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Abstract—Previous work has shown that it is possible to use a
mechanical phase variable to accurately quantify the progression
through a human gait cycle, even in the presence of disturbances.
However, mechanical phase variables are highly dependent on the
behavior of the body segment from which they are measured,
which can change with the human’s task or in response to
different disturbances. In this study, we compare kinematic
parameterization methods based on time, thigh phase angle, and
tibia phase angle with motion capture data obtained from ten
able-bodied subjects walking at three inclines while experienc-
ing phase-shifting perturbations from a split-belt instrumented
treadmill. The belt, direction, and timings of perturbations were
quasi-randomly selected to prevent anticipatory action by the
subjects and sample different types of perturbations. Statistical
analysis revealed that both phase parameterization methods are
superior to time parameterization, with thigh phase angle also
being superior to tibia phase angle in most cases.

I. INTRODUCTION

THE field of biomechanics has evolved from analyzing
human walking offline to measuring and classifying it

in real time. Human walking is a repetitive process that is
periodic over a gait cycle. A gait cycle consists of a sequence
of movements during gait-cycle periods to propel their center
of mass forward to achieve locomotion (e.g., heel strike, mid-
stance, swing, etc.) [1]. This dissection separates the different
locomotor functions of the legs during a gait cycle [2]. In gait
analysis, it is important to be able to identify these periods
in the gait cycle. Researchers often analyze biomechanical
data offline using non-causal signal processing techniques
to classify these periods [1]. However, recent technological
advances, such as powered prosthetic legs, require measuring
the human gait cycle as it happens in real time.

Powered prosthetic legs need to measure the progression
of the amputee user’s gait cycle in real time to synchronize
the prosthetic motion with the user. There are two main
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methods to measure gait progression in real time: classify-
ing/detecting discrete periods of the gait cycle or measur-
ing the continuous phase of the cycle. The first approach
uses sensors on the prosthesis, e.g., force sensors, encoders,
and inertial measurement units (IMUs), to detect discrete
biomechanical behaviors of the wearer in order to trigger
transitions between control modes in a finite state machine
control framework [3]. In contrast, real-time estimates of the
continuous phase of gait allow the prosthetic leg to track
normative joint kinematic patterns in synchrony with the user’s
motion [4]–[7]. Researchers have used different methodologies
(e.g., central pattern generators [8]–[10], oscillators [11]–[13],
machine learning [14], extended Kalman filters [15], and phase
variables [4]–[7]) to calculate the phase of the gait cycle in a
continuous manner. A phase variable is a mechanical signal
that increases monotonically with a steady gait cycle and thus
can describe the position of a person’s kinematics in the gait
cycle at all times [5], [16]. When used to control a prosthetic
leg, a phase variable gives the user a sense of volitional control
over the real-time progression of the prosthetic joints, allowing
walking at variable speeds [6] and non-rhythmic behaviors
such as starting, stopping, stepping backwards, and kicking
[7]. Phase variables have been derived from the global angle
of the thigh [6] or tibia [4], which both have sinusoidal
trajectories allowing the calculation of a monotonic phase
angle from the phase portrait. Although any monotonic signal
can parameterize a steady gait cycle, it is important to consider
whether the signal predicts the progression of lower-limb joint
kinematics during non-steady (e.g., perturbed) gait to control
powered prosthetic legs in realistic scenarios.

Studies have used different types of perturbations (e.g.,
single joint [17]–[22], multi joint [23]–[27], slips [25], [28]–
[30], etc.) to understand biomechanical properties of gait
including joint impedance [18]–[21], neuromotor control prin-
ciples [26], [27], [30]–[32], and the robustness of different
parameterizations of the gait cycle [29], [33]. In [33] able-
bodied subjects walked over a mechatronic platform to induce
phase-shifting perturbations at limited onset times of stance
(i.e., 100 and 250 ms after initial contact). Motion capture
data quantified the ability of a thigh-based phase variable to
parameterize the kinematic response of the lower-limb joints to
the phase shift in the level-ground gait cycle. The thigh phase
variable represented the progression of the hip, knee, and ankle
joints significantly better than time across perturbations at the
two onset times tested. However, this study did not consider
the robustness of the tibia-based phase variable used in [4] or
the robustness to different onset times or tasks (e.g., walking
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Fig. 1. Diagram of experiment coordinates and angle references. The incline
of the treadmill is indicated by γ. The individual joint angles θh, θk , and θa
are relative hip, knee, and ankle angles measured with respect to the pelvic
tilt, θp. The thigh angle θth, tibia angle θti and pelvic tilt are global angles,
measured with respect to the gravity vector. The forward and backward arrows
indicate how the belt moved the stance foot during each type of perturbation.

