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Improving Task-Agnostic Energy Shaping Control
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Abstract—Emerging task-agnostic control methods offer a
promising avenue for versatile assistance in powered exoskele-
tons without explicit task detection, but typically come with a
performance trade-off for specific tasks and/or users. One such
approach employs data-driven optimization of an energy shaping
controller to provide naturalistic assistance across essential daily
tasks with passivity/stability guarantees. This study introduces a
novel control method that merges energy shaping with a machine
learning-based classifier to deliver optimal support accommo-
dating diverse individual tasks and users. The classifier detects
transitions between multiple tasks and gait patterns in order to
employ a more optimal, task-agnostic controller based on the
weighted sum of multiple optimized energy-shaping controllers.
To demonstrate the efficacy of this integrated control strategy,
an in-silico assessment is conducted over a range of gait patterns
and tasks, including incline walking, stairs ascent/descent, and
stand-to-sit transitions. The proposed method surpasses bench-
mark approaches in 5-fold cross-validation (p < 0.05), yielding
93.17 ± 7.39% cosine similarity and 77.92 ± 19.76% variance-
accounted-for across tasks and users. These findings highlight
the control approach’s adaptability in aligning with human joint
moments across various tasks.

Index Terms—Wearable Robotics, Prosthetics and Exoskele-
tons, Machine Learning for Robot Control.

I. INTRODUCTION

THE advancement of robotic assistance technologies plays
a critical role in enhancing the productivity of an aging

workforce and improving the daily activities of individuals
with mild to moderate gait impairments [1]. These exoskele-
tons, exemplified by the ReWalk Personal [2] and Wandercraft
Atalante X [3], incorporate actuators and controllers that
restrict voluntary back-driving of joints while providing sub-
stantial torque output to assist mobility impairments through
kinematic control methods for walking and stair climbing
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[4], [5]. Although such designs are suitable for individuals
with severe injuries like paraplegia, the predefined patterns
employed by the controllers may not be optimal for individuals
with full or residual volitional control over their limbs and
conflict with the users’ desired motions [5].

In response to the limitations inherent in conventional meth-
ods of exoskeleton drive and control, a novel approach is under
investigation to assist individuals with residual autonomy,
including those exhibiting mild to moderate gait impairments
[6]–[11]. This approach revolves around the implementation
of low-impedance, backdrivable systems in conjunction with
pattern-free controllers. These controllers are devised to en-
hance voluntary human motion, counterbalance exoskeleton
mass and inertia effects, and directly amplify human-induced
forces [5].

Recent advances in end-to-end neural networks have en-
abled the instantaneous estimation of biological hip joint
moments across diverse ambulatory tasks without explicitly
detecting the activity, effectively making them task-agnostic
[12]. However, methods that directly map kinematics to torque
across a variety of tasks may have sub-optimal performance
for specific tasks and users compared to models that explicitly
depend on the task and user gait (e.g., via gait state estimation
[13]–[16] and/or classification [17]). Incorporating memory-
augmented architectures like Recurrent Neural Networks or
Long Short-Term Memory Networks (LSTMs) could poten-
tially address these challenges by maintaining state infor-
mation and implicitly handling task transitions, though they
require a large amount of input sequence data. Additionally,
the behavior of “black-box” machine learning approaches can
be unpredictable when extrapolated beyond the confines of
the training dataset, requiring empirical validation for each
exoskeleton application.

An alternative task-agnostic control approach uses the non-
linear control method known as energy shaping [18], [19] to
augment the dynamics of the human-exoskeleton system to
correspond to a new desirable Lagrangian (or Hamiltonian) en-
ergy function in closed loop. Research in [20]–[22] highlights
its effectiveness in achieving task-agnostic assistance in vari-
ous backdrivable lower-limb exoskeletons, while guaranteeing
certain forms of passivity and stability. Underactuated systems,
like exoskeletons and biped walkers, must satisfy a set of
nonlinear partial differential equations (matching conditions)
to achieve desired closed-loop dynamics. Parameterizing the
control law with basis functions aligning with the feasible
closed-loop dynamical structure [21] allows optimization of
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energy targets that best replicate the able-bodied joint torques
from multi-activity datasets. The resulting exoskeleton con-
trollers deliver a portion of the normative joint torque across
representative activities of daily life [20]–[24].

