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Abstract— Many control methods have been proposed for
powered prosthetic legs, ranging from finite state machines that
switch between discrete phases of gait to unified controllers that
have a continuous sense of phase. In particular, recent work
has shown that a mechanical phase variable can parameterize
the entire gait cycle for controlling a prosthetic leg during
steady rhythmic locomotion. However, the unified approach
does not provide voluntary control over non-rhythmic motions
like stepping forward and back. In this paper we present a
phasing algorithm that uses the amputee’s hip angle to control
both rhythmic and non-rhythmic motion through two modes:
1) a piecewise (PW) function that provides users voluntary
control over stance and swing in a piecewise manner, and 2) a
unified function that continuously synchronizes the motion of
the prosthetic leg with the amputee user at different walking
speeds. The two phase variable approaches are compared in
experiments with a powered knee-ankle prosthesis used by an
above-knee amputee subject.

I. INTRODUCTION

The methodology of analyzing the gait cycle as a sequence
of discrete events (e.g., heel strike, toe off, etc.) [1], [2]
often guides the design of control strategies used for powered
prosthetic legs [3]–[8]. Under this control architecture, the
joint motions of a powered prosthetic leg are represented as a
sequence of finite states synchronized to the amputee motion
by predefined switching rules. The prosthetic leg transitions
from one state to another (e.g., from push-off to swing) based
on switching rules measured from specific sensors located
on the prosthetic or contralateral leg. A disadvantage of this
methodology is that each finite state in the controller needs
to be carefully tuned for each subject [3].

Recent efforts have unified the control of powered pros-
thetic legs over the gait cycle through the use of phase vari-
ables, i.e., monotonic signals that represent gait progression.
The heel-to-toe movement of the Center Of Pressure (COP)
controlled the progression of the prosthetic stance period
in [9], whereas the swing period was controlled by two
impedance-based finite states. The horizontal hip position

This work was supported by the Eunice Kennedy Shriver National
Institute of Child Health & Human Development of the National Institutes
of Health under Award Number DP2HD080349. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the NIH. This work was also supported by NSF Award CMMI-
1637704. Robert D. Gregg, IV, Ph.D., holds a Career Award at the Scientific
Interface from the Burroughs Wellcome Fund. Dario J. Villarreal holds a
Graduate Fellowship from the National Council of Science and Technology
(CONACYT) from Mexico.

1D. Villarreal is with the Department of Bioengineering, 2D. Quintero is
with the Department of Mechanical Engineering, and 3R. Gregg is with the
Departments of Bioengineering and Mechanical Engineering, University of
Texas at Dallas, Richardson, TX 75080, USA 3rgregg@ieee.org

served as a phase variable in separate controllers for the
stance and swing periods (i.e., two finite states for the gait
cycle) in the simulations of [10]. Because the hip position is
monotonic over the entire gait cycle, this “unified” phase
variable enabled a single controller in the prosthetic leg
simulations of [11]. Piecewise monotonic phase variables
like the global hip angle can separately control the stance
and swing periods [12] or be converted into unified phase
variables during rhythmic motion [13], [14]. This allowed
the experimental implementation of unified controllers in a
powered ankle prosthesis used by a below-knee amputee [15]
and more recently in a powered knee-ankle prosthesis used
by an able-bodied subject wearing a leg-bypass adapter [16].

A unified phase variable provides many benefits during
rhythmic locomotion but is incompatible with voluntary, non-
rhythmic motions. Control methods based on a unified phase
variable do not switch between finite states, resulting in
smoother joint motion. Because there are fewer controllers
and switching rules to tune, the unified approach provides
“plug-and-play” functionality between users with minimal or
no tuning [16]. However, unified phase variables based on
phase oscillators require steady and rhythmic locomotion in
order to have a well-defined sense of phase [13], [15]. In a
recent implementation, the powered prosthetic leg remained
rigid until rhythmic locomotion was recognized [16]. This
weakness could be resolved by using a modified phase-based
controller during these first few steps before transitioning to
a unified phase-based controller. This modified phase-based
controller should give the amputee subject voluntary control
over the motion of the powered prosthetic leg during non-
rhythmic motions (e.g., swinging the leg back and forth,
stepping forward and back, and walking backwards).

