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Abstract— Existence of disturbances in unknown environ-
ments is a pervasive challenge in robotic locomotion control.
Disturbance observers are a class of unknown input observers
that have been extensively used for disturbance rejection in
numerous robotics applications. In this paper, we extend a
class of widely-used nonlinear disturbance observers to unde-
ractuated bipedal robots, which are controlled using hybrid
zero dynamics-based control schemes. The proposed hybrid
nonlinear disturbance observer provides the autonomous biped
robot control system with disturbance rejection capabilities,
while the underlying hybrid zero-dynamics based control law
remains intact.

I. INTRODUCTION

Achieving agile and efficient bipedal locomotion for auto-
nomous biped robots and powered prostheses is of paramount
importance in both humanoid and rehabilitation robotics.
Hybrid zero dynamics-based (HZD) control is a framework
for stable control of underactuated biped robots and powered
prosthetic legs with hybrid dynamics, where the system
trajectories can flow in continuous time and also jump at
discrete times due to rigid impacts of the biped leg with
the ground [1]-[8]. In this paradigm, stable walking gaits
are encoded as re-programmable relations between the robot
generalized coordinates, which are enforced via feedback.

Existence of disturbances in unknown environments is a
pervasive challenge in HZD-based control of autonomous bi-
pedal robots [9]. Furthermore, in the context of rehabilitation
robotics, persistent human inputs might act as disturbances
on the wearable robot HZD-based control scheme [10].
These disturbances can deteriorate the performance of the
robot motion control systems and even adversely affect their
stability. An intuitive idea to counteract the deteriorating ef-
fect of disturbances on motion control systems is to estimate
unknown disturbances by using the measured outputs and
the known control inputs. The estimated disturbance can
then be employed for canceling the actual disturbances in
a feedforward manner. A class of unknown input observers,
known as disturbance observers (DOBs), uses this intuitive
idea for improving the control system performance in the
presence of disturbances [11]-[13].
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The feedforward nature of disturbance compensation in
DOB-based control has made it a notable candidate for being
employed with previously widely used control schemes,
which have been designed for disturbance-free operating
conditions. Indeed, if DOBs are properly designed for the
application at hand, they will provide the previously designed
controller with disturbance rejection capabilities, without
requiring to change the nominal control structure [12].

A special class of DOBs and its nonlinear extension,
namely, nonlinear disturbance observers (NDOBs), due to
Ohnishi, Chen, and collaborators [11]-[15], have recently
attracted much attention in numerous robotics applications
such as control of upper-limb robotic rehabilitation [16],
robotic exoskeletons [17], and robotic teleoperation [18],
[19], to name a few. In the context of bipedal locomotion,
Sato and collaborators have employed DOBs to reject dis-
turbances in zero moment point (ZMP)-based biped robot
control systems [20], [21]. However, this prior body of work
has mainly focused on fully actuated biped robots. In a recent
article by Abe and collaborators [22], DOB-based control has
been compared to HZD-based control of an underactuated
five-link biped robot for balance recovery, where the two
control schemes are contrasted to each other.

Using DOBs along with HZD-based controllers for legged
locomotion is still lacking in the literature. Indeed, there
exist two inherent challenges in underactuated locomotion
settings. First, having less control inputs than degrees-of-
freedom (DOFs) in underactuated robots makes it impossible
to cancel all disturbances that are acting on the robot DOFs.
Second, the underlying hybrid dynamics in biped locomotion
necessitates the design of jump maps for NDOB states after
each robot leg impact with the ground.

In this article, we extend the class of NDOBs in [14], [15]
(also, see [23] for a survey tutorial on NDOBs) to unde-
ractuated robotic locomotion and demonstrate that they can
provide HZD-based controllers with disturbance rejection
capabilities. Indeed, the underlying HZD-based controllers,
which are designed under disturbance-free operating condi-
tions, are not required to be changed.

Our proposed hybrid NDOB for underactuated bipedal
robots extends the previous class of NDOBs in two important
ways. First, through a geometric construction, we design a
projection operator for the NDOB output, i.e., the lumped
disturbance estimate, so that the projected outputs can be em-
ployed to compensate for the adverse effects of disturbances,
which are preventing the HZD-based controller from zeroing
the outputs. Second, we provide jump maps that update the
NDOB states after each leg impact with the ground; thus,
making the NDOB a hybrid observer. In the presence of



disturbances, we prove the stability properties of the NDOB.

The rest of this paper is organized as follows. In Section II,
we provide preliminaries from bipedal robotics and HZD-
based control. Next, in Section III, we present the standard
NDOB and highlight the challenges of using it in underactu-
ated bipedal robots with hybrid dynamics. In Section IV,
we present our hybrid NDOB for underactuated bipedal
robots. Thereafter, in Section V, we prove the convergence
properties of the proposed hybrid NDOB. In Section VI, we
present simulation results for push recovery in a five-link
biped robot with point feet. Finally, we conclude the article
with remarks and potential research directions in Section VII.

