
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2023 1

Robustification of Bayesian-Inference-Based Gait
Estimation for Lower-limb Wearable Robots

Ting-Wei Hsu1, Robert D. Gregg2, and Gray C. Thomas3

Abstract—Lower-limb wearable robots designed to assist peo-
ple in everyday activities must reliably recover from any mo-
mentary confusion about what the user is doing. Such confusion
might arise from momentary sensor failure, collision with an
obstacle, losing track of gait due to an out-of-distribution stride,
etc. Systems that infer a user’s walking condition from angle
measurements using Bayesian filters (e.g., extended Kalman
filters) have been shown to accurately track gait across a
range of activities. However, due to the fundamental problem
structure and assumptions of Bayesian filter implementations,
such estimators risk becoming ‘lost’ with little hope of a
quick recovery. In this paper, we 1) introduce a Monte Carlo-
based metric to quantify the robustness of pattern-tracking
gait estimators, 2) propose strategies for improving tracking
robustness, and 3) systematically evaluate them against this new
metric using a publicly available gait biomechanics dataset. Our
results, aggregating 2,700 trials of simulated walking of 10 able-
bodied subjects under random perturbations, suggest that drastic
improvements in robustness (from 8.9% to 99%) are possible
using relatively simple modifications to the estimation process
without noticeably degrading estimator accuracy.

Index Terms—Prosthetics and Exoskeletons; Wearable
Robotics; Rehabilitation Robotics.

I. INTRODUCTION

LOWER-LIMB wearable robots, such as powered pros-
theses and exoskeletons, have great potential to enhance

mobility for people with lower-limb disabilities. By inferring
their user’s intent (such as walking or climbing stairs) from
onboard sensors and applying the corresponding torques to
the user’s biological or prosthetic joints, these devices aim
to mechanically compensate for the disability and to allow
users to perform the tasks comfortably. However, since typical
onboard sensors of such robots, for example, their inertial
measurement units (IMUs), joint encoders, and force/torque
sensors, can only offer a limited picture of the user’s true intent
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[1]–[12], the inference of human intent is challenging, and
its failure can lead to unreliable device behavior. For safety-
critical applications with a prosthetic leg, this unreliability is
a major obstacle to system acceptance and adoption. As a
result, reliably tracking the various activities of daily living
has become a key challenge for lower-limb wearable robot
controllers.

One way to estimate gait variation is to quantify the gait pro-
gression using a continuous gait phase variable [1]–[3], [13].
Gait phase is typically considered to increase at a constant rate
from 0 (at heel strike) to 1 (right before the next ipsilateral heel
strike) in a steady-state gait cycle. Continuous phase variables
are continuous functions of measurable quantities that improve
over this behavior so that control laws can be synchronized
to motion, even within a stride. Some researchers utilize
phase plane analysis and nonlinear mappings to calculate a
phase variable from the user’s lower-limb kinematics such
as the global thigh angle [1], [14], hip angle [2], [15], or
tibia motion [3]. This approach allows tracking of variable-
period locomotion. However, the same phase variable will not
necessarily work between different tasks, limiting the practical
scalability of the approach.

Machine learning (ML) has also been applied to task vari-
ation in human locomotion. ML has been utilized to perform
classification of locomotion mode identification and intent
recognition for lower-limb wearable robots [4]–[9]. Deep
convolutional neural networks have also been used to estimate
continuous task-related gait parameters, such as stride length
[16], [17]. ML-based gait phase estimators have demonstrated
promising accuracy in gait phase estimation and adaptation to
varying walking tasks [18]–[23]. However, ML-based methods
usually require a significant amount of data for model training
[5], [6], [8]. The black-box-like nature of neural networks also
makes their behavior unpredictable and hard to debug.