Current controllers that give amputees voluntary control
over robotic prostheses use a state-machine logic or di-
rect EMG control dictated by residual antagonist muscle
activation measurements [4], [17], [18]. These EMG-based
approaches have been effective at controlling a single joint,
but simultaneous volitional control of multiple joints remains
a challenge. On the other hand, phase-based control methods
are well suited for coordinating multiple joints through their
mutual dependence on a single phase variable.

In this paper, we propose a piecewise variation of the
phase-based controller [16] that uses the amputee’s hip angle
to voluntarily control both a powered knee and ankle in a
synchronized manner. Because the hip angle is piecewise
monotonic through the gait cycle, this phase variable is di-
vided between the stance and swing periods. This piecewise
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Fig. 1. The reference ankle (top) and knee (bottom) trajectories as functions
of the phase variable for different walking speeds based on able-bodied data
from [2]. These phase-based trajectories are the virtual constraints enforced
by the prosthetic control system.

(PW) phase variable allows the amputee user to voluntarily
take steps forward or back and accelerate into rhythmic
walking, after which the prosthesis transitions to a unified
phase-based controller. An improved version of the unified
phase variable from [16] is implemented to adapt to different
cadences, enabling the first experiments of the unified control
approach with an above-knee amputee subject.

A description of the phase variable algorithm for con-
trolling a powered prosthetic leg during both rhythmic and
non-rhythmic motion will be given in Section II-A. The
experimental protocol and the results of an amputee subject
walking at different speeds using this algorithm are presented
in Section II-B and III, respectively. Finally, a discussion
about the advantages and disadvantages of the two phase
variable methods is presented in Section IV.

II. METHODS

The powered knee and ankle prosthetic leg was controlled
using a phase-based virtual constraint controller. A virtual
constraint is a desired kinematic trajectory as a function of
the phase variable. In the case of the powered prosthetic
leg, the virtual constraints were designed from average
able-bodied data for different speeds (Fig. 1) [2]. As the
phase variable progresses through the gait cycle, the virtual
constraints were enforced through a torque PD controller as
described in [16].

Details of the virtual constraints, torque control law, and
hardware used in the UT Dallas powered knee-ankle pros-
thesis have already been discussed in [16]. In the present
paper, we focus on a new phase variable algorithm and its
implementation for experiments with an above-knee amputee
subject (Fig. 2).

A. Phase Variable Algorithm

The algorithm structure is mainly composed of two sub-
systems: 1) a PW phase variable algorithm and 2) a unified
phase variable algorithm (φ̂). The default output of the phase

Fig. 2. The UT Dallas powered knee and ankle prosthetic leg being worn
by a transfermoral amputee subject during the experiment.
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Fig. 3. Converting a sinusoidal hip trajectory (left) into a phase portrait
(right) to determine phase variable φ ∈ [0, 2π). During steady walking the
hysteresis in the left plot can be resolved by the signal’s integral (right).
The phase portrait is not circular during non-rhythmic motion, so ground
contact sensing can be used to resolve this hysteresis.

variable algorithm is the PW phase variable. This variable is
used when the subject is at rest or during non-rhythmic mo-
tions. When the algorithm detects the subject is rhythmically
walking, then the output of the algorithm transitions to the
unified phase variable (Fig. 3). The algorithm detects a steady
walking condition by measuring rhythmic patterns of the hip
angular position and velocity measurements. The transition
between phase variables (i.e., PW to unified) does not happen
until the measurement of both phase variables agree. This
condition avoids undesired jumps in the phase variable value.
In other words, once the algorithm detects the person is
walking, the transition happens only when the unified phase
variable crosses the PW phase variable. This generally takes
a few strides. When the subject stops walking, the algorithm
switches back to the PW phase variable.

