
Hybrid Invariance and Stability of a Feedback Linearizing Controller
for Powered Prostheses

Anne E. Martin1 and Robert D. Gregg2

Abstract— The development of powered lower-limb prosthe-
ses has the potential to significantly improve amputees’ quality
of life. By applying advanced control schemes, such as hybrid
zero dynamics (HZD), to prostheses, more intelligent prostheses
could be designed. Originally developed to control bipedal
robots, HZD-based control specifies the motion of the actuated
degrees of freedom using output functions to be zeroed, and
the required torques are calculated using feedback linearization.
Previous work showed that an HZD-like prosthesis controller
can successfully control the stance period of gait. This paper
shows that an HZD-based prosthesis controller can be used
for the entire gait cycle and that feedback linearization can
be performed using only information measured with on-board
sensors. An analytic metric for orbital stability of a two-
step periodic gait is developed. The results are illustrated in
simulation.

I. INTRODUCTION

Currently, prostheses do not completely restore healthy
human walking, partly due to the fact that most commercially
available prostheses cannot produce positive work. In con-
trast, human joints generate significant positive work during
gait [1]. To improve amputee gait quality, powered prostheses
have been developed [2], [3]. The controllers typically divide
the stride into five periods with a set impedance (stiffness,
damping, and equilibrium point) for each period [2], resulting
in large numbers of parameters to be tuned [4]. An alternative
control approach is to vary the joint positions in a continuous
manner, which may result in superior disturbance rejection
and relieve the amputee of some of the cognitive and physical
effort of gait. This strategy requires that the progression of
the gait be parameterized in a unified manner, possibly by
using a phase variable [5]–[7]. A phase variable is a kine-
matic quantity that measures how far a step has progressed.
An additional advantage of the phase-based control approach
is that it automatically adjusts for speed because the faster
the amputee walks, the faster the phase variable increases.

A promising phase-based control framework is hybrid zero
dynamics (HZD) from the field of bipedal robots. HZD-based
control has successfully generated stable walking for both
point [8] and curved [9] foot bipedal robots. In addition, it
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has been used to predict healthy human walking [10]. Under
an HZD-based control paradigm, bipeds are assumed to be
underactuated, the step is driven by the progression of the
phase variable, and each step is divided into a finite-time
single support period and an instantaneous impact during
which the stance leg switches [8]. During the single support
period, the motion of the actuated degrees of freedom (DoF)
are encoded in output functions to be zeroed. The required
joint torques are determined using feedback linearization.
The motion of the unactuated DoF are captured in the
zero dynamics. Since gait is typically assumed to be one-
step periodic, orbital stability can be evaluated using the
method of Poincaré. If the desired gait respects the impact
dynamics (i.e. is hybrid invariant), then orbital stability can
be evaluated using just the lower-dimensional zero dynamics.

One of the challenges in controlling prostheses is that a
practical prosthesis will only have sensors on itself instead
of on the full bipedal system as in the case of robots. As
a result, the prosthesis controller will only have informa-
tion about its own state, which potentially makes feedback
linearization more challenging. A related problem arises in
the field of multi-machine power systems. Similar to the
human-prosthesis system, the dynamics of each subsystem
are both nonlinear and coupled, although the structure of
the equations are very different between the two fields [11].
Localized, feedback-linearizing controllers have been devel-
oped specifically for power systems to reduce the system
dimension [12]. For a prosthesis controller, the challenge is
in deriving the feedback linearizing controller for a coupled
mechanical, rather than electrical [12], system. Because the
prosthesis is attached to the human via a socket, the human
and prosthesis interact through the socket interaction force.
This coupling force represents the effects of one subsystem
on the other, and can be used to account for the human’s
dynamics in the prosthesis controller. In hardware, the socket
interaction force can be measured, but equations to calculate
it in simulation must be derived.