Bayesian inference provides a more straightforward method-
ology for gait estimation [10]–[12]. Bayesian filters work by
treating the gait state estimates as random variables that follow
certain probability distributions, utilizing Bayes’ theorem to
update the probability as new information is observed. One
common technique to implement Bayesian inference is to
assume a Gaussian distribution. This leads to different variants
of Kalman filters, such as the extended Kalman filter (EKF)
and unscented Kalman filter (UKF). The main difference
between the EKF and UKF is the method they utilize to
propagate Gaussian random variables through the nonlinear
dynamic and measurement models. The EKF linearizes the
dynamic and measurement models about the current state
estimate using Taylor approximation, thereby obtaining an
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analytical expression of the approximated filtering equation.
The UKF utilizes unscented transform to approximate the
mean and covariance of the Gaussian distribution that is
mapped through the nonlinear dynamic and measurement
models [24]. The equations and the derivation of the EKF
and UKF can be found in [24], [25]. Recent work has shown
promising results in tracking the stance phase for a powered
prosthetic leg using an EKF [10] and state estimation for
a powered prosthetic ankle using a suite of Kalman filters
[26]. Moreover, the EKF and UKF have been used to estimate
continuous task variables such as walking speed, stride length,
and ground inclination in addition to phase [11], [12], building
on the recent development of such continuous models and
supporting datasets [27]–[29]. However, these Kalman filter
variants all share the disadvantage of potentially losing track of
the state estimates due to the assumptions they make. For gait
estimation to reach safety-critical applications, the robustness
of the estimators is a key requirement; however, this robustness
issue of the Bayesian-filter-based gait estimators has yet to be
properly investigated.

In this study, the objective is to evaluate, compare, and en-
hance the robustness of two Bayesian-filter-based gait estima-
tors (EKF and UKF-based) in silico. Our simulation supplies
the filters with kinematic measurements from a biomechanical
dataset [27], and the filters are judged on their ability to
predict a gait-state comprising phase, phase rate, normalized
stride length, and ramp angle. Our contributions include 1) the
introduction of a Monte Carlo-based metric for quantifying the
gait estimators’ robustness against loss-of-tracking scenarios,
2) three robustifying mechanisms for the gait estimators de-
signed to achieve an almost-100% recovery rate from loss-of-
tracking scenarios, and 3) systematic evaluations of the EKF
and UKF implementations and comparisons of the proposed
robustifying mechanisms using hypothesis testing. To the best
of our knowledge, this paper is the first to systematically study
and address the robustness issue of Bayesian-filter-based gait
estimators for lower-limb wearable robots. By addressing this
gap in robustness quantification and robustness-oriented filter
design, we hope to enable the practical application of gait-
state tracking controllers to safety-critical lower-limb wearable
robots.

II. GAIT ESTIMATION METHODS

A. Human Gait Model

We define a gait-state vector with four state variables to
describe human gait, given by

x = [ϕ ϕ̇ l r]T ∈ R4×1, (1)

where ϕ denotes the gait phase, ϕ̇ = dϕ/dt denotes the phase
rate, l denotes the normalized stride length (defined as stride
length normalized by leg length), and r denotes the ramp
angle. We model the evolution of the gait-state vector in time
as a stochastic process: ϕ̇, l, and r integrate white noise, while
ϕ integrates ϕ̇.

The measurement model simply predicts the gait kinematics
according to phase and task variables—similar to existing
models in the biomechanics literature [27]. In this work,

we consider global thigh angles θth, global thigh angular
velocities θ̇th, and foot angles θf as measurements. The
definition of θth and θf are shown in Fig. 1a. First, we define
a set of continuous functions that map the gait-state x to
θth and θf . This kinematic model is structurally linear in its
parameters,

θth = Λ(x)Ψth, θf = Λ(x)Ψf , (2)

where Λ : R4×1 → R1×M is a single-row regressor vector
and Ψth and Ψf ∈ RM×1 are single-column parameter
vectors to be learned from model fitting. The definition of the
regressor Λ(x) uses the Kronecker product to compact simple
relationships in ϕ, l, and r,

Λ(x) = Λϕ(ϕ)⊗ Λl(l)⊗ Λr(r), (3)

where Λϕ(ϕ), Λl(l), and Λr(r) are a Fourier series

Λϕ(ϕ) =[1 cos(2πϕ) sin(2πϕ) cos(4πϕ)

. . . cos(20πϕ) sin(20πϕ)] ∈ R1×21, (4)

and two Bernstein polynomial bases,

Λl(l) = [(1− l)2 2(1− l)l l2] ∈ R1×3, (5)

Λr(r) = [(1− r)2 2(1− r)r r2] ∈ R1×3. (6)

Thus, the width of the regressor Λ(x) and size of the parameter
vectors is M = 189. Since the Kronecker product is linear,
we have convenient expressions for the phase-derivative of
the kinematic signals, and we use this to produce velocity
estimates, for example

θ̇th =
∂Λ

∂ϕ
ϕ̇ Ψth = ϕ̇

(
∂Λϕ(ϕ)

∂ϕ
⊗ Λl(l)⊗ Λr(r)

)
Ψth (7)

