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Decentralized Feedback Controllers for Robust
Stabilization of Periodic Orbits of Hybrid Systems:
Application to Bipedal Walking
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Abstract—This paper presents a systematic algorithm to design easily transferred to powered prosthetic legs, which act as
time-invariant decentralized feedback controllers to expnentially  decentralized subsystems. Furthermore, a substantigi dod
and robustly stabilize periodic orbits for hybrid dynamical research in neurophysiology suggests that there is a geaét d

systems against possible uncertainties in discrete-timehpses. . . . . .
T}Qe algorit%m asgumes a family of parameterized and gecen_ of hierarchical structure and locality of control in botlsétt

tralized nonlinear controllers to coordinate interconneded hybrid ~ and mammalian walking [23]. Although powered prosthetic
subsystems based on a common phasing variable. The exponiaht legs already use decentralized feedback controllers based
and . robust stabilization problems of periodic orbits are tracking reference joint torques [24], kinematics [25], or
translated into an iterative sequence of optimization protems impedances [26] to resemble human behavior, thirse-
involving bilinear and linear matrix inequalities. By inve stigating - . . |
the properties of the Poincaé map, some sufficient conditions varying and l'nea_r Contro! methods require different Cont_ml
for the convergence of the iterative algorithm are presente. The Parameters at different time periods to handle the noniinea
power of the algorithm is finally demonstrated through designing  dynamics of the gait cycle. The resulting “finite state ma-
a set of robust stabilizing local nonlinear controllers forwalking  chine” requires clinicians to spend significant amountsroét
of an underactuated3D autonomous bipedal robot with9 degrees tuning each controller to a patient [27] and risks instéypili
of freedom, impact model uncertainties, and a decentraliz@on .

when perturbations cause the wrong controller to be used at

scheme motivated by amputee locomotion with a transpelvic . e . .
prosthetic leg. the wrong time [28]-[30]. The limitations of this sequehtia

Index Terms—Decentralized Nonlinear Control, Hybrid Peri- cont_rol method could possi_bly be ad_dresse(_j by the unifying
odic Orbits, Underactuated 3D Bipedal Robots. nonllnear co_ntrollers used in dynamlc walking robo'_ts, but
their centralized feedback architectures would requiegest
measurements from both the prosthesis and human body, i.e.,
two interconnected subsystems. These key roadblocks @ coo

HE objective of this paper is to present a systematirative human-machine walking necessitate the applicatio

algorithm, based on an iterative sequence of optimizgecentralized nonlinear feedback control and therebynlinde
tion problems, to design time-invariatécentralizedeedback the importance of having algorithms to systematically gesi
controllers to exponentially and robustly stabilize pdi@ these controllers.
orbits for hybrid dynamical systems. The algorithm assumeswhile the problem of designing decentralized controllers f
a parameterized family of local nonlinear controllers whiclarge-scale complex systems is well studied in the litegatu
provides cooperation among interconnected subsystentein [31]-[33], existing results are tailored for stabilizaticof
presence of uncertain discrete-time phases. It can prpvabfuilibrium pointsof ordinary differential equations (ODEs)
stabilize walking gaits of underactuaté® bipedal robots andnot periodic orbits of hybrid dynamical systems [34]-[37].
composed of interconnected subsystems with impact mod&ggnificant complexity in the design of decentralized cohtr
uncertainties. schemes for dynamical models of legged robots arises frem th

Previous work on robotic walking made use of multihigh dimensionality, strong interactions among subsysfem
level centralizednonlinear feedback control architectures teinderactuation, and hybrid nature of these models. In iaddlit
stabilize periodic orbits [1]-[22]. One drawback of emplay the most basic tool for analyzing the stability of periodibits
centralized controllers is that these controlleannot be of hybrid dynamical systems, the Poincaré return map [2],
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acommon phasing variabl&Ve investigate nonlinear stability hybrid models of walking and develops the decentralized
tools for hybrid systems to formulate the problem of designi feedback control scheme. The exponential and robust stabi-
decentralized nonlinear controllers as an iterative secgi®f lization problems are presented in Section lll. The itgmti
optimization problems involving Bilinear and Linear Matri BMI algorithm for exponential stabilization is developed i
Inequalities (BMIs and LMIs). By design these optimizatioisection IV. Section V extends the BMI algorithm for ti&
problems will be solved with available software packagesontrol problem. Sufficient conditions for the convergente
Some sufficient conditions for the convergence of the itezat the algorithm are presented in Section VI. Section VII aggpli
algorithm will be presented. The key features of the progosthe results to the hybrid models of walking and presents
algorithm can be summarized as follows: (1) it addressesdatailed numerical simulations. Section VIl finally prase
general form of parameterized decentralized nonlinear caeome concluding remarks.
trollers; (2) it deals with underactuation and impact model
uncertainties; and (3) the BMI optimization problem takes Il. HYBRID MODEL
into account the interactions among the cooperative subsysWe consider single-phase hybrid dynamical systems arising
tems while searching for the robust stabilizing decerteali from bipedal walking as follows
co_ntrollers, preventing the need to.employ impracticallhhig { b= f@)+g@)u, z-¢8
gain local controllers [28], asymptotic observers, or exqghee : L B B
force sensors [30] to deal with interactions. e’ = A7) +d, T €S,
Our previous work employed the BMI optimization framein which z € X andu € U/ denote theglobal state variables
work for the systematic design of centralized nonlineadfeeand global continuous-time control inpytsespectively. The
back controllers for bipedal robots [41]-[43] and expefime global state manifoldand theglobal set of admissible control
tally validated the theoretical results on the underaeidD inputs are represented byt ¢ R™ and &/ c R™ for
bipedal robot ATRIAS with point feet [44], [45]. Referencesome positive integers andm. The evolution of the system
[43] also investigated the centralizéld., feedback design during the continuous-time phase is described by the ODE
problem without formal mathematical proofs. The BMI algos = f(z)+g(x) u, in which the drift vector fieldf : X — TX
rithm of [41] for designing centralized control problemssvaand columns ofg are assumed to be smooth (i.€5°).
not iterative, whereas we have observed that for decentraliZBd also denotes the tangent bundle of the state manifold
control problems the BMI algorithm must be applied in at¥. The discrete-time portion of the hybrid system is also
iterative manner to converge to a stabilizing solution. Thigepresented by the instantaneous mappifig= A(z™) + d,
underlines the importance of (1) developing iterative BMivhere A : X — X is a(C™ reset mapd € D is an
algorithms and (2) analyzing the convergence of the itegatiunknown and bounded discrete-time disturbance inpnt
algorithms. Furthermore, [41] didot consider#, feedback z~(t) := lim, ~ x(7) andz™(t) := lim,, z(7) denote the
design problems. The current paper presents a systemaitic kfit and right limits of the state trajectory(t), respectively.
iterative BMI algorithm for the design of decentralized feedThe set of admissible disturbance inpusc R™ is taken as
back controllers. In particular, a novel class of deceizieal a bounded, connected and open neighborhood of the origin.
feedback controllers is first developed and then the BMI #amThe switching manifoldS is then represented by
work is extended to the exponential aHd robust stabilization o B
problems of periodic orbits with mathematical proofs foe th §:i={r e X[s(x) =0, o(x) <0}, (2)
convergence to stabilizing solutions. Finally to demaatstr on which the state solutions of the hybrid system undergo
the power of the algorithm, we control the walking gait ofin abrupt change according to the re-initialization rute=
a 3D autonomous bipedal robot with 9 degrees of freedofs(z~) + d. In addition,s : X — R is a C* real-valued
(DOFs) and 6 actuators. The robot’s model includes a two-pawitching functionwhich satisfies3s (z) # 0 for all = € X.
decentralization scheme corresponding to a transpelije (frinally, o : & — R is a C* real-valued function such
disarticulated) amputee walking with a robotic prosthétig. that o(z) < 0 determines feasible switching events. The
A byproduct of this work is the first known control strategysolutions of the hybrid system (1) are constructed by pgcin
for a powered3-DOF transpelvic prosthetic leg. together the flows of the continuous-time phase such that the
Some parts of the BMI algorithm for the exponential stabre-initialization rule is applied when the flows intersebet
lization problem of decentralized controllers were préseén switching manifold. For the purpose of this paper, the sohst
in the preliminary work [46] without dealing with modelare also assumed to be right continuous.
uncertainties. The current paper extends the BMI algoriinm Remark 1:To simplify the analysis and design procedure of
address theé{, robust stabilization problem against externalecentralized feedback controllers, we consider sinpkesg
disturbances and uncertainties in the impact model, whiblybrid dynamical systems. Section VIl will extend the ais&y
is known to be the most uncertain or inaccurate portion fé® hybrid models of robot walking with two continuous-time
hybrid models of walking. It also presents sufficient coiodis phases including the right and left leg stance phases.
for the proof of convergence in the extended BMI algorithm.
To demonstrate the robustness, the paper numerically -evdiu Interconnected Hybrid Subsystems
ates the biped system’s performance in two simulators withThroughout this paper, we shall assume that the hybrid
different contact and impact models. model (1) is composed ofwo interconnected hybrid sub-
This paper is organized as follows. Section Il presensystemsY; and X, in which thelocal state variablesand

