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Abstract—This paper presents a transfer learning method
to enhance locomotion intent prediction in novel transfemoral
amputee subjects, particularly in data-sparse scenarios. Transfer
learning is done with three pre-trained models trained on sep-
arate datasets: transfemoral amputees, able-bodied individuals,
and a mixed dataset of both groups. Each model is subsequently
fine-tuned using data from a new transfemoral amputee sub-
ject. While subject-dependent models, trained and tested using
individual user data, can achieve the least error rate, they
require extensive training datasets. In contrast, our transfer
learning approach yields comparable error rates while requiring
significantly less data. This highlights the benefit of using pre-
existing, pre-trained features when data is scarce. As anticipated,
the performance of transfer learning improves as more data from
the subject is made available. We also explore the performance of
the intent prediction system under various sensor configurations.
We identify that a combination of a thigh inertial measurement
unit and load cell offers a practical and efficient choice for sensor
setup. These findings underscore the potential of transfer learning
as a powerful tool for enhancing intent prediction accuracy
for new transfemoral amputee subjects, even under data-limited
conditions.

I. INTRODUCTION

Powered lower-limb prosthetic devices can significantly
enhance the quality of life for individuals with lower-limb
amputations by providing net positive work [1], [2]. These
advanced devices employ actuators, sensors, and micropro-
cessors to actively control lower-limb joint(s) for various
activities, including ramp/stair ascent, which requires high
power input [3], [4]. The net positive work provided by
the lower-limb joints minimizes the compensations from the
residual limb or the intact side of the amputee users, thus
resulting in a more natural gait [5], [6], improved stability
[7], and reduced energy expenditure [8].

The controller plays a crucial role in the overall perfor-
mance, safety, and functionality of the powered prosthetic
device by regulating the interactions between the user and
the prosthesis, such as generating appropriate joint torques,
maintaining stability during various activities, and adapting
to changes in terrain and walking conditions. User intent
prediction is a vital aspect of controller development for
powered prosthetic legs because it allows the prosthesis to
switch between different activity modes accordingly in real-
time [9]–[12]. Intent prediction methods can be broadly classi-
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Fig. 1: Conceptual framework illustrating the application of transfer learning
in locomotion intent prediction. The baseline model is initially trained on
a comprehensive dataset of prosthesis users and/or non-disabled individuals.
The learned patterns are then transferred and fine-tuned on smaller, user-
specific data from a novel transfemoral amputee subject. This approach aims
to enhance the model’s prediction accuracy, reducing the need for extensive
user-specific data collection.

fied into heuristic rule-based or learning-based methods [11],
[13]. Heuristic rule-based methods rely on predefined rules and
thresholds to determine the user’s intended actions based on
the sensor signals (e.g., thigh angle, inertial measurements unit
(IMU), and ground reaction forces) [14]–[19]. These methods
are intuitive and can achieve good performance with hand-
selected features, but they are not flexible enough to adapt to
individual users or account for large variations in gait patterns
[11]. Rule-based methods also sometimes involve a one-step
delay [20], [21].

Learning-based methods provide a solution to the limita-
tions of heuristic rule-based intent prediction, offering greater
flexibility and adaptability to individual users and variations in
gait patterns [11]. These techniques classify the user’s intended
movements based on the features extracted from sensory data,
such as electromyography (EMG) signals [22], encoder, IMU
[23], and ground reaction forces [24], and can create models
tailored to the user’s specific movement patterns, offering
personalized predictions. Many machine learning algorithms
like artificial neural networks (ANN) [25], linear discriminant
analysis (LDA) [26], Support Vector Machines (SVMs) [27],
dynamic Bayesian network (DBN) [26], and XGBoost [28]
have achieved satisfactory recognition rates in the Vanderbilt
series prostheses. Deep learning techniques, such as convolu-
tional neural networks (CNN), have recently gained attention
in locomotion intent prediction for powered prostheses or
exoskeleton devices, achieving high prediction rates across a
wide range of motion patterns [23], [29]–[33].

However, a primary constraint associated with these meth-
ods is the necessity for comprehensive data collection. These
methods require a substantial amount of data from each user to



train and validate the models. Previous research suggests that
a user-independent model, trained on pre-collected datasets
from multiple subjects, could serve as a generalizable model
for new transfemoral amputee participants [25], [26], [28].
Nonetheless, the performance of these models tends to be
less accurate for new users. This decrease in accuracy is
primarily due to the inherent variability among individuals,
which includes distinct movement patterns, muscle activation
signals, and varying physical conditions [26].