The parameter vectors, Ψth and Ψf , are fit using constrained
least-squares to best predict the kinematics in a multi-activity
dataset published by Embry et al. [27]. This dataset provides
ground truth gait-state (phase, phase rate, normalized stride
length, and ramp angle) along with kinematics data (including
global thigh angles and foot angles) of 10 able-bodied subjects
(5 male/5 female; mean age: 23 ± 2.8 (SD) years; mean
height: 170 ± 8.2 cm) walking at different combinations of
constant speeds (0.8, 1.0, and 1.2 m/s) and constant ramp
angles (-10, -7.5, -5, -2.5, 0, 2.5, 5, 7.5, 10 deg). Using these
labeled data, (x, θth, θf ), we can solve for the unknown param-
eter vectors Ψth and Ψf in Eq. (2) using least-squares. When
implementing lest-squares, we impose constraints such that
the global thigh angles are always zero when the normalized
stride length is zero. The resulting gait kinematics model is
visualized in Fig. 1b.

B. Real-time Gait State Estimation

Our simulation uses the EKF and UKF to estimate the gait-
state from gait kinematic measurements. These filters use the
following dynamics model alongside the previously mentioned
measurement model. In discrete time, the gait state evolution
is given by

xk = A xk−1 + ξk, (8)
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Fig. 1. (a) View of a human leg from the sagittal plane and the definitions of θth and θf . (b) The data-driven gait kinematic models of global thigh angles
θth, global thigh angular velocities θ̇th, and foot angles θf . Note that each model is multidimensional, depending on ϕ, l, r (and also ϕ̇ for the θ̇th model).
For visualization, we plot the models with respect to ϕ and r by fixing l = 1.1 (and ϕ̇ = 0.8 for the θ̇th model).

where xk = [ϕk ϕ̇k lk rk]
T ∈ R4×1 denotes the gait-state

vector at time step k, A ∈ R4×4 denotes the discrete-time
state matrix, and ξk ∼ N(0, Q) denotes the additive Gaussian
process noise. The phase ϕ is always wrapped to [0, 1). The
state matrix A describes how the gait-state propagates over
time. In this work, we assume that in the absence of process
noise, the phase rate, normalized stride length, and ramp angle
are constant over time, resulting in a linear, discrete-time state
matrix, given by

A =


1 ∆t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (9)

where ∆t is the time step. For the process noise ξk ∼ N(0, Q),
we assume that the process noise covariance is a diagonal
matrix in the form of Q = diag([0, σ2

ϕ̇
, σ2

l , σ
2
r ]) ×∆t. In this

work, we consider σ2
ϕ̇
= 10−3, σ2

l = 5 × 10−2, and σ2
r =

5, which are tuned such that the EKF and UKF both yield
comparable level of root-mean-squared errors (RMSEs) with
[12] and achieve similar RMSEs with each other.

We consider global thigh angles, global thigh angular ve-
locities, and foot angles as measurements for the filters. The
data-driven kinematics models discussed in (2) and (7) are
used as the measurement model, given by

zk = h(xk) + ηk =

 Λ(xk)Ψth
∂Λ(xk)

∂ϕ ϕ̇Ψth

Λ(xk)Ψf

+ ηk, (10)

where zk = [θthk
θ̇thk

θfk ]
T ∈ R3×1 denotes the measure-

ments, and ηk ∼ N(0, R) denotes the measurement noise.
The measurement noise covariance R ∈ R3×3 is computed
empirically using the residuals between the predicted values
of the kinematics model and the actual data in the dataset.

In this work, both the EKF and UKF are initialized with
prior mean µ0 = [0.5, 0.8, 1.1, 0]T (i.e., mid-stance) and prior
state covariance Σ0 = diag([10−2, 10−1, 10−1, 10−1]), and the
parameters of the UKF are set to (α, β, κ) = (10−3, 2, 0)
as suggested by [24] and [12]. Singular value decomposition
is employed to compute the matrix square root in the UKF
algorithm.

III. SIMULATION METHODS

In order to evaluate and compare the performance of the
EKF and the UKF as gait estimators, we performed simula-
tions using the gait data provided by the same dataset used for
model training in Section II-A. This dataset contains a total of
270 trials of gait kinematics data and ground truth gait-state
sampled at 100 Hz. In each trial of simulation, we used the
global thigh angles, global thigh angular velocities, and foot
angles as the measurements for the filters to estimate the gait
states. Fig. 2 demonstrates the EKF and UKF estimation. As
can be seen, both filters are able to track the ground truth.

ground truth EKF estimate UKF estimate

time (s) time (s)

𝜙
ሶ

𝜙
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/s
)
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eg
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Fig. 2. An example of the EKF and UKF gait-state estimation for a randomly
selected trail in which a user walked at 0.8 m/s on a 2.5-degree inclined ramp.