However, by optimizing a single controller across several
activities, this energy shaping approach must make compro-
mises in torque prediction between kinematically similar ac-
tivities. While constraints ensure predicted torques are always
in the correct direction [21], [22], magnitudes may be reduced
at certain points in the gait cycle for certain tasks. Moreover,
predicting population-average joint torques does not reflect the
diversity of gait patterns amongst individuals. This approach
essentially sacrifices optimal task/user-specific behavior in
favor of task/user flexibility, obviating the need for real-time
task detection and personalization. While this presents many
advantages, a novel control formulation that is both optimal
and task/user-agnostic would be highly desirable.

Recognizing the complementary strengths of energy shaping
and machine learning, we propose their integration in Con-
volutional Neural Network-based Energy Shaping (ESCNN).
This integration aims to achieve both flexibility and optimality
across a diverse range of tasks and users. We optimize multiple
task-agnostic controllers, each prioritizing a specific user/task
condition. A task/gait classifier is employed to choose a linear
combination of these controllers, resulting in a biological
torque predictor that accommodates a wide range of activi-
ties and individual user-specific gait patterns. This integrated
approach combines energy shaping for task flexibility and
Convolutional Neural Networks (CNNs) for task/user-specific
optimality in exoskeleton assistance of voluntary lower-limb
motion.

The rest of this paper is organized as follows. First, we re-
visit energy shaping control and present our machine learning
integrated framework in Section II. Next, we present methods
for a comparative analysis between our method and three
others in Section III. Subsequently, we present simulation
results and conduct statistical evaluations in Section IV. The
results are interpreted and discussed in Section V.

II. CONTROL METHODS

In this section, we first provide a concise overview of the
energy shaping approach presented in a prior work [21] for the
human-exoskeleton system, discussing the optimization frame-
work based on matching conditions with contact constraints.
Subsequently, we introduce our novel control framework
that integrates machine learning with energy shaping. This
framework possesses wide applicability to various powered
exoskeleton configurations, with a specific focus on knee
flexion/extension dynamics estimation in the context of this
study.

A. System Modelling

We analyze a biped model in the sagittal plane, featuring
seven links, that represents the human-exoskeleton system.
The model involves a floating stance foot and encompasses five
revolute joints, as depicted in Figure 1. The inertial reference
frame coincides with the heel position, (px, py), during the
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Fig. 1. Left: Kinematic model of the human body (reproduced from [21]).
COP denotes Center of Pressure. Solid links denote the stance leg, and dashed
links denote the swing leg. Red arcs indicate torques. Right: Heel contact (top),
flat foot (center), and toe contact (bottom) during the single-support period
of human locomotion. Angle γ is the ground slope, and l f is the length of
the foot. This figure is updated from [25].

heel contact phase. The global heel angle φ is defined with
respect to the vertical axis. The stance ankle, knee, and hip
angles are denoted by θa, θk, and θh, respectively. The model’s
masses and moments of inertia reflect the combination of the
human and exoskeleton masses.

To facilitate the derivation of control strategies, the dy-
namics of the swing and stance legs are treated distinctly,
incorporating interrelated interaction forces F = [ fx, fy,τz]

T ∈
R3. The six degree-of-freedom (DOF) stance leg model has
the generalized coordinates q = [px, py,φ ,θa,θk,θh]

T ∈ R6 in
the 6-dimensional configuration space Q (solid in Fig. 1).
The conjugate momenta p = M(q)q̇ ∈ R6 are defined by the
positive-definite inertia matrix M(q) ∈ R6×6 and the velocity
vector q̇. The port-controlled Hamiltonian dynamics can be
characterized by the Hamiltonian H(q, p) : T ∗Q →R through
the equations[

q̇
ṗ

]
=

[
0 I
−I 0

]
∇H +

[
0

τ +AT λ

]
, (1)

where the skew-symmetric matrix above is known as the
interconnection matrix and I denotes the identity matrix.
The Hamiltonian function H(q, p) = 1

2 pT M−1(q)p+V (q) is
given by the kinetic plus potential energy V (q) ∈ R. The
gradient ∇H = [∂qH,∂pH]T is a column vector in R12 with
∂qH,∂pH ∈ R1×6 as row vectors. The corresponding gravita-
tional vector is N = (∂qV )T ∈ R6. The vector of joint torques
τ ∈ R6 aggregates the human input τhum = Gv+ J(q)T F and
the exoskeleton input τexo = Bu, where v ∈ R3 represents
the human torques (at the ankle, knee, and hip joints), and
u ∈ Rm with m denotes the number of exoskeleton actuators.
The inputs u and v are mapped into the overall dynamics via
matrices B∈R6×m and G∈R6×3. The system is underactuated
with the number of generalized coordinates larger than the
number of exoskeleton actuators. The interaction forces F are
mapped into the system’s dynamics by the Jacobian matrix
J(q) ∈ R3×6.