Previous research has explored adaptation techniques to
improve user dependency, demonstrating promising results
in personalizing models for individual users. For example,
Woodward et al. [25] used a pseudo-real-time adaptation
method for an artificial neural network (ANN) with trans-
femoral amputee participants. Their method relied on back-
ward estimated labels, not real-time data, for updates. While
this allowed for simulated real-time adaptation, the backward
estimation might not accurately reflect the user’s true intent.
This could lead to training inaccuracies, affecting the model’s
real-world reliability and performance. Moreover, gathering
diverse and comprehensive datasets from transfemoral am-
putee participants for pre-trained model development poses
a significant challenge, given the time-intensive nature of data
collection and the limited availability of these participants [7].
In contrast, able-bodied individuals are far more accessible for
study participation, with fewer constraints or complications.
In fact, numerous human locomotion datasets have been
published featuring able-bodied individuals participating in
various modes of locomotion captured through diverse sensor
configurations. [34]–[37].

In this study, we introduce a novel approach that lever-
ages transfer learning capabilities to enhance intent predic-
tion accuracy for prosthesis users, especially targeting new
transfemoral amputee subjects with limited labeled data avail-
able, as illustrated in Fig. 1. Transfer learning has become
increasingly vital in machine learning, especially useful when
data is limited [38], [39]. It adapts a model from one task
to enhance performance on a related task. Transfer learning
has shown promising results for hand prosthesis applications,
as demonstrated in notable studies. For example, Lehmler
et al. [40] showed its effectiveness in sEMG decoders with
varying subject data, while Ameri et al. [41] used it to
improve EMG pattern recognition robustness. These examples
highlight its potential to advance intent recognition with scarce
data. Our novel contribution incorporates human locomotion
data from able-bodied individuals [34] for conducting pre-
trained models, which supplements the limited availability
of transfemoral amputee datasets. These pre-trained models
are fine-tuned to cater specifically to amputee subjects, using
only a small amount of user-specific data. By leveraging pre-
existing knowledge from able-bodied datasets, transfer learn-
ing diminishes the requirement for large labeled datasets from
transfemoral amputee participants, a task which is notably
challenging and time-consuming to gather [7].

In particular, this paper has the following contributions.
1) We develop pre-trained CNN models for intent prediction,

utilizing either transfemoral amputee, able-bodied, or a
combination of these datasets aiming to capture typical

locomotion features present in both populations.
2) We study transfer learning for intent prediction in lower-

limb prosthetics by leveraging the developed pre-trained
CNN models. Our results indicate enhanced intent predic-
tion accuracy with minimal prosthesis user-specific data.

3) We evaluate and contrast the performance of the devel-
oped models against traditional subject-independent and
subject-dependent models, emphasizing the advantage
of using able-bodied data, especially when transfemoral
amputee data is scarce.

4) We comprehensively analyze various sensor configura-
tions applicable to powered knee-ankle prosthetic legs
and investigate the impact of dataset size on the accuracy
of fine-tuning transfer learning models.

The remainder of this paper is organized as follows. Sec-
tion II details the processing steps for data from both able-
bodied individuals and prosthesis users. Section III details the
formulation of the CNN architectures, as well as the training
and evaluation methods used. Sections IV and V present the
results and discussions, respectively. The article is brought to
a conclusion in Section VI.

II. DATA PREPARATION

A. Dataset

The primary goal of this research is to utilize transfer
learning techniques to enhance the intent prediction accuracy
for amputee users with limited data by leveraging a more
extensive dataset from able-bodied subjects. Two datasets
have been selected to achieve this objective: the Transfemoral
Amputee (TF) dataset from [25] and the Able-Bodied (AB)
dataset from ENABL3S [34]. These datasets have been chosen
due to their structure and data type similarities, including a
focus on various ambulation modes and sensor data.

1) Able-bodied Dataset: We use a comprehensive, publicly
available AB dataset called the ENcyclopedia of Able-bodied
Bilateral Lower Limb Locomotor Signals (ENABL3S) [34],
which includes data from ten AB subjects. The dataset consists
of various sensor signals, including wearable electrogoniome-
ters (GONIO), surface electromyography (EMG), and inertial
measurement unit (IMU) sensors mounted on the thigh and
shank. Each subject in this dataset completed approximately
25 trials of a circuit comprising sitting, standing, level walking
(LW), ramp ascent (RA), ramp descent (RD), stair ascent (SA),
and stair descent (SD).

