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Abstract— Research in powered prosthesis control has ex-
plored the use of impedance-based control algorithms due to
their biomimetic capabilities and intuitive structure. Modern
impedance controllers feature parameters that smoothly vary
over gait phase and task according to a data-driven model.
However, these recent efforts only use continuous impedance
control during stance and instead utilize discrete transition logic
to switch to kinematic control during swing, necessitating two
separate models for the different parts of the stride. In contrast,
this paper presents a controller that uses smooth impedance
parameter trajectories throughout the gait, unifying the stance
and swing periods under a single, continuous model. Further-
more, this paper proposes a basis model to represent inter-
task relationships in the impedance parameters—a strategy
that has previously been shown to improve model accuracy over
classic linear interpolation methods. In the proposed controller,
a weighted sum of Fourier series is used to model the impedance
parameters of each joint as continuous functions of gait cycle
progression and task. Fourier series coefficients are determined
via convex optimization such that the controller best reproduces
the joint torques and kinematics in a reference able-bodied
dataset. Experiments with a powered knee-ankle prosthesis
show that this simpler, unified model produces competitive
results when compared to a more complex hybrid impedance-
kinematic model over varying walking speeds and inclines.

I. INTRODUCTION

Many daily activities, such as incline walking and stair
ascent, require positive power input from the knee and
ankle at various points in the gait cycle [1], [2]. As such,
transfemoral amputees with passive prostheses experience
disadvantages and often suffer from issues like increased
energy consumption and irregular walking behaviors [3], [4].
Powered prostheses could avoid these problems by injecting
energy at appropriate points in the gait.

The usage of active devices begs the question of how
to properly control them. Some efforts have focused on
phase-based kinematic control, where the knee and ankle
are controlled to follow position trajectories that mimic able-
bodied motion [5]–[7]. While these controllers are capable
of generating appropriate kinematic trends and use a single
controller over the entire stride [5], they fail to reproduce
able-bodied kinetics. This limitation has resulted in recent
efforts focusing on impedance control methods due to their
ability to mimic able-bodied angles and torques, generate
compliant interaction between the prosthesis and the ground,
and accurately model joint behavior [8]–[11]. Impedance
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control calculates joint torque τ̂ by the expression

τ̂ = K(θeq − θ)−Bθ̇, (1)

where K, θeq, and B are stiffness, equilibrium angle, and
damping terms, respectively, and θ and θ̇ represent the
joint position and velocity. A common implementation of
impedance control uses a finite state machine, where the
stride is discretized into several states. Each state has its own
set of tuned impedance parameters [12]–[14]. However, this
approach results in a large number of adjustable values (i.e.,
impedance parameters for each activity, transition criteria
between states within the stride, etc.), meaning that tuning
the controller is prohibitively time-intensive.

To address this limitation, several researchers have mod-
eled the impedance parameters as continuous functions of
gait phase. In these controllers, impedance control is often
limited to the stance period, while swing is dictated by a
position controller. One example [15] used a model that
defines stiffness and damping as hand-tuned linear functions
that do not change with task. Developments on this idea be-
gan using able-bodied data to identify polynomial functions
for the stiffness and damping parameters [16], [17]. These
works still chose to use a piecewise-constant function for θeq,
and while [17] captures parameter changes due to incline, it
does not address changes due to walking speed. Recently,
[18] introduced a continuous impedance model of stiffness,
damping, and equilibrium angle as continuous functions
of phase during the stance period of walking. This model
generated impedance parameter trajectories for a range of
inclines and speeds and displayed state-of-the-art levels of
biomimicry across these tasks. This control architecture was
then extended to stair ascent and descent over various step
heights [19].

However, by using a hybrid combination of impedance
control during stance and position control during swing,
the control architecture in [18], [19] still requires discrete
transitions and multiple models to describe the gait. We
hypothesize that this approach is more complex than nec-
essary, and that the full stride can instead be described by
a single model. Furthermore, [18] uses linear interpolation
to determine impedance parameters for tasks that are not in
the training set, even though previous results have shown
improvement in cross-task modeling when using continuous
task functions rather than linear interpolation [6].

