
VARIABLE IMPEDANCE CONTROL OF POWERED KNEE PROSTHESES USING
HUMAN-INSPIRED ALGEBRAIC CURVES

Alireza Mohammadi
Dept. Electrical & Computer Engineering

The University of Michigan, Dearborn
Dearborn, MI 48128

Email: amohmmad@umich.edu

Robert D. Gregg
Dept. Bioengineering and Dept. Mechanical Engineering

The University of Texas at Dallas
Richardson, TX 75080

Email: rgregg@utdallas.edu

ABSTRACT
Achieving coordinated motion between transfemoral am-

putee patients and powered prosthetic joints is of paramount
importance for powered prostheses control. In this article we
propose employing an algebraic curve representation of nomi-
nal human walking data for powered knee prosthesis controller
design. The proposed algebraic curve representation encodes
the desired holonomic relationship between the human and the
powered prosthetic joints with no dependence on joint veloci-
ties. For an impedance model of the knee joint motion driven by
the hip angle signal, we create a continuum of equilibria along
the gait cycle using a variable impedance scheme. Our vari-
able impedance-based control law, which is designed using the
parameter-dependent Lyapunov function framework, realizes the
coordinated hip-knee motion with a family of spring and damper
behaviors that continuously change along the human-inspired
algebraic curve. In order to accommodate variability in the
user’s hip motion, we propose a computationally efficient radial
projection-based algorithm onto the human-inspired algebraic
curve in the hip-knee plane.

1 INTRODUCTION
Coordinating the motion of transfemoral amputee patients

and powered prosthetic joints is of vital importance for powered
prostheses control. In order to achieve such coordinated motion
patterns, the two important issues of (i) representing the human
walking gait, and (ii) enforcing the desired walking gait via a
proper control scheme, need to be addressed.

In the rehabilitation robotics literature, there are two classes
of human gait cycle representation. The first class, proposed

in [1–6], divides the gait cycle into several periods, each with
their own distinct controllers. In order to enforce the desired gait
motion patterns, switched impedance schemes are employed in
a way that the closed-loop dynamics are forced to behave with
a series of finite states consisting of passive spring and damper
behaviors [1,6]. Due to the passive nature of the closed-loop dy-
namics, the advantage of such impedance-based schemes is the
inherent stability of interaction between the powered prosthesis
and the amputee in each state of the finite state machine.

Despite the advantages of the proposed switched
impedance-based strategies in [1–6], one shortcoming of
such schemes is that they rely on non-unified representations
of walking gait. Consequently, there are dozens of control
parameters and transition rules that must be tuned across users
and activities [5]. In order to automate the control parameter
tuning procedure, techniques such as fuzzy logic-based expert
systems [7] and adaptive dynamic programming [8] have
been proposed in the literature. A second shortcoming stems
from the fact that desynchronizing perturbations increase a
patient’s risk of falling if the non-unified impedance-based
controller switches to the wrong state with the wrong control
scheme. Indeed, switched impedance-based control techniques
that create isolated equilibria for the powered prosthetic joint
dynamics rely on being able to estimate the precise time for
switching from one finite state to another. A potential remedy
for the need to determine switching times is based on creating
a continuum of equilibria along the normal human walking gait
and continuously evolving on the continuum, instead of having
a series of isolated equilibria.

In contrast to the first class, there is a second class of wear-
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able robot controllers that employ unified representations of the
entire human gait cycle [9–16]. Unified gait controllers do not
suffer the aforementioned shortcomings of the non-unified gait
control schemes. In [9], the authors employed the center of pres-
sure (COP) to unify the stance phase of the gait. Assuming a
rocker foot geometry, the COP-based gait in [9] is a holonomic
representation of the human stance period. A holonomic gait,
which separately unifies the stance phase and swing phase of
walking, was proposed in [17]. The gait in [17], however, uses
the patient’s Cartesian coordinates as the phase variables and thus
are difficult to measure with onboard sensors. In order to re-
move the need for measuring the patient’s Cartesian coordinates,
the authors in [16] have proposed two different representations
using the hip angle measurement. The first one is a piecewise
holonomic representation of human walking gait cycle.