2) Transfemoral Amputee Dataset: The TF Dataset, col-
lected at the Rehabilitation Institute of Chicago [25], com-
prises data from four individuals with unilateral transfemoral
amputations (two males and two females), aged 32 to 69
years. Each participant was fitted with a second-generation
powered knee and ankle prosthesis developed at Vanderbilt
University. Data capture involved multiple mechanical sensors,
including a one-degree-of-freedom (DOF) load cell, a shank-
mounted inertial measurement unit (IMU), and joint encoders
to record lower-limb joint kinematics and kinetics across
various locomotion modes in a controlled laboratory setting.
The experimental process included a series of locomotion
circuits, such as level-ground walking, ramps, stairs, and



necessary transitions between these modes. Mode transitions
were manually triggered. Thigh IMU data were derived from
the shank IMU and knee encoder readings (angular position
and velocity).

B. Data Preprocessing

We derive classification features with four different sensor
selections: (i) only thigh IMU, (ii) thigh IMU and load cell,
(iii) thigh IMU, load cell, and shank IMU, and (iv) thigh IMU,
load cell, shank IMU, and encoders (ENC). In the AB dataset,
the GONIO sensor provides knee/ankle angle and velocity
signals corresponding to the TF dataset’s knee/ankle ENC
sensor readings. Each IMU consists of a 3-axis gyroscope
and a 3-axis accelerometer, providing three signals for angular
velocity and three for linear acceleration, respectively. ENC or
GONIO signals yield four signals, including knee/ankle angles
and velocities. The one-degree of freedom (DOF) load cell is
only available in the TF dataset.

Initially, both datasets were processed and saved at 1000 Hz.
Then, we resample the datasets at 5 ms intervals to reduce the
number of data points. Following this step, we segment the
data into sliding windows with a duration of Ws = 900 ms
and a 50 ms frame increment between consecutive windows.
This segmentation is designed to create data segments that are
paired with labels that correspond to the upcoming window’s
activity, effectively setting our model to make predictions
50 ms ahead of actual movements. The data preprocessing
pipeline, incorporating these steps, is illustrated in Fig. 2. Once
processed, we standardize each channel’s data by normalizing
each signal to a zero mean and unit variance based on the
subject-specific mean and standard deviation values obtained
from the entire sample.

In this research, we aim to create a classifier that predicts
LW, RA, RD, SA, and SD, as well as the transitions between
them. We label an event as steady-state (SS) when the previous
gait event (heel contact or toe-off) remains the same event,
and we identify transitional steps (TS) when the step changes
from one mode to another. This paper primarily concerns
the classification of rhythmic locomotion modes. In contrast,
non-rhythmic modes such as sitting and standing have been
separately addressed in our prior research [42].

C. Data Splitting

This study evaluates three models to predict user intent:
subject-dependent, subject-independent, and transfer learning.

1) Subject-dependent (DEP): We train and test a deep CNN
model on each participant in the amputee dataset [25].
In this approach, we allocate 75% of the total number
of circuits for training, 15% for validation, and the
remaining 10% for testing for each subject. Moreover, we
also evaluate the subject-dependent model using a limited
number of circuits (DEP-C) to compare its performance
with the transfer learning method.

2) Subject-independent (IND): We employ leave-one-
subject-out cross-validation to train a deep CNN model
on data from multiple participants. We evaluate the
model’s performance on an untrained participant, using

training data from two subjects and validation data from
one subject. We reserve the testing data for the remaining
subject, the same as DEP, for testing. We repeat this
process four times to comprehensively assess all subjects.

3) Transfer learning: We apply transfer learning to various
pre-trained models that incorporate a portion of the test
subject’s training data, the same as the DEP model, during
the training process. We evaluate three transfer learning
models for three distinct pre-trained models:

a) Prosthesis user pre-trained model (TF-1): A CNN
model trained on the TF dataset (i.e., IND model).

b) Able-Bodied pre-trained model (TF-2): A CNN model
trained on the AB dataset [34].

c) Combined pre-trained model (TF-3): A CNN model
is trained using the TF and AB dataset. TF-3’s base
model uses leave-one-subject-out cross-validation on
training with the TF dataset. To give more prominence
to our target TF data, we replicate the training data
multiple times to effectively create a dataset equivalent
to 18 subjects.