In an effort to address these limitations, the proposed
controller—hereafter referred to as the Full Stride Impedance
Controller (FSIC)—uses a single continuous model for the
entire walking stride. The controller computes output torques



using the impedance model described in (1), with the param-
eters K, B, and θeq being chosen such that the controller pro-
duces biomimetic torques during stance, then angle-tracking
torques during swing. Additionally, the FSIC repurposes
the basis structure described in [6] to model impedance
parameter behavior across tasks. In doing so, we explore the
potential for improved cross-task modelling of impedance
parameters over classic linear interpolation techniques. After
a series of bypass experiments comparing the FSIC with
a benchmark hybrid impedance-kinematic controller, we
conclude that the proposed control method achieves near-
cutting-edge performance with a unified control scheme that
operates continuously over the entire gait without the need
for discrete transitions or multiple models.

II. METHODOLOGY

A. Modeling Framework

The model described in [6] has a mathematical structure
that is well-suited for full-stride models and is continuous
in each of the task dimensions. We apply this model to the
impedance control strategy detailed in [18] with the aims of
(a) expanding the control method to the entire gait cycle and
(b) better representing cross-task trends.

Stiffness K(ϕ, χ), damping B(ϕ, χ), and equilibrium an-
gle θeq(ϕ, χ) are modeled as continuous, smooth functions
of gait phase ϕ and task χ. Gait phase ϕ is a periodic scalar
value that monotonically increases from 0 to 1 throughout
each stride. It can be estimated in real-time via a phase vari-
able. The task vector χ contains the user’s current walking
speed ν and incline ϵ, each linearly mapped from physical
units (i.e., [0.8 m/s, 1.2 m/s] and [-10◦, 10◦]) to the range
[0, 1]. The expressions for each parameter are given as

K =

N∑
l=1

Cl(χ)kl(ϕ), B =

N∑
l=1

Cl(χ)bl(ϕ),

θeq =

N∑
l=1

Cl(χ)el(ϕ)

(2)

where N = 7 denotes the number of task functions Cl.
The task functions Cl are Bernstein polynomials that apply

weights to the parameter-specific functions kl(ϕ), bl(ϕ), and
el(ϕ). Bernstein polynomials have been shown to better
represent cross-task kinematic trends compared to linear
interpolation [6]. We hypothesize that this property will also
apply to impedance parameter modeling. Each task function
Cl(χ) is defined as

Cl(χ) =

(
d

q

)
f(χ)q(1− f(χ))d−q,

where the index l specifies which of three subgroups a given
task function belongs to. Each subgroup dictates the values
of d, q, and f(χ) as

l = 1 ⇒ d = 0, q = 0, f = 0

l = 2, 3, 4 ⇒ d = 2, q = l − 2, f = ν

l = 5, 6, 7 ⇒ d = 2, q = l − 5, f = ϵ

(3)

The first subgroup provides a constant function, the second
establishes functions that capture changes in the parameters
due to walking speed, and the third does the same for changes
in incline. The exact values of each parameter were chosen
empirically. Note that in this context, we define 00 = 1.

The basis functions kl(ϕ), bl(ϕ), and el(ϕ) are defined as
Fourier series, which were chosen for their periodic nature
and the periodicity of gait. The functions kl are defined as:

kl(ϕ) = α00l +

F∑
m=1

α1ml cos(2πmϕ) + α2ml sin(2πmϕ).

(4)
The functions for damping bl(ϕ) and equilibrium angle el(ϕ)
are defined similarly, each parameterized by coefficients βiml

and γiml, respectively. The series orders were heuristically
selected to be F = 4 for the ankle and F = 6 for the knee.

B. Model Fitting Objectives and Constraints

The model parameters (αiml, βiml, γiml) are determined
via convex optimization, using an able-bodied dataset [2]
as reference. The objectives of the optimization vary over
the course of the stride, as will be described in sections
II-B.2 and II-B.3. In an effort to frame this model as a
convex quadratic program (QP), we first present a change-
of-variables and model approximation.