Remark 1: There exists another class of hybrid obser-
vers that has been employed for estimating the states of
bipedal robots controlled using HZD-based controllers (see,
e.g., [24], [25]). In this article, however, we are proposing an
observer for unknown input, in contrast to state, estimation.
Notation. We denote R, = [0, 00). Given two vectors
(matrices) a, b of suitable dimensions, we denote by [a; b]
the vector (matrix) [a",b"]T, where T denotes the transpose
operator. Given an integer N, we denote by Iy the identity
matrix in RV*N, Given a vector v in RY, we denote by
||v]| its Euclidean norm. Given a set A C RY and a point
r € RN, we denote by |||, = inf,c4 ||z —yl| the distance
of x to A. Given an open and connected set @ C RY
and a function h : @ — RN~1 we denote by h=1(0) its
zero level set, i.e., h=1(0) := {q € Q : h(q) = 0}. Given
two square matrices A, B € RV*¥  we denote by B < A
the positive semi-definiteness of the matrix A — B. Given
a matrix A € RM*N we denote by Ker(A) and Im(A) its
kernel and image, respectively. A function o : Ry — Ry
belongs to class-XC if it is continuous, zero at zero, and
strictly increasing. A function §: Ry x R, — R belongs
to class-KCL if: (i) for each ¢t > 0, S8(-,t) is nondecreasing
and lim,_,o+ B(s,t) = 0, and (i) for each s > 0, 5(s, ") is
nonincreasing and lim;_,, 5(s,t) = 0.

II. PRELIMINARIES

In this section we briefly review the hybrid dynamical
model of underactuated planar biped robots with point feet,
the notion of solutions for the biped robot hybrid dynamics,
and some standard material from the HZD-based control
framework (see, e.g., [1]-[3] for further details).

A. Hybrid Dynamical Model of Biped Robots

Given an underactuated planar biped robot with point feet
that is subject to time-varying disturbances (see Figure 1),
its equations of motion during swing phase are

M(q)§+ Clg, 9)q+ G(q) = Bu+d(t), (¢,9) ¢S, (D)

where the vectors ¢ = [q1,---,qn]" € Q and ¢ =
[41, -+ ,4n]"T € RY denote the joint angles and the joint
velocities, respectively. The set Q, called the biped confi-
guration space, is assumed to be an open and connected
subset of RY. The state (q,q) of dynamical system (1)
belongs to the state space X := Q x RY. Moreover, M (9),

Fig. 1: An example five-link underactuated planar biped
robot.

C(q,q), and G(q), denote the inertia matrix, the matrix of
Coriolis/centrifugal forces, and the vector of gravitational
forces, respectively. Having articulated joints,

vily 2 M(q) =2 v2ln, 2

is satisfied for all ¢ € Q, and some positive real constants v
and 15 [26]. The vector of control inputs u belongs to U/, an
open and connected subset of RN and B € RV*X(N-1)
is assumed to be constant and of full rank N-1. Under
this assumption, there exists a non-zero row vector Bt €
RN such that B*B = 0. We say that system (1) has
one degree of underactuation. In (1), the vector of time-
varying disturbances, which lumps the effect of disturbances
that are acting on the robot, is denoted by d(t). We make
the following assumption regarding the lumped disturbance
signal time derivative, which generalizes the bounded rate
of change assumption for disturbances encountered in the
NDOB literature (see, e.g., [23]).

DH1) We assume that the time derivative of the lumped
disturbance signal d(-) is Lebesgue measurable and

1d(t)]] < wa, 3)

for almost all ¢ > 0 (in Lebesgue sense) and some positive
constant wy. Moreover, we assume that jumps in the lumped
disturbance happen only at biped leg impacts with the
ground. We denote

Adj == d(t]) —d(t}), 4)

if there is a jump in the disturbance at the j-th impact.
The vertical height from the ground and the horizontal
position of the swing leg end, with respect to an inertial
coordinate frame, are denoted by p}(q) and pi(q), respecti-
vely. The set S, called the switching surface, is defined as

S:={(g,4) € X : p(q) = 0, ph(q) > 0}. (5)

The switching surface in (5) is assumed to be a smooth
codimension-one embedded submanifold of the state space
X (see, e.g., [2], [3]). The double support phase is assumed
to be instantaneous and modeled by the rigid impact model

[q":¢"] =180 3 84(¢7 )47 ), [ 547 1€S, (6)



where [¢7;¢™] and [¢"; 7| denote the states of the robot
just before and after impact, respectively. Furthermore, the
mappings A, (-) and Ay(-) are assumed to be smooth (see,
e.g., [3]). The biped dynamics are described by the hybrid
dynamical system in (1)—(6), which can be written as

z = f(x)+ g(x)u+ ga(x)d(t), for x ¢ S )
zt =A(z7), forz” €8

where © :=[¢;¢] € X, Ax) := [Ayq; Aydl,

Py— IN
f(x) = |:M1(q){ —C(q,9)i—G(q)}]”

and
g(x) == [0; M~ (q)B], ga(z) := [0; M~ (q)] .

