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Abstract—This letter investigates the hybrid zero dynamics for
planar bipedal robots with one degree of underactuation subject
to nonholonomic virtual constraints (NHVC). We first derive
the closed form expression of the bipedal robot zero dynamics
under NHVCs. We next present conditions that make the NHVCs
invariant with respect to rigid impacts with the ground. Lastly, a
reduced dimensionality test, which is independent of the number
of degrees of freedom of the bipedal robot, is proposed for
checking existence and exponential stability of hybrid periodic
orbits under NHVCs. Simulation results using the RABBIT
biped robot demonstrate the robustness of the proposed NHVCs
against a randomized horizontal push disturbance. A statistical
significant difference between the mean number of steps until
failure is shown between the NHVC and VHC control schemes.

Index Terms—Robotics and Hybrid Systems

I. INTRODUCTION

S INCE their introduction, virtual holonomic constraints
(VHCs) have been extensively used for the motion control

of biped robots [1]–[6] and powered transfemoral prostheses
[7]–[10]. A VHC is a functional relationship of the config-
uration variables for a mechanical system that can be made
invariant via feedback. However, there are some limitations
of VHCs; for example, trajectories must be parameterized
by a monotonic variable, and kinematic patterns cannot be
adjusted in response to large perturbations or environmental
changes. A more general class of virtual constraints that
depend on configuration velocities, known as nonholonomic
virtual constraints (NHVCs), has recently been introduced
in [11] and [12]. Prior to [11], [12], the literature on controlled
geometric reduction introduced a form of NHVCs with outputs
of relative degree one [13], [14].

Motivated by the recent results of [11], [12] and the poten-
tial kinematic adaptability with NHVCs, this letter investigates
the dynamics that result from applying relative degree two
NHVCs to biped robots with one degree of underactuation.
In particular, we study the zero dynamics of bipedal robots
under NHVCs, which depend on the configuration variables
as well as the momentum conjugate to the biped unactuated
degree of freedom. First, we derive a closed form expression
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for the bipedal robot swing phase zero dynamics. Next, we
present a set of algebraic conditions that ensure that the
biped states remain on the zero dynamics manifold after
each impact with the ground. Finally, we introduce a reduced
order dimensionality test for the resulting system subject to
NHVCs. Using this formulation we simulate the RABBIT
biped robot (see, e.g., [1], [6]) under a disturbance that violates
the monotonicity assumption under VHCs but recovers under
the proposed NHVCs.
Contributions of the Paper. Relative degree two NHVCs
were first introduced in [11] and experimentally tested in [12].
However, an expression for the swing phase zero dynamics
was not derived in [11], [12]. Theorem 1 in this letter
complements the results in [11], [12] by presenting a closed-
form expression for the zero dynamics induced by NHVCs.
In order to maintain invariance under impacts, the NHVCs
in [11], [12] depend on a dynamic variable, which gets updated
after each impact with the ground. The NHVCs presented
in this article do not depend on such dynamic variables.
Rather, hybrid invariance is achieved via the proper choice
of NHVC parameters, which satisfy the conditions given in
Proposition 2. The reduced order dimensionality test afforded
by Theorem 2 in this letter can be done via a Poincaré section
analysis of a two dimensional dynamical system, independent
of the number of degrees-of-freedom (DOFs). This stability
test is a generalization of Theorem 5.3 in [6]. Finally, the
hybrid invariance conditions presented in this letter, from a
theoretical perspective, are a generalization of the results in
the early VHC literature [2], [6]. From an implementation
perspective, unlike [11], [12], there is no need for updating
the NHVC parameters after each impact.