1) Convex Approximation: Previous efforts to use convex
optimization to solve for impedance parameter models have
shown that the product Kθeq leads to nonconvexities in
torque error minimization problems, making them difficult
to solve [18]–[20]. To avoid this, we introduce the change
of variables P = Kθeq as done in [18]:

P = Kθeq =

(
N∑
l=1

Cl(χ)kl(ϕ)

)(
N∑
l=1

Cl(χ)el(ϕ)

)
,

=

N∑
l=1

N∑
r=1

Cl(χ)Cr(χ)kl(ϕ)er(ϕ),

=

N∑
l=1

N∑
r=1

Cl(χ)Cr(χ)pl,r(ϕ),where

(5)

pl,r = δ00lr +

2F∑
m=1

δ1mlr cos(2πmϕ) + δ2mlr sin(2πmϕ).

(6)
During evaluation, we can recover the original model by
approximating θeq as P

K .
We now collect the unknown model parameters for stiff-

ness into a vector xK as

xl
K =

[
α00l α11l α21l · · · α2Fl

]
, (7)

xK =
[
x1
K x2

K · · · xN
K

]
∈ R1×N(2F+1). (8)

Vectors xB and xP for the damping and product functions
are defined similarly using their respective coefficients βiml

and δimlr. We can then write an argument vector x ∈
R2N(2F+1)+N2(4F+1) containing all of the unknown model
parameters as x =

[
xK xB xP

]⊤
.



2) Stance Objective: The stance period’s objective is to
match the impedance model’s output to able-bodied joint
torques. This is achieved by minimizing f1(x):

f1(x) = ||λ1Λst(τ − τ̂)||2. (9)

The term λ1 is a diagonal weight matrix that determines the
priority of this objective. We define λ1 as a diagonal matrix
rather than a scalar in order to permit varied weight definition
within stance, which proved to be helpful for swing-stance
transitions (described in section II-B.7). The constant Λst

is a binary diagonal matrix that selects the rows of τ − τ̂
that are associated with stance. This matrix is determined by
using ground reaction force data. The vector τ is comprised
of able-bodied torque data from full strides (each stride
discretized into S phase timesteps) across all T tasks:

τ =
[
τχ1

τχ2
· · · τχT

]⊤ ∈ RST ,where

τχj =
[
τ1,j τ2,j · · · τS,j

]⊤ ∈ RS .

For clarity, we have defined τi,j = τϕi,χj
and will use this

notation for all other phase- and task-dependent parameters.
Equivalently, τ̂ contains the impedance model’s output for
each of the strides across all the tasks:

τ̂ =
[
τ̂1,1 · · · τ̂S,T

]⊤ ∈ RST ,where

τ̂i,j = Pi,j −Ki,jθi,j −Bi,j θ̇i,j .

P , K, and B are computed using (2) and (5). θ and θ̇ denote
joint angles and velocities obtained from the dataset.

3) Swing Objectives: The swing period’s objective is
to generate biomimetic kinematic trajectories, rather than
mimicking able-bodied torques (which, depending on the
geometry and mass distribution of the prosthesis, may lead
to aberrant behaviors). This is achieved by minimizing the
difference between the equilibrium angle and joint kinemat-
ics. By driving θeq towards the desired trajectory of able-
bodied kinematics (equivalently driving Kθ−P to zero) and
simultaneously releasing the torque-matching objective, we
can encourage an impedance controller to behave similarly
to a proportional-derivative position controller. This objective
is addressed by minimizing f2(x):

f2(x) = ||λ2Λsw(Kθ − P )||2.

As done in the stance objective, λ2 is a diagonal matrix of
phase-dependent weights and Λsw is a binary diagonal matrix
that selects swing period data. Kθ and P are each vectors in
RST populated with the relevant values for each parameter:

Kθ =
[
K1,1θ1,1 K2,1θ2,1 · · · KS,T θS,T

]⊤
,

P =
[
P1,1 P2,1 · · · PS,T

]⊤
.

