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Extremum Seeking Control for Stiffness
Auto-Tuning of a Quasi-Passive Ankle Exoskeleton

Saurav Kumar1,2, Matthew Richard Zwall3, Edgar A. Bolı́var-Nieto3, Robert D. Gregg4, and Nicholas Gans5

Abstract—Recently, it has been shown that light-weight, pas-
sive, ankle exoskeletons with spring-based energy store-and-
release mechanisms can reduce the muscular effort of human
walking. The stiffness of the spring in such a device must
be properly tuned in order to minimize the muscular effort.
However, this muscular effort changes for different locomotion
conditions (e.g., walking speed), causing the optimal spring
stiffness to vary as well. Existing passive exoskeletons have a
fixed stiffness during operation, preventing it from responding
to changes in walking conditions. Thus, there is a need of a
device and auto-tuning algorithm that minimizes the muscular
effort across different walking conditions, while preserving the
advantages of passive exoskeletons. In this paper, we developed
a quasi-passive ankle exoskeleton with a variable stiffness mech-
anism capable of self-tuning. As the relationship between the
muscular effort and the optimal spring stiffness across different
walking speeds is not known a priori, a model-free, discrete-time
extremum seeking control (ESC) algorithm was implemented for
real-time optimization of spring stiffness. Experiments with an
able-bodied subject demonstrate that as the walking speed of
the user changes, ESC automatically tunes the torsional stiffness
about the ankle joint. The average RMS EMG readings of tibialis
anterior and soleus muscles at slow walking speed decreased by
26.48% and 7.42%, respectively.

Index Terms—Robust/Adaptive Control of Robotic Systems,
Prosthetics and Exoskeletons, Wearable Robots

I. INTRODUCTION

RECENTLY, it has been shown that passive, light-weight
ankle exoskeletons with a spring attached in parallel to

the calf muscles can reduce the muscular effort of humans dur-
ing walking [1]–[4]. However, the design of the components
in such devices are optimized offline so as to produce the
maximum reduction in muscular effort for a particular walk-
ing condition. As the walking conditions change (e.g., walking
speed), the lower-limb muscular effort also changes [5]. Due to
the use of passive components in these exoskeletons, assistive
properties are fixed, and real-time adaptation to changing
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Fig. 1: (a) Experimental setup of a healthy subject wearing the
quasi-passive ankle exoskeleton. The controllers and the batteries are
mounted on the belt tied to the waist. (b) Actual manufactured version
of ankle exoskeleton.

walking conditions is not possible. Thus, there is a need for
a similar device that minimizes the muscular effort across
different walking conditions, while preserving the advantages
of passive exoskeletons.

Several passive ankle exoskeletons have been built in an
attempt to reduce the muscular effort of human walking, such
as [1]–[4]. In [1], [2], an elastic ankle exoskeleton with a
spring connected in parallel to the calf muscle was shown to
reduce the solueus muscle activity during hopping. Also, it was
conjectured in [2] that the exoskeleton’s spring stiffness needs
to be tuned to achieve greater reductions in the muscular effort.
This was confirmed in [3], [4] using a similar elastic ankle
exoskeleton with a clutch mechanism, where experimental
results demonstrated that for each walking speed there exists
an optimal spring stiffness that produced the highest reduction
in the muscular effort. However, these passive devices lack the
ability to adapt in real-time to different walking conditions.
In particular, the selection of an optimal spring in [3], [4]
was found heuristically by manually testing various stiffness
values in order to achieve the highest reduction in the muscular
effort. Besides this procedure being time-consuming, it was
also limited to a single walking speed. However, the muscular
effort changes with walking speed, which would cause the
optimal spring stiffness (torque assistance pattern) to vary as
well [6].

Apart from offline optimization of muscular effort with
passive devices, efforts have been made in the field of active
ankle exoskeletons to tune the joint parameters in real-time
in order to improve the metabolic cost of the subject [6]–[8].
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However, using the metabolic cost as an objective function
leads to very slow adaptation that typically requires an hour
to find a local optimum [9]. This slow process might not be
applicable for adapting to real-time changes in behavior or
environment. In addition, the measurement of the metabolic
cost requires off-board sensors, e.g., face masks, which might
be obtrusive to the user. Also, most of the active exoskeletons
are restricted to the lab settings either due to the use of a
heavy off-board motor [6], [10] or tethered air supply for
pneumatically actuated exoskeletons [8], [11]–[13].

