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Stable, Robust Hybrid Zero Dynamics Control of
Powered Lower-Limb Prostheses

Anne E. Martin and Robert D.

Abstract—To improve the quality of life for lower-limb am-
putees, powered prostheses are being developed. Advanced con-
trol schemes from the field of bipedal robots, such as hybrid
zero dynamics (HZD), may provide great performance. HZD-
based control specifies the motion of the actuated joints using
output functions to be zeroed, and the required torques are
calculated using input-output linearization. For one-step periodic
gaits, there is an analytic metric of stability. To apply HZD-based
control on a powered prosthesis, several modifications must be
made. Because the prosthesis and amputee are only connected via
the socket, the prosthesis controller does not have access to the
full state of the biped, which decentralizes the form of the input-
output linearization. The differences between the amputated
and contralateral sides result in a two-step periodic gait, which
requires the orbital stability metric to be extended. In addition,
because human gait is variable, the prosthesis controller must be
robust to continuous moderate perturbations. This robustness is
proved using local input-to-state stability and demonstrated with
simulations of an above-knee amputee model.

Index Terms—Stability of hybrid systems, Biomedical systems,
Nonlinear systems, Robotic prostheses, Robotics

I. INTRODUCTION

F the approximately 623,000 people living with major
lower-limb loss in the United States [1], the majority
use a prosthesis daily [2]. Unfortunately, current commercially
available prostheses do not completely restore the lost function
of the joints. Amputee gait tends to be slower [3], less efficient
[4], and less robust [5] than healthy gait. In addition, amputees
typically exhibit significant asymmetry between sides [6],
which may increase the risk for secondary conditions [7].
Even though human joints generate significant positive work
to contribute to gait energetics during gait [8], most prostheses
cannot. To improve amputee gait quality, several groups have
developed powered prostheses capable of generating positive
work for both above- [9], [10] and below-knee amputees [11],
[12]. The controllers typically divide the stride into multiple
periods with a distinct control law for each period [13],
resulting in large numbers of parameters to be (manually)
tuned [14]. One of the more common control methods is
impedance-based control, which effectively defines a spring
and damper system for each gait period [9], [15]. For basic
impedance-based control, the stride is divided into four or
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five sequential periods and the controller progresses to the
next period when the kinematic or kinetic switching criteria
has been met [9]. Because the impedance parameters are
constant within a period, the prosthesis passively guarantees a
stable equilibrium configuration if the parameters are properly
chosen but cannot accommodate period-shifting disturbances
or react in a manner that requires positive work. Rather, it
is left to the amputee to react to perturbations and actively
stabilize the entire gait cycle.

A control strategy that actively reacts to perturbations might
relieve the amputee of some of the cognitive and physical
effort of gait. To accomplish this, the controller must be able
to vary joint positions and/or torques in a continuous manner
so that it can react to perturbations, rather than using a few
set points as in impedance-based control. This requires the
progression of the gait cycle to be parameterized in a unified,
continuous manner. Recent work has shown that human joint
patterns are parameterized well by a phase variable [16], [17],
which is a kinematic quantity that measures how far a step
(or stride) has progressed. In addition, pre-clinical work has
demonstrated that phase-based controllers can successfully
control powered prostheses [18], [19], although determination
of the best control strategy is still very much an open question.

A promising phase-based control framework is hybrid zero
dynamics (HZD). HZD-based control has successfully gener-
ated stable walking for 2D-point- [20], 3D-point- [21], and
2D-curved-foot [22] bipedal robots. In addition, HZD-based
models can predict healthy human walking [23] and robustly
enforce simplified model dynamics [24]. Under an HZD-based
control paradigm, bipeds are assumed to be underactuated, the
step is driven by the phase variable, and each step is divided
into a finite-time single support period and an instantaneous,
impulsive double-support period [20]. During the single sup-
port period, the motion of the actuated degrees of freedom
(DoF) are typically encoded in output functions to be zeroed
[25] although other options are possible [26]. The joint torques
are determined using input-output linearization. The motion
of the unactuated DoF are captured in the zero dynamics.
Since gait is typically assumed to be one-step periodic, orbital
stability can be evaluated using the method of Poincaré [20].
If the desired gait respects the impact dynamics (i.e. is hybrid
invariant), then orbital stability can be evaluated using just the
lower-dimensional zero dynamics [27], [28].

HZD-based control becomes more challenging on a prac-
tical prosthesis, which only has information about its own
state (from onboard sensors) and not the full biped state as in
robotics. Thus, existing formulations for HZD-based control
cannot be directly applied to prosthesis control. A related
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problem arises in multi-machine power systems. Similar to
the human-prosthesis system, the dynamics of each subsystem
are both nonlinear and coupled [29]. For a prosthesis, the chal-
lenge lies in deriving the input-output linearizing controller for
a coupled periodic mechanical system, rather than an aperiodic
electrical system. Because the prosthesis is attached to the
human via a socket, the human and prosthesis interact through
the socket interaction force. This coupling force represents
the effects of one subsystem on the other and can be used to
account for the human’s dynamics in the prosthesis controller.
One control approach is to account for the forces during gait
design and then ignore them in the controller, but this neglects
the human input to the prosthesis [30]. The approach taken
here is to directly account for the socket interaction force. In
hardware, the socket interaction force can be measured, but
equations to calculate it in simulation must be derived.

An additional challenge in controlling a prosthesis is the
variability in human gait [31]. Because robot gaits are typically
designed to be periodic, most formal stability metrics assume
periodicity. There are some metrics that measure robustness
to larger perturbations and aperiodic gait [32]-[36], but most
are either difficult to apply or inappropriate for human gait.
Perhaps the most promising robustness metric is input-to-
state stability (ISS) [36] which can be used to prove bounded
output for bounded variability. Alternatively, robustness can
be assessed by simulating a large number of aperiodic steps
and seeing if and when the biped falls [35]. This requires
that the simulated human variability be realistic, and that the
human model be somewhat predictive of human behavior when
interacting with the prosthesis.

Despite these challenges, pre-clinical work has shown that
a powered above-knee prosthesis controlled with an HZD-like
controller during stance and an impedance-based controller
during swing allows amputees to walk at a variety of speeds
and ground slopes [19]. That work did not generalize the input-
output linearizing controller to the prosthesis swing phase or,
to allow for more realistic modeling, to the human subsystem.
The work also did not make use of the reduced order system
to develop an analytical metric of stability, in part because the
output functions were not hybrid invariant.