We evaluate the effect of data size on transfer learning
models by utilizing a fixed number of data circuits from the
test subjects’ training dataset while holding the testing and
validation data constant throughout all model evaluations.

III. METHODS

A. Deep Neural Networks Model Architectures

The convolutional neural network (CNN) model has shown
better effectiveness over traditional machine learning algo-
rithms [43]. Utilizing deep, complex architectures in neural
networks facilitates the creation of a comprehensive feature
representation that is not achievable through conventional
hand-engineered feature extraction techniques [44]. In ad-
dition, deep architectures can facilitate the acquisition of
intricate inter-subject representations, which may not be attain-
able through conventional machine learning architectures [29].
This section introduces the CNN structure for the dependent,
independent, and pre-trained models. Then, we will introduce
the transfer learning method using a small number of circuits
for model fine-tuning with novel prosthesis subject data.

1) Deep Convolutional Neural Network-Based Classifier:
The baseline architecture of our CNN models is derived from
the Fully Convolutional Network (FCN) introduced by Wang
et al. [45]. The basic structure utilized in this study is com-
posed of three CNN blocks. Fig. 3 illustrates the baseline CNN
model employed in this research. The number of CNN blocks
for the DEP, DEP-C, and IND models presented in Section
II-C will be found through an optimization process using the
Tree-Structured Parzen Estimator (TPE) Sampler. The final
DEP and DEP-C models include four convolutional blocks,
while the IND model implements six convolutional blocks.
Each block has a convolutional layer, a batch normalization
layer, and a Rectified Linear Unit (ReLU) activation layer. The
initial and final blocks of the architecture have kernels of size
3 and 8, respectively, while all of the intermediate blocks have
kernels of size 5. The initial and final blocks employ a filter
size of 128, while all the intermediate blocks are 256. After the
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Fig. 2: Data Preprocessing Pipeline Overview for CNN Training. The pipeline starts with gathering locomotion data during various activities alongside
recording the user’s kinematic data from different sensors. The data segments are then used as the input for the deep CNN models, aiming to predict the
user’s next locomotion mode.

convolutional blocks, the features are sent to a global average
pooling layer, which replaces a fully connected layer and
reduces the number of weights by a significant amount. The
ultimate classification is generated through the implementation
of a softmax layer.

2) Transfer learning: Transfer learning is a technique that
leverages the knowledge gained from a pre-trained model to
improve the performance of a new model on a different but
related task [39]. In this study, we refine the three models
trained on different datasets using transfer learning. This
process involves freezing the learned parameters in several
convolutional blocks, which means their weights and biases
are maintained without further updating and relearning the
parameters in the remaining layers. By adopting this method,
we can effectively adapt the model to novel subject data while
retaining the valuable feature representations learned from the
previous training. The number of transfer layers shown in
Fig. 3 is found through an optimization process using a TPE
Sampler. The search results reveal that freezing the first two
CNN blocks for all three pre-trained models yields the best
validation accuracy, which we use as the final configuration
for transfer learning.

In the AB dataset, vertical load information (from load cells)
is unavailable. To effectively apply the pre-trained AB model
to the prosthesis user dataset, an additional CNN block must
be integrated into the pre-trained model as illustrated in Fig.
3. This added CNN block has an input corresponding to the
vertical load signal, while its output is concatenated with the
output of the frozen layers from the pre-trained model. This
additional network also features three stacked CNN blocks
with filter sizes of {128, 256, 128} and kernel sizes of {8, 5,
3}, using a stride of 1. This modification enables the seamless
application of the pre-trained model to the amputee dataset
despite the absence of vertical load data in the original AB
dataset.

B. Deep Neural Networks Model Training

This section covers how to train deep convolutional neural
networks. We use a PC with NVIDIA TITAN RTX GPUs to
conduct the training, and we construct and train the model
using the Pytorch Lightning Library.