4) Rate-of-Change Objectives: In order to produce a
comfortable walking stride, we made various assumptions
about optimal behavior of the impedance parameters. Specif-
ically, we believed that equilibrium angle should have low-
frequency trajectories during stance, as previous hardware
experiments showed us that high-frequency equilibrium an-
gle trajectories resulted in user discomfort. This may be

because the resulting output of the impedance model has
a high-frequency feedforward component in the Kθeq term,
making any departure from the expected kinematics produce
undesirable torques. We also assumed that stiffness and
damping should have low frequencies during swing, since
we sought to achieve kinematic tracking during that part
of the stride. We believed that high-frequency stiffness and
damping terms would result in a jittery, unstable torque
output. While we did not devote major effort towards reach-
ing a decisive conclusion about these assumptions (since
answering these questions was not our ultimate goal), all
three hypotheses were supported by hardware experiments.

We produce this period-specific behavior by punishing the
derivatives of these parameters at appropriate gait phases.
This cost component is defined as

f3(x) = λ3

∥∥∥∥Λst
∂P

∂ϕ

∥∥∥∥2 + λ4

∥∥∥∥Λsw
∂K

∂ϕ

∥∥∥∥2 + λ5

∥∥∥∥Λsw
∂B

∂ϕ

∥∥∥∥2 .
As in the previous objectives, ∂P

∂ϕ ,
∂K
∂ϕ , and ∂B

∂ϕ are each
ST × 1 vectors populated by the derivatives evaluated at
each timestep for each stride over all the tasks.

5) Regularization Objective: A regularization term was
added to address overfitting, given by f4(x) = λ6||x||2. The
full objective function can now be expressed as the sum of
each cost component fi(x) ∀i ∈ {1, 2, 3, 4}.

6) Constraints: Phase-varying bounding constraints for
K and B are introduced for each joint in order to ensure
stable behavior. On top of this, to improve user confidence
during the early phases of the stride (when the prosthesis
rapidly takes on the user’s weight), a weight-bearing stiffness
constraint KWB

min is enforced immediately after the swing-
stance transition region (described below in Section II-B.7).
The values of each constraint are given in Table I. All
stiffness constraints are given in Nm/rad/kg and all damping
constraints are given in Nms/rad/kg.

7) Swing-Stance Transitions: To encourage a comfortable
transition between the swing and stance periods (particularly
in the knee), we heuristically chose appropriate values for the
weighting matrices λ1 and λ2 used in objectives f1(x) and
f2(x). Throughout swing, we penalize kinematic error with
weight λMS

2 , before modifying it at the final phase timestep
to a heel strike value of λHS−

2 . Furthermore, the first 6.7%
of stance phase has a torque objective weight λES

1 , while
the remainder of stance has weight λMS

1 . Stiffness is also
unconstrained in this early stance region. These protocols
result in more biomimetic, low-stiffness behaviors during
late swing while still allowing for robust, high-stiffness
performance during early stance.

C. Model Linearity and Objective Convexity

We now show that the impedance parameters and their
partial derivatives can be expressed as linear functions of x.
By doing so, we show that each element of the x-dependent
vectors in the objectives—namely, τ̂ , Kθ, P , ∂P

∂ϕ ,
∂K
∂ϕ , and

∂B
∂ϕ —are linear in x, and thus the objective functions fi(x)
are quadratic in x. We show that the constraints are likewise



affine in x, and therefore the overall minimization problem
can be solved as a standard quadratic program.

1) Model Linearity: Let aϕ contain the sinusoidal terms
evaluated at ϕ, and Aϕ be a block diagonal matrix:

aϕ =
[
1 cos(2πϕ) · · · sin(2πFϕ)

]
∈ R1×2F+1,

Aϕ = blkdiag(aϕ) ∈ RN×N(2F+1),

where the blkdiag() function denotes a block diagonal matrix
with aϕ blocks along the diagonal and zeroes elsewhere. The
kl(ϕ) functions can now be written as a matrix product:[

k1(ϕ) k2(ϕ) · · · kN (ϕ)
]⊤

= AK
ϕ x,where

AK
ϕ =

[
Aϕ 0N×N(2F+1) 0N×N2(4F+1)

]
.

The bl(ϕ) functions can be computed similarly by left-
multiplying x by AB

ϕ =
[
0 Aϕ 0

]
. By defining a vector

of task functions yχ, the expressions for K and B in (2) can
be written as matrix products that are linear in x:

yχ =
[
C1(χ) C2(χ) · · · CN (χ)

]
,

K = yχA
K
ϕ x ; B = yχA

B
ϕ x.