IV. EVALUATION OF ROBUSTNESS

When Bayesian-filter-based gait-state estimators lose track,
their local Gaussian simplification of the posterior distribution
prevents them from noticing the superior tracking performance
of more correct gait-state estimates. This results in the state
estimate remaining ‘lost’ in a local minimum instead of con-
verging to the best possible estimate of the gait state. The risk
of this failure mode depends on both the filter’s myopic linear
assumptions and on the non-linearity of the estimation problem
itself. In this work, we evaluate the robustness of the EKF
and UKF empirically by two metrics: 1) the RMSE between
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the estimation and the ground truth (a standard measure of
tracking performance) and 2) a Monte Carlo-based kidnapped
robot test that aims to quantify robustness against loss-of-
tracking scenarios.

A. Root-Mean-Squared Error (RMSE)

We use the RMSE between the gait-state estimation and the
ground truth to evaluate the performance of the filters. The
RMSEs are shown in Table I. As can be seen, both the EKF
and the UKF yield satisfactory tracking performance, and their
RMSEs are similar. In addition, the RMSEs are comparable
to their counterparts reported in [12], which calculated the
average RMSEs across all individual strides for a representa-
tive trial in simulations (EKF: RMSEϕ = 0.01 ± 0.009 (SD),
RMSEϕ̇ = 0.02 ± 0.02, RMSEl = 0.08 ± 0.06, and RMSEr

= 0.72 ± 1.62; UKF: RMSEϕ = 0.01 ± 0.009, RMSEϕ̇ =
0.02 ± 0.02, RMSEl = 0.08 ± 0.06, and RMSEr = 0.73 ±
1.64).

TABLE I
RMSES OF THE GAIT-STATE ESTIMATORS

RMSEϕ RMSEϕ̇ (1/s) RMSEl RMSEr (deg)

EKF 0.022 0.028 0.126 2.351
UKF 0.021 0.028 0.125 2.323

B. A Monte Carlo-based Kidnapping Test

The kidnapped robot problem refers to a scenario in which a
mobile robot is suddenly moved to an unknown location while
performing localization [30]. This is a challenging problem
because the robot has a strong belief in where it is when
being kidnapped, making it difficult to recover and locate itself
again. Inspired by this idea, we propose a metric to empirically
evaluate a gait-state estimator’s robustness against staying lost
by kidnapping the state estimates to random conditions and
measuring the likelihood that the estimate returns to the correct
value within a time limit.

The kidnapping simulates scenarios in which the state esti-
mates deviate from tracking due to any possible disturbances
(e.g., momentary sensor failure, striking an obstacle, etc.) and
end up at some unexpected locations in the state space after the
disturbance is over. For each gait-state variable, we kidnap the
estimate during steady-state by setting its value to a uniformly
distributed random variable:

ϕ̂k ∼ U [0, 1),
ˆ̇
ϕk ∼ U [0, 5],

l̂k ∼ U [0, 2], r̂k ∼ U [−10, 10] deg,
(11)

where (̂.) denotes the state estimate and k is the time step
when kidnapping occurs. The bounds of the kidnapped states
are prescribed values selected based on the loss-of-tracking
scenarios from which we hope the estimators can always
recover. For each trial in the dataset, we run 11 simulations.
One of the simulations is the nominal case in which no
kidnapping is performed. In the other 10 simulations, we
randomly kidnap the state estimates during steady-state, and
check if the state estimates converge back to the nominal

case after the kidnapping event. Note that the time step k
at which the kidnapping event occurs is also random. Fig. 3
shows an example of the kidnapping tests for the EKF. The
condition of convergence is met if the differences of the state
estimates between the kidnapped case and the nominal case
is less than 1) 0.025 for phase, 2) 0.15 for normalized stride
length, and 3) 2.5 degrees for ramp angle. These values can
be any reasonably small numbers, depending on how strict
we want the kidnapping tests to be. In this work, we define
the thresholds using values slightly larger than the RMSEs
in Table I. Because we have 270 trials of walking data for
simulation as mentioned in Section III, we ultimately ran a
total of 2,700 kidnapping tests.

ground truth nominal EKF estimate

Fig. 3. An example of the kidnapping test (1 nominal simulation + 3
kidnapped simulations) for the original EKF using the same trail as in Fig.
2. The kidnapping occurs during the second stride. The lines with different
colors denote the kidnapped simulations, showing that most trajectories are
unable to recover back to the nominal case.