The present work extends the modeling and control methods
needed to formally develop hybrid invariant, input-output
linearizing prosthesis controllers for the entire stride and to
predictively test these controllers in simulation. Specifically,
using an asymmetric biped, this work

« constructs input-output linearizing controllers for the en-

tire gait cycle for both the human and prosthesis using
only information available to each subsystem,

« derives conditions to ensure hybrid invariance,

o develops an analytic metric of stability for asymmetric

gait using a reduced order system, and

o proves and demonstrates that the amputee-prosthesis sys-

tem is robust to human-like kinematic variation.
Some of the results (namely, the controller and stability
metric) were preliminarily presented in [37]. The present paper
provides a comprehensive discussion of the full theoretical
framework needed to formally derive hybrid invariant, input-
output linearizing controllers for a biped with two connected
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Fig. 1. Schematic of the above-knee amputee model, with the prosthesis
shown in black and the human shown in gray. The generalized coordinates
are shown in red. Both legs have actuated knee and ankle joints. In addition,
there is one actuated rotational DoF at the hip. The foot-ground interface is
unactuated. The prosthesis generalized coordinates are the hip position (gz
and gy ), the unactuated absolute angle (g1 ), and the actuated prosthesis joint
angles (g2 and g3). The human generalized coordinates are the hip position
(gz and gy ), the unactuated absolute angle (q1), and the actuated human joint
angles (g4, g5, and ge).

but distinct subsystems. It also presents realistic simulation
results demonstrating both orbital stability and robustness to
human-like variability. While the presented simulation results
are for an above-knee amputee, the theoretical results are
equally applicable to a below-knee amputee.

II. MODEL
A. Physical Model

The full planar model of the unilateral above-knee amputee
consists of seven leg segments plus a point mass at the hip to
represent the upper body (Fig. 1, [37]). Rather than model
all of the DoF of the foot, the function of the foot and
ankle is modeled using a circular foot plus an ankle joint
[23] to capture both the center of pressure movement [38]
and the positive work performed at the stance ankle [39].
To account for the lack of information transmitted between
the human and prosthesis, the full model can be divided into
a prosthesis subsystem and a human subsystem [19]. The
prosthesis subsystem consists of the prosthetic thigh, shank,
and foot. The human subsystem consists of the contralateral
(non-amputated side) thigh, shank, and foot, the residual thigh
on the amputated side, and the point mass at the hip. To ensure
the modeling equations are accurate, the following hypotheses
must hold:

Hypothesis 1.
1) The prosthetic thigh and residual thigh (i.e., stump) are

rigidly attached.

Both the prosthetic thigh and the stump have non-zero

length.

The biped rolls without slip. Thus, the foot-ground

connection is unactuated and has no applied torque.

All remaining joints are actuated using torque genera-

tors with no dynamics of their own. Thus, the biped is

underactuated by one DoF.

The vertical ground reaction force (GRF) at the stance

foot is positive. The swing foot has no GRF.

2)
3)

4)

5)
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Fig. 2. The periodic gait. The £ terms are the zero dynamics coordinates used
for the reduced system (Sec. IV). For simulation, a stride starts just after the
transition from contralateral stance to prosthesis stance and proceeds through
the prosthesis stance period, an impact event, the contralateral stance period
and a second impact.

To describe the motion of the biped, each subsystem has its
own set of generalized coordinates. In general, each subsys-
tem’s generalized coordinates should be the relative angles of
its actuated joints, the absolute angle of the unactuated DoF,
and the Cartesian coordinates of a fixed point on the biped. For
this model (Fig. 1), ¢; is the absolute angle, and the fixed point
is the hip position (g, g,). The actuated joint angles are g2-gs.
Thus, the generalized coordinates are gp = [q1 ¢2 q3 Gz qy]T
for the prosthesis and gy = [¢1 @1 g5 @6 qu qy]7 for
the human. Each subsystem also has its own joint torques:
up = [ug uz)T for the prosthesis and uy = [ug us ug]? for
the human. Because the prosthesis is rigidly attached to the
residual limb, forces and moments are transmitted through this
interface and provide an indirect measure of the motion of both
subsystems via the socket interaction force F' = [F, Fyy Fy/]7.
The vector F' contains two forces (F},F)) and a moment
(F), but will be referred to as the socket interaction force
for conciseness. The leg in stance also experiences horizontal
and vertical GRF G = [G, G,]T.

Remark. Hypothesis 1.2 is needed to ensure that the joint
torques u and socket interaction torque Fy; are unique. If
the connection between the prosthetic thigh and stump is at a
Jjoint, there is no mathematical distinction between the actuator
torque and the socket interaction torque.

Each stride progresses through a prosthesis stance period,
an instantaneous impact, a contralateral stance period, and a
second instantaneous impact (Fig. 2). The two stance periods
are modeled with continuous, second-order differential equa-
tions. The two impact periods are modeled using an algebraic
mapping relating the state just before impact to the state just
after impact. The stance leg switches during the impact period.

B. Single Support Periods

During the single support periods, the motion of each
subsystem can be described using that subsystem’s generalized
coordinates and the forces acting on that subsystem [37]. The
equations of motion (EoM) relating the generalized coordi-
nates to the forces are:

M;Gi + Cigi + Ny — Ef;G = Bju; + J;' F. (1)

Throughout this paper, the subscript ¢ indicates which subsys-
tem the term is for, with P indicating the prosthesis subsystem
and H indicating the human subsystem. The subscript j indi-
cates which leg is in stance, with P indicating the prosthesis
and C indicating the contralateral leg. M;(q;) is the N; x N;
inertia matrix, C;(g;, ¢;) is the N; X N; matrix containing the
centripetal and Coriolis terms, N;(g;) is the A x 1 gravity
vector, Ej;;(g;) is a 2 x N; constraint matrix, B; is the
N; x M; matrix relating the input torques to the generalized
coordinates, and J;(g;) is the 3 x A; matrix relating the
socket interaction forces to the generalized coordinates. For an
above-knee amputee, there are Np = 5 generalized prosthesis
coordinates, M p = 2 prosthesis joint torques, Nz = 6 human
generalized coordinates, and My = 3 human joint torques.
The matrices are found using the method of Lagrange. Except
for the constraint matrix F;;(g;), all matrices are identical
regardless of which leg is in stance. To attach the biped to the
ground, the constraint equation is used! [40]:

Ei;(gi)di = 0.