Quasi-passive exoskeletons combine the adaptability of ac-
tive exoskeletons with the autonomy of passive exoskeletons.
In particular, these devices have passive components like
springs [1], [2], dampers [14], [15] and also contains sensors,
batteries and other electronics, but motors do not provide
power directly to the human joint [16]. A quasi-passive leg
exoskeleton consisting of variable-damping mechanism at the
knee joint was presented in [14], [15]. In this paper, we
developed a quasi-passive ankle exoskeleton that is able to
adjust automatically through a range of torsional stiffness
about the ankle joint via an adjustable lever-arm. Using
this device, we conducted walking experiments at different
walking speeds with the biological feedback provided by the
electromyography (EMG) sensors (see Fig. 1a). Due to the
unknown underlying dynamics and noisy EMG measurements,
we used a model-free extremum seeking control (ESC) to
perform real-time tuning of torsional stiffness of the exoskele-
ton in order to reduce the muscular effort of walking. The
ESC uses a low-frequency perturbation signal to estimate
the gradient of the cost function, making it more robust to
noisy measurements [17]. Our experiments demonstrated that
ESC was able to automatically tune the torsional stiffness
of the ankle exoskeleton across different walking speeds. In
particular, there are two important contributions of this paper.
Contributions of this paper

i) We built an unilateral quasi-passive ankle exoskeleton
with a variable stiffness mechanism. To the best of
our knowledge, this is the first quasi-passive device
capable of real-time adaptation of stiffness in response
to muscular activity at varying walking conditions.

ii) In order to perform real-time optimization of the mus-
cular effort, we implemented a model-free control al-
gorithm, ESC, to automatically tune the stiffness of the
system across different walking speeds. The advantage
of using an ESC is that it does not need the knowledge of
the underlying dynamics. Walking experiments demon-
strate a noticeable reduction in the muscular effort using
our ESC algorithm. In addition, ESC adapts the stiffness
of the system within 10 seconds as the walking speeds
change.

The paper is organized as follows. In Section II, we
describe the mechatronic design of the quasi-passive ankle
exoskeleton and the discrete-time ESC algorithm for real-
time stiffness tuning of the exoskeleton. In Section III, we
describe the experimental setup and protocol followed for
walking experiments. Next, we present the baseline and ESC
experimental results in Section IV. We discuss these results

Stepper Motor

Force Sensitive Resistors

Slider

Spring

Calf Strap

Footbed

Lever-arm

Vertical shank
support

Fig. 2: Schematic of a quasi-passive ankle exoskeleton. The linear
actuator comprising of the stepper motor and the slider mechanism is
used to vary the torsional stiffness about the ankle joint. The shaded
red and green areas show the approximate locations of the soleus and
tibialis anterior muscles, respectively. The red and green dots indicate
the approximate EMG placement locations.

and the limitations of this study in Section V. Finally, Section
VI concludes the paper.

II. DESIGN AND IMPLEMENTATION

The quasi-passive ankle exoskeleton consists of a spring that
stores energy during the early and mid-stance phase of walking
and then releases it during push-off. The energy released by the
spring during push-off provides assistive force to the plantar
flexor muscles. In this section, we describe the design of
our quasi-passive ankle exoskeleton and the variable stiffness
lever, its embedded sensing capabilities, and the discrete-time
perturbation-based ESC algorithm used to modify the torsional
stiffness of the device.

A. Exoskeleton Design

We built a unilateral ankle exoskeleton with a variable
stiffness mechanism, as shown in Fig. 1b. The exoskeleton
has a carbon-fiber frame and a lever-arm assembly consisting
of a slider and a stepper motor. The frame was made up of
a vertical shank support and a footbed connected to the ankle
joint. A free motion Tamarack Flexure JointTM was used at the
ankle joint to reduce the weight of the device. This joint style
was chosen to allow for minor inversion and eversion motion
at the ankle joint to minimize the impact on the user’s natural
gait. Attached to the footbed section of the device is a lever-
arm assembly with a variable attachment point for the spring.
This point was connected by a cable to a coil spring anchored
at the top of the frame near the calf muscle, as shown in Fig.
2. The position of the variable attachment point controls the
system’s torsional stiffness about the ankle joint (see Section
II-B). The top of the vertical shank support is secured just
below the user’s knee with a padded Velcro strap, and the
footbed was placed in an athletic shoe allowing it to be secured
to the user’s foot. A pair of force sensitive resistors (FSR) were
placed on the foot sole for gait cycle detection, as shown in
Fig. 2.



