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Stabilization of Periodic Orbits of Hybrid Systems:
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Abstract—This paper presents a systematic algorithm to design
time-invariant decentralized feedback controllers to exponentially
and robustly stabilize periodic orbits for hybrid dynamical
systems against possible uncertainties in discrete-time phases.
The algorithm assumes a family of parameterized and decen-
tralized nonlinear controllers to coordinate interconnected hybrid
subsystems based on a common phasing variable. The exponential
and H2 robust stabilization problems of periodic orbits are
translated into an iterative sequence of optimization problems
involving bilinear and linear matrix inequalities. By investigating
the properties of the Poincaŕe map, some sufficient conditions
for the convergence of the iterative algorithm are presented. The
power of the algorithm is finally demonstrated through designing
a set of robust stabilizing local nonlinear controllers for walking
of an underactuated3D autonomous bipedal robot with9 degrees
of freedom, impact model uncertainties, and a decentralization
scheme motivated by amputee locomotion with a transpelvic
prosthetic leg.

Index Terms—Decentralized Nonlinear Control, Hybrid Peri-
odic Orbits, Underactuated 3D Bipedal Robots.

I. I NTRODUCTION

T HE objective of this paper is to present a systematic
algorithm, based on an iterative sequence of optimiza-

tion problems, to design time-invariantdecentralizedfeedback
controllers to exponentially and robustly stabilize periodic
orbits for hybrid dynamical systems. The algorithm assumes
a parameterized family of local nonlinear controllers which
provides cooperation among interconnected subsystems in the
presence of uncertain discrete-time phases. It can provably
stabilize walking gaits of underactuated3D bipedal robots
composed of interconnected subsystems with impact model
uncertainties.

Previous work on robotic walking made use of multi-
level centralizednonlinear feedback control architectures to
stabilize periodic orbits [1]–[22]. One drawback of employing
centralized controllers is that these controllerscannot be

The work of K. Akbari Hamed was partially supported by the Center
for Sensorimotor Neural Engineering (CSNE) that is an NSF Engineering
Research Center. The work of R. D. Gregg was supported by the National
Institute of Child Health & Human Development of the NIH under Award
Number DP2HD080349. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the NIH. R. D. Gregg
holds a Career Award at the Scientific Interface from the Burroughs Welcome
Fund.

K. Akbari Hamed (Corresponding Author) is with the Department of
Mechanical Engineering, San Diego State University, San Diego, CA 92182-
1323 USA (Email:kakbarihamed@mail.sdsu.edu). R. D. Gregg
is with the Departments of Bioengineering and Mechanical Engineering,
University of Texas at Dallas, Richardson, TX 75080-3021 USA (Email:
rgregg@utdallas.edu).

easily transferred to powered prosthetic legs, which act as
decentralized subsystems. Furthermore, a substantial body of
research in neurophysiology suggests that there is a great deal
of hierarchical structure and locality of control in both insect
and mammalian walking [23]. Although powered prosthetic
legs already use decentralized feedback controllers basedon
tracking reference joint torques [24], kinematics [25], or
impedances [26] to resemble human behavior, thesetime-
varying and linear control methods require different control
parameters at different time periods to handle the nonlinear
dynamics of the gait cycle. The resulting “finite state ma-
chine” requires clinicians to spend significant amounts of time
tuning each controller to a patient [27] and risks instability
when perturbations cause the wrong controller to be used at
the wrong time [28]–[30]. The limitations of this sequential
control method could possibly be addressed by the unifying
nonlinear controllers used in dynamic walking robots, but
their centralized feedback architectures would require state
measurements from both the prosthesis and human body, i.e.,
two interconnected subsystems. These key roadblocks to coop-
erative human-machine walking necessitate the application of
decentralized nonlinear feedback control and thereby underline
the importance of having algorithms to systematically design
these controllers.

While the problem of designing decentralized controllers for
large-scale complex systems is well studied in the literature
[31]–[33], existing results are tailored for stabilization of
equilibrium pointsof ordinary differential equations (ODEs)
andnot periodic orbits of hybrid dynamical systems [34]–[37].
Significant complexity in the design of decentralized control
schemes for dynamical models of legged robots arises from the
high dimensionality, strong interactions among subsystems,
underactuation, and hybrid nature of these models. In addition,
the most basic tool for analyzing the stability of periodic orbits
of hybrid dynamical systems, the Poincaré return map [2],
[34], [38]–[40], unfortunately has some serious limitations. In
almost all practical cases, there isnot a close-form expression
for the Poincaré map and it must be estimatednumerically.
This complicates the design of decentralized controllers for
asymptotic and robust stabilization of hybrid periodic orbits.

The contribution of this paper is to present a systematic
algorithm to design a class of time-invariant decentralized
nonlinear feedback controllers that exponentially and robustly
stabilize periodic orbits for the hybrid systems arising from
bipedal robots. The proposed algorithm assumes a finite set of
parameterized local controllers which are coordinated based on
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a common phasing variable. We investigate nonlinear stability
tools for hybrid systems to formulate the problem of designing
decentralized nonlinear controllers as an iterative sequence of
optimization problems involving Bilinear and Linear Matrix
Inequalities (BMIs and LMIs). By design these optimization
problems will be solved with available software packages.
Some sufficient conditions for the convergence of the iterative
algorithm will be presented. The key features of the proposed
algorithm can be summarized as follows: (1) it addresses a
general form of parameterized decentralized nonlinear con-
trollers; (2) it deals with underactuation and impact model
uncertainties; and (3) the BMI optimization problem takes
into account the interactions among the cooperative subsys-
tems while searching for the robust stabilizing decentralized
controllers, preventing the need to employ impractical high-
gain local controllers [28], asymptotic observers, or expensive
force sensors [30] to deal with interactions.

Our previous work employed the BMI optimization frame-
work for the systematic design of centralized nonlinear feed-
back controllers for bipedal robots [41]–[43] and experimen-
tally validated the theoretical results on the underactuated3D
bipedal robot ATRIAS with point feet [44], [45]. Reference
[43] also investigated the centralizedH∞ feedback design
problem without formal mathematical proofs. The BMI algo-
rithm of [41] for designing centralized control problems was
not iterative, whereas we have observed that for decentralized
control problems the BMI algorithm must be applied in an
iterative manner to converge to a stabilizing solution. This
underlines the importance of (1) developing iterative BMI
algorithms and (2) analyzing the convergence of the iterative
algorithms. Furthermore, [41] didnot considerH2 feedback
design problems. The current paper presents a systematic and
iterative BMI algorithm for the design of decentralized feed-
back controllers. In particular, a novel class of decentralized
feedback controllers is first developed and then the BMI frame-
work is extended to the exponential andH2 robust stabilization
problems of periodic orbits with mathematical proofs for the
convergence to stabilizing solutions. Finally to demonstrate
the power of the algorithm, we control the walking gait of
a 3D autonomous bipedal robot with 9 degrees of freedom
(DOFs) and 6 actuators. The robot’s model includes a two-part
decentralization scheme corresponding to a transpelvic (hip
disarticulated) amputee walking with a robotic prostheticleg.
A byproduct of this work is the first known control strategy
for a powered3-DOF transpelvic prosthetic leg.

Some parts of the BMI algorithm for the exponential stabi-
lization problem of decentralized controllers were presented
in the preliminary work [46] without dealing with model
uncertainties. The current paper extends the BMI algorithmto
address theH2 robust stabilization problem against external
disturbances and uncertainties in the impact model, which
is known to be the most uncertain or inaccurate portion for
hybrid models of walking. It also presents sufficient conditions
for the proof of convergence in the extended BMI algorithm.
To demonstrate the robustness, the paper numerically evalu-
ates the biped system’s performance in two simulators with
different contact and impact models.

This paper is organized as follows. Section II presents

hybrid models of walking and develops the decentralized
feedback control scheme. The exponential and robust stabi-
lization problems are presented in Section III. The iterative
BMI algorithm for exponential stabilization is developed in
Section IV. Section V extends the BMI algorithm for theH2

control problem. Sufficient conditions for the convergenceof
the algorithm are presented in Section VI. Section VII applies
the results to the hybrid models of walking and presents
detailed numerical simulations. Section VIII finally presents
some concluding remarks.

II. H YBRID MODEL

We consider single-phase hybrid dynamical systems arising
from bipedal walking as follows

Σ :

{

ẋ = f(x) + g(x)u, x− /∈ S
x+ = ∆(x−) + d, x− ∈ S, (1)

in which x ∈ X andu ∈ U denote theglobal state variables
and global continuous-time control inputs, respectively. The
global state manifoldand theglobal set of admissible control
inputs are represented byX ⊂ R

n and U ⊂ R
m for

some positive integersn andm. The evolution of the system
during the continuous-time phase is described by the ODE
ẋ = f(x)+g(x)u, in which the drift vector fieldf : X → TX
and columns ofg are assumed to be smooth (i.e.,C∞).
TX also denotes the tangent bundle of the state manifold
X . The discrete-time portion of the hybrid system is also
represented by the instantaneous mappingx+ = ∆(x−) + d,
where ∆ : X → X is a C∞ reset map, d ∈ D is an
unknown and bounded discrete-time disturbance input, and
x−(t) := limτրt x(τ) andx+(t) := limτցt x(τ) denote the
left and right limits of the state trajectoryx(t), respectively.
The set of admissible disturbance inputsD ⊂ R

n is taken as
a bounded, connected and open neighborhood of the origin.
The switching manifoldS is then represented by

S := {x ∈ X | s(x) = 0, σ(x) < 0} , (2)

on which the state solutions of the hybrid system undergo
an abrupt change according to the re-initialization rulex+ =
∆(x−) + d. In addition, s : X → R is a C∞ real-valued
switching functionwhich satisfies∂s

∂x
(x) 6= 0 for all x ∈ X .

