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Incorporating Human-like Walking Variability in an
HZD-Based Bipedal Model
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Abstract—Predictive simulations of human walking could be used to
investigate a wide range of questions. Promising moderately complex
models have been developed using the robotics control technique hybrid
zero dynamics (HZD). Existing simulations of human walking only
consider the mean motion, so they cannot be used to investigate fall
risk, which is correlated with variability. This work determines how to
incorporate human-like variability into an HZD-based healthy human
model to generate a more realistic gait. The key challenge is determining
how to combine the existing mathematical description of variability with
the dynamic model so that the biped is still able to walk without falling. To
do so, the commanded motion is augmented with a sinusoidal variability
function and a polynomial correction function. The variability function
captures the variation in joint angles while the correction function pre-
vents the variability function from growing uncontrollably. The necessity
of the correction function and the improvements with a reduction of
stance ankle variability are demonstrated via simulations. The variability
in temporal measures is shown to be similar to experimental values.

Index Terms—Biomimetics, human locomotion, legged robots, motion
control, variability

I. INTRODUCTION

The ability to model and predict human gait can be used to
answer scientific questions that are difficult or impossible to answer
with human subject studies. For example, investigations of periodic
gait have provided insights into muscle contributions [1]. Further,
predictive simulations could allow for preliminary testing of assistive
devices, such as validating controllers for a powered leg prosthesis
prior to hardware implementation with human amputee subjects [2].

Despite the common assumption that human gait is periodic, sig-
nificant variability exists. This variability has long-range correlations
between steps [3], [4] and structure at the joint level [5]. The joint-
level variability has been mathematically described but no attempt to
incorporate it into a dynamic model has been made [5]. Increased
variability is correlated with increased fall risk [3], but somewhat
surprisingly, variability and dynamic stability are not equivalent [6].

Dynamic biped models typically focus on periodic gait, regardless
of model complexity (e.g., [1], [7], [8]). The few “human” models
that include variability have been relatively simple, with point masses
and no knees [9]-[12]. The variability arises from the chaotic nature
of the system or from control noise. These simple models have
consistently predicted the long-range correlations observed in human
gait, although the region of stable model gaits is often much smaller
than for human walking. Because fall risk is the most clinically
relevant stability metric, in this paper, stability refers to a biped’s
ability to avoid falling. Aperiodic walking has received more attention
in the field of dynamic bipedal robots, although the focus has typically
been on the effects of external perturbations such as ground slope on
stability. Various methods of measuring stability and optimizing for
robustness have been proposed, including analytic [13] and stochastic
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[14] measures, BMI optimization [15], and heuristic methods [16]. In
all cases, the ideal gait is periodic so the methods cannot be directly
used when the desired gait itself is aperiodic. Very little work has been
devoted to designing robot gaits in which variability is an essential
feature. A notable exception is [17], which developed a systematic
method of designing a finite set of both periodic and aperiodic gaits
with provable orbital stability.

Investigating the root cause of variability in human walking will
likely require extremely complex models that integrate neural control
models with muscle models. These individual models are still being
developed and combining them for a challenging task such as walking
is likely to be very difficult. However, it may be possible to answer
many of the more applied scientific questions about variability using
a moderately complex model that mimics human variability but does
not attempt to explain why it occurs. Unfortunately, such a model
does not yet exist. Perhaps the closest existing model [8] is based
on the bipedal robot control technique hybrid zero dynamics (HZD),
which uses feedback linearization to track a commanded trajectory
[18]. This model is currently capable of predicting the average,
periodic motion of healthy human walking, but the resulting model
simulation has no variability [8]. It is unknown if an HZD-based
controller can tolerate human-like variability. Because of both the
high feedback gains required and the fact that the instantaneous step-
to-step transition tends to amplify errors, introducing even relatively
small amounts of variability into the controller may destabilize the
system. Nevertheless, physical systems with large deviations from
the design model have successfully walked [19], suggesting that the
controller may be able to accommodate variability.

This paper adds human-like variability to an existing, HZD-
based, moderately-complex, predictive human model [8]. The updated
model’s variability is generated by (noise in) the controller, and each
step is unique. The mathematical description of the variability is taken
from [5], although additional changes to the controller were required
to maintain adequate stability. The key theoretical contribution is
combining the existing method of predicting mean motion [8] with
the existing description of variability [5] in such a way that the biped
is consistently able to walk. Sec. II provides an overview of the model
and control method. Sec. III describes how the commanded trajectory
was modified to generate stable walking with human-like variability,
the main contribution. Sec. IV compares the simulation results to
human experimental data.

