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Abstract— Conventional perturbation-based extremum seek-
ing control (ESC) employs a slow time-dependent periodic signal
to find an optimum of an unknown plant. To ensure stability of
the overall system, the ESC parameters are selected such that
there is sufficient time-scale separation between the plant and
the ESC dynamics. This approach is suitable when the plant
operates at a fixed time-scale. In case the plant slows down
during operation, the time-scale separation can be violated. As
a result, the stability and performance of the overall system
can no longer be guaranteed. In this paper, we propose an
ESC for periodic systems, where the external time-dependent
dither signal in conventional ESC is replaced with the periodic
signals present in the plant, thereby making ESC time-invariant
in nature. The advantage of using a state-based dither is that
it inherently contains the information about the rate of the
rhythmic task under control. Thus, in addition to maintaining
time-scale separation at different plant speeds, the adaptation
speed of a time-invariant ESC automatically changes, without
changing the ESC parameters. We illustrate the effectiveness of
the proposed time-invariant ESC with a Van der Pol oscillator
example and present a stability analysis using averaging and
singular perturbation theory.

I. INTRODUCTION

Limit cycles occur in numerous natural phenomena and
engineering applications, e.g., human locomotion, turbines,
etc., whose qualitative behaviors are often captured by sim-
ple oscillator models [1]. To optimize the performance of
such systems in real-time, a conventional perturbation-based
extremum seeking control (ESC) [2], [3] was used in [4],
[5]. Conventional ESC schemes use a slow, exogenous time-
dependent periodic signal such as d(t) = asinωt, known
as the dither signal, to estimate the local gradient and
optimize the steady-state objective of a plant with unknown
dynamics. From hereon, we refer to such schemes as time-
based ESC. The conventional stability analysis of time-based
ESC requires sufficient time-scale separation between the
plant and the ESC dynamics and inherently assumes that the
plant operates at a fixed time-scale. Accordingly, the dither
frequency, ω , is judiciously chosen small enough such that
the ESC dynamics is at least an order of magnitude slower
than the plant dynamics.
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However, there are applications where the plant no longer
operates at a fixed time-scale, and the speed of the plant
dynamics varies with time. Human locomotion is an example
of such system, which exhibits varying time-scales based on
the activity (e.g., walking speed) [6], [7]. In a transfemoral
powered prosthetic leg, the evolution of the knee and the
ankle joints are typically synchronized to the human’s hip
signal [8], [9]. The hip signal is generated at a faster rate
when the prosthetic leg user speeds up, thereby causing the
prosthetic leg to operate faster. Similarly, when the user slows
down, the rate of hip signal generation decreases and the
prosthetic leg operates at a slower speed. For such systems,
if the desired task results in slow operation speed, the time-
scale separation between the plant and the ESC dynamics is
violated and the conventional ESC structure can no longer
be guaranteed to be stable.

Our objective is to use the conventional ESC structure
for periodic plants with varying time-scales while ensuring
stability, without the need for changing the dither signal
parameters. To achieve this, we replace the time-dependent
dither signal in conventional ESC with a function of the
states of the periodic system. We call this ESC scheme using
state-based dither as time-invariant ESC. The state-based
dithers inherently contain information about the rate of the
rhythmic task under control, as opposed to the conventional
time-based dither signals that are external to the dynamical
system. As a result, when the plant speed changes, the
state-based dither parameters (e.g., frequency) automatically
change, thus eliminating the need for manual tuning to
maintain time-scale separation. The trade-off for removing
the need for time-scale separation between the plant and
the ESC dynamics in time-invariant ESC is that it needs a
measurement of one of the periodic states of the system,
which can be unactuated. No other state information or
knowledge of the system is needed for our approach, unlike
[10], where the authors assume explicit relation between
the plant dynamics and the unknown parameters and use
estimation techniques to achieve extremum seeking.