1)
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Local Controller

local control inputsfor the subsystenX; are represented by

x; € X; andwu; € U;, respectively. In our notation, the sub-
scripti € {1, 2} denotes the subsystem number. Furthermore.
X; ¢ R andi; ¢ R™ are thelocal state manifoldand
local admissible set of control inpulisr some positive integers
Uy T

n; and m; such thatn; +ns = n and m; + mes = m.
Our motivation comes from biomimetic control of powered [ Ty (21,0(@), £1)
prostheses for which the typical model may consist of two ) )
interconnected subsystems including the “human” body anc He(m)
“prosthetic” part (see Fig. 1). Without loss of generalitye ~
assume that the global state variables and global conpatsn
can be decomposed as= (z{,z5)" andu = (u{,uj)"
which result inX = X x X5 andid = Uy xUs. In our notation,
“T" denotes the matrix transpose. ) )
Remark 2:Although the analysis and design procedure &g L1 II.Iustratlon of the local subsystems and. _proposed
local controllers are presented for hybrid systems cormgis dec_ent_rallze_d feedb_ack contro! scheme for stab|I|z§t|d)n 0
two interconnected subsystems, the results can be exteadeBeriodic orbits for bipedal walking. The subsystem (i.e.,

systems comprising multiple subsystems, including deabnt Prosthetic part), shown by the dashed ellipse, includes the
ized control of multi-legged robots. degrees of freedom and actuators for the left IEg. (i.e.,

human part) consists of the rest of the model.

W

ontroller

B. Transversal Period-One Orbit

Throughout this paper, we shall assume that there istfe gobal variabler(z) = 7(x1, z2) is said to beneasurable
period-one orbitO for the hybrid model (1)n the absence ¢, he subsysteny; if there are sensors to measure it along
of the external disturbance input (i.€.= 0), and this orbitis e solutions of the subsysted;. For the purpose of this
transversal to the switching manifol§l. This becomes more paper, we make the following assumption.

clear in the_ following assumption: i , Assumption 2 (Measurable Global Variabled)he set of
Assumption 1 (Transversal Period-One Orbifjhere exist measurable global variables for the subsys®mi ¢ {1,2},
a bounded period™ > 0 (referred to as thdundamental can be written in the following chain form

period), nominal smooth local control inputs' : [0, 7] — U;
for i € {1,2}, and anominal smooth global state solution _ . /T T L r=DT T ru;
¢* : [0,T*] — X such that (1) the continuous-time phase i(2) = (% (@), %5 (@), o4 (x)) R, ()

ODE is satisfied, i.e., for some smooth measurable global variabg) € RV and
O*(t) = f(@*(t)) + g (™(t)) u*(t), 0<t<T* (3) some positive integers; > 1 andr > 1. We further assume

* * T — that the control inputu doesnot explicitly appear in the
t)¢S, 0<t<T* and %) e S, 4 . ' — 1
s ¢ - o (T) o ( ) equations of; (z), ¢ (z), - --, andy!"V(z) := Ly, (x).
wherew*(t) == (ui"(t),u3" (t))", (2) theperiodicity condi-  Example 1:In this paper, we study the available measurable

tion is met in the absence of the external disturbance in%{bbaj variables for the case of a transpelvic amputee and
d, that is, ¢*(0) = A (¢* (T™)), and (3) thetransversality hip-knee powered prosthesis shown in Fig. 1. Without loss
condition holds, i.e.,$ (T*) := 22 (¢* (T*)) ¢* (T*) # 0. of generality we assume that subsystefsand ¥, represent
Then, the human and prosthetic leg parts, respectively. We furthe
O={z=9¢"(t)|0<t<T"} (5) suppose that the local state variables include the global

is aperiod-one orbitfor the hybrid model (1) corresponding goorientation of the human part with TeSpeCt to the world
d = 0. Furthermore, according to the construction procedur%?me (assumed to_ come from the vestibular system),_whereas
the local state variables, only include the shape variables
{2} :=0NS = {p* (T} (6) for the prosthetic part. We therefore must utilize inertial
measurement units (IMUs) for measurement of orientation
in the prosthetic leg controller. Since the global orieptat
) is implicitly included in local state variables,, the set of
C. Class of Decentralized Feedback Controllers external measurable global variables for the subsysierman

The objective of this section is to present the proposed dee chosen as empty, i.elj;(z) = (). However, we assume
centralized feedback control structure to stabilize theopéc  that the prosthetic orientation measurements come from two
orbit O for the hybrid model (1). In our proposed structurdMUs attached to the thigh links: one on the human thigh
the local feedback controllers aparameterizedand general and the other on the prosthetic thigh. The set of measurable
nonlinear feedback lawshich have access to their own localglobal variablesl;(x) for ¥, can then be chosen as the Euler
measurements (i.e., local state variablgsas well as aubset angles iny(x) and their first-order time-derivatives; ()
of measurable global variableGlobal variablesare defined provided by these IMUs, i.eWy(z) = (¢q (), (z))".
as quantities which are dependent on the global state V@siabHere r is taken as2 due to the second-order nature of the

is a singleton, in whictO denotes the set closure 6.
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dynamics. This example will be clarified with more detailslanSections IV and V for exponential and robust stabilization
numerical simulations in Section VII. The use of two IMUf the periodic orbitO, respectively. In addition®; C RP:
by the prosthesis will allow the BMI optimization algorithmdenotes thdocal parameter spacéMe remark that the local
to more easily find robust stabilizing decentralized feettbacontrollers of (9) depend otwo different sets of measurable
controllers in Section VII-B. There is precedence for wegri global variables. The first set includé€gz) which is common
sensors on the sound leg in prosthetic control methods [4i],both subsystems and composed of the phasing vaidéb)e
[48]. and its time-derivatives up to the order— 1 to coordinate

In order to coordinate the action of local controllers ithe local controllers on the periodic orbit. The second set
the proposed structure, we then make use o€oenmon includes the individual measurable global variablegz) to
phasing variable that is measurable for both subsystEms improvethe robust stability of the periodic orbit. For instance
and X,. The phasing variableis a smooth and scalar globalin Example 1, the prosthetic leg controller may improve the
variable which is strictly monotonic (i.e., strictly in@sing or gait stability by having access to the Euler angles and their
decreasing) along the desired periodic oitWe make this first-order time-derivatives provided by two IMUs attactted
idea more clear in the following assumption. the thigh links.

Assumption 3 (Measurable Phasing Variabl@here Remark 3:For the case of Example 1, mathematical models
exists a smooth and scalar global variat(e), referred to as for the local controller of the human part are not known.
the phasing variable, which satisfies the following cowdisi However, for the purpose of this paper, we assume that the

1) (z) is strictly monotonic along the periodic orl. local controller for the human part is phase-dependent
2) The control inputu does not explicitly appear in the nonlinear controller in a similar manner to [30]. Furtheneo
equations of(z), f(x), - - -, andd" =V (z) := 3;119(17)- evidence suggests that the phase-dependent models can rea-
3) The sequence of(x) and its time-derivatives up to thesonably predict human joint behavior even across pertiantet
orderr — 1, i.e., [49]. Consequently, it is better to show the local contrsllef
T (9) in the following form:
O(z) == (0(z),0(z), - 0" V(z eR” (8
(@) ( (@), 8(z) ( )) ®) uy =T (21,0(2),&1) (10)
is measurable foboth subsystem&:; and . ug =Ty (z2,0(z), Us(z), &), (11)

From item 1 of Assumption 3, the phasing variable can

replace time which is a key to obtaining time-invariant de2écause the orientation is includedn and the local con-
centralized feedback controllers. In particular, the pigs troller for the human part does not have access to the data fro

variable represents the progress of the system (i.e., yaiot the two IMUs, i.e, W, (z) = 0. To have a unified notation,
the periodic orbit (i.e., walking gait). Reference [39] fso however, we make use of (9) for the remainder of this paper.

that the existence of a phasing variable follows directynfr Ve remark that the objective of this paper is to show that the
Assumption 1 on the periodic orbit. Item 2 states that tH@cal feedback control structure of (10) and (11) is capable
phasing variabled(z) and the individual measurable globaPf Producing exponentially/robustly stable underactdab
variablesy; () for i € {1,2} have the same relative degre®iP€dal walking gaits.
r with respect to the control input. The reason for this
assumption will be clarified in Section 1I-F2. From item 3D. Closed-Loop Hybrid Model
O(z) forms a set of global variables measurable for both
subsystems; and ¥; to coordinate the local controllers. . . .

o . . . . trollers of (9), the parameterized family of closed-loofbtig
This item is not restrictive for models of bipedal walking. | .