II. MODELING AND CONTROL

This section provides a brief overview of HZD-based modeling and
control and is included for completeness. The original formulation for
point-foot robots was developed in [18] and then modified to capture
periodic human walking in [8], [19].

A. Model Overview

The healthy human model developed in [8] was used. The planar
six-link model had a point-mass at the hip representing the upper
body and two legs with knee and ankle joints (Fig. 1). The parameters
were anthropomorphic [20]. To keep model complexity relatively low,
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Fig. 1. Schematic of the model. The model joint angles are indicated with the
q;’s. The unactuated angle is g1 ; the actuated angles are g2 — g¢. The results
are analyzed (Fig. 2) using the biomechanics convention indicated with the
0;’s.

the function of the foot and ankle was modeled using a circular
foot plus an ankle joint to capture both the center of pressure (CoP)
movement [21] and the positive work performed at the stance ankle
[22]. Circular feet are commonly used in simple to moderately-
complex human biped models (e.g., [7], [8], [10], [23]), and for
this model, the ankle joint was needed to capture the other joint-
level behaviors and step-level characteristics of human gait [8].
Because the circular model foot captured some of the physiological
ankle movement, the motion of the model ankle was expected to be
somewhat different than the motion of the physiological ankle. The
model ankle variability may also be different than the physiological
ankle variability. The biped rolls without slip, so the foot-ground
interface was unactuated. This unactuated degree of freedom (DoF)
was captured with ¢;. The remaining joints had ideal actuators that
generated torque uz — Ug.

Each step was modeled with a finite-time single support period and
an instantaneous double support period during which the stance leg
switched. The single support period was modeled with continuous,
second-order differential equations:

&= f(z) + g(x)u, (1

where x = [qT q'T]T € R'? contains the generalized coordinates
and their derivatives, and f and g are twelve-dimensional vector-
valued functions that can be found from the equations of motion [18].
The instantaneous, impulsive double support period was modeled
using an algebraic mapping that related the state of the biped at
the instant before impact to the state at the instant after impact [19]:

gt =8¢ 2)
it =Aq, 3)

where S € R is the resetting map, A is the impact map, and *~’
and ‘T’ refer to the instants before and after impact.

B. Control Overview

As in the human gait simulations of [8], feedback linearization was
used to control the biped during the single support period [18]. The
commanded motion of the actuated variables was encoded in output
functions to be zeroed [18]:

y = h(g) = Hog — he(s(g)), @)

where h is a five-dimensional vector-valued function to be zeroed,
Hy € ®°%% is a matrix that maps the generalized coordinates to
the actuated angles, h. is a five-dimensional vector-valued function
of the commanded joint angles, and s is the phase variable. The
phase variable parameterizes the commanded motion as a function
of hip progression, rather than by time explicitly. Different gaits can
be achieved by varying h..

To drive the output (Eq. 4) to zero, an appropriate controller
must be chosen. Differentiating Eq. 4 twice and substituting in the
equations of motion (Eq. 1) gives the output dynamics:

§i=Lih+ LyL¢h - u. ©)

To cancel the nonlinearities in the output dynamics, set § = v and
solve for the input torques:

uw=LyLeh™" (v—L3h), (6)

where v is a stabilizing controller. If the output starts at zero at the
beginning of the step, the control law (Eq. 6) ensures that the output
remains zero during the single-support period (i.e., continuously
invariant). If the gait is perturbed, the stabilizing controller v drives
the output to zero. If the output is zero just before impact and is still
zero just after impact, then the gait is hybrid invariant. While hybrid
invariance is certainly not necessary for stable walking, it does allow
the greatest level of control over the biped’s trajectory.

III. DEFINING THE COMMANDED MOTION

Since the goal of this work is to create a model that can be used
to study the effects of variability, it is not important to introduce
the variability in a physiological manner. Thus, the variability is
added to the mean commanded motion. The challenge is in choosing
h. such that the simulation matches both the mean motion and the
variability in human walking while simultaneously not falling. This
section describes the variability refinements of h. and evaluates each
refinement’s effect on fall frequency.

The total commanded motion can be parameterized as

he(s) = hear(s) + hev () + hec(s), ™

where h.pr defines the mean motion, h.y defines the variability, and
hec defines a correction polynomial. Using the optimization method
from [8], periodic simulation gaits were designed for three of the
healthy adult subjects in [5] (a slower subject, a faster subject, and
an approximately average subject). Variability was then introduced
into the commanded motion, and ten simulations of 100 continuous
steps at all speeds were run for each version of h., although some
simulations fell before completing 100 steps. Because it is unlikely
humans deliberately corrupt their control signal, the proposed method
of adding (known) physiological variability to the optimized mean
motion may retain the predictive nature of the original model. The
verification of this is left for future work.