To the best of our knowledge, no one has explored the
use of periodic plant signals to generate ESC dithers. The
closest works that avoid injecting a dither signal use external
disturbances/noise to generate probing signals [11]–[14].
In [11], [12], a novel extremum seeking control algorithm
was presented, which used atmospheric disturbances as the
dither signal. In [13], [14], the dither signal of a time-based
ESC was replaced with noise disturbances in the plasma
control system for optimizing the performance of the Frascati
Tokomak Upgrade. Both these works ensured that the dither



signal was sufficiently slower than the plant dynamics. There
is also notable work to employ ESC approaches specifically
tailored for systems with slow dynamics [15], [16].

Although the time-invariant ESC is applicable for general
periodic systems, we used a Van der Pol oscillator as
an example to illustrate the effectiveness of the proposed
approach, similar to [4]. In particular, the periodic state of
the Van der Pol oscillator was used as a state-based dither
in time-invariant ESC to reduce the size of the limit cycle.
We present a stability analysis of the overall system by
averaging and singular perturbation methods. The simulation
results show that the time-invariant ESC works across various
speeds of plant dynamics without the need of changing the
dither signal parameters. On the other hand, the time-based
ESC with fixed dither signal parameters introduces large
undesirable oscillations for slower plant dynamics.

The rest of the paper is organized as follows. In Section II,
we present the model of a controlled Van der Pol oscillator
and a brief review of a conventional time-based ESC. Next,
we explain the structure of the time-invariant ESC and
present the stability analysis in Section III. In Section IV, we
present the simulation results of the proposed time-invariant
ESC implemented on a Van der Pol oscillator and compare
its performance with a time-based ESC. Section V concludes
this paper.

II. PRELIMINARIES

In this section, we briefly review the equations of the Van
der Pol oscillator and the time-based ESC scheme used in
[4] for limit cycle minimization.

A. Van der Pol Oscillator

Consider the controlled Van der Pol oscillator described
by [17]

ẋ1 = x2, (1)
ẋ2 = ε(1− (x1− x0)

2)x2−µ
2(x1− x0)+u, (2)

y = x1− x0, (3)

where x0 ∈R is an offset parameter of x1. Assume that there
exists a state feedback control law parameterized by θ ∈ R:

u = α(x,θ) := ε(θ −θ
∗)2x2, (4)

where θ −θ ∗ is a parameter that controls the amplitude and
the frequency of oscillation of the states. θ ∗ ∈ R represents
the optimum θ , at which the amplitude of the limit cycle
is minimum. The parameter ε ∈ R+ is a small parameter1

that controls the speed of limit cycle transients, and µ ∈R+

controls the speed of limit cycle oscillations. Setting µ2 =
1− εµ̄2, it can be seen that for ε = 0, and x1(0) = x2(0) =
r 6= 0, the system (1)-(4) has a limit cycle with radius r.
Therefore, it is natural for the Van der Pol oscillator to satisfy
[4], [17]:

Assumption 2.1: For small ε > 0, and for any θ ,θ ∗, the
system (1)-(4) has a limit cycle with a radius r > 0.

1The smallness of ε is needed to apply averaging tools to our problem,
under which the study of limit cycle dynamics is reduced to the study of
equilibrium dynamics.

Van der Pol System

Fig. 1: Block diagram of a first order time-based ESC. In time-
based ESC, the dither signal d(t) = asin(ωt) is an external time-
dependent signal.

B. Conventional Time-Based ESC for Periodic Systems

Consider a single-input single-output nonlinear system

ẋ = f (x,u), (5)
y = h(x), (6)

where x ∈ Rn is the state vector with n ≥ 2, y ∈ R is the
output, and the functions f : Rn×R→ Rn and h : Rn → R
are smooth. Given the state feedback control law u=α(x,θ),
parameterized by a tunable parameter θ , the closed-loop
control system dynamics are given by

ẋ = f (x,α(x,θ)). (7)

The objective of ESC is to maximize/minimize, in real-time,
a suitably defined objective function J(·) for the closed-loop
dynamics trajectories without knowing a priori the extremum
θ ∗ of the objective function J(·).