The second representation in [16], which unifies the stance
and swing phases of walking, is a velocity-based (nonholonomic)
gait representation using the thigh phase portrait. This second
representation method was later experimentally verified in [18]
via a single sensor. As another unified walking gait cycle repre-
sentation, the authors in [12,13] proposed a thigh angle integral-
based representation of walking. However, the integral term
in [12, 13] needs to be reset at the beginning of every gait cycle
to prevent accumulation of drift due to variation in thigh kine-
matics. Furthermore, the integral-based gait in [12, 13] cannot
be used for patient’s non-rhythmic motion control. In order to
automate the phase-based control parameter tuning in real-time,
the authors in [19] proposed using an extremum seeking con-
trol, which is run in parallel to the phase-based control scheme
in [12, 13].

Motivated by the fact that healthy hip-knee angular trajec-
tories create closed and non-intersecting orbits during walking
(see Figure 1), we employed algebraic curves and the 3L algo-
rithm from the pattern recognition literature [20] to generate a
unified holonomic representation of the human gait cycle in our
preliminary work [21]. In particular, our human gait cycle repre-
sentation, which encodes the nominal coordination between the
hip and knee angles during normal level walking, is the zero set
of bivariate implicit polynomials (IPs). We remark that our pro-
posed algebraic curve fitting in [21] is closely related to the re-
cent work in [22], where the authors use an elliptical path in the
hip-knee plane to prescribe a normal walking gait for a lower
limb exoskeleton during the swing phase. Our algebraic curve
representation, however, unifies the entire gait cycle, including
both the stance phase and the swing phase. Furthermore, unlike
the elliptical path in [22], which is an open curve converging to
infinity, our proposed algebraic curves are closed and bounded,
which correspond to periodic human gait cycles. The closed and
bounded curve properties cannot be achieved with standard one-
dimensional polynomial fitting methods, as the one in [22]. In an
earlier work [23], we employed a symbolic algebraic tool, which
is based on computing the resultant of polynomials, for remov-

(a) (b)

Figure 1: (a) Nominal human hip-knee path taken from Winter’s normal
cadence walking data [24], subdivided into four functional modes of
stance flexion/extension, preswing, swing flexion, and swing extension.
(b) The body diagram of the walking sagittal plane: qH and qK represent
the hip and knee angles, respectively.

ing phase variables from autonomous bipedal robot parametric
gaits. However, this approach, similar to [22], cannot be prac-
tically used for generating closed algebraic curves from human
walking data due to large degrees of generated polynomials.

Based on our preliminary work in [21], we propose employ-
ing the algebraic curve representation of nominal walking data
for powered knee prosthesis controller design in this article. In
order to take into account the variability that is observed during
walking, we improve our earlier human-inspired algebraic curve
generation algorithm in [21]. In particular, in order to take into
account the fact that hip-knee walking profiles vary during walk-
ing, we employ variable geometric contraction and dilation fac-
tors, in contrast to constant values in our preliminary work. The
variable contraction/dilation factor ensures that the level-sets of
the generated implicit polynomials have sufficient distance from
each other in a way that step-by-step variability does not sig-
nificantly perturb the algebraic distance from the normal walk-
ing data. Having obtained a unified holonomic representation
of walking data via algebraic curves, in the next step, we con-
sider an impedance model of the knee joint motion driven by the
hip angle signal. We then create a continuum of equilibria along
the human-inspired algebraic curve using a variable impedance
scheme. Our variable impedance-based control law, which is de-
signed using the parameter-dependent Lyapunov function frame-
work, realizes the coordinated hip-knee motion with a family of
spring and damper behaviors that continuously change along the
human-inspired algebraic curve. In order to accommodate the
variability in user’s hip motion, we propose a radial projection-
based algorithm onto the human-inspired algebraic curve in the
hip-knee plane. The algebraic curve representation makes the
radial projection algorithm computationally efficient, with guar-
anteed convergence in a finite number of steps.