1) Loss function: We set up a classification problem by
minimizing the cross-entropy loss, which is defined as L =
−
∑C

c=1 wc log
exp(xc)∑C
i=1 exp(xi)

yc. In this equation, yc is the ac-
tual class label, corresponding to a locomotion mode, encoded
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Fig. 3: The FCN network presented in the figure is composed of an array of
convolutional blocks accompanied by an auxiliary network for load cell input
in pre-trained models lacking load cell signals from the AB dataset.

as integers 0-4 (0 for LW, 1 for RA, etc.). xc is the predicted
logit (or score) for class c, wc is the weight for imbalance, and
C represents the total class count. The number of data samples
from different classes (i.e., locomotion modes) is unbalanced.
Therefore, we assign different weights to each class based on
the percentage of strides for each activity and account for that
in the loss function.

2) Hyperparameters: The TPE Sampler, which is a
Bayesian optimization methodology from the Optuna library,
is utilized to optimize the hyperparameters of the CNN model
and adeptly manages the trade-off between exploration and
exploitation in the quest for the most favorable hyperparame-
ters. The process aids in identifying optimal hyperparameters,
including sliding window size (Ws), number of convolutional
layers, batch size, learning rate (lr), and number of transfer lay-
ers. This study also determines the optimal number of transfer
layers through a systematic search that involves freezing CNN
blocks sequentially until the final layer. For each iteration, the
learning rate and batch sizes are optimized using the TPE
Sampler to achieve the highest validation accuracy.

3) Optimizer: We use the Adaptive Moment Estima-
tion [46] optimizer to train CNN models with the learning
rate tuned to be β1 = 0.9, β2 = 0.999, and ϵ = 1e−8 [45].

C. Evaluation

Similar to previous studies on locomotion intent classi-
fiers [17], [28], [30], [34], we evaluate our model based on
three types of error rates: Overall (Ovr), Steady State (SS),
and Transitional State (TS). The formula for each error type
is Error = 1− Correct

Total , with “Correct” being the count of correct
predictions and “Total” the total instances for each category.
In our study, the computational efficiency of the model is
gauged using a measure known as “megaFLOPs.” The term
FLOPs stands for Floating Point Operations Per Second, which
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Fig. 4: Comparison of various models—–subject-dependent (DEP, DEP-C),
subject-independent (IND), and transfer learning (TF-1, TF-2, TF-3)–—across
different sensor setups and error types. DEP-C and all transfer learning models
are fine-tuned using three circuits from the test subject dataset.

measures the number of floating-point calculations a computer
can perform each second [29].

In addition, we perform statistical analysis to compare the
model performance over two factors: learning condition (DEP,
IND, DEP-C, TF-1, TF-2, TF-3) and sensor setup (thigh IMU,
+load cell, +shank IMU, and +ENCs). To that end, we conduct
a two-way repeated measures analysis of variance (ANOVA)
with classification error as the dependent variable and learning
condition and sensor setup as independent variables. Then,
we followed up with a Bonferroni posthoc analysis for the
significant factors to determine the statistically significant
differences (p < 0.05) between each level within each factor.
Finally, we ran multiple pairwise comparisons to calculate the
significant difference in error rate between each specific pair
of learning conditions within each sensor setup.

IV. RESULTS

A. Model Comparison

Fig. 4 compare the error rates between subject-dependent
(DEP, DEP-C), subject-independent (IND), and transfer learn-
ing models (TF-1, TF-2, TF-3). The results are categorized
into Ovr, SS, and TS errors for four different sensor setups. A
consistent pattern across all models and sensor configurations
is the higher incidence of TS errors than SS errors. The
DEP model consistently yields the lowest error across all
sensor choices and error categories, whereas the IND model
reports the highest error. In the evaluation of models trained
or fine-tuned with three circuits (DEP-C, TF-1, TF-2, and
TF-3), DEP-C tends to have the highest error rates across
most sensors and error types. An exception is found in the
transitional state (TS) errors with Thigh IMU, +Shank IMU,
and +Encoders, where TF-2 marginally exceeds DEP-C. TF-2
often incurs the highest error rates among the transfer learning
models, with TF-3 only surpassing it in TS errors with the
+Load Cell sensor setup. When comparing TF-1 and TF-
3, their error rates are generally comparable, although TF-3
does show a notably higher TS error with the +Load Cell
configuration than TF-1.

B. Sensor Selections Comparison

Fig. 4 also shows that adding more sensors resulted in
improved classification accuracy across all models. However,

no improvements are significant according to the ANOVA
(p > 0.05). The Thigh IMU sensor configuration demonstrated
the highest overall error for all models, while incorporating
additional sensors like Load Cell and Shank IMU led to lower
error scores. Finally, adding encoders for knee and ankle
angles and velocities (+ENCs) to the Thigh IMU, Load Cell,
and Shank IMU configuration resulted in the lowest overall
error for all models.