To complete the metric, we compute the percentage of the
kidnapping tests in which the state estimates converge within
i strides of the kidnapping events, and define this percentage
as the robustness of the filter, denoted by Ri. Here, we show
only i = 1 and 3. The percentage represents the likelihood
of the estimator recovering from any disturbed state estimates
(given by Eq. (11)) using available measurements after the
disturbance is over. For example, an estimator with R1 = 99%
means that if its estimates deviate to some unexpected location
in the state space due to some disturbances, it has a 99%
chance of getting back on track after one regular stride using
available measurements. In this work, R1 emphasizes recovery
speed, and R3 emphasizes the recoverability (i.e., ability to
recover at slower recovery speeds). For the gait estimator to
be practically safe, it must recover within one stride after the
kidnapping occurs. In other words, our goal is to ultimately
enhance R1, while R3 is only used to better understand the
structure of the problem.

Note that the values of R1 and R3 are the sample means
of Bernoulli random variables (success or failure in each
kidnapping test). By Central Limit Theorem, if we perform
a sufficiently large number of the kidnapping tests, the values



HSU et al.: ROBUSTIFICATION OF BAYESIAN-INFERENCE-BASED GAIT ESTIMATION 5

of R1 and R3 will converge to Gaussian distributions,

R1
d−→ N (R1, σ2

1/N); R3
d−→ N (R3, σ2

3/N), (12)

where d−→ denotes converging in distribution; R1 and R3

denote the true means of the Bernoulli random variables (i.e.,
true robustness); σ1 and σ3 denote the standard deviation of the
Bernoulli random variables; and N denotes the total number
of kidnapping tests. In this work, we will utilize hypothesis
testing to compare the values of R1 and R3 in different cases.

V. ENHANCEMENT OF ROBUSTNESS

Applying the robustness test to the original EKF and UKF,
neither the EKF (R1 = 8.9%) nor UKF (R1 = 9.8%) appears
to be R1-robust, and the results are still unsatisfactory after
three steps (EKF: R3 = 20.8%, UKF: R3 = 22.5%). Looking
closely at the recovery trajectories in Fig. 3, we observe
that some of the estimates are completely lost, and some of
the l and r estimates seem to reach values that are out of
the range of the training dataset (i.e., −10 ≤ r ≤ 10 deg
and 0.8 ≤ l ≤ 1.9). In addition, some of the l estimates
even become negative, which is physically impossible. These
observed failure modes indicate that the measurement model
does not provide unambiguous information regarding the gait
states, and the state estimates might also reach some regions in
the state space that are out of the training dataset. Therefore,
we introduced the following three robustifying mechanisms,
described in subsections V-A, V-B, and V-C, respectively, with
the goal of achieving R1 ≈ 100%.

A. Auxiliary Measurement: Phase Angle of Thigh

One factor that causes the filters to lose track is the ambigu-
ity of the measurement model. For example, the relationship
between the gait-state and the gait kinematics may not be
unique in some regions in the state space. Therefore, to en-
hance the robustness, we introduce an auxiliary measurement
that provides less-ambiguous information regarding the gait
phase. To do this, we apply a phase-portrait-based estimate
of gait progression [14], in which the phase angle of thigh
motion acts as our auxiliary measurement. This auxiliary
measurement, φa, is calculated the same way as in [14] (see
Appendix).

We utilize the same regression approach to train the mea-
surement model for this auxiliary measurement. Because we
assume that φa depends only on phase, we construct this
measurement model by a single sub-regressor of phase Λϕ(ϕ)
of degree 10, that is

φa = Λϕ(ϕ)Ψφa
, (13)

where Ψφa
∈ R21×1 is a column vector of unknown pa-

rameters. Then, we use the same dataset as in Section II-A
to train this model, thereby solving for Ψφa

using least-
squares. Fig. 4 shows the comparison among the actual φa,
the predicted φa by the least-square model, and the ground
truth phase. This auxiliary measurement closely resembles
the phase variable, which means it can provide practically
unambiguous information regarding the user’s position in the

gait cycle. Finally, the new measurement model incorporating
φa becomes

zk = h(xk) + ηk =


Λ(xk)Ψth

∂Λ(xk)
∂ϕ ϕ̇ Ψth

Λ(xk)Ψf

Λϕ(ϕk)Ψφa

+ ηk, (14)

where ηk ∼ N(0, R) is the additive measurement noise. Here,
the measurement noise covariance R ∈ R4×4 is also computed
empirically using the errors between the predicted values of
the model and the actual data in the dataset.

ground truth phase actual 𝜑𝑎 predicted 𝜑𝑎

𝝓𝝋𝒂

Time (s)
Fig. 4. The auxiliary measurement φa compared to the ground truth phase
ϕ. The RMSE between φa and the ground truth ϕ is 0.06.