The holonomic contact constraints in the human-
exoskeleton dynamics (Fig. 1) can be expressed as
aℓ(q) = 0c×1, where c is the number of constraints and
the subscript ℓ ∈ {heel,flat, toe} indicates the contact
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configuration. The constraint matrix A(q) = ∂qaℓ ∈ Rc×6

satisfies Aq̇ = A(∂pH)T = 0. The Lagrange multiplier λ ∈ Rc

represents the ground reaction forces (GRFs) mapped into the
system through constraint matrix A. Details for the contact
constraints are given in [25].

B. Control Law Satisfying the Matching Conditions

Assume we have closed the feedback loop for exoskeleton
input u, while the human inputs v and F remain open-loop in
the Hamiltonian system. We consider a desired, closed-loop
Hamiltonian H̃(p,q) = 1

2 pT M̃−1 p+Ṽ , where Ṽ represents the
new potential energy. The corresponding gravitational vector
is Ñ = (∂qṼ )T . We set M̃ = M to simplify the matching
conditions and to avoid complicated calculations of the inertia
matrix inverse in the control law.

The desired closed-loop dynamics based on H̃ are[
q̇
ṗ

]
=

[
0 I
−I J2

]
∇H̃ +

[
0

Gv+ JT F +AT λ̃ +Tex

]
, (2)

where Tex ∈ R6 denotes the exogenous input in [21]. The
skew-symmetric matrix J2 =−JT

2 ∈R6×6 represents the extra
shaping DOF provided in the interconnection structure [20].

Based on standard results in [19], Hamiltonian systems (1)
and (2) match if we have

Bu =−(∂qH̃)T +(∂qH)T + J2(∂pH)T +AT (λ̃ −λ )+Tex,

and the corresponding matching condition:

0 = B⊥[−Ñ +N + J2(∂pH)T +AT (λ̃ −λ )+Tex], (3)

where B⊥ ∈ Rm×6 is the (full-rank) left annihilator of B, i.e.,
B⊥B = 0. The control law for the feasible shaping structure
satisfying (3) is thus

u = B+[−Ñ +N + J2(∂pH)T +AT (λ̃ −λ )+Tex], (4)

with B+ = (BT B)−1BT being the left pseudoinverse of B.
Details of solving matching conditions can be found in [22].

C. Energy Shaping Optimization Framework

In [21], we formed multiple basis functions for the shaping
terms in (4) and optimized their coefficients to fit weight-
normalized able-bodied joint torque data (given able-bodied
input data) over a broad set of activities. Similarly, we can
design [−Ñ + N + J2(∂pH)T + AT (λ̃ − λ ) + Tex] as a linear
combination of the basis functions {ξ1,ξ2, . . . ,ξw} with the
constant coefficients α ∈ Rw and verticle ground reaction
forces (vGRF) scaling function G (·), where w basis functions
ξi ∈R6 follow the structure of (3). The number w is determined
through a grid search process. The control law (4) is thus given
as

u = B+G (vGRF,α1ξ1 + · · ·+αwξw) = B(q, p,vGRF)α,

where B(q, p,vGRF) ∈ Rm×w. vGRF scaling is incorporated
into B(q, p,vGRF) via the sigmoid functions, 1

1+e−a·(vGRF−b) .
Integrating vGRF scaling divides the basis into six phases of
gait cycles based on vGRF and global thigh angle values.
This allows for enhanced design flexibility in aligning basis

functions with normative human torques, ensuring a smooth
transition between phases through the sigmoid functions.

We optimize the constant coefficients α so the outputs of
control law u best fit the normalized able-bodied joint torques
y. The optimization problem is defined as

minimize
α,s ∑

j
C j = ∑

j

[
C j +D j +1T |S j|+Λ∥Wsα∥1

]
,

subject to C j = (B jα −Yj)
TWj(B jα −Yj), (5)

D j = ∥W̄j(B jα)∥2, |S j| ≥ −Yj ⊙B jα,

where j represents the task being optimized, Yj ∈ Rmn is the
normative human torque with n data samples for each task,
and the matrix B jα ∈ Rmn represents the basis evaluated at
each time element along j with the state vectors q j, p j ∈Rn×6.
Vector S j ∈ Rmn represents the slack for the sign difference,
and c = a⊙b denotes the pointwise product with ci = aibi.