Pre-clinical work has shown that a powered above-knee
prosthesis controlled with an HZD-like controller during
stance and an impedance-based controller during swing
allows amputees to walk at a variety of speeds and ground
slopes [13], [14]. That work did not generalize the feedback
linearizing controller to the prosthesis swing phase or, to
allow for more realistic modeling, to the human subsystem.
The feasibility of the controller was verified in simulation
using a symmetric biped with a passive hip joint walking
down a very shallow slope, effectively simulating a bilateral
amputee walking down a ramp. Most amputees still have
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Fig. 1. Schematic of the above-knee amputee model. The prosthesis is
shown in black and the human is shown in gray. The generalized coordinates
are shown in red.

one intact leg, so an asymmetric model would be more
appropriate. Further, the amputee retains direct control of
his/her intact joints, and this control cannot be fully captured
in simulation using a passive hip joint. The work also did
not make use of the reduced order system to develop an
analytical metric of stability, in part because the output
functions were not hybrid invariant.

The present work extends the modeling and control meth-
ods needed to formally develop hybrid invariant prosthesis
controllers for the entire stride and to predictively test these
controllers in simulation. Specifically, using an asymmetric
biped, this work
• derives the equations for the socket interaction force

between the human and prosthesis,
• shows how to construct feedback linearizing controllers

for both the human and prosthesis using only informa-
tion available to each subsystem, and

• develops an analytic metric of stability using a reduced
order system.

The results are illustrated using a model of an above-knee
amputee wearing a powered prosthesis.

II. MODEL

A. Physical Model

The full planar model of the unilateral above-knee am-
putee consists of seven leg segments plus a point mass at
the hip to represent the upper body (Fig. 1). To account for
the lack of information transmitted between the human and
prosthesis, the full model can be divided into a prosthesis
subsystem and a human subsystem [14]. The prosthesis
subsystem consists of the prosthetic thigh, shank, and foot.
The human subsystem consists of the contralateral thigh,
shank, and foot, the residual thigh on the amputated side, and
the point mass at the hip. It is assumed that the prosthetic
thigh and residual stump are rigidly attached. Rather than
model all of the DoF of the foot, the function of the foot
and ankle is modeled using a circular foot plus an ankle joint
[10] to capture both the center of pressure movement [15],
[16] and the positive work performed at the stance ankle
[17].
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Fig. 2. The periodic gait. The ξ terms are the zero dynamics coordinates
used for the reduced system (Sec. IV). For simulation, a stride starts just
after the transition from contralateral stance to prosthesis stance and pro-
ceeds through the prosthesis stance period, an impact event, the contralateral
stance period and a second impact.

Because the biped is assumed to roll without slip, one
DoF is unactuated. The remaining joints are assumed to
have ideal actuators. Dividing the torques by subsystem gives
uP = [u2 u3]T for the prosthesis and uH = [u4 u5 u6]T

for the human. Because the prosthesis is rigidly attached
to the residual limb, forces and moments are transmitted
through this interface and provide an indirect measure of
the motion of both subsystems via the socket interaction
force F = [Fx Fy FM ]T . The leg in stance also experi-
ences horizontal and vertical ground reaction forces (GRF)
G = [Gx Gy]T . There is no moment at the foot-ground
interface due to the curved foot. Similar to the torques,
each subsystem has its own set of generalized coordinates.
In general, each subsystem’s generalized coordinates should
be the relative angles of its actuated joints, the absolute
angle of the unactuated DoF, and the Cartesian coordinates
of a fixed point on the biped. For the model in this paper
(Fig. 1), q1 is the absolute angle, and the fixed point is
the hip position (qx, qy). The actuated joint angles are q2-
q6. Thus, the generalized coordinates for the prosthesis are
qP = [q1 q2 q3 qx qy]T and the generalized coordinates for
the human are qH = [q1 q4 q5 q6 qx qy]T .

Each stride is modeled using four distinct periods (Fig. 2).
The two stance periods are modeled with continuous, second-
order differential equations, and the two instantaneous impact
periods are modeled using an algebraic mapping that relates
the state of the biped at the instant before impact to the state
at the instant after impact. The stance leg switches during
the impact period.