1) Piecewise Phase Variable Algorithm (PW): A diagram
of the PW phase variable algorithm is presented in Fig.
4. The PW phase variable is a function of the global hip
angle, denoted as qH(t), that is measured using an Inertial
Measurement Unit (IMU - LORD MicroStrain Sensing Sys-
tems, Vermont, USA) attached to the top of the robotic leg’s
knee joint. The PW phase variable is divided into stance
and swing periods depending on the measurement of a force
sensitive resistor sensor (FSR - FlexiForce A401, Tekscan
Inc., Massachusetts, USA) located inside the pyramid adapter
of the prosthetic foot. A high value on the sensor measure-
ment denotes stance (i.e., the subject’s foot is in contact
with the ground) whereas a low value denotes swing. In
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Fig. 4. Diagram of the piecewise phase variable algorithm. The variable
s denotes the transition between stance and swing during locomotion (at a
normal walking speed s = 0.57 according to [1]). The variable x represents
the global hip angle qH(t) after normalization.

order to calculate a piecewise phase variable that is between
the values of 0 and 1 (i.e., corresponding to 0 and 100%
of the gait cycle), the hip angle needs to be normalized
to a predefined range of motion. In particular, stance is
normalized between [0, s] and swing between (s, 1), where
s ∈ (0, 1) denotes the desired phase transition value between
stance and swing. This implies that we need to normalize the
hip angle to twice a predefined range of motion (2·RoM). The
normalized hip motion is saturated if its value is greater than
0.25 or smaller than −0.25 (corresponding to a hip angle
outside the predefined normalized RoM). A constant offset
value of 0.25 is added to the normalized hip angle in order
to compute a PW phase variable that starts at zero. The PW
phase variable is then calculated by{

2s(0.5− x), stance
2x(1− s) + s, swing,

(1)

where x is the hip angle after normalization and saturation.
The stance-to-swing phase transition value was chosen as
s = 0.57 based on able-bodied walking [1], Fig. 3.

Normalizing the PW phase variable using the RoM of the
hip angle introduces a new challenge to the algorithm as hu-
mans typically walk with a varying RoM. The RoM value for
normalization was selected to be fairly small (corresponding
to short steps) in order to avoid instantaneous jumps of the
phase variable value between stance and swing. However,
a small RoM results in phase variable saturation whenever
a subject increases his/her RoM (corresponding to longer
steps). It was decided that, for the safety of the hardware
and its user, saturation in the phase variable was preferred
over instantaneous jumps, since the latter can introduce high
frequency accelerations to the joint actuators. Moreover,
longer steps are more typical during steady walking, which
will be performed by the unified phase variable algorithm.

2) Unified Phase Variable Algorithm (φ̂): The unified
phase variable was introduced in [14] and [16], where we
defined the variable q̃H(t) as the integral of qH(t) over a gait
cycle (i.e., q̃H(t) =

∫ T

0
qH(τ)dτ , where t ∈ [0, T ] represents

the time duration of a gait cycle). It was shown in [13] that
the global hip angle has a high correlation coefficient to a
cosine function during a stride, thus it is expected that its
integral traces a sinusoidal trajectory over a gait cycle [14].
The unified phase variable φ(t) is calculated as

φ(t) =
atan2(kq̃H(t), qH(t)) + π

2π
, (2)

where atan2 is the four-quadrant inverse tangent function.
The variable k is a scaling factor that increases the linearity
of the phase variable [13], Fig. 3. It is calculated every gait
cycle as

k =
|max(qH)−min(qH)|
|max(q̃H)−min(q̃H)|

. (3)

The global maximum and minimum hip angle and its integral
need to be known for the phase variable computation in (3),
so values from the previous gait cycle are used. It should be
noted that in contrast to the PW phase variable, the unified
phase variable does not have problems with normalization
since by construction it is always in the range of [0, 2π) due
to the atan2 function.