Lemma 1. Each row in E;;(q;) is independent.

2)

Proof. Without loss of generality, assume the last two entries
in g; are the orthogonal Cartesian coordinates g, and g
oriented so that g, is aligned with the direction of travel.
Because the stance foot cannot penetrate the ground (Hypoth-
esis 1.5), there is a constraint in the vertical (or g,) direction.
Because the stance foot rolls without slip (Hypothesis 1.3),
there is also a constraint in the horizontal (or ¢,) direction.
These constraints can be written in vector form using standard
kinematic methods as

0=vp + V(@) ¢i) 3)

where vp = [¢, ¢,]7 is the velocity of the fixed point on the
biped and vy is the velocity of the foot relative to the velocity
of the fixed point [22]. The relative velocity does not depend
on ¢ or ¢,. BEq. 3 is multiplied by dt to obtain the virtual
displacements and rearranged into the form 0 = E;;(g¢;)dg;
where dg; are the virtual displacements. Clearly, F;;(¢;) must
be of the form FE;;(q;) = [Eni;(¢;) I] where E1;5(g;) is some
matrix and [ is the 2 x 2 identity matrix. Thus, the rows are
independent. n

Solving the EoM (Eq. 1) for ¢;, substituting it into the
derivative of Eq. 2, and solving for the GRF gives [40]

G(qi,4i) = :\\ij((h'vqi) + Xz’j(‘]i)ui + Xij (@) F )

Wij(Biy M, (Cids + Ni) — Eiji),
~Wi;EijM; ' By,

'Because the constraint matrix is used to specify how the biped is attached
to the ground, it is only defined when the subsystem is in stance and is set
to zero during the swing period.
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Substituting the GRF (Eq. 4) back into the EoM (Eq. 1),
solving for ¢;, and rewriting as a first-order ODE gives

i = fij(wi) + gij(@i)ui + pij (i) F, ®)
where
P
Ti = [ al qf ] J
_ q;

fij(xi) = _ ~M;(Cigi + N; — ElNij) ] ’
gij(xi) = - :
BT I M;l(Eg;)\ij‘f'Bi) 7
pij(zi) = - : }
ST MY EEN + T

Eq. 5 defines the motion of subsystem ¢ when leg j is in stance
and clearly demonstrates how completely the full system is
divided into two subsystems. x; are the generalized coordi-
nates and their derivatives for subsystem ¢. The functions f;;,
9i;, and p;; only depend on x;, the state for that subsystem.
Further, these functions are derived without any knowledge
of the other subsystem because there is no dependence at all
on the other subsystem. As will be shown in Sec. III, the
joint torques w; for subsystem ¢ can also be chosen so that
they only depend on the state of subsystem 7 and the forces
acting on subsystem ¢. Thus, the only direct coupling between
subsystems occurs through the socket interaction force F'.

C. Impact Periods

As is common for bipeds controlled under the HZD
paradigm, the instantaneous impact period is modeled with an
algebraic mapping (e.g., [20]-[23]). To develop the stability
metric (Sec. IV), the mapping must be fairly simple?. Similar
to the results for the single support periods, a separate mapping
is found for each subsystem. To use the impact model in this
work, the following conditions must be satisfied:

Hypothesis 2.

1) The impact occurs instantaneously.

2) The configuration of the biped does not change.

3) There is a non-negative vertical ground reaction impulse
on the front (pre-impact swing) foot.

4) The front foot rolls without slip.

5) The trailing (pre-impact stance) foot lifts off the ground
without interaction.

6) The torque generators do not apply impulsive torques.

The position portion of the impact map is trivial:

q;,_k = q;ka (6)

)

where the superscripts ‘—’ and ‘+’ refer to the instants
before and after impact, respectively. Throughout this paper,
the subscript k indicates the impact period, with P — C
indicating a transition from the prosthesis stance period to

2More complete models including other possible impact dynamics such as
slipping and rebounding sequential collisions are also possible [41] but are
not needed in this study of normal walking and may prevent the determination
of an analytical stability metric.

the contralateral stance period and C' — P indicating a
transition from the contralateral stance period to the prosthesis
stance period. To find the velocity portion of the impact map,
the EoM for each subsystem (Eq. 1) are integrated over the
instantaneous duration of impact and simplified [20], [22]. To
fix the biped to the ground, the post-impact constraint equation
(Eq. 2) is used. This gives [37]

ij = A k(a; )45 1 + Nik(g; ) F, (7
where F is the socket interaction impulse,

AP,P%C :IS><57 AH,C%P :IG><67
Appoc=Mp'Jp, Aucop = Mg'Jf,
An,p—c = Isxs — My Efc(Enc My Egyc) ™ Enc,
Aupoc =Mg' (J — Efje(Enc My Efie) ™
EgcMg'Jh),
Apcop =Isxs — Mp'Efbp(EppMp ELp) ' Epp,
Apcop=Mp' (Jp — Epp(EppMp'Efp) ™!
-EppMp'Jh),
and I is the identity matrix of the indicated size. Just as for the
single support periods, the two subsystems are only coupled
through the socket interaction impulse during impact.
To simulate the full human plus prosthesis system, an equa-
tion for 7 must be found. Because the human and prosthesis

subsystems share some generalized coordinates, the motion of
these shared DoF must be the same for both subsystems:

Spgp = Sudmn, ®)
where
1 0 0 0 O
Sp=[0 0 0 1 0|,
L0 0 0 0 1
1 0 0 0 0 O
Sg=]10 0 0 0 1 0
L0 0 0 0 0 1

Substituting the impact map (Eq. 7) into Eq. 8 and solving the
square linear system for the socket interaction impulse yields

—1
F = (SPAP,k(QE,k) - SHAH,k(q;{,k))
. (SHAH,k(QE,k)Q;Lk - SPAP,k(q;,k)qF,O SN )

As expected, the socket interaction impulse depends on the
motion of both subsystems. Thus, while each subsystem can
be modeled separately, the motion of one subsystem does have
an indirect effect on the motion of the other subsystem.