(10)

Due to its framing as a product of the weighted sums
of Fourier series, the expansion of P as a matrix product is
different from the expressions for K and B. First, a vector aPϕ
and corresponding matrices Āϕ and AP

ϕ are defined in order
to accommodate the doubling in the Fourier series order:

aPϕ =
[
1 cos(2πϕ) · · · sin(2π(2F )ϕ)

]
∈ R1×4F+1,

Āϕ = blkdiag(aPϕ ) ∈ RN2×N2(4F+1),

AP
ϕ =

[
0N2×N(2F+1) 0N2×N(2F+1) Āϕ

]
.

After replacing the l, r subscripts in (6) with a single
indexing variable l that ranges from 1 to N2, we can express
the pl functions as follows:[

p1(ϕ) p2(ϕ) · · · pN2(ϕ)
]⊤

= AP
ϕ x.

We also generate a product of task matrices in order to fully
express the double summation in (5):

P = yχYχA
P
ϕ x,where

Yχ = blkdiag(yχ) ∈ RN×N2

.
(11)

Since all impedance parameters are linear in x, the
impedance model output (which is linear in the parameters
K, B and P ) is also linear in x. The rate-of-change objec-
tives (Section II-B.4) can be found by taking the elementwise
partial derivatives of the Aϕ matrices with respect to phase.
The remainder of the derivations are analogous to those of
the impedance parameters and have been omitted for brevity:

∂K

∂ϕ
= yχ

∂AK
ϕ

∂ϕ
x ,

∂B

∂ϕ
= yχ

∂AB
ϕ

∂ϕ
x ,

∂P

∂ϕ
= yχYχ

∂AP
ϕ

∂ϕ
x.

Note that ∂
∂ϕ denotes elementwise differentiation.

To fully express this problem as a QP, the constraints must
also be linear in x. We enforce the constraints by building a

matrix D that, when multiplied by x, gives the stiffness and
damping values over the full training space:

D =
[
D⊤

K D⊤
B

]⊤
,where

DK =


yχ1

AK
ϕ1

yχ1A
K
ϕ2

...
yχT

AK
ϕS

 ; DB =


yχ1

AB
ϕ1

yχ1A
B
ϕ2

...
yχT

AB
ϕS

 .

The product Dx is then bound by vectors gmin and gmax,
which each contain stiffness and damping constraints for the
corresponding points in the gait cycle.

2) Complete Quadratic Program: In summary, the full
minimization problem is given by the quadratic program

minimize
x

f1(x) + f2(x) + f3(x) + f4(x)

subject to gmin ≤ Dx ≤ gmax

(12)

The constants defining the objectives and constraints are
provided in Table I. We solve this QP offline using the
MOSEK Optimization Toolbox for MATLAB, Version 10.0
[21]. The solution is then saved and accessed in real time by
a computer on the prosthetic leg.

III. EXPERIMENTAL DESIGN

The presented controller was implemented on the pow-
ered knee-ankle prosthesis described in [22]. The Hybrid
Kinematic-Impedance Controller (HKIC) described in [18]
was also tested as a benchmark for comparison with prior
works utilizing a separate impedance stance and kinematic
swing model. Gait phase was calculated using the algorithm
in [18]. Though online task estimation has been shown to be
viable [18], each controller in this paper assumed the correct
walking task in order to eliminate task estimation as a source
of error when comparing the two controllers.

An able-bodied subject (male, 24 years, 75 kg, 188 cm)
provided written informed consent in accordance with the
Institutional Review Board at the University of Michigan
(HUM00166976). The subject wore a bypass adapter on the
left side to don the prosthesis and a shoe lift on the right to
match lengths of his two legs. He wore a ceiling-mounted
safety harness and was provided with handrails on either side
of the treadmill. The prosthesis was instrumented to record
joint angles, joint torques, and ground reaction forces. The
ground reaction forces were used to define stance and swing
during post-processing, and the joint angles and torques were
compared with able-bodied data to assess biomimicry.

