution. More specifically, if during any iteration
the real Jacobian matrix belongs to the convex hull of the
approximate Jacobian matrices from the previous iterations,
the algorithm successfully stops.

6 Application to 3D Bipedal Walking
The objective of this section is to numerically validate

the proposed analytical framework through designing a non-
linear dynamic output feedback controller for underactuated
walking of a 3D bipedal robot.

6.1 Underactuated 3D Robot
We consider an underactuated bipedal robot consisting

of a rigid tree structure with a torso and two identical legs
terminating at point feet. Each leg of the robot includes 3
DOFs: a 2 DOF ball hip joint with roll and pitch angles
plus a 1 DOF knee joint (see Fig. 1). During the single
support phase, the mechanical system has 9 DOFs with 6
actuators. To specify a minimal set of configuration vari-
ables, we rigidly attach a frame to the torso link with the
z-axis being upward and the y-axis being in the direction
of walking. The orientation of this frame with respect to
an inertial world frame is described by the rotation matrix
R := Rz (qz)Ry (qy)Rx (qx), in which Rz, Ry, and Rx denote
the basic rotations about the z-, y-, and x-axis, respectively.
Furthermore, qz, qy, and qx represent the yaw, roll, and pitch
angles of the torso frame. The configuration vector of the
robot is then defined by

q := col(qz,qy,qx,qRK,qRHS,qRHF,qLK,qLHS,qLHF) ∈ Q ,
(45)

where qRK and qLK denote the right and left knee angles,
qRHS and qLHS represent the right and left hip angles in the
sagittal plane, and qRHF and qLHF denote the right and left
hip angles in the frontal plane. The configuration space Q is
also assumed to be an open and connected subset of the torus
T9 := S1×·· ·×S1 ⊂R9, where S1 := [−π,π) represents the
unit circle. The state vector and state manifold are taken as
x := col(q, q̇) and X := TQ , respectively. The control input
vector u finally consists of the corresponding torques applied
at the internal joints, i.e.,

u := col(uRK,uRHS,uRHF,uLK,uLHS,uLHF) ∈U ⊂R6. (46)

The hybrid model of walking includes two continuous-
time domains to represent the right and left stance phases

Fig. 1. Structure of the nine-DOFs autonomous bipedal robot. The
model consists of a tree structure with torso and two identical legs
with three unactuated Euler angles and six actuated revolute joints.

and two discrete-time transitions to represent the right-to-
left and left-to-right impact models. In particular, for the
open-loop hybrid model of walking (1), we have V := {R,L}
and E := {R → L,L → R}, in which the subscripts “R”,
“L”, “R → L”, “L → R” denote the right stance phase,
left stance phase, right-to-left impact, and left-to-right im-
pact, respectively. The continuous-time domains arise from
the Lagrangian and underactuated dynamics and are given
by the input-affine state equations ẋ = fR(x) + gR(x)u and
ẋ = fL(x) + gL(x)u, whereas the discrete-time transitions
x+ = ∆R→L(x−) and x+ = ∆L→R(x−) assume rigid and in-
stantaneous contact models [7]. The right-to-left and left-to-
right guards are also represented by the manifolds SR→L and
SL→R, respectively, on which the swing leg end contacts the
walking surface. The domain of admissibility D ⊂ X ×U
is chosen as the set of all points (x,u) for which the legs are
above the walking surface (i.e., unilateral constraints) and
ground reaction forces are feasible (i.e., they belong to the
friction cone). The kinematic and dynamic parameter values
for the links are taken according to those reported in [70]
from a human cadaver study. Using the motion planning
algorithm of [24], a periodic gait O is then designed for
walking at 0.6 (m/s) with the cost of mechanical transport
CMT = 0.07.