KUMAR et al.: EXTREMUM SEEKING CONTROL FOR STIFFNESS AUTO-TUNING OF A QUASI-PASSIVE ANKLE EXOSKELETON 3

Stepper Motor Sliding mount Ball screw

Bearings Slider track

Fig. 3: Bottom view of the variable stiffness lever-arm.

B. Variable Stiffness Lever Design

In order to vary the torsional stiffness about the ankle joint
in our exoskeleton, we built a lever-arm to have a variable-
effective length, as shown in Fig. 3. The lever-arm design
consists of a MiSUMiTM ball screw assembly mounted in
a rigid frame. A slider attached to the ball nut includes
an attachment point for the spring and bilateral wings to
transfer force generated by the spring to the frame, preventing
radial loading of the ball screw. The ball screw has a lead
of 2 mm and is powered by a QMot QSH2818 Trinamic
Motion ControlTM stepper motor with 200 steps/rev. The linear
actuator comprising the ball screw and the stepper motor has
a travel of 0.085 m, allowing the lever-arm to vary from 0.17
m to 0.25 m, with 8500 discrete positions. Assuming small
angle variation between the spring and the slider track across
all slider positions, the torsional stiffness about the ankle joint
is the product of the spring force F and the effective lever-arm
length at any given slider position L. The spring force F is
given by

F = ksx (1)

where x is the displacement of the spring’s length, which
scales with the effective length of the lever-arm L, and ks
is the stiffness constant of the spring in N/m. The calculation
for the system’s torsional stiffness simplifies to [18]

kexo = ksL
2, (2)

where kexo is the torsional stiffness of the exoskeleton about
the ankle joint in Nm/rad. Thus, changing the lever-arm length
from 0.17-0.25 m modifies the stiffness from 1-2.25 times the
minimum torsional stiffness. For instance, we used a spring
of 5.8 kN/m to implement a torsional stiffness range of 169-
362 Nm/rad. This spring stiffness was chosen such that the
optimum torsional stiffness as found in [3] lies in the above
range. The total mass of the exoskeleton frame including the
variable stiffness lever was 1323 g.
Remark 1: The stepper motor in our variable stiffness mech-
anism varies only the torsional joint stiffness and does not
provide power to the joint, which allows us to select a small
low-power motor. For designs that power the ankle joint
directly, we recommend the reader to review the state-of-art
variable stiffness actuators such as the MACCEPA [19], [20].

Note that powering the ankle joint directly requires heavier
actuators than our proposed mechanism.

C. Embedded Systems and Sensing

All sensing, data recording, ESC implementation (detailed
in Section II-D) and motor controls were performed on-board
using an Arduino Mega 2560 microcontroller. The muscular
effort of the soleus and tibialis anterior muscles were measured
by two MyowareTM EMG sensors (AT-04-001). The Myoware
sensor provided on-board amplification, rectification, and in-
tegration, which was utilized to reduce processing demand on
the system’s controller. To protect the raw EMG signal from
interference, all wires carrying unamplified EMG signals were
double shielded. The stepper motors were powered by two
2300 mAh 12V nickel metal hydride batteries connected in
series to provide 24 V with a total battery capacity of 55.2 W-
h. All the components above were secured to a padded belt,
which was worn at the user’s waist, as shown in Fig. 1a. The
total weight of the belt containing all of the components and
the batteries was 1750 g. Data and power cables were run
laterally down the user’s leg, connecting the controller to the
sensors and motors.

D. Discrete ESC for Stepper Motors

ESC is a model-free adaptive control method that finds an
optimum set-point in order to minimize/maximize an objective
function, whose analytical expression might be unknown [9],
[21]–[23]. Fig. 4 shows a block diagram of a discrete-time
ESC with a human-in-the-loop. We modified the structure of
conventional discrete-time ESC [24] by observing that the
stepper motor dynamics already have an integrator [25]. In
particular, we moved the ESC integrator in the conventional
ESC structure ahead of the summer block. In this modified
structure, the ESC integration is performed by the motor
dynamics itself.