A well-known extremum seeking algorithm [2], [3], [18],
[19] is the perturbation-based ESC, whose basic architecture
is depicted in Fig. 1. The signal

d(t) = asin(ωt), (8)

is a periodic time-dependent perturbation signal that is added
to the current best estimate of the parameter θ , i.e., θ̂ . Taking
θ as input, the system generates an output y, which is then
used to compute the objective function J(·).

In [4], a time-based ESC was used to minimize the limit
cycle amplitude. The limit cycle amplitude was computed
by passing the output of the Van der Pol oscillator (see
equation (3)) through an “amplitude detector”, which was
a combination of high-pass filtering, squaring, and low-pass
filtering operations. The output of the amplitude detector
was then used as an objective function J(·) by the ESC
scheme. In the extremum seeking literature [3], [4], [18],
[19] the following assumptions are typically made regarding
the convex objective function:

Assumption 2.2: There exists a unique optimum θ ∗, such
that

J′(θ ∗) = 0, J′′(θ ∗)> 0, (9)

where J′ = ∂J
∂θ

and J′′ = ∂ 2J
∂θ 2 .

This assumption implies that the extremum of the objective
function is a minimum. Without loss of generality, the
extremum of the objective function can be a maximum by
assuming J′′(θ ∗)< 0 in (9). The goal of time-based ESC is to
minimize the objective function J(·), satisfying Assumption



Van der Pol System

Fig. 2: Block diagram of a time-invariant ESC. The periodic state
x1 is passed through a high-pass filter, which generates a time-
invariant dither signal.

2.2, by tuning θ . The output of the objective function block
is then demodulated by using the same time-dependent dither
signal d(t). The resulting demodulated signal is then passed
through an integrator with gain k to give θ̂ . The sign of the
integrator gain k should be chosen such that the inequality
kJ′′ > 0 holds.

Considering a first order ESC [18], its dynamics can be
written as

˙̂
θ = −kaJ(θ̂ +asinωt)sinωt. (10)

The choice of ESC parameters a, ω, k ∈ R+ are critical
to stable adaptation and are normally chosen to be small to
guarantee that a sufficient time-scale separation between the
plant and the ESC dynamics holds. For the case of the Van
der Pol oscillator, this means that the limit cycle oscillation
frequency should be much faster than the dither frequency
ω [4]. Denoting θ̃ = θ̂ − θ ∗, the closed-loop dynamics of
the Van der Pol oscillator (1)-(4) along with the time-based
ESC dynamics (10) can be written as

ẋ1 = x2, (11)

ẋ2 = ε(1− (x1-x0)
2 +(θ̃ +asinωt)2)x2−µ

2(x1-x0), (12)
˙̃
θ =−kaJ(θ̃ +θ

∗+asinωt)sinωt. (13)

The stability of the system (11)-(13) can be proved by
following the steps in [4], which uses averaging and sin-
gular perturbation tools. Additional details regarding time-
based ESC for optimizing the steady-state of a Van der Pol
oscillator can be found in [4].

III. TIME-INVARIANT ESC

In this section, we first present the structure of time-
invariant ESC. Next, we present the stability analysis of the
closed-loop dynamics of the Van der Pol oscillator and the
time-invariant ESC using averaging and singular perturbation
theory.