The rest of the paper is organized as follows. Sec. II presents
the necessary preliminaries. In Sec. III the swing phase zero
dynamics as well as conditions for hybrid invariance under
NHVCs, and a low dimensional stability test are presented.
Sec. IV presents a simulation study, which illustrates the per-
formance of the nonholonomic walking gait under a backward
push disturbance. Finally, Sec. V provides concluding remarks
and potential research for the future.
Notation. Given two vectors (matrices) a, b, we denote by
[a; b] the vector (matrix) [aT , bT ]T where (·)T is the transpose
operator. Given a matrix X , we denote its image by Im(X)
and its kernel by Ker(X). Given a function h : X → Y , we
define h−1(0) := {x ∈ X : h(x) = 0}. Given a function f(·)
defined on a real interval I , we denote its left and right limits
at x by f−(x) and f+(x), respectively.
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Fig. 1: Schematic of the biped robot RABBIT [1]

II. PRELIMINARIES

In this section we present the hybrid dynamics of planar
bipedal robots with one degree of underactuation. We also
present the notion of periodic solutions and hybrid extension
dynamics. Finally, we describe the class of NHVCs, due
to Griffin and Grizzle [11], [12], that depend on momenta
conjugate to unactuated DOFs. The material in this section is
standard and more details can be found in [6], [11], [12].

A. Hybrid Dynamics Underactuated Bipedal Robots

Continuous Dynamics. During the swing phase, the biped
robot dynamics are given by (see [15]),

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (1)

the Lagrangian, L: TQ→ R, is L(q, q̇) = K(q, q̇)-V (q), with
K and V representing the biped kinetic and potential energy
functions, respectively. In (1), q := [q1 ; ...; q

N
] ∈ Q is the

vector of generalized coordinates, and the configuration space
Q is an open and connected subset of RN . Therefore, the state
x := [q; q̇] of the biped belongs to the state space X := Q×
RN . The matrix, B ∈ RN×(N−1), is assumed to be constant
and of full rank and the vector of torque inputs, u, belongs
to an open and connected subset of RN−1. This assumption
implies that there exists a row vector B⊥ ∈ R1×N such that
B⊥B = 0. The unactuated coordinate is then defined by

qu := B⊥q. (2)

Finally, M(q), C(q, q̇), and G(q), denote the inertia and Cori-
olis/centripetal matrices, and the vector of gravitational forces,
respectively. Additionally, we assume the following.
HM1) The inertia matrix is not a function of the unactuated
DOF. That is, (∂M/∂qu)(q) = 0 for all q ∈ Q. Bipedal
robots with point feet such as the compass gait biped and
the biped robot RABBIT [1] satisfy this assumption.
Impact Dynamics. The vertical height from the ground and
the horizontal position of the swing leg end, with respect to
an inertial coordinate frame, are denoted by pv2(q) and ph2 (q),
respectively. Furthermore, the set

S := {(q, q̇) ∈ X : pv2(q) = 0, ph2 (q) > 0}, (3)

is called the switching surface. In this work, we assume that
the leg impacts with the ground are perfectly inelastic [16].
Under this assumption, the impact is modeled by

[q+; q̇+] = [∆q(q
−); ∆q̇(q

−)q̇−], (q−, q̇−) ∈ S , (4)

where [q−; q̇−] and [q+; q̇+] are the states of the robot just
before and after impact, respectively. The overall biped hybrid
dynamics (1) – (4) can be described by

Σ :

{
ẋ = f(x) + g(x)u, x− 6∈ S
x+ = ∆(x−), x− ∈ S (5)

where ∆(x) := [∆q(q); ∆q̇(q)q̇], g(x) := [0;M−1(q)B], and
f(x) := [IN ; M−1(q)(−C(q, q̇)q̇ −G(q))].

B. Periodic Solutions and Hybrid Extension Dynamics

In this section, we review the notion of solutions, periodic
orbits, and hybrid restriction dynamics. A function ϕ(t) :
[t0, tf ) → X , tf ∈ R ∪ ∞, tf > t0, is a solution of (5) if
(a) ϕ(t) is right continuous on [t0, tf ), (b) the limit exists
(from the left and the right) at each point t ∈ (t0, tf ); and (c)
there exists a closed discrete subset T ⊂ [t0, tf ) called the set
of impact times such that, (i) for every t /∈ T , ϕ(t) /∈ S , and
(ii) for t ∈ T , ϕ−(t) ∈ S and ϕ+(t) = ∆(ϕ−(t)). A solution
of (5), ϕ : [t0,∞) → X , is periodic if there exists a finite
T > 0 such that ϕ(t+ T ) = ϕ(t) for all t ∈ [t0,∞). Finally,
O ⊂ X is a periodic orbit of (5) if O = {ϕ(t)|t ≥ t0},
where ϕ(·) is a periodic solution of (5).