In order to understand the benefit of this ESC structure
for implementation with a stepper motor, we first briefly
explain the stepper motor operation. A stepper motor runs on
a pulsed current, where each pulse turns the motor a fraction
of the full rotation. It does not have any closed-loop encoder
feedback for position control. Instead it accepts a change in
the motor location as an input command instead of the final
motor location. The purpose of modifying the structure of
conventional discrete-time ESC in [24] was specifically done
to satisfy this requirement of stepper motors.
Remark 2: The modified structure of ESC algorithm is a
discretized version of ESC presented in [26]–[28] and is
more suitable for implementation with stepper motor than the
conventional ESC structure for the reasons stated above. The
conventional ESC structure would have commanded the final
motor location, whereas our modified structure commands a
change in the motor location.

The working of the discrete-time ESC can be explained as
follows. The ESC algorithm adds a small periodic perturbation
signal d1(k) = −aω sin(ωk), known as the dither signal, to
the commanded change in the motor location ∆θ(k). Assume
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Fig. 4: Block diagram of a perturbation-based discrete ESC with
a human-in-the-loop. The ESC commands a change in the stepper
motor location ∆θ(k), which moves the spring set-point in the lever-
arm. With the new effective lever-arm length, the user walks and the
EMG readings are measured to quantify the objective function J(·).

that the stepper motor dynamics is modeled as a cascade con-
nection of a zero-order hold and a continuous-time integrator.
The zero-order hold circuit holds the sample ∆θ(k) + d1(k)
constant for one sampling interval ∆T . Denoting tk as the
sampling time, the expression for θ̇(tk) can be written as
θ̇(tk) ≈ ∆θ(k)/∆T−aω sin(ωtk). The integrator dynamics of
the stepper motor then outputs θ(tk)+a cos(ωtk), where θ(tk)
is the position of the stepper motor at time tk. The objective
function J(·) (e.g., muscular effort) measured at this motor
position is sampled to give J(θ(k) + a cos(ωk)). The Taylor
series approximation of J(θ(k)+a cos(ωk)) can be written as

J(·)≈J(θ(k))+J ′(θ(k))a cos(ωk)+
J ′′(θ(k))

2
a2 cos2(ωk)

=J(θ(k))+J ′(θ(k))a cos(ωk)+
a2J ′′(θ(k))

4
(1+ cos 2(ωk)),

(3)

where J ′, J ′′ are the first and the second derivatives of J(·)
with respect to θ. The objective function measurements in (3)
are passed through a high-pass filter (HPF), which removes
the DC components J(θ(k)) and a2J ′′(θ(k))/4 to give

ξ(k) = J ′(θ(k))a cos(ωk) +
a2J ′′(θ(k))

4
cos(2ωk). (4)

The output of the HPF ξ(k) is then multiplied by another
dither signal a cos(ωk) and scaled by a gain −γ to generate

∆θ(k)=-γ
[
J ′(·)a cos(ωk)+

a2J ′′(·)
4

cos(2ωk)
]
a cos(ωk)

=-γ
[a2J ′(·)

2
[1+ cos(2ωk)]+

a3J ′′(·)
4

cos(2ωk) cos(ωk)
]
, (5)

which indicates the amount that the motor should move in
order to minimize the cost function. From (5), it can be seen
that ∆θ(k) consists of a DC component, which is proportional
to J ′(·), and contains other higher frequency terms. Following
standard manipulations (see [24]), the update equations of
discrete-time ESC can be written as

ξ(k) = −hξ(k − 1) + J(θ(k))− J(θ(k − 1)) (6)
∆θ(k) = −γ[ξ(k)a cos(ωk)] (7)

where γ is the adaptation gain and h ∈ (0, 1) is the HPF cut-
off frequency. The stability of the algorithm can be proved
based on two-time scale averaging theory (see [24] for further
details).