B. State Estimate Saturation

The second approach to enhance the robustness is to saturate
the gait-state estimates within a certain range. Because the
training dataset only covers gait-state variables within a certain
range, our data-driven measurement model may become un-
predictable when the estimates are outside this range, causing
the filter to lose track. Therefore, saturating the state estimates
may serve as a solution to this issue. In this study, we define
the saturation bounds using the lower and upper bounds of
the ground truth gait-state in the training dataset: [0.5, 1.2]
for the ϕ̇ estimates, [0.8, 1.9] for the l estimates, and [-10,
10] degrees for the r estimates.

C. Resetting the Filter based on Failure Detection

Our third robustifying mechanism is resetting the filter
whenever it detects itself losing track. To this end, we define
a detector based on the Mahalanobis distance between the
measurement and the predicted measurement, given by

MDk =
√
vTk S

−1
k vk, (15)

where vk and Sk are the innovation and innovation covariance
of the filter at the k-th time step. We determine that the filter is
lost if MDk > MD , where MD is a tunable threshold value.
In this work, we consider MD = 4. We reset the filter to the
initial prior mean and covariance (i.e., µ0 = [0.5, 0.8, 1.1, 0]T

and Σ0 = diag([10−2, 10−1, 10−1, 10−1])) whenever it detects
itself losing track (i.e., MDk > 4).

D. Statistical Comparison Between Robustification Methods

To compare the robustness R1 and R3, which are Bernoulli
random variables as mentioned in Section IV-B, associated
with different robustifying mechanisms, we utilize one-sided
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hypothesis testing. Let Ri and R′
i (i = 1, 3) be the statistical

robustness resulting from two different robustifying mecha-
nisms. The null and alternative hypotheses are H0 : Ri = R′

i

and H1 : Ri > R′
i, where Ri and R′

i are the true robustness
as described in Eq. (12). With a large number of kidnapping
tests performed (N = 2, 700), we can define the test statistics

zTS =
Ri −R′

i√
Ri(1−Ri)

2
N

, (16)

where R = (Ri + R′
i)/2. Considering a significant level of

5%, we reject H0 and accept H1 if zTS > 1.65.

VI. RESULTS

In general, all of the robustifying mechanisms statistically
improved R1 and R3 for both the EKF and the UKF (see Fig.
5). In particular, if we apply only one of the three robustifying
mechanisms, estimate saturation and filter resetting yield the
most significant enhancement of the robustness. For example,
the EKF with only ‘S’ improved the robustness from the
original R1 = 8.9% and R3 = 20.8% to R1 = 65% and
R3 = 97.1% (both zTS > 1.65). With only ‘R’, the EKF’s
robustness also increased to R1 = 79% and R3 = 89% (both
zTS > 1.65).

The auxiliary measurement constructed by the phase angle
of global thigh motion does not seem to be as effective as the
other two mechanisms when it is applied alone. Compared to
the original robustness, ‘A’ increased the robustness only to
R1 = 27.5% and R3 = 59.1% for the EKF and R1 = 14%
and R3 = 33.4% for the UKF (all zTS > 1.65). However,
the auxiliary measurement plays a crucial role in further
enhancing the robustness when the other two mechanisms have
been applied. For instance, with ‘S+R’, the EKF achieved
R1 = 88.4% and R3 = 98.6%. Although it had been
significantly improved compared to the original robustness,
it still failed to achieve an almost-100% recovery rate. With
‘A+S+R’, the robustness was further enhanced to R1 = 99%
and R3 = 99.9% with statistical significance (zTS > 1.65
comparing to ‘S+R’). Similarly, the UKF with ‘S+R’ could
only achieve R1 = 92.1% and R3 = 98.2%, but with
‘A+S+R’ the robustness further increased to R1 = 97.5% and
R3 = 99.7% (zTS > 1.65). This enhancement of robustness
with all three robustifying mechanisms applied can also be
seen in the recovery trajectories (compare Fig. 6 to Fig. 3).

