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Abstract— Many exoskeletons today are primarily tested
in controlled, steady-state laboratory conditions that are un-
realistic representations of their real-world usage in which
walking conditions (e.g., speed, slope, and stride length) change
constantly. One potential solution is to detect these changing
walking conditions online using Bayesian state estimation to
deliver assistance that continuously adapts to the wearer’s gait.
This paper investigates such an approach in silico, aiming to
understand 1) which of the various Bayesian filter assumptions
best match the problem, and 2) which gait parameters can
be feasibly estimated with different combinations of sensors
available to different exoskeleton configurations (pelvis, thigh,
shank, and/or foot). Our results suggest that the assumptions
of the Extended Kalman Filter are well suited to accurately
estimate phase, stride frequency, stride length, and ramp
inclination with a wide variety of sparse sensor configurations.

I. INTRODUCTION

Lower-limb wearable robots, such as exoskeletons and
prostheses, have the potential to transform the mobility of
the public. Already, powered exoskeletons have been able
to improve the physiological performance of users during
locomotion, including reducing the metabolic cost [1]–[5]
and muscular effort [6]–[8] below the levels of unassisted
walking, while powered prostheses have allowed amputees to
regain locomotion ability [9]–[14]. However, these technolo-
gies have been largely limited to the controlled conditions
of a laboratory. To truly impact society, these technologies
must function with the unsteady, transitory gaits that arise
in the real world, such as walking at variable speeds and
inclines. Measuring these task variables, along with the
user’s progression through a gait cycle, is difficult to do
directly. Recent work has demonstrated success in estimating
dynamically changing gaits using implementations of the
Bayesian filtering framework [15]–[18]. Thus, a systemic
investigation into the fundamental problem of gait state
estimation using the Bayesian framework can guide wearable
robot controller design and may lead to better estimation of
real-world walking conditions.

Gait variation can be represented in multiple ways. The
concept of gait phase quantifies progression through the gait
cycle. A phase variable ranges from 0 at heel strike to 1
at the next ipsilateral heel strike [19]. Its time derivative,
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phase rate, is not necessarily constant. Recent work in phase-
based controllers for powered prostheses and orthoses relies
on estimates of phase (and sometimes phase rate) [20]–[28]
to handle gait speed variation. To encode other types of task
variation, machine learning-based solutions often classify the
locomotion task from signal patterns from onboard sensors
[10], [24], [28]–[35]. However, such controllers are typically
only able to classify tasks within a pre-specified set of
categories. Walking tasks have been parameterized by con-
tinuous task variables such as ground slope or walking speed
[36]–[38], but these task variables have only been estimated
once per stride in laboratory conditions. New methods for
real-time, continuous task estimation are needed to enable
seamless adaptation to real-world conditions.

Bayesian filtering allows using noisy measurements to
estimate hidden states like gait phase and continuous task
variables; this framework is well-suited to discriminate the
differences in gait biomechanics between strides to notice
changes in the underlying task. For linear systems with
Gaussian noise, Bayesian filters are implementable as the
classic Kalman filter. However, for nonlinear problems,
simplifying assumptions are inevitable [39] with differing
levels of assumption strength. The Ensemble Kalman Fil-
ter (EnKF) has the weak assumption of a Gaussian state
distribution, and uses Monte Carlo methods to calculate
the measurement update [40]. The Unscented Kalman Filter
(UKF) assumes more, and uses quadrature integration and
judiciously chosen points and weights to approximate the
nonlinear measurement update [41]. The Extended Kalman
Filter (EKF) assumes the most, and trusts a local linearization
to perform the nonlinear measurement update.

Recently, Bayesian filtering has been applied to human
gait estimation in wearable robotics. Thatte et al. [15]
introduced a simple two-state EKF as a robust solution to
estimating progression through the stance period using the
hip, knee, and ankle angles and velocities from a knee-
ankle prosthesis. Stance progress was also estimated using
the heel pressure and shank angle of an ankle prosthesis [17].
However, the swing period was handled separately in these
two approaches. Researchers were also able to estimate stride
length using a twice per step filter update based on hip and
knee velocities from an exoskeleton [16], but this estimate
was not continuously updated. Zhang et al. [42] proposed
new methods using an EKF to estimate the gait phase and
walking heading with greater accuracy, although this method
relied on sensor thresholds set manually and did not update
its task variables in real-time. Our recent work introduced
a 4-state EKF to continuously estimate stride progress (both



stance and swing), stride length, and ground inclination using
foot and shank angles/velocities and filtered heel acceleration
for real-time adaptive control of an ankle exoskeleton [18].
This simultaneous estimation approach begs the question of
which measurements inform which states, which sensors are
necessary for successful estimation, and to what extent the
other Bayesian filters in the literature reflect the non-linearity
of gait-state estimation.