B. Single Support Periods

The equations of motion (EoM) during the single support
period for a subsystem can be written as

Miq̈i + Ciq̇i +Ni − ETijG = Biui + JTi F. (1)

Throughout this paper, the subscript i indicates which sub-
system the term is for, with P indicating the prosthesis
subsystem and H indicating the human subsystem. The
subscript j indicates which leg is in stance, with P indicating
the prosthesis and C indicating the contralateral leg. Mi



is the Ni × Ni inertia matrix, Ci is the Ni × Ni matrix
containing the centripetal and Coriolis terms, Ni is the Ni×1
gravity vector, Eij is a 2 × Ni constraint matrix, Bi is the
Ni×Mi matrix relating the input torques to the generalized
coordinates, and Ji is the 3 × Ni Jacobian matrix relating
the socket interaction forces to the generalized coordinates.
For the above-knee prosthesis subsystem, the number of the
generalized coordinates is NP = 5 and the number of input
torques is MP = 2. For the above-knee human amputee
subsystem, the number of the generalized coordinates is
NH = 6 and the number of input torques is MH = 3.
Except for the constraint matrix Eij , all matrices are identical
regardless of which leg is in stance. Because the constraint
matrix is used to specify how the biped is attached to the
ground, it is only defined when the subsystem is in stance
and is set to zero during the swing phase.

To attach the biped to the ground, the constraint equation

Eij q̇i = 0 (2)

is used [18]. Solving the EoM (Eq. 1) for q̈i, substituting it
into the derivative of Eq. 2, and solving for the GRF gives

G = λ̂ij + λ̃ijui + λijF (3)

where

λ̂ij = Wij(EijM
−1
i (Ciq̇i +Ni)− Ėij q̇i),

λ̃ij = −WijEijM
−1
i Bi,

λij = −WijEijM
−1
i JTi ,

Wij = (EijM
−1
i ETij)

−1.

Substituting the GRF (Eq. 3) back into the EoM (Eq. 1) and
solving for q̈i gives

q̈i =M−1i (−Ciq̇i −Ni + ETij(λ̂ij + λ̃ijui + λijF ))

+M−1i Biui +M−1i JTi F. (4)

Eq. 4 defines the motion of subsystem i when leg j is in
stance. In anticipation of the controller design (Sec. III),
Eq. 4 can also be written as a first-order ODE:

ẋi = fij(xi) + gij(xi)ui + pij(xi)F, (5)

where

xi =
[
qTi q̇

T
i

]T
,

fij(x) =

[
q̇i

−M−1i (Ciq̇i +Ni − ETij λ̂ij)

]
,

gij(x) =

[
0

M−1i (ETij λ̃ij +Bi)

]
,

pij(x) =

[
0

M−1i (ETijλi + JTi )

]
.

C. Impact Periods

To model the impact periods, an algebraic mapping is
used. Because the configuration of the biped is assumed to
remain constant over the impact period, the position portion
of the impact map is trivial:

q+i,k = q−i,k, (6)

where the superscript ‘−’ refers to the instant before impact,
the superscript ‘+’ refers to the instant after impact, k =
P → C indicates that the transition is from the prosthesis
stance period to the contralateral stance period, and k =
C → P indicates that the transition is from the contralateral
stance period to the prosthesis stance period. To find the
velocity portion of the impact map, the EoM (Eq. 1) are
integrated over the instantaneous duration of impact [8], [9].
To fix the biped to the ground, the post-impact constraint
equation (Eq. 2) is used. Because the human and prosthesis
subsystems share some generalized coordinates, the motion
of these shared DoF must be the same for both subsystems
which can be enforced using

SP q̇P = SH q̇H , (7)

where

SP =

 1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,
SH =

 1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
This results in a square linear system in which the unknowns
are the post-impact velocities for both subsystems, the
ground reaction impulse and the socket interaction impulse.
Solving for the post-impact velocities and socket interaction
impulse F results in

q̇+i,k = Ai,kq̇
−
i,k + Λi,kF , (8)

F = (SPΛP,k − SHΛH,k)−1

· (SHAH,k q̇−H,k − SPAP,kq̇
−
P,k), (9)

where

AP,P→C = I5×5, AH,C→P = I6×6,

ΛP,P→C = M−1P JTP , ΛH,C→P = M−1H JTH ,

AH,P→C = I6×6 −M−1H ETHC(EHCM
−1
H ETHC)−1EHC ,

ΛH,P→C = M−1H
(
JTH − ETHC(EHCM

−1
H ETHC)−1

·EHCM−1H JTH
)
,

AP,C→P = I5×5 −M−1P ETPP (EPPM
−1
P ETPP )−1EPP ,

ΛP,C→P = M−1P
(
JTP − ETPP (EPPM

−1
P ETPP )−1

·EPPM−1P JTP
)
.