E. ESC Code Implementation

The code for the ESC controlled system runs in 3 nested
loops: the ESC loop, the aggregation loop, and the gait detec-
tion loop. The gait detection loop is the innermost loop, whose
primary function is to read all sensors and record data as well
as detect each gait cycle using the 2 FSRs. In each iteration
of this loop, the rectified EMG readings from both the tibialis
anterior and soleus muscles were summed and then integrated
over a gait cycle using a rectangular integration method with
a step size of 0.033 seconds. Once a gait cycle is detected,
the aggregation loop adds the area for the step that was just
detected to an aggregated area value. This process continues
until 3 gait cycles are detected. The aggregated area value,
containing the total integrated EMG area for the previous 3
gait cycles, is then used as an objective function input to the
ESC algorithm. We chose 3 gait cycles for computing the
objective function to achieve a balance between the robustness
and the convergence rate of ESC adaptation. A pseudo code
for the ESC operational loop is available for download in the
supplementary materials.
Remark 3: The integration that occurs in the gait detection
loop converts the instantaneous EMG signals into a meaning-
ful value that quantifies the total muscular effort of each step.
The aggregation loop acts as a filter on the inherent noise of
the biological signal by combining multiple steps.

III. EXPERIMENTAL SETUP AND PROTOCOL

A. Experimental Setup

The experiment protocol was approved by the Institutional
Review Board (IRB) at the University of Texas at Dallas.
Experiments were conducted with a healthy subject wearing
the ankle exoskeleton while walking on a treadmill. Two EMG
sensors were placed on the soleus and the tibialis anterior
muscles after skin preparation to measure the muscular effort
at 30 Hz. In order to normalize the EMG readings, a maximum
voluntary contraction (MVC) experiment was first conducted,
in which the user was instructed to flex each muscle as
hard as possible. The skin preparation, sensor placement, and
the MVC experimental procedures followed the guidelines
suggested in [29]. This MVC experiment was conducted just
once prior to the start of sweep and ESC experiments (see
Section IV-A, IV-B).

Prior to testing, the subject was fitted with an ankle ex-
oskeleton and given a chance to acclimate to it, while the
electrical control was disabled. During the acclimation period,
the torsional stiffness of the exoskeleton was fixed at a median
value of 194 Nm/rad. After acclimation, the subject was
instructed to walk on the treadmill at 1.0 m/s and 1.5 m/s for
up to 5 minutes for baseline walking experiments (see Section
IV-A) and up to 15 minutes for ESC walking experiments
(see Section IV-B), whose protocols are discussed next. All
experiments were done on level ground on the same day, and
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the user was given sufficient rest in between the experiments
to avoid fatigue.

B. Experiment Protocol for Baseline Walking Experiments

Following acclimation, the user was asked to walk on a
treadmill at 1 m/s until 30 gait cycles of data had been
collected. At that point the slider would advance to the next
equally spaced slider position and another 30 gait cycles of
data were recorded. This process continued until 5 equally
spaced positions had been tested from one end of the lever-
arm to the other end. In this manner, the user’s muscular
effort response to the full range of torsional stiffness was
tested. This process lasted for approximately 5 minutes, with
a total of 150 gait cycles being recorded. Steps taken during
slider adjustment were removed from the data set and were
not included in the above mentioned step count. Due to
the variation in the gait patterns, the muscular effort during
each step was different. Therefore, we conducted 6 baseline
walking trials, giving 180 steps of data for each slider location.
Following this, the same protocol was repeated for fast walking
speed (1.5 m/s).

C. Experiment Protocol for ESC Walking Experiments

After baseline testing, the user walked on a treadmill for
15 minutes per experiment. Two versions of this experiment
were performed —slow-fast-slow (SFS) and fast-slow-fast
(FSF). For SFS testing, the user was instructed to walk at
1 m/s for 5 minutes. At the 5 minute point, the treadmill
speed was increased to 1.5 m/s, which was maintained for
another 5 minutes. At the 10 minute point, the treadmill speed
was reduced back to 1 m/s and held for another 5 minutes.
Similarly, the FSF case started and ended at 1.5 m/s, with the
same time intervals for the three speed conditions.

IV. EXPERIMENTAL TESTING RESULTS

A. Baseline Walking Experiments

There were two main goals for performing baseline walking
trials. First, we wanted to demonstrate that a change in the
slider location affects the muscular effort during walking.
Second, as the optimum slider location for different walking
speeds was not known a priori, we wanted to experimentally
determine the optimum slider location for this subject at
different walking speeds. This information helps us validate
the real-time ESC adaptation results across different walking
speeds in Section IV-B.