. i . X models becomes (see Fig. 2)

particular, one can define a proper phasing variable based on

By employing the parameterized and local nonlinear con-

the absolute stance hip angle in the sagittal plane. Thikang o T = f°'(x,§), x= ¢S

6 and its first-order time-derivativé may be measured for S Az, 6)+d, €S (12)

the subsystent, by the IMUs attached to the thigh links o ’ ’

in Example 1. It is further reasonable to assume that this which ¢ = (¢,6))T € £ € RP, E = = x Ey,

angle is available to the human (i.e., subsystém through and p := p; + p» = dim(¢). Furthermore,f%(z,¢) =

proprioception. f(z) + g(z)T(z,&) represents the closed-loop vector field,
Now we present the class of parameterized local controllesere I'(z, ¢) := (I'[,T) T is the global feedback control

as follows: law.
o _ _ X Remark 4:In the closed-loop hybrid model of (12), the

ui =T (@i, O(z), ¥il), &) i € {12}, ©) reset mapA is also parameterized by the local controller
in which T'; : X; x R" x R™ x Z; — U; is a smooth parameters. The reason for this parameterization is to extend
and nonlinear feedback law of local state variahlgsthe the analysis to multi-phase hybrid systems in Section \Al. |
common measurable global variablégz), the individual particular, these hybrid systems can be written in the fofm o
measurable global variablds;(x) for the subsystent;, and (12), in which the reset maf: is the composition of the flows
stabilizing local parameterg; € Z,;. In our approach{; for the remaining continuous- and discrete-time phases [50
for i € {1,2} are sets of adjustable parameters which wifProposition 4]. HenceA includes the controller parameters
be tuned offline using the BMI optimization algorithms ofmployed during the remaining continuous-time phases.
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at =A(z7,€) +d in which
e ui (0) = ui (t) li=o-1(0)

for i € {1,2} represents thiocal feedforward controllerand
ur(t) is the nominal local control input for the subsystem
Y, defined in Assumption 1. Furthermor@, = 6(¢) and
t = 0 '() denote the time evolution of the phasing variable
on the desired periodic orbi® and its inverse function,
respectively. The desired evolutions of the local statéabdes
x; and individual measurable global variabMs on the orbit
Fig. 2: lllustration of the closed-loop hybrid model (12)0 versus the phasing variabfleare also represented Wi(“’) .

. , . and Vg ,(0). We note the local state-dependent gain matrices
and Poincaré return map [43]. The solid and dashed curv, e X T .

e R™ix"i and K;» € R™i*" are parameterized by

correspond to the flows of the continuous- and discrete-tirme:’e1 local parameters. It can easily be shown that the
dynamicsi = f%(z, &) anda™ = A (z7,€) +d, respectively. P i ily W

The uncertainty in the discrete dynamics is shown by thed:loboCal _c_ont_rollers of (1.6) satisfy the continuous-time inaace
condition in Assumption 4. We further remark that for theecas
around the dashed curve. .
of amputee locomotion¥;(x) = @, and hence, one needs

to chooseKs(x1,&1) = 0 to get the structure of the local

For later purposes, the unique solution of the smooth aﬁantm”er given in (10). ]
parameterized ODE = f%(z, &) with the initial condition 2) Local Output RegulatorsiThe second family of con-
2(0) = z is given byz(t) = o(t, zo, &) for all £ > 0 in the trollers includes local output regulators. In particuliar, the
maximal interval of existence. Theéme-to-switching function SuPsystem>;, one can define parameterized local output
T:X xZ — Ry is also defined as the first time at whicHunctionas follows:

the flow ¢ (¢, xo, £) intersects the switching manifolf, i.e., yi (20, 0(2), Wi(2), &) = Hy(&) (25 — 24,0 (0))

T(xo,&) :==1inf {t > 0] p(t,20,&) € S}. (13) + H;(&) (¥ — 144(0)) (")

E. Invariant Periodic Orbit in which dim(y;) = dim(u;) = m;, and H;(§;) € R™i*™

Throughout this paper, we shall assume that the paramefdd#7:(&:) € R™ """ areparameterized output matricés be

ized family of local feedback laws in (9) preserves the mido d€termined. Herejq;(#) denotes the desired evolution of the
orbit in the sense that the ortgit is invariant under the choice Ndividual global variable); on the periodic orbi© versus the

of controller parameters. This assumption becomes mordhasing variablé. We assume that these outputs have relative
clear as follows. degreer with respect to the control input on the periodic

Assumption 4 (Invariant Periodic Orbit)tt is assumed that OPit O for all ¢ € =. Then, the paramete;ized family of local
O is an invariant periodic orbit for the closed-loop hybri®UtPut zeroing controllers can be chosen as
model (12) under the choice of controller parametgrdn *
el (12) . . r parametersn - p (4, 0(x), Wilx), &) = ul(60)
particular, the following continuous- and discrete-timeairi-

ance properties are satisfied: 1 . 18
Prop 579 =D @) [ Do kiu | 4o
8—5(17,5) =0, Y(z,§) cOxE (14) /=0
0A _ where D;(x;, &) € R™i*™i is a smooth and invertible local
3_5 (a*,€) =0, VE€E. (15) (lower-dimensional) decoupling matrix, and constakhsfor

Assumption 4 allows us to employ the BMI optimizatio
algorithms of Sections IV and V to search for stabilizin
parameterg without changing the desired orlfl.

AT+ B\ + ko becomes Hurwitz. The family

f local feedback laws in (18) represents an approximation
for the centralized input-output (I-O) linearizing corltens
of [51]. According to the construction procedure, the local
F. Examples of Local Feedback Controllers output functiony; and its time-derivatives up to the order 1

The objective of this section is to present two importavianish on the desired periodic orldit, and hence, this family
families of local feedback controllers satisfying the ingace of controllers satisfies the invariance condition of Asstiomp

assumption. 4. Finally, one can choosH; = 0 to get the structure of the
1) Local LQR Controllers: The first family of feedback |ocal controller given in (10).
laws can be taken as local LQR controllers given by

é_ 0,1,---,7—1 are chosen such that the polynomiél-+

T (z;,0(x), ¥ (2),&) = 1W§ remark ;hatg/,gj) = % is a function ofz;, (,0,---,0()) and
T; — T (9) (16) (Piy iy -+ ,wg”) forallj =0,1,--- ,r—1. This underlines the importance
ur(0) — [Kzl(xl,gz) Klg(:cz,&)] ! "’ , of having (6,6, --- ,0("=1) and (¢;, ¥, - - - ,1/;,5’"71)) measurable for the
v, — ‘I/d,i(e) subsystenm®:; in Assumptions 2 and 3.
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I1l. STABILIZATION PROBLEM iteration number. The objective is then to converge to a set

The objective of this section is to present the exponentf@ parameterff that solves Problems 1 and 2. This section
and robust stabilization problems of the desired periodiito d€als with the exponential stabilization problem. Section
O for the closed-loop hybrid model (12). For this purpose,vx)é“" extend the algorithm for robust stap|llzat|on. In what
make use of the method of Poincaré sections. By taking tfilOWs, we present the steps of the algorithm.
Poincaré section as the switching maniféidthe parameter-
ized Poincaé mapP : X x = x D — X is defined by