III. CONTROL

To control both the prosthesis and the human, feedback
linearization is used [8], [19]. With the exception of the
stability analysis (Sec. IV), the results for the prosthesis are
independent of the form of the human controller. To account
for the lack of information transmitted between the human
and prosthesis, the prosthesis controller only uses informa-
tion that could be collected by on-board sensors, i.e., the
prosthesis generalized coordinates and associated derivatives
and the socket interaction force [14]. Further, it is assumed
that the prosthesis either estimates (using Eq. 3) or measures
the GRF on the prosthetic side (e.g. [13]). Similarly, since the



human cannot directly sense the prosthesis state, the human
controller only uses information about the human generalized
coordinates and associated derivatives, the socket interaction
force, and the GRF on the contralateral side.

To perform feedback linearization, the desired motion of
the actuated angles are encoded in output functions to be
zeroed [8]:

yij = hij(qi), (10)

where hij is a vector-valued function of dimension Mi.
hij is a function of configuration only since the motion is
parametrized using a kinematic phase variable. Differentiat-
ing Eq. 10 twice and substituting in the EoM (Eq. 5) for q̈i
gives the output dynamics

ÿij = L2
fijhij + LgijLfijhij · ui + LpijLfijhij · F, (11)

where standard Lie derivative notation [19] has been used
and the terms are given by

L2
fijhij =

∂

∂qi

(
∂hij
∂qi

q̇i

)
q̇i

− ∂hij
∂qi

M−1i (Ciq̇i +Ni − ETij λ̂ij),

LgijLfijhij =
∂hij
∂qi

M−1i (ETij λ̃ij +Bi),

LpijLfijhij =
∂hij
∂qi

M−1i (ETijλij + JTi ).

To cancel the nonlinearities in the output dynamics, set ÿij =
vij where vij is a stabilizing controller and solve for the input
torques:

ui = αij + βij · F, (12)

where

αij = LgijLfijh
−1
ij (vij − L2

fijhij),

βij = −LgijLfijh−1ij · LpijLfijhij .

Eq. 12 defines the input torques required to cancel the
nonlinearities in the EoM and zero the tracking errors for
subsystem i when leg j is in stance. The input torque for
subsystem i only depends on quantities that subsystem i can
measure.

Eq. 12 combined with sensor measurements can be used
to find the input in hardware. However, for simulation,
the socket interaction force F needs to be determined.
Substituting the EoM (Eq. 4) and torques (Eq. 12) into the
derivative of the matching equation (Eq. 7) and rearranging
gives

F = F−1den,j · Fnum,j , (13)

where

Fden,j = SPM
−1
P

(
BPβPj + JTP

+ETPj

(
λ̃PjβPj + λPj

))
− SHM−1H

(
BHβHj + JTH

+ETHj

(
λ̃HjβHj + λHj

))
,

Fnum,j = SHM
−1
H (−CH q̇H −NH +BHαHj

+ETHj

(
λ̂Hj + λ̃HjαHj

))
− SPM−1P (−CP q̇P −NP +BPαPj

+ETPj

(
λ̂Pj + λ̃PjαPj

))
.

The socket force is linear in velocity, which will be important
when analyzing stability (Sec. IV).

To implement feedback linearization, output functions
must be defined to characterize the desired kinematics of the
actuated joints as a function of the phase variable. A total
of four (vector-valued) output functions are required because
each subsystem i requires an output function for each stance
period j (Fig. 2). To perform the stability analysis (Sec. IV),
the gait must be hybrid invariant, i.e., the output functions
must respect the impact dynamics (Eqs. 6 and 8). If the
desired motion of the full system is known and the output
functions are defined using Bézier polynomials, conditions
to ensure hybrid invariance can be derived [8].