The RMSEs of both filters with all three robustifying
mechanisms applied are shown in Table II. The RMSE of ϕ of
the EKF (i.e., 0.027) roughly corresponds to 31 milliseconds
at the typical speeds within our dataset. Compared to Table I,
the RMSEs of the UKF do not degrade at the cost of applying
the robustifying mechanisms; however, the RMSEs of the EKF
degrade as a trade-off. In particular, the RMSE of the EKF’s
phase rate estimation degrades the most.

In our experiment, the EKF generally outperformed the
UKF in the Monte Carlo-based kidnapping tests (compare
Figs. 5a and 5b). Most of the R1 and R3 of the UKF are
statistically lower than their counterpart of the EKF. With
all three robustifying mechanisms applied, the UKF achieved
R1 = 97.5%, which was still unsatisfactory compared to the

(a) EKF statistical robustness

(b) UKF statistical robustness

Fig. 5. Statistical robustness by the Monte Carlo-based kidnapping tests with
95% confidence intervals. ‘A’: auxiliary measurement; ‘S’: estimate saturation;
‘R’: filter resetting.

EKF’s R1 = 99% (zTS > 1.65). Yet, with no robustifying
mechanisms applied, the differences in robustness between
the two filters were not significant. Compared to the EKF’s
R1 = 8.9% and R3 = 20.8%, the UKF yielded slightly but
not significantly higher R1 = 9.8% (zTS = 1.13 < 1.65) and
R3 = 22.5% (zTS = 1.51 < 1.65).

ground truth nominal EKF estimate

Fig. 6. An example of the kidnapping test (1 nominal simulation + 3
kidnapped simulations) for the robustified EKF using the same trail as in
Figs. 2 and 3. All three robustifying mechanisms are applied. The lines with
different colors denote the kidnapped simulations, showing enhanced recovery
performance compared to Fig. 3.

VII. DISCUSSION

The results of the kidnapping tests have shown that the
proposed robustifying approaches can significantly enhance
the estimator’s robustness against loss-of-tracking scenarios.
If only one robustifying mechanism is applied, saturation and
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TABLE II
RMSES OF THE GAIT-STATE ESTIMATORS WITH ALL ROBUSTIFYING

MECHANISMS

RMSEϕ RMSEϕ̇ (1/s) RMSEl RMSEr (deg)

EKF 0.027 0.039 0.126 2.264
UKF 0.021 0.028 0.122 2.199

resetting are the two most effective mechanisms. When the
filters lose track, saturation contains the estimates within the
regions where the measurement model is trained, and filter
resetting brings the estimate back to a state that is in the
training dataset. In other words, both approaches prevent the
state estimates from entering the subset of the state space
that is not covered by the training dataset (i.e., where the
measurement model is unpredictable), thereby enhancing the
robustness. Comparing the efficacy of resetting to saturation
for both the EKF and UKF (see Fig. 5), we observe that ‘R’
is statistically more effective than ‘S’ for R1, whereas ‘S’ is
more effective than ‘R’ for R3. Resetting is more effective
for R1 because it resets the estimates to the prior immediately
when failure is detected, enabling faster recovery. Saturation
is more effective for R3 because it structurally improves
the recoverability, despite slower recovery speeds, by always
forcing the state estimates to stay within the region where the
measurement model is predictable.

The auxiliary measurement provides non-estimate-
dependent information regarding the user’s position in the
gait cycles, i.e., the gait phase. Although it is not as effective
as the other two mechanisms when it is applied alone, it does
significantly further enhance the robustness when applied
with saturation and/or resetting. For both the EKF and UKF,
the statistical robustness values resulting from ‘A+S’ and
‘A+R’ are both significantly higher than those yielded by
only ‘S’ and ‘R’ (Fig. 5), corroborating the effectiveness
of the auxiliary measurement as a robustifying mechanism.
Most importantly, without the auxiliary measurement, our
EKF could not achieve its almost-100% recovery rate.

Among the three pairs of robustifying mechanisms (‘A+S’,
‘S+R’, and ‘A+R’), ‘A+S’ demonstrates the highest R3 for
both the EKF and UKF. This is because both the auxiliary mea-
surement and saturation structurally enhance the recoverability
of the estimators by giving unambiguous gait information and
limiting the state estimates in the predictable region. This is a
property that resetting does not have.