Given a set Z ⊂ X that satisfies Z ∩ S 6= ∅, we say that
Z is control invariant for (5), if there exists a state-feedback
control law u∗(x) such that fzero(z) := f(z) + g(z)u∗(z) ∈
TzZ , for all z in Z . Furthermore, we say that the control
invariant set Z is impact invariant for (5), if ∆(S∩Z) ⊂ Z .
We say that Z is hybrid invariant for the dynamical system
given by (5) if it is both control and hybrid invariant. Given
a hybrid invariant set Z , the hybrid restriction dynamics of
the dynamical system in (5) are defined by

Σ
∣∣
Z :=

{
ż(t) = fzero(z(t)), z−(t) 6∈ S ∩ Z

z+(t) = ∆|S∩Z(z−(t)), z−(t) ∈ S ∩ Z . (6)

C. Noholonomic Virtual Constraints

In this work, we investigate a class of nonholonomic con-
straints that involve the momenta conjugate to the unactuated
DOF (e.g., q5 for the biped in Fig. 1) and were previously
used in [11], [12]. The momentum conjugate to the unactuated
DOF, qu, is defined as

σu(q, q̇) := ∂L
∂q̇u

(q, q̇) = B⊥M(q)q̇, (7)

and, from the Euler-Lagrange equations, satisfies

d
dtσu(q, q̇) = ∂L

∂qu
(q). (8)

Under Hypothesis HM1, it can be seen that
∂L/∂qu=(1/2)q̇T (∂M/∂qu)q̇ − ∂V/∂qu depends only
on the configuration variables. Indeed,

∂L
∂qu

(q) = − ∂V
∂qu

(q). (9)

A nonholonomic virtual constraint (NHVC), due to Grif-
fin and Grizzle [11], [12], for the biped robot dynamics in
(1)–(4) is an output function of the form

y = h(q, σu(q, q̇)). (10)



A nice feature of such an output for the biped dynamics is that
while the output depends on the biped robot joint velocities
through σu(·), the input u will only appear after taking two
derivatives of the output in (10). Indeed, taking one derivative
of the output y and using (8) yields

ẏ = ∂h
∂q (q, σu(·))q̇ + ∂h

∂σu
(q, σu(·)) ∂L∂qu (q). (11)

Therefore, only after taking two derivatives of the output
in (10) the input will appear. By using relative degree two
outputs, feedback control can then be used to influence both
the joint positions and velocities. We define the following
mappings for a given open connected set I ⊂ R, the biped
robot dynamics in (1), and a smooth function h : Q × I →
R(N−1), (q, σ) 7→ h(q, σ), where σ is a variable.

γu : Q→ R1×N , q 7→ B⊥M(q) (12a)

A : Q× I → R
(N−1)×(N−1)

, (q, σ) 7→ ∂h
∂q (q, σ)M−1(q)B,

(12b)
P : Q× I → R

N×N

, (q, σ) 7→
[
∂h
∂q (q, σ); γu(q)

]
, (12c)

w : Q× I → RN , (q, σ) 7→
[
− ∂h

∂σ (q, σ) ∂L∂qu (q);σ
]
. (12d)

III. HYBRID ZERO DYNAMICS UNDER NONHOLONOMIC
VIRTUAL CONSTRAINTS

This section presents the main results of the paper. First,
we derive a closed form expression for the robot swing phase
dynamics under NHVCs. Next, we present conditions that
guarantee existence of hybrid zero dynamics under NHVCs.
Finally, we present a reduced dimensionality test for checking
existence and stability of hybrid periodic orbits for underac-
tuated bipedal robots under NHVCs.

A. Swing Phase Zero Dynamics

Lemma 1: Consider the biped robot dynamics in (1). Suppose
that a smooth function h : Q × I → RN−1, where I ⊂ R is
an open and connected set, is selected so that
H1) h(q, σ) = [h1(q, σ); . . . ;hN−2(q, σ);hN−1(q, σ)];
H2) there exists an open set TQ̃ ⊂ TQ such that for
each (q, q̇) in TQ̃, h(q, σu(q, q̇)) has vector relative degree
{2, . . . , 2}, where σu(q, q̇) is given by (7);
H3) there exist two smooth real-valued functions θ1(q) and
θ2(q, σ) such that the mapping
Φ : Q̃× I → RN+1, (q, σ) 7→ [h(q, σ); θ1(q); θ2(q, σ)], (13)

is a diffeomorphism onto its image;
H4) there exists one point (q, σ) in Q̃× I where h vanishes.