III. CONTROL

To control both subsystems, input-output linearization is
used [20], [42]. Except for the stability analysis (Sec. IV), the
results for subsystem 7 are independent of the form of the other
subsystem’s controller. This means that the development of the
prosthesis controller does not depend on having an accurate
model of the human’s neuromuscular control. To account for
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the lack of information transmitted between the human and
prosthesis, the prosthesis controller only uses information that
could be collected by on-board sensors, i.e., the prosthesis
generalized coordinates and associated derivatives, the socket
interaction force, and the GRF on the prosthetic side [19].
Similarly, since the human cannot directly sense the prosthesis
state, the human controller only uses information about the
human generalized coordinates and associated derivatives, the
socket interaction force, and the GRF on the contralateral side.

A. Hybrid Invariant Output Functions

To implement the input-output linearizing controllers, out-
put functions must be defined to characterize the desired
kinematics of the actuated joints. A total of four (vector-
valued) output functions are required because each subsystem 7
requires an output function for each stance period j (Fig. 2). In
turn, each output function requires a kinematic phase variable
that parameterizes the progression through a step and captures
the motion of the unactuated DoF. For convenience, phase
variables are typically chosen to be linear combinations of the
generalized coordinates [20]:

0ij = ¢ij * Qs (10)

where 0;; is the phase variable for subsystem 7 when side j
is in stance and c¢;; is a 1 X N; vector used to convert the
generalized coordinates into the phase variable. To capture
the unactuated DoF for the amputee model (Fig. 1), the phase
variables must depend on an absolute coordinate (q1, ¢, and/or
gy)- As is typical for bipedal robots under HZD-based control
(e.g., [20], [22]), the output functions were parameterized
using Bézier polynomials:

hij(¢:) = Hoiqi — haes,ij(5i5(0i5(q:))), (1)
where
01 0 0 O
H, =
0P [0 01 0 0}’
01 0 0 0 O
Hyc=(0 0 1 0 0 0 |,
0O 0 01 0 O
Q
ai"’mQ! _
Pdes,ij(sij) = Z — g (1 — 5i5) 9T,
= mi(Q —m)!
Sij = T ERg)
o — 07

Ndes,i; s the desired joint angles for subsystem ¢ when leg j
is in stance, () is the degree of the polynomial, a;j,, are the
polynomial coefficients, 0 < s;; < 1 is the normalized phase
variable, 0;; is the value of the phase variable (Eq. 10) for
subsystem ¢ at the start of single support period j, and ¢;; is the
value of the phase variable just before impact. hges,;; are often
called virtual constraints because they represent constraints
on the system that are enforced via control rather than with
mechanisms [25]. To ensure a physically realizable gait, the
output functions must ensure that:

Hypothesis 3.

1) both feet are on the ground at impact,

2) the phase variable increases monotonically,

3) the GRF conditions in Hypotheses 1 and 2 are met,
4) all torque limits are respected,

5) all joint limits are respected, and

6) the gait is periodic.

To perform the stability analysis, the gait must be hybrid
invariant. In other words, if the output functions are zero just
before impact, they must also be zero just after impact. For
position invariance, the output functions must satisfy

Hoigi,c—p = Ndes,ip(¢5,0>P) = hdes,ic(¢i,c—p) (12)

Hoigi,p—c = Ndes,ic(¢i,p—c) = Rdes,ip(¢:, P—c)
which, if the output functions are Bézier polynomials, gives

Hoiqi,c—p = a;jpo = GicqQ (13)

Hyiq;,p—c = a;co = a;pQ-
The position invariance conditions ensure that the desired
configuration at the beginning of one step is the same as

the desired configuration at the end of the previous step. For
velocity invariance, the output functions must satisfy

8hdes iC 1 .
T = ——Hog; cp (14)
i G'TC,C—»P CicquC%P
8hdes,iP o 1 Heoid™
000 = = Hoi4; pc
P bip.poc CiP4;,p—c
8hdes,il:’ o 1 Ho .+
0. -+ 01qi,C~>P
P 91'+P‘C—»P CiPd;,c—p
8hdes,ic o 1 Ho: o
90, -+ Olqi,P%C
i€ ot o Ccldlpse

where the post-impact velocities can be calculated using Eq. 7
and the pre-impact velocities. If the output functions are Bézier
polynomials, the velocity constraints are equivalent to

iC,C—P iC,P—C

aic1 = o qu'f,cﬁp +aico (15)
Qlcicq;c—p)
0 — ot
_ liP,P>C iP,C—>PH .+
a;p1 = e 0i4; psc T @iPo
Q(Cquz',P—w)
_ iC,C—P iC’,P—>CH g
a;c(Q-1) = — — 0i4; p—c T @iCcQ
Q(Ciqu,Pac)
_ iP,P—C iP,C—P .
aip(Q-1) = — HoiG; o, p + airq-

Q(cipg; o p)

In practice, choosing output functions that ensure a hybrid-
invariant gait a priori requires knowledge of both subsystems.
Because the impact periods are unactuated, neither subsystem
has direct control over the impact dynamics. As a result,
the post-impact velocities depend on the pre-impact velocities
of both subsystems, which causes the output function for
subsystem ¢ to be a function of both subsystems. To develop
gaits that only depend on subsystem ¢, the designer can either
not enforce hybrid invariance or can update a nominal output
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function every step. The prosthesis work in [19] took the first
approach and used a stabilizing controller to drive the start-
of-step joint errors to zero. The method used here (which is a
decentralized version of the centralized control scheme used
by some bipedal robots [28]) calculates a new output function
every step using Eqs. 12 & 14 that converges to the nominal
trajectory by the next impact. Since the output function is
redefined at the start of every step, the measured post-impact
velocities are used, eliminating the need for the (pre-impact)
velocities of the other subsystem. This second method provides
the designer with more direct control over deviations from
the nominal trajectory, which are common in human walking.
However, both methods result in prosthesis output functions
that only depend on quantities that the prosthesis can sense.

B. Input-Output Linearization

The output functions and system dynamics can be used to
determine input-output linearizing joint torques.