The integral of the hip angle gets reset at heel strike
every gait cycle in order to avoid drift. The heel strike
condition is measured by the FSR inside the pyramid adapter.
Furthermore, at every heel strike event the algorithm uses the
information from previous strides to compute a correction
term for the integral. For linearity of the unified phase
variable, the sinusoidal trajectory from the integral of the
global hip angle should start and end at zero for each gait
cycle (given the cyclic nature of the global hip angle [13]).
However, due to the variability of human locomotion the
integral might not end exactly at zero, so values from the
previous gait cycle are used. If the value of the integral
at the end of the gait cycle is different than zero, then the
positive area under the curve of the hip angle will not equal
the negative area. This issue could potentially introduce a
phase shift to the phase variable. One solution to this problem
would be to shift the hip angle by subtracting the residual of
its integral from the previous stride. Ideally this adjustment
term in the hip angle would allow us to reach a perfect phase
estimation over time. Nonetheless, during experiments the
best adaptation was to gradually adjust the signal of the hip
angle every gait cycle. The adapted unified phase variable is
finally computed as

φ̂(t) =
atan2(k̂θ̃(t), θ(t)) + π

2π
. (4)

where θ(t) = qH(t)− x0(TN ) is the adjusted hip angle for
the N stride and θ̃(t) is its integral. The term x0(TN ) is the
gradual adjustment per stride defined by

x0(TN ) =

N∑
n=1

sgn(q̃H(Tn)/Tn), (5)

where N represents the number of strides the subject has
taken. The variable k̂ is calculated as in (3) but taking into
account the adjusted hip angle and its integral.

Computing a phase variable that is linear with respect to
time enables smooth control of a powered prosthetic leg. The
virtual constraints define joint angles as polynomial functions
of a perfectly linear phase variable [16]. Thus, nonlinear
regions in the phase trajectory will cause excessively slow
or fast progression through the joint patterns [11].



B. Experimental Protocol

The experimental protocol was reviewed and approved by
the Institutional Review Board (IRB) at the University of
Texas at Dallas. The phase variable algorithm was imple-
mented in the controller of the powered knee-ankle prosthesis
from [16] and tested by a transfemoral amputee subject.
These experiments used the same control gains determined
during previous trials with an able-bodied subject wearing
a bypass adapter [16]. The gains were tuned to a point
where the system was more compliant, as it was noticed
that stronger gains were uncomfortable during locomotion.

The experimental setup began by attaching an IMU to the
top of the robotic leg’s knee joint and aligning the sensor
along the subject’s sagittal plane. A rotation matrix R ∈
SO(2) [19] was applied to the pitch and roll Euler angles in
order to improve the accuracy of the hip angle reading with
respect to the sagittal plane. The objective of this rotation
matrix was to decouple the readings of the hip angle between
the frontal and sagittal planes. This rotation matrix was
computed by using a principal component analysis (PCA)
[20] on the recorded signals of the IMU across several
strides. Aligning the IMU to the sagittal plane was imperative
to achieving reliable calculations of the phase variable. This
calibration process took only a couple of minutes. Once
the IMU was mounted and signals realigned, the amputee
subject was given at least 10 minutes to get acclimated
to the powered prosthetic leg for level ground walking
between handrails. During this time a certified prosthetist
made necessary adjustments to the pyramid adapter below
the socket to ensure proper alignment of the prosthetic leg.

After the setup and acclimation period, the amputee sub-
ject performed an overground walking trial. During this trial
the subject was asked to walk the length of the handrails,
stop, turn around, and start again for a total of 60 seconds.
This trial primarily tested voluntary control of non-steady
walking motions, and consequently the phasing algorithm
primarily output the PW phase variable.

After the overground trial was completed, the subject was
then asked to step onto a treadmill for the next trials. The
subject was provided a safety harness and began walking at
a comfortable treadmill speed until acclimated. The subject
was asked to select their preferred slow (SW), normal (NW),
and fast (FW) walking speeds for level ground. The subject
then performed a 60 second treadmill walking trial for
each of the three speed conditions. Note that across all
trials the control gains and the phase variable algorithm
were not modified. However, for each trial the prosthetic
leg enforced a predefined virtual constraint representing the
average kinematic trajectories of an able-bodied subject for
that particular walking speed [11].