6.2 Virtual Constraint Controllers
Virtual constraints are defined as kinematic constraints

for the continuous-time domains of hybrid models of walk-
ing to coordinate the links of robots within a stride [17,18,21,
22,24,30–32,34,35,71–73]. In this paper, we consider a pa-
rameterized family of virtual constraints for the continuous-
time domain v ∈ V as follows:

zv (x,ξv) := Hv (ξv)(q−q? (τ,v)) , (47)

where dim(zv) = dim(u) = 6, Hv(ξv) ∈ R6×9 denotes the
controlled matrix to be determined and parameterized by the
controller parameters ξv, and q?(τ,v) represents the desired
evolution of the configuration variables on the orbit Ov in
terms of the gait phasing variable τ. The phasing variable τ

is taken as the angle of the virtual leg with respect to the hor-
izontal line, where the virtual leg is defined as the virtual line



connecting the stance foot to the stance hip joint in the sagit-
tal plane. For later purposes, we remark that Hv(ξv)q and
Hv(ξv)q?(τ,v) denote a set of holonomic quantities, referred
to as the controlled variables, and the desired evolution of the
controlled variables on the gait, respectively. The state feed-
back is then chosen as the partial feedback linearizing con-
troller of Example 1 for which uniform relative degree r is
assumed to be 2. We assume that ξv is formed by the columns
of the controlled matrix Hv, that is, ξv = vec(Hv)∈Ξv⊂R54,
where “vec” denotes the matrix vectorization operator.

For bipedal robots with more than one degree of under-
actuation, it has been shown that the stability of walking gaits
depends on the choice of the virtual constraints (i.e., con-
trolled variables) [25,74]. To exponentially stabilize the gait,
we employ the iterative BMI algorithm to look for stabiliz-
ing controller parameters ξ := col(ξR,ξL). Since the orbit is
assumed to be symmetric, one can apply the symmetric re-
lation between ξR and ξL to reduce the number of decision
variables to be determined (see [25, Theorem 4]). This pro-
cedure is followed in this paper.

6.3 PENBMI Solver for Controller Synthesis
This section addressees the synthesis and tuning of con-

troller parameters. Here the relative degree is r = 2 and the
constant gains k j for j = 0,1 are chosen such that the set-
tling time for the output dynamics (8) becomes 20 (ms). We
then look for the output matrices Hv(ξv) via the iterative BMI
algorithm. To solve the BMI optimization problem at each it-
eration of the algorithm, we make use of the PENBMI solver
from TOMLAB [75] integrated with the MATLAB environ-
ment through YALMIP [76]. BMIs are nonconvex and NP-
hard problems [69]. However, PENBMI is a general-purpose
solver for BMIs, which guarantees the convergence to a lo-
cal optimal point satisfying the Karush-Kuhn-Tucker opti-
mality conditions. The BMI algorithm for the state feedback
synthesis starts with an initial set of controller parameters
ξ0 for which H(ξ0)q represents the actuated shape variables.
For this set of controller parameters, the dominant eigenval-
ues and spectral radius of the 17× 17 Jacobian matrix A11
become {−4.0307,−1.000,0.7915,−0.262} and 4.0307, re-
spectively, and hence, the gait is unstable. After four it-
erations, the algorithm successfully converges to a stabi-
lizing set of controller parameters for which the dominant
eigenvalues and spectral radius of A11 become {0.1624±
0.7446i,0.5309,−0.4176} and 0.7621, respectively.

6.4 Observer Synthesis
In this subsection, a future application in pros-

thetic/exoskeleton control is studied. In particular, we would
like to investigate if one can asymptotically estimate all state
variables for mechanical models of human locomotion (see
Fig. 1) while there is a set of wearable inertial measure-
ment units (IMUs) that measure absolute position variables.
More specifically, we suppose that there are five IMUs con-
nected to the torso, right and left femurs, and right and
left tibias of the system depicted in Fig. 1. The measure-
ments then include the five roll, pitch, and yaw signals, i.e.,

y = hv(x) ∈R15,v ∈V . Let us express the position measure-
ments from the network of IMUs by q̄ := hv(x) ∈ R15. We
can show that the minimal set of configuration variables is
related to q̄ as follows:

q = F (q̄) , (48)

where F : T15→ T9 is a nonlinear function arising from in-
verse kinematics. We remark that in general there is not a
closed-form expression for F which complicates the use of
optimal state feedback laws in terms of (q, q̇). To overcome
this difficulty, we instead design a full-order observer to esti-
mate (q, q̇) using q̄ measurements. Unlike the high-gain ob-
server of [60], the proposed optimized observer can asymp-
totically solve for (48), and accordingly, there is no need to
design an alternative state feedback in terms of the nonmini-
mal coordinates (q̄, ˙̄q) for the stabilization of walking gaits.