Suppose that a state feedback control law of the form
u = u'®(x) is given for the dynamical system in (7) and the
disturbance signal satisfies DHI. A function ¢ : [to,t¢) —
X, t;y € RU{oo}, ty > to, is a solution of (7) if: 1) ¢(t) is
right continuous on [t,tr), 2) left limits exist at each point
of (to,%s), and 3) there exists a closed discrete subset 7 C
[to,tf) such that: a) for every t ¢ T, o(t) is differentiable
and (dep(t)/dt) = f((t))+g((t))u"(@()+ga(0(1))d(t),
and b) for t € T, ¢~ (t) € S and o™ (t) = A~ (¢)). A
solution ¢(t) of (7) is periodic if there exists a finite ¢* > 0
such that @(t +t*) = p(¢) for all ¢ € [ty,00). A set O C X
is a hybrid periodic orbit of (7) if O = {¢(t)|t > to} for
some periodic solution (). We say that a solution to (7) is
maximal if it cannot be extended. Given a disturbance signal
d(t), we denote the set of all maximal solutions to (7) with
initial condition ¢ by T'y(xq).

B. Hybrid Zero Dynamics Control Framework

HZD framework relies on the concept of virtual con-
straints. Virtual constraints are relations of the form h(q) =
0 among the joint variables of a legged robot that encode
stable walking gaits [1]-[4]. Using a given virtual constraint,
an output of the form

y = h(q) = Hoqg — ha 0 0(q), ¥

is considered for the biped hybrid dynamics (1)-(6), where
Hy € RW=DXN s a matrix of full rank N — 1 and Hoyg
represents a set of body coordinates for the biped. Moreover,
ha(-) = [R§()5-++ shy ()] is a vector of N — 1 Bézier
polynomial functions hj : @ — R, 1 < i < N — 1.
Furthermore, the function 6§ : Q@ — R, 6(q) = cogq, is
called the phase function (see Figure 1). In the above, the
row vector ¢g € RN is chosen such that [Ho; co] €
RY*N is invertible. Moreover, the zero level set h~1(0)
is a one-dimensional curve in Q with no self-intersections.
We make the following standard assumptions, following the
HZD framework, regarding the output function y = h(q)
in (8).

OH1) The output function y = h(g) in (8) is designed to
have well-defined vector relative degree {2,---,2} for

all ¢ € h'(0). The vector well-defined relative degree
condition holds if and only if

Alg) = 2

-1
5 M @B, )
is an invertible matrix for all ¢ € h~1(0). The matrix A(q) €
RW-Dx(N=1) is called the decoupling matrix associated
with the virtual constraint in (8). A
OH2) The output function y = h(g) in (8) is designed to
be invariant with respect to impacts with the ground. In
particular, let the post-impact and pre-impact biped joint con-
figurations and velocities be related to each other through (6).
We say that the output function y = h(q) is hybrid
invariant, if whenever h(g, ) = 0 and (0h/9q)(¢~ )¢~ =0,
then h(q™) = 0 and (0h/dq)(¢")¢T = 0. A

Once the hybrid invariant outputs in (8) are zeroed using
proper control inputs, the biped configuration variables and
joint velocities evolve in the set

2 ={(¢.d) €TQ : h(g) =0, §g=0},

which is called the hybrid zero dynamics manifold asso-
ciated with the outputs in (8). It can be shown that

[&1;62] = E([g:4]) := [0(0);v0(0)d] , (11)

is a valid change of coordinates on Z, where vy(q) :=
B* M (q). Given the coordinate ¢;, the configuration

q(&1) = [Ho;Co]_1 - [ha(€1): &,

zeros the output y = h(q) in (8).

Once the states are constrained to Z via feedback, the re-
sulting closed-loop motion is governed by lower-dimensional
dynamics, called the hybrid zero dynamics (HZD). The
HZD in [£1; &) coordinates are given by

[61; 2] = [K1(&2)&23 ka2 ()], for (&1,82) € [07,67) x R
[gi‘r’g;-] = [0+§5zer0€2_]v for (51_752_) € {67} xR

(10)

12)

(13)
for a proper real constant d,, (see Equation (5.67) in [3]).
Moreover, 0~ := 0(qy ) and 6+ = 0(qd) are the values

of the phase function just before and just after the ground
impacts. Also,

m(€) == B M(g(6) 2

oV
-B+—
dq

, K2(&1) = )
(&) ) 0 ly(er)
where ¢(£;) is given by (12) and V'(q) is the potential energy.
The following hypothesis provides the relationship bet-
ween hybrid periodic orbits that represent stable walking
gaits with hybrid invariant outputs for the biped robot dyn-
amics.
CH1) Given the underactuated biped robot dynamics in (1)-
(6), we assume that there exists an output of the form
y = h(q) satisfying OH1 and OH2, and an input-output
feedback linearizing controller u,(g,¢) associated with the
given output, such that when d(t) = 0, u,(-) drives the
output y = h(q) to zero and by doing so makes the hybrid
periodic orbit

O :={(¢*(t), " ()0 <t < t*}, (14)
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Fig. 2: Block diagram of a DOB-based control system.

with period ¢* > 0, exponentially stable for the resulting
closed-loop hybrid dynamics. The hybrid periodic orbit O
in (14) represents a stable robot walking gait. Designing
such feedback controllers and outputs has been extensively
investigated in, e.g, [2]-[5]. A

III. STANDARD NDOB STRUCTURE

In this section we briefly present the structure of the
standard NDOB and its limitations for being employed
in underactuated biped robot control systems with hybrid
dynamics.