Both controllers were first tested over four inclines (±10◦

and ±3◦) at a fixed speed (1 m/s). The ±10◦ tests evaluated
controller performance on tasks in the training space, while
the ±3◦ experiments showed controller performance on tasks
outside of the training space. Then, both controllers were
tested over five speeds (0.8 m/s to 1.2 m/s in 0.1 m/s
increments) at level ground. The 0.8 m/s, 1.0 m/s, and 1.2 m/s
conditions served to test algorithm performance on tasks
from the training space, while the 0.9 m/s and 1.1 m/s
conditions showed performance outside of the training space.



TABLE I
CONSTRAINTS AND OBJECTIVE WEIGHTS FOR THE ANKLE (A) AND KNEE (K)

λES
1 λMS

1 λMS
2 λHS−

2 λ3 λ4 λ5 λ6 KWB
min Kst

min Ksw
min Bst

min Bsw
min Kst

max Ksw
max Bst

max Bsw
max

A 1.0 1.0 1.0 1.0 0.0 1e-3 4e-3 1e-6 3.0 3.0 1.9 0.01 0.027 ∞ ∞ ∞ 0.05

K 0.25 1.0 1.0 10 1e-4 1e-3 0.1 1e-6 2.5 1.7 8e-3 3e-3 8e-3 ∞ 2.3 ∞ ∞

Each task was tested twice in succession: once with the
FSIC and once with the HKIC. The order of controllers was
randomized, and the subject was blinded to which controller
was being tested. The subject walked for ninety seconds for
each task/controller combination, ensuring at least a minute
of steady state walking. To minimize the effect of fatigue, we
enforced a mandatory one-minute rest period between tasks,
with more rest allowed if desired. Footage of the experiments
is available in the supplemental video.

IV. RESULTS AND DISCUSSION

Fig. 1 shows the results of the experiments. We used linear
interpolation to generate able-bodied reference torques and
angles for tasks that are not in the dataset. Tables II and III
show normalized root mean square error (NRMSE) values
relative to able-bodied kinetics/kinematics. The RMSEs were
normalized by the range of the corresponding able-bodied
data. Note that the plots and NRMSEs for the joint moments
are only provided for stance, as swing period torques should
not be judged by their biomimicry (as mentioned when
describing the swing objectives of the control method).

Although qualitative comparisons between the FSIC and
able-bodied trajectories in Fig. 1 show many parallels, they
also indicate differences that should be analyzed. Some
of these discrepancies can be attributed to the subject’s
deviation from the dataset average and the use of a bypass in
these experiments, but others may be caused by the control
strategy. In particular, we noticed that the knee moment
trajectories were farther from able-bodied data than the
other three recorded values. This is partially due to the
swing objective, the periodicity of the parameters, and the
swing-stance transition (Section II-B.7). During swing, the
equilibrium angle was driven to able-bodied kinematics. The
periodicity of both θeq and able-bodied kinematics resulted in
the two values closely matching during early stance as well.
Since stiffness stayed low during swing, it was also low at
heel strike. These two circumstances drove the K(θeq − θ)
term in the impedance model close to zero, resulting in
smaller overall torques. The reduction in the knee’s torque
objective weight during early stance meant that this behavior
was not punished. The effect is visible in the knee moment
plots, as the FSIC’s knee moments are generally lower than
able-bodied knee moments at heel strike. These conditions
were understood when designing the controller and were
chosen over the alternative of high stiffnesses and/or non-
biomimetic joint angles in late swing. Furthermore, the
experiments showed no practical effect of this circumstance,
as the subject did not feel any discomfort at heel strike. Note
that this problem is not as prevalent in the ankle, as ankle
moments are naturally close to zero at heel strike.

Comparing the two controllers shows the viability of the
FSIC. When comparing NRMSEs across all tasks, ankle an-
gle NRMSEs are, on average, smaller by 0.1%, ankle stance
torque NRMSEs for the FSIC are 1% larger, knee angle
NRMSEs are 3% larger, and knee stance torque NRMSEs
are 8% larger. All numeric comparisons presented in this
section are given as percentage points (i.e., the HKIC had
an average ankle angle NRMSE of 15.5% and the FSIC had
one of 15.4%, resulting in the 0.1% decrease reported above).
These values indicate comparable biomimetic performance
for all the data but the knee stance torques (which are still
within 10%), showing that the unified model performs with
similar efficacy as the benchmark HKIC.