Then, 1) h−1(0) is a smooth two-dimensional embedded
submanifold of Q̃ × I with (%1, %2) = (θ1(q), θ2(q, σ)) as a
valid set of coordinates on h−1(0); and,
2) the decoupling matrix A(q, σu(q, q̇)) in (12b) and
P(q, σu(q, q̇)) in (12c) are square and invertible on TQ̃; and,
3) given (q, σ) in Q̃ × I and a vector v ∈ RN such that
(∂h/∂q)v+(∂h/∂σ)(∂L/∂qu) = 0 and γu(q)v = σ, we have

v = P−1(q, σu(q, q̇))w(q, σu(q, q̇)). (14)

Proof. From Hypotheses H3 and H4, it follows that
rank(dh)|h−1(0) = N -1, where dh := [∂h/∂q, ∂h/∂σ]. Since
h(·) is a mapping from Q̃× I to RN−1, Statement 1 follows

(see [17]). Invertibility of A(q, σu(q, q̇)) follows immediately
from the relative degree condition and the general results
in [18]. To show P(q, σu(q, q̇)) is invertible on Q̃ × I , we
need to prove P(q, σu(q, q̇))v = 0, holds only if v = 0.
Using Equation (12c), this implies that [∂h∂q (q, σ); γu(q)]v = 0.
Therefore, γu(q)v = B⊥M(q)v = 0. Hence, M(q)v belongs
to Ker(B⊥) = Im(B). It follows that v = M−1(q)Bv′ for
some v′ in Im(B) = RN−1. Substituting v = M−1(q)Bv′

in ∂h
∂q (q, σ)v = 0 yields A(q, σu(q, q̇))v′ = 0. Since

A(q, σu(q, q̇)) is invertible for all (q, σ) ∈ Q×I , we conclude
that v′=0. Hence, P(·)v = 0 holds only if v = 0. Finally,
Statement 3 can be proved by considering the augmented
equation [∂h∂q ; γu(q)]v = [− ∂h∂σ

∂L
∂σu

;σ]. From (12c), (12d), and
Statement 2, Equation (14) follows.

Since we are interested in making the NHVCs invariant with
respect to the biped robot dynamics, we define

Z :={(q, q̇) ∈ TQ̃ : h(q, σu(·)) = 0,
∂h
∂q (q, σu(·))q̇ + ∂h

∂σ (q, σu(·)) ∂L∂qu (q) = 0}, (15)

where (·) denotes (q, q̇). The following proposition provides
conditions under which Z is a control invariant surface.
Proposition 1: Consider the hypotheses of Lemma 1 and
H5) the matrix

Ξ(q, q̇) =

[
Ξ11(q, q̇) Ξ12(q, q̇)
Ξ21(q, q̇) Ξ22(q, q̇)

]
, (16)

where

Ξ11(q, q̇) := ∂h
∂q+ ∂h

∂σ
∂γu
∂q q̇, Ξ12(q, q̇) := ∂h

∂σγu,

Ξ21(q, q̇) := ∂
∂q (∂h∂q q̇)+ ∂2h

∂q∂σ
∂L
∂qu

+ ∂h
∂σ

∂2L
∂q∂qu

+ ∂2h
∂σ2

∂γu
∂q q̇

∂L
∂qu

,

Ξ22(q, q̇) := ∂h
∂q+ ∂2h

∂σ2 γu
∂L
∂qu

+ ∂2h
∂σ∂qγuq̇,

is of full row rank 2N − 2 for all (q, q̇) ∈ TQ̃. Then,
1) the set Z given by (15) is a smooth two-dimensional
embedded submanifold of TQ;
2) there exists a control torque u∗(q, q̇) that makes the
manifold Z invariant.