A. Defining the Mean Motion

The mean motion is defined using fifth order Bézier polynomials
as in [8]. For a periodic gait without variability, the phase variable
is normalized to lie between s™ = 0 (impact) and s~ = 1 (lift-off).
When variability is included, the phase variable is unlikely to begin
at 0 and end at 1. Unfortunately, the Bézier polynomials quickly
diverge to undesirable values outside of the design range [23]. This
is particularly problematic at the end of a step when the commanded
joint angles frequently throw the swing leg over the hip when s > 1,
preventing foot contact and causing the biped to fall forward. To
prevent this, the mean motion is switched to a constant velocity
profile when s > 1. Thus, the mean motion is parameterized as

5 —
Do O (5—515)!k!8k(1 -5’ s<1

as +5(as —aq) (s — 1) s>1 "7 ®)

th(S) = {

where «y, are the polynomial coefficients.
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B. Defining the Variability

To define the joint angle variability, the method described in [5]
and summarized here was used. The variability was defined using
a second-order Fourier series for the stance joints and a first-order
Fourier series for the swing joints:

K

hev(s) = ao + Z (ak cos(kws) + by sin(kws)) , )
k=1

where K is the order of the Fourier series, w is the dominant
frequency of the variability, and ax and by are magnitude coefficients.
Based on human subject studies [5], the joint-level variability is
approximately sinusoidal, making Fourier series an obvious choice
of basis function. Other basis functions could also be used, which
would change the details of how variability is represented but
would probably not change the overall results because correction
polynomials would likely still be needed for this model. Because the
only controlled hip joint is the angle between the legs (g2 in Fig. 1),
it was treated as a swing joint and stance hip variability was not
directly encoded. The magnitude coefficients belong to one of three
normal (Gaussian) distributions and the frequencies belong to one of
four normal distributions. In addition, there are linear relationships
between the magnitude coefficients for the stance hip and knee joints,
the magnitude coefficients for the swing hip and knee joints, and
the magnitude coefficients for the stance ankle. Finally, there is a
nonlinear relationship between the magnitude coefficients for the
swing knee and the frequency at the swing knee. The exact method
of generating coefficients varied by joint within a general framework
[5]. For all joints, the frequency (w) was chosen randomly from the
appropriate normal distribution. For most joints, the by coefficients
were chosen next and used to enforce hybrid invariance in velocity:

3hcv .+ -+ ahcju .+ ath -+
— Hogt - LM _ )
0s s+ 8 0g 0s g+ s 0s |+ s

Eq. 10 is found by differentiating the output (Eq. 4) with respect to
time, substituting in the commanded motion (Eq. 7), setting the output
equal to zero, and rearranging. The weighting between randomly
choosing by, satisfying a between-coefficient relationship, and ensur-
ing velocity hybrid invariance was tuned in [5] to ensure human-like
variability when only considering kinematics; no additional tuning
was done here even though a dynamic model was now being used.
Once w and the by, coefficients were known, the ay, coefficients were
chosen to enforce hybrid invariance in position:

10)

hev(s) = Hog" — hear(s*) = hec(s™) (n
Similar to the by coefficients, the weighting found in [5] between
randomly choosing ay, satisfying a between-coefficient relationship,
and ensuring position hybrid invariance was used.

Initially, h. did not have the correction polynomial h.c so the
last term in the hybrid invariance conditions (Eqs. 10 and 11) did
not exist. This resulted in a positive feedback loop and uncontrolled
growth of the magnitude coefficients. To satisfy Eqgs. 10 and 11,
at the start of a step, the variation function and its derivative must
equal the difference between the actual joint motion and the mean
commanded motion. When the difference is large, the magnitude
coefficients must also be large, which results in large oscillations and
significant differences from the mean commanded motion at the next
impact. The impact phase tends to amplify velocity differences, so the
next step requires even larger magnitude coefficients to satisfy Eqs. 10
and 11. As a result, defining the commanded motion using just the
mean trajectory (hcns) and the variability (h.y) always resulted in
the biped simulation falling within ten steps (Table I).