The primary term within the optimization cost function
entails the weighted square deviation between the controller
torque B jα and the reference human torque Yj, with consid-
eration for the weight matrix Wj. The subsequent component
seeks to minimize the temporal gradient of the controller
torque, where W̄j(i, i) = −1 and W̄j(i, i + 1) = 1. Another
crucial element pertains to the minimization of the controller
torque that opposes the direction of the reference torque
Yj, thereby ensuring that the exerted control torque aligns
with the user’s intended movement. To counteract overfitting,
the final cost component employs L1-regularization on the
parameter α , coupled with the weight matrix Ws. We solve
the optimization problem using the cvx convex optimization
package in MATLAB [26].

D. Convolutional Neural Network-based Energy Shaping (ES-
CNN)

Fig. 2 illustrates the closed-loop system of the ESCNN
method. In this system, machine learning enhances energy-
shaping control through real-time classifications within a 500
ms sliding window, sampled at 200 Hz. These classifications
serve both task recognition and gait pattern recognition to
leverage customized control modules denoted as ESi from of-
fline energy-shaping-based optimizations with corresponding
data for every combination of task and gait pattern, where
i∈Z∩ [1,30]. Tasks were categorized into six different groups,
including stair ascent/descent (SA/SD), level walking (LG),
ramp ascent/descent walking (RA/RD), and sit-stand cycle
(SS). Note each task group includes all the variations of
speed/stair heights/ramp angles. Each control module ESi is
generated through the optimization problem (5) by minimizing
a combined cost of βCIG,i +(1−β )COG,i, where CIG,i is the
cost associated to the specific ith task group, COG,i is the
cost associated to task groups other than the ith group, and
coefficient β = 90% weights the given task group in the
convex sum. This optimization results in a control module
ESi that is task-agnostic across task groups but prioritizes
torque prediction within its task group, accommodating inputs
and outputs beyond the specified task group. The ultimate
torque output furnished by the exoskeleton emerges as a linear
combination of the optimal ESi modules corresponding to
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various tasks and gait patterns, where the linear coefficients
(transition variables) are determined by the posterior proba-
bility from task and gait pattern recognition, adding up to
100%. Throughout the gait cycle, the controller seamlessly
transitions among these optimal controllers, each tailored to
specific task groups and gait patterns. The fusion of high-
level classification outcomes with the energy shaping paradigm
results in an adaptive controller (as long as correct task
detection is not 0%), facilitating the implementation of a task-
agnostic controller. Importantly, we substantiate the capabili-
ties of this controller with empirical evidence in Section IV,
demonstrating its proficiency in adeptly handling instances of
misclassifications and successfully engaging in activities not
explicitly covered by the training dataset.

Gait pattern recognition involves class divisions based on
cosine similarity between intrasubject averaged joint torques
and across-subject averaged joint torques. Class rankings
were established by sorting averaged similarities across tasks
per individual and categorized into five different groups in
Fig. 2. For the input of the intra-stride classification, we
omitted bilateral feature information to prevent the model
from overfitting symmetric gait patterns. The inclusion of
unilateral gait information enhances the versatility of the
proposed method, making it suitable for a broader spectrum
of exoskeleton configurations and improving its adaptability
to real-world walking scenarios, including transitions between
different walking modes. Despite the limited sensor count, the
input variable dimensionality has been extended to R6×100.
This augmentation incorporates global thigh angle (φ ), knee
angle (θk), their respective velocities (φ̇ and θ̇k), and the
integral of global thigh angle and knee angle (

∫
φ and

∫
θk).

The inclusion of the angle’s integral is inspired by previous
works such as [27], [28], where the phase variable’s integral
is considered for gait activity classification. However, the
adopted approach in these studies involves information inte-
grated across the entire stride, which is not entirely suitable for
intra-stride classification. Hence, we have adapted the integral
concept from [27], [28] to

∫
φ =

∫ t
t−T φ(τ)− φ(t − T )dτ at

time t, signifying the temporal integral of the angle’s change
within the preceding T = 500 milliseconds. The initial value
subtraction in this integral formulation addresses issues related
to magnitude scale disparities among users and differing
walking conditions.

Fig. 2 provides additional insight into the network config-
uration, highlighting the inclusion of 1D convolutional layers
with causal padding. These layers are instrumental in acquiring
data-driven feature representations, obviating manual feature
engineering requirements. Following each layer, after the Rec-
tified Linear Unit (ReLU) function, batch normalization was
applied to stabilize training. Each model underwent training
using the Adam optimizer. The input data consists of a window
of 100 frames(a 500 ms window). This input data is structured
in an R6×100 format to facilitate temporal classifications.