P(z,6,d) = (T (A(2,6) +d,&), A(x,8) +d,§), (19) A Step 1. Sensitivity Analysis

which describes the evolution of the system &raccording  During the iteration numbef € {0, 1, - -}, the sensitivity
to the following discrete-time system (see Fig. 2): analysis replaces the Jacobian matrid¢s’ +A¢) and B(¢4 +
A¢) with their first-order approximations based on the Taylor
D { zlk + 1] = P (z[k], &, dk]), k=01, (20) series expansion, that is,

clk] = c(z[k]) .
Here, {d[k]}?2, acts as a sequence of unknown disturbance A +A8) ~ A(E") +A(E") (I, ® Ag)
inputs. Furthermore¢[k] denotes aset of smooth discrete- =A (gf,Ag) (23)
time controlled variablesAccording to Assumption 4g* is y) N y) = p
aninvariantfixed point for P in the absence of the disturbance B (5 * Ag) - B (i) B (6 ) (In @ A
input, i.e., =:B (¢, Af) . (24)
P(z*,£,0) =a*, VEeE. (21)

ere,A¢ € R? is a sufficiently small increment in controller
arameters/,, is the identity matri>g of the qrdérn, “Q"
represents the Kronecker product, ah@*) and B(¢) denote
_oP oP , , the sensitivity matrices with respect & evaluated af = ¢°.
dzlk +1] = o @ ,€,0) dzlk] + a4 @ ,€,0) dlk] Systematic numerical approaches to calculate the seiysitiv
IP E=0,1,--- matrices based on the continuous-time ODE and reset map
Sclk] = C oa[k] have been presented in [41, Theorems 1 and 2].

(22) The sensitivity analysis returns approximate Jacobiamimat
wheredz[k] := x[k] — z*, dc[k] := c[k] —c¢*, ¢* := c(x*), and ces with closed-form expressions, which are affinéi) and
C:= %(w*). then translates the stabilization problem into an apprakm

Problem 1 (Exponential Stability)The problem of expo- one that is easier to solve through a set of LMIs and BMls.
nential stabilization of the periodic orli? consists of finding  Problem 3 (Approximate Exponential StabilityJhe prob-
the controller parametegs= (¢{ ,&; ) " such that the Jacobianlem of approximate exponential stabilization during thezat
matrix 2& (2*,¢,0) becomes Hurwitz. tion number? consists of finding the increment in controller

Problem 2 (Robust Stability)The problem of robust sta- parametersA¢” such that the approximate Jacobian matrix
bilization of the periodic orbitO consists of finding the A(¢f, A¢’) becomes Hurwitz.
controller parameterg such that 1. the Jacobian matrix
%—I; (z*,&£,0) becomes Hurwitz, and 2. the effect of the distur-
banced[k] on dc[k] is attenuated.

Sections IV and V will solve the exponential and robud®. Step 2: BMI Optimization Problem
stabilization problems, respectively. For later purposes o o )
define the compact notations for the Jacobian matrices ad N objective of the BMI optimization problem during the
A®E) = %_1:(:6*’5’0) and B(¢) = %—5(:6*,5,0) for which iterationZ € {0,1,- --E} is to search for t_he increment in con-
there arenot in general closed-form expressions. troller par_ameterég such that the requwe_me_nts_of Problem 3

are satisfied. We make use of the BMI optimization framework
of [41, Theorem 1] to make the approximate Jacobian matrix
A(gf, A€Y) Hurwitz. However, unlike [41], we apply the BMI

This section creates a systematic numerical algorithm ¢ptimization in an iterative mannerIn particular, we set
overcome specific difficulties arising from the lack of a €@ds up the following optimization problem during the iteration
form expression for the Poincaré map in tuning the decen-
tralized feedback controllers of Section II-C. The aldurit _ _ o
is presented based on an iterative sequence of optimizatioff ' the closed-loop hybrid model (12), the Poincaré mamiact an

. n — 1 dimensional return map which maps the system’s state framth 1
problems to tune the parameters of the decentralized fe&dbgmensional switching manifold back toS. Hence, A(€) is an (n — 1) x
control structure of (9), i.e& = (&,& )T, such that the (n — 1) matrix. However to simplify the notation for the remaining the

desired orbit©® becomes exponentially/robustly stable. Oupaper we assume thak(¢) is n x n. .
We have observed that for decentralized control problenes B

iterative algorithm deSignS _a sequence of controller patars optimization algorithm must be applied iteratively to cerye to a stabilizing
{€%}, where the superscript € {0,1,---} represents the solution.

Linearization of the discrete-time system (20) aroun
(x*,d*) := (z*,0) then yields

IV. ITERATIVE BMI ALGORITHM
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number/: Jacobian matrixfl(gl, A&Y) becomes Hurwitz, and 2. thk,-
. 25 norm of the transfer functioffy;.(z), relating the disturbance
R (25) " input d[k] to the controlled outputsc[k] in the approximate
ot w A (éf,Aﬁ) W - 6 linearized model ) )
- « (-pW [k =4 (&5, A") oxlk] + B (&', AEY) d[k]
I, Ac 0P : k=0,1,---
>0 (27) dclk] = C dx[k],
o (30)
w >0, (28) becomes less thayyu. That is,

in which W = WT € R"*" is a positive definite matrix, and T2 = L[
1 > 0 is scalar to tune the spectral radius of¢’, A¢). The Taclly, = o /_F

matrix inequality (26) represents a BMI condition becauke o (31)
the product ofA(§f7A§) andW. Using Schur’s complementwhere “trace” and the superscript® denote the trace and
lemma, it can be shown that(5z[k]) := dxz[k] W 'éz[k] is conjugate transpose of a matrix, respectively.

a Lyapunov function for the approximate model[k + 1] = To solve Problem 4, we then replace the BMI optimization
A(gf, A€)ox[k] which satisfiesV [k + 1] — V[k] < —uV[k]. problem in Step 2 of the iterative algorithm with the exteshde
It can also be shown thayT — 1 is an upper bound for the one as follows:

spectral radius ofl(¢¢, A¢). Finally, (27) is an LMI condition .

in which using Scr(wur’s C())mplement lemma, one can consider W,ZI?X?,#WU)M tn (32)

trace(T}! (%) Tue (€7*)) dw < 4,

n as a dynamic upper bound f§A¢||3, that is,n > [|A&]]3. (W A(ELA W B (¢ Ag)
The cost function then tries to minimize a linear combinatio
. " A . * W 0 >0 (33)
of —u andn with the positive weighting factow to improve
the spectral radius and to have a good approximation based L * * I
on the truncated Taylor series expansion in (23). ‘W cz
>0 (34)
* A
C. Step 3: Iteration :I Ag
Let (W*, A¢*, u*,n*) represent docal* minimum for the >0 (35)
BMI optimization problem (25)-(28). Next, definA¢é = RO
A¢* and update the controller parameters as follows trace(W) < u, (36)
el = ¢t 4 ALl (29) inwhichW =WT, Z=2T, A¢, u, andn are new decision

) ) o variables. In additionA¢? in Step 3 of the algorithm is set
If the requirement of the real exponential stabilizatioalgem Ag*, where A¢* denotes the local optimal solution of the
(i.e., Problem 1) is satisfied "’ﬁ - ¢ ! the aIgonthr_n IS problem (32)-(36). From [52, Lemma 1], the BMI condition
successful and stops. Otherwise, it continues by coming bggsy i combination with the LMIs (34) and (36) are equivalen
tcz+81tep 1 (Se_nS|t|V|ty Analysis) around the updated paramset; ihea matrix/l(g",Ag) being Hurwitz and|Ty.[2,, < 1. In
" and going through the next steps. In case the BMlyjiion, similar to the BMI optimization problem (25)-(28

pptimization problem of Step 2 is_ not feagible, the algor_it_h the LMI condition (35) presents the dynamic upper bound
is not successful and stops. Section VI will present su‘ﬁilme77 on ||A¢|2 to have a good approximation based on the

conditions for the convergence of the algorithm to a stzibigj truncated Taylor series expansion in (23) and (24). Finally

solution. the cost function minimizes a linear combination of the
control parametep, and the dynamic upper boung with
V. ROBUST STABILIZATION the positive weighting factorw. One can stop the extended
The objective of this section is to extend the iterative BMiterative algorithm when 1. the real Jacobian matig¢‘*)
algorithm of Section IV to address the robust stabilizatiopecomes Hurwitz, and 2. ti;-norm of the transfer function
problem of the periodic orbit. In particular, after finding relatingd[k| to dc[k] in the real linearized model (22) is less
an exponentially stabilizing decentralized feedback knt than a desired value.
solution, one can apply the extended algorithm to improee th
robust stability behavior. For this purpose, we first define a/|. SurrFICIENT CONDITIONS FOR THECONVERGENCE OF
approximate robust stabilization problem during the tiera THE BMI A LGORITHMS
¢€{0,1,---} as follows.
Problem 4 (Approximate Robust StabilityJhe problem of
approximate robust stabilization consists of finding therea
ment in controller parameters¢? such that 1. the approximate