Theorem 1. Assume the EoM for subsystem i during period
j is given by Eq. 5 and that Hypotheses 1 & 3 are met. Let
the output functions be given by

Yij = hij(qi), (16)

where h;; is a vector-valued function® of dimension M. Then
the input torque required for input-output linearization is

u; = aij(xq) + Bij(w) - F, 17
where
Oéij (mz) = Lq“ Lf” hi_jl(vij — L?u hij),
61J($1) = _Lgiijijh;jl : Lpiijij hij7
0 [ 0Ohy;
L3, hij(z) = 5 ;i ) g
Ohy; ~
— LM (Cigi + Ni — EJ ),
0q;
Lo Ly hii(a) = 2901 (BTR. 1 B,
gij L fij Zj(ql) = 9q; i ( ijAig T i)
L, Ly hiia:) = 25 v (BTN, + JT
pijH fij ZJ(Q’L) = dqi i ( ighig tJi )v

and where v;; is a stabilizing controller.

Proof. The output (Eq. 16) is differentiated twice and the EoM
(Eq. 5) are substituted in to define the output dynamics [37]:

%:L%@ﬁd@ﬁmmfm+LmLm%mF (18)

Because Eq. 5 explicitly depends on the socket interaction
force F', the output dynamics also explicitly depend on F'.
This is different from the standard formulation [20]. To cancel
the nonlinearities in the output dynamics, set ¥;; = v;; and
solve for the input torques. This yields Eq. 17. ]

Remark. Eq. 17 defines the input torques required to cancel
the nonlinearities in the EoM and zero the tracking errors
for subsystem i when leg j is in stance. The input torque

3hij is a function of configuration only since the motion is parametrized
using a kinematic phase variable.

for subsystem i only depends on quantities that subsystem
i can measure. The joint torque for subsystem i depends
(indirectly) on the motion of both subsystems because the
socket interaction force appears in Eq. 17, but the motion
of subsystem i’s actuated joints are completely independent of
the motion of the other subsystem. Further, the phase variable
(Eq. 10) for each subsystem can be different and can increase
at different rates as observed between legs in able-bodied
human locomotion [17]. Thus, the controller for subsystem
i can be developed with no knowledge of even the form of the
other subsystem’s controller.

Eq. 17 combined with sensor measurements can be used to
compute the input in hardware. However, for simulation, the
socket interaction force F' needs to be determined. Substituting
the EoM (Eq. 5) and torques (Eq. 17) into the derivative of
the matching equation (Eq. 8) and rearranging gives [37]

F=F1!

den,j

19)

“Frum,j
where
Fuen,j = SpMp"' (BpBpj + J}
+Ep; (}V\PjBPj +XPj>>
— SyMy* (BuBuj + Jk
-+E5j(XHjﬁHj4-XHj)),
Frum,j = SuMy' (~Crdn — Ny + Bray,
—|—E};j (:\\Hj + XHjaHj>)
— SpMp' (—Cpgp — Np + Bpap,
55, (R + Aryary)).
If Hypothesis 1.2 is met, Fy., ; will be invertible because
Eq. 19 calculates forces that are internal to the full human-

prosthesis system. The socket force is linear in velocity, which
will be important when analyzing stability (Sec. IV).

IV. STABILITY

Since unilateral amputee gait is two-step periodic, local
stability can be evaluated using the method of Poincaré [37].
The instant before the prosthesis stance period is the Poincaré
section. To reduce the dimension of the Poincaré map, a
nonlinear coordinate transformation is applied to the system to
render most coordinates equal to zero if the output functions
are hybrid invariant [28]. For a planar, symmetric biped with
full knowledge of its state, it is possible to find an analytic
orbital stability criteria. The goal is to show that this is also
possible for the coupled human plus prosthesis system [37].

There are twelve independent coordinates (6 position and 6
velocity) for the full human plus prosthesis system. The hip
position is a function of the joint angles and not independent
because the biped rolls without slip. For reasons that will
be explained later, the transformation between the original,
nonlinear EoM and the new linearized system will only be for
the twelve independent coordinates. The first 10 coordinates
in the new system are given by

(]|

Yypj
Yuj

hest) | 0

hiri(qm)
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Because y;; is the output for subsystem ¢ when leg j is in
stance, 71; and 7)2; represent the error in configuration and
velocity for the entire system. For a hybrid invariant gait on
the periodic orbit, 71; and 72; equal zero. Since the goal is to
design a stable controller for the prosthesis, a logical choice
for the final two coordinates is [20]

& =0p;(ap), (22)
€2 = Mpjidp, (23)

where 6p; is the prosthesis phase variable and ijl is
the top row* of the prosthesis inertia matrix found using
only the prosthesis joint angles ¢p [¢1 q2 q3]*. Since
the human motion does not appear in the zero dynamics
coordinates (§; and £3;), orbital stability may only depend on
the prosthesis, and the motion of the human can be ignored.
This is advantageous because the designer has direct control
over the prosthesis controller whereas human motion can be
difficult to predict. Differentiating Eqgs. 20-23 gives the EoM
in the transformed system:

15 = 725 (24)
. vp;
1) = { o ] 25)
j
: d0p; .
= 26
51] 8(]P qp ( )
. 3M . . .
& = dp By I;jl gr — Cpjrdp — Npj1 + JE F, (27

where Cpﬂ is the top row of the centripetal and Coriolis
matrix, N pj1 1s the top entry in the gravity vector and JZ Pj1
is the top row of transpose of the Jacobian matrix that relates
the socket interaction forces to the generalized coordinates, all
for the prosthesis and found using §p. The new system can be
viewed as a linear upper system that only depends on 7;; and
724 and a passive, nonlinear lower system of dimension two
that depends on all of the prosthesis coordinates. If the position
of the hip was included in the coordinate transformation, then
the dimension of the lower system would be four and it may
no longer be passive. Both the increased dimension and the
non-passive nature of the lower system would prevent the
determination of an analytical metric for orbital stability.
Since 7)1; and 1)2; are zero on the periodic orbit, élj and
523‘ determine the orbital stability. For a symmetric biped with
full knowledge of its state, Eqs. 26 and 27 can be combined
into a single, first order linear differential equation in which
the independent variable is &;. This equation can then be
integrated over a periodic step and the impact map applied to
obtain an analytic expression for the Poincaré return map [20],
[22]. To formulate the first order differential equation, the fact
that ég is purely quadratic in velocity is exploited. However,
when &y; is chosen as in Eq. 23, égj has a linear velocity term
due to the socket interaction force (Eq. 19). As a result, it is
no longer possible to formulate a linear differential equation,

4Without loss of generality, assume the unactuated angle is g1.

and there is no obvious analytic solution for the nonlinear
differential equation.