C. Confusion Matrix Analysis

Table I presents confusion matrices that demonstrate the
classification error rates for different locomotion modes, uti-
lizing the fourth sensor option. This sensor option for the
confusion matrix is consistent with others, as no statistical
differences exist between sensor options. Additionally, this
choice allows for a fair comparison with other research on the
same dataset [25], where all sensors are utilized. Across all
models, the LW yields the lowest classification errors along
the diagonal, except for DEP, where the RD has the lowest
error (0.46%). In contrast, RA has the highest error rate along
the diagonal for all models, except for TF-3, where the SD has
the highest error (5.09%). Comparing transfer learning models
(TF-1, TF-2, and TF-3) with the DEP-C model—each trained
on three circuits of the dataset—it is evident that TF-1 exhibits
the lowest error rate across LW (1.19%), RD (2.38%), and
SD (2.94%) locomotion modes, while TF-3 shows the lowest
error rate for RA (4.26%) and SA (1.85%). Conversely, the
DEP-C model generally experiences the highest error across
all modes, except for LW (1.36%) and RD (3.64%), marginally
below TF-3’s LW (1.60%) and RD (3.84%).

D. Impact of Training Data Quantity on Model Performance

This study uses the second sensor option to examine the
impact of training data volume on the performance of transfer
learning models (TF-1, TF-2, and TF-3) and the subject-
dependent model (DEP-C, DEP). We train all models with
different numbers of ambulation circuits, the details of which
are outlined in Fig. 5. The DEP model, on the other hand,
consistently trained on roughly 35 circuits per subject, serves
as a benchmark to ascertain the data sufficiency for achieving
comparable model performance. It is generally observed that
prediction errors for transfer learning models and DEP-C
declined as the volume of test subjects’ training data increased.
Notably, TF-3, TF-2, and TF-1 generally surpass DEP-C in
accuracy, especially when trained with fewer circuits (2 and
3). TF-3 outperforms in minimizing Ovr and SS errors across
all volumes of training data, except when trained with three
circuits. Regarding TS errors, TF-1 displayed the lowest error
rates in scenarios with fewer circuits (2 and 3). Conversely,
TF-3 demonstrated the best performance in TS error at higher
circuit counts (7 and 10). Meanwhile, DEP-C consistently had
the highest error rates in almost all examples, except the seven-
circuit scenario, where TF-2’s transitional error marginally
surpassed it. Notably, with ten circuits, the overall (Ovr) error
rate of TF-3 closely approached that of the DEP model.



TABLE I: Distribution of error percentages across locomotion modes for different models utilizing the fourth sensor option. The table contains six confusion
matrices that indicate the percentage of classification errors for all models. The bolded diagonal elements serve as indicators of the correct classification rates.

LW RA RD SA SD LW RA RD SA SD
LW 1.07 99.57 99.87 99.69 99.80 1.19 99.62 99.71 99.63 99.85 LW
RA 97.75 2.25 100.00 100.00 100.00 90.60 9.40 100.00 100.00 100.00 RA

DEP RD 99.54 100.00 0.46 100.00 100.00 97.66 100.00 2.38 100.00 99.97 RD TF-1
SA 99.49 100.00 100.00 0.51 100.00 97.71 100.00 99.97 2.32 100.00 SA
SD 97.69 100.00 100.00 99.76 2.55 97.25 100.00 99.91 99.91 2.94 SD
LW 1.94 98.89 99.81 99.60 99.75 1.60 99.43 99.83 99.40 99.74 LW
RA 68.96 31.31 99.94 99.78 100.00 91.00 9.00 100.00 100.00 100.00 RA

IND RD 93.38 99.85 7.16 100.00 99.60 96.77 99.83 3.84 99.90 99.66 RD TF-2
SA 98.22 100.00 100.00 1.93 99.86 97.21 100.00 99.90 2.89 100.00 SA
SD 97.66 100.00 99.68 99.49 3.00 94.96 100.00 99.95 100.00 5.09 SD
LW 1.36 99.59 99.78 99.73 99.54 1.34 99.33 99.79 99.78 99.77 LW
RA 89.20 11.13 99.67 100.00 100.00 95.74 4.26 100.00 100.00 100.00 RA

DEP-C RD 96.60 100.00 3.64 99.86 99.90 96.50 99.90 4.28 99.93 99.39 RD TF-3
SA 96.06 100.00 100.00 4.14 99.80 98.15 100.00 100.00 1.85 100.00 SA
SD 95.47 100.00 99.58 99.81 5.10 95.24 100.00 99.91 99.77 5.09 SD
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Fig. 5: Comparison of the performance of transfer learning models (TF-1,
TF-2, and TF-3) and subject-dependent models (DEP, DEP-C) across varying
numbers of training circuits.