on different slopes).
Ground inclination has an effect on hip, knee, and ankle

motion during walking [34]–[36]. Since these joints are related
to the thigh and tibia angles, they will also be affected by
walking at different inclines. Moreover, the kinematic response
to perturbations may depend on the onset time due to phase-
specific control mechanisms and nonlinear dynamics in gait
[37], [38]. Analyzing the robustness of the previously intro-
duced parameterizations (based on thigh or tibia phase angle)
across inclines and quasi-random perturbation times will
elucidate whether a single phase variable can be used during
varying conditions in powered prosthetic leg applications.

Section II-C introduces an experimental protocol imple-
mented on a treadmill that exposes able-bodied subjects to
phase-shifting perturbations at quasi-random times during the
stance period of the subject’s gait while walking at different
inclines. This protocol addresses limitations of our previous
study, such as targeted foot placement, a single level-ground
walking task, and limited onset times. Section III-A provides
a direct comparison of the robustness of thigh-derived and
tibia-derived phase variables, and compares their robustness to
traditional time-based parameterization of gait. Section III-B
evaluates individual performance of each variable over the
different tasks and perturbation types.

II. METHODS

A. Definitions

In this study, all kinematic measurements were taken from
the sagittal plane with directions and signs for each joint angle
illustrated in Figure 1. A “parameterization variable” in the
context of this paper is a signal that can be used to predict
the angle of the hip, knee, and ankle joints at any point in
the gait cycle. This study compared the performance of thigh
phase angle, tibia phase angle, and time as parameterization

variables, where time is the conventional signal used in gait
analysis or trajectory-based control of powered prostheses or
orthoses [39]. The first two parameterization variables are
respectively calculated in Sections II-D and II-E from the
global thigh angle θth, defined as the angle between the thigh
segment and vertical, and the global tibia angle θti, defined
as the angle between the shank segment and vertical (Figure
1). The robustness of the kinematic parameterizations was
evaluated by an experimental protocol using a split-belt tread-
mill (Bertec, Columbus, OH) to rapidly accelerate/decelerate
the belts to effect phase-shifting perturbations to the subject’s
gait cycle. As shown by the arrows in Figure 1, “forward”
perturbations accelerated the progression of the gait cycle by
accelerating the stance foot belt along its line of motion,
whereas “backward” perturbations delayed the progression of
the gait cycle by decelerating, but not stopping, the stance foot
belt. An example of how each perturbation direction creates
phase shifts in the hip, knee, and ankle joint kinematics can
be seen in Figure 2.

B. Programming the Phase-Shifting Perturbations

Velocity profiles were created to induce both forward and
backward perturbations on the split-belt treadmill. To execute
the desired velocity profile for a perturbation, a series of
MATLAB functions from [40] were implemented to remotely
control the belts on the treadmill. These functions open and
close a TCP/IP communication with the treadmill and read
the current velocity of each belt or command a new velocity
for each belt. These functions allowed the perturbations to
be automated (including the belt, direction, and onset time),
rather than created manually by changing the speed with the
standard Bertec control software. The treadmill remote control
code is available for download as supplemental media [41].

C. Experimental Protocol

The Institutional Review Board at the University of Texas
at Dallas approved the experimental protocol described in this
section. Ten able-bodied subjects (5 male, age: 25 years ±
3.4 years, height: 171.6 cm ± 10.6 cm, weight: 72 kg ± 10.4
kg) gave written informed consent to participate prior to ex-
perimentation. A ten camera motion capture system collected
subject kinematic data and measured treadmill belt velocity at
100 Hz (Vicon, Oxford, UK). Force plates underneath each
belt of the Bertec instrumented treadmill collected ground
reaction forces, moments, and center of pressure.