Finally, σ : X → R is a C∞ real-valued function such
that σ(x) < 0 determines feasible switching events. The
solutions of the hybrid system (1) are constructed by piecing
together the flows of the continuous-time phase such that the
re-initialization rule is applied when the flows intersect the
switching manifold. For the purpose of this paper, the solutions
are also assumed to be right continuous.

Remark 1:To simplify the analysis and design procedure of
decentralized feedback controllers, we consider single-phase
hybrid dynamical systems. Section VII will extend the analysis
to hybrid models of robot walking with two continuous-time
phases including the right and left leg stance phases.

A. Interconnected Hybrid Subsystems

Throughout this paper, we shall assume that the hybrid
model (1) is composed oftwo interconnected hybrid sub-
systemsΣ1 and Σ2 in which the local state variablesand



PAPER SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 3

local control inputsfor the subsystemΣi are represented by
xi ∈ Xi andui ∈ Ui, respectively. In our notation, the sub-
script i ∈ {1, 2} denotes the subsystem number. Furthermore,
Xi ⊂ R

ni and Ui ⊂ R
mi are thelocal state manifoldand

local admissible set of control inputsfor some positive integers
ni and mi such thatn1 + n2 = n and m1 + m2 = m.
Our motivation comes from biomimetic control of powered
prostheses for which the typical model may consist of two
interconnected subsystems including the “human” body and
“prosthetic” part (see Fig. 1). Without loss of generality,we
assume that the global state variables and global control inputs
can be decomposed asx = (x⊤1 , x

⊤
2 )

⊤ and u = (u⊤1 , u
⊤
2 )

⊤

which result inX = X1×X2 andU = U1×U2. In our notation,
“⊤” denotes the matrix transpose.

Remark 2:Although the analysis and design procedure of
local controllers are presented for hybrid systems comprising
two interconnected subsystems, the results can be extendedto
systems comprising multiple subsystems, including decentral-
ized control of multi-legged robots.

B. Transversal Period-One Orbit

Throughout this paper, we shall assume that there is a
period-one orbitO for the hybrid model (1)in the absence
of the external disturbance input (i.e.,d = 0), and this orbit is
transversal to the switching manifoldS. This becomes more
clear in the following assumption.

Assumption 1 (Transversal Period-One Orbit):There exist
a bounded periodT ⋆ > 0 (referred to as thefundamental
period), nominal smooth local control inputsu⋆i : [0, T ⋆] → Ui

for i ∈ {1, 2}, and anominal smooth global state solution
ϕ⋆ : [0, T ⋆] → X such that (1) the continuous-time phase
ODE is satisfied, i.e.,

ϕ̇⋆(t) = f (ϕ⋆(t)) + g (ϕ⋆(t)) u⋆(t), 0 ≤ t ≤ T ⋆ (3)

ϕ⋆(t) /∈ S, 0 ≤ t < T ⋆ and ϕ⋆ (T ⋆) ∈ S, (4)

whereu⋆(t) := (u⋆⊤1 (t), u⋆⊤2 (t))⊤, (2) theperiodicity condi-
tion is met in the absence of the external disturbance input
d, that is,ϕ⋆(0) = ∆ (ϕ⋆ (T ⋆)), and (3) thetransversality
condition holds, i.e., ṡ (T ⋆) := ∂s

∂x
(ϕ⋆ (T ⋆)) ϕ̇⋆ (T ⋆) 6= 0.

Then,
O := {x = ϕ⋆(t) | 0 ≤ t < T ⋆} (5)

is aperiod-one orbitfor the hybrid model (1) corresponding to
d = 0. Furthermore, according to the construction procedure,

{x⋆} := O ∩ S = {ϕ⋆ (T ⋆)} (6)

is a singleton, in whichO denotes the set closure ofO.

C. Class of Decentralized Feedback Controllers

The objective of this section is to present the proposed de-
centralized feedback control structure to stabilize the periodic
orbit O for the hybrid model (1). In our proposed structure,
the local feedback controllers areparameterizedand general
nonlinear feedback lawswhich have access to their own local
measurements (i.e., local state variablesxi) as well as asubset
of measurable global variables.Global variablesare defined
as quantities which are dependent on the global state variables.

Local Controller Local Controller

Interactions

Fig. 1: Illustration of the local subsystems and proposed
decentralized feedback control scheme for stabilization of
periodic orbits for bipedal walking. The subsystemΣ2 (i.e.,
prosthetic part), shown by the dashed ellipse, includes the
degrees of freedom and actuators for the left leg.Σ1 (i.e.,
human part) consists of the rest of the model.

The global variableπ(x) = π(x1, x2) is said to bemeasurable
for the subsystemΣi if there are sensors to measure it along
the solutions of the subsystemΣi. For the purpose of this
paper, we make the following assumption.

Assumption 2 (Measurable Global Variables):The set of
measurable global variables for the subsystemΣi, i ∈ {1, 2},
can be written in the following chain form

Ψi(x) :=
(

ψ⊤
i (x), ψ̇

⊤
i (x), · · · , ψ(r−1)⊤

i (x)
)⊤

∈ R
rvi , (7)

for some smooth measurable global variablesψi(x) ∈ R
vi and

some positive integersvi ≥ 1 and r ≥ 1. We further assume
that the control inputu does not explicitly appear in the
equations ofψi(x), ψ̇i(x), · · · , andψ(r−1)

i (x) := dr−1

dtr−1ψi(x).
Example 1: In this paper, we study the available measurable

global variables for the case of a transpelvic amputee and
hip-knee powered prosthesis shown in Fig. 1. Without loss
of generality we assume that subsystemsΣ1 andΣ2 represent
the human and prosthetic leg parts, respectively. We further
suppose that the local state variablesx1 include the global
orientation of the human part with respect to the world
frame (assumed to come from the vestibular system), whereas
the local state variablesx2 only include the shape variables
for the prosthetic part. We therefore must utilize inertial
measurement units (IMUs) for measurement of orientation
in the prosthetic leg controller. Since the global orientation
is implicitly included in local state variablesx1, the set of
external measurable global variables for the subsystemΣ1 can
be chosen as empty, i.e.,Ψ1(x) = ∅. However, we assume
that the prosthetic orientation measurements come from two
IMUs attached to the thigh links: one on the human thigh
and the other on the prosthetic thigh. The set of measurable
global variablesΨ2(x) for Σ2 can then be chosen as the Euler
angles inψ2(x) and their first-order time-derivativeṡψ2(x)
provided by these IMUs, i.e.,Ψ2(x) = (ψ⊤

2 (x), ψ̇⊤
2 (x))⊤.

Here r is taken as2 due to the second-order nature of the
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dynamics. This example will be clarified with more details and
numerical simulations in Section VII. The use of two IMUs
by the prosthesis will allow the BMI optimization algorithm
to more easily find robust stabilizing decentralized feedback
controllers in Section VII-B. There is precedence for wearing
sensors on the sound leg in prosthetic control methods [47],
[48].

In order to coordinate the action of local controllers in
the proposed structure, we then make use of acommon
phasing variable that is measurable for both subsystemsΣ1

andΣ2. The phasing variableis a smooth and scalar global
variable which is strictly monotonic (i.e., strictly increasing or
decreasing) along the desired periodic orbitO. We make this
idea more clear in the following assumption.

Assumption 3 (Measurable Phasing Variable):There
exists a smooth and scalar global variableθ(x), referred to as
the phasing variable, which satisfies the following conditions:

1) θ(x) is strictly monotonic along the periodic orbitO.
2) The control inputu does not explicitly appear in the

equations ofθ(x), θ̇(x), · · · , andθ(r−1)(x) := dr−1

dtr−1 θ(x).
3) The sequence ofθ(x) and its time-derivatives up to the

orderr − 1, i.e.,

Θ(x) :=
(

θ(x), θ̇(x), · · · , θ(r−1)(x)
)⊤

∈ R
r (8)

is measurable forboth subsystemsΣ1 andΣ2.

From item 1 of Assumption 3, the phasing variable can
replace time which is a key to obtaining time-invariant de-
centralized feedback controllers. In particular, the phasing
variable represents the progress of the system (i.e., robot) on
the periodic orbit (i.e., walking gait). Reference [39] shows
that the existence of a phasing variable follows directly from
Assumption 1 on the periodic orbit. Item 2 states that the
phasing variableθ(x) and the individual measurable global
variablesψi(x) for i ∈ {1, 2} have the same relative degree
r with respect to the control inputu. The reason for this
assumption will be clarified in Section II-F2. From item 3,
Θ(x) forms a set of global variables measurable for both
subsystemsΣ1 and Σ2 to coordinate the local controllers.
This item is not restrictive for models of bipedal walking. In
particular, one can define a proper phasing variable based on
the absolute stance hip angle in the sagittal plane. This angle
θ and its first-order time-derivativėθ may be measured for
the subsystemΣ2 by the IMUs attached to the thigh links
in Example 1. It is further reasonable to assume that this
angle is available to the human (i.e., subsystemΣ1) through
proprioception.