The rest of this paper is organized as follows. First, we
briefly review preliminaries from algebraic curves and present
the 3L algorithm for fitting such curves to nominal hip-knee
walking data in Section 2. Next, in Section 3, for an impedance

2 Copyright c© by ASME



model of the knee joint motion driven by the hip angle signal,
we present our control problem formulation and demonstrate that
the knee joint closed-loop dynamics take the form of a linear pa-
rameter varying (LPV) dynamical system, which is subject to
disturbances that change continuously along the human-inspired
algebraic curve and are dependent on the hip joint motion speed.
Thereafter, in Section 4, we propose a parameter-dependent Lya-
punov function approach for designing variable stiffness and
damping gains along the human-inspired algebraic curve. Addi-
tionally, we present a radial projection-based algorithm in order
to address variability in the user’s hip motion and show the simu-
lation results in that section. In Section 5, we present our numer-
ical results. Finally, we conclude the paper with final remarks
and outline of possible future research directions in Section 6.

Notation. Given two vectors (matrices) a, b, we denote by
[a;b] the vector (matrix) [a>,b>]> where (·)> is the transpose
operator. Given a square symmetric matrix X , we denote its max-
imum (minimum) eigenvalue by λmax(X) (λmin(X)).

2 3L ALGORITHM FOR FITTING HUMAN DATA TO AL-
GEBRAIC CURVES
In this section we review some preliminaries on algebraic

curves and use the 3L algorithm for fitting closed algebraic
curves to human data. The 3L algorithm presented in this sec-
tion is an extension of the 3L algorithm in our preliminary work
in [21]. A comprehensive treatment of algebraic curves and their
properties may be found in [25, 26].

2.1 Algebraic Curves
Algebraic curves are defined by means of bivariate implicit

polynomials (IPs). Given a finite integer n, an IP

h(qH,qK) = ∑
i j

ai jqi
Hq j

K, 0≤ i+ j ≤ n (1)

is a function of qH, qK, where ai j are real numbers. The degree
of the polynomial h(qH,qK) in (1) is the maximal value of i+ j
for which ai j 6= 0. Here, we assume that the IP h is of degree n.
Every IP of degree n has (n+1)(n+2)/2 coefficients.

Given an IP h(qH,qK) and a point (qH0 ,qK0), the value
h(qH0 ,qK0) is called the algebraic distance of the point (qH0 ,qK0)
to the zero set of h(qH0 ,qK0). Moreover, the zero set of the IP
h(qH,qK) given by (1) is defined to be

Z(h) :=
{
(qH,qK) ∈ R2∣∣h(qH,qK) = 0

}
. (2)

A real algebraic curve is the zero set of a non-zero real bi-
variate polynomial h. The degree of an algebraic curve is defined
to be the degree of its associated bivariate implicit polynomial.
Algebraic curves of degree 1, 2, 3, 4, · · · , are called lines, conics,
cubics, quartics, · · · , respectively.

Since we are interested in studying periodic human walking
gait profiles, it is desirable to have closed and bounded algebraic
curves. The following well-known lemma provides the necessary
condition for having a closed and bounded algebraic curve.

Lemma 1.([26]) An algebraic curve is a closed and bounded
plane curve only if it is of even degree.

2.2 3L Algorithm for Fitting Algebraic Curves to Hu-
man Walking Data

In this section we fit algebraic curves to the data points
obtained from a healthy gait according to Winter’s normal
cadence walking data [24]. Our fitting algorithm is taken
from the pattern recognition literature and is known as the 3L
algorithm [20]. The 3L algorithm presented in this section is
a generalization of the algorithm in our preliminary work in [21].