Given a nonlinear control system and a nominal control
law wu,(x), the underlying mechanism of NDOB operation
can be explained as follows (see also Figure 2). Using
the state and input information, the NDOB estimates the
disturbance d(t), which is deteriorating the performance of
the nominal controller. The NDOB output d is then added
to the nominal control input in the following feedforward
manner:

U= up(x) —d. (15)

In the ideal case, when d= d(t), the disturbances acting on
the system would be canceled out and the nominal control
input u,(x) would achieve the desired objectives, without the
need to modify the nominal controller. The NDOB dynamics
for the robot swing phase dynamical equations in (1) are
given by (see [14], [15], [23] for the details of its derivation)

—Li(9)z + Li(9){C(q,¢)q + G(q) — Bu—p°(4)},
z+p°(q), (16)

where z € RY is the state of the NDOB. The auxiliary
vector and the gain matrix of the NDOB are given by

p°(q) = X', Liq) = X' M~ (q).

Z =

d =

a7

respectively, where X. € RV*¥ s a constant symmetric and
positive definite matrix depending on a positive constant €.
For simplicity of exposition, we let X, = (¢/v3)Iy, where
V9 is the positive constant in (2). Finally, NDOB disturbance
tracking error is defined to be

eq:=d—d(t). (18)

When d = d(t), namely, in the ideal case, ¢4 = 0. We
have the following proposition regarding the NDOB error
dynamics.

Proposition 1 ([14], [23]): Consider the biped robot
swing phase dynamics in (1). Consider the NDOB in (16)

with auxiliary vector and gain matrix given by (17). The
NDOB error dynamics, during the swing phase, are governed
by

g = —L5(q)eq +d. (19)

Moreover,
1
—e4 L5(q)eq < —g||ed||2, forall g€ Q,eq €&, (20)

where £ C RY is open, connected, and contains the origin.
Limitations of the standard NDOB. There are two main
challenges in employing the conventional NDOB in (16)
for an underactuated biped robot with hybrid dynamics
given by (1)—(6). First, the underactuated dynamics of the
biped make it impossible to use the feedforward disturbance
compensation according to (15) because the NDOB output
d belongs to RV, while there are only N — 1 motor torque
inputs. Therefore, there is a need for projecting the NDOB
output onto the space of control inputs in a proper manner
so that the disturbance components that are preventing the
output y = h(q) to be zeroed are compensated for. Second,
because of the hybrid nature of the biped robot dynamics,
it is non-trivial how the NDOB state and output should be
updated after each impact of the biped robot leg with the
ground.

IV. HYBRID NDOB DESIGN

In this section we extend the NDOBs, due to Chen et
al. [12], [14], [15], that were previously used for fully
actuated robots. The resulting extended hybrid NDOBs can
be employed along with previously designed HZD-based
controllers for underactuated biped robots subject to distur-
bances.

A. NDOB Output for Underactuated Robots

The following technical lemma will be useful for desig-
ning a projection operator for the hybrid NDOB.

Lemma 1: Consider the underactuated biped dynamics
given by (1)—(6). Suppose that the output y = h(q) for the
biped dynamics satisfies OHI. Given any v € R, there
exists a neighborhood of A~1(0) such that for all ¢ in it
there exist vectors v™ € RVN~! and vl € Ker((?h/(?q)fq such
that

v = Bv™ + M(q)v!.
Proof. See the Appendix.

Remark 2: The geometric interpretation of Lemma 1,
when ¢ belongs to h~1(0), is shown in Figure 3.

Proposition 2: Consider the underactuated biped dyna-
mics given by (1)—(6). Suppose that the output y = h(q)
satisfies OH1. Consider the projection operator I3 : Q —
RN —1’

21

on
[“)7in (9)),

where A(q) is given by (9). Consider an arbitrary vector
v € RN with its decomposition in (21). There exists a

a(q) := A~ (g)( (22)
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Fig. 3: Geometric interpretation of Lemma 1 when ¢ €
h=1(0). The vector vll is tangent to A=1(0) at q.

neighborhood of A ~1(0) such that for all ¢ in it, we have

o™ = T4(q)v. (23)

Proof: Given an arbitrary vector v, there exists a neig-

hborhood of A~1(0) such that (21) holds, due to Lemma 1.
Multiplying both sides of (21) by II4(q), we get

_ oh
Ma(g)o = A7 (9) (5, M (@) (Bo™ + M(q)ol)
oh oh
A1 91 rh —1,.91
Since vl € Ker(ah/aq)|q and %ZMfl(q)B = A(qg), it can
be easily seen that (23) holds. |

Using the projection operator in (22), we project the
standard NDOB output in the following way

d™ = Tla(q)d, (24)
and apply the DOB-based control input
u(g, ¢,d") = un(q,4) —d", (25)

to the underactuated biped robot in (1)-(6). The following
proposition gives the biped robot output error dynamics when
the NDOB-based control law in (25) is used.