TABLE I
ABILITY OF SIMULATION TO WALK 100 STEPS WITHOUT FALLING
Version  h.c < Varf Mean Num. Steps ~ Num. Completed
(Max 100.0) (Out of 30)
1 No No 3.8 0
2 Yes No 69.8 15
3 Yes Yes 93.3 27

T Reduce stance ankle variability

TABLE II
CORRECTION POLYNOMIAL CONSTANTS
Stance Swing
Knee Ankle Hip Knee Ankle
Ap 033 0.67 0.00 0.67 0.50
Ay 0.67 0.88 0.80 0.83 0.80

C. Adding a Correction Polynomial

To stabilize the variability magnitude, a correction polynomial was
added to h.. As is typical in robotic motion planning, a polynomial
was used because it is straightforward to ensure smooth control both
during the motion and across transitions. The correction polynomial
eliminates some of the start-of-step difference between the actual (q)
and mean trajectory (hcar) [24]:

4 k
th(S) = { OZ:kZO CkS

The polynomial coefficients cj are found by solving a square linear
system to satisfy five continuity constraints:

5 <0.5

12
s>0.5 (12)

o Reduce the start-of-step differences:

hcc(8+) = )\p(Hoq+ — hc1\4(8+)) (13)
Ohec | o+ _ Ay (Ho(ﬁ _ Ohent é*) , (14)
0s s+ 0s s+

where 0 < Ap, Ay < 1 are weighting factors defining what
percentage of the difference the correction polynomial handles,
and

o Smoothly join the correction polynomial to the mean com-
manded motion at the mid-point of the step:

Ohec|  9hec

th(OS) = 83 o = 632

=0.
0.5

(15)

Ap and Ay control how much of the start-of-step difference between
the actual motion and the mean motion is zeroed using the correction
polynomial vs. the variability function. (Note that Egs. 13 and 14 are
rearranged versions of Eqgs. 11 and 10 without the variability terms.)
A value of zero means that the variability function must handle all
of the difference (recovering version 1 of h.) and a value of one
means that the correction polynomial alone ensures hybrid invariance.
The choice of where to join the correction polynomial to the mean
commanded trajectory only has a small effect on the gait. The choices
of Ap and Av have a much larger effect on the gait. If they are too
small, the variability still grows uncontrollably. If they are too large,
there is not enough variability. Ap and Ay were hand-tuned to keep
the magnitude coefficients within their experimental ranges while still
allowing appropriate variability (Table II). The tuning was done using
two gaits at about the self-selected speed originally developed in [8].
This is version 2 of hA..

The addition of the correction polynomial greatly improved the
biped’s robustness, but the biped still fell backwards frequently (Table
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TABLE III
TEMPORAL DATA (MEAN + STANDARD DEVIATION)

Ave. Speed (m/s) Stride Period (s)

Exp Sim 3f Exp Sim 3f
1124005 107 009 1.17 £ 004 146 £ 0.14
130 £0.15 124 £0.07 1.08 & 0.03 1.19 + 0.07
144 4 0.10 1424035 097 £003 1.09 £ 0.11

T Version 3 in Table I

I). When a step failed, the previous step was slow and ended sooner
than expected (s~ < 1). To a large extent, human gait involves an
exchange of potential and kinetic energy with transition periods to
redirect the center of mass (CoM) velocity from down to up [7], [25].
The joints perform positive work to replace the energy lost during
the transition. In addition, the stance ankle appears to have a large
influence on the control of the CoM velocity [25]. The stance ankle
generates a significant percentage of its work at the end of the step,
so if a step ends too soon, the following step begins with much less
kinetic energy than usual. In general, the slower a step, the less kinetic
energy it has. If the start-of-step kinetic energy is less than a step’s
required increase in potential energy, the biped falls over backwards.
This is the failure mechanism for version 2.

D. Reducing Stance Ankle Variability

Because the ankle motion plays a large role in determining the
start-of-step kinetic energy and because the model ankle does not
correspond to the physiological ankle, the allowable range of the
stance ankle magnitude coefficients for the variability (Eq. 9) was
reduced by a factor of 12. To ensure that it was actually possible
to find coefficients in the reduced stance ankle coefficient range, the
stance ankle Ap and Ay were increased to 0.88 and 0.95, respectively.
This final version 3 of the commanded motion function consistently
resulted in stable walking (Table I).

Since the model stance ankle variability is reduced compared to the
physiological ankle variability, this suggests that humans regulate the
foot and ankle function captured by the model ankle fairly precisely.
In other words, humans may regulate the control of the CoM velocity
closely. Presumably, the CoP movement is regulated less closely and
therefore accounts for much of the physiological ankle variability.
Alternatively, for this model, the stance ankle is much more sensitive
to start-of-step perturbations than the human ankle.