Fitting algebraic curves to human datasets as a quadratic op-
timization problem. Consider an ordered, closed set, H0, of N0
planar data points (qHl ,qKl ). In the set H0, if (qHl ,qKl ) corre-
sponds to time instant tl and (qHl+1 ,qKl+1) corresponds to time
instant tl+1, then tl < tl+1. Here, the set H0 represents the path
in the hip-knee plane, which is taken from the Winter’s normal
cadence walking data [24] (see Figure 1). The set of ordered data
points (qHl ,qKl ), 1≤ l ≤ N0, are the samples of the hip and knee
normal cadence walking trajectories corresponding to increasing
time instants during a given gait cycle. Since the walking gait
profile is periodic, we have (qH1 ,qK1) = (qHN0

,qKN0
). The ge-

ometric center or centroid of the dataset H0 is defined to be the
point (see also Figure 1)

pc =
[
qHC; qKC

]
:=
[N0−1

∑
l=1

qHl

N0−1 ;

N0−1
∑

l=1
qKl

N0−1

]
. (3)

We would like to find an implicit bivariate polynomial h(qH ,qK)
of even degree, i.e., n = 2p for some positive integer p, such that
its zero set Z(h) approximates the set of human hip-knee data
points H0. This approximation problem is equivalent to mini-
mization of the error functional [20]

E = ∑
(qH ,qK)∈H0

h2(qH,qK). (4)

It is possible to describe the error functional E in (4) as a
quadratic function of the coefficients of the IP h(qH,qK). In order
to do so, we rewrite the IP h(qH,qK) = ∑

i j
ai jqi

Hq j
K, where 0 ≤

i+ j ≤ n, using the inner-product

h(qH,qK) = m>(qH,qK)a, (5)
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where

m>(qH,qK) :=
[
1, qH, qK, q2

H, qHqK, q2
K, · · · , qn

H,

q(n−1)
H qK, q(n−2)

H q2
K, · · · , qHq(n−1)

K , qn
K
]
, (6)

is a function of the two variables qH and qK. Moreover,

a :=
[
a00, a10, a01, a20, a11, a02, · · ·

an0, a(n−1)1, a(n−2)2, · · · , a1(n−1), a0n
]
, (7)

is the vector of IP coefficients with

n0 := (n+1)(n+2)/2, (8)

components. Next, using the data points (qHi ,qKi) ∈H0, 1≤ i≤
N0, we define the following matrix

MH0
:=
[
m>1 ; · · · ; m>N0

]
, (9)

where the row vectors m>i are defined as m>i := m>(qHi ,qKi). It
is shown in [20] that the functional E given by (4) is equal to

E = a>M>H0
MH0

a. (10)

Therefore, we would like to find the coefficient vector a such
that the error functional E given by (10) is minimized. The
direct minimization of E, which is known as the 1L approach,
often fails to generate an acceptable IP fit to a set of data points
due to numerical instability problems and/or lack of physically
meaningful solutions (see [20, 27] for a detailed discussion).

Human data 3L fitting algorithm. Using the 3L fitting algo-
rithm developed in [20], we address the aforementioned numeri-
cal shortcomings of the 1L minimization by introducing two ad-
ditional datasets, which can be generated from the original hu-
man walking dataset H0. Being able to vary the two fictitious
datasets on either side of the original normal cadence walking
dataset H0, optimal fitting accuracies of algebraic curves to hu-
man walking data can be achieved. Furthermore, it can be shown
that, under suitable conditions, the algebraic curves generated by
the 3L fitting algorithm are non-degenerate [20, 28, 29].

Following the experimental results for pose estimation in
computer graphics literature [20, 26], we chose quartic algebraic
curves, i.e., n = 4, to be fitted to the hip-knee normal walking
data. However, there is no limitation on the degree of the

algebraic curve that can be fitted to human walking datasets.
The 3L algorithm for fitting algebraic curves to human hip-knee
walking data can be described in the following three steps.

Step 1) Generation of two fictitious datasets: Given the dataset
H0, representing the nominal human walking gait in the hip-knee
plane [24], introduce two fictitious datasets close to H0. The first
set, which is denoted by H+ and is located outside the dataset
H0, has N+ points and corresponds to the algebraic distance c
(see the previous section for the definition of algebraic distance),
where c is a design parameter to be chosen. The second fictitious
dataset, which is denoted by H− and is located inside the dataset
H0, has N− points and corresponds to the algebraic distance −c.
In this article, we have chosen the design parameter to be c = 1.