E. Training Data

The training process for the energy shaping optimization
and the integration of machine learning involves the utilization
of normalized datasets derived from human gait information
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Fig. 2. Feedback loop of a human leg wearing an energy shaping exoskeleton,
where τexo represents the exoskeleton input, and φ , θk , and vGRF correspond
to the global thigh angle, knee joint angle, and vertical ground reaction force,
respectively. The input for machine learning includes joint information φ and
θk , and the output returns task categories including ‘Level Ground (LG),’ ‘Stair
Ascent/Descent (SA/SD),’ ‘Ramp Ascent/Descent (RA/RD),’ and ‘Sit-Stand
cycle (SS),’ along with recognition of gait patterns denoted as M1, . . . ,M5.
These outputs form different energy shaping modules referred to as ESi, where
i ∈ Z∩ [1,30]. The exoskeleton torques are calculated as a linear combination
of the ESi modules, with the coefficients (the possible percentages in blue
and yellow) determined by the corresponding posterior probability.

of eight able-bodied subjects. This information encompasses
various locomotion tasks conducted on level-ground, ramps,
stairs walking [29], and stand-to-sit [30] (sit-to-stand as re-
verse duplicate). The joint torques in these scenarios were
pre-computed through model-based estimation using inverse
dynamics. In the context of locomotion tasks, vertical ground
reaction forces are normalized relative to the subjects’ body
weight. A pragmatic assumption is employed when the stand-
to-sit data from [30] lacks vertical ground reaction forces
(vGRFs). Specifically, vGRFs are held at a constant value
during the standing phase (a valid assumption for quasi-static
activities such as stand-to-sit [31]), and they are gradually
tapered down to 0 as the sitting position is approached. The
compilation of training tasks encompasses a range of activities,
including LL at velocities of 0.6,1,1.4,1.8m/s, RA/RD char-
acterized by inclines of 5.2◦,7.8◦,9.2◦,11◦, SA/SD featuring
step heights of 4,5,6,7inch [29], and the stand-to-sit task
detailed in [30]. Each stride segment commences at the right
leg heel-strike of the preceding stride and concludes at the
right leg heel-strike of the subsequent stride. Comprehensive
insights into the dataset are expounded in [29], [30].

III. SIMULATION-BASED COMPARISON METHODS

We conducted a comparative analysis between the newly
proposed ESCNN approach and three existing methods,
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namely the Energy Shaping (ES) method (based on only en-
ergy shaping) detailed in [21], the Long Short-Term Memory
(LSTM) technique (based on only machine learning), and a
state-of-art finite state machine (FSM) controller [32]. The
Energy Shaping method in [21] took into account all tasks
and subjects as a collective.

LSTM, categorized within the domain of recurrent neural
networks, proves well-suited for temporal series regression
tasks, enabling the acquisition of latent representations of
historical data throughout the backpropagation process [33].
The input dataset for LSTM aligns with that of the proposed al-
gorithm with the additional vGRFs information, encompassing
raw sensor data derived from 500 ms sliding windows at time t,
characterized by a dimension of R7×100. The optimized LSTM
architecture integrated a fully-connected layer for reshaping
the network’s output into a uniform size.

The FSM, as defined in [21], utilizes a normative able-
bodied human torque from the training dataset, following
a similar approach. The FSM uses a representative subject-
average joint torque profile over the entire stride for each
primary activity (SA/SD, RA/RD, LG, and SS), neglecting
variations within each activity that would be impractical to
classify. The FSM selects the nearest neighbor task from the
limited task set, measured using the L2 norm. Notably, our
FSM benchmark relies on a perfectly accurate oracle of the
task, giving insight into the minimum possible error associated
with the FSM methodology despite real-world implementation
difficulties [32].

A. Neural Network Hyperparameter Optimization

A meticulous calibration of hyperparameters for both ma-
chine learning algorithms was performed to ensure a pertinent
comparison across distinct control methodologies. Bayesian
optimization was harnessed to identify the most fitting network
hyperparameters and training configurations for the convolu-
tional neural networks.