In order to show the effect of slider location on the muscular
effort, we grouped the EMG readings from all experiments by
slider locations. This resulted in 180 sample data points per
slider location (i.e., 30 samples/test × 6 tests). A control test
was also performed with no spring (NS). Figs. 5a, 5b show
box plots obtained from 6 baseline and NS tests for slow and
fast walking speeds, respectively. Two important observations
can be made from this result: (i) By comparing Figs. 5a, 5b it
can be noted that the optimum slider location for slow walking
speed (L=25 cm at 1 m/s) is higher than that for fast walking
speed (L=17 cm at 1.5 m/s); and (ii) Due to the variations in
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(a) Baseline walking experiment result at slow walking speed (1 m/s),
indicating the minimum median muscle effort at lever-arm length
L=25 cm.
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(b) Baseline walking experiment result at fast walking speed (1.5
m/s), indicating the minimum median muscle effort at lever-arm
length L=17 cm.

Fig. 5: Box plot of baseline and no spring (NS) tests at different
walking speeds. The x-axis indicates the lever-arm length L, with
L=17 cm and L=25 cm being closest and farthest from the ankle
joint, respectively. It can be seen that the EMG readings are higher
at fast walking speed as compared to slow walking speed. It can also
be seen that each walking speed has a different optimum lever-arm
length that minimizes the median muscular effort, thus necessitating
the need for real-time adaptation with changes in walking speed.

the gait pattern, there are multiple local optimums. Note that
due to the complex landscape of the objective function, our
ESC algorithm would only be able to tune the system to a
local minimum.

Next, we ran Lilliefors test for normality and found that the
EMG data at each slider location was not normally distributed.
In such a case, a non-parametric test, such as Friedman,
Kolmogorov–Smirnov, Wilcoxon signed-rank, should be per-
formed [30]. We first conducted a Friedman’s test to check
the validity of the null hypothesis that all samples taken at
different slider locations come from the same distribution. The
Friedman’s test, performed in MATLAB, returned a p−value
of 7.4×10−9 for slow and 2.6×10−14 for fast walking speeds,
which is much less than the significant threshold of 0.05. This
implies that we can reject the null hypothesis and conclude
that a change in slider location makes a difference in the
muscular effort for this subject. Next, we conducted Wilcoxon
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TABLE I: Pairwise Wilcoxon signed-rank test results between
different slider locations L at slow and fast speed.

(a) p-values from Wilcoxon signed-rank test at slow speed.

L (cm)
Lever-arm length L (cm)

17 19 21 23 25

17 1.0000 0.6011 0.3118 0.0028∗ 0.0001∗
19 0.6011 1.0000 0.7135 0.0021∗ 0.0000∗
21 0.3118 0.7135 1.0000 0.0000∗ 0.0000∗
23 0.0028∗ 0.0021∗ 0.0000∗ 1.0000 0.2131
25 0.0001∗ 0.0000∗ 0.0000∗ 0.2131 1.0000

(b) p-values from Wilcoxon signed-rank test at fast speed.

L (cm)
Lever-arm length L (cm)

17 19 21 23 25

17 1.0000 0.0000∗ 0.0000∗ 0.0000∗ 0.0002∗
19 0.0000∗ 1.0000 0.0001∗ 0.0258 0.0000∗
21 0.0000∗ 0.0001∗ 1.0000 0.3870 0.0008∗
23 0.0000∗ 0.0258 0.3870 1.0000 0.0000∗
25 0.0002∗ 0.0000∗ 0.0008∗ 0.0000∗ 1.0000

signed-rank statistical tests for EMG data collected at each
pair of slider locations. We chose Wilcoxon signed-rank
over other non-parametric tests because it performs paired
hypothesis testing and assumes dependent data samples. In
our case, a paired hypothesis testing is suitable because the
same muscle readings are recorded multiple times at different
slider locations. Also, since the EMG readings for this subject
come from the same muscles, the EMG data at different slider
locations are dependent. We formulated a null hypothesis that
the median difference between the EMG data at different
slider locations (excluding NS) is zero. The p values for all
combinations of slider locations at different walking speeds are
tabulated in Table I. An asterisk at the end of p-value indicates
statistical significance between the pair of slider locations.
Tables Ia and Ib show that the effect of the slider location
on the muscular effort varies across walking speed.