In order to generate the two fictitious datasets H+ and H− in
this article, we translated the centroid or the geometric center of
the dataset H0 given by (3) to the origin of the qH −qK plane. In
particular, we translated the original dataset to obtain

H t
0 =

{[
qH
qK

]
−
[

qHC
qKC

]
:
[

qH
qK

]
∈H0

}
, (11)

where [qHC, qKC]
> is the centroid of the human dataset H0.

In our preliminary work in [21], we scaled the translated
dataset H t

0 by constant scaling factors α+ > 1 and 0 < α− < 1,
to generate H+ and H−, respectively. The multiplication of the
translated dataset H t

0 by α+ and α− corresponds to geometric
contraction and geometric dilation, respectively. For the pre-
sented results in [21], we chose α+ = 1.02 and α− = 0.98.

In this article, we employ variable geometric contraction and
dilation factors in order to take into account the fact that hip-
knee walking profiles vary during walking. The variable con-
traction/dilation factor ensures that the level-sets of the gener-
ated IP h?(·) have sufficient distance from each other in a way
that step-by-step variability does not significantly perturb the al-
gebraic distance from the zero level-set of h?(·). In order to take
into account the aforementioned variability, we have chosen the
two radial basis functions (RBFs)

α±(l) = α±+∆α1± exp(
−( l−l1

N )2

β2
1

)+∆α2± exp(
−( l−l2

N )2

β2
2

),

(12)
as our geometric contraction/dilation factors. In (12), α± are the
constant factors used in [21], the samples l1, l2 correspond to the
walking data at %50 and %75 of the gait cycle, and ∆α1±, ∆α2±
enlarge the distance between the two fictitious datasets with H0.

The end results of the first step are the two datasets

H± =

{
α±(l)

([qH(l)
qK(l)

]
−
[

qHC
qKC

])
:
[

qH(l)
qK(l)

]
∈H0

}
. (13)
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(a) (b)

Figure 2: The quartic algebraic curves fitted to Winter’s normal cadence walking data [24]. Figures 2.a and 2.b correspond to the variable and constant
dilation/contraction geometric factors, respectively. In both figures, the dashed curve represents the Winter’s normal cadence walking. The level sets
of the IPs h?(qH ,qK) are labeled with their corresponding algebraic distance in the figure. The gray band around the zero set of the IP h?(qH ,qK)
corresponds to the hip and knee configurations that belong to the sublevel set {(qH ,qK) : |h?(qH ,qK)| ≤ c0}, where c0 = 0.5.

Remark 1. In Steps 2 and 3, we consider H t
0 and H± in (11)

and (13), respectively, whose geometric centers are located at
the origin of the qH− qK plane. In the final step, the generated
algebraic curve needs to be translated back to the geometric cen-
ter of human dataset H0.

Step 2) Defining the three level-set matrix: Define the three
level-set (3L) matrix

M3L :=

MH−
MH t

0
MH+

 ∈ R(N++N0+N−)×n0 , (14)

where n0 is the number of coefficients of the IP h given by (8).
In (14), the matrices MH t

0
, MH+

, and MH− are defined as

MH t
0

:=

 m>(qt
H1
,qt

K1
)

· · ·
m>(qt

HN0
,qt

KN0
)

 ,MH± :=

 m>(q±H1
,q±K1

)

· · ·
m>(q±HN±

,q±KN±
)

 , (15)

where the points (qt
Hl
,qt

Kl
), 1≤ l ≤ N0, belong to the dataset H t

0
given by (11). Similarly, the points (q±Hl±

,q±Kl±
), 1 ≤ l± ≤ N±,

belong to the two fictitious datasets in (13).