Now we present the class of parameterized local controllers
as follows:

ui = Γi (xi,Θ(x),Ψi(x), ξi) , i ∈ {1, 2}, (9)

in which Γi : Xi × R
r × R

rvi × Ξi → Ui is a smooth
and nonlinear feedback law of local state variablesxi, the
common measurable global variablesΘ(x), the individual
measurable global variablesΨi(x) for the subsystemΣi, and
stabilizing local parametersξi ∈ Ξi. In our approach,ξi
for i ∈ {1, 2} are sets of adjustable parameters which will
be tuned offline using the BMI optimization algorithms of

Sections IV and V for exponential and robust stabilization
of the periodic orbitO, respectively. In addition,Ξi ⊂ R

pi

denotes thelocal parameter space. We remark that the local
controllers of (9) depend ontwo different sets of measurable
global variables. The first set includesΘ(x) which is common
to both subsystems and composed of the phasing variableθ(x)
and its time-derivatives up to the orderr − 1 to coordinate
the local controllers on the periodic orbit. The second set
includes the individual measurable global variablesΨi(x) to
improvethe robust stability of the periodic orbit. For instance
in Example 1, the prosthetic leg controller may improve the
gait stability by having access to the Euler angles and their
first-order time-derivatives provided by two IMUs attachedto
the thigh links.

Remark 3:For the case of Example 1, mathematical models
for the local controller of the human part are not known.
However, for the purpose of this paper, we assume that the
local controller for the human part is aphase-dependent
nonlinear controller in a similar manner to [30]. Furthermore,
evidence suggests that the phase-dependent models can rea-
sonably predict human joint behavior even across perturbations
[49]. Consequently, it is better to show the local controllers of
(9) in the following form:

u1 = Γ1 (x1,Θ(x), ξ1) (10)

u2 = Γ2 (x2,Θ(x),Ψ2(x), ξ2) , (11)

because the orientation is included inx1 and the local con-
troller for the human part does not have access to the data from
the two IMUs, i.e.,Ψ1(x) = ∅. To have a unified notation,
however, we make use of (9) for the remainder of this paper.
We remark that the objective of this paper is to show that the
local feedback control structure of (10) and (11) is capable
of producing exponentially/robustly stable underactuated 3D
bipedal walking gaits.

D. Closed-Loop Hybrid Model

By employing the parameterized and local nonlinear con-
trollers of (9), the parameterized family of closed-loop hybrid
models becomes (see Fig. 2)

Σcl
ξ :

{

ẋ = f cl(x, ξ), x− /∈ S
x+ = ∆(x−, ξ) + d, x− ∈ S, (12)

in which ξ := (ξ⊤1 , ξ
⊤
2 )⊤ ∈ Ξ ⊂ R

p, Ξ := Ξ1 × Ξ2,
and p := p1 + p2 = dim(ξ). Furthermore,f cl(x, ξ) :=
f(x) + g(x) Γ(x, ξ) represents the closed-loop vector field,
whereΓ(x, ξ) := (Γ⊤

1 ,Γ
⊤
2 )

⊤ is the global feedback control
law.

Remark 4: In the closed-loop hybrid model of (12), the
reset map∆ is also parameterized by the local controller
parametersξ. The reason for this parameterization is to extend
the analysis to multi-phase hybrid systems in Section VII. In
particular, these hybrid systems can be written in the form of
(12), in which the reset map∆ is the composition of the flows
for the remaining continuous- and discrete-time phases [50,
Proposition 4]. Hence,∆ includes the controller parameters
employed during the remaining continuous-time phases.
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Fig. 2: Illustration of the closed-loop hybrid model (12)
and Poincaré return map [43]. The solid and dashed curves
correspond to the flows of the continuous- and discrete-time
dynamicsẋ = f cl(x, ξ) andx+ = ∆(x−, ξ)+d, respectively.
The uncertainty in the discrete dynamics is shown by the cloud
around the dashed curve.

For later purposes, the unique solution of the smooth and
parameterized ODĖx = f cl(x, ξ) with the initial condition
x(0) = x0 is given byx(t) = ϕ(t, x0, ξ) for all t ≥ 0 in the
maximal interval of existence. Thetime-to-switching function
T : X × Ξ → R>0 is also defined as the first time at which
the flowϕ(t, x0, ξ) intersects the switching manifoldS, i.e.,

T (x0, ξ) := inf {t > 0 |ϕ(t, x0, ξ) ∈ S} . (13)

E. Invariant Periodic Orbit

Throughout this paper, we shall assume that the parameter-
ized family of local feedback laws in (9) preserves the periodic
orbit in the sense that the orbitO is invariant under the choice
of controller parametersξ. This assumption becomes more
clear as follows.

Assumption 4 (Invariant Periodic Orbit):It is assumed that
O is an invariant periodic orbit for the closed-loop hybrid
model (12) under the choice of controller parametersξ. In
particular, the following continuous- and discrete-time invari-
ance properties are satisfied:

∂f cl

∂ξ
(x, ξ) = 0, ∀(x, ξ) ∈ O × Ξ (14)

∂∆

∂ξ
(x⋆, ξ) = 0, ∀ξ ∈ Ξ. (15)

Assumption 4 allows us to employ the BMI optimization
algorithms of Sections IV and V to search for stabilizing
parametersξ without changing the desired orbitO.

F. Examples of Local Feedback Controllers

The objective of this section is to present two important
families of local feedback controllers satisfying the invariance
assumption.

1) Local LQR Controllers: The first family of feedback
laws can be taken as local LQR controllers given by

Γi (xi,Θ(x),Ψi(x), ξi) =

u⋆i (θ)−
[

Ki1(xi, ξi) Ki2(xi, ξi)
]

[

xi − xd,i(θ)

Ψi −Ψd,i(θ)

]

,
(16)

in which

u⋆i (θ) = u⋆i (t) |t=θ−1(θ)

for i ∈ {1, 2} represents thelocal feedforward controller, and
u⋆i (t) is the nominal local control input for the subsystem
Σi defined in Assumption 1. Furthermore,θ = θ(t) and
t = θ

−1(θ) denote the time evolution of the phasing variable
on the desired periodic orbitO and its inverse function,
respectively. The desired evolutions of the local state variables
xi and individual measurable global variablesΨi on the orbit
O versus the phasing variableθ are also represented byxd,i(θ)
andΨd,i(θ). We note the local state-dependent gain matrices
Ki1 ∈ R

mi×ni and Ki2 ∈ R
mi×rvi are parameterized by

the local parametersξi. It can easily be shown that the
local controllers of (16) satisfy the continuous-time invariance
condition in Assumption 4. We further remark that for the case
of amputee locomotion,Ψ1(x) = ∅, and hence, one needs
to chooseK12(x1, ξ1) ≡ 0 to get the structure of the local
controller given in (10).

2) Local Output Regulators:The second family of con-
trollers includes local output regulators. In particular,for the
subsystemΣi, one can define aparameterized local output
functionas follows:

yi (xi,Θ(x),Ψi(x), ξi) = Hi(ξi) (xi − xd,i (θ))

+ Ĥi(ξi) (ψi − ψd,i(θ)) ,
(17)

in which dim(yi) = dim(ui) = mi, andHi(ξi) ∈ R
mi×ni

andĤi(ξi) ∈ R
mi×vi areparameterized output matricesto be

determined. Here,ψd,i(θ) denotes the desired evolution of the
individual global variableψi on the periodic orbitO versus the
phasing variableθ. We assume that these outputs have relative
degreer with respect to the control inputu on the periodic
orbit O for all ξ ∈ Ξ. Then, the parameterized family of local
output zeroing controllers can be chosen as1

Γi (xi,Θ(x),Ψi(x), ξi) = u⋆i (θ)

−D−1
i (xi, ξi)





r−1
∑

j=0

kj y
(j)
i



 ,
(18)

whereDi(xi, ξi) ∈ R
mi×mi is a smooth and invertible local

(lower-dimensional) decoupling matrix, and constantskj for
j = 0, 1, · · · , r− 1 are chosen such that the polynomialλr +
kr−1λ

r−1 + · · · + k1λ + k0 becomes Hurwitz. The family
of local feedback laws in (18) represents an approximation
for the centralized input-output (I-O) linearizing controllers
of [51]. According to the construction procedure, the local
output functionyi and its time-derivatives up to the orderr−1
vanish on the desired periodic orbitO, and hence, this family
of controllers satisfies the invariance condition of Assumption
4. Finally, one can choosêH1 = 0 to get the structure of the
local controller given in (10).

1We remark thaty(j)
i

:= djyi
dtj

is a function ofxi, (θ, θ̇, · · · , θ(j)) and

(ψi, ψ̇i, · · · , ψ
(j)
i

) for all j = 0, 1, · · · , r−1. This underlines the importance

of having (θ, θ̇, · · · , θ(r−1)) and (ψi, ψ̇i, · · · , ψ
(r−1)
i

) measurable for the
subsystemΣi in Assumptions 2 and 3.
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III. STABILIZATION PROBLEM

The objective of this section is to present the exponential
and robust stabilization problems of the desired periodic orbit
O for the closed-loop hybrid model (12). For this purpose, we
make use of the method of Poincaré sections. By taking the
Poincaré section as the switching manifoldS, the parameter-
ized Poincaŕe mapP : X × Ξ×D → X is defined by

P (x, ξ, d) := ϕ (T (∆ (x, ξ) + d, ξ) ,∆(x, ξ) + d, ξ) , (19)

which describes the evolution of the system onS according
to the following discrete-time system (see Fig. 2):

P :

{

x[k + 1] = P (x[k], ξ, d[k]) , k = 0, 1, · · ·
c[k] = c (x[k]) .