Subjects self-selected a comfortable speed for walking on
level (0° incline), +5° incline, and -5° decline treadmill
settings. The order of slopes was randomly assigned to pre-
vent bias from fatigue. Subjects walked at the self-selected
speed for a minute without perturbations to produce a control
dataset of unperturbed kinematics. From this control data,
the average stance time was calculated for each subject to
define a normalized time window between 0 and 80% of
stance. Then, 100 uniformly distributed times were sampled
from this window to determine the perturbation onset times,
i.e., the amount of delay between heel strike and perturbation
onset. The 80% of stance cutoff marks when the perturbed leg
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Fig. 2. Example of unperturbed (control) and perturbed joint trajectories of the hip (top), knee (middle), and ankle (bottom) during uphill (left), level-ground
(center), and downhill (right) walking. Each plot shows an example of a backward and forward perturbation with the measured onset for each indicated by
left facing (yellow) and right facing (red) triangles, respectively.

becomes the trailing leg in double support. Perturbations were
not triggered after this point because perturbing the trailing
leg in double support does not produce noticeable changes
in kinematics [33]. During perturbation trials, subjects walked
at the same speed for 20-25 minutes, broken into 5 sets of
4-5 minutes for each slope. A pilot study was conducted to
determine desired belt speed for each type of perturbation.
Results showed that an 85% difference from the nominal speed
could be applied without causing the subject to drastically
alter their kinematics. To adjust for overshoot, we programmed
perturbations to have a magnitude of 70% difference from
the nominal speed. The difference between programmed and
measured perturbation profiles is represented in Figure 3.
Perturbation onset was randomized in four different ways
to prevent anticipatory behavior: 1) the leg to be perturbed
was randomly chosen, 2) the direction of the perturbation
(forward/backward) was randomized, 3) the number of strides
between each perturbation was randomly sampled between 3
to 5 strides, and 4) the order of perturbation onset times was

randomized. The number of strides between each perturbation
was selected to allow the perturbed and unperturbed leg to
re-synchronize [33] as well as give the subject time to relax
before reacting to the next perturbation. Subjects experienced
a total of 200 perturbations at each incline: 1 forward and
1 backward perturbation at each of the 100 onset times. The
number of perturbations to each leg was approximately equal.
The collected dataset [41] and video of the perturbations are
available for download as supplemental multimedia.

D. Calculating the Thigh Phase Angle

The thigh phase angle derivation begins with the global
thigh angle θth and its time derivative θ̇th, which is numerically
calculated and then filtered with a 5 Hz low-pass cutoff
[33]. The global thigh angle and time derivative are then
transformed by

Θth(t) = −(θth − x0), (1)

Θ̇th(t) = k(θ̇th − y0),
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Fig. 3. Plots of programmed and measured treadmill velocity profiles for
forward (a) and backward (b) perturbations, averaged across all perturbations
from one subject/incline pair.

where the scale factor (k) is chosen to create a more circular
phase portrait, and the offsets (x0 and y0) center the phase
portrait at the origin. These transformations allow the phase
variable to approximate a linear function of time and minimize
the effect of sensor noise [33]. The scale factor and offsets are
computed for each subject and incline condition as

k =
|max(θth)−min(θth)|
|max(θ̇th)−min(θ̇th)|

, (2)

x0 = (max(θth) + min(θth))/2,

y0 = (max(θ̇th) + min(θ̇th))/2,

where max(θth), min(θth), max(θ̇th), and min(θ̇th) are obtained
by averaging the maximum and minimum thigh angle and
velocity across all strides in the unperturbed control trial.
Using control trial data for the offsets and scale factor better
simulates the application of this phase variable in powered
prostheses, as they would be calculated from previous, unper-
turbed strides. From [33], the resulting phase variable ϕth is
given by

ϕth(ti) =
(

atan2(−Θ̇th(ti),Θth(ti)) + π
)
/2π, (3)

where atan2 is the four-quadrant inverse tangent function. We
add π to this term and divide by 2π to map the output of atan2
to a range from 0 to 1. If the phase portrait of Θth(t) ever
exceeds one full revolution, we add one to the value of ϕth(ti)
to indicate that the thigh has exceeded the expected trajectory
without incurring a heel strike. At heel strike, ϕth(ti) is set to
exactly zero.