In this paper, we A) systematically evaluate different
implementations of the Bayesian filter to determine which
simplifying assumptions (i.e., those of the EnKF, UKF, or
EKF) were best suited to the challenge of gait-state estima-
tion; B) investigate which angular kinematic measurements
of the leg segments provide the most information about the
underlying gait state, which can inform a minimal realization
of sensors on hardware that balances estimation quality
with sensor complexity; and C) determine the relationship
between sensor configurations and estimation of simplified
models of the gait state without ground inclination, stride
length, or both. We intend for these results to inform the
design of future wearable systems that estimate human gait.

II. METHODS

A. Process Model

Bayesian estimation employs a forward model that pre-
dicts the dynamic evolution of the measurable link angles
according to a hidden gait-state that evolves from its initial
conditions according to a dynamic model. We begin by
defining the gait-state vector x to be estimated,

x(t) =
(
p(t) ṗ(t) l(t) r(t)

)T
, (1)

comprised of phase p, phase rate ṗ, stride length l, and the
ground inclination r. The gait-state at time k evolves to time
k + 1 as

xk+1 = Fxk + wQ, (2)

with wQ distributed as zero-mean Gaussian process noise of
covariance ΣQ and state transition matrix F as

F =


1 ∆t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3)

This choice of F represents a simple numerical integration
of phase rate using the time stride ∆t. We model ΣQ as a
diagonal matrix diag[σ2

11, σ
2
22, σ

2
33, σ

2
44]×∆t, with σ22, σ33,

and σ44 being standard deviations for ṗ, l, and r, respectively.
The phase variable p generally has no process noise σ11 to
represent the noiseless integration of ṗ. The phase variable
p is wrapped within [0, 1) using the modulo operation.

B. Nonlinear Stride Length Transformation

Within walking, there exists an upper limit on a person’s
stride lengths, which is determined by the length of their legs.
Additionally, we can choose to model the smallest possible
stride length as 0, as negative stride lengths that could model
backwards walking are instead handled by positive stride

lengths and negative phase rates. To encode these choices,
we model the stride length as the output of an arctangent
transformation [19], to which the input is a ‘pseudo-stride
length’ lp. The arctangent transformation is defined as

l(lp) =
2

π
atan(

π

2
lp) + 1. (4)

This saturates the stride length output at 2 (meters) and
floors it at 0. lp is allowed to vary freely during EKF
estimation. Our state vector x technically contains lp instead
of l, but for a more intuitive understanding of our estimation,
we referred to it as containing stride length instead of its
‘pseudo’ counterpart. We also account for this change of
variable when taking partial derivatives; for example, within
the Jacobian H in the update step of the EKF, we multiply
all partial derivatives with respect to l by ∂l

∂lp
.

C. Measurement Model

In contrast to our simple linear process model, the gait-
state uses a non-linear function h(x) to predict both joint
angle and angular velocity measurements. The joint angle
measurements arise from a regressed gait model hgait(x)
trained on human biomechanical data, while the angular
velocity measurements can be estimated using the differentia-
tion chain rule. The gait model hgait(x) is trained offline, but
is evaluated in real-time. The continuous gait model hgait(x)
predicts global foot angle θf , global shank angle θs, global
thigh angle θt, and global pelvis angle θp (all potentially
measurable by sensors on a lower-limb wearable robot), and
this function is denoted by

θf (t)
θs(t)
θt(t)
θp(t)

 =


hf (x(t))
hs(x(t))
ht(x(t))
hp(x(t))

 = hgait(x(t)). (5)

Additionally, given knowledge of the phase rate ṗ, we can
also model the angular velocity of the foot θ̇f , shank θ̇s,
thigh θ̇t, and pelvis θ̇p using the differentiation chain rule:

θ̇f
θ̇s
θ̇t
θ̇p

 =


∂θf/∂p
∂θs/∂p
∂θt/∂p
∂θp/∂p

 ṗ (6)

where ṗ is the estimate of the phase rate from the prediction
stride and the partial derivatives of θf , θs, θt, and θp
are available analytically from the regressed gait model.
Phase substitutes in for stride time when parametrizing the
gait cycle. The full observation function is then h(x) =[
θf , θ̇f , θs, θ̇s, θt, θ̇t, θp, θ̇p

]T
. We selected these signals to

investigate as they are commonly available (via IMUs and
joint encoders) in lower-limb wearable robots, where the
exact combination of measurements depends on the hardware
and use case. In this investigation, we analyzed the impact of
using subsets of this 8x1 vector to drive gait state estimation
(e.g., using only shank angle and its velocity).

The gait model hgait(x) is regressed from labeled train-
ing data from a 10-subject able-bodied dataset [36], which



contains walking data grouped by strides, over a range of
speeds (0.8, 1, and 1.2 m/s) and ramps (-10 to 10 degree
inclination in increments of 2.5 degrees). Ground-truth phase,
phase rate, stride length, and ground inclination, along with
the measurements of the global angles at each condition, are
readily available from this dataset. The gait model hgait(x)
takes as input the gait state vector x and outputs the best-fit
estimates of the kinematic measurements.

For least-squares regression, hgait(x) is formulated as

hgait(x) = ϕTRT (x), (7)

where ϕ ∈ R144×4 is a matrix of real-valued model parame-
ters and R : R4 7→ R1×144 is a gait-state-dependent regres-
sor row-vector. The parameters ϕ are chosen to minimize the
sum squared error for each equation of the form(

θf (t) θs(t) θt(t) θp(t)
)
= R(x(t))ϕ, (8)

for all times t in the training dataset (treating each instant of
each step by each participant in each trial as a separate t).

The definition of R(x) makes extensive use of the
Kronecker product, ⊗ to construct large row-vectors from
smaller row-vectors. To review, the Kronecker product
of row-vectors A ∈ R1×N and B ∈ R1×M , ex-
pressed as A ⊗ B ∈ R1×NM , is the block row-vector
(a1B a2B · · · aNB). In the case of matrices A ∈
Rn×N , B ∈ Rm×M , this generalizes to

A⊗B =


a11B a12B · · · a1NB
a21B a22B · · · a2NB

...
...

. . .
...

an1B an2B · · · anNB

 ∈ Rnm×NM .

(9)
The regressor is defined as

R(x) = Bp(p)⊗ Λr(r)⊗ Λl(l)⊗ Λp(p), (10)

that is, it combines the effects of the four simpler behaviors
such that the final model depends on p, l, and r. The
components are as follows:

• Bp(p) : The Boolean selector row R 7→ R1×4,

Bp(p) =


(1, 0, 0, 0) if 0 ≤ p ≤ 0.1,

(0, 1, 0, 0) if 0.1 < p ≤ 0.5,

(0, 0, 1, 0) if 0.5 < p ≤ 0.65,

(0, 0, 0, 1) if 0.65 < p ≤ 1,

(11)

which divides the gait phase into four sections. In our
gait model, we chose four Bernstein polynomials (see
Λp(p) below) to represent the kinematics; Bernstein
bases have an equivalent span to polynomial bases and
have previously been useful in gait modelling [36]. The
sections were determined by inspection of the nominal
biomechanical kinematics in our dataset.

• Λr : The ramp angle basis (R 7→ R1×3) is a second-
order polynomial Bernstein basis in ramp angle,

Λr(r) =
(
(1− r)2 2(1− r)r r2

)
, (12)

which allows for continuous adjustment to ground slope.

• Λl : The stride length basis (R 7→ R1×3) is a second-
order Bernstein polynomial basis in stride length,

Λl(l) =
(
(1− l)2 2(1− l)l l2

)
, (13)

which allows for kinematic changes associated with
stride length.