Regarding the hyperparameter optimization for task/gait
pattern recognition, specific parameters including the count
of levels (comprising two 1D convolutional layers per level),
filter dimensions, quantity of filters, and the L2 regulariza-
tion coefficient were subject to optimization. Similarly, the
hyperparameter optimization process for the Long Short-Term
Memory (LSTM) entailed the tuning of factors such as the
number of LSTM cells within each hidden layer, the dropout
probability, the number of layers, and the initial learning rate
for the LSTM network.

B. Statistical Analysis

In evaluating our methodologies, we utilized Cosine Sim-
ilarity (SIM) and Variance Accounted For (VAF) metrics to
ensure the controller’s efficacy. SIM ∈ [−100%,100%] as-
sesses the alignment of the controller-generated torque patterns
with normalized able-bodied torque profiles, ensuring that
the exoskeleton’s assistance mimics natural human movement.
VAF ∈ (−∞,100%] quantifies the variability in the data and
determines the extent to which the exerted control torque
aligns with the user’s intended movement by measuring the

proportion of variance explained by our model. Together, these
metrics provide a comprehensive evaluation of the controller’s
ability to replicate normative human joint torque while en-
suring alignment with the user’s movement intentions, which
are defined as SIMA,B = 100 · A·B

∥A∥2∥B∥2
,VAFA,B = 100 · [1 −

Var(A−B)
Var(A) ].
To facilitate inter-method comparison, a comprehensive

analysis was performed involving statistical scrutiny of SIM
and VAF scores. These scores were derived from individual
subjects’ joint torques in conjunction with the corresponding
model-predicted torques. Initial evaluation encompassed a nor-
mality assessment using the Shapiro-Wilk test. Subsequently,
due to the non-normal distribution of SIM and VAF, a non-
parametric analysis was adopted to ascertain the statistical
impact of the control method on these metrics. For each task,
pairwise comparisons were executed between modes. These
comparisons employed the Wilcoxon signed-rank test, with
the null hypothesis positing a zero median difference in scores
between different methods.

To gauge the predictive efficacy of the proposed method-
ologies in the face of subject-specific and task-specific varia-
tions in joint torque, leave-one-out cross-validations were per-
formed. First, a leave-one-subject-out cross-validation (com-
prising eight subjects) assessed how well the methods per-
formed in scenarios involving subject-specific torque fluctu-
ations. Similarly, a leave-one-task-out cross-validation (en-
compassing 21 tasks) was executed to evaluate the predic-
tive competence of the proposed methodologies in instances
characterized by task-specific joint torque variations. Within
this validation framework, a specific ground slope, walking
speed, or stair height was designated as the hold-out condition,
subsequently serving as the test scenario to gauge model
performance in unseen contexts. These validations clearly
demonstrate the controller’s effectiveness in managing mis-
classifications and engaging with tasks beyond the training
set, underscoring its adaptability and robustness.

IV. RESULTS

The averaged results across all tasks and gait patterns are
given in Table I, where the torque prediction results of ESCNN
include misclassifications, influencing the overall outcomes.
The results obtained from the 5-fold cross-validation highlight
the improved performance of ESCNN in terms of SIM and
VAF when compared to ES, LSTM, and FSM. ESCNN task
recognition yielded an average accuracy of 99.71 ± 0.17%,
and gait pattern recognition exhibited an average accuracy
of 95.72 ± 1.16% across all tasks during testing. ESCNN
demonstrated robustness to misclassified tasks—in these cases
it achieved an average SIM of 90.48±5.81% and an average
VAF of 54.32±11.14%. Conversely, the ES and LSTM models
do not depend on task classification, and the FSM model
assumes perfect classification. In terms of estimating knee
moments, the proposed method showcased a closer alignment
with normative human joint torques for representative strides
under steady-state ambulation conditions (Fig. 3).

To facilitate method comparison, a group statistical analysis
(n = 8) was conducted on SIM and VAF scores derived from
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TABLE I
AVERAGED RESULTS ACROSS ALL TASKS AND GAIT PATTERNS.