E. Calculating the Tibia Phase Angle

The tibia phase angle is derived in a similar manner from
the global tibia angle θti and its time derivative θ̇ti. The phase
portrait created when calculating the tibia phase angle is a
cardioid-like curve that, when used as an input to Equation 3,
creates a monotonic, nonlinear signal as seen in Figure 4.
While linearity is not a requirement of a phase variable, it
is practically important to maximize linearity to minimize the
impact of sensor noise on the predicted joint angles. The scale
factor calculated by (2) improves the linearity of the signal,
but the non-monotonic trajectory violates a key assumption of
a phase variable during steady walking [16]. Due to the unique
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Fig. 4. Plot of phase portrait (a) and resulting phase variable over percent
gait (b) for the tibia phase angle scaled by -1 for direction (Raw), scaled by
k for direction and linearity (Scaled), and scaled by k and shifted by x0 and
y0 for direction, linearity, and monotonicity (Shifted+Scaled).

shape of the tibia phase portrait, the calculation of x0 is altered
to align the center of the x-axis to the cusp of the portrait while
the equation for y0 remains the same. The cusp was identified
as a local θ̇ti maximum between two minima during the first
half of the gait cycle. The resulting phase portraits and phase
variables can be seen in Figure 4. The corresponding phase
variable, ϕti, is calculated using (1) and (3), replacing θth and
θ̇th with θti and θ̇ti, respectively. Like the thigh phase angle,
we add one to ϕti(ti) if the phase portrait of Θti(t) exceeds
one full revolution and set ϕti(ti) to zero at heel strike.

F. Identifying and Removing Kinematic Outliers

Kinematic outliers among perturbed strides were identified
in two different ways. A trip was defined as a perturbed stride
with a maximum phase variable greater than 1.3. From the
control trials, which contained no perturbations, the largest
measured phase variable was 1.12, therefore a cutoff of
1.3 allowed a buffer for perturbed strides. These trips were
then manually checked, confirming that the subject could not
recover without drastically changing their kinematic pattern.
After all trips were removed, the hip, knee, and ankle joints
were used to further identify outliers. To ensure similar types
of perturbations were compared, onset times were normalized
to percent stance, and strides were grouped into four onset
phases: initial contact/loading response (IC/LR, 0-20%), mid-
stance (21-50%), terminal stance (51-80%), and pre-swing
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(81-100%) [2]. Although a time window was used to limit
the perturbations in pre-swing, a mechanical delay in the
treadmill (as seen in Figure 3) caused a few perturbations to
occur during this phase. These groups were used to calculate
the mean perturbed trajectory and standard deviation for all
joints and onset phases. Individual perturbed strides were
then compared to the average perturbed trajectory of the
matching onset phase. A stride was marked as an outlier if
any joint trajectory exceeded 3 standard deviations away from
the corresponding mean perturbed trajectory for at least 10%
of the stride. Strides marked as outliers were removed and this
process was repeated until no further strides could be removed.

G. Analyzing Parameterizations

The parameterization variables (ϕth, ϕti, and time) were
each used to parameterize the hip, knee, and ankle of each
perturbed stride. A robust parameterization would render the
joint kinematics invariant to an ideal phase-shifting perturba-
tion, i.e., the perturbed kinematics match the unperturbed kine-
matics because the parameterization variable has accounted
for the phase shift [33]. To test robustness, the control and
perturbed joint angle trajectories were parameterized using
each of the three parameterization variables (example in
Figure 5). The magnitudes of the parameterized trajectories
were then normalized to the range of motion of the aver-
age unperturbed trajectory. This was done to minimize the
influence of range of motion differences between joints. After
normalization, MATLAB was used to calculate the joint-
specific correlation coefficient and root mean square error
(RMSE) between every perturbed joint trajectory and the
average nominal joint trajectory from the control trial. This led
to three repeated correlation observations and three repeated
RMSE observations at each joint for each perturbation, one for
each parameterization variable. Both the correlation coefficient
and RMSE were calculated over a complete gait cycle starting
with the measured onset of the perturbation, defined as 0%,
and ending with the same point in the subsequent unperturbed
stride, defined as 100%. This measurement window creates
an equal amount of recovery time for each perturbation that
allows for a fair comparison between all perturbation timings.
To account for variability in the belt velocity signal measured
by the motion capture system, the measured onset is defined
as the first time the belt velocity exceeded a 1.5% difference
from the nominal speed before reaching a local maximum or
minimum.