The objective of this section is to present sufficient condi-
tions under which the iterative BMI algorithms stabilizesth
periodic orbitO for the closed-loop hybrid model (12) at a
finite number of iterations. These conditions are expressed

4More details about local solutions of the BMI optimizatioroplem (25)- in terms of the first-, second-, or third-order derivativds o
(28) will be presented in Section VII-B. the Poincaré map. The exponential stabilization problem i
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first investigated in Theorems 1 and 2. Then, the results aveighting factorw > 0. Furthermore for sufficiently large
extended to thé{, control problem in Theorem 3. For thisw, one can show that the recursive law (41) reduces to the
purpose, we presentremn-smoottoptimization problem which Newton’s method, i.e &1 = ¢¢ — j(g}).
is equivalent to the BMI optimization problem (25)-(28). We '
remark that we donot numerically solve this non-smooth
optimization problem during the iterative algorithm. Howee
we make use of it for the proof of convergence.

Lemma 1 (Equivalent Non-smooth Problenthe BMI
optimization problem (25)-(28) is equivalent to the foliogy
non-smooth problem

B. Multi-Dimensional Case

For the multi-dimensional case (i.e:, > 1), there isnot
a closed-form expression for the global/local optimal Solu
of the BMI optimization problem (25)-(28) or the equivalent
problem (37)-(39) to investigate the sufficient conditidos
the convergence of the algorithm similar to those presented

min 1w72 + 1 | Ag||2 (37) in Theorem 1. However, from Lemma 1 we can still present
& 2 an alternative set of sufficient conditions based on the epinc
st p (A (54’ Ag)) <~ (38) of convexityto guarantee the convergence of the algorithm at
a finite number of iterations. In particular, we guarantez th
v <1 (39) stability of the real Jacobian matrix during the iteratios 1
in which p(.) denotes the spectral radius of a matrix. based on some mild conditions on tlbeal optimal solution of
Proof: See Appendix A. m the BMI optimization problem during the iteratidn To make

For later purposes, let us definét) := veq A(¢)) € R»”, this notion more precise, let(z) := det(zI — A) denote the
in which “vec” denotes the vectorization operator. In a gmi characteristic equation of a given<n matrix A. Next, p(4) <
manner, one can defing¢?, A¢) := veq A(¢f, A€)) € Rrn®  ~forsomey > (s equivalent to the matri%A being Hurwitz
as the first-order approximation af¢? + A¢). which is also equivalent to the monic ponnomiWéJX(yz) =

det(z] — %A) being Hurwitz. From the Jury stability criterion,
A. Scalar Case this is equivalent to the existence of a smooth function

2
. R™ x Rso — R"*! such that
For the scalar case (i.ep = 1), we can present a X R>0

closed-form expression for the global optimal solution lod t Fo(a,v) <0, a=1,2,--- ,n+1,

equivalent problem (37)-(39). This helps us to investigateh n? di .
the sufficient conditions for the convergence of the itemati wherea = veq4) € R™ . Appendix C presents a systematic

algorithm. In particular, we present the following result. approach to ConStr_UCt the _fl_JnCt'dﬁ(a’7) based on the Jury
Theorem 1 (Convergence of the Algorithm for= 1): array. Now we are in a position to present the following resul

Consider the smooth functiom : R — R by a({). Suppose Thgorem 2 (Convergencg of the ALngithm foe- 1).
further that there exist§ € R such thata(¢) — 0. Let B Consider the smooth matrid(¢) € R and assume that

denote a compact (i.e., closed and bounded) ball arofundEe BMI pptimization proll?ler; (25h)-(2A8)*is *feajible during
such that (1)/(€) := g—“(ﬁ) £ 0 for all ¢ € B, and (2) the iteration L. Suppose urther t _a( &5, 1) enotes a
< local optimal solution ot necessarily the global solution).

Then there i > 0 such that if (1)||A¢*|| < e, and (2) the
condition

max 7|a(§)2| <1 (40)
€8 w (a/(€)” +1
Then, there exist > 0 and0 < N < oo such that for all " OF, d%a
initial guesses of the BMI algorithig’ € B with the property Z Dan (a (56) V1= *) 352[3
|9 — €| < 4, the global solution of the BMI optimization ’
problem (25)-(28) results in the following parameter updafor o = 1,--- ,n+1 is satisfied, then the algorithm terminates
law N e at the iteratior? + 1 in the sense thati(¢¢ + A¢*) becomes
gt — gt M —. 0 (§Z) _ (41) Hur\NiEz. Here,as(&) represents theg-th component ofx (&)
w(a (£9)° +1 and 865"25 (¢) is the corresponding Hessian matrix f6r =
Furthermore, the update law (41) stabilizes the origin fer t 1, - - ;.
discrete-time systemiz[k + 1] = a(£) dx[k] at a finite number Proof: See Appendix D. u
of iterations, that is|a(¢!)| < 1 for all £ > N. Remark 6:By defining the scalar coefficients,s :=
Proof: See Appendix B. [ ] 2%; (a(¢),VT—=pF) for @ = 1,---,n+1and 3 =
Remark 5:Theorem 1 presents a set of sufficient conditioris - - - , n?, the condition (42) can be expressed as
under which one can find the global optimal solution for the n2 )
BMI optimization problem (25_)—(28). Moreqv_e_r, it invesates Z Vs 0%ag (ge) <0, a=1,--,n+1, (43)
the convergence of the algorithm to a stabilizing solutibime ot 0&?
conditions of this theorem are not restrictive. In particuthe o ) _ )
conditiona’(¢) # 0 for all £ € B guarantees the feasibility"avzh'Ch is a set ofv + 1 LMIs in terms ofn? Hessian matrlces
of the BMI condition in (26) for the scalar case and looksger (€°), 8 = 1.+, n°. We remark that one can interpret
like a similar condition for Newton's method. The secon#€ inequality (43) as a set of convexity conditions on the
condition, in (40), can easily be achieved by choosing aelar§lements of the Jacobian matri(¢) at ¢ = ¢“.

¢y <o (42
2 9 (")
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C. Extension to thé{, Problem Yaw!
This section extends the sufficient conditions of Theorem 2 Pitc}};l - Roll
to the convergence of the extended BMI algorithm at a finite Torso J ] )
number of iterations. In particular, we express a set &f 2 Subsystem ¥, St |
Left Leg |
convexity conditions in terms of the elements of the Jaaobia . !
matricesA(¢) and B(¢) at ¢ = &-. & |
Theorem 3 (Convergence of the Extended Algorithm): Right Leg ? i
Consider the smooth matricesA({§) € R™*™ and \Subsystem ¥,/
B(¢) € R™n" and definea(¢) = vedA(¢)) and oo
b(¢§) = vedB(£)). Assume that the BMI optimization T

problem (32)-(36) is feasible during the iteration numiger
and let(A¢*, u*) denote docal optimal solution. Then there
is e > 0 and coefficiento,s andv,z fora =1,--- ,n+2

and 3 = 1,---,n? such that if (1)||A¢*|| < € and (2) the
following convexity requirements on the Hessian matric

a;gf (¢) and a;;f (€) are satisfied

2

(. 9% 02b

S {rea G2 (@) e G2 €} <0, | |

B=1 3 3 (44)  The local output functions for the prosthetic subsystemewer

a=1,,n+2 also defined based onpiysical intuition A recent approach
_ _ ~ measures the human interaction forces for exact localaltirtu

then 1. the real Jacobian mate(¢‘ +A¢*) becomes Hurwitz constraint control [30]. In particular, the feedback froande
and 2. thet{,-norm of the transfer function for the quadrupleensors is used to cancel the nonlinear interaction terms
(A(E" + AgY), B(E" + A¢Y),C,0) in the real model (22) is petween the human and prosthetic subsystems in the feedback

Fig. 3: The structure of th&® DOFs autonomous bipedal
robot. The model consists of a tree structure with a torso
and two identical legs with three unactuated Euler angles an
6_actuated revolute joints. Subsysteis (human part) and
e‘fg (prosthetic part) with the corresponding DOFs have been
shown in the figure.