Remark 8. We remark that IMUs can provide both abso-
lute orientations and angular velocities. Let us denote the
absolute position and angular velocities generated by IMUs
by q̄ and ω̄, respectively. These variables can be related to
the original state variables through the following nonlinear
equations

q = F(q̄) (49)
ω̄ = Jω(q) q̇,

where Jω(q) is an associated Jacobian matrix. Our problem
consists of estimating the state variables x = col(q, q̇) based
on IMU measurements as the state feedback controllers are
expressed in terms of the state variables. Since in general,
there is not any closed-from expression for F(·) from the in-
verse kinematics, one cannot easily solve for q and q̇ for high
degree of freedom 3D models of legged robots. However, the
proposed observer can asymptotically estimate q and q̇ with-
out any need for inverse kinematics and only by measuring
q̄. In the current paper, we do not use the angular velocity
signals ω̄ for the observer synthesis to illustrate the power
of the proposed approach. But one can easily utilize these
additional inputs for the observer synthesis.

The observer gains are assumed to take the following
form:

Lv :=
1
ε

L0,v ∈ R18×15, (50)

in which 0 < ε < 1 is a sufficiently small number. The
columns of L0,v together with ε form the observer param-
eters, that is, ηv := col(vec(L0,v),ε) ∈ R271. We remark
that the inclusion of ε in decision variables would let the
BMI algorithm search for high-gain observers if required.
Here, we follow an approach similar to the symmetry anal-
ysis in [25, Theorem 4] to reduce the number of parameters
to be determined. We start the BMI algorithm with an initial
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Fig. 2. Phase portraits for the torso Euler angles (yaw, roll, and
pitch) during 100 consecutive steps together with the velocity esti-
mation error during 5 consecutive steps of 3D walking with the BMI-
optimized dynamic output feedback controller.

set of observer parameters for which the 18× 18 Jacobian
matrix A22 has the dominant eigenvalues and spectral radius
of {26.8856,0.1129,−0.0095,0.0079} and 26.8856, respec-
tively. The algorithm successfully converges to a set of stabi-
lizing observer parameters after 19 iterations, for which the
spectral radius of A22 becomes 0.0053.

The estimation error in the velocity components versus
time and phase portraits for the BMI-optimized closed-loop
system are illustrated in Fig. 2. Here, the simulation starts off
of the orbit at the beginning of the right stance phase with an
estimation error of 90% in the velocity components. Asymp-
totic convergence to the periodic orbit even in the yaw com-
ponent (i.e., full-state stability) is clear. The stabilizing con-
troller and observer parameters computed based on the BMI
algorithm together with the animation of this simulation can
be found at [77]. To confirm the robustness of the walking
gait against external disturbance forces, Fig. 3 represents the
phase portraits and velocity estimation error for the closed-
loop system. Here the simulation starts at the initial condi-
tion of Fig. 2. During the fifth step, an external horizontal
force with a magnitude of 70 (N) is applied to the robot’s
center of mass in the frontal plane for 20% of the step.

6.5 Exponential Stability Modulo Yaw
For bipedal robots with yaw motion, there are two kinds

of stability during walking on a flat surface: full-state sta-
bility and stability modulo yaw. Full-state stability refers to
stability in X as shown in Fig. 2. If the closed-loop hybrid
system is equivariant under rotations about the z-axis of the
world frame, then the Jacobian of the Poincaré map always
has an eigenvalue at 1.0, and hence the closed-loop system
cannot have an exponentially stable periodic orbit. Stability
modulo yaw refers to stability in X \S1 which is simpler than
full-state stability. In particular, one may be interested in sta-
bilizing the locomotion pattern but not the direction of loco-
motion. More specifically, stability modulo yaw relaxes the
stability in the yaw component. This section aims to show
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Fig. 3. Phase portraits for the torso Euler angles (yaw, roll, and
pitch) and velocity estimation error for the BMI-optimized closed-loop
system in the presence of an external disturbance during the fifth
step. Convergence to the periodic orbit and disturbance rejection are
clear.

how the proposed approach can be reduced to stability mod-
ulo yaw. References [78–80] have studied stability modulo
yaw for hybrid models of walking with state feedback con-
trollers. The objective of this section is to extend stability
modulo yaw to hybrid models with dynamic output feedback
controllers. In particular, we present the following result.