V. DISCUSSIONS

A. Comparison to Prior Studies

This study uses DEP and DEP-C as benchmarks to assess
our transfer learning methods, with the IND model foun-
dational to TF-1. We compare our DEP and IND models’
performance to those in studies [25], [28], setting the stage
for discussing our transfer learning models’ benefits over
traditional methods.

Bhakata et al. [28] explored the XGBoost algorithm and re-
ported overall errors (DEP: 3.81%, IND: 10.12%). Our study,
although employing a distinct TF dataset, demonstrates im-
proved performance with lower Ovr errors (DEP: 1.1%[0.10],
IND: 7.6%[2.5].

Woodward et al. [25] utilized a Scaled Conjugate Gradient
ANN on the same TF dataset, reporting lower overall errors
(DEP: 0.97[0.13], IND: 2.93[0.73]) than our study (DEP:
1.1%[0.10], IND: 7.6[2.5]) with the fourth sensor option.
Our analysis revealed that RA errors were the most sig-
nificant contributors to classification errors in our models
(DEP: 2.25%, IND: 31.31%). This contrasts with Woodward
et al.’s approach, where RA was not distinctly categorized but
rather merged with LW in their analysis. In addition, their
standing error is notably minimal (DEP: 0.06%, IND: 1.35%),
contributing to the low overall error rate. Conversely, their RD
error rates (DEP: 13.35%, IND: 24.43%) are higher compared
to ours (DEP: 0.71%, IND: 7.16%), while the other locomotion
modes are comparable to our results.

Our CNN model’s effectiveness can be attributed to its

deep learning framework, which is adept at extracting detailed
features for accurate locomotion classification. This approach
outperforms simpler neural networks and XGBoost algorithms
[25], [28] by generating advanced feature representations and
capturing nuanced inter-subject variations [29], [43], [44]. This
capability is key to our model’s enhanced accuracy in intent
prediction.

B. Comparison of Sensor Options
The results of our study suggest that adding sensor signals

generally results in enhanced classification accuracy for all
models. However, the ANOVA found no statistically signifi-
cant differences between the sensor configurations (p > 0.05).

Integrating joint encoder signals and shank IMU into the
classifier can enhance the intent prediction accuracy [28]–
[30]. However, there are potential downsides to using encoder
signals as inputs. Most significantly, the controller’s output
directly affects these signals. Thus, any alterations or adjust-
ments to the controller can directly impact the classifier’s
performance, potentially leading to prediction instability. Fur-
thermore, misclassification can initiate a detrimental feedback
loop. If the classifier incorrectly interprets locomotion mode,
this can influence the controller’s output, introducing errors
into the encoder and shank IMU signals.

In contrast, signals that are not primarily determined by
the controller’s output, such as the Thigh IMU and Load Cell,
can more precisely depict the user’s intentions. The mentioned
signals offer a more robust and generalizable input for models
that predict intent, given their reduced susceptibility to poten-
tial misclassification and alterations in the low-level controller.
Most studies on the prediction of intent for prosthetic lower
limbs typically incorporate the use of all available sensors,
including encoders. Nevertheless, some research endeavors
have attempted to employ only the thigh IMU. For instance,
Bruinsma et al. [32] and Marcos et al. [23] utilized recurrent
neural networks (RNN) for training the DEP model for sin-
gle subjects, achieving 13.5% and 8.0% classification errors,
respectively. These results are higher than our finding of DEP
model using only thigh IMU (1.7%[0.4]). It is important to
note, however, that the approaches in [32] and [23] involved
separate labeling for each transition mode, resulting in a total
of 26 classes. This difference in classification approach could
partly explain these discrepancies in error rates.