IV. COMPARISON TO EXPERIMENTAL DATA

Using version 3 of h., the 30 simulations were compared to the
experimental results. The average speed for the simulations with
variability were slower than both the experimental data and the
periodic simulation (which matched the experimental speed, Table
III). Shorter step lengths tend to correspond to an early impact, which
results in a reduction of stance ankle work and tends to slow down
the gait. Although the increased impact losses associated with longer
step lengths have a slowing effect, longer steps usually correspond to
a late impact, which tends to increase stance ankle work and speed up
the gait. The net result is a slower than expected average speed. The
variability in speed was similar between simulation and experiment.
The average simulated stride period was somewhat longer than the
experimental stride period, and the variability was higher (Table III).
Overall, the simulation did an acceptable job capturing the variability
in the step-level temporal parameters.

The mean simulated and experimental hip and knee angles were
similar while the ankle angles were significantly different due to the

non-physiological ankle-foot model (Fig. 2). Even with the reduction
to the variability described in Sec. III-D, the simulated stance ankle
had more variability than the experimental data. At the other joints,
the simulated joint-level variability was similar to the experimental
levels, indicating that the simulation is capable of capturing human-
like variability.

The variability in the temporal parameters arises from the variabil-
ity in the joint-level control. Consistent with human experimental
results, increased variability tends to result in increased fall risk
[3]. The need for the correction polynomials indicates that there is
a stabilizing factor in human gait that is not present in the model
dynamics. The most likely feature of human walking is the double
support period. In human gait, the double support period is both
over-actuated and finite time. As a result, the double support period
may be used to easily reject destabilizing disturbances since there are
redundant actuators. (Some variability is optimal for many biological
systems, which may be why humans do not regulate their gait as
tightly as possible [3], [4].) In contrast, for the model, the double
support period is both unactuated and instantaneous, which tends
to magnify differences between the mean and actual motion. As a
result, the correction polynomials are needed to artificially reduce the
error and prevent failure. These results are consistent with the results
for the simple variability models. The models with instantaneous
transfers of support [9], [10] were limited to much less variability
than the model with a finite-time double support period [12].

V. CONCLUSION

This paper incorporates human-like joint-level variability into a
moderately complex human model by augmenting the mean desired
motion with two additional functions — a sinusoidal variability
function that randomly injects variability into the system, and a
polynomial correction function to help stabilize the system. While this
is straightforward from a mathematical perspective, it ignores the fact
that human variability likely arises from noise in the neuromuscular
control signal. However, even using the formulation presented in this
paper (Eq. 7), the input torques (Eq. 6) can be written as the desired
mean motion plus a perturbation torque:

u=LyLshy (v - L?fhjw) +up, (16)
where up is a perturbation term given by
-1 2 2
up :(LgthM—l—Lgthp) (U—thM —thp)
— LoLyshy (v—Lihn), (17)

has is the output function (Eq. 4) containing just the desired mean
motion (Eq. 8), and hp is the output function (Eq. 4) containing just
the variability functions (Egs. 9 and 12). Obviously, if the formulation
in Eq. 16 is used, a more straightforward equation for up would be
needed, but Eq. 17 should approximate that equation. Eq. 17 clearly
shows that the perturbation torque up is a nonlinear function of both
the original control signal and random variability. This is consistent
with experimental work showing that there is a correlation between
the commanded signal and the amount of noise [26].

This improved human model will be used in preliminary testing
of a powered above-knee prosthesis to check that the proposed pros-
thesis controller does not destabilize the human-prosthesis system.
The results may also have implications for optimal bipedal robot
control. Since some variability is optimal for human gait [3], [4],
incorporating human-like variability into robot gait might improve
robustness.
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Fig. 2. The (a) hip, (b) knee, and (c) ankle angles at a periodic speed of 1.30 m/s from experiment and version 3 (Table I) of the simulation. The results
are very similar for the other gaits. The biomechanics angle convention (6;’s in Fig. 1) is used. The stance period is from 0-50% of the stride and the swing
period is from 50-100% of the stride. The line indicates the mean value and the bands represent plus/minus one standard deviation. For the hip and knee, the
mean joint angles are very similar between simulation and experiment as expected. Also as expected, the mean ankle motion differs between simulation and
experiment because the model ankle joint does not directly correspond to the physiologic ankle joint. For most joints, the simulated variability matched the
experimental variability.
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