To statistically evaluate the repeated observations, R was
used to fit the correlation and RMSE of each observation to
linear mixed models [42], [43]. Fitting these values to linear
mixed models allows for the comparison of repeated data
while avoiding problems typically seen with running multiple
t-tests or repeated measures ANOVA. The dependent variable
was correlation in the first model and RMSE in the second
model. Since repeated observations from the same subject or
from the same physical perturbation event will tend to be
highly correlated, the subject and interaction between subject
and unique perturbation were treated as random effects. The
parameterization variable, stance phase of perturbation onset,

perturbation direction, incline, and joint were treated as fixed
independent effects. After the data were fit to each model,
the mean and 95% confidence interval (CI) were calculated in
R for each parameterization variable. A pairwise comparison
was made using the difference in means between each variable.
Adjusting for multiple comparisons, the differences were then
tested for statistical significance (p < 0.05/n, n = 16).

Six additional models were created to assess the impact of
fixed effects on each parameterization variable. For each of
the three parameterization variables, a model was created for
the resulting correlation or RMSE as the dependent variable.
The stance phase of perturbation onset, perturbation direction,
incline, and joint were treated as fixed effects, and the subject
and interaction between subject and unique perturbation were
treated as random effects. In all models, the mean and 95%
confidence interval were calculated for each level of each
fixed effect. For example, each incline has a mean correlation
and 95% confidence interval that is averaged across all other
factors.

III. RESULTS

A. Evaluation of Parameterization Variables

Outlier rejection removed 3.61% of the recorded perturba-
tions, leaving n = 5, 609 for analysis. Figure 6 illustrates the
mean correlation and RMSE with 95% CI for each parameter-
ization variable, averaged across all other fixed effects in the
model. All correlations are statistically significantly different
from each other, with ϕth producing the highest correlation,
followed by ϕti, then time. All RMSE are statistically signifi-
cantly different from each other, with ϕth producing the lowest
RMSE, followed by ϕti, then time. The differences between
parameterizations are visualized for an example backward
perturbation in Figure 5.

B. Evaluation of Other Fixed Effects

Tables I and II summarize the performance of each param-
eterization variable across other fixed effects. Table I reports
the mean correlation coefficients with lower 95% confidence
intervals for each level of each fixed effect, whereas Table II
reports the mean RMSE with upper 95% confidence intervals.
These confidence intervals reflect that an ideal parameteriza-
tion will maximize correlation and minimize RMSE.

1) Stance Phase of Perturbation Onset: For perturbations
that occurred during initial contact/loading response (IC/LR),
mid-stance, and terminal stance phases, the correlation was
highest for ϕth, followed by ϕti then time. For perturbations
that occurred during pre-swing, this order was reversed and
time produced the highest correlations while ϕth produced the
lowest. Looking within each parameterization variable, the
correlations for both time and ϕti increased for later onset
phases (highest during pre-swing), whereas correlations for
ϕth were higher when perturbed earlier in the gait cycle.

The RMSE for the four onset phases follows a similar
pattern to the correlations, with ϕth producing the lowest
RMSE and time producing the highest for the first three
phases of stance. During pre-swing, this trend is also reversed
with time producing the lowest RMSE and ϕth producing
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Fig. 5. Example of unperturbed (control) and perturbed joint trajectories of the hip (top), knee (middle), and ankle (bottom) parameterized by time (left), ϕth
(center), and ϕti (right). The same level-ground, backward perturbation was used for all plots. The measured onset is marked with a left facing triangle.

TABLE I
CORRELATION OF PARAMETERIZATION VARIABLES ACROSS OTHER EFFECTS

Factor Level ϕth Time ϕti
Mean 95% CI Mean 95% CI Mean 95% CI

Onset Phase

IC/LR 0.926 0.887 0.774 0.678 0.837 0.812
Mid-Stance 0.934 0.895 0.820 0.725 0.861 0.836

Terminal Stance 0.901 0.863 0.873 0.778 0.869 0.844
Pre-Swing 0.858 0.736 0.934 0.766 0.895 0.794

Incline
Uphill (+5°) 0.931 0.886 0.868 0.771 0.920 0.887

Level-Ground (0°) 0.918 0.873 0.860 0.763 0.929 0.896
Downhill (-5°) 0.865 0.820 0.823 0.726 0.748 0.716

Joint
Hip 0.960 0.916 0.932 0.835 0.934 0.902

Knee 0.926 0.881 0.879 0.782 0.948 0.916
Ankle 0.827 0.783 0.740 0.643 0.714 0.682

Direction Backward 0.898 0.853 0.848 0.751 0.851 0.818
Forward 0.911 0.867 0.852 0.755 0.881 0.848
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TABLE II
RMSE OF PARAMETERIZATION VARIABLES ACROSS OTHER EFFECTS