IV. STABILITY

Since it is assumed that unilateral amputee gait is two-
step periodic, stability can be evaluated using the method of
Poincaré. The instant before the transition to the prosthesis
stance period is chosen as the Poincaré section. To reduce
the dimension of the Poincaré map, a nonlinear coordinate
transformation can be applied to the system to render most
coordinates equal to zero if the output functions are hybrid
invariant [8]. For a planar, symmetric biped with full knowl-
edge of its state, it is possible to find an analytic orbital
stability criteria. The goal is to show that this is also possible
for the coupled human plus prosthesis system.

There are a total of six independent DoF for the full human
plus prosthesis system, which means there are a total of
twelve independent coordinates (6 position and 6 velocity).
The position of the hip is a function of the joint angles
and not independent because the biped is assumed to roll
without slip. For reasons that will be explained later, the
transformation between the original, nonlinear EoM and the
new, feedback linearized system will only be for the twelve
independent coordinates. The first 10 coordinates in the new
system are given by

η1j =

[
yPj
yHj

]
=

[
hPj(qP )
hHj(qH)

]
, (14)

η2j =

[
ẏPj
ẏHj

]
=

[
∂hPj

∂qP
q̇P

∂hHj

∂qH
q̇H

]
. (15)

Because yij is the output for subsystem i when leg j is in
stance, η1j and η2j represent the error in configuration and
velocity for the entire system. For a hybrid invariant gait on
the periodic orbit, η1j and η2j equal zero. Since the goal
is to design a stable controller for the prosthesis, a logical
choice for the final two coordinates is [8]

ξ1j = θPj(qP ), (16)

ξ2j = M̆Pj1
˙̆qP , (17)



where θPj is the monotonically increasing phase variable
for the prosthesis that captures the motion of the unactuated
angle, and M̆Pj1 is the row of the prosthesis inertia matrix
corresponding to the unactuated DoF, where the inertia
matrix is found using only the prosthesis joint angles q̆P =
[q1 q2 q3]T . Without loss of generality, assume that the
unactuated angle is q1. Since the human motion does not
directly appear in the zero dynamics coordinates (ξ1j and
ξ2j), there is the possibility that the orbital stability will only
depend on the prosthesis and the motion of the human can
be ignored. This is advantageous because the designer has
direct control over the prosthesis controller whereas human
motion can be difficult to predict. Differentiating Eqs. 14-17
to obtain the EoM in the transformed system yields

η̇1j = η2j (18)

η̇2j =

[
vPj
vHj

]
(19)

ξ̇1j =
∂θPj
∂qP

q̇P (20)

ξ̇2j = ˙̆qTP
∂M̆T

Pj1

∂q̆P
˙̆qP − C̆Pj1 ˙̆qP − N̆Pj1 + J̆TPj1F, (21)

where C̆Pj1 is the top row of the centripetal and Coriolis
matrix, N̆Pj1 is the top entry in the gravity vector and J̆TPj1
is the top row of transpose of the Jacobian matrix that relates
the socket interaction forces to the generalized coordinates,
all for the prosthesis and found using q̆P . Notice that the
new system can be viewed as a linear upper system that
only depends on η1j and η2j and a passive, nonlinear lower
system of dimension two that depends on all of the prosthesis
coordinates. Note that if the position of the hip was included
in the transformation between the original, nonlinear EoM
and the new, feedback linearized system, then the dimension
of the lower system would be four and it may no longer be
passive. Both the increased dimension and the non-passive
nature of the lower system would prevent the determination
of an analytical stability metric for orbital stability.

Since η̇1j and η̇2j are zero on the periodic orbit, ξ̇1j and
ξ̇2j determine the orbital stability. For a symmetric biped
with full knowledge of its state, Eqs. 20 and 21 can be
combined into a single, first order linear differential equation
in which the independent variable is ξ1. This equation can
then be integrated over a periodic step and the impact map
applied to obtain an analytic expression for the Poincaré
return map [8], [9]. To formulate the first order differential
equation, the fact that ξ̇2 is purely quadratic in velocity is
exploited. However, when ξ2j is chosen as in Eq. 17, ξ̇2j
has a linear velocity term due to the socket interaction force
(Eq. 13). As a result, it is no longer possible to formulate a
linear differential equation, and there is no obvious analytic
solution for the nonlinear differential equation.