Proposition 1 (Stability Modulo Yaw). Consider the
multi-domain hybrid model of 3D robotic locomotion with
the dynamic output feedback control (5). Assume that the
configuration vector q is expressed as q := col(qz,qy,qx,qb),
where qz, qy, and qx represent the yaw, roll, and pitch angles
of the robot with respect to the world frame, respectively. In
addition, let qb denote a set of body configuration variables
describing the shape of the robot. Suppose further that the
periodic orbit O corresponds to a walking gait on a flat
surface. Then, the following statements are correct.

1. If the measurement vectors hv(x),v ∈ V do not depend
on the yaw position (i.e., ∂hv

∂qz
(x) ≡ 0), then the first col-

umn of the A22(η) matrix is col(1,0, · · · ,0). In particu-
lar, there is an eigenvalue “1” corresponding to the yaw
position.

2. If the state feedback laws Γv(x,ξv),v∈V do not depend
on the yaw position (i.e., ∂Γv

∂qz
(x,ξv) ≡ 0), then the first

column of the A11(η) matrix is col(1,0, · · · ,0). In par-
ticular, there is an eigenvalue “1” corresponding to the
yaw position.

Proof. We prove Part (1) which is about the observer por-
tion. Part (2) has been addressed in [10, 78] for state feed-
back controllers. From the equivariance property of [78],
the vector field fv and the columns of the gv matrix do
not depend on the yaw position, that is, ∂ fv

∂qz
(x) = 0 and

∂gv, j
∂qz

(x) = 0 for v ∈ V ,1 ≤ j ≤ m. This property also states
that ∂∆v→µ(v)/∂qz(x) = col(1,0, · · · ,0). If hv is not a func-
tion of qz, then the first column of the J22,v(t,η) matrix in
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Fig. 4. Phase portraits for the torso Euler angles (yaw and roll) dur-
ing 50 consecutive steps of 3D walking with the BMI-optimized output
feedback controller. For the top plots, the measurement vector hv(x)
includes the yaw angles from the IMUs, whereas for the bottom plots
the yaw angle portions of hv(x) are assumed to be unavailable. We
observer full-state stability and stability modulo yaw.

(24) becomes zero. From this latter fact and the VE (28),
one can conclude that the first column of the state trajec-
tory matrix Φ22,v(t,η) is col(1,0, · · · ,0). Finally, substitut-
ing Φ22,v (T ?

v ,η) and D11,v = ∂∆µ−1(v)→v/∂x(x?µ−1(v)) in (34)
completes the proof.

Remark 9 (BMIs for Stability Modulo Yaw). If the as-
sumptions of Proposition 1 are satisfied, one can apply
the BMI algorithm to reduced-order matrices Ǎ22(η) and
Ǎ11(ξ)) to guarantee exponential stability modulo yaw ,
where Ǎ22(η) and Ǎ11(ξ) represent the submatrices obtained
by removing the first row and column of A22(η) and A11(η),
respectively.

To confirm the analytical result of Proposition 1, we as-
sume that the yaw angle measurements from the network of
IMUs are not available for the BMI-optimized dynamic out-
put feedback controller. In particular, one can assume that
there is a considerable amount of drift in the yaw angle mea-
surements. In this case, from Part (1) of Proposition 1, we
can still have stability modulo yaw. However, we are not
able to asymptotically estimate qz (i.e., the torso yaw angle).
Figures 4 and 5 compare the phase portraits and estimation
errors for full-state stability and stability modulo yaw. Here,
the simulation starts off of the desired gait O. We observe
that the steady-state motion in the phase plane qz− q̇z for sta-
bility modulo yaw is the shifted version of that for full-state
stability. Specifically, the robot walks along a new straight
line rather than the y-axis of the world frame. Furthermore,
limt→∞ e1(t) becomes a nonzero and constant value, where
e1 represents the estimation error in qz. Figure 6 finally de-
picts the simulation snapshots of the walking of the under-
actuated robot using the optimized dynamic output feedback
controller for full-state stability and stability modulo yaw.
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Fig. 5. Position and velocity estimation errors over 5 consecutive
steps of 3D walking with the BMI-optimized output feedback con-
troller. For the top plots, the measurement vector hv(x) includes
the yaw angles from the IMUs, whereas for the bottom plots the yaw
angle portions of hv(x) are assumed to be unavailable. We ob-
server that the steady-state estimation error in the torso yaw angle
is a nonzero constant, i.e., 0 6= limt→∞ e1(t)< ∞.