A. Structure of Time-Invariant ESC

Fig. 2 shows the block diagram of time-invariant ESC.
Consider a general periodic system described by (5)-(6). In
time-invariant ESC, we use a function of the periodic state
of the system as a dither instead of a time-dependent dither
such as d(t)= asinωt. In this work, we use the periodic state
x1, passing it through a high-pass filter (HPF) to remove the

DC component so that it satisfies the zero mean property of
the dither signal. The output of the HPF is then scaled by a
small gain a∈R+ to obtain the state-dependent dither signal

d(x) = a(x1−η), (14)

where x1−η is the output of the HPF. Similar to time-based
ESC, the state-based dither, d(x), is then multiplied with the
objective function J(·) (which satisfies Assumption 2.2) to
produce a gradient estimate of the objective J with respect
to the input θ . The gradient estimate is then integrated with
an integrator gain k to give the estimate of the input, θ̂ .
The state-based dither in (14) is then scaled and added to θ̂

according to

θ = θ̂ +Sa(x1−η), (15)

where S is a positive constant scalar greater than a that is
used to speed up the adaptation rate. The parameters S, a
should be selected such that Sa� 1. The dynamics of the
time-invariant ESC can be written as

η̇ = ωh(x1−η), (16)
˙̂
θ =−kaJ(θ̂ +Sa(x1−η)) · (x1−η). (17)

Thus, there are four tunable parameters for our proposed
time-invariant ESC, i.e., a, k, S, and ωh. Similar to the time-
based ESC, the sign of k should be chosen such that the
inequality kJ′′ > 0 holds. It is remarked that we need only
one of the periodic states of the system, e.g., x1, to construct
the dither signal.

For the case of Van der Pol oscillator (1)-(4), the periodic
state x1 is centered around x0, which is removed by the
HPF. The closed-loop dynamics of the Van der Pol oscillator
(1)-(4) along with the time-invariant ESC (16)-(17) can be
written as

ẋ1 = x2 (18)

ẋ2 = ε(1-(x1-x0)
2+(θ̂ -θ ∗+Sa(x1−η))2)x2-µ2(x1-x0) (19)

η̇ = ωh(x1−η) (20)
˙̂
θ =−kaJ(θ̂ +Sa(x1−η)) · (x1−η). (21)

B. Stability Analysis
In this section, we prove the stability of the closed-loop

dynamics, given by Equations (18)-(21).
Proposition 1: Consider the dynamics given by (18)-(21).

Let µ2 = 1−εµ̄2, r(t) =
√

x2
1(t)+ x2

2(t), and tan(t+φ(t)) =
−x2(t)/x1(t). Then, the overall system dynamics can be
written as

ṙ = εh(r,η , θ̃)sin(t +φ), (22)

φ̇ = ε
h(r,η , θ̃)

r
cos(t +φ), (23)

η̇ = εαω
′
H(r cos(t +φ)−η), (24)

˙̃
θ = -εαK′aJ(θ̃+θ

∗+Sa(r cos(t+φ)-η))(r cos(t+φ)-η),
(25)

where

h(r,η , θ̃) = r sin(t+φ)+r(θ̃+Sa(r cos(t+φ)-η))2 sin(t+φ)

− r3 cos2(t +φ)sin(t +φ)− µ̄
2r cos(t +φ). (26)



Proof: To simplify the analysis, we consider x0 = 0. Let
µ2 = 1− εµ̄2. The closed-loop dynamics (18)-(21) can be
written as

ẋ1 = x2, (27)
ẋ2 = −x1− εh(x1,x2,η , θ̃), (28)
η̇ = ωh(x1−η), (29)
˙̃
θ = −kaJ(θ̃ +θ

∗+Sa(x1−η)) · (x1−η), (30)

where

h(x1,x2,η , θ̃) = (x2
1−1−(θ̃ +Sa(x1−η))2)x2− µ̄

2x1. (31)