(20)

Here,{d[k]}∞k=0 acts as a sequence of unknown disturbance
inputs. Furthermore,c[k] denotes aset of smooth discrete-
time controlled variables. According to Assumption 4,x⋆ is
an invariant fixed point forP in the absence of the disturbance
input, i.e.,

P (x⋆, ξ, 0) = x⋆, ∀ξ ∈ Ξ. (21)

Linearization of the discrete-time system (20) around
(x⋆, d⋆) := (x⋆, 0) then yields

∂P :















δx[k + 1] =
∂P

∂x
(x⋆, ξ, 0) δx[k] +

∂P

∂d
(x⋆, ξ, 0) d[k]

k = 0, 1, · · ·
δc[k] = C δx[k]

(22)
whereδx[k] := x[k]−x⋆, δc[k] := c[k]− c⋆, c⋆ := c(x⋆), and
C := ∂c

∂x
(x⋆).

Problem 1 (Exponential Stability):The problem of expo-
nential stabilization of the periodic orbitO consists of finding
the controller parametersξ = (ξ⊤1 , ξ

⊤
2 )⊤ such that the Jacobian

matrix ∂P
∂x

(x⋆, ξ, 0) becomes Hurwitz.
Problem 2 (Robust Stability):The problem of robust sta-

bilization of the periodic orbitO consists of finding the
controller parametersξ such that 1. the Jacobian matrix
∂P
∂x

(x⋆, ξ, 0) becomes Hurwitz, and 2. the effect of the distur-
banced[k] on δc[k] is attenuated.

Sections IV and V will solve the exponential and robust
stabilization problems, respectively. For later purposes, we
define the compact notations for the Jacobian matrices as
A(ξ) := ∂P

∂x
(x⋆, ξ, 0) and B(ξ) := ∂P

∂d
(x⋆, ξ, 0) for which

there arenot in general closed-form expressions.

IV. I TERATIVE BMI A LGORITHM

This section creates a systematic numerical algorithm to
overcome specific difficulties arising from the lack of a closed-
form expression for the Poincaré map in tuning the decen-
tralized feedback controllers of Section II-C. The algorithm
is presented based on an iterative sequence of optimization
problems to tune the parameters of the decentralized feedback
control structure of (9), i.e.,ξ = (ξ⊤1 , ξ

⊤
2 )⊤, such that the

desired orbitO becomes exponentially/robustly stable. Our
iterative algorithm designs a sequence of controller parameters
{ξℓ}, where the superscriptℓ ∈ {0, 1, · · · } represents the

iteration number. The objective is then to converge to a set
of parametersξℓ that solves Problems 1 and 2. This section
deals with the exponential stabilization problem. SectionV
will extend the algorithm for robust stabilization. In what
follows, we present the steps of the algorithm.

A. Step 1: Sensitivity Analysis

During the iteration numberℓ ∈ {0, 1, · · · }, the sensitivity
analysis replaces the Jacobian matricesA(ξℓ+∆ξ) andB(ξℓ+
∆ξ) with their first-order approximations based on the Taylor
series expansion, that is,

A
(

ξℓ +∆ξ
)

≈ A
(

ξℓ
)

+ Ā
(

ξℓ
)

(In ⊗∆ξ)

=:Â
(

ξℓ,∆ξ
)

(23)

B
(

ξℓ +∆ξ
)

≈ B
(

ξℓ
)

+ B̄
(

ξℓ
)

(In ⊗∆ξ)

=:B̂
(

ξℓ,∆ξ
)

. (24)

Here,∆ξ ∈ R
p is a sufficiently small increment in controller

parameters,In is the identity matrix of the order2 n, “⊗”
represents the Kronecker product, andĀ(ξℓ) andB̄(ξℓ) denote
the sensitivity matrices with respect toξ, evaluated atξ = ξℓ.
Systematic numerical approaches to calculate the sensitivity
matrices based on the continuous-time ODE and reset map
have been presented in [41, Theorems 1 and 2].

The sensitivity analysis returns approximate Jacobian matri-
ces with closed-form expressions, which are affine in∆ξ, and
then translates the stabilization problem into an approximate
one that is easier to solve through a set of LMIs and BMIs.

Problem 3 (Approximate Exponential Stability):The prob-
lem of approximate exponential stabilization during the itera-
tion numberℓ consists of finding the increment in controller
parameters∆ξℓ such that the approximate Jacobian matrix
Â(ξℓ,∆ξℓ) becomes Hurwitz.

B. Step 2: BMI Optimization Problem

The objective of the BMI optimization problem during the
iterationℓ ∈ {0, 1, · · · } is to search for the increment in con-
troller parameters∆ξℓ such that the requirements of Problem 3
are satisfied. We make use of the BMI optimization framework
of [41, Theorem 1] to make the approximate Jacobian matrix
Â(ξℓ,∆ξℓ) Hurwitz. However, unlike [41], we apply the BMI
optimization in an iterative manner3. In particular, we set
up the following optimization problem during the iteration

2For the closed-loop hybrid model (12), the Poincaré map is in fact an
n− 1 dimensional return map which maps the system’s state from the n− 1
dimensional switching manifoldS back toS. Hence,A(ξ) is an (n− 1)×
(n − 1) matrix. However to simplify the notation for the remaining of the
paper, we assume thatA(ξ) is n× n.

3We have observed that for decentralized control problems the BMI
optimization algorithm must be applied iteratively to converge to a stabilizing
solution.
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numberℓ:

min
W,∆ξ,µ,η

− wµ+ η (25)

s.t.

[

W Â
(

ξℓ,∆ξ
)

W

⋆ (1− µ)W

]

> 0 (26)

[

Ip ∆ξ

⋆ η

]

> 0 (27)

µ > 0, (28)

in whichW =W⊤ ∈ R
n×n is a positive definite matrix, and

µ > 0 is scalar to tune the spectral radius ofÂ(ξℓ,∆ξ). The
matrix inequality (26) represents a BMI condition because of
the product ofÂ(ξℓ,∆ξ) andW . Using Schur’s complement
lemma, it can be shown thatV (δx[k]) := δx[k]⊤W−1δx[k] is
a Lyapunov function for the approximate modelδx[k + 1] =
Â(ξℓ,∆ξ)δx[k] which satisfiesV [k + 1] − V [k] < −µV [k].
It can also be shown that

√
1− µ is an upper bound for the

spectral radius of̂A(ξℓ,∆ξ). Finally, (27) is an LMI condition
in which using Schur’s complement lemma, one can consider
η as a dynamic upper bound for‖∆ξ‖22, that is,η > ‖∆ξ‖22.
The cost function then tries to minimize a linear combination
of −µ andη with the positive weighting factorw to improve
the spectral radius and to have a good approximation based
on the truncated Taylor series expansion in (23).

C. Step 3: Iteration

Let (W ⋆,∆ξ⋆, µ⋆, η⋆) represent alocal4 minimum for the
BMI optimization problem (25)-(28). Next, define∆ξℓ :=
∆ξ⋆ and update the controller parameters as follows

ξℓ+1 = ξℓ +∆ξℓ. (29)

If the requirement of the real exponential stabilization problem
(i.e., Problem 1) is satisfied atξ = ξℓ+1, the algorithm is
successful and stops. Otherwise, it continues by coming back
to Step 1 (Sensitivity Analysis) around the updated parameters
ξℓ+1 and going through the next steps. In case the BMI
optimization problem of Step 2 is not feasible, the algorithm
is not successful and stops. Section VI will present sufficient
conditions for the convergence of the algorithm to a stabilizing
solution.

V. ROBUST STABILIZATION

The objective of this section is to extend the iterative BMI
algorithm of Section IV to address the robust stabilization
problem of the periodic orbitO. In particular, after finding
an exponentially stabilizing decentralized feedback control
solution, one can apply the extended algorithm to improve the
robust stability behavior. For this purpose, we first define an
approximate robust stabilization problem during the iteration
ℓ ∈ {0, 1, · · · } as follows.

Problem 4 (Approximate Robust Stability):The problem of
approximate robust stabilization consists of finding the incre-
ment in controller parameters∆ξℓ such that 1. the approximate

4More details about local solutions of the BMI optimization problem (25)-
(28) will be presented in Section VII-B.

Jacobian matrixÂ(ξℓ,∆ξℓ) becomes Hurwitz, and 2. theH2-
norm of the transfer functionTdc(z), relating the disturbance
input d[k] to the controlled outputsδc[k] in the approximate
linearized model

∂P̂ :











δx[k + 1] = Â
(

ξℓ,∆ξℓ
)

δx[k] + B̂
(

ξℓ,∆ξℓ
)

d[k]

k = 0, 1, · · ·
δc[k] = C δx[k],

(30)
becomes less that

√
µ. That is,

‖Tdc‖2H2
:=

1

2π

∫ π

−π

trace
(

TH

dc

(

ejω
)

Tdc
(

ejω
))

dω < µ,

(31)
where “trace” and the superscript “H” denote the trace and
conjugate transpose of a matrix, respectively.

To solve Problem 4, we then replace the BMI optimization
problem in Step 2 of the iterative algorithm with the extended
one as follows:

min
W,Z,∆ξ,µ,η

wµ+ η (32)

s.t.