Proof. We only provide a sketch of the proof. The matrix
Ξ(q, q̇) in (16) is indeed the Jacobian ∂/∂(q, q̇)

[
h(·); ḣ(·)

]
.

The rank condition rank(Ξ( · )) = 2N -2 in H5 then proves
Statement 1. The proof of Statement 2 directly follows from
the general results in [18].

The following theorem provides a valid set of coordinates
on Z and the form of the zero dynamics under NHVCs.
Theorem 1: Consider the hypotheses of Lemma 1, Proposition
1, and assume
H6) the matrix [Ξ(q, q̇); Θ(q, q̇)] is square and invertible for
all (q, q̇) in TQ̃, where Ξ(·) is given by (16) and Θ(q, q̇) is
the Jacobian matrix ∂/∂(q, q̇)[θ1(q); θ2(q, σu(q, q̇))]. Then,
1) the mapping Φ̄ : (q, q̇) 7→ [h(·); ḣ(·); θ1(q); θ2(q, σu(·))] is
a valid coordinate transformation on TQ̃;
2) (ξ1; ξ2) = (θ1(q); θ2(q, σu(q, q̇))) is a valid set of coordi-
nates on Z . Furthermore, in these coordinates,

ξ̇1 = κ1(ξ1, ξ2),

ξ̇2 = κ2(ξ1, ξ2) + ζ(ξ1, ξ2), (17)



where κ1(ξ1, ξ2) := ∂θ1
∂q P−1w |Z , ζ(ξ1, ξ2) := ∂θ2

∂q P−1w |Z ,
and κ2(ξ1, ξ2) := ∂θ2

∂σ
∂L
∂qu
|Z .

Proof. Since [Ξ(·); Θ(·)] is the Jacobian of Φ̄, the rank condi-
tion in H6 proves Statement 1. Consider a given pair (q, q̇) ∈ Z
and let σ0 := σu(q, q̇). Since on Z , we have h(q, σ0) = 0, from
Lemma 1 it follows that

[q;σ0] = Υ ([ξ1; ξ2]), (18)

where Υ ([ξ1; ξ2]) := Φ−1([0; ξ1; ξ2]), ξ1 := θ1(q) and ξ2 :=
θ2(q, ω0). Furthermore, γu(q)q̇ = σ0 and from definition of Z ,
we have (∂h/∂q)q̇ + (∂h/∂σ)(∂L/∂qu) = 0. From Lemma 1
and (18), it follows that

q̇ = Ω([ξ1; ξ2]), (19)

where Ω([ξ1; ξ2]) := P−1(Υ ([ξ1; ξ2]))w(Υ ([ξ1; ξ2])). Taking
the derivative of [θ1(q); θ2(q, σu(·))] and evaluating on Z , we
obtain θ̇i = Lfθi + Lgθiu

?. Since

Lgθi(q, q̇) = [∂θi∂q
∂θi
∂q̇ ]

[
0

−M−1(q)B

]
,

Lgθ1(q, q̇) = 0 holds. Also, Lgθ2(q, σu(q, q̇)) is equal to
∂θ2
∂q̇ M

−1(q)B = ∂θ2
∂σu
|ZB⊥M(q)M−1(q)B = 0. (20)

Thus, θ̇i = Lf |Zθi(q, q̇), i = 1, 2. Hence, from (18), (19), the
zero dynamics form in (17) follows.

Remark 1: The zero dynamics expression in (17) is a gen-
eralization of the work presented in [6]. In particular, if
h(q, σ) = h(q), then ζ(ξ1, ξ2) = 0 in (17) and the zero
dynamics presented in [6] will be retrieved.

The following lemma provides a sufficient condition for the
rank condition in hypothesis H6 to hold.
Lemma 2: Consider the hypotheses of Lemma 1
and Proposition 1. A sufficient condition for H6
to hold is that rank([Ξ11(q, q̇); ∂θ1/∂q]) = N and
rank([Ξ22(q, q̇); (∂θ2/∂σ)γu(q)]) = N for all (q, q̇) ∈ TQ̃.