C. Comparison of Transfer Learning Models

We employ three transfer learning models (TF-1, TF-2, TF-
3) to enhance the accuracy of intent prediction by leveraging
prior knowledge from different data sources. TF-1 and TF-3
surpass DEP-C in performance, with TF-3 showing superior
results over TF-1, particularly when trained with more data
circuits. This underscores the benefit of integrating AB data
to enrich the model. Notably, TF-3 has comparable overall
(Ovr) and steady-state (SS) performance to the DEP model,
even with limited subject data (10 circuits). This suggests that
TF-3 can achieve similar accuracy to a DEP model trained on
a more extensive dataset, offering a promising approach for
scenarios with restricted subject data availability.

TF-2 surpasses DEP-C in steady-state and overall errors,
highlighting its utility of pre-existing knowledge about able-
bodied locomotion patterns when extensive TF subject data
collection is difficult. Moreover, when the training data is
restricted to only 2 or 3 circuits, TF-2 has a significantly lower
error rate, demonstrating the potential of transfer learning in
situations where data from the test subject is limited.

It is important to highlight that TF-2 does not outperform
DEP-C in terms of transitional state (TS) error, and similarly,
the TS error of TF-3 is comparable to that of TF-1. A
plausible explanation for this could be the intrinsic differences
in transition steps between AB and TF subjects. In the TF
dataset, transitions are often carefully adjusted by prosthetists,
leading to more controlled and less natural movement patterns
than in the AB dataset.

This observation suggests a key consideration for combining
AB and TF datasets to improve transitional task performance.
To make the most of both datasets, it may be beneficial
to have transition tasks in TF subjects that mimic natural
movements, similar to those observed in AB subjects [4]. This
approach could potentially align the two datasets more closely,
enhancing the model’s ability to accurately predict transitions
in a manner that reflects natural human locomotion.

D. Application to Prosthesis Control

Our proposed model employs continuous-time prediction,
similar to the one described in Huang et al. [27], to substan-
tially mitigate misclassification issues by facilitating correc-
tions in the subsequent frame. This shows advantages over
other approaches that rely on discrete prediction (a discrete
window right before critical events, such as toe-off or heel
contact) [28], where the accurate identification of transition
mode for each stride is crucial. This continuous framework is
particularly advantageous during transitions between different
gait modes. While discrete methods risk prolonged misclassi-
fication effects, our model can rapidly adjust to the changing
gait pattern, significantly reducing the impact of any initial
misclassification [36]. Furthermore, the significantly lower
steady-state error compared to transition error indicates that
the model performs more reliably during steady-state phases
of the gait cycle. This is particularly important for real-time
control, as maintaining stability and smooth control during
these phases is crucial for user comfort and safety.

Our CNN models have a model complexity of approxi-
mately 318 megaFLOPs. Although the CNN model requires
substantial processing time, its deployment in a real-time
system is achievable since the FLOPs can be converted to
less than 50 ms on a conventional GPU-supported micropro-
cessor (e.g., Nvidia Jetson Nano with a performance of 472
gigaFLOPs). This demonstrates the potential of applying these
techniques to real-time control of prostheses.

E. Limitations and Future Directions

The data used in this study were collected in a controlled
environment, and subjects were instructed to follow a pre-
defined circuit for each activity. This may not fully capture
the complexity and unpredictability of real-world scenarios.
Additionally, our models are validated on a limited dataset,
which may restrict the generalizability of our findings. Future
research should collect and incorporate more diverse real-
world data to enhance the model’s robustness and applicability.
Furthermore, implementing and testing our models in real-
time control of a powered prosthetic leg is crucial for practical
application. This preliminary study emphasizes model devel-
opment and offline validation, motivating further development
of suitable hardware for on-board testing. Future work will
extend to online validation with prosthetic device data to assess
performance and inference time in real-world scenarios.

VI. CONCLUSIONS

This study underscores the potential of transfer learning
to enhance the accuracy of prosthesis user intent predictions,
particularly with limited data from amputee subjects. By devel-
oping pre-trained CNN models using TF and/or AB datasets,
we achieved enhanced model performance with substantially
less amputee subject-specific data needed for fine-tuning using
transfer learning, outperforming the accuracy of retraining the
CNN models with the same dataset. Moreover, we identify
optimal sensor configurations, endorsing a combination of a
thigh inertial measurement unit and a load cell as the most
effective setup. Consequently, this work is a cornerstone in
leveraging AB datasets through transfer learning to facilitate
more precise and individualized solutions for individuals with
lower limb amputations.
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