W Â
(

ξℓ,∆ξ
)

W B̂
(

ξℓ,∆ξ
)

⋆ W 0

⋆ ⋆ I






> 0 (33)

[

W C Z

⋆ Z

]

> 0 (34)

[

I ∆ξ

⋆ η

]

> 0 (35)

trace(W ) < µ, (36)

in whichW =W⊤, Z = Z⊤, ∆ξ, µ, andη are new decision
variables. In addition,∆ξℓ in Step 3 of the algorithm is set
to ∆ξ⋆, where∆ξ⋆ denotes the local optimal solution of the
problem (32)-(36). From [52, Lemma 1], the BMI condition
(33) in combination with the LMIs (34) and (36) are equivalent
to the matrixÂ(ξℓ,∆ξ) being Hurwitz and‖Tdc‖2H2

< µ. In
addition, similar to the BMI optimization problem (25)-(28),
the LMI condition (35) presents the dynamic upper bound
η on ‖∆ξ‖22 to have a good approximation based on the
truncated Taylor series expansion in (23) and (24). Finally,
the cost function minimizes a linear combination of theH2

control parameterµ and the dynamic upper boundη with
the positive weighting factorw. One can stop the extended
iterative algorithm when 1. the real Jacobian matrixA(ξℓ+1)
becomes Hurwitz, and 2. theH2-norm of the transfer function
relatingd[k] to δc[k] in the real linearized model (22) is less
than a desired value.

VI. SUFFICIENT CONDITIONS FOR THECONVERGENCE OF

THE BMI A LGORITHMS

The objective of this section is to present sufficient condi-
tions under which the iterative BMI algorithms stabilize the
periodic orbitO for the closed-loop hybrid model (12) at a
finite number of iterations. These conditions are expressed
in terms of the first-, second-, or third-order derivatives of
the Poincaré map. The exponential stabilization problem is
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first investigated in Theorems 1 and 2. Then, the results are
extended to theH2 control problem in Theorem 3. For this
purpose, we present anon-smoothoptimization problem which
is equivalent to the BMI optimization problem (25)-(28). We
remark that we donot numerically solve this non-smooth
optimization problem during the iterative algorithm. However,
we make use of it for the proof of convergence.

Lemma 1 (Equivalent Non-smooth Problem):The BMI
optimization problem (25)-(28) is equivalent to the following
non-smooth problem

min
∆ξ,γ

1

2
w γ2 +

1

2
‖∆ξ‖22 (37)

s.t. ρ
(

Â
(

ξℓ,∆ξ
)

)

< γ (38)

γ < 1, (39)

in which ρ(.) denotes the spectral radius of a matrix.
Proof: See Appendix A.

For later purposes, let us definea(ξ) := vec(A(ξ)) ∈ R
n2

,
in which “vec” denotes the vectorization operator. In a similar
manner, one can definêa(ξℓ,∆ξ) := vec(Â(ξℓ,∆ξ)) ∈ R

n2

as the first-order approximation ofa(ξℓ +∆ξ).

A. Scalar Case

For the scalar case (i.e.,n = 1), we can present a
closed-form expression for the global optimal solution of the
equivalent problem (37)-(39). This helps us to investigate
the sufficient conditions for the convergence of the iterative
algorithm. In particular, we present the following result.

Theorem 1 (Convergence of the Algorithm forn = 1):
Consider the smooth functiona : R → R by a(ξ). Suppose
further that there exists̄ξ ∈ R such thata(ξ̄) = 0. Let B
denote a compact (i.e., closed and bounded) ball aroundξ̄
such that (1)a′(ξ) := da

dξ (ξ) 6= 0 for all ξ ∈ B, and (2)

max
ξ∈B

|a(ξ)|
w (a′(ξ))

2
+ 1

< 1. (40)

Then, there existδ > 0 and 0 < N < ∞ such that for all
initial guesses of the BMI algorithmξ0 ∈ B with the property
|ξ0 − ξ̄| < δ, the global solution of the BMI optimization
problem (25)-(28) results in the following parameter update
law

ξℓ+1 = ξℓ − w a
(

ξℓ
)

a′
(

ξℓ
)

w (a′ (ξℓ))
2
+ 1

=: Q
(

ξℓ
)

. (41)

Furthermore, the update law (41) stabilizes the origin for the
discrete-time systemδx[k+1] = a(ξ) δx[k] at a finite number
of iterations, that is,|a(ξℓ)| < 1 for all ℓ > N .

Proof: See Appendix B.
Remark 5:Theorem 1 presents a set of sufficient conditions

under which one can find the global optimal solution for the
BMI optimization problem (25)-(28). Moreover, it investigates
the convergence of the algorithm to a stabilizing solution.The
conditions of this theorem are not restrictive. In particular, the
condition a′(ξ) 6= 0 for all ξ ∈ B guarantees the feasibility
of the BMI condition in (26) for the scalar case and looks
like a similar condition for Newton’s method. The second
condition, in (40), can easily be achieved by choosing a large

weighting factorw > 0. Furthermore for sufficiently large
w, one can show that the recursive law (41) reduces to the
Newton’s method, i.e.,ξℓ+1 = ξℓ − a(ξℓ)

a′(ξℓ)
.

B. Multi-Dimensional Case

For the multi-dimensional case (i.e.,n > 1), there isnot
a closed-form expression for the global/local optimal solution
of the BMI optimization problem (25)-(28) or the equivalent
problem (37)-(39) to investigate the sufficient conditionsfor
the convergence of the algorithm similar to those presented
in Theorem 1. However, from Lemma 1 we can still present
an alternative set of sufficient conditions based on the concept
of convexityto guarantee the convergence of the algorithm at
a finite number of iterations. In particular, we guarantee the
stability of the real Jacobian matrix during the iterationℓ+ 1
based on some mild conditions on thelocal optimal solution of
the BMI optimization problem during the iterationℓ. To make
this notion more precise, letχ(z) := det(zI − A) denote the
characteristic equation of a givenn×nmatrixA. Next,ρ(A) <
γ for someγ > 0 is equivalent to the matrix1

γ
A being Hurwitz

which is also equivalent to the monic polynomial1
γnχ(γz) =

det(zI− 1
γ
A) being Hurwitz. From the Jury stability criterion,

this is equivalent to the existence of a smooth functionF :
R

n2 × R>0 → R
n+1 such that

Fα(a, γ) < 0, α = 1, 2, · · · , n+ 1,

wherea = vec(A) ∈ R
n2

. Appendix C presents a systematic
approach to construct the functionF (a, γ) based on the Jury
array. Now we are in a position to present the following result.

Theorem 2 (Convergence of the Algorithm forn > 1):
Consider the smooth matrixA(ξ) ∈ R

n×n and assume that
the BMI optimization problem (25)-(28) is feasible during
the iteration ℓ. Suppose further that(∆ξ⋆, µ⋆) denotes a
local optimal solution (not necessarily the global solution).
Then there isǫ > 0 such that if (1)‖∆ξ⋆‖ < ǫ, and (2) the
condition

n2

∑

β=1

∂Fα

∂aβ

(

a
(

ξℓ
)

,
√

1− µ⋆

) ∂2aβ
∂ξ2

(

ξℓ
)

≤ 0 (42)

for α = 1, · · · , n+1 is satisfied, then the algorithm terminates
at the iterationℓ+ 1 in the sense thatA(ξℓ +∆ξ⋆) becomes
Hurwitz. Here,aβ(ξ) represents theβ-th component ofa(ξ)

and ∂2aβ

∂ξ2
(ξ) is the corresponding Hessian matrix forβ =

1, · · · , n2.
Proof: See Appendix D.

Remark 6:By defining the scalar coefficientsναβ :=
∂Fα

∂aβ

(

a
(

ξℓ
)

,
√
1− µ⋆

)

for α = 1, · · · , n + 1 and β =

1, · · · , n2, the condition (42) can be expressed as

n2

∑

β=1

ναβ
∂2aβ
∂ξ2

(

ξℓ
)

≤ 0, α = 1, · · · , n+ 1, (43)

which is a set ofn+1 LMIs in terms ofn2 Hessian matrices
∂2aβ

∂ξ2

(

ξℓ
)

, β = 1, · · · , n2. We remark that one can interpret
the inequality (43) as a set of convexity conditions on the
elements of the Jacobian matrixA(ξ) at ξ = ξℓ.
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C. Extension to theH2 Problem

This section extends the sufficient conditions of Theorem 2
to the convergence of the extended BMI algorithm at a finite
number of iterations. In particular, we express a set ofn+ 2
convexity conditions in terms of the elements of the Jacobian
matricesA(ξ) andB(ξ) at ξ = ξℓ.

Theorem 3 (Convergence of the Extended Algorithm):
Consider the smooth matricesA(ξ) ∈ R

n×n and
B(ξ) ∈ R

n×n and define a(ξ) = vec(A(ξ)) and
b(ξ) = vec(B(ξ)). Assume that the BMI optimization
problem (32)-(36) is feasible during the iteration numberℓ
and let(∆ξ⋆, µ⋆) denote alocal optimal solution. Then there
is ǫ > 0 and coefficientsvαβ andvαβ for α = 1, · · · , n + 2
and β = 1, · · · , n2 such that if (1)‖∆ξ⋆‖ < ǫ and (2) the
following convexity requirements on the Hessian matrices
∂2aβ

∂ξ2
(ξ) and ∂2bβ

∂ξ2
(ξ) are satisfied

n2

∑

β=1

{

ναβ
∂2aβ
∂ξ2

(

ξℓ
)

+ ναβ
∂2bβ
∂ξ2

(

ξℓ
)

}

≤ 0,

α = 1, · · · , n+ 2,

(44)

then 1. the real Jacobian matrixA(ξℓ+∆ξ⋆) becomes Hurwitz
and 2. theH2-norm of the transfer function for the quadruple
(A(ξℓ + ∆ξ⋆), B(ξℓ + ∆ξ⋆), C, 0) in the real model (22) is
less than

√
µ⋆.