Proof. From the special form of [Ξ(q, q̇); Θ(q, q̇)]
where Θ(q, q̇) = [∂θ1/∂q , 0; (?) , (∂θ2/∂σ)γu(q)],
it follows that [Ξ(·); Θ(·)] has full rank 2N
on TQ̃ if rank([Ξ11(·); ∂θ1/∂q]) = N and
rank([Ξ22(·); (∂θ2/∂σ)γu(q)]) = N .

B. Hybrid Zero Dynamics

Existence of hybrid zero dynamics means that the zero
dynamics manifold must be invariant under impact, that is
∆(S ∩ Z) ⊂ Z . In this section, we first investigate the
topology of S ∩Z . Next, we provide conditions for existence
of hybrid zero dynamics under NHVCs.
Lemma 3: Consider the hypotheses of Lemma 1 and Propo-
sition 1. Let q−0 satisfy [h(q−0 , ω); pv2(q−0 )] = 0, ph2 (q−0 ) > 0,
for all ω ∈ I , where I is an open interval in R. Then, S ∩Z
is a smooth embedded one-dimensional submanifold of TQ̃ if
S∩Z 6= ∅ and rank([h; pv2]) = N on S∩Z . Furthermore, the
connected component of S∩Z containing q−0 is diffeomorphic
to R per λ̄ : I → S ∩ Z , where

λ̄(ω) := [λ̄q; λ̄q̇(ω)], λ̄q := q−0 ,

λ̄q̇(ω) := P−1(q−0 , ω)w(q−0 , ω). (21)

Proof. The rank condition rank([h; pv2]) = N on S ∩ Z
implies that the map [h; ḣ; pv2] has constant rank 2N − 1
on S ∩ Z . Therefore, S ∩ Z is a smooth embedded one-
dimensional submanifold of TQ̃. Now, consider an arbitrary
point (q−0 , q̇) in S ∩ Z . By (19), it can be seen that q̇ =
P−1(q−0 , ω)w(q−0 , ω).

Proposition 2: Consider the hybrid dynamics given by (5) and
a NHVC h(·) satisfying the hypotheses of Lemma 1. Then the
following statements are equivalent,
1) ∆(S ∩ Z) ⊂ Z; and,
2) for every (q−0 , q̇

−
0 ) ∈ S ∩ Z , we have
h(∆q(q

−
0 ), γ−0u∆−q̇ q̇

−
0 ) = 0,

P−1(∆q(q
−
0 ), γ−0u∆−q̇ q̇

−
0 )w(∆qq

−
0 , γ

−
0u∆−q̇ q̇

−
0 ) = ∆−q̇ q̇

−
0 ,

where γ−0u := γu(∆qq
−
0 ) and ∆−q̇ := ∆q̇(q

−
0 ).

Proof. From the hypotheses of Lemma 1, definition of the
zero dynamics manifold Z , and (19), it follows that q̇ =
P−1(q, γu(q)q̇)w(q, γu(q)q̇) for all (q, q̇) ∈ Z . Hence, the
equivalence of Statements 1 and 2 follows from the definition
of Z and the rigid impact model in (4).

Remark 2: The rank conditions in H5, H6, and Lemma 2
can be verified using the parameterizations of the robot states
restricted to the zero dynamics manifold Z . In particular,
using the coordinates in Theorem 1, (18) and (19), we have
[q;σ0] = Υ ([ξ1; ξ2]) and q̇ = Ω([ξ1; ξ2]). Then, the rank
condition verification can be carried out on a planar region
where ξ1 and ξ2 evolve. This is due to the fact that the full
rank condition holds if and only if certain square submatrices
of the matrices in H5, H6, and Lemma 2 are invertible matrix
functions on TQ̃. The continuity property of determinant
of square matrices guarantees that if these rank conditions
hold on the zero dynamics manifold, then they hold in a
neighborhood of the zero dynamics manifold.