Step 3) Solving for the unknown IP coefficients: Define the
(N++N0+N−) component column vector of algebraic distances

b :=
[
-c1N− ; 01N0 ; c1N+

]
, (16)

where 1k, for a given integer k, is a column vector of ones be-
longing to Rk. Consider the equation M3La = b, with M3L given

by (14) and b given by (16). Computing the pseudo-inverse so-
lution for the coefficient vector a, we have

a? =
(
M>3LM3L

)−1M>3Lb.

The algebraic curve fitted to the human data is the zero set of

h?(qH,qK) = m>(qH−qHC, qK−qKC)a?, (17)

where m>(·, ·) is the function defined by (6), and pc =
[qHC, qKC]

> is the centroid of the human dataset H0. The trans-
lation in (17) corresponds to translation of the geometric cen-
ter of the obtained algebraic curve from the origin to the human
dataset centroid, as explained in Remark 1. The human-inspired
IP h?(qH,qK) represents a desired implicit relationship between
the human’s hip angle and the wearable robot knee angle. As the
human’s hip angle qH(t) evolves with time, driving h?(qH(t),qK)
to zero via feedback corresponds to coordinating the motion of
the knee with the hip during level walking according to the hu-
man walking closed curve in Figure 1. The algebraic curve given
by the IP h?(qH,qK) represents a holonomic relationship as it
only depends on the joint angles qH and qK, as opposed to the
joint angle velocities.
Discussion of the obtained algebraic curve fits. Using the 3L
algorithm with two different types of fictitious datasets, we ob-
tained two quartic IPs whose zero level sets are depicted in Fig-
ure 2. Figure 2.a corresponds to choosing variable geometric fac-
tor functions while Figure 2.b corresponds to choosing a constant
geometric factor coefficient in Step 1 of our algorithm. As it can
be seen from Figure 2, the shape of the level sets and their values
at different configurations differ from each other in Figures 2.a
and 2.b. Moreover, the level sets in Figure 2.a, which is based on
the improvement over our preliminary work in [21], are further
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from each other during the stance to swing phase transition. Fur-
thermore, if the hip-knee configurations are located further from
the nominal Winter’s walking data [30], the level set values in
Figure 2.a in comparison with Figure 2.b do not grow very large.

The largest deviation of the quartic algebraic curve fits from
Winter’s normal cadence walking data, for both of the fits, hap-
pens during the stance flexion/ extension phase at around the con-
figuration [0.2677 rad,−0.081 rad]> where the knee angle devi-
ates from the nominal value by around 0.04 rad ≈ 2.3◦ for both
cases. The gray band around the zero set of the IP h?(qH ,qK)
corresponds to the hip and knee configurations that belong to the
sublevel set {(qH ,qK) : |h?(qH ,qK)| ≤ c0} associated with the
algebraic distance c0 = 0.5. As it can be seen from Figure 2,
the level sets of the fitted IPs h?(qH ,qK) do not intersect with
each other, corresponding to the fact that the generated algebraic
curves are non-degenerate. Furthermore, as the algebraic dis-
tances from the zero set Z(h?) change in a small manner, the
joint angles do not deviate drastically from the nominal values.
This continuity feature is desirable for controller design, since
for small values of |h?(qH ,qK)| the hip-knee configurations are
still close to the fitted algebraic curve.

3 CONTROL PROBLEM FORMULATION
In this section we consider an impedance model of the knee

joint motion driven by the hip angle signal. Our control prob-
lem formulation is motivated by the approach in [1, 6], where
the impedance-based feedback control is employed to render the
closed-loop dynamics of the powered prosthetic joints as a se-
ries of passive spring and damper behaviors. Due to the passive
nature of the closed-loop dynamics under impedance-based con-
trol laws, the interaction between the powered prosthesis and the
amputee will be inherently stable. However, we depart from the
control framework in [1, 6] by creating a continuum of equilib-
ria along the human-inspired algebraic curve instead of having a
series of isolated equilibria. As it will be shown in this section,
the resulting closed-loop knee joint motion can be described by
a linear parameter varying (LPV) dynamical system.