Proof: See Appendix E.
Remark 7:Under Assumptions 1-4, if the conditions of

Theorems 2 and 3 are satisfied for any decentralized feed-
back law as given in (9), then the algorithm can exponen-
tially/robustly stabilize the periodic orbitO for the closed-loop
hybrid model.

VII. A PPLICATION TO ROBOTIC WALKING

Virtual constraintsare kinematic relations among the gen-
eralized coordinates of mechanical systems that are enforced
asymptotically by continuous-time controllers [2], [3], [11],
[28], [29], [41], [42], [53]–[57]. They are defined to coordinate
the links of bipedal robots within a stride. In particular, virtual
constraints are defined as holonomic output functionsy(x)
for continuous-time portions of hybrid models of walking and
they are typically enforced (i.e.,y ≡ 0) by centralizedI-O
linearizing feedback laws [51]. Virtual constraint controllers
have been numerically and experimentally validated for stable
2D and3D underactuated bipedal robots [14], [53]–[55], [58]
as well as2D powered prosthetic legs [28]–[30], [47]. For
mechanical systems with more than one degree of underactu-
ation, the stability of the periodic gait depends on the choice
of the virtual constraints [13], [41].

The application of virtual constraints to amputee locomo-
tion presents some challenges not previously encountered in
autonomous bipedal robots. In particular, centralized virtual
constraint controllers would require state feedback from the
human body. To overcome interacting forces between two sub-
systems, [28] has implemented virtual constraint controllers
using local high-gain controllers in simulations of a2D
powered prosthetic leg, but safety concerns limited the ex-
perimental implementation to inaccurate low-gain controllers.

Fig. 3: The structure of the9 DOFs autonomous bipedal
robot. The model consists of a tree structure with a torso
and two identical legs with three unactuated Euler angles and
6 actuated revolute joints. SubsystemsΣ1 (human part) and
Σ2 (prosthetic part) with the corresponding DOFs have been
shown in the figure.

The local output functions for the prosthetic subsystem were
also defined based on aphysical intuition. A recent approach
measures the human interaction forces for exact local virtual
constraint control [30]. In particular, the feedback from force
sensors is used to cancel the nonlinear interaction terms
between the human and prosthetic subsystems in the feedback
linearization approach. However, multi-axis force sensors that
are light enough for prosthetic limbs are extremely expensive.

There is currently no systematic algorithm to design decen-
tralized virtual constraints to induce stable and underactuated
3D walking gaits in bipedal robots and powered prosthetic
legs. The objective of this section is to employ the iterative
BMI algorithm of Sections IV and V to search for robust
stabilizing local virtual constraints. We remark that the BMI
algorithm takes into account the interactions between the two
subsystems in the full model while searching for the opti-
mized local virtual constraints, preventing the need to employ
impractical high-gain controllers, expensive force sensors, or
asymptotic observers to deal with interactions.

A. Underactuated3D Bipedal Model

We consider an underactuated3D bipedal robot and employ
the iterative BMI algorithm to tune the decentralized virtual
constraints to induce an exponentially stable walking gait. The
model of the robot forms a tree structure consisting of a torso
link and two identical legs terminating at point feet (see Fig.
3). Each leg of the robot includes3 actuated DOFs: a2 DOF
hip (ball) joint with roll and pitch angles plus a1 DOF knee
joint. During the single support phase, the robot has9 DOFs
including6 actuated DOFs of two legs and3 unactuated DOFs
corresponding to the absolute orientation of the torso with
respect to the world frame. To describe this orientation, we
attach a frame to the torso with they-axis being in the direction
of walking and thez-axis being upward. Then, the orientation
of the torso frame can be described by three Euler angles,
referred to as theyaw, roll , and pitch angles. The kinematic
and dynamic parameter values for the links are taken according
to those reported in [59] for a3D human model.
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The state vector for the mechanical system can be chosen
asx := (q⊤, q̇⊤)⊤ ∈ X ⊂ R

18, in which q and q̇ denote the
generalized coordinates and velocity vectors, respectively. The
control inputs are also shown byu ∈ U ⊂ R

6 to represent the
motor torques applied at the actuated joints. The hybrid model
of walking includes two continuous-time phases to represent
the right and left stance phases and two discrete-time phases
to represent the right-to-left and left-to-right impact models.
In particular, we study the following two-phase hybrid model

ΣR :

{

ẋ = fR(x) + gR(x)u, x− /∈ SR→L

x+ = ∆R→L(x
−), x− ∈ SR→L

ΣL :

{

ẋ = fL(x) + gL(x)u, x− /∈ SL→R

x+ = ∆L→R(x
−), x− ∈ SL→R,

(45)

in which the subscripts “R”, “L”, “R → L”, “L → R”
denote the right stance phase, left stance phase, right-to-left
impact, and left-to-right impact, respectively. The continuous-
time phaseṡx = fR(x) + gR(x)u and ẋ = fL(x) + gL(x)u
are constructed based on the Lagrangian dynamics, whereas
the discrete-time transitionsx+ = ∆R→L(x

−) and x+ =
∆L→R(x

−) assume rigid and instantaneous contact models
[60]. Using [50, Proposition 4], one can obtain an equivalent
single-phase hybrid system, as given in (1), for the two-phase
model (45). For this purpose, without loss of generality, the
continuous-time portioṅx = f(x)+g(x)u can be constructed
based on the right stance phase dynamics. In addition, the
discrete-time portionx+ = ∆(x−) is taken as the composition
of the right-to-left impact, left stance phase, and left-to-right
impact models. In this model, the uncertaintyd[k] in (1) can
arise from uncertainties in the impact maps and the flow of the
left stance phase. A desired periodic gaitO is then designed
using the motion planning algorithm of [14] for walking at
0.6 (m/s) with the cost of mechanical transport CMT= 0.07.

Motivated by a transpelvic amputee (the “human” part)
walking with a prosthetic left leg, we consider a two-part
decentralization scheme as shown in Fig 3. The prosthetic
subsystemΣ2 includes the3 DOFs of the left leg with the
corresponding3 actuators, and hence, dim(x2) = 6 and
dim(u2) = 3. In particular,x2 = (q⊤2 , q̇

⊤
2 )

⊤, in which q2
and q̇2 denote the generalized position and velocity vectors
for the left leg, respectively. The human subsystemΣ1 then
consists of the rest of the model, including the torso and
right leg, with dim(x1) = 12 and dim(u1) = 3. In addition,
x1 = (q⊤1 , q̇

⊤
1 )

⊤, whereq1 and q̇1 represent the generalized
position and velocity vectors forΣ1. Since the local state
variablesx1 already include the orientation variables, i.e., torso
Euler angles and their first-order time-derivatives, the set of
measurable global variables forΣ1 is chosen as empty, i.e.,
Ψ1(x) = ∅. However, the set of measurable global variables
Ψ2(x) = (ψ⊤

2 (x), ψ̇
⊤
2 (x))⊤ for the subsystemΣ2 includes two

roll and two yaw angles as well as their velocities provided
by the IMUs attached to both thighs (i.e., dim(ψ2) = 4 and
dim(Ψ2) = 8).

For the purpose of this paper, the decentralized virtual
constraints are defined as (17). We only remark that they need
to be holonomic quantities and consequently, one would need
to replacexi andxd,i(θ) in (17) with the local configuration

variablesqi and the corresponding desired evolutionqd,i(θ),
respectively fori ∈ {1, 2}. Next the local output matrices
to be determined includeH1(ξ1) ∈ R

3×6, H2(ξ2) ∈ R
3×3,

and Ĥ2(ξ2) ∈ R
3×4, or equivalently39 parameters (we note

that Ĥ1 = 0 to get the structure of (10)). Moreover, since
the typical walking period includes two steps, we need to
determine these matrices for the right and left stance phases
and therefore, the total number of parameters is39× 2 = 78,
i.e., ξ ∈ R

78. The lower-dimensional decoupling matrices in
(18) are also taken as constant matrices. This reduces the
local controllers of (18) into a set ofPD controllers(r = 2)
for which the choice of local output functions guarantees the
robust stability of the orbit. The outputs are then systematically
chosen according to the iterative BMI algorithms.

Remark 8:Although legged robots are becoming more non-
linear with higher DOFs, the centralized nonlinear control
methods required to achieve stable locomotioncannot scale
with the dimensionality of these robots. Most centralized
nonlinear control methods, e.g., feedback linearization,require
the inversion of a state-dependent “decoupling” matrix in real
time [2], [4], [13], [41], but the computational complexity
of this operation scales quadratically with matrix dimension
[61], corresponding to the number of DOFs in the robot.
Moreover, inverting the full decoupling matrix distributes (and
amplifies) local modeling errors across all DOFs in the closed-
loop dynamics. This curse of dimensionality presents a key
roadblock to the application of traditional centralized nonlinear
controllers to increasingly sophisticated legged robots.We re-
mark that the proposed approach reduces the local controllers
of (18) into a set of PD controllers for which the choice
of the output functions plays an important role in the gait
stabilization process.

B. PENBMI Solver and Numerical Results

Unlike LMIs, BMIs are non-convex and NP-hard problems
[62]. However, PENBMI is a general-purpose solver for BMIs
which guarantees the convergence to a local optimal point
satisfying the Karush Kuhn Tucker optimality conditions [63].
To solve the BMI optimization problems at each iteration of
the algorithms presented in Sections IV and V, we make use
of the PENBMI solver from TOMLAB [64] integrated with
the MATLAB environment through YALMIP [65].