Fig. 6. Simulation snapshots from the walking of the underactuated
robot using the BMI-optimized dynamic output feedback controller for
full-state stability (top figure) and stability modulo yaw (bottom fig-
ure). The figures illustrate the trajectory traced by the robot’s center
of mass. The robot’s torso link has not been shown in the figures.

6.6 Discussion
State-of-the-art nonlinear control design methods for

legged robots mainly assume that all state variables are avail-
able for feedback in real time. Unfortunately, the entire state
is usually too expensive to measure for legged robots with
high degrees of freedom or impossible to measure for pros-
theses as the human users cannot be wired with a profusion
of sensors. In addition, existing observer design approaches
for nonlinear dynamical systems, including hybrid systems,



pertain to the estimation of state variables around equilib-
rium points and not periodic orbits that correspond to dy-
namic gaits. This paper presents a systematic framework to
synthesize stabilizing nonlinear controllers for dynamic gaits
of underactuated legged robots with a limited set of measure-
ments. In particular, the extension of the separation principle
to the stabilization of multi-domain hybrid period orbits in
Theorem 1 together with the proposed BMI optimization-
based synthesis approach provides us a powerful compu-
tational technique to design dynamic output feedback con-
trollers for sophisticated models of legged machines. The
convergence of the algorithm has also been addressed in The-
orem 2. The numerical results of the paper also illustrate the
asymptotic stability of dynamic gaits for walking of an un-
deractuated and 3D human model with 18 state variables for
which the controller and observer synthesis problems can be
effectively done with available software packages. The de-
signed controllers can address external disturbances as well
as asymptotic state estimation. Our previous work has exper-
imentally shown that BMI-optimized nonlinear state feed-
back controllers can yield stable and dynamic walking of the
bipedal robot ATRIAS on point feet [25,64] (see online [65]).
We will transfer the BMI-optimized dynamic output feed-
back controllers into experiments in future work.

7 Conclusion
In this paper, we presented an analytical foundation to

synthesize dynamic output feedback controllers for multi-
domain hybrid systems arising from robotic locomotion. A
class of parameterized observer-based output feedback con-
trollers was introduced for different domains of the hybrid
models. The exponential stabilization problem of hybrid pe-
riodic orbits was addressed through the application of the
Poincaré sections analysis. In particular, the paper extended
the separation principle to the stabilization of multi-domain
hybrid periodic orbits. An iterative BMI optimization al-
gorithm was then employed to separately search for stabi-
lizing observer and controller parameters at a finite number
of iterations. Sufficient conditions for the convergence of
the BMI algorithm to a set of stabilizing parameters were
also presented. Furthermore, the paper addressed the full-
state stability and stability modulo yaw under dynamic out-
put feedback controllers. To investigate the power of this
analytical framework, a dynamic output feedback controller
was designed for an underactuated 3D humanoid model with
18 state variables and 325 controller parameters to be deter-
mined. The numerical simulations showed the effectiveness
of the approach and the robustness of the closed-loop system
against external disturbances.

For future research, we will investigate the scalability
and capability of the algorithm in stabilizing periodic or-
bits for higher-dimensional hybrid models of legged ma-
chines. To increase the robustness of dynamic walking gaits
on rough terrains, we will also consider designing H2- and
H∞-optimal dynamic output feedback controllers [81, 82].
An alternative future direction will be optimizing the num-
ber of measurements required to have stable walking of au-

tonomous robots and amputee locomotion. Finally, as a prac-
tical application of this framework, we will use it to imple-
ment controllers for powered prosthetic legs used by lower-
limb amputees.
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