C. Reduced Dimensionality Test under NHVCs

The existence and stability of periodic orbits of the hybrid
dynamical system in (5) under hybrid invariant NHVCs can
be completely determined on the basis of the zero dynamics
in (17) and the restriction of the impact model ∆(·) to Z .
Indeed, under the hypotheses of Theorem 1 and Lemma 3, if
we choose the Poincaré section to be S∩Z and in coordinates
(ξ1, ξ2) = (θ1, θ2), S∩Z and the impact map ∆ : (ξ−1 , ξ

−
2 )→

(ξ+1 , ξ
+
2 ) simplify to

S ∩ Z = {(ξ−1 , ξ
−
2 ) : ξ−1 = θ1(q−0 ), ξ−2 ∈ R}, (22)

ξ+1 = θ1 ◦∆q(q
−
0 ), (23)

ξ+2 = θ2(∆q(q
−
0 ), γ−0u∆−q̇ Υ ([ξ−1 ; ξ−2 ])), (24)

where γ−0u := γu(∆qq
−
0 ), ∆−q̇ := ∆q̇(q

−
0 ), and Υ (·) is given

in (18). For the hybrid restriction dynamics given by the zero
dynamics in (17) and the impact in (23), (24), we define the
Poincaré map to be the partial map ρ : S ∩ Z → S ∩ Z ,
z 7→ ϕ(TI ◦ ∆(z),∆(z)) with TI(·) and ϕ(·, z0) being the
time to impact function restricted to Z and the solution to the
zero dynamics in (17) with initial condition z0, respectively.



The following theorem, whose proof directly follows the
results in [6], provides conditions for existence and stability
of hybrid periodic orbits under NHVCs.
Theorem 2: Assume the hypotheses of Theorem 1 with a
hybrid invariant NHVC. Consider the hybrid restriction dy-
namics given by the zero dynamics in (17) and the impact
in (23), (24). Consider the Poincaré map ρ : S ∩Z → S ∩Z ,
z 7→ ϕ(TI ◦∆(z),∆(z)). If there exists z∗ ∈ S ∩Z such that
z∗ = ρ(z∗) and the discrete time system δz[k + 1] = Aδz[k],
where δz[k] := z[k] − z∗, and A := ∂ρ

∂z (z∗) is exponentially
stable, then the orbit ϕ(·,∆(z∗)) is an exponentially stable
hybrid periodic orbit for (5).

D. Parameterizing NHVCs

Although the results in the previous sections are general,
we only consider the specific class

y = hh(q, τ(q))− hnh(σu(q, q̇)), (25)

of NHVCs, which is given by the affine sum of a holonomic
function, hh(q, τ(q)) := H0q−hd ◦τ(q), and a nonholonomic
Bézier polynomial

hnh(σu) :=

M∑
n=0

κn
M !

n!(M − n)!
σnu(1− σu)M−n. (26)

The holonomic part hh(·) is a VHC that encodes stable
walking gaits of planar bipedal robots using the normalized
monotonic gait phasing variable τ(q), which takes values in
the interval [0, 1). Additionally, we choose the zero dynamics
coordinates such that θ1 = τ(q) and θ2 = σu which satisfy
Theorem 1. Unlike τ(q), σu is not strictly monotonic, and the
minimum and maximum values can not be known a priori.
Therefore, we can not use a normalized representation of σu.
By Lemma 3, we require that hnh is designed such that it
vanishes when S ∩Z . In this article, we assume that hh(·) is
given and the gait design is only done for hnh(·). In particular,
we find the coefficients of the polynomial hnh(·) by solving
the following optimization problem,

κ∗ = arg min
κ∈RM+1

1

step length

∫ T

0

||u∗κ(t)||22dt (27)

s.t. ∆(S ∩ Z) ⊂ Z , Physical Constraints.

Here, u∗κ(t) is the feedback control that renders the zero
dynamics manifold invariant. It can be obtained via computing
the feedforward term of the input-output feedback linearizing
control law on the zero dynamics manifold. The invertibility
of the decoupling matrix is essentially guaranteed whenever∫ T
0
||u∗κ(t)||22dt is finite, since singularities in the decoupling

matrix will normally result in u∗κ(t) taking on unbounded val-
ues. Also, the “Physical Constraints” refer to torque saturation,
foot clearance, actuator range of motion, and the nonlinear
inequality constraints (presented in [6]) required for a solution
to exist. The three nonlinear inequality constraints are as
follows: 1) minimum normal ground reaction force is FN1 > 0;
2) maximum ratio of tangential to normal ground reaction
forces is less than the static friction limit, |FT1 /FN1 | < µs;
3) S ∩ Z occurs only at the end of the step. The result of
the optimization is the vector of coefficients κ∗ that yields a
hybrid invariant nonholonomic walking gait.