• Λp : The phase-polynomial basis R 7→ R1×4 is a
Bernstein polynomial basis, defined as

Λp(p) =
(
(1− p)3 3(1− p)2p 3(1− p)p2 p3

)
. (14)

D. Measurement Model Constraints

To ensure desirable gait model properties, such as continu-
ity of the function hgait(x) (the global angle predictions) and
realistic behavior with changing stride length, the elements of
the parameter matrix ϕ are subject to constraints. To express
the C0 continuity of the model, we require lim

p→ρ−
hgait(x) =

lim
p→ρ+

hgait(x) for all 0 < ρ < 1 as well as the special wrap-

around case where lim
p→1−

hgait(x) = lim
p→0+

hgait(x). This is

trivially satisfied everywhere except at ρ = 0.1, 0.5, 0.65,
and in the wrap-around case. In these four cases, equality
constraints must be satisfied for all possible stride lengths
and ramp angles. We express this constraint on ϕ using a
matrix equality:

(1 − 1 0 0)⊗ Λ∀r ⊗ Λ∀l ⊗ Λp(0.1)
(0 1 − 1 0)⊗ Λ∀r ⊗ Λ∀l ⊗ Λp(0.5)
(0 0 1 − 1)⊗ Λ∀r ⊗ Λ∀l ⊗ Λp(0.65)[
(0 0 0 1)⊗ Λ∀r ⊗ Λ∀l ⊗ Λp(1)

−(1 0 0 0)⊗ Λ∀r ⊗ Λ∀l ⊗ Λp(0)
]
ϕ = 036×4, (15)

where

Λ∀r =

 Λr(10)
Λr(0)

Λr(−10)

 and Λ∀l =

Λl(0)
Λl(1)
Λl(2)

 (16)

serve to constrain all parts of the quadratic fits in r and l by
specifying three (arbitrary but unique) points of each.

To express the C1 continuity constraint, we exploit the
linearity of the Kronecker product. For almost all p we can
express the derivative

dhT
gait(x)

dp
=

[
Bp(p)⊗ Λr(r)⊗ Λl(l)⊗

dΛp(p)

dp

]
ϕ, (17)

since dBp(p)
dp is zero almost everywhere.

Note that dΛp/dp : R 7→ R1×4 is available analytically.
The resulting continuity constraint is then

(1 − 1 0 0) ⊗ Λ∀r ⊗ Λ∀l ⊗ dΛp/dp(0.1)
(0 1 − 1 0) ⊗ Λ∀r ⊗ Λ∀l ⊗ dΛp/dp(0.5)
(0 0 1 − 1) ⊗ Λ∀r ⊗ Λ∀l ⊗ dΛp/dp(.65)[
(0 0 0 1) ⊗ Λ∀r ⊗ Λ∀l ⊗ dΛp/dp(1)

−(1 0 0 0) ⊗ Λ∀r ⊗ Λ∀l ⊗ dΛp/dp(0)
]
ϕ = 036×4, (18)

simply requiring that the derivatives match on either side of
each potential discontinuity in p (for all values of r and l).



Fig. 1. The regressed continuous gait models for θf , θs, θt, and θp, left to right respectively. As each model depends on three input variables (p, l, and
r) and has one output variable (θf , θs, θt, or θp), the models reside fully in 4D-space and are thus difficult to plot. In this figure, the models are plotted
over phase and ramp (with stride length constant at 1 meter).

To ensure constant-with-phase behavior when stride length
is zero, i.e., when the person is standing still, we require

∀ Bp(p),︷︸︸︷
I4 ⊗

∀r, if l=0,︷ ︸︸ ︷
Λ∀r ⊗ Λl(0)⊗

∀ p︷ ︸︸ ︷
Λp(0)
Λp(

1
4 )

Λp(
1
2 )

Λp(
3
4 )

ϕ =

angles are constant︷ ︸︸ ︷
148×1 ⊗


c1
c2
c3
c4


T

.

(19)

The constraint takes a form similar to the Kronecker con-
struction of the regressor, but where the regressor has Bp(p),
the constraint uses an identity matrix. The purpose of this
is to expand the row dimension of the constraint so that it
applies to any of the four possible cases for Bp(p). Similarly,
where the regressor has Λp(p), the constraint has a block
matrix that constrains the polynomial at four points (enough
to ensure the third-order polynomial expression is equal to a
constant everywhere). Taken together, these two components
of the constraint equation force all four 3rd-order parts
of the piecewise polynomial Λ([p, ṗ, l = 0, r = 0]T )ϕ
to be constant for all the measured kinematics. Any four
unique phase points could replace the constants 0, 1

4 ,
1
2 ,

3
4

and achieve the same effect of constraining the 3rd-order
polynomials to be everywhere zero.