less thany/i*. _ linearization approach. However, multi-axis force seagbat
Proof: See Appendix E. B are light enough for prosthetic limbs are extremely expensi

Remark 7:Under Assumptions 1-4, if the conditions of There is currently no systematic algorithm to design decen-
Theorems 2 and 3 are satisfied for any decentralized feggkjized virtual constraints to induce stable and undeited
back law as given in (9), then the algorithm can exponeBp walking gaits in bipedal robots and powered prosthetic
tially/robustly stabilize the periodic orb(? for the closed-loop |egs. The objective of this section is to employ the itegativ

hybrid model. BMI algorithm of Sections IV and V to search for robust
stabilizing local virtual constraints. We remark that this1IB
VII. APPLICATION TO ROBOTIC WALKING algorithm takes into account the interactions betweenle t

Virtual constraintsare kinematic relations among the gensubsystems in the full model while searching for the opti-
eralized coordinates of mechanical systems that are esforgnized local virtual constraints, preventing the need to lesnp
asymptotically by continuous-time controllers [2], [3]11], impractical high-gain controllers, expensive force sesisor
[28], [29], [41], [42], [53]-[57]. They are defined to coordite asymptotic observers to deal with interactions.
the links of bipedal robots within a stride. In particulairtwal
constraints are defined as holonomic output functig .
for continuous-time portions of hybrid models of walkir(lt;)janA' UnderactuatedD Bipedal Model
they are typically enforced (i.ey = 0) by centralizedl-O We consider an underactuatgid bipedal robot and employ
linearizing feedback laws [51]. Virtual constraint corlieos the iterative BMI algorithm to tune the decentralized \aitu
have been numerically and experimentally validated fdolsta constraints to induce an exponentially stable walking. gdie
2D and 3D underactuated bipedal robots [14], [53]-[55], [58odel of the robot forms a tree structure consisting of aotors
as well as2D powered prosthetic legs [28]-[30], [47]. Forlink and two identical legs terminating at point feet (seg.Fi
mechanical systems with more than one degree of undera®y-Each leg of the robot includésactuated DOFs: @ DOF
ation, the stability of the periodic gait depends on the choihip (ball) joint with roll and pitch angles plus a DOF knee
of the virtual constraints [13], [41]. joint. During the single support phase, the robot ha3OFs

The application of virtual constraints to amputee locomancluding6 actuated DOFs of two legs adunactuated DOFs
tion presents some challenges not previously encountereccorresponding to the absolute orientation of the torso with
autonomous bipedal robots. In particular, centralizeduwlr respect to the world frame. To describe this orientation, we
constraint controllers would require state feedback frowa tattach a frame to the torso with tlyeaxis being in the direction
human body. To overcome interacting forces between two sudf-walking and thez-axis being upward. Then, the orientation
systems, [28] has implemented virtual constraint cordrsll of the torso frame can be described by three Euler angles,
using local high-gain controllersin simulations of a2D referred to as thgaw, roll, andpitch angles. The kinematic
powered prosthetic leg, but safety concerns limited the eand dynamic parameter values for the links are taken acoprdi
perimental implementation to inaccurate low-gain comérsl to those reported in [59] for @D human model.
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The state vector for the mechanical system can be chosamiablesg; and the corresponding desired evolutig (),
asx:= (¢q",¢")"T € X c R'8, in which ¢ and ¢ denote the respectively fori € {1,2}. Next the local output matrices
generalized coordinates and velocity vectors, respdgtiVee to be determined includéf; (&) € R3%6, Hy(&) € R3X3,
control inputs are also shown hy< ¢/ ¢ R® to represent the and Hg(gg) € R3*4, or equivalently39 parameters (we note
motor torques applied at the actuated joints. The hybridehodhat 4; = 0 to get the structure of (10)). Moreover, since
of walking includes two continuous-time phases to represahe typical walking period includes two steps, we need to
the right and left stance phases and two discrete-time phadetermine these matrices for the right and left stance ghase
to represent the right-to-left and left-to-right impact dets. and therefore, the total number of parameter3dis 2 = 78,

In particular, we study the following two-phase hybrid mbde.e., ¢ € R™. The lower-dimensional decoupling matrices in
(18) are also taken as constant matrices. This reduces the

g f = frlz) + iiR(x) u’ x: # Skt local controllers of (18) into a set d&?D controllers(r = 2)
" = ArsL(z), T” € SpoL (45) for which the choice of local output functions guarantees th
i=flz)+a(@u 2 ¢SSR robust stability of the orbit. The outputs are then systérafy
Yoig o4 A r(z) s chosen according to the iterative BMI algorithms.
TT AR ), . L=R Remark 8: Although legged robots are becoming more non-

in which the subscripts “R”, “L", ‘R — L”, “L_ — R” linear with higher DOFs, the centralized nonlinear control
denote the right stance phase, left stance phase, righftto-methods required to achieve stable locomotié@mnot scale
impact, and left-to-right impact, respectively. The cantus- with the dimensionality of these robots. Most centralized
time phases: = fr(z) + gr(z)u andz = fi(z) + g.(x)u nonlinear control methods, e.g., feedback linearizatiequire
are constructed based on the Lagrangian dynamics, whergeesinversion of a state-dependent “decoupling” matrixdal r
the discrete-time transitions™ = Agr_ (z7) and 2T = time [2], [4], [13], [41], but the computational complexity
ALLr(z™) assume rigid and instantaneous contact model§ this operation scales quadratically with matrix dimemnsi
[60]. Using [50, Proposition 4], one can obtain an equivalef61], corresponding to the number of DOFs in the robot.
single-phase hybrid system, as given in (1), for the twosphaMoreover, inverting the full decoupling matrix distribstéand
model (45). For this purpose, without loss of generalitg thamplifies) local modeling errors across all DOFs in the alese
continuous-time portiot: = f(x)+ g(z) u can be constructed loop dynamics. This curse of dimensionality presents a key
based on the right stance phase dynamics. In addition, tloadblock to the application of traditional centralizechtioear
discrete-time portiom™ = A(z ™) is taken as the compositioncontrollers to increasingly sophisticated legged robdts.re-
of the right-to-left impact, left stance phase, and lefright mark that the proposed approach reduces the local comiolle
impact models. In this model, the uncertainlyt] in (1) can of (18) into a set of PD controllers for which the choice
arise from uncertainties in the impact maps and the flow of tleé the output functions plays an important role in the gait
left stance phase. A desired periodic gaitis then designed stabilization process.
using the motion planning algorithm of [14] for walking at
0.6 (m/s) with the cost of mechanical transport CMT0.07. .

Motivated by a transpelvic amputee (the “human” parg" PENBMI Solver and Numerical Results
walking with a prosthetic left leg, we consider a two-part Unlike LMIs, BMIs are non-convex and NP-hard problems
decentralization scheme as shown in Fig 3. The prosthefi®]. However, PENBMI is a general-purpose solver for BMIs
subsystem, includes the3 DOFs of the left leg with the which guarantees the convergence to a local optimal point
corresponding3 actuators, and hence, dim) = 6 and satisfying the Karush Kuhn Tucker optimality conditionS]6
dim(us) = 3. In particular,zy = (g9 ,45 )", in which ¢ To solve the BMI optimization problems at each iteration of
and ¢, denote the generalized position and velocity vectotBe algorithms presented in Sections IV and V, we make use
for the left leg, respectively. The human subsystEmthen of the PENBMI solver from TOMLAB [64] integrated with
consists of the rest of the model, including the torso ariie MATLAB environment through YALMIP [65].
right leg, with dim(z;) = 12 and dimu,) = 3. In addition, 1) Exponential Stabilization ProblemAn initial set of
1 = (¢ .4/ )", whereq, and 4, represent the generalizedcontroller parameterg® € R is assumed based on a
position and velocity vectors foE;. Since the local state physical intuition for the local output functions (17). For
variablesr; already include the orientation variables, i.e., torsihis set of parameters, the dominant eigenvalues and apectr
Euler angles and their first-order time-derivatives, theafe radius of thel7 x 17 Jacobian matrix of the Poincaré map
measurable global variables far, is chosen as empty, i.e.,become{0.12029 + 1.72237, —0.4863, —0.4178} and 1.7253,
U, (z) = 0. However, the set of measurable global variableespectively, and therefore the periodic gaits not stable. To
Wy(z) = () (z),1)4 (x))7 for the subsysteri, includes two exponentially stabilize the gait, we make use of the iteeati
roll and two yaw angles as well as their velocities provideBMI algorithm developed in Section IV with the weighting
by the IMUs attached to both thighs (i.e., dim) = 4 and factor w = 0.1. The algorithm successfully converges to a
dim(¥s) = 8). set of stabilizing parameters aftgiterations, where the BMI