Outlier gait cycles were removed for analyzing each trial.
An outlier was defined as a gait cycle where the phase
variable trajectory had a value outside three standard de-
viations from the average trajectory for that particular trial.
Note that the average and standard deviation of the phase
variable had to be computed for each trial prior to running
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Fig. 5. The mean and ±1 std (N = 9) of the PW phase variable algorithm
is shown for the overground trial (top). The resulting commanded and
measured joint trajectories (mean and ±1 std) of the ankle (middle) and
knee (bottom) are shown as a function of normalized time. The black dashed
line represents the average joint angle trajectory of an able-bodied subject
during rhythmic walking [2]. These able-bodied kinematics were enforced
over phase.

the outlier detection algorithm. If an outlier gait cycle was
detected, then that particular gait was discarded from the
results. Outliers were removed because the amputee subject
was an inexperienced user of powered prosthetic legs and
had only a few minutes of training time. Thus, the hip angle
trajectories of the amputee subject had more variability than
the experienced able-bodied subject in the experiment of
[16]. From the controls perspective, these outlier gait cycles
yielded a phase variable calculation with a premature stance
to swing transition.

III. RESULTS

Fig. 5 shows the results of the overground trial, which
predominantly used the PW phase variable due to the short
length of the parallel bars. The commanded and measured
knee and ankle trajectories show that the controller produced
fairly normative joint kinematics but with some differences
in timing from rhythmic able-bodied data. These differences
can be attributed to the non-steady nature of the overground
trial and the saturation of the phase variable before the
stance-to-swing transition (Fig. 5, top). However, the PW
phase variable enabled the subject to comfortably control
the powered leg during non-steady walking and voluntary
motions such as starting and stopping. The supplemental
video also shows the ability of the subject to walk backwards
with the PW phase variable.
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Fig. 6. The output of the phase variable algorithm for the amputee subject
across three different self-selected speeds. The amputee subject self-selected
the walking speeds to be: SW = 0.67 m/s, NW = 0.89 m/s, and FW = 1.11
m/s. The variable N represents the number of strides used in the calculation
of the mean and ±1 std for each walking speed condition.

Fig. 6 shows the average output of the unified phase
variable for each walking speed trial on the treadmill.
Observe that the slope of the phase variable with respect
to time changed for each walking speed. This shows that
the phase variable captures the speed of the amputee’s gait.
The variability of the phase variable is a direct consequence
of variability in the user’s hip motion, which subsequently
causes variation in the prosthetic joint kinematics.

Fig. 7 shows the commanded and measured knee and
ankle trajectories for the level ground NW treadmill trial
over normalized time and phase. Over phase, the measured
trajectories have a slight phase delay with respect to the
commanded trajectories. This was a consequence of tuning
the control gains to achieve more compliant behavior on
the robotic leg, Section II. The tradeoff for increased user
comfort was increased tracking error.

It can be seen from Fig. 7 (top) that over phase, the
commanded trajectory has no variance and that the controller
produced small variations in the measured joint kinematics.
This is due to the virtual constraints of the controller being
parameterized over the phase variable. On the other hand,
there is more variability in the commanded and measured
joint kinematics over normalized time (Fig. 7, bottom).
This variability comes from the variance in the user’s hip
motion, which in turned affected the phase variable over
time (Fig. 6). It is important to note that over time, the
measured joint trajectories do resemble the kinematics of an
able-bodied subject during locomotion. In conclusion, the
prosthetic leg exhibited able-bodied behavior as the amputee
subject walked at different speeds.