To enforce that the gait model has zero derivative with
respect to stride length at zero stride length, we apply a
constraint similar to (19), using dΛl

dl instead of Λl:

∀Bp,r, if l=0,︷ ︸︸ ︷
I4 ⊗ Λ∀r ⊗

dΛl

dl
(0)⊗

∀ p︷ ︸︸ ︷
Λp(0)
Λp(

1
4 )

Λp(
1
2 )

Λp(
3
4 )

ϕ

ignoring pelvis︷ ︸︸ ︷1 0 0
0 1 0
0 0 1
0 0 0

 =

d/dp=0︷ ︸︸ ︷
048×3 . (20)

We also constrain the pelvis to be a linear fit with respect to
stride length by constraining it to have a constant derivative
with respect to stride length (a constraint similar to (19) with
dΛl

dl instead of Λl).
We regressed the model using the constrained least-squares

optimization function lsqlin in MATLAB (Fig. 1).

E. Heteroscedastic Noise Model

We developed a heteroscedastic measurement noise model
that dynamically changes the measurement noise matrix ΣR

based on phase p. In this schema, ΣR is defined as

ΣR(p) = ΣR,sensor +ΣR,xsub(p), (21)

Fig. 2. The heteroscedastic measurement noise model as a function of
phase. Foot angle variance σ11, shank angle variance σ33, thigh angle
variance σ55, and pelvis angle variance σ77, are shown, along with their
respective covariances.

where ΣR,sensor is the traditional measurement noise ma-
trix that denotes how uncertain the measurements are, and
ΣR,xsub denotes the uncertainty present due to inter-subject
gait kinematic variability (subscript xsub for cross-subject).
In this schema, the heteroscedastic model not only encap-
sulates the uncertainty present due to each person’s unique
gait, but also can continuously change its trust in the data
to capture regions within the gait cycle where the measure-
ments are more trustworthy due to smaller inter-subject gait
variability (e.g., flat-foot contact). The matrix ΣR,sensor was
set as diag[σ2

11,r, σ
2
22,r, σ

2
33,r, σ

2
44,r, σ

2
55,r, σ

2
66,r, σ

2
77,r, σ

2
88,r],

with each σxx,r representing the standard deviation for
θf , θ̇f , θs, θ̇s, θt, θ̇t, θp, θ̇p, respectively. In our implementa-
tion, the σxx,r values that pertained to the angles and angular
velocities were set equal to 1 and 10 respectively.

For ΣR,xsub(p) we used the prior dataset to calculate the
covariance matrices of the measurement residuals y for the
eight measured kinematic variables at each of 150 phase
values (Fig. 2). The instantaneous ΣR,xsub(p) was then
calculated in real-time using the estimate of phase.

F. Candidate Bayes Filter Implementations

The first filter we tested was the Ensemble Kalman
Filter (EnKF), which uses Monte Carlo methods to ap-
proximate the state mean and covariance at each time step.
This allows for highly nonlinear measurement maps and
makes the fewest assumptions of the filters we tested. In
the EnKF, these expectations are tracked by N particles
X

(i)
k , i = 1, . . . N , which each evolve through the pre-

diction and update steps of the Kalman Filter. There is a



tradeoff between the number of particles used to track the
states and the computational times involved in the filter.
In our simulations, we use an EnKF with 1000 particles
(EnKF1000) and one with 100 particles (EnKF100). In this
formulation, each particle is fed through the dynamics and
individually corrupted by samples from the process noise.
Owing to the requirement that ΣQ be strictly positive definite
(due to directly needing to sample from the process noise
matrix), σ11 was set to 1e− 20 to approximate the noiseless
integration while maintaining positive definiteness; σ22, σ33,
and σ44 were set to 1e−2, 1e−2, and 1.5e−1 respectively.
State means and covariances were estimated by the empirical
means and covariances of X(i)

k (see [40]).
The Unscented Kalman Filter (UKF) is capable of

approximating the posterior mean and variance of nonlinear
functions up to the 3rd order [41]. For the update step of
the Kalman Filter, the UKF approximates the mean and
covariances of the states using quadrature integration and
carefully selected Sigma Points X [i] and weights w[i]. The
Sigma Points X [i] and w[i] were generated using α = 1e−3,
β = 2 for the Gaussian approximation, and κ = 0 according
to Wan and van der Merwe [41].