When ε = 0, the solutions of (27), (28) are x1(t) = r cos(t +
φ), x2(t) =−r sin(t+φ) where r, φ are constant. When ε 6=
0, we should expect a slow drift of r and φ . Similar to [20],
[21], the evolution equations for r and φ that depends on
the nonlinear term h(x1,x2,η , θ̃) can be derived. Assuming
that ε is small, the states of the Van der Pol oscillator will
be nearly sinusoidal and have a period 2π approximately.
Therefore, let

x1(t) = r(t)cos(t +φ(t)), (32)
x2(t) = −r(t)sin(t +φ(t)), (33)

where r(t) =
√

x2
1(t)+ x2

2(t) and tan(t + φ(t)) =

−x2(t)/x1(t). Now, let ωh = εαω ′H and k = εαK′,
where ω ′H > 0 and α > 0 is a small constant. K′ has the
same sign as k, which is selected such that it satisfies the
inequality kJ′′ > 0. By Assumption 2.2, K′ > 0. Taking the
derivative of r(t) and tan(t + φ(t)) with respect to t, and
substituting x1, x2 from equation (32), (33) in the equations
for ṙ, φ̇ , the proposition is proved. �

We now bring the dynamics in (22)-(25) into the standard
averaging form. Treating z = [r φ η θ̃ ]T , equations (22)-(25)
can be represented in the succinct form as

ż = εg(t,z,ε), (34)

which is in the standard averaging form [17, Chapter 10]
and thus, averaging theory can be applied. Given a function
g(t,z,ε), which is 2π-periodic in t and ε > 0, we can
associate with (34) an autonomous average system

ż = ε ḡ(z) (35)

where
ḡ(z) =

1
2π

∫ 2π

0
g(s,z,0)ds. (36)

Substituting the averaged state z̄ = [r̄ φ̄ η̄
¯̃
θ ]T in (36) intro-

duces an O(ε2) error. The averaged dynamics for equations
(22)-(25) is computed as

˙̄r =
ε

2π

∫ 2π

0
hsin(t + φ̄)dt +O(ε2), (37)

˙̄
φ =

ε

2π

∫ 2π

0

hcos(t + φ̄)

r̄
dt +O(ε2), (38)

˙̄η =
ε

2π

∫ 2π

0
αω

′
H(r̄ cos(t + φ̄)− η̄)dt +O(ε2), (39)

˙̃̄
θ =
−ε

2π

∫ 2π

0
αK′aJ( ¯̃

θ +θ
∗+Sa(r̄ cos(t + φ̄)-η̄))·

(r̄ cos(t+φ̄)-η̄)dt +O(ε2). (40)

Let t + φ̄ = ϕ . Equation (26) at φ = φ̄ can be rewritten as

h = r sinϕ + r(θ̃ +Sa(r cosϕ−η))2 sinϕ

−r3 cos2
ϕ sinϕ− µ̄

2r cosϕ. (41)

The first-order Taylor series expansion of J(·) at ¯̃
θ +θ ∗ is

J(·) = J( ¯̃
θ +θ

∗)+ J′( ¯̃
θ +θ

∗) · (Sa(r̄ cos(t + φ̄)− η̄)). (42)

By substituting h from (41) in (37), (38) and J(·) from (42)
in (40), the averaged dynamics (37)-(40) can be written as

˙̄r = ε

( r̄
2

(
1+ ¯̃

θ
2+S2a2

η̄
2-2 ¯̃

θSaη̄

)
+

r̄3

8

(
S2a2-1

))
+O(ε2),

(43)

˙̄
φ =−εµ̄2

2
+O(ε2) =

µ2−1
2

+O(ε2), (44)

˙̄η =−εαω
′
H η̄ +O(ε2), (45)

˙̃̄
θ = εα

(
K′aJη̄− SK′a2J′r̄2

2
−SK′a2J′η̄2

)
+O(ε2). (46)

Note that the state φ̄ does not appear in the dynamics of
r̄, η̄ , ¯̃

θ , and is independent of the other states. From (44), it
can be seen that the phase increases linearly with time, with
its rate of change depending on µ .

Proposition 2: Consider the dynamics given by (43)-(46).
In the quasi-steady state, we have

r̄ = 2

√(1+( ¯̃
θ −Saη̄)2

1−S2a2

)
, (47)

dη̄r

dτ
=−εω

′
H η̄r, (48)

d ¯̃
θr

dτ
= ε

(
K′aJη̄r−2SK′a2J′

(1+( ¯̃
θr-Saη̄r)

2)

1−S2a2 −SK′a2J′η̄2
r

)
.