Proposition 3: Consider the biped robot dynamical sy-
stem in (1)—(6) and the NDOB in (16), with the auxiliary
vector and the gain matrix in (17), and the projected output
given by (24). Given an input-output feedback linearizing
control law wuy, (g, ¢) for the output y = h(g), which satisfies
OHI, and applying the NDOB-based control input in (25),
the output error dynamics during the swing phase are given
by

j=—Kpy— Kay — %M’l(Q)ed,
where K, and K, are the PD gains of the feedback line-
arizing controller, and eq4 is the disturbance tracking error
in (18).
Proof: We only provide a sketch of the proof. Taking two
derivatives of the output y = h(g), we have

_ %M‘l(q)B(un — %)+ S @) + 6l ),

dq
where J (g,¢) is a smooth function of ¢ and ¢ independent
of uy,, d™, and d. Note that A(q)ua(q,q) + 6(g,q) is equal
to —K,y — K4y for an input-output feedback linearizing

(26)

i

controller u,. Using the identity (23) and the definition of
IT4(g) in (22), we get
Oh _ _

oh .
i = A(q)u, ) — —M~(q)BII =M
i = A(q)un+6(q,q) 94 (q)BMg(q)d + 94

— Ky Kuj - g—’;M—%q) (d(t) - d).

Using (18) in the above identity concludes the proof. [ ]
Having obtained the output error dynamics, the following
proposition shows the disturbance effect on the biped robot
swing phase zero dynamics.

Proposition 4: Consider the biped robot hybrid dynamics
in (1)—(6), and the NDOB given by (16), (17), and (24), and
the DOB-based control law in (25), respectively. Given a
disturbance signal d(t), consider its decomposition according
to (21). The tangential component of the disturbance d(-)
perturbs the swing phase zero dynamics in (13) according to

"(q)d

& = k1(&1)6
{52 = walEr) + (& (D) @n
where
(&) = B*M(q(&)) (28)

and dll(t) € Ker(@h/@q)}q(&),
Proof. See the appendix.
Remark 3: Proposition 4 should be of no surprise, as we
have less control inputs than the biped robot DOFs and
cannot cancel the disturbances in all directions. Indeed, we
have already used all the /N —1 actuated directions, according
to (25), to compensate for disturbance components that are
preventing the output y = h(q) from being zeroed.

B. Design of the NDOB Jump Map

In this section we address the issue of updating the NDOB
states after each impact of the robot swing leg with the
ground. Since C(q,q¢)d + G(q) — Bu = —M(q)§ + Bd(t)
during the swing phase, it can be seen from the NDOB
dynamical equations in (16) that the NDOB states depend
on the joint accelerations. Also, the biped robot joint acce-
lerations are affected by impulsive forces after each rigid
impact of the swing leg with the ground. Indeed, at any
instance of time ¢; at which a rigid impact with the ground

where ¢(&1) is given by (12).

31
happens, we have j:li §(r)dr = ¢t — ¢, where t; and

t}L represent the time instants just before and just after the
impact, respectively. The joint velocities ¢~ and ¢ at these
two time instants are related to each other through (6). Before
finding the relationship between the pre-impact and post-
impact NDOB states, we assume the following regarding
the NDOB states, which will be formally proved in the next
section (see Theorem 1).
DOBH1) The NDOB states in (16) and the robot joint
velocities remain essentially bounded for all ¢ > 0. VAN

We consider the impact time instant ¢; and integrate both
sides of (16) from ¢, to t?‘ . We have

t 4

/f A1) dr = _/r La(q(r))2(7) dr +

1 1



Fig. 4: The proposed hybrid NDOB structure.

| Batatr){ = Mlaitr) = 0(0) + i)}

Due to DH1 and DOBH1, we have
t

o= o / * La(a(r) M (g(r))i(r).

1

Since NDOB gain matrix L4(g) is given by (17), we have
XN —d0).

Using the above calculation, we propose to use the jump
map

2T —27 =

Z+ = Ad(ziaqivq.i)a
Ad(zivqivqi) =z - Xeil(Aq(qi)qi - qi)a

(29a)
(29b)

for the NDOB states after each impact of the biped swing
leg with the ground, where A,(-) is given by (6).
Using the definition of d, we have

dt =2t 4p7 (") = - XN (AglgT)qT —47 )+ X1
—~ N——

an P

Therefore, dt = 2~ + X_"¢~. From (16), it can be easily
seen that

dt =d~. (30)

Moreover, given an impact time instant ¢;, corresponding to
the j-th leg impact with the ground and under DH1, we can
integrate both sides of (20) from ¢; to ¢, to obtain

ey =ey +Adj, 31

where Ad; is defined in (4).