The Extended Kalman Filter (EKF) locally linearizes
the nonlinear parts of the system (the gait model) for
a simple approximation of the normal Kalman Filter. It
makes the strongest approximations about the problem, but
offers the best computational performance. State means and
covariances were updated using the linear Gaussian update
equations using the Jacobian of h with respect to the gait-
state vector x [43].

Fig. 3. The Bayesian filter and gait model regression processes. In this
cross-validation study, gait data from our dataset is segregated into training
strides from non-excluded subjects that are used to regress the gait model,
and validation strides from the subject being evaluated. The gait model is
then used within each of the four candidate Bayesian filters. The validation
strides contain sensor measurements that are input to the Bayesian filter,
which then uses the gait model to yield gait state estimates that are compared
to the true states from the validation strides.

G. Evaluation of Bayesian Filtering Problems

We evaluated each Kalman Filter with different measure-
ment configurations: 1) full, in which the filter had access
to foot, shank, thigh, and pelvis angle data (along with
their respective velocities), 2) four configurations in which
a different measurement was left out, 3) six configurations
in which the different permutations of two measurements
from the four kinematics were used (six configurations, e.g.,
shank-foot, thigh-pelvis), and 4) four configurations in which
each filter only had a single respective measurement. For
the purposes of abbreviation, the sensors present in each
configuration are given by a string composed of the first
letter of the angular measurement (foot, shank, thigh, pelvis)

aside from the full configuration, which contains all four
sensors (e.g., the configuration of shank-foot is ‘fs’). For
the simulations where angle sensors were dropped from
the filtering, the corresponding observation functions were
ignored during the filter calculations.

For each combination of filter type and measurement
model, we evaluated the combination’s gait-state estimation
on a simulated walking task that used the data from the
same dataset used to regress the gait model. To simulate
the filter’s performance on unseen subjects, we performed
a leave-one-out cross-validation on all ten of the dataset’s
subjects. For each subject, this cross-validation trained a
new gait model and heteroscedastic noise model using the
walking data from the remaining nine subjects. The subject’s
kinematic and walking data were then input to each filter,
which estimated the underlying gait-state (Fig. 3). Errors
for each of the states at each time point were calculated
as the difference between the state estimate and its respec-
tive ground truth state measurement from the dataset. This
process was repeated for all ten subjects, and the errors
were aggregated to obtain overall distributions that described
each filter combination’s performance in estimating each
element of the gait-state. For the EKF, in addition to the
configurations above, we evaluated the estimation of limited
subsets of the gait-state: 1) a subset where incline was
excluded (Cancel Incline), 2) a subset where stride length
was excluded (Cancel Stride Length), and 3) a subset where
phase and phase rate only where estimated (Phase Only).
This simulation was motivated by the potential for limited
sensor configurations to still estimate parts of the gait-state
vector. Ground truth measurements and state errors were
computed as in the simulation with the full gait-state vector.
To mitigate the effects of an increasing EKF bandwidth due
to the removal of states from the filter, the elements of ΣQ

were scaled in the following way: for Cancel Incline, σ33

was scaled by 0.5; for Cancel Stride Length, σ44 was scaled
by 0.5; for Phase Only, σ11 and σ22 were scaled by 0.5.
To obtain an overall metric for estimation performance, we
computed the Mahalanobis distance between the gait-state
estimate and the ground truth state at each time point. This
Mahalanobis distance was normalized using the average state
covariance matrix P̄k from the full-state, full-measurement
EKF simulation; for the simulations where subsets of the
gait-state were estimated, we used the subset of P̄k that cor-
responded to those gait-states. This error metric captured the
overall estimation performance of each combination of gait-
state and measurement configuration. We then normalized
these errors by the error from the full-state, full-measurement
EKF simulation to aid in comparisons.