While it is possible to compute the Poincaré return map
numerically, there is an additional issue. When the prosthesis is
in stance, its EoM can be formulated without including the hip
position in the generalized coordinates because the prosthesis
is fixed to the ground. When the prosthesis is in swing, the hip
position must be included in the generalized coordinates, either
directly or as a function of the human state. Neither option is
appealing, the first because it increases the dimension of the
zero dynamics and the second because stability no longer just
depends on the prosthesis. In addition, regardless of which
foot is in stance, égj is a function of both the human state
and the prosthesis state due to the socket interaction forces.
Taken together, it appears there is no advantage in using just
the prosthesis to define &»;. This is not surprising because the
motion of the full system is defined by the motion of both the
prosthesis and the human, so it is reasonable for the stability
to depend on both the prosthesis and the human.

Since the orbital stability depends on both subsystems, it
is easiest to combine the two subsystems and evaluate them
together. Thus, &; is chosen as

§oj = M. j14,

where M,;; is the top row of the inertia matrix for the full
human plus prosthesis system and ¢ = [q1 ¢2 ¢3 q4 q5 q6)”
Again, without loss of generality, the unactuated angle is ¢.
Note that M,p1 # M,c1 because the inertia matrix includes
the ground contact constraint. Choosing £3; as in Eq. 28
depends on the full biped state, so the methods to evaluate
stability in [20] and [22] can be used. The controllers remain
independent even though the stability analysis depends on the
motion of both subsystems.

Using Eqs. 20-22 & 28 as the coordinates for the trans-
formed system, the procedure in [22] is followed to obtain
analytic equations relating the state of the biped just after
impact to the state just before the next impact. Briefly, the
equations for the zero dynamics (Eqgs. 22 and 28) are combined
into a scalar, linear, first-order differential equation for each
stance period and those equations are integrated over the
corresponding stance period and combined to find a discrete
analytic equation of the entire stride. This equation is then
differentiated to find the stability metric.

The integrated zero dynamics are

(28)

Crpme = bir (bor + o) 29)
for the prosthesis stance period and
Coomp =bic (bac +Cipoc) (30)
for the contralateral stance period, where
bij (&) = e*Cj(ifj)’ 31)

1 N.ji(7)
bz-@l-):—/ eor(r) UL
Y e, Ll g,(r)

OM,;
B /s 97 (7) - g : - d5(r)
90p;
e T4

15

dr,

Cj (glj) = dr,
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ahpj

. i O5x1

¢;(&1j) =

1
Gik(€25) = 553]--

The inertia matrix M,; is for the full biped and found using
g and M,;; is the top row. Similarly, IV,;; is the top entry
from of the gravity vector found using g¢. &;; is the value of
&1 evaluated just before the transition from the side j stance
period (Fig. 2), while ff'j is the value of & ; evaluated just after
the transition to the side j stance period. To convert between
joint angles ¢ and &;;, use

hpi(q)
[ o ] = | hiya) (32)
Y 0r;(q)

To find the restricted Poincaré return map, Eqs. 29 and 30 can
be related using the impact map for the full system:

+ _ - + 2 -
Cpsc =0pocCppscy Chosp =90copCoosps (33)

where
dop—c(&1j) = Muc1Ap—cop, (34)
dc—p(&1j) = Mup1Acspdc, (335)
Ap(&15) = A — A B,
Ar(&15) = Isxs — MQIEZk(Ee,kMQIEgk)flEe,k
_ { Ayr A ]
Aor Agp |’

M. is the inertia matrix for the whole biped when the gen-
eralized coordinates are the joint angles plus the hip position,
E.; is the constraint matrix used to attach the pre-impact
swing foot to the ground when the generalized coordinates
are the joint angles plus the hip position, Ay is a 6 x 6
matrix, and A2 is a 6 x 2 matrix. The 2 x 6 matrix Ej
transforms the pre-impact single support joint velocities into
the pre-impact hip velocities. All terms are evaluated using the
impact configuration.

Theorem 2. Assume that the conditions in Hypotheses 1 - 3
are met, that the controller for each subsystem is defined as
in Theorem 1, and that the output function is hybrid invariant.
Then the local stability criterion for a two-step periodic gait
is

0 < bipbicdp_,o0p_p < 1. (36)

All four terms depend on the motion of both subsystems.

Proof. The motion during the single support periods are given
by Egs. 29-30. The impact dynamics are given by Eq. 33. Sub-
stituting the impact dynamics into the single support dynamics
and solving for the state at the end of the contralateral stance
period gives

CE,C—>P =bic (b2c + 5123—>Cb1P (bQP + 5%’—>PCE,C—>P>) .

37
Eq. 37 is the Poincaré map. To check local orbital stability, it
is differentiated with respect to (- -, p to find the stability

criterion given by Eq. 36. For stability, Eq. 36 must have a
magnitude less than 1. By inspection, by; € Ry (Eq. 31).
Also by inspection, & € R (Egs. 34-35) because all terms in
M.j1, Ak, and ¢; are strictly real. This implies that 5,% > 0.
Thus, Eq. 36 will be greater than 0. Orbital stability of the
full system and the restricted system are equivalent [20]. W

Remark. If the full system is symmetric and the gait is one-
step periodic, then Eq. 36 is the square of the stability metric
developed in [22] for robots with curved feet. This is because
Eq. 36 captures the reduction in error after two steps, instead
of just one as in [22]. For a two-step periodic gait, this means
that both steps do not have to be stable on their own. If one
step is unstable (i.e., magnifies errors) but the other step is
highly stable (i.e., strongly reduces errors), then the entire
two-step gait may be stable. Thus, if a prosthetic controller
can ensure that one step is highly stable, then the entire stride
may also be stable even if the human behaves in an unexpected
manner. In practice, this likely translates to ensuring that the
prosthesis stance period is highly stable given a reasonable
nominal human motion.