Remark 3: Due to the specific format of the NHVC
in (25) and for sufficiently small nonholonomic coeffi-
cient vector κ∗, the rank condition in Lemma 2 au-
tomatically holds. In particular, [Ξ11(q, q̇); ∂θ1/∂q] =
[∂hh/∂q+(∂hnh/∂σ)(∂γu/∂q)q̇; (∂θ1/∂q)], and[

Ξ22(q, q̇)
(∂θ2/∂σ)γu(q)

]
=

[
∂hh/∂q+(∂2hnh/∂σ

2)γu(∂L/∂qu)
γu(q)

]
.

Since [∂hh/∂q; (∂θ1/∂q)] and [∂hh/∂q; γu(q)] are square
and invertible (due to the specific properties of the base
holonomic constraint hh(·)), and from the continuity property
of determinant of square matrices with respect to their entries,
it follows that the rank condition in Lemma 2 holds.

IV. SIMULATION RESULTS

Having derived the zero dynamics and hybrid invariance
conditions, we now explore the performance of NHVCs
through simulation.

A. Nonholonomic Gait
The computations were performed using MATLAB’s

fmincon function for the biped robot RABBIT [1], [6]. The
physical parameters for the robot are taken from [6] and have
been omitted here for brevity. In Fig. 2 (a,b) we see the
resulting periodic orbit of the optimization. Using Theorem 2
on the resulting walking gait, the eigenvalue of the linearized
restricted Poincaré map was computed as λ1 = 0.6877. Since
the eigenvalue is of magnitude less than one, the controller is
locally exponentially stable.

B. Push Disturbance

We now present simulation results for push recovery of
the biped robot, RABBIT (see Fig. 1). We apply a push
disturbance of the form Fd = [fx; 0] at the midpoint of
the torso of the robot. In this work, we apply a randomly
generated force (−10 N ≤ fx ≤ 10 N) every two seconds
for a duration of ∆t = 1 second and simulate the biped for
30 steps or until failure. We performed this experiment 20
times for each controller, and an example of the randomly
generated force profile can be seen in Fig. 2 (c). For each
trial, the same randomly generated force profile was applied
to both controllers.

Fig. 2 (d) shows the dynamic change in q4(t) plotted against
θ1 = τ(q) and θ2 = σu (the zero dynamics coordinates).
This figure illustrates that the zero dynamics of the NHVC
controller now evolve on a surface parameterized by θ1 and θ2,
rather than a two-dimensional curve for the VHC controller.
Fig. 2 (e) shows the mean number of steps the biped was
able to complete before failure [19] for the VHC and NHVC
control schemes. In fact, with mean number of steps µV HC =
15 ± 3.15 and µNHV C = 20.9 ± 3.05 (Mean ± Standard
Deviation), This finding reinforces the results of [11], [12],
but also implies that statistically the two controllers do not
belong to the same population with 95% confidence. Fig. 2 (f)
shows the torque profiles for each of the joints. The NHVC
dynamically changes the torque applied to the system based
on the evolution of the momenta conjugate.
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Fig. 2: The simulation results for the biped: (a,b) the nominal periodic orbits of the biped subject to NHVCs, (c) an example
randomly generated force profile applied to the biped for both controllers, (d) the joint angle q4 plotted against θ1 = τ and
θ2 = σu subject to a push disturbance for the NHVC controller, (e) the mean number of steps before failure using VHC and
NHVCs (∗ indicates p < 0.05), and (f) the torque profiles for each of the joints for the NHVC controller.

V. CONCLUSION AND FUTURE RESEARCH

The central focus of this letter was to derive the hybrid
zero dynamics for a one degree of underactuation biped walker
with NHVCs. A closed form expression of the zero dynamics
was derived for the biped robot during the swing phase of
walking. Conditions required to maintain a hybrid invariant
walking gait were also presented. Lastly, nonholonomic virtual
constraints were used to simulate the RABBIT biped robot
with a horizontal disturbance. In future research, we plan to
leverage NHVCs for application to powered prosthesis control
and investigate methods of designing NHVCs to leverage
kinematic adaptability properties.
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