V. NDOB-BASED CONTROL STABILITY ANALYSIS

For the underactuated biped robot hybrid dynamical sy-
stem given by (1)—(6), we have proposed the following hy-
brid NDOB, whose overall structure is depicted in Figure 4,

i =—L5(q)z + Ly(q){N — Bu—p(¢)}, for (¢,4) ¢ S
2t =AMa(27,q7,47), for (¢7,¢7) €S

d=z+p°(q)

(32)
where N := C(q,q¢)¢ + G(q), and p3(q), L5(q) are given
by (17). Furthermore, NDOB jump map Agy(-) is given
by (29). Given the nominal control input u, (g, ¢) in CHI, we
propose to employ the DOB-based control law given by (25)
with the projection operator ITy(¢q) given by (22) and the
disturbance estimate d given by (32).

For the closed-loop dynamics of the biped robot under the
DOB-based control law in (25), we consider the coordinates

na = [T; eq], (33)

where
T = [n1;n2; €15 &a), 34
with [ni;m2] = [y;9], y = h(q) is given by (8), § =

(0h/0q)q, and [£1; &2 are the zero dynamics manifold coor-
dinates given by (11). We have the following proposition
regarding the closed-loop dynamics of the biped robot.

Proposition 5: Consider the biped robot hybrid dynamics
in (1)—(6), under the DOB-based control law in (25), with
the hybrid NDOB in (32). Then, in a neighborhood of the
zero dynamics manifold associated with the output y = h(q),
[; eq] — [T; eq] is a valid change of coordinates and the
closed-loop dynamics of the biped robot and the NDOB can
be written as

&= F(z,eq) + Gq(z)dl(t) for (¢~,¢") ¢S
éa = F=(Z,eq) +d(t) for (g=,47) ¢S
zt=A(z") for (¢, ) €S

ef = A(m_,ed_) +Ad; for (¢7,47) €S

(35)

where Ad; and z are defined in (4) and (34), respecti-
vely. Furthermore, F(Z,eq) = [no;—Kpm — Kane —
(8h/Bq) M~ eq; k1 (&1); ka(61)E2), Ga(Z) = [0;0;0;¢(&1)]
with ((&;) defined in (28), F°(Z,eq) = —L5(T)eq, and
Az eg) =e].

Proof: The proof follows directly from Propositions 3, 4,
and the NDOB tracking error jump map given by (31). H
The next proposition and the theorem following it state
that the biped robot and the hybrid NDOB interconnected
dynamics have an exponentially stable periodic orbit, which
is induced by the periodic orbit in (14), in the presence
of constant disturbances with zero tangential component.
Moreover, in the presence of time varying disturbances with
bounded tangential component, the induced periodic orbit is
locally input-to-state stable for the biped robot and the hybrid
NDOB interconnected dynamics.

Proposition 6: Consider the biped robot and the hybrid
NDOB interconnected dynamics given by (35). Consider the
periodic orbit O in CHI. If dll(t) = 0, d(t) = 0, and Ad; =
0, for all £ > 0 and all impact moments ¢;, then there exists
€* such that for all € € (0, 5*], the orbit

Ot =0 x {0} CX xE, (36)
is an exponentially stable periodic orbit of (35).
Proof: Proof is removed for the sake of brevity. [ ]

Theorem 1: Consider the biped robot and the NDOB
closed-loop hybrid dynamics given by (35) with disturbance
inputs d(-) satisfying DH1. Consider the exponentially stable
hybrid periodic orbit Ogy in (36). Then, Oy is locally input-
to-state stable for the biped robot and the NDOB closed-loop
dynamics. Namely, there exist > 0 and class-/CL function



¢ such that for each nap € {||ndallo,, < r}, the maximal

solutions to (35) with initial condition 74(0) = 740 satisfy

Hnd(t)HOex[ < max {L(Hnd(O)HOexnt)awd}v vt > 0. (37
Proof: The closed-loop dynamics of the biped robot and
the NDOB are given by (35). From Proposition 6, it follows
that the set O is pre-asymptotically stable for the dynamics
in (35) with inputs dll(t), d(t), and Ad;. Using Proposition
2.4 and Definition 2.3 in [27], (37) follows. |

VI. SIMULATION STUDIES

In this section we present simulation results for push
recovery in a five-link biped robot with point feet corre-
sponding to the biped robot RABBIT [28] (see Figure 1).
The physical parameters of the robot are taken from [28]
and will not be presented here for the sake of brevity. The
hybrid invariant outputs for the biped robot dynamcis have
the form given by (8) and are taken from [28]. Initiating the
biped robot states on the hybrid periodic orbit O induced
by the outputs in (8), we start applying a push disturbance
Fy(t) = [fx(t); 0] at the joint connecting the torso and the
two legs, where fy(t) is a trapezoidal signal that starts from
zero at t = 2 seconds, reaches to —10 N at ¢ = 3 seconds,
lasts for three seconds, and goes from —10 N to zero in one
second. The time-varying disturbance acting on the biped
is then equal to d(t) = J ' (q(t))Fy(t), where J(q) is the
proper Jacobian matrix [29].