Interestingly, there is a noticeable difference in perfor-
mance between the incline and speed tasks. When comparing
NRMSE averages across the five incline tasks (Table II),
the ankle angle NRMSEs for the FSIC are 2% smaller,
the ankle stance torque NRMSEs are 0.3% larger, the knee
angle NRMSEs are 0.4% larger, and the knee stance torque
NRMSEs are 3% larger. The negligible magnitude of these
differences indicate equivalency in biomimicry between the
two control methods across the incline tasks. However, this
is contrasted by the results in the speed tasks, particularly
at the knee. For these tasks, the ankle angle NRMSEs had
an average increase of 2% for the FSIC, ankle stance torque
NRMSEs increased 3%, the knee angle NRMSEs increased
6%, and the knee moment NRMSEs increased 14%.

These experiments showed us various limitations we
would like to address in future work. First, we aim to close
the final gap between the FSIC and the HKIC, with the goal
of ultimately surpassing the HKIC in biomimicry. Given that
the only joint/task combination showing a nontrivial decrease
in performance is the knee during the speed tasks, this will be
our primary area of focus. After this, we will run tests with
amputee participants in order to get a sense of the clinical
viability of this control method.

V. CONCLUSIONS

The presented control method unified the entire stride of
a powered knee-ankle prosthesis under a single continuous
model, distinguishing it from previous efforts that utilized
separate models and transition criteria to describe stance and
swing. The Full Stride Impedance Controller was validated
with bypass walking experiments and showed promising
levels of biomimicry across a continuum of speed and incline
walking conditions. When tested against a state-of-the-art
hybrid impedance-kinematic control method, the proposed
control method generated joint kinematics and kinetics that
displayed a comparable similarity to able-bodied data while
having a simpler model architecture.
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Fig. 1. Plots of inter-stride averages from the experiments for each controller. Inter-subject averages from [2] are shown for the able-bodied trajectories.
Note that joint angles are plotted over the entire gait cycle, whereas joint moments are plotted over the stance period.

TABLE II
NORMALIZED ROOT MEAN SQUARE ERROR VALUES ACROSS INCLINE TASKS

1.0 m/s, −10◦ 1.0 m/s, −3◦ 1.0 m/s, 0◦ 1.0 m/s, 3◦ 1.0 m/s, 10◦

FSIC HKIC FSIC HKIC FSIC HKIC FSIC HKIC FSIC HKIC
Ankle Angles (%) 14.37 21.99 18.67 15.79 15.26 16.80 7.55 8.85 9.05 13.47

Ankle Stance Torques (%) 29.65 30.44 22.85 18.53 19.58 18.55 6.52 7.56 10.83 12.87
Knee Angles (%) 10.26 7.68 8.71 10.61 11.74 10.62 12.31 10.88 11.49 12.72

Knee Stance Torques (%) 35.18 38.06 50.16 38.71 52.87 36.99 40.76 40.27 22.11 31.35

TABLE III
NORMALIZED ROOT MEAN SQUARE ERROR VALUES ACROSS SPEED TASKS

0.8 m/s, 0◦ 0.9 m/s, 0◦ 1.0 m/s, 0◦ 1.1 m/s, 0◦ 1.2 m/s, 0◦

FSIC HKIC FSIC HKIC FSIC HKIC FSIC HKIC FSIC HKIC
Ankle Angles (%) 19.75 14.41 15.23 13.94 15.26 16.80 20.06 16.09 18.54 17.75

Ankle Stance Torques (%) 20.91 14.21 18.42 16.03 19.58 18.55 18.07 17.69 17.94 15.74
Knee Angles (%) 15.17 12.18 11.22 9.58 11.74 10.62 19.91 8.39 17.13 5.71

Knee Stance Torques (%) 57.91 37.34 57.22 41.79 52.87 36.99 41.96 34.22 40.71 28.08
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