(49)

Proof: Neglecting O(ε2) in (43)-(46) and defining a slow
time-scale τ = αt, we express (43), (45), and (46) in τ time-
scale as

α
dr̄
dτ

= ε

( r̄
2

(
1+( ¯̃

θ −Saη̄)2
)
+

r̄3

8

(
S2a2−1

))
, (50)

dη̄

dτ
=−εω

′
H η̄ , (51)

d ¯̃
θ

dτ
= ε

(
K′aJη̄− SK′a2J′r̄2

2
−SK′a2J′η̄2

)
, (52)

which is in a standard singular perturbation form. The
fast system is represented by (50), and the slow system is
represented by (51)-(52). Setting α = 0 in (50) and solving
for r̄ proves (47). Freezing r̄ at its quasi-steady-state obtained
in (47) and substituting it in (51)-(52) proves (48)-(49). �

Remark 1: It can be seen from (47) that when ( ¯̃
θ −

Saη̄) → 0 and S2a2 � 1, the radius of the Van der Pol
oscillator converges to 2, which is in accordance with
[17, Example 10.11]. Having derived the quasi-steady state
dynamics in Propostion 2, we now determine the equilibrium
point [η̄e

r
¯̃
θ e

r ]
T of the reduced averaged system, which



satisfies

η̄
e
r = 0, (53)

K′aJ′η̄e
r −2SK′a2J′

(1+( ¯̃
θ e

r −Saη̄e
r )

2

1−S2a2 −SK′a2J′η̄e
r

2 = 0.

(54)

Note that the term

(1+( ¯̃
θ e

r −Saη̄e
r )

2

1−S2a2 6= 0. (55)

Otherwise, ¯̃
θ e

r is imaginary, which is not possible, and r̄ =
0 in equation (47), which violates Assumption 2.1. This
implies that, based on Assumption 2.2,

J′( ¯̃
θ

e
r +θ

∗) = 0⇐⇒ ¯̃
θ

e
r = 0. (56)

Thus, the equilibrium point of the reduced averaged system
(48)-(49) is η̄e

r = ¯̃
θ e

r = 0.
Theorem 1: Suppose that ε,S,K′,a > 0,S2a2� 1. Under

Assumption 2.2, the reduced averaged system (48)-(49) is
locally exponentially stable.
Proof: The Jacobian Ar of (48)-(49) at [η̄e

r
¯̃
θ e

r ]
T is

Ar|η̄e
r =

¯̃
θ e

r =0 =

−εω ′H 0

0 −ε
2SK′a2

1−S2a2 J′′(θ ∗)

 . (57)

Since Ar is a diagonal matrix, we know that Ar will be
Hurwitz if and only if

ε
2SK′a2

1−S2a2 J′′(θ ∗)> 0. (58)

Based on our assumptions that the constants ε,S,K′,a > 0,
S2a2 � 1, and J′′(θ ∗) > 0 (see Assumption 2.2) we can
see that equation (58) is satisfied. Similarly, if J is strictly
concave, we know that J′′(θ ∗)< 0 and equation (58) can be
satisfied by selecting K′ < 0. This concludes the proof. �

Next, we analyze the boundary layer model to complete
the singular perturbation analysis.