When no NDOB is used along with the nominal control
law, the biped robot stops walking at about 5.5 sec. When
the NDOB-based control law in (25) with € = 0.1 in (32)
is employed, however, the biped robot manages to recover
from the applied push disturbance. Figure 5 depicts the 2-
norm of the motor torques, the 2-norm of the output tracking
error, and the 2-norm of the disturbance tracking error,
when the NDOB-based control law in (32) is used. Figure 6
depicts phase plots of the biped robot in the absence of push
disturbance and in the presence of push disturbance with and
without NDOB.

VII. CONCLUSION AND FURTHER REMARKS

In this paper, we extended a class of NDOBs to underac-
tuated bipedal robots, which are controlled using HZD-based
control schemes. The proposed hybrid NDOB addresses
the issues of underactuation and hybrid dynamics in biped
robots. The proposed extension to NDOBs further motivates
investigation of disturbance observers for robust control
of powered prostheses used in rehabilitation robotics. An
interesting question, as first posed by [10], is whether to
treat persistent human input as a disturbance in HZD-based
control of powered prostheses.

APPENDIX

Proof of Lemma 1. Due to OHI and by continuity, A(q) is
also invertible in a neighborhood of h~1(0). Consider an ar-
bitrary point ¢ in this neighborhood. Define v’ := M ~1(q)v.
First, we claim that Ker(ah/(’?q)|q NIm(M~1(q)B) = {0}.

Suppose, by way of contradiction, that there exists v # 0
such that v € Ker(ah/aq)’q N Im(M~1(q)B). Then, v =
M~1(q)Bw for some w # 0. Since v € Ker(0h/dq)
(0h/0q)v = 0. Therefore, we have

on M~(g)Bw =0= A(q)w = 0.

0q lq
This is a contradiction. Therefore, Ker(0h/dq)| N
Im(M~*(q)B) = {0}. Moreover, dim(Im(M ~*(¢)B)) =
N —1 and dim(Ker(9h/dq) ’q) = 1. Thus, there exist vectors
v™ € RN=1 and vl € Ker(c‘?h/aq)|q such that

, then
q

v =l + M~ (q)Bo™.

Multiplying both sides by M (q) concludes the proof. W
Proof of Proposition 4. The proof can be carried out exactly
to the proof of Theorem 5.1 in [3, Chapter 5]. We only show

that & = ra(&1) + i (€1)dl (t). Since

. LanT q
& = [ 2250% B {—Ml(q) (Ci+G - )]

(see [3, pp. 121-122]), we have

€ = ra(&1) + B M(q(€1)) M~ ((&))d(t),

where ¢(&;) is given by (12). Since d(t) = Bd™(t) +
M(q(¢1))dl(t) on Z, due to Lemma 1, we have

€2 = 2(€1) + BLBd"(t) + B M(q(¢1))d! (1).
Setting BB = 0 concludes the proof. ]

REFERENCES

[11 J. W. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects,” IEEE
Trans. Automat. Contr., vol. 46, no. 1, pp. 51-64, 2001.

[2] E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped robots,” IEEE Trans. Automat. Contr., vol. 48, no. 1,
pp. 42-56, 2003.

[3] E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris,
Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor &
Francis, CRC Press, 2007.

[4] K. A. Hamed and J. W. Grizzle, “Event-based stabilization of periodic
orbits for underactuated 3-d bipedal robots with left-right symmetry,”
IEEE Trans. Robot., vol. 30, no. 2, pp. 365-381, 2014.

[5] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames,
“Models, feedback control, and open problems of 3D bipedal robotic
walking,” Automatica, vol. 50, no. 8, pp. 1955-1988, 2014.

[6] A. E. Martin and R. D. Gregg, “Stable, robust hybrid zero dynamics
control of powered lower-limb prostheses,” IEEE Trans. Automat.
Contr., vol. 62, no. 8, pp. 3930-3942, 2017.

[71 D. Quintero, D. J. Villarreal, D. J. Lambert, S. Kapp, and R. D.
Gregg, “Continuous-phase control of a powered knee—ankle prosthesis:
Amputee experiments across speeds and inclines,” IEEE Trans. Robot.,
vol. 34, no. 3, pp. 686-701, 2018.

[8] Q. Nguyen and K. Sreenath, “L; adaptive control for bipedal robots
with control Lyapunov function based quadratic programs,” in Proc.
2015 Amer. Contr. Conf., 2015, pp. 862-867.

[91 S. Veer, M. S. Motahar, and I. Poulakakis, “Local input-to-state
stability of dynamic walking under persistent external excitation using
hybrid zero dynamics,” in Proc. 2016 Amer. Contr. Conf., 2016, pp.
4801-4806.

[10] R. D. Gregg and A. E. Martin, “Prosthetic leg control in the nullspace
of human interaction,” in Proc. 2016 Amer. Contr. Conf., 2016, pp.
4814-4821.

[11] W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-
based control and related methods — An overview,” IEEE Trans. Ind.
Electron., vol. 63, no. 2, pp. 1083-1095, 2016.