To avoid false reporting of significant differences in mul-
tiple pairwise comparisons, we use the Bonferroni-corrected
threshold value of 0.005. For slow walking speed, it can be
seen from Table Ia that there are 2 groups of slider locations
that result in statistically different EMG data for this subject,
based on a threshold of p = 0.005. One group comprises slider
locations L=17, 19 and, 21 cm, and the other group comprises
slider locations L=23 and 25 cm. Similarly, for fast walking
speed, we see from Table Ib that the EMG data at all slider
locations (except between L=19 and 23 cm and L=21 and 23
cm) are statistically different for this subject.
Remark 4: Figs. 5a, 5b show that the EMG readings are
higher for no spring as compared to with spring for both slow
and fast walking speeds, thus clearly indicating the benefit of
using the spring in the device.

B. ESC Walking Experiments

Fig. 6 shows the ESC adaptation results for the two different
experimental scenarios discussed in Section III. The ESC
parameters selected were a = 2, γ = −10, ω = 0.55Hz, h =
0.5Hz, according to the guidelines mentioned in [9]. Because
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(b) Fast-Slow-Fast ESC experiment

Fig. 6: Real-time ESC adaptation of lever-arm length (torsional
stiffness) across different walking speeds. The blue dots are the
accumulated EMG area for 3 gait cycles (one ESC iteration), and
the red dots are the lever-arm lengths at a particular ESC iteration.
The solid blue and red lines are fitted by smoothing the data using
locally weighted linear regression. The vertical black dashed lines
indicate the ESC iteration at which the walking speed was changed.
It can be seen that ESC quickly adapts the lever-arm position in
response to change in muscular effort at walking speed transitions.

the walking speed was changed based on time (after every 5
minutes), the fast walking regime has more ESC iterations as
compared to the slow walking. In the slow regimes (first and
third regime of Fig. 6a and second regime of Fig. 6b), we see
that the lever-arm length increases and eventually approaches
a steady-state, which in turn reduces the muscle effort. This is
exactly in accordance with the baseline walking experimental
results in Section IV-A. Next, at the speed transitions, we see
a sudden change in the muscle effort followed by a rapid
ESC adaptation of the lever-arm length in the direction we
expect. At fast speed regimes (second regime of Fig. 6a and
first and third regime of Fig. 6b), we see the lever-arm length
decreasing as we expect. However, we do not see a dramatic
reduction in the muscle effort, which we explore more in
Section V.

Fig. 7 shows the average EMG readings for tibialis anterior
and soleus muscles at slow walking speed. The blue and
red lines represent the average of EMG readings across gait
cycles during the first and the last minute of slow speed
walking, respectively. It can be noted that the average EMG
readings for both of the tibialis anterior and soleus muscles
decreased significantly after ESC adaptation. In particular, the
average RMS EMG readings of tibialis anterior and soleus
muscles decreased by 26.48% and 7.42%, respectively. From
(2), we see that changing the lever-arm length from L=23 cm
to L=22 cm decreases the torsional stiffness kexo by 9.3%.

A supplemental video of the experiment is available for
download.
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Fig. 7: Average EMG readings for tibialis anterior and soleus
muscles before and after ESC adaptation at slow walking speed. The
average RMS value of tibialis anterior and soleus muscle activity
decreased by 26.48% and 7.42%, respectively.

V. DISCUSSION

A. Walking Experiment Results

Two important observations can be made from the ESC
adaptation results in Fig. 6. First, ESC rapidly changes the
effective lever-arm length in response to changes in the mus-
cular effort across walking speeds. Second, the tuned lever-arm
position decreases the steady-state muscular effort in the slow
walking speed regimes.