III. RESULTS

Overall, the Extended Kalman Filter (Fig. 4A) was able
to consistently estimate the gait-state despite its restrictive
assumptions. With the full measurement configuration, the
EKF featured an average phase error of 0.01±0.02 (SD), an
average phase rate error of −0.01±0.03 1/s, an average stride
length error of 0.03±0.10 m, and an average incline error of
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Fig. 4. (A) The errors for all four elements of the gait-state for the four types of Kalman Filter, using each sensor configuration. The means are denoted by
the solid circles, with standard deviations given by the vertical lines. Generally speaking, the EKF and UKF provide the best estimation for the four states.
For the purposes of abbreviation, the sensors present in each configuration are given by a string composed of the first letter of the angular measurement
(foot, shank, thigh, pelvis) aside from the full configuration, which contains all four sensors (e.g., the configuration of shank-foot is ‘fs’). (B) Representative
results for the three Kalman Filters run in this simulation, with the full sensor configuration. These results were randomly selected from a single subject
in the in silico cross-validation. The ground truth states are shown in solid red, with the filter estimates shown in blue. Phase is not shown since it is not
perceptible at this time scale, but the estimation quality can be inferred from phase rate graphs. (C) EKF estimation performance for the fifteen measurement
configurations and four different state vector configurations. Combined state errors were calculated using the Mahalanobis distance weighted by the average
state covariance matrix from the baseline case (full sensing, full state, top-left). Errors were then normalized by the error of the baseline state, with higher
errors shown in darker colors.

0.08±1.86 degrees. Gait-estimation performance was similar
with the UKF (phase: 0.01±0.01, phase rate: −0.01± 0.03,
stride length: 0.03 ± 0.10, incline: 0.06 ± 1.96), while the
EnKF implementations with 1000 particles (phase: 0.03 ±
0.06, phase rate: −0.02 ± 0.05, stride length: 0.03 ± 0.10,
incline: 0.16± 2.66) and 100 particles (phase: 0.16± 0.14,
phase rate: −0.06±0.41, stride length: −0.45±0.33, incline:
0.44± 7.31) were less reliable.

A representative trial of each filter’s performance exem-
plifies these errors (Fig. 4B). For this representative trial,
we computed the average root mean square error (RMSE)
across all individual strides for each state variable. The EKF
(phase RMSE: 0.01± 0.009, phase rate RMSE: 0.02± 0.02,
stride length RMSE: 0.08±0.06, incline RMSE: 0.72±1.62
degrees) was again comparable to the UKF (phase RMSE:
0.01 ± 0.009, phase rate RMSE: 0.02 ± 0.02, stride length
RMSE: 0.08± 0.06, incline RMSE: 0.73± 1.64); the EnKF
with 1000 particles (phase RMSE: 0.03 ± 0.06, phase rate
RMSE: 0.03±0.04, stride length RMSE: 0.08±0.07, incline
RMSE: 1.2 ± 2.5) was also similar, while the EnKF with
100 particles (phase RMSE: 0.15± 0.15, phase rate RMSE:
0.27±0.25, stride length RMSE: 0.38±0.21, incline RMSE:
4.95± 4.42) was still the poorest estimator.

For the EKF implementation, removing the pelvis or shank

measurements did not excessively deteriorate estimation of
the full state vector in terms of the normalized Mahalanobis
distance metric. In some sparse sensing configurations (s,
t, f, sp, st, stp, ftp), gait-state estimation performance was
improved by removing either stride length or incline from
the state vector (Fig. 4C). Canceling the incline state seemed
to be more effective than cancelling stride length, with
the exception of sp, f, fp, and the full configuration. The
configurations of s, sp, and st were capable of estimating
phase accurately without the task variables.

IV. DISCUSSION

Despite being the filter with the weakest assumptions and
theoretically best ability to capture the gait-state probability
distribution as it evolves through the nonlinear gait model,
the EnKFs were overall the worst performing filter based on
gait-state errors. In particular, the EnKF with 100 particles
(EnKF100) was the worst filter overall, as it featured the
highest standard deviations for phase error and incline, and
significant biases for stride length error. While increasing
the number of particles from 100 to 1000 mitigates these
errors, the EnKF1000 is at best roughly equal to the EKF
or UKF. During the simulations, the added complexity in
the EnKF1000 led to drastically increased run-times when



compared to the EKF and UKF. Taken together, this indicates
that the added complexity from an EnKF may be unnecessary
for this gait-state estimation task, and instead a simpler EKF
or UKF may suffice for the control of an exoskeleton.