00 0.2
- - Nominal —NDOB
80 . 0.15
o}
] H
— i
60 —
= 0.1 i
40 T 1
' =0.05
20 i
-- Nominal—NDéB ------- no DOB 0
0 : : : 0
0 2 4t secl 6 8 10 t [sec}
(a) (b)

-=n0 DOB
i 08
of a
£.06
o
=04
=3
N
02
0 ! |
10 0 2 4 6 8 10
t [sec]
©

Fig. 5: The control input and tracking errors of the biped robot: (a) the 2-norm of the motor control torques u, (b) the
2-norm of the output tracking error, and (c) the 2-norm of the disturbance tracking error with the NDOB-based control law.

0.5

0

. 0
g [rad/sec] 0.5 g5 [rad/sec]

-2

-1
(a)

0.5

0

2 [rad/sec] 0.5 G5 [rad/sec]

(b)

Fig. 6: The projected phase portrait of the five-link biped robot: (a) (green) nominal controller with no disturbance, (black)
NDOB-based control law with push disturbance, and (b) (green) nominal controller with no disturbance, (black) nominal
control law with push disturbance.

[12] S.Li, J. Yang, W.-H. Chen, and X. Chen, Disturbance observer-based

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

control: Methods and applications. CRC press, 2014.

E. Sariyildiz and K. Ohnishi, “Stability and robustness of disturbance-
observer-based motion control systems,” IEEE Trans. Ind. Electron.,
vol. 62, no. 1, pp. 414-422, 2015.

W.-H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly, “A
nonlinear disturbance observer for robotic manipulators,” IEEE Trans.
Ind. Electron., vol. 47, no. 4, pp. 932-938, 2000.

W.-H. Chen, “Disturbance observer based control for nonlinear sy-
stems,” IEEE/ASME Trans. Mechatron., vol. 9, no. 4, pp. 706-710,
2004.

A. U. Pehlivan, D. P. Losey, and M. K. O’Malley, “Minimal assist-as-
needed controller for upper limb robotic rehabilitation,” IEEE Trans.
Robot., vol. 32, no. 1, pp. 113-124, 2016.

Z.Li, C.-Y. Su, L. Wang, Z. Chen, and T. Chai, “Nonlinear disturbance
observer-based control design for a robotic exoskeleton incorporating
fuzzy approximation,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp.
5763-5775, 2015.

A. Mohammadi, M. Tavakoli, and H. Marquez, “Disturbance observer-
based control of non-linear haptic teleoperation systems,” IET Contr.
Th. Applicat., vol. 5, no. 18, pp. 2063-2074, 2011.

A. Mohammadi, M. Tavakoli, and H. J. Marquez, “Control of nonli-
near teleoperation systems subject to disturbances and variable time
delays,” in Proc. 2012 IEEE/RSJ Int. Conf. Intelli. Robot. Syst., 2012,
pp- 3017-3022.

T. Sato, S. Sakaino, and K. Ohnishi, “Parameter design for ZMP
disturbance observer of biped robot,” in Proc. 34" Annu. Conf. Ind.
Electron., 2008, pp. 1650-1655.

T. Sato and K. Ohnishi, “ZMP disturbance observer for walking

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

stabilization of biped robot,” in Proc. 10" IEEE Int. Workshop Ady.
Motion Contr., 2008, pp. 290-295.

Y. Abe, K. Chen, M. Trkov, J. Yi, and S. Katsura, “Disturbance
observer-based balance control of robotic biped walkers under slip,” in
Proc. 2017 IEEE Int. Conf. Adv. Intelli. Mechatron., 2017, pp. 1489—
1494.

A. Mohammadi, H. J. Marquez, and M. Tavakoli, “Nonlinear distur-
bance observers: Design and applications to Euler-Lagrange systems,”
IEEE Contr. Syst., vol. 37, no. 4, pp. 50-72, 2017.

J. Grizzle, J.-H. Choi, H. Hammouri, and B. Morris, “On observer-
based feedback stabilization of periodic orbits in bipedal locomotion,”
in Proc. Methods and Models in Automation and Robotics, 2007, pp.
27-30.

K. Hamed, A. Ames, and R. D. Gregg, “Observer-based feedback
controllers for exponential stabilization of hybrid periodic orbits:
Application to underactuated bipedal walking,” in Proc. 2018 Amer.
Contr. Conf., 2018, accepted.

F. Ghorbel, B. Srinivasan, and M. W. Spong, “On the uniform
boundedness of the inertia matrix of serial robot manipulators,” J.
Robot. Syst., vol. 15, no. 1, pp. 17-28, 1998.

C. Cai and A. R. Teel, “Characterizations of input-to-state stability for
hybrid systems,” Syst. Contr. Lett., vol. 58, no. 1, pp. 47-53, 2009.
F. Plestan, J. W. Grizzle, E. R. Westervelt, and G. Abba, “Stable
walking of a 7-DOF biped robot,” IEEE Trans. Robot. Automat.,
vol. 19, no. 4, pp. 653-668, 2003.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. New York: Wiley, 2006.