Theorem 2: Consider the singularly perturbed system
(50)-(52). There exists α∗ > 0 such that ∀ α ∈ (0,α∗), the
equilibrium point of (50)-(52) is locally exponentially stable.
Proof: The boundary layer model (in the t = τ/α time-scale)
is given by

dr̄b

dt
= ε

((
r̄b +2

√
1+θ 2

1−S2a2

)(1+θ 2

2

)
−

(1−S2a2

8

)(
r̄b +2

√
1+θ 2

1−S2a2

)3)
. (59)

By taking the Jacobian of (59), it can be easily shown that the
equilibrium point r̄e

b = 0 of the boundary-layer model (59)
is locally exponentially stable. Since the equilibrium point
[η̄e

r
¯̃
θ e

r ]
T of the reduced averaged system (48)-(49) and the

equilibrium point r̄e
b of the averaged boundary layer model

(59) are locally exponentially stable, by [17, Theorem 11.4]
concludes the proof. �

Remark 2: In our derivations for the time-invariant ESC,
the small parameter ε is used to make the averaging analysis

feasible. Furthermore, the parameter α was employed to
bring the system into a singular perturbation form. We
remark that α is not a system parameter and therefore,
when the frequency of operation of the Van der Pol oscillator
changes based on µ , the time-scale separation in (50)-(52)
will not be affected. However, in [4], 1/µ was taken as a
small parameter in order to obtain the averaged system. As
µ decreases, 1/µ is no longer small, and averaging cannot
be applied in that approach.

IV. SIMULATION RESULTS

The closed loop dynamics of the Van der Pol oscillator
and the time-invariant ESC, represented by equations (18)-
(21) were simulated. The initial conditions were chosen to be
x1(0) = 4.5, x2(0) = 0, η(0) = 0, θ̂(0) = 1. The parameters
of the Van der Pol oscillator were set to x0 = 6, ε = 1, θ ∗ =
3. The parameters of the time-invariant ESC were set to a =
0.01, k = 10, S = 15, and ωh = 10 rad/s. Similar to [4],
we chose the objective function J = y2 = (x1−x0)

2. We ran
simulations for µ = 0.3, 1, 3, and 5, which corresponded to
slow, normal, fast and very fast oscillations of the Van der
Pol system.

In order to compare the performance of time-invariant ESC
with a time-based ESC, we tuned the parameters of the time-
based ESC such that they work across different values of µ .
In particular, the parameters a = 0.01, k = 6, and ω = 0.5
rad/s were selected for the time-based ESC. Fig. 3 shows
a performance comparison between the time-invariant and
time-based ESC.

Figs. 3a, 3b show time-invariant and time-based ESC
adaptation of θ̂ for different values of µ , respectively. It
can be noticed from Fig. 3a that the adaptation speed
increases for higher µ without changing the time-invariant
ESC parameters. Fig. 3b shows that the time-based ESC
adaptation produces severe oscillations in θ̂ for µ = 0.3.
This is because at µ = 0.3, the Van der Pol oscillator slows
down, and the time-scale separation between the plant and
the ESC dynamics is violated. The convergence rate of the
time-invariant ESC slows down as µ decreases and requires
about 60000 seconds to converge for µ = 0.3. In the time-
based ESC, this trade-off between the convergence speed and
stability also exists, but the control designer has to explicitly
deal with it through the choice of the ESC parameters [18].

Fig. 3c shows the plot of the state x1 with time-invariant
ESC at µ = 5. It can be seen that the magnitude of x1
decreases over time, and there is no apparent oscillation in
magnitude. From Fig. 3d it can be seen that the magnitude of
x1 had undesirable oscillations due to the time-based dither.
In order to reduce the effect of the dither signal on the state
x1, the parameters of the time-based ESC need to be re-
tuned. As noted by the authors in [18], the stability and the
performance of a time-based ESC relies on the selection of
proper parameters, which can be difficult to tune due to the
dependence of one parameter on the other. Based on our
experience, the parameters of a time-invariant ESC are much
easier to tune than a time-based ESC.
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(a) Time-invariant ESC adaptation of θ for different values of µ .
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(b) Time-based ESC adaptation of θ for different values of µ .
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(c) Plot of x1 with time-invariant ESC for µ=5.
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(d) Plot of x1 with time-based ESC for µ=5.