For the purpose of this paper, the decentralized virtuaptimization problem of each iteration takes approximetél
constraints are defined as (17). We only remark that they neathutes on a du&t.3 GHz Intel Xeon E5-2670 v3 processor.
to be holonomic quantities and consequently, one would needr the BMI optimized solution, the dominant eigenvalued an
to replacex; andzq;(6) in (17) with the local configuration spectral radius of the Jacobian of the Poincaré map become
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{—0.4747+0.4445i,0.5028, 0.3628} and0.6503 (i.e.,62.31%
improvement in the spectral radius), respectively. Stgriom os
the same initial guess with the different weighting factors °
w = 0.5 adw = 0.05, the algorithm converges to alternative = °
stabilizing solutions with the spectral radii7215 and0.6135
after 2 and3 iterations, respectively.
2) Robust Stabilization ProblemTo robustly stabilize the =
periodic orbit © against the discrete-time uncertainties in
the impact model, we define a set of discrete-time outpuis
c[k] = ¢(x[k]) on the Poincaré section (i.e., the right-to-left .
switching manifold) as the robot's COM velocity along the
x-, y-, and z-axes of the world frame. Th&{,-norm of the
transfer function relating[k| to dc[k] in the linearized model
(22) for the previous BMI optimized solution (witlh = 0.1)
is 29.7234. Starting with this exponentially stable solution, we
employ the extended BMI algorithm of Section V to reduce - -
the #,-norm. By choosings = 0.1, the extended algorithm ™= =i ey R
converges to a robust stabilizing solution afeiterations for
which the H,-norm becomed2.8860 (56.65% improvement Fig. 4: Phase portraits for the torso Euler angles and pedsth
in the #,-norm). Figure 4 depicts the phase portraits for thidiP angle in the frontal plane durint00 consecutive steps
torso Euler angles and frontal prosthetic hip angle dutiogg ©f the rigid simulator by the BMI optimized decentralized
consecutive walking steps with the robust stabilizing tofu feedback control scheme. Convergence to the orbit is clear.
The orbitO has been designed to walk along tjraxis of the
world frame which corresponds to the yaw angle being zero. . )
Here, the simulation starts off of the orbit at the beginnifig The ﬂ|ght phase model of the rob.ot subjgct to these forces is
the right stance phase. Convergence to the periodic oxleit e then integrated as an ODE over time. This has several conse-

in the yaw position, can be seen from the phase portraits. THeences. Flrs_t, the evolution of th_e model subjec_t to caanpli
animation of this simulation can be found at [66]. ground reaction forces and non-instantaneous impact rmodel

can be addressed. Second, the robustness of the closed-loop
system to different models of the ground is analyzed.
Figure 6 depicts the phase portraits of the closed-loop
The objective of this section is to compare the performancesmpliant model. Here the simulation starts from the ihitia
of the two BMI-optimized solutions of Sections VII-B1 andcondition of Fig. 4 and the system’s solution converges to
VII-B2 against the impact model uncertaintifk]. For this a new stablelimit cycle. The animation of this simulation
purpose, a randomly generated discrete-time disturbameg i can be found at [66]. Unlike the phase portraits of the rigid
d[k] is assumed in the velocity components of the impact mogimulator in Fig. 4, the new yaw and roll phase portraits of Fi
els. Fig. 5 illustrates the correspondingy andz components 6 are not symmetric with respect to the origin. In particditar
of the deviation in the robot's COM velocity (i.ei¢[k]) for the the compliant model, the average yaw and roll angles for the
stability-optimized and robustness-optimized local coliérs. steady-state walking motion becorie(deg) and—1 (deg),
It is clear that the BMI-optimized solution for th#,-norm  respectively, which result in typical asymmetry in amputee
has better performance compared to the one optimized ofd¢omotion. To describe this motion, we remark that the
for the stability. compliant dynamic model of the robot has left-right symmetr
However, the local controller structure of (10) and (11) sloe

D. Robustness Against Nonparametric Uncertainties and Comot have the left-right symmetry which may yield the left-right
tact Models asymmetry in the presence nbnparametric uncertaintiesn

The objective of this section is to show that the robué\ddition’ the des_ig_n Of_ the orbit_ and optimiz_ed parameters
decentralized control strategy will result in stable watki Were from the rigid simulator, i.e., no design of a new
motions even if the assumptions made in modeling of tfYMMetric gait in the compliant model. Finally, we note that
hybrid system are not met exactly. In particular, we considd!® roPots hip joints have only DOFs, with rotations in the

nonparametric uncertainties in the model of the robot. B),(4 _sagittal and frontal planes, but lack _internal/externmnions
the evolution of the robot is described byrigid two-phase in the transverse plane. One possible way to accommodate

hybrid model consisting of the right and left stance phases &YMMetries in the torso yaw angle, arising from unceitesnt

well as the right-to-left and left-to-right impact modeise(, Wou!d then be to change the robot's morphology by having
instantaneous double support phases). This section graseP©FS Nip joints to include yaw actuation.

continuousand compliant modeto describe the evolution of )

the walking motion during the single and non-instantaneofis IMposed Virtual Constraints for the Human Part

double support phases [67]. Here, we make use of the LuGrdn Section VII-B, the iterative BMI algorithm optimized sta
model [68] to represent forces between the contactingsesfa bilizing local virtual constraints for the human and pregtb

(rad

(rad/s)

C. Robustness Against Impact Model Uncertainties
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Fig. 5: Plot of an additive discrete-time disturban@g] o

(deg/s) in the velocity components of the impact model an

the corresponding, y, andz components of the deviation in S S

the robot's COM velocity {c[k] := dv.[k]) on the Poincaré S () (rad)

section to compare of the performances of the stability- apgly 6: phase portraits for the torso Euler angles and petisth

H,-optimized decentralized virtual constraints. hip angle in the frontal plane durin)0 consecutive steps of
the compliant simulator by the BMI optimized decentralized
feedback control scheme. Convergence to an orbit is clear.

leg parts simultaneously. The objective of the presenisect
is to show that the proposed approach is still capable ofrfondi
a set of stabilizing virtual constraints for the prosthesfsle
using imposed virtual_cons_traints for_the human part _that ar This paper introduced a systematic numerical algorithm
known (e.g., through intuition or motion capture studiés). {4 the design of decentralized feedback controllers to ex-
particular, we assume that the output matklx(¢,) € R3X6 ponentially and robustly stabilize periodic orbits for higb
is known for the human part and the BMI algorithm onlyjynamical systems arising from bipedal robots. The algorit
optimizes the prosthesis output matrices (if;(¢2) € R**®  4qqresses the exponential atg robust stabilization problems
andH>(&2) € R**) to stabilize the walking gait. In this case of periodic orbits against uncertainties in discrete-tipue-
the total number of controller paramete_rs to be deterr_meedt;ons of hybrid models. We assumed a class of time-invariant
(1249) x 2 = 42 as we need to determine these matrices fE’arameterized and local nonlinear controllers in which the
the right and left stance phases. To simplify the example, tRqrdination of lower-dimensional hybrid subsystems iselo
output matrixH; (&;) for the human part is chosen intuitively.by a common and measurable phasing variable. It was also
Here we study two different scenarios. In the first scenarisyupposed that by employing this class of feedback laws,
we choose the controlled variablés; (£1) ¢1 to control the the periodic orbit is invariant under the choice of congoll
shape variables for the human part. In particular, the comparameters. The algorithm then translated the exponenrtél
ponents ofH;(&1) ¢1 are defined as the right knee and right{» robust stabilization problems into an iterative sequerfce o
two hip angles. For this choice of the; matrix, the BMI optimization problems involving BMIs and LMIs. By design,
algorithm couldnot converge to any stabilizing virtual con-these optimization problems can be solved with available
straints for the prosthesis. However for the second scenae software packages. Sufficient conditions for the convergen
let the human controlled variabld$, (£1) ¢ have a feedback of the iterative algorithm to a robust stabilizing solutimere
from the torso roll angle in the frontal plane. Then startingresented. To illustrate the power of the algorithm, theepap
from the stabilizing solution obtained in Section VII-B,eth employed the algorithm to systematically design a set of
algorithm successfully converges to a set of new stabdizirdecentralized virtual constraints for walking of an undera
parameters for the prosthesis afteriterations. Figure 7 tuated 3D biped with 18 state variables and8 controller
depicts the phase portraits for the torso Euler angles apdrameters. The key features of the algorithm are as follows
frontal prosthetic hip angle during00 consecutive walking (1) it considers a general form of parameterized nonlinear
steps. Convergence to the periodic orbit is clear. Howeveontrollers; (2) the algorithm accounts for underactuatod
compared to Fig. 4, the convergence rate is slower as only thgact model uncertainties; and (3) it deals with strongrint
prosthetic leg controller was optimized to stabilize thét.gaactions among subsystems without relying on high-gainlloca
These scenarios demonstrate how the most obvious chatoatrollers or expensive force sensors. For future rebearc
for controlled variables (the shape variables) does noblenawe will investigate the scalability of the algorithm and its
stability, which demonstrates the benefit of letting the BMtapability in stabilizing larger size interconnected syss$ for
optimization algorithm determine this. However, one calh stwalking of quadruped robots. The current work considered
generate stable gaits when parts of the control system & fixliscrete-time uncertainties, and future work will invgste
in a certain way. robust stabilization oBD walking gaits in the presence of a