Factor Level ϕth Time ϕti
Mean 95% CI Mean 95% CI Mean 95% CI

Onset Phase

IC/LR 0.151 0.172 0.238 0.286 0.174 0.189
Mid-Stance 0.144 0.165 0.211 0.259 0.162 0.177

Terminal Stance 0.163 0.183 0.173 0.221 0.166 0.181
Pre-Swing 0.164 0.227 0.129 0.217 0.138 0.197

Incline
Uphill (+5°) 0.134 0.158 0.182 0.231 0.133 0.153

Level-Ground (0°) 0.158 0.182 0.194 0.242 0.133 0.153
Downhill (-5°) 0.174 0.198 0.188 0.237 0.213 0.233

Joint
Hip 0.089 0.113 0.138 0.187 0.123 0.143

Knee 0.104 0.128 0.125 0.174 0.101 0.121
Ankle 0.273 0.297 0.300 0.349 0.255 0.274

Direction Backward 0.162 0.186 0.189 0.237 0.168 0.188
Forward 0.149 0.173 0.187 0.236 0.151 0.171
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Fig. 6. Mean correlation (a) and RMSE (b) for each parameterization
variable with 95% CI, averaged across all other fixed effects. Asterisk denotes
statistically significant difference.

the highest RMSE. The correlation trend seen in each phase
variable is also present in RMSE, with ϕth producing lower
RMSE during early stance and ϕti and time producing lower
RMSE during late stance.

2) Incline: The correlation produced by ϕth and time was
highest for perturbations that occurred during uphill walking,
followed by level-ground and then downhill walking. Simi-
larly, the correlation produced by ϕti was lowest for pertur-
bations during downhill walking. However, it was highest for
perturbations during level-ground walking rather than uphill
walking.

The RMSE produced by ϕth and ϕti was lowest for per-
turbations during uphill walking, followed by level-ground
and then downhill walking. For time, RMSE was lowest for
perturbations during uphill walking and highest for level-
ground walking.

Figure 7 contains the average unperturbed thigh and tibia
phase portraits for each incline, the resulting phase variables,
and their derivatives. In the thigh phase portraits (Figure
7a), both uphill and level-ground walking complete one full
revolution while the downhill phase portrait appears to double
back on itself. As seen in Figure 7b, ϕth monotonically
increases for both uphill and level-ground walking, whereas
the downhill case appears to decrease slightly around heel
strike. This change in direction is confirmed by the derivative
of ϕth dipping below 0 at the beginning and end of the stride
during downhill walking (Figure 7c). The tibia phase portraits
(Figure 7d) have similar shapes for all inclines, with the uphill

case having a slightly smaller radius than the other cases.
In Figure 7e, ϕti for each incline increases monotonically,
as confirmed by Figure 7f. However, the trajectories for ϕth
appear more linear than those of ϕti.

3) Joint: The correlation produced by ϕth and time was
highest when parameterizing the hip joint, followed by the
knee then ankle. For ϕti, the highest correlation results from
parameterizing the knee, followed by hip then ankle. The
RMSE produced by ϕth was lowest when parameterizing the
hip, followed by the knee then ankle. For time and ϕti, RMSE
was the lowest when parameterizing the knee, followed by the
hip then the ankle.

4) Direction: Within each perturbation direction, ϕth pro-
duces the highest correlation followed by ϕti then time. The
RMSE for each direction follows an analogous pattern with
ϕth producing the lowest, followed by ϕti then time. For
each parameterization variable, forward perturbations result in
higher correlation and lower RMSE when compared to results
from backward perturbations.

IV. DISCUSSION

A. Evaluation of Parameterization Variables

The results of Figure 6 show that across different per-
turbation conditions and inclines, parameterizing joints with
ϕth produced the highest correlation and lowest RMSE when
compared to an unperturbed joint trajectory. This means that,
out of the variables studied, ϕth was the most accurate pa-
rameterization variable, followed by ϕti and time. Both phase
angles appear viable for controlling powered prostheses, where
ϕth may be more practical for an above-knee prosthesis [6] and
ϕti may be more practical for a below-knee prosthesis [4].