ESCNN
(Our Approach) ES LSTM FSM

K-Fold Cross-Validation
SIM 93.17(7.39) 86.91(14.62)† 82.34(11.22)† 86.91(10.72)†
VAF 77.92(19.76) 52.58(32.12)† 43.65(39.81)† 66.81(15.98)†

Leave-One-Subject-Out
SIM 87.93(18.71) 87.04(18.47)† 83.27(21.91)† 85.99(16.85)†
VAF 64.63(55.60) 58.32(47.22)† 52.83(68.06)† 63.17(29.93)†

Leave-One-Task-Out
SIM 91.02(15.63) 87.37(18.01)† 83.73(20.09)† 86.64(17.90)†
VAF 73.48(42.79) 58.81(46.27)† 61.15(44.70)† 66.16(33.95)†

† represent a statistical difference (p < 0.05) from ESCNN. The best
performance according to SIM and VAF is bolded. Results are presented as

the mean ± standard deviation in %.

each subject’s joint torques, contrasted with the model’s pre-
dicted torques without utilizing that subject’s data. The results
obtained from the leave-one-subject-out analysis highlight the
improved performance of ESCNN in terms of SIM and VAF
when compared to ES, LSTM, and FSM, with the exception
of ramp ascent and level ground walking cases (refer to
Fig. 4). ESCNN achieved an average task recognition accuracy
of 95.26 ± 5.00% and an average gait pattern recognition
accuracy of 75.90±18.58% across all subjects. ESCNN also
achieved an average SIM of 79.45± 12.29% and an average
VAF of 51.91±25.69% for the misclassified tasks.

The findings emerging from the leave-one-task-out analysis
further underscore the supremacy of ESCNN, with the excep-
tion in level walking cases (Fig. 5). Notably, ESCNN achieved
an average task recognition accuracy of 96.49±6.21% and an
average gait pattern recognition accuracy of 90.62± 11.42%
across the excluded tasks. ESCNN also achieved an average
SIM of 72.06 ± 21.19% and an average VAF of 15.61 ±
62.26% for the misclassified tasks.

V. DISCUSSION

This study introduces an energy shaping approach based
on machine learning for a powered knee exoskeleton system,
aimed at providing consistent support for various daily ac-
tivities. As demonstrated in Section IV, the ESCNN method
manifests superior performance in both similarity (how closely
it matches) and variance-accounted-for (how well it accounts
for variations) metrics. Despite having limited sensors, our
system achieved an accuracy of over 90% in classifying
both tasks and gait patterns. We verified this through 5-fold
cross-validation and leave-one-subject/task-out assessments.
The leave-one-subject-out analysis showed a minor reduction
in gait pattern recognition, due to our gait pattern classification
being dependent on torque similarity, which varies signifi-
cantly among individual subjects. Excluding one subject from
the analysis could result in the elimination of an entire gait
pattern class. Table I reveals the ESCNN method’s significant
advantages over alternatives. Notably, even when tasks are
misclassified, the control modes ensure the assistance torque
patterns remain biomimetic, as shown by SIM, though peak
values are sometimes insufficient, as noted with VAF.

Fig. 3 visually portrays the alignment of normative able-
bodied knee joint torque profiles across the complete gait
cycle, addressing both torque profile magnitude (VAF) and
shape (SIM). Nonetheless, certain inconsistencies emerge in

)gk/
m

N( tne
mo

M

Stair Ascent/Descent

Ramp Ascent/Descent

Level Ground                   Sit-Stand Cycle

Gait Cycles LSTM     ESCNN     Able-Bodied

Fig. 3. Averaged results of the estimated knee joint torques and able-
bodied human torques on the testing data sets. Positive values represent knee
extension. The heel strike denotes the start of the gait cycle. ESCNN energy
shaping and convolutional neural network, LSTM long short-term memory.

the performance of the ES and LSTM methods during specific
tasks, particularly in the late stance and early swing phases.
Notably, a discrepancy becomes apparent in the early stance
phase at the 0.6m/s level walking, where all methods struggle
to precisely replicate the normative human joint torque. This
inconsistency can be attributed to speed variations compared
to other level ground walking scenarios at higher speeds,
impacting torque matching.

Collectively, ESCNN emerges as a promising avenue for
delivering more biomimetic assistance in comparison to ES,
LSTM, and FSM methodologies. In the 5-fold cross-validation
and leave-one-subject-out evaluation, ESCNN demonstrates
superior performance over alternative methods, exhibiting
higher mean SIM and VAF scores across the board. As
visually depicted in Fig. 4, for the 5-fold cross-validation,
the discernible trend achieves statistical significance at the
0.05 significance level in all comparisons for SIM score and
16 out of 18 comparisons for VAF score. For the leave-
one-subject-out evaluation, ESCNN’s superior performance
achieves statistical significance at the 0.05 significance level
in 14 out of 18 comparisons for SIM score and 14 out of
18 comparisons for VAF score. It is noteworthy that the ES
and FSM methods demonstrate exceptional performance in the
context of ramp ascent, where the knee joint torques remain
relatively consistent across various inclinations. However, the
average joint torques generated by FSM may introduce signif-
icant variance in VAF, arising from the diverse individual joint
torques observed in tasks like stair descent. In the leave-one-
task-out analysis, ESCNN consistently outperforms the ES,
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Fig. 4. Comparison of techniques for the 5-fold cross-validation (top) and
leave-one-subject-out test (bottom). The error bars represent the leave-one-
subject-out average ±1 standard deviation. * represents statistical difference
(p < 0.05). ** represents p <= 0.01. *** represents p <= 0.001. ES energy
shaping, ESCNN energy shaping and convolutional neural network, LSTM
long short-term memory, FSM finite state machine, SIM cosine similar-
ity, VAF variance-accounted-for, SA/SD ascent/descent, LG level walking,
RA/RD ramp ascent/descent walking, SS sit-stand cycle.