VIII. CONCLUSION
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By assuming:’* # 0 andW)2+1 < 1 (see (40)), one can ap-
ply the Lagrange’s multipliers approach to show that théglo

optimal solution of (46)-(48) is given by* = w(a+§2+1 for
a® >0 ory* = —w(a/‘;i;ﬂ for a®* < 0. Furthermore A¢*
becomesA¢r = — wa'a” _\yhich results in the parameter

w(a?)*+1
update law given in( (421). It can also be shown tais a
fixed point for the parameter update law (41), i@(£) = ¢.
This fact in combination withu'(£) # 0 for all £ € B implies
that 0 < %—?(5) = m < 1 which guarantees the local
exponential stability of the fixed poirgt In particular, there
exists§ > 0 such that for all initial guesse§’ € B with

the property|¢® — ¢ < 4, [¢/—¢| <6, £ =0,1,---, and
hence,&’ € B. This together witha’(¢) # 0 for all £ € B
and (40) validates our assumptions for extracting the globa
optimal solution of (46)-(48) at each iteration. Furthermo
limg o &Y = £. Finally, from the continuity ofz(.), one can
conclude thaflim, . a(¢Y) = a(limyo0 &) = a(é) = 0

Fig. 7: Phase portraits for the torso Euler angles and petisth \hich in turn implies the existence 6f< N < oo such that
hip angle in the frontal plane during00 consecutive steps. la(¢9)| < 1 for all £ > N.

Here the BMI algorithm only optimized the virtual constriain
for the prosthesis while the virtual constraints for the lanm

part were imposed. Convergence to the periodic ofbits
clear.

broader range of model uncertainties including continuaond
discrete-time uncertainties.

APPENDIXA
PROOF OFLEMMA 1

For everyy > 0 and any given square matrig, p(A) < v

APPENDIXC
CONSTRUCTIONPROCEDURE OF THEFUNCTION F'(a, )

To construct the smooth functiof : R™ x Ryg —
R™*1, we apply the Jury stability criterion to the polynomial
%X(Wz), and hence, the first two components Bf are
constructed as follows

Fi(a,7): —%x(v) = —det(l - %A)

Fy(a,7) = (—1)" L x () = (—1)"+1det<_1 B lA) '
Y v
The remainingn — 1 components ofF' are formed based

is equivalent tOp(%A) < 1 which in turn is equivalent to the on the Jury array. In particular from the Jury array, one
matrix 2 A being Hurwitz. From Lyapunov inequality, this iscan obtain a set of conditions &s;(a,v)| < [r;(a,7)] for
also equivalent to the existence of a positive definite matrj = 1,---,n — 1. To make the function’ smooth, the

Y =Y 7 such that:; AT Y A —Y < 0. Choosing =Y~
and pre and post multiplying this latter inequality with and
applying Schur’'s complement lemma result in

W AW

> 0.
* VW

We remark that from the optimization problem (37)-(39)x
1. Using this fact, one can choosé = 1 —p with 0 < z < 1.
This together with the LMI condition (27), guaranteeing-
|AE||3, completes the proof.

APPENDIXB
PROOF OFTHEOREM 1

For the scalar casgy(A(¢4, A¢)) = |a(¢l, AE)| = |ab +
a’* A¢|, wherea’ = a(¢%) anda’t = o’ (¢%). This reduces
the equivalent optimization problem (37)-(39) to

1, 1,
gl{lyr; 5 WY + 5 A& (46)
la 4+ a AE| =4 (47)

v < 1. (48)

remainingn — 1 components o' can then be defined as

Fa (a7’7) = ﬁi—Q(aa’y) - E?y—Q(aa’y) <0
fora=3,--- ., n+1.
APPENDIXD
PROOF OFTHEOREM 2

If the BMI optimization problem (25)-(28) is feasible dugin
the iteration numbef, we can conclude that

Fa(a(€5,A87) 7)) <0, 1,
where~y* := /1 — p*. Now let us define therror function
E:RP — R™! py

Eo (A8) := Fo (a (¢ + AE) ,v*) — Fa (a (€, A€) ,77)

for everya = 1,--- ,n + 1. According to the construction
procedure and the fact that¢’, A¢) = a(¢”) + G2(¢9)AE,

a:17

OF,  —0F, ¢ w Oag .,
ame80 = Yo g (al€f+20) ) FE (€409
" OF, N

=Y G (g ) ().
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This implies that£,(0) = 0 and §52(0) = 0 for a =
1,---,n+ 1. Straight forward calculations also result in
(1]
0, Y OFs o  OPas
0)=>» — *

which in combination with the condition (42) guagantees th%]
negative semi-definiteness of the Hessian matr (0).
In particular, sufficient optimality conditions are satsfifor
A¢ = 0 being a local maximum foE, (Af), a =1,--+ ,n+
1. Hence, there is > 0 such that for all| A¢|| < €, Eo(AE) <
E,(0) = 0. If |AE|| < ¢, this latter inequality implies that

Fo (a (€' +A8%) ,7%) < Fa (@ (6,467 ,4%) <0

fora=1,---,n+ 1, or equivalentlyp(A(£f + AE*)) < v*.
Finally, from the equivalent optimization problem (3783
v* < 1 which completes the proof ofi(¢¢ + A¢*) being a
Hurwitz matrix.

(7]

(8]

APPENDIXE

PROOF OFTHEOREM 3 [

The proof is similar to that presented for Theorem 2 in
Appendix D. We only need to extend the smooth functioHO]
F(a,) as proposed in the following lemma.

Lemma 2:For a given quadruplg A, B,C,0) with the
matricesA € R"*" andB € R"*", there is a smooth function (11]
F:R" xR xRsg — R™?2 such that

_ [12]
Fa(a7ba:u)<oa a=1,--,n+2 (49)

is equivalent to 1. the matriXd being Hurwitz, and 2. thé{,-
norm of the transfer function corresponding to the quadruﬂll?’]
(A, B,C,0) becomes less thayji.

Proof: From Appendix C, the matrixl being Hurwitz is [14]
equivalent toF'(a, 1) < 0. For a Hurwitz matrix4, it is well-
known that theH,-norm of the transfer function corresponding
to the quadrupléA, B, C,0) can be computed numerically ad15]
follows

| Tuc(2)||3,, = trace(B'W,B),

(50) [16]

where W, is the observability Gramian satisfying the Lya-
punov equationA’ W, A — W, —CTC. Consequently, (7]
one can define the smooth scalar functiéh(a, b, 1)
trace(BTW,B) — p such thatF(a,b, ;1) < 0 is equivalent
to || Tuc(2)ll3,, < p- Finally, F(a,b, ;) can be constructed as
follows

(18]

_ F(a,1)
Fla,b,p) := | ~ € R"*2, 51) [19
(a,b,p) Fla.b.) (51) [19]
H [20]

The proof of Theorem 3 can be completed by defining an

error function as
E(AE) == F (a (&' + A€) b (&' + AE) ,1*)
— P (a(e',88) b (", 0¢) u7)

and following the steps of Appendix D and Remark 6.

[21]
[22]

[23]
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