Comparing the performance of the EKF and UKF, it has
been shown in Section IV-A that they yield comparable
levels of RMSEs in nominal tests. This is aligned with [12],
[31]. In the kidnapping tests, however, the EKF demonstrates
generally higher robustness than the UKF, indicating that our
robustifying techniques are more useful for the EKF than the
UKF under our parameter settings. Moreover, the EKF takes
less average computation time than the UKF in our simulations
(EKF’s 1.4 ms/time step vs. UKF’s 2.4 ms/time step), which
is aligned with [25], [31]. Given that the EKF has comparable
RMSEs to the UKF in nominal cases, better robustness than
the UKF, and faster computation, we may conclude that the

EKF is a better choice for gait-state estimation than the UKF.
This study utilizes the Monte Carlo-based kidnapping test

as a metric to examine the gait-state estimators’ robustness
against loss of tracking in simulations. The kidnapping test
enables random exploration of disturbed states in the estima-
tor’s state space (see (11)), and estimates the percentage of
them that would converge back to the correct walking cycle.
In this way, it provides a thorough evaluation of the estimator’s
ability to recover from loss-of-tracking scenarios.

This study focuses only on the robustness against loss-
of-tracking scenarios caused by unexpected disturbances as
mentioned in Section IV-B. Some other aspects of robustness
are not captured by the kidnapping test. For example, the
kidnapping test does not clearly quantify the robustness against
model uncertainty, such as a new user or a slightly different
task. Robustness against such uncertainty can be measured
by leave-one-out cross-validation [11]. Kidnapping is also
no stand-in for hardware reliability testing for sensor errors,
actuation failures, or computational delays though it can help
design systems that can recover quickly from these problems
if they are intermittent.

This study provides a general framework to empirically
quantify the robustness of a Bayesian-inference-based gait esti-
mator in simulation. In this work, the gait estimator considers
a four-dimensional gait-state vector to be estimated and the
global thigh and foot motion as measurements. However, the
proposed kidnapping tests and the robustifying mechanisms
are not necessarily limited to this particular setting. For
instance, additional measurements, such as global hip motion
or ankle moments, could be appended to the measurement
model. In addition, non-able-bodied gait data, such as from
symptomatic gait or gait modified by use of a wearable robot,
could also be explicitly evaluated for robustness using this
framework, as future work. Gaits that are very similar to able-
bodied gait could reasonably be expected to have similar levels
of R1 and R3 performance once the robustness-enhancing
features are applied.

In terms of application, the type of robustness this paper
focuses on is key for the practical applications of gait-state
estimation in lower-limb wearable robots. While some wear-
able robot applications, for example, lightweight backdrivable
exoskeletons for augmentation of healthy people, can tolerate
occasionally incorrect torques, applications like powered pros-
thetic legs or high torque exoskeletons for people with partial
paralysis require high reliability in control to ensure safety.
The goal of developing high-reliability gait-state estimation
systems is to allow the benefits of task and phase inference to
translate into these systems.

VIII. CONCLUSIONS

In this work, we studied the robustness of two Bayesian-
inference-based gait-state estimators (EKF and UKF). In terms
of the RMSE metric, both the EKF and the UKF were tracking
the ground truth satisfactorily with low RMSEs. However, both
filters were likely to lose track of the gait-state under the
Monte Carlo-based kidnapping tests. Therefore, we proposed
three robustifying mechanisms: 1) introducing the phase angle
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of thigh motion as an auxiliary measurement, 2) state estimate
saturation, and 3) resetting the filter based on failure detection.
The results showed that all three mechanisms significantly
improved the robustness of the EKF and the UKF without
noticeably degrading the RMSE tracking performance. In par-
ticular, the robustness of the EKF with all three mechanisms
recovered from unexpected tracking disturbances within one
step with 99% reliability.

APPENDIX

The auxiliary measurement (the phase estimate from [14])
is generated from the global thigh angle and velocity as

φa(t) = atan2
(
−
(
θ̇th(t) + d(t)

)
, Γ(t)

(
θth(t) + c(t)

))
,

(17)
where φa ∈ [0, 2π), c(t) and d(t) are shifting parameters,
and Γ(t) is a scaling parameter. The shifting and scaling
parameters are given by

c(t) = −
θth(t) + θth(t)

2
, d(t) = −

θ̇th(t) + θ̇th(t)

2
,

Γ(t) =
|θ̇th(t)− θ̇th(t)|
|θth(t)− θth(t)|

,

(18)

where (.) and (.) denote the maximum and minimum values
in the previous stride.
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