LSTM, and FSM methods in both SIM and VAF metrics across
a range of lower-limb exoskeleton tasks, with the exception of
level ground walking. This trend holds statistical significance
at the 0.05 level in 46 out of 60 tasks for SIM score and 42
out of 60 tasks for VAF score, as visually presented in Fig. 5.

The comparatively lower performance of ESCNN in level
ground walking can be attributed to the limited dataset, par-
ticularly concerning variations in walking speeds. To enhance
performance, the inclusion of additional individual subjects’
data in the analysis could prove advantageous. To further refine
the accuracy of both task and gait pattern recognition, an in-
crease in the sliding window size, initially set at 500 ms, shows
promise. The extended sliding window enhances classification
by acting as a mode transition within the energy shaping
controller, substantiating task flexibility with passivity-based
output torques. However, adopting a longer sliding window
might introduce untimely delay issues, particularly in machine-
learning-based methods like LSTM. Furthermore, the imple-
mentation of real-time sequence-to-sequence deep learning
neural networks poses heightened challenges compared to
the energy shaping methodology. To optimize performance in
level ground walking, the optimization framework could be
augmented by the inclusion of more slow-speed level ground
walking tasks.

The conducted assessments within this study have focused
on lower-limb exoskeleton configurations within the estab-
lished control framework, with a primary focus on the knee
joint. It is important to note that the proposed methodology
could potentially be expanded into various unilateral and

Fig. 5. Comparison of techniques for the leave-one-task-out test. The
error bars represent the leave-one-task-out average ±1 standard deviation.
The number in black denotes the median. * represents statistical difference
(p < 0.05). ** represents p <= 0.01. *** represents p <= 0.001. ES energy
shaping, ESCNN energy shaping and convolutional neural network, LSTM
long short-term memory, FSM finite state machine, SIM cosine similarity,
VAF variance-accounted-for.

bilateral configurations, encompassing the ankle, knee, and
hip joints of powered exoskeletons. Such an extension would
facilitate comprehensive lower limb assistance across diverse
contextual settings.

As noted in [7], an exoskeleton torque profile proportional to
average biological torque may not provide optimal assistance
to the user. While aiming to fit normalized able-bodied joint
torques for convenient method comparison, target joint torques
can be adjusted for improved assistance. Our system utilizes a
backdrivable actuator with low resistive torque for human joint
control. Although external torque affects walking kinematics,
we assume minimal impact on subjects’ walking patterns
with enough adaptation time. System effects can be validated
through electromyography assessments in future experiments.
For real-time implementation, noise in task and gait pattern
classification can be addressed by filtering and smoothing
transition variables. High-level control involves task and gait
pattern recognition, while the primary control kernel is the
energy shaping method based on the system’s feedback state.
The energy shaping framework remains active, providing real-
time assistance to adapt to varying speeds and conditions
within task categories. Energy shaping control modes can be
seamlessly switched with appropriate timings from [34], [35].
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VI. CONCLUSION

This manuscript presents a new control framework that ad-
dresses the intricate issue of accommodating distinct individual
tasks and user-specific demands within the domain of powered
exoskeletons designed for augmenting everyday activities.
The novel framework introduces a multi-user task-agnostic
optimal energy shaping approach, capitalizing on the synergies
between machine learning and energy shaping methodologies.
The efficacy of the newly proposed controller is rigorously
evaluated through a series of offline trials encompassing
various locomotion scenarios, including walking on diverse in-
clines, navigating ramp ascent/descent, and executing stand-to-
sit maneuvers. Comparative assessments are conducted against
alternative task-agnostic control methods. Future endeavors in
this line of research will involve a proof-of-concept study that
incorporates multiple able-bodied subjects.
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