The stability criterion serves as a nonlinear constraint on the
human and prosthesis output functions used to define a gait
[43] because a usable gait must be stable. If the zero dynamics
are stable, the stability of the full system can be easily proven
if the output feedback controller v;; in Eq. 17 is defined using
PD controllers [20] or control Lyapunov functions [44].

Because every human step is slightly different, it is im-
portant that the gait is robust to these perturbations. Since
the stability metric only provides a measure of local stability
for a periodic gait, it cannot be used to quantify robustness.
Instead, this can be verified using local ISS [36], which is
defined mathematically in the following result.

Corollary 1. Let the output function be given by

hij (i) = Hoiqi — hdes,ij(4i) — Wy +;(ai), (38)
where W ;:(q;) is a perturbation to the nominal gait applied

at the start of a step. Let the unperturbed step be part of a
stable gait. Further, let W), ;.(¢;) be parameterized by aP*"
such that if ||a?*"|| = 0, hic, ;5(qi) = 0. Then for every e; > 0
there exists an ez > 0 and an €3 > 0 such that if ||aP°"|| < €g
and ||zg — P(z*,0)|| < e3, then ||z, — P(x*,0)|| < €1 where
xo is the initial pre-impact state, x* is the fixed point for
the unperturbed gait, n is the number of gait cycles (a non-
negative integer), and x, = P(xp_1, aff_rl) is the return map
of the perturbed system over a gait cycle.

Proof. The input for the full system can be written as

Uej = |:
(39)

Thus, the return map can be written as a function of the state
and the input. Because of the coupling between subsystems,
the full system must be considered when finding the return
map. This means that local ISS is a system property just like
orbital stability. The proof is then immediate by linearizing
about the unperturbed gait and using the results in [45]. W

apj (acp, aper) + BPj (l'Pa ape,-) . F(.I‘, ape,,.>
QHj (xHa aPe) + Buj (xg,aPe) - F(x, aper)
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TABLE I

MODEL PROPERTIES
Segment Mass Length CoM Location  Inertiaff

(kg) (m) (m)  (kg'm?)
Hip 46.44 - - -
Contralateral Thigh 6.85 0.42 0.18 0.13
Contralateral Shank 3.19 0.24 0.18 0.17
Contralateral Foot 0.99 0.25 (0.13, 0.18) 0.00
Residual Thigh 591 0.36 0.16 0.09
Prosthetic Thigh 0.47 0.10 0.05 0.00
Prosthetic Shank 4.76 0.15 0.20 0.07
Prosthetic Foot 0.49 0.29 (0.13, 0.18) 0.00

T Measured from proximal joint Tt Measured about CoM

V. SIMULATION

The ability of the proposed controller to generate robust,
stable gaits at both slow (= 1.0 m/s) and normal (= 1.2 m/s)
speeds are demonstrated via simulation. Using periodic gaits
for both the human and prosthesis subsystems, stability is
quantified using the developed stability metric (Eq. 36) and
then demonstrated with simulations. Based on Corollary 1,
the gait should be robust to human-like variability since the
variability in human walking is bounded (i.e., e exists). This
is demonstrated by adding human-like variability [31], [46] to
the human controller and simulating 250 steps (= 0.1 miles).
Ten trials of 250 steps each were conducted for both speeds.
For comparison, healthy gaits at the same speeds were found
using a symmetric model with centralized control.

The human model is anthropomorphic (Table I, [38], [47]).
The prosthesis properties are based on the powered above-
knee prosthesis at the University of Texas at Dallas. The
periodic, hybrid-invariant output functions for both controllers
were chosen by hand to approximate healthy human gait at
the appropriate speed [23], although no effort was made to
impose either symmetry or asymmetry on the resulting gait’.
The phase variable for both subsystems was the horizontal
hip position. The desired joint angles were parameterized
using fifth-order Bézier polynomials (Eq. 11). The stabilizing

controller v;; was a PD controller:
Vij = —100yij — 10@1‘3‘. (40)

To evaluate robustness, sinusoidal variability terms were
added to the human output functions:

des,mj(8m7) =ag""+ (41
K
Z (ap®" cos(kw"s) + by sin(kw”*"s))
k=1
where w"*" is the frequency of the variability, and a}*" and

by" are magnitude coefficients. To best approximate human
variability, K 2 for the contralateral stance period and
K =1 for the contralateral swing (prosthesis stance) period
[31]. All coefficients were randomly chosen each step from
distributions based on experimental human data. Variability
was not explicitly added to the prosthesis controller. The

SWhile not done here, it is also possible to design gaits via optimization
methods [20], [23].

TABLE II
TEMPORAL GAIT PROPERTIES FOR PERIODIC GAITS

Slow Normal

P C P C

Step Length (m) 0.70 0.67 0.73 0.70
Step Period (s) 0.71 0.65 0.62 0.58
Speed (m/s) 1.00 1.19
Stability (Eq. 36) 0.69 0.72

The letter indicates the stance leg: Prosthesis and Contralateral.

Slow Speed
—-30
—40 |
L —50
£ —60 |
&
—70 |
—80 . . . )
—0.6 —0.4 —0.2 0 0.2 0.4
&1 (m)
(@)
Normal Speed
0
—20}
g 40t
2 60}
)
—80 |
—100 . . . )
-0.6 —0.4 —0.2 0 0.2 0.4
&1 (m)
(b)

Fig. 3. The zero dynamics (given by Eqs. 22 and 28) for the (a) slow and (b)
normal gaits. The 100-step simulations are shown with the black lines. The
periodic orbit is indicated with the dashed green line. The simulation did not
start on the periodic orbit but clearly converged to it.

variation in the human controller introduced variability into the
impact dynamics, which in turn caused non-zero start-of-step
errors for both controllers. Hybrid invariance was enforced
with the addition of polynomial correction terms [46], [48]:

inv

4 ,
(sij) = Zk:o(ades,ij)k 5<0.5
0

inv
des,ij

(42)