B. Evaluation of Other Fixed Effects

1) Stance Phase of Perturbation Onset: Tables I and II
show that onset time had an effect on the performance of the
parameterization variables studied. Specifically, both ϕth and
ϕti are noticeably better than time (higher correlation, lower
RMSE) for initial contact/loading response, mid-stance, and
terminal stance phases (0% - 80% stance). During pre-swing,
the trend is reversed with time producing higher correlation
and lower RMSE than both phase variables. We believe that
these trends relate to the loading/unloading of weight on the
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Fig. 7. Plots of the phase portrait created by the thigh (a) and tibia (b), the resulting phase variables (c-d), and their derivatives (e-f) at each walking incline
averaged across all subjects.

perturbed leg during each phase. In initial contact/loading
response, the main task of the leg is weight acceptance,
meaning the perturbed leg is being loaded. In mid-stance
and terminal stance, the main task is single limb support
on the perturbed leg. By the time the leg reaches pre-swing,
however, the opposite leg has begun its weight acceptance and
the perturbed leg is being unloaded. This implies that phase
variables are better suited for controlling phases where weight
is loaded onto the leg and time is better suited for controlling
phases where weight is unloaded from the leg.

2) Incline: The results of Tables I and II indicate that ϕth
and ϕti performed better with uphill and level-ground walking
than with downhill walking. This trend may relate back to
desirable properties of phase variables as defined in [33]. One
of the criteria for a phase orbit to provide a viable phase
variable candidate is that the unwrapped signal is monoton-
ically increasing or decreasing. The lack of monotonicity in
the downhill case of Figure 7c could explain why ϕth did not
perform as well for downhill perturbations, but this does not
explain the change in performance for ϕti, which is monotonic
at all inclines. Time also performed best during uphill walking
but had decreased performance for both downhill and level-
ground walking. The observed trends are likely related to
differences in the kinematic response to perturbations when
walking at different inclines. The perturbation effect may
have been more significant when walking at level ground
or downhill, resulting in greater deviations from the nominal
trajectory regardless of the parameterization.

3) Joint: Tables I and II show that ϕth provides the best
parameterization (i.e., highest correlation and lowest RMSE)
for the hip joint and ϕti provides the best parameterization for
the knee. This trend is to be expected because ϕth is derived
from the hip joint while ϕti is derived from the knee joint.
For the ankle, ϕth had the highest correlation and ϕti had the
lowest RMSE. All three parameterizations produced relatively
lower correlations and higher RMSE for the ankle compared to
the knee and the hip. This can be attributed to the ankle being
closest to the belt-driven perturbations and thus more impacted
than the proximal joints. All of these findings are illustrated
in the different parameterizations of the perturbation response
in Figure 5.

4) Direction: The results of Tables I and II show that
direction is the only factor where all parameterization variables
follow the same trend: higher correlations and lower RMSE
for forward perturbations than backward perturbations. This
could be attributed to how each type of perturbation affects
the time spent in stance and swing phases of gait. In forward
perturbations, the foot is advanced through the stance phase
while backward perturbations delay the foot’s progress. This
difference results in strides with forward perturbations having
more time in swing than their backward counterparts, creating
the trend seen in all parameterization methods.

C. Limitations and Future Work
While this study analyzes phase variable performance at

varying slopes and walking speeds, it is assumed that the
walking incline is not measured in real time. Investigating
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a way to measure and incorporate the walking slope into
the phase variable calculation could lead to more consistent
performance across inclines. Another limitation of this study
is that it focused on steady-state tasks, but did not analyze
non-steady tasks like starting, stopping, and turning. In [7],
a piecewise holonomic phase variable was introduced that
was robust during periodic walking as well as starting and
stopping on level-ground. Future work will include further
investigation of phase variable improvements, evaluation of
non-steady tasks, and inclusion of a piecewise holonomic
phase variable.

V. CONCLUSION

This paper analyzed the effectiveness of time, the thigh
phase angle, and the tibia phase angle as parameterization
variables for a variety of environmental circumstances that
impact human walking. While ground inclination, perturbation
direction, and perturbation timing all have measurable effects
on parameterization accuracy, a statistical analysis shows that
both thigh and tibia phase angles are better parameterization
variables than time in most cases. Although the thigh phase
angle was statistically better than the tibia phase angle, the
latter may be more practical for controlling a powered ankle
prosthesis or ankle-foot orthosis. In those instances, our results
still support the use of the tibia phase angle as a robust phase
variable for the controller.
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