While it is certainly possible to compute the Poincaré
return map numerically if ξ2j is defined using Eq. 17, there
is an additional issue. When the prosthesis is in stance, it
is possible to formulate its EoM without including the hip
position in the generalized coordinates because the prosthesis

can be considered fixed to the ground. When the prosthesis
is in swing, however, the hip position must be included in the
generalized coordinates. As a result, either the hip state has
to be included in the nonlinear transformation, or the hip
state must be expressed as a function of the human state,
which leads to ξ2C being a function of both the human
and prosthesis states. Neither option is appealing, the first
because it increases the dimension of the zero dynamics and
the second because stability no longer just depends on the
prosthesis. In addition, regardless of which foot is in stance,
ξ̇2j is a function of both the human state and the prosthesis
state due to the socket interaction forces. Taken together, it
appears there is no advantage in using just the prosthesis to
define ξ2j . This is not a surprising result because the motion
of the prosthesis is influenced by the motion of the human,
so it is reasonable for the stability to depend on both the
prosthesis and the human.

Since the orbital stability depends on both the human and
prosthesis, it is easiest to combine the two subsystems and
evaluate them together. Thus, ξ2j is chosen as

ξ2j = Dj1q̇, (22)

where Dj1 is the top row of the inertia matrix for the full
human plus prosthesis system and q = [q1 q2 q3 q4 q5 q6]T .
Again, without loss of generality, the unactuated angle is
q1. Note that DP1 6= DC1 because the inertia matrix
includes the ground contact constraint. Choosing ξ2j as in
Eq. 22 assumes full knowledge of the biped’s state, so the
methods to evaluate stability in [8] and [9] can be used.
The controllers remain independent even though the stability
analysis depends on the motion of both subsystems.

Using Eqs. 14-16 and 22 as the coordinates for the
transformed system, the procedure in [9] is followed to
obtain analytic equations relating the state of the biped just
after impact to the state just before the next impact. Briefly,
the equations for the zero dynamics (Eqs. 16 and 22) are
combined into a scalar, linear, first-order differential equation
for each stance period and those equations are integrated over
the corresponding stance period to obtain

ζ−P,P→C = b1P

(
b2P + ζ+P,C→P

)
(23)

for the prosthesis stance period and

ζ−C,C→P = b1C

(
b2C + ζ+C,P→C

)
(24)

for the contralateral stance period. The terms are given by

ζj,k =
1

2
ξ22j , b1j = e−cj(ξ

−
1j),

b2j = −
∫ ξ−1j

ξ+1j

ecj(τ)
Nj1(τ)

∂θPj(q)
∂q |τ · φj(τ)

dτ,

cj(ξ1j) = −
∫ ξ1j

ξ+1j

φTj (τ) · ∂Dj(q)
∂q1
|τ · φj(τ)

∂θPj(q)
∂q |τ · φj(τ)

dτ,

φj(ξ1j) =


∂hPj

∂q |ξij
∂hHj

∂q |ξij
Dj1(ξ1j)


−1 [

05×1
1

]
,



where Nj1 is the top row of the gravity vector for the full
biped found using q, ξ−1P = ξ−1P,P→C is the value of ξ1P
evaluated just before the transition from the prosthesis stance
period to contralateral stance period, ξ−1C = ξ−1C,C→P is the
value of ξ1C evaluated just before the transition from the
contralateral stance period to prosthesis stance period, ξ+1C =
ξ+1C,P→C is the value of ξ1C evaluated just after the transition
from the prosthesis stance period to contralateral stance
period, and ξ+1P = ξ+1P,C→P is the value of ξ1P evaluated
just after the transition from the contralateral stance period
to prosthesis stance period (Fig. 2). To convert between joint
angles and ξ1j , use[

05×1
ξ1j

]
=

 hPj(q)
hHj(q)
θPj(q)

 . (25)

To find the Poincaré return map, Eqs. 23 and 24 can be
related using the impact map for the full system:

ζ+C,P→C = δ2P→Cζ
−
P,P→C , (26)