The polynomial coefficients afﬂj’ij were chosen to ensure
position and velocity continuity at the start of each step and
position, velocity, and acceleration continuity at the middle of
the step (s;; = 0.5). To evaluate robustness, the human output

function is

huj(qu) =How - qg — Pdes, 15 (5H;) (43)
— hies i (8H;) — hieo m;(SHj)
and the prosthesis output function is

hpj(gp) = Hop - qp — haes.pj(sp;) — hijes pi(sps). (44)
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Fig. 4. The periodic (a) hip, (b) knee, and (c) ankle angles vs. the normalized phase variable for the normal walking speed. The results for the slow speed
are qualitatively similar. The prosthesis stance period occurs from O to 1 and the contralateral stance period occurs from 1 to 2. There is asymmetry between

the human and prosthesis for all three joints.
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Fig. 5. The variable (a) hip, (b) knee, and (c) ankle angles vs. the normalized phase variable for the normal walking speed. The results for the slow speed
are qualitatively similar. One representative trial of 250 steps is shown. The prosthesis stance period occurs from 0 to 1 and the contralateral stance period
occurs from 1 to 2. The darker line indicates the mean value and the lighter band represents plus/minus three standard deviations. The actuated human joint
angles (g4-ge) have significant variability throughout the step while the actuated prosthesis joint angles (g2-g3) are consistent except at the start of the step.

A. Periodic Gaits

The stability metric for both periodic gaits are between 0
and 1, so the gaits have orbital stability (Table II). As expected,
when started on the periodic orbit, errors are on the order
of the simulation’s numerical precision. If the simulation’s
initial conditions are not exactly on the periodic orbit, the
biped converges to the orbit after several steps (Fig. 3).
Taken together, this clearly demonstrates that the gaits are
indeed stable and hybrid invariant. Since the gaits are stable,
the amputee may not have to react to or compensate for
perturbations on behalf of the prosthesis, which could reduce
both the physical and mental effort required for gait.

Due to the asymmetries between the amputated and con-
tralateral legs, the gaits are two-step periodic as expected
(Table II, Figs. 3 and 4). Also as expected, the gaits capture
key features of human walking such as weight acceptance
in the early part of stance. While details are not provided
here, the simulation is able to walk at a wide range of
speeds and with varying degrees of biomimicry. As a result,
prosthesis controllers can be designed systematically, either
via optimization [23] or by systematically transforming known
joint angle trajectories into virtual constraints [49].

B. Variable Gaits

Both the asymmetric, distributed amputee gaits and the
symmetric, centralized healthy gaits are robust (Table III).
Comparing the performance of the two models shows that
the amputee gaits are at least as robust as the healthy gaits.
At both speeds, when human-like variability was added to the
human controller in the amputee model, the model successfully
walked 250 steps in each of the 10 trials. This indicates that the
prosthesis controller is robust to moderate sized perturbations
as expected. It also shows that having one variable subsystem
and one fixed subsystem does not destabilize the full system.

The mean temporal values for the variable gaits are very
similar to the values for the periodic gaits (Tables II and
IIl). The standard deviations are similar for both gait speeds
and both stance periods even though the prosthesis controller
does not explicitly include variability. Interestingly, adding
variability decreases the average walking speed for a symmet-
ric healthy model (Table III, [46]) but has little to no effect
on the average walking speed for the asymmetric amputee
model. Since one of the major causes of the reduced speed for
healthy gait is likely reduced stance ankle work, the consistent
prosthesis ankle work combined with a natural persistence
of temporal perturbations [50] may be enough to prevent a
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TABLE III
TEMPORAL GAIT PROPERTIES FOR VARIABLE GAITS
Slow Normal
P C P C
Amputee  Step Length (m)  0.70 & 0.0  0.66 &+ 0.02  0.73 & 0.01  0.70 % 0.02
Step Period (s) 0.70 £ 0.05 0.65 £ 0.04 0.62 £ 0.04 057 £ 0.04
Speed (m/s) 1.01 + 0.06 1.20 £ 0.08
Num Steps 250 £ 0 250 £ 0
Healthy Step Length (m) 0.68 £ 0.02 0.71 £ 0.02
Step Period (s) 0.69 £ 0.05 0.63 + 0.04
Speed (m/s) 0.99 + 0.05 1.14 £ 0.07
Num Steps 246 £+ 49 250 £ 0

The letter indicates the stance leg: Prosthesis and Contralateral.

The values are given as mean =+ standard deviation.

reduction in speed for the human-prosthesis system.

As designed, the human joint angles have significant vari-
ability throughout the step (Fig. 5). For the prosthesis, the
first half of the step is variable as the start-of-step errors
are zeroed using the correction polynomials (Eq. 42) but the
second half of the step is consistent. This clearly shows the
divided nature of the controllers. Even though the human
subsystem is not tracking a single nominal trajectory, the
prosthesis subsystem consistently zeros errors arising from the
passive impact phases and accurately tracks a single nominal
trajectory. The model can be extended to include a finite-
time, actuated double support (impact) period [51], which may
eliminate or reduce the start-of-step errors. Thus, for a physical
implementation, the prosthesis may be able to track a single
nominal trajectory throughout the entire stride even though the
human motion is both unpredictable and variable.

VI. CONCLUSIONS

Input-output linearizing control on a powered prosthesis can
be performed using only information measured with on-board
sensors. Similarly, human joint control can be modeled using
input-output linearization while assuming that the human does
not have direct knowledge of the prosthesis motion. The two
subsystems are connected via the socket interaction force,
which can be calculated given the motion of both the human
and prosthesis. If the desired motion of both the human and
prosthesis is known or accurately estimated, it is possible to a
priori design controllers that are hybrid invariant and provably
stable. If the pre-impact state of the human is not known (or is
variable), then the post-impact state of the prosthesis cannot
be calculated a priori and a hybrid invariant gait cannot be
designed. Instead, the prosthesis controller is updated every
step just after impact to force hybrid invariance.

Using this theoretical framework, amputee gait with a
powered prosthesis was simulated. Stable gaits were designed
at clinically relevant speeds and shown to converge to the
periodic orbit. The powered prosthesis controller was also
shown to be robust to a very important class of perturbations,
namely, the variability in human motion. Thus, input-output
linearization is a promising control approach for powered
lower-limb prostheses. Using the methods in this paper, pros-
thesis controllers can be designed and tested in simulation

The simulation was capped at 250 steps.

prior to hardware implementation on amputee subjects, which
is left for future work.
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