However, in the fast speed regimes, we do not see a net
reduction in the steady-state muscular effort in response to
the change in the slider location. To explain this observation,
we computed pairwise correlation coefficients between EMG
readings at successive slider locations. Fig. 8 shows a scatter
plot of EMG area at different slider locations for slow and
fast walking speeds and pairwise correlation coefficients ρ
between successive lever-arm positions. It can be noted from
Fig. 8a that in slow speed, ρ < 0 for all lever-arm positions
between 19-25 cm. This indicates that the lever-arm length and
the EMG area are uniformly negatively correlated. However,
from Fig. 8b, it can be seen that at fast speed, the sign of the
correlation coefficient ρ keeps alternating, i.e., between slider
location 17-19 cm, ρ > 0, and between 19-21 cm, ρ < 0, and
so on. This implies that for certain slider locations, the EMG
area and the lever-arm length are positively correlated while
at other locations, they are negatively correlated. Also, it can
be observed from Fig. 8 that the variance of EMG readings
is much higher for fast speed as compared to the slow speed
walking. Table II shows the variance in the EMG readings
at different slider locations for slow and fast walking speeds.
The alternating signs of the correlation coefficient between two

(a) Scatter plot of EMG area at slow walking speed
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(b) Scatter plot of EMG area at fast walking speed

Fig. 8: Scatter plot of EMG area at different slider locations for
different walking speeds and pairwise correlation coefficients ρ. The
red line (with slope=ρ) represents a least square line fit to the EMG
data between two consecutive lever-arm lengths.

TABLE II: Variance in EMG readings at different slider locations
in slow and fast walking baseline experiments.

Walking Speed
Lever-arm length (cm)

17 19 21 23 25

Slow (1 m/s) 0.3402 0.4207 0.3323 0.4230 0.5574
Fast (1.5 m/s) 1.1436 5.9647 1.3239 4.6035 0.8425

successive lever-arm lengths at fast walking speeds indicates
the presence of multiple optimums in the objective function.
Due to high variance in the EMG data at fast speeds, we might
have to run the walking experiments for a longer duration to
see the expected decrease in the muscular effort.

Although we do not see a net reduction in the steady-state
muscular effort in the fast speed regimes, we can observe from
Figs. 6a and 6b that the ESC tunes the stiffness of the device
at fast walking speeds. Notice that the red graph in the slow
walking regime (see Fig. 6a) converges to L = 23 cm and
in the fast walking regime (see Fig. 6b) to L = 22 cm. This
implies that the local optima for slow and fast walking speeds
are L = 23 cm and L = 22 cm, respectively. Furthermore,
from Fig. 6a, it can be seen that as the walking speed changes
from slow to fast, ESC gradually tunes the lever-arm length in
the appropriate direction (towards L = 22 cm, i.e., optimum
for fast walking) in the fast speed regime. Now, if the user
would have walked with the lever-arm length fixed to L = 23
cm at fast walking speed, it would have led to an increase in
the muscular effort. This can be observed from Fig. 8b, where
the correlation coefficient is positive between slider locations
21 and 23 cm.
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B. Limitations

Our experimental results were based on data collected from
a single able-bodied subject. Our study to this point is based
on six baseline walking experiments to understand the effect
of walking speed on the optimum slider location. We did not
investigate the impact of our exoskeleton on the normative
kinematics of the able-bodied subject. Further study should test
more subjects with motion capture to analyze biomechanical
implications such as the effect on gait kinematics and kinetics.

Our research goal is to establish the efficacy of real-time
optimization on quasi-passive exoskeletons. Therefore, our
preliminary design, which has a long lever-arm that protudes
from the back of the shank, might not be optimal for real-
world use. Further development of the system by redesigning
the variable stiffness adjustment system could make the device
lighter and more compact, while maintaining the range of
adjustment. A reduction in the lever-arm would also allow a
smaller but stiffer spring to be used to further reduce weight,
allowing for even greater improvements to walking efficiency.
A novel under-shoe clutching design presented in [4] could be
implemented to reduce muscle activation further by engaging
the variable stiffness mechanism at specific times within the
gait cycle, as shown in [3].

VI. CONCLUSIONS
We developed a quasi-passive exoskeleton that combines the

adaptability of active exoskeletons with the light-weight and
autonomy of passive exoskeletons. The ESC we developed
alongside this exoskeleton is capable of continuous adaptation
and autonomous operation. By combining highly efficient
stiffness adjustment and a computationally inexpensive con-
troller, our walking experiments demonstrated that ESC was
able to automatically tune the torsional stiffness of the ankle
exoskeleton based on bio-feedback received from the EMG
sensor across different walking speeds. In future, a time-
invariant framework of ESC [31] could be used to improve the
performance of the algorithm. To facilitate a comprehensive
study, future work should include indirect calorimetry to
quantify reduction of metabolic cost.
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