Fig. 3: Performance comparison between time-based and time-invariant ESC. Figs. 3a, 3b shows the time-based and time-invariant ESC
adaptation of θ to θ∗ = 3 for different values of µ without changing the ESC parameters. Figs. 3c, 3d shows the periodic state x1 of the
Van der Pol oscillator with the time-based and time-invariant ESC for µ = 5. It can be seen that although the time-based ESC is stable
for µ = 5, it introduces additional oscillations in the state x1.
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Fig. 4: Time-invariant ESC adaptation of θ̂ with µ = 0.3 from
different initial conditions of θ̂ .

In order to show the efficacy of time-invariant ESC for
small values of µ , Fig. 4 shows the plot of θ̂ starting from
both the sides of the optimum, i.e., θ̂(0) = 1 and θ̂(0) = 5
for µ = 0.3. Fig. 5 shows the plot of θ̂ with a time-invariant
ESC scheme at µ = 3 using the same parameters. From Figs.
4, 5, the difference in adaptation speed for different values of
µ can be clearly seen. Figs. 6, 7 show the state-based dither
signal for µ = 0.3 and µ = 3, respectively. By comparing
the initial and the final 200 seconds of simulations in Figs.
6, 7, it can be seen that the time-invariant dither amplitude
decreases, and its frequency increases with time2. Also, by
comparing the dither signals for different values of µ , it
can be noticed from Figs. 6, 7 that the amplitude and the

2The change in the dither frequency with time for µ = 3 can be noted
by comparing the number of troughs that appear on the magnified plots in
Fig. 7.
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Fig. 5: Time-invariant ESC adaptation of θ̂ with µ = 3 from
different initial conditions of θ̂ .
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Fig. 6: Plot of the dither signal for µ = 0.3. The magnified plot on
the top right indicates that the dither d(x) 6= 0, though spikes occur
when the dither changes sign.



0 200 400 600 800 1000
-0.02

0

0.02

0.04

20 25 30 35
-0.02
-0.01

0
0.01
0.02

800 805 810 815
-0.02
-0.01

0
0.01
0.02

Fig. 7: Plot of the dither signal for µ = 3. The magnified plots from
t = 20−35 seconds and from t = 800−815 seconds are shown on
the top left and top right, respectively.

frequency of the state-based dither is lower at µ = 0.3 than
those at µ = 3. This is the benefit of using a time-invariant
ESC, which automatically scales the dither signal parameters
depending on the plant’s speed.

Remark 3: The convergence rate of the time-invariant
ESC is comparable to the time-based ESC for µ = 1. For
slow plant speeds (µ = 0.3), the time-based ESC fails to
converge. The time-invariant ESC works for µ = 0.3, but
takes much longer to converge. The slow convergence rate
of the time-invariant ESC can be attributed to the slow dither
signal, d(x), whose period of oscillation is about 150 seconds
(see Fig. 6).

V. CONCLUSIONS

In this paper, we proposed a time-invariant ESC for a
periodic system, where we treat a periodic system state as
the dither signal of the time-invariant ESC. The advantage of
the proposed time-invariant ESC over the conventional time-
based ESC is that, using the same ESC parameters, online
optimization can be achieved for very slow systems that
would normally violate the time-scale separation assumption.
A secondary advantage of our proposed ESC scheme is that
the convergence speed is faster for fast-frequency systems.
On the other hand, the disadvantage is that for moderately
slow systems it has a slower convergence rate. We presented
a stability analysis of the time-invariant ESC scheme for
a scalar case using averaging and singular perturbation
tools. The simulations verified that the time-based ESC
did not work well at slow speeds, but the time-invariant
ESC succeeded. At faster plant speeds, the time-invariant
ESC converged faster than the time-based ESC. However,
our stability analysis did not explicitly show the effect of
the operating speed of the plant on the convergence rate,
which we aim to address in our future research. Finally, we
would like to extend the current work for general classes of
oscillators that require simultaneous adaptation of multiple
parameters, which arise in applications such as control of
powered prosthetic legs [22].
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