1) Exponential Stabilization Problem:An initial set of
controller parametersξ0 ∈ R

78 is assumed based on a
physical intuition for the local output functions (17). For
this set of parameters, the dominant eigenvalues and spectral
radius of the17 × 17 Jacobian matrix of the Poincaré map
become{0.12029± 1.7223i,−0.4863,−0.4178} and1.7253,
respectively, and therefore the periodic gaitO is not stable. To
exponentially stabilize the gait, we make use of the iterative
BMI algorithm developed in Section IV with the weighting
factor w = 0.1. The algorithm successfully converges to a
set of stabilizing parameters after3 iterations, where the BMI
optimization problem of each iteration takes approximately 15
minutes on a dual2.3 GHz Intel Xeon E5-2670 v3 processor.
For the BMI optimized solution, the dominant eigenvalues and
spectral radius of the Jacobian of the Poincaré map become
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{−0.4747±0.4445i, 0.5028, 0.3628} and0.6503 (i.e.,62.31%
improvement in the spectral radius), respectively. Starting from
the same initial guess with the different weighting factors
w = 0.5 adw = 0.05, the algorithm converges to alternative
stabilizing solutions with the spectral radii0.7215 and0.6135
after 2 and3 iterations, respectively.

2) Robust Stabilization Problem:To robustly stabilize the
periodic orbit O against the discrete-time uncertainties in
the impact model, we define a set of discrete-time outputs
c[k] = c(x[k]) on the Poincaré section (i.e., the right-to-left
switching manifold) as the robot’s COM velocity along the
x-, y-, and z-axes of the world frame. TheH2-norm of the
transfer function relatingd[k] to δc[k] in the linearized model
(22) for the previous BMI optimized solution (withw = 0.1)
is 29.7234. Starting with this exponentially stable solution, we
employ the extended BMI algorithm of Section V to reduce
the H2-norm. By choosingw = 0.1, the extended algorithm
converges to a robust stabilizing solution after3 iterations for
which theH2-norm becomes12.8860 (56.65% improvement
in the H2-norm). Figure 4 depicts the phase portraits for the
torso Euler angles and frontal prosthetic hip angle during100
consecutive walking steps with the robust stabilizing solution.
The orbitO has been designed to walk along they-axis of the
world frame which corresponds to the yaw angle being zero.
Here, the simulation starts off of the orbit at the beginningof
the right stance phase. Convergence to the periodic orbit, even
in the yaw position, can be seen from the phase portraits. The
animation of this simulation can be found at [66].

C. Robustness Against Impact Model Uncertainties

The objective of this section is to compare the performances
of the two BMI-optimized solutions of Sections VII-B1 and
VII-B2 against the impact model uncertaintyd[k]. For this
purpose, a randomly generated discrete-time disturbance input
d[k] is assumed in the velocity components of the impact mod-
els. Fig. 5 illustrates the correspondingx, y andz components
of the deviation in the robot’s COM velocity (i.e.,δc[k]) for the
stability-optimized and robustness-optimized local controllers.
It is clear that the BMI-optimized solution for theH2-norm
has better performance compared to the one optimized only
for the stability.

D. Robustness Against Nonparametric Uncertainties and Con-
tact Models

The objective of this section is to show that the robust
decentralized control strategy will result in stable walking
motions even if the assumptions made in modeling of the
hybrid system are not met exactly. In particular, we consider
nonparametric uncertainties in the model of the robot. In (45),
the evolution of the robot is described by arigid two-phase
hybrid model consisting of the right and left stance phases as
well as the right-to-left and left-to-right impact models (i.e.,
instantaneous double support phases). This section presets a
continuousand compliant modelto describe the evolution of
the walking motion during the single and non-instantaneous
double support phases [67]. Here, we make use of the LuGre
model [68] to represent forces between the contacting surfaces.
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Fig. 4: Phase portraits for the torso Euler angles and prosthetic
hip angle in the frontal plane during100 consecutive steps
of the rigid simulator by the BMI optimized decentralized
feedback control scheme. Convergence to the orbit is clear.

The flight phase model of the robot subject to these forces is
then integrated as an ODE over time. This has several conse-
quences. First, the evolution of the model subject to compliant
ground reaction forces and non-instantaneous impact models
can be addressed. Second, the robustness of the closed-loop
system to different models of the ground is analyzed.

Figure 6 depicts the phase portraits of the closed-loop
compliant model. Here the simulation starts from the initial
condition of Fig. 4 and the system’s solution converges to
a new stablelimit cycle. The animation of this simulation
can be found at [66]. Unlike the phase portraits of the rigid
simulator in Fig. 4, the new yaw and roll phase portraits of Fig.
6 are not symmetric with respect to the origin. In particularfor
the compliant model, the average yaw and roll angles for the
steady-state walking motion become5 (deg) and−1 (deg),
respectively, which result in typical asymmetry in amputee
locomotion. To describe this motion, we remark that the
compliant dynamic model of the robot has left-right symmetry.
However, the local controller structure of (10) and (11) does
not have the left-right symmetry which may yield the left-right
asymmetry in the presence ofnonparametric uncertainties. In
addition, the design of the orbit and optimized parameters
were from the rigid simulator, i.e., no design of a new
symmetric gait in the compliant model. Finally, we note that
the robot’s hip joints have only2 DOFs, with rotations in the
sagittal and frontal planes, but lack internal/external rotations
in the transverse plane. One possible way to accommodate
asymmetries in the torso yaw angle, arising from uncertainties,
would then be to change the robot’s morphology by having3
DOFs hip joints to include yaw actuation.

E. Imposed Virtual Constraints for the Human Part

In Section VII-B, the iterative BMI algorithm optimized sta-
bilizing local virtual constraints for the human and prosthetic
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Fig. 5: Plot of an additive discrete-time disturbanced[k]
(deg/s) in the velocity components of the impact model and
the correspondingx, y, andz components of the deviation in
the robot’s COM velocity (δc[k] := δvcm[k]) on the Poincaré
section to compare of the performances of the stability- and
H2-optimized decentralized virtual constraints.

leg parts simultaneously. The objective of the present section
is to show that the proposed approach is still capable of finding
a set of stabilizing virtual constraints for the prosthesiswhile
using imposed virtual constraints for the human part that are
known (e.g., through intuition or motion capture studies).In
particular, we assume that the output matrixH1(ξ1) ∈ R

3×6

is known for the human part and the BMI algorithm only
optimizes the prosthesis output matrices (i.e.,H2(ξ2) ∈ R

3×3

andĤ2(ξ2) ∈ R
3×4) to stabilize the walking gait. In this case,

the total number of controller parameters to be determined is
(12+ 9)× 2 = 42 as we need to determine these matrices for
the right and left stance phases. To simplify the example, the
output matrixH1(ξ1) for the human part is chosen intuitively.

Here we study two different scenarios. In the first scenario,
we choose the controlled variablesH1(ξ1) q1 to control the
shape variables for the human part. In particular, the com-
ponents ofH1(ξ1) q1 are defined as the right knee and right
two hip angles. For this choice of theH1 matrix, the BMI
algorithm couldnot converge to any stabilizing virtual con-
straints for the prosthesis. However for the second scenario, we
let the human controlled variablesH1(ξ1) q1 have a feedback
from the torso roll angle in the frontal plane. Then starting
from the stabilizing solution obtained in Section VII-B, the
algorithm successfully converges to a set of new stabilizing
parameters for the prosthesis after2 iterations. Figure 7
depicts the phase portraits for the torso Euler angles and
frontal prosthetic hip angle during100 consecutive walking
steps. Convergence to the periodic orbit is clear. However
compared to Fig. 4, the convergence rate is slower as only the
prosthetic leg controller was optimized to stabilize the gait.
These scenarios demonstrate how the most obvious choice
for controlled variables (the shape variables) does not enable
stability, which demonstrates the benefit of letting the BMI
optimization algorithm determine this. However, one can still
generate stable gaits when parts of the control system are fixed
in a certain way.
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Fig. 6: Phase portraits for the torso Euler angles and prosthetic
hip angle in the frontal plane during100 consecutive steps of
the compliant simulator by the BMI optimized decentralized
feedback control scheme. Convergence to an orbit is clear.

VIII. C ONCLUSION

This paper introduced a systematic numerical algorithm
for the design of decentralized feedback controllers to ex-
ponentially and robustly stabilize periodic orbits for hybrid
dynamical systems arising from bipedal robots. The algorithm
addresses the exponential andH2 robust stabilization problems
of periodic orbits against uncertainties in discrete-timepor-
tions of hybrid models. We assumed a class of time-invariant,
parameterized and local nonlinear controllers in which the
coordination of lower-dimensional hybrid subsystems is done
by a common and measurable phasing variable. It was also
supposed that by employing this class of feedback laws,
the periodic orbit is invariant under the choice of controller
parameters. The algorithm then translated the exponentialand
H2 robust stabilization problems into an iterative sequence of
optimization problems involving BMIs and LMIs. By design,
these optimization problems can be solved with available
software packages. Sufficient conditions for the convergence
of the iterative algorithm to a robust stabilizing solutionwere
presented. To illustrate the power of the algorithm, the paper
employed the algorithm to systematically design a set of
decentralized virtual constraints for walking of an underac-
tuated 3D biped with 18 state variables and78 controller
parameters. The key features of the algorithm are as follows:
(1) it considers a general form of parameterized nonlinear
controllers; (2) the algorithm accounts for underactuation and
impact model uncertainties; and (3) it deals with strong inter-
actions among subsystems without relying on high-gain local
controllers or expensive force sensors. For future research,
we will investigate the scalability of the algorithm and its
capability in stabilizing larger size interconnected systems for
walking of quadruped robots. The current work considered
discrete-time uncertainties, and future work will investigate
robust stabilization of3D walking gaits in the presence of a
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Fig. 7: Phase portraits for the torso Euler angles and prosthetic
hip angle in the frontal plane during100 consecutive steps.
Here the BMI algorithm only optimized the virtual constraints
for the prosthesis while the virtual constraints for the human
part were imposed. Convergence to the periodic orbitO is
clear.

broader range of model uncertainties including continuousand
discrete-time uncertainties.