The EKF and UKF have close state errors and are thus
comparable in performance (Fig. 4A), particularly for the
measurement configurations with only a single sensor re-
moved. This has numerous implications for the potential
applications of the Bayesian framework to the continuous
control of lower-limb wearable robots. For example, the
gait model h at the heart of the filters must be linearized
in the case of the EKF, which can introduce significant
error. However, the EKF performed comparably to the UKF,
which can approximate models of up to the third order [41]
with more points, and the EnKF, which can more closely
approximate the output distributions during the update steps.
This indicates that the simple linear approximation of the
EKF is sufficient for gait estimation using the gait models
developed in this work.

The magnitudes of the phase error from the EKF (0.01±
0.02) are comparable to recent methods based on Gaussian
Processes [15] (phase RMSE: 0.04 ± 0.005) and machine
learning [23], [24] (0.07±0.03 from [23], 0.04±0.006 from
[24]), although direct comparison is impossible due to the
different testing methods. The EKF incline errors (0.08±1.86
degrees) are also similar to prior work that estimated ground
inclination in real-time using machine learning [44] (incline
RMSE: 2.15◦±0.29◦). As depicted in the representative trial
(Fig. 4B) for the EKF, stride length was generally the state
with the greatest estimation discrepancy. We also observed
this discrepancy in our prior work [18], and it is likely due
to the inter-subject variance in the gait model overpowering
the deterministic effects of stride length on the measurable
kinematics. However, in our prior work, this discrepancy
did not seriously affect exoskeleton torque assistance, which
depended on all the gait state elements, primarily phase.

In terms of the sensor configurations, predictably, the full
sensor array produced the lowest errors. However, some mea-
surement configurations, such as the foot-shank-thigh and
foot-shank, have comparable errors to the full configuration,
especially for the EKF. Taken together, these results point to
the EKF as being the best choice for the gait-state estimation
task, and motivated the simulation experiment using the
EKF to identify which subsets of the state vector can be
estimated using limited sensors. The simplicity of the EKF
also lends itself to straightforward implementation on actual
hardware (e.g., our recent work [18]), especially since the
most informative kinematic measurements (e.g. foot, thigh)
are usually readily available on numerous existing wearable
robots. While prior work in gait phase estimation yielded
good estimates of phase with thigh angle alone [19], [21],
[26], [27], [45], these approaches employed normalization
techniques that are not reproduced in our EKF’s thigh-only
estimation process.

When the measurement vector was limited in simulation,
some states were still able to be effectively estimated using
the EKF. In terms of the normalized estimation error outlined

above, limited sensing configurations such as foot-shank-
thigh and foot-thigh are comparable in error to the full-
sensing configuration for the full-gait-state case. In particular,
the pelvis measurement appears to be the least informative,
as configurations with it have similar normalized errors
as configurations without. Furthermore, the pelvis sensor
alone is easily the worst single measurement across all
four gait-state vectors. This suggests that this measurement
can be dropped in a practical implementation of the EKF.
Conversely, for the most limited case of phase-only state
estimation using the EKF, the shank measurement is the
optimal choice if only a single measurement is allowed. This
indicates that the shank measurement is among the more
informative measurements within the EKF framework, and
should thus be prioritized in allocating sensors. The overall
flexibility of the sensor configuration is a strength of the
continuous gait model at the heart of the Kalman Filter.
Unlike past methods for estimating the gait-state which
required explicit rules to handle new measurements [21],
[22], the EKF can incorporate new measurements by simply
regressing a relation between the gait-state and the kinematic
measurement offline, and then extending the measurement
vector in the Kalman Filter. Similarly, in this study, we
chose the task variables of stride length and incline as they
can parametrize a broad array of gaits; however, the gait
state vector could be easily extended to include other task
variables depending on the application’s demands, such as
stride height for ascending stairs, or walking stability for
slippery terrains.

V. CONCLUSION

We investigated the challenge of estimating gait behavior
(phase and task variables) using Bayesian filtering with the
sensors available to lower-limb wearable robots. We found
this estimation problem to be tractable in silico, even with
restrictive EKF assumptions and sparse sensing configura-
tions. Our results suggest that an EKF is a good choice for
continuously estimating phase and task to drive and adapt an
exoskeleton controller. Furthermore, reduced gait-states can
be estimated with far fewer measurements using the proposed
framework (for example, shank can be used alone if the user
wishes to only estimate phase). Future work will involve
testing these Kalman Filters on actual exoskeleton hardware,
including modular joint configurations [46], to validate them
in the real world.
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