ζ+P,C→P = δ2C→P ζ
−
C,C→P , (27)

where

δP→C = DC1AP→CφP ,

δC→P = DP1AC→PφC ,

Ak = Λ11 − Λ12E1,k,

Λk = I8×8 −M−1e ETe,k(Ee,kM
−1
e ETe,k)−1Ee,k

=

[
Λ11 Λ12

Λ21 Λ22

]
,

Me is the inertia matrix for the whole biped when the
generalized coordinates are the joint angles plus the hip
position, Ee,k is the constraint matrix used to attach the biped
to the ground when the generalized coordinates are the joint
angles plus the hip position, Λ11 is a 6× 6 matrix, and Λ12

is a 6× 2 matrix. The 2× 6 matrix E1,k transforms the pre-
impact single support joint velocities into the pre-impact hip
velocities. When k = P → C, Ee,P→C is used to attach the
contralateral foot to the ground and E1,P→C is used to attach
the prosthesis to the ground. When k = C → P , Ee,C→P is
used to attach the prosthesis to the ground and E1,C→P is
used to attach the contralateral foot to the ground. All terms
are evaluated using the angles at impact. Substituting Eqs. 26
and 27 into Eqs. 23 and 24 and solving for the state at the
end of the contralateral stance period gives

ζ−C,C→P = b1C

(
b2C + δ2P→Cb1P

(
b2P + δ2C→P ζ

−
C,C→P

))
.

(28)
Eq. 28 is the Poincaré map. To check stability, it can be
differentiated with respect to ζ−C,C→P to find the stability
criterion:

0 < b1P b1Cδ
2
P→Cδ

2
C→P < 1. (29)

All four terms depend on the motion of both the human and
the prosthesis. The stability criterion serves as a nonlinear
constraint on the human and prosthesis output functions used
to define a gait [20] because a usable gait must be stable. If

TABLE I
TEMPORAL GAIT PROPERTIES

Prosthesis Contralateral
Stance Stance

Step Length (m) 0.719 0.723
Step Duration (s) 0.448 0.434

Speed (m/s) 1.604 1.666

the zero dynamics are stable, the stability of the full system
can be easily proven if PD controllers are used for the output
feedback controller vij in Eq. 12 [21].

V. EXAMPLE
To demonstrate the controller, simulations were conducted

(Fig. 3). The model has a leg length of 90.6 cm and a total
mass of 69.3 kg. The mass of the prosthesis is 5.7 kg, which
is approximately the same as the physiological leg that it
replaces. The length and mass parameters for the prosthesis
were based on the physical properties of the powered above-
knee prosthesis currently being built at the University of
Texas at Dallas. The output functions for both the human and
prosthesis controllers were chosen to approximate healthy
human gait, although no effort was made to impose either
symmetry or asymmetry on the resulting gait. The phase
variable for both the human and prosthesis controllers was
chosen as the horizontal hip position. The resulting orbital
stability metric is 0.860, which is between 0 and 1, so the gait
is stable. Since the gait is stable, the amputee does not have
to react to or compensate for perturbations on behalf of the
prosthesis, which could reduce both the physical and mental
effort required for gait. Due to the asymmetries between the
amputated and contralateral legs, the gait is two-step periodic
as expected (Table I, Figs. 3 and 4). When started on the
periodic orbit, errors are on the order of the simulation’s
numerical precision (approximately 10−5 rad for position and
10−4 rad/s for velocity), demonstrating that the gait is indeed
stable and hybrid invariant. As further proof that the gait is
stable, if the simulation’s initial conditions are not exactly
on the periodic orbit, the biped converges to the orbit over
many steps (Fig. 4).

VI. CONCLUSIONS
Using only information that can be measured with on-

board sensors, it is possible to perform feedback linearizing
control on a powered prostheses. Similarly, it is possible to
model the human joint control using feedback linearization
assuming the human does not have direct knowledge of what
the prosthesis is doing. If the desired motion of both the hu-
man and prosthesis is known or can be accurately estimated,
it is possible to design controllers that are hybrid invariant
and provably stable. Work is currently being conducted to
determine how to guarantee hybrid invariance and orbital
stability even in the presence of unknown human motions.
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