APPENDIX A
PROOF OFLEMMA 1

For everyγ > 0 and any given square matrixA, ρ(A) < γ
is equivalent toρ( 1

γ
A) < 1 which in turn is equivalent to the

matrix 1
γ
A being Hurwitz. From Lyapunov inequality, this is

also equivalent to the existence of a positive definite matrix
Y = Y ⊤ such that 1

γ2A
⊤ Y A− Y < 0. ChoosingW = Y −1

and pre and post multiplying this latter inequality withW and
applying Schur’s complement lemma result in

[

W AW

⋆ γ2W

]

> 0.

We remark that from the optimization problem (37)-(39),γ <
1. Using this fact, one can chooseγ2 = 1−µ with 0 < µ < 1.
This together with the LMI condition (27), guaranteeingη >
‖∆ξ‖22, completes the proof.

APPENDIX B
PROOF OFTHEOREM 1

For the scalar case,ρ(Â(ξℓ,∆ξ)) = |â(ξℓ,∆ξ)| = |aℓ +
a′ℓ ∆ξ|, whereaℓ := a(ξℓ) and a′ℓ := a′(ξℓ). This reduces
the equivalent optimization problem (37)-(39) to

min
∆ξ,γ

1

2
w γ2 +

1

2
∆ξ2 (46)

∣

∣aℓ + a′ℓ∆ξ
∣

∣ = γ (47)

γ < 1. (48)

By assuminga′ℓ 6= 0 and |aℓ|
w(a′ℓ)2+1

< 1 (see (40)), one can ap-
ply the Lagrange’s multipliers approach to show that the global
optimal solution of (46)-(48) is given byγ⋆ = aℓ

w(a′ℓ)2+1 for

aℓ ≥ 0 or γ⋆ = − aℓ

w(a′ℓ)2+1 for aℓ < 0. Furthermore,∆ξ⋆

becomes∆ξ⋆ = − w aℓ a′ℓ

w(a′ℓ)2+1
which results in the parameter

update law given in (41). It can also be shown thatξ̄ is a
fixed point for the parameter update law (41), i.e.,Q(ξ̄) = ξ̄.
This fact in combination witha′(ξ) 6= 0 for all ξ ∈ B implies
that 0 < dQ

dξ (ξ̄) =
1

w(a′(ξ̄))2+1
< 1 which guarantees the local

exponential stability of the fixed point̄ξ. In particular, there
exists δ > 0 such that for all initial guessesξ0 ∈ B with
the property|ξ0 − ξ̄| < δ,

∣

∣ξℓ − ξ̄
∣

∣ < δ, ℓ = 0, 1, · · · , and
hence,ξℓ ∈ B. This together witha′(ξ) 6= 0 for all ξ ∈ B
and (40) validates our assumptions for extracting the global
optimal solution of (46)-(48) at each iteration. Furthermore,
limℓ→∞ ξℓ = ξ̄. Finally, from the continuity ofa(.), one can
conclude thatlimℓ→∞ a(ξℓ) = a(limℓ→∞ ξℓ) = a(ξ̄) = 0
which in turn implies the existence of0 < N <∞ such that
|a(ξℓ)| < 1 for all ℓ > N .

APPENDIX C
CONSTRUCTIONPROCEDURE OF THEFUNCTION F (a, γ)

To construct the smooth functionF : R
n2 × R>0 →

R
n+1, we apply the Jury stability criterion to the polynomial
1
γnχ(γz), and hence, the first two components ofF are
constructed as follows

F1(a, γ) := − 1

γn
χ(γ) = −det

(

I − 1

γ
A

)

F2(a, γ) := (−1)n+1 1

γn
χ(−γ) = (−1)n+1det

(

−I − 1

γ
A

)

.

The remainingn − 1 components ofF are formed based
on the Jury array. In particular from the Jury array, one
can obtain a set of conditions as|κj(a, γ)| < |κj(a, γ)| for
j = 1, · · · , n − 1. To make the functionF smooth, the
remainingn− 1 components ofF can then be defined as

Fα(a, γ) := κ2α−2(a, γ)− κ2α−2(a, γ) < 0

for α = 3, · · · , n+ 1.

APPENDIX D
PROOF OFTHEOREM 2

If the BMI optimization problem (25)-(28) is feasible during
the iteration numberℓ, we can conclude that

Fα

(

â
(

ξℓ,∆ξ⋆
)

, γ⋆
)

< 0, α = 1, · · · , n+ 1,

whereγ⋆ :=
√
1− µ⋆. Now let us define theerror function

E : Rp → R
n+1 by

Eα (∆ξ) := Fα

(

a
(

ξℓ +∆ξ
)

, γ⋆
)

− Fα

(

â
(

ξℓ,∆ξ
)

, γ⋆
)

for every α = 1, · · · , n + 1. According to the construction
procedure and the fact thatâ(ξℓ,∆ξ) = a(ξℓ) + ∂a

∂ξ
(ξℓ)∆ξ,

∂Eα

∂∆ξ
(∆ξ) =

n2

∑

β=1

∂Fα

∂aβ

(

a
(

ξℓ +∆ξ
)

, γ⋆
) ∂aβ
∂ξ

(

ξℓ +∆ξ
)

−
n2

∑

β=1

∂Fα

∂aβ

(

â
(

ξℓ,∆ξ
)

, γ⋆
) ∂aβ
∂ξ

(

ξℓ
)

.
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This implies thatEα(0) = 0 and ∂Eα

∂∆ξ
(0) = 0 for α =

1, · · · , n+ 1. Straight forward calculations also result in

∂2Eα

∂∆ξ2
(0) =

n2

∑

β=1

∂Fα

∂aβ

(

a
(

ξℓ
)

, γ⋆
) ∂2aβ
∂ξ2

(

ξℓ
)

which in combination with the condition (42) guarantees the
negative semi-definiteness of the Hessian matrices∂2Eα

∂∆ξ2
(0).

In particular, sufficient optimality conditions are satisfied for
∆ξ = 0 being a local maximum forEα(∆ξ), α = 1, · · · , n+
1. Hence, there isǫ > 0 such that for all‖∆ξ‖ < ǫ,Eα(∆ξ) ≤
Eα(0) = 0. If ‖∆ξ⋆‖ < ǫ, this latter inequality implies that

Fα

(

a
(

ξℓ +∆ξ⋆
)

, γ⋆
)

≤ Fα

(

â
(

ξℓ,∆ξ⋆
)

, γ⋆
)

< 0

for α = 1, · · · , n+ 1, or equivalently,ρ(A(ξℓ +∆ξ⋆)) < γ⋆.
Finally, from the equivalent optimization problem (37)-(39),
γ⋆ < 1 which completes the proof ofA(ξℓ + ∆ξ⋆) being a
Hurwitz matrix.

APPENDIX E
PROOF OFTHEOREM 3

The proof is similar to that presented for Theorem 2 in
Appendix D. We only need to extend the smooth function
F (a, γ) as proposed in the following lemma.

Lemma 2:For a given quadruple(A,B,C, 0) with the
matricesA ∈ R

n×n andB ∈ R
n×n, there is a smooth function

F̄ : Rn2 × R
n2 × R>0 → R

n+2 such that

F̄α (a, b, µ) < 0, α = 1, · · · , n+ 2 (49)

is equivalent to 1. the matrixA being Hurwitz, and 2. theH2-
norm of the transfer function corresponding to the quadruple
(A,B,C, 0) becomes less than

√
µ.

Proof: From Appendix C, the matrixA being Hurwitz is
equivalent toF (a, 1) < 0. For a Hurwitz matrixA, it is well-
known that theH2-norm of the transfer function corresponding
to the quadruple(A,B,C, 0) can be computed numerically as
follows

‖Tdc(z)‖2H2
= trace

(

B⊤WoB
)

, (50)

whereWo is the observability Gramian satisfying the Lya-
punov equationA⊤WoA − Wo = −C⊤C. Consequently,
one can define the smooth scalar functioñF (a, b, µ) :=
trace

(

B⊤WoB
)

− µ such thatF̃ (a, b, µ) < 0 is equivalent
to ‖Tdc(z)‖2H2

< µ. Finally, F̄ (a, b, µ) can be constructed as
follows

F̄ (a, b, µ) :=

[

F (a, 1)

F̃ (a, b, µ)

]

∈ R
n+2. (51)

The proof of Theorem 3 can be completed by defining an
error function as

E(∆ξ) := F̄
(

a
(

ξℓ +∆ξ
)

, b
(

ξℓ +∆ξ
)

, µ⋆
)

− F̄
(

â
(

ξℓ,∆ξ
)

, b̂
(

ξℓ,∆ξ
)

, µ⋆
)

and following the steps of Appendix D and Remark 6.
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