IV. DISCUSSION

The PW phase variable (Section II-A.1) parameterizes
stance and swing independently and switches based on pros-
thetic ground contact. Fig. 5 shows that this phase variable
is not entirely monotonic around a value of 0.6, which is a
consequence of using the prior stride’s hip RoM to normalize
the phase variable. However, directly enslaving the prosthetic
joint motion to the amputee’s hip angle provides volitional
control for starting, stopping, and non-steady walking. For
example, the PW phase variable allowed the subject to walk
both forward and backward at will (see supplemental video).
On the other hand, once the subject achieved steady and
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Fig. 7. The ankle and knee commanded and measured joint kinematics
(mean and ± 1 std) as a function of unified phase variable (top) and
normalized time (bottom) for the NW trial (N = 20). The black dashed
line represents the average joint angle kinematics of an able-bodied subject.

rhythmic walking, the unified phase variable provided a
smoother and more linear phase trajectory throughout the
gait cycle as seen in Fig. 6.

The fact that the unified phase variable works better in
steady gait (i.e., dynamic walking) could be analogous to
human walking when reflex pathways with the spinal cord
are in control of the walking motion without involvement
of the brain [21]. Therefore, it could be said that each of
the phase variables (i.e., PW and unified) could control
the powered prosthetic leg at different cognitive states of
the subject’s locomotion. The PW phase variable controls
volitional movements whereas the unified phase variable
takes over when the subject is walking using his/her reflex
pathways. This specific behavior is only possible due to the
flexibility and adaptability of the phase variable algorithm.
This adaptability also allows the phase variable algorithm
to seamlessly parameterize joint patterns across different
walking speeds.

During experimentation it was noticed that the unified
phase variable algorithm had some difficulties adapting to
non-symmetric gaits as it was designed based on symmetric



and consistent able-bodied gaits. Section II-A.2 mentioned
that the unified phase variable depends on the hip RoM from
the previous stride. A different RoM in the current stride
compromises the linearity of the phase variable trajectory,
which was observed during occasional non-symmetric and
non-consistent steps. During the acclimation period, it was
essential for the subject to relearn how to walk symmetrically
and trust the powered prosthetic leg. Once the amputee
became accustomed to walking symmetrically, the phase
variable algorithm adapted and computed monotonic and
linear phase trajectories across the different walking speeds.

Even though the phase variable algorithm was able to au-
tomatically adapt to different walking speeds, the joint trajec-
tories enforced by the controller (i.e., the virtual constraints)
were manually changed across different speed conditions. It
was important to select each virtual constraint according to
each walking speed as there are clear differences in able-
bodied joint kinematics between locomotion tasks (Fig. 1).
A simple classifier based on cadence could automatically
transition between the virtual constraints for each speed.
It is also possible to model the desired joint kinematics
as continuous functions of walking speed and slope so the
controller does not have to rely on state-machine logic [22].
The phase variable algorithm allows the amputee subject
to intuitively control progression through whatever virtual
constraints are used.

This experiment also suggests that the phase-based control
architecture could allow powered prosthetic legs to be used
as plug-and-play devices. While it has been reported that
the calibration process in other controllers used in powered
knee-ankle prostheses can take several hours across multiple
sessions [3], the phase-based control architecture has a
relatively short calibration process (<10 min). The amputee
subject was able to walk comfortably using the same control
parameters obtained in previous experiments with an able-
bodied subject wearing the prosthetic leg through a bypass
adapter [16].

V. CONCLUSIONS
An algorithm capable of measuring the phase of the gait

cycle was used to synchronize a powered prosthetic leg with
the motion of its amputee user. This algorithm consists of 1) a
piecewise phase variable that allowed the subject to control
voluntary, non-steady leg motions, and 2) a unified phase
variable that allows the amputee to smoothly control steady
walking motions. Furthermore, the phase variable algorithm
allowed the prosthetic leg to adapt to changes in the walking
speed of the amputee. The control architecture only uses on-
board sensors to measure phase and requires no major tuning
across different walking speeds, which makes it viable for
clinical applications. Future amputee experiments will let us
validate the behavior of the phase variable algorithm and
controller across other locomotion tasks (e.g., walking over
various slopes).
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