We consider the impedance model

Jknq̈K +bknq̇K + kknqK = u, (18)

for the knee joint motion, where u is the torque applied to the
powered knee prosthesis. Furthermore, we let the polar repre-
sentation of the human-inspired algebraic curve in (17) be

[
q∗H(σ)
q∗K(σ)

]
=

[
r(σ)cos(σ)+qHC
r(σ)sin(σ)+qKC

]
, (19)

where the polar angle σ at each point (q∗H,q
∗
K) on the human-

inspired algebraic curve is given by

σ = arctan2(q∗K−qKC, q∗H−qHC). (20)

Whenever the hip joint evolves according to the normal hu-
man walking gait, i.e., when qH(t) = q∗H(σ(t)), driving the output
h?(qH(t),qK(t)) to zero or sufficiently close to zero will coordi-
nate the motion of the knee with the driving hip angle signal ac-
cording to the human-inspired algebraic curve in Figure 1. One
way to achieve this objective is to make the knee tracking error

e(σ(t)) := qK(t)−q∗K(σ(t)) (21)

converge to zero or become sufficiently small along the algebraic
curve. Furthermore, we would like that whenever the amputee
stops moving his/her hip at qH = q∗H(σ), the knee joint comes
to rest at qK = q∗K(σ). From the aforementioned discussion, we
would like to create the following continuum of equilibria

xe(σ) :=
[

q∗K(σ)
0

]
, (22)

for the knee dynamics along the human-inspired algebraic curve.
As it can be seen from (22), the continuum of equilibria is pa-
rameterized by the polar angle σ.

In order to derive the knee error dynamics along the contin-
uum of equilibria xe(σ), where x := [qK, q̇K]

>, we define

xδ(t) := x(t)− xe(σ(t))

and take its time derivative to obtain

ẋδ = Axδ +Bu+de(σ, σ̇), (23)

where

A :=
[
0, 1;

−kkn

Jkn
,
−bkn

Jkn

]
, B :=

[
0;

1
Jkn

]
, (24)

and

de(σ, σ̇) :=−∂xe(σ)

∂σ
σ̇. (25)

As the polar angle σ evolves along the human-inspired alge-
braic curve, we let our control input take the form

u(σ) =−uδ−ue(σ), (26)
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where ue(σ) := kkn
Jkn

q∗K(σ). The control input ue(σ) renders xe(σ)
an equilibrium for the knee joint dynamics.

In order to completely determine the form of our feedback
control scheme, we use the variable state feedback control law

uδ = Kc(σ)xδ. (27)

Under the control law in (26) and (27), the error dynamics of the
prosthetic knee joint motion become

ẋδ = Acl(σ)xδ +de(σ, σ̇), (28)

where Acl(σ) := A−BKc(σ).
Creating a continuum of equilibria via the feedback control

law in (26) and (27) along the human-inspired algebraic curve
renders the knee closed-loop error dynamics a linear parameter
varying (LPV) system,

ẋδ = Acl(σ)xδ, (29)

subject to disturbances of the form de(σ, σ̇) given by (25). Under
the condition of frozen equilibria, i.e., whenever the hip comes
to rest, we have σ̇ = 0. Consequently, from (25), it follows that
de(σ, σ̇) = 0. Therefore, under the frozen equilibria condition,
the knee closed-loop error dynamics take the linear parameter
varying (LPV) form given by (29).

Remark 2. The polar angle σ in (20), which is defined using
the human-inspired algebraic curve, can be viewed as a gain
scheduling variable (see, e.g., [31]) that parameterizes the con-
tinuum of equilibria for the powered knee prosthesis dynamics.

4 VARIABLE IMPEDANCE CONTROL DESIGN
Having formulated our control problem in the previous sec-

tion, we first provide a parameter-dependent Lyapunov func-
tion approach for designing variable impedance gains along the
human-inspired algebraic curve in Section 4.1. The results in
Section 4.1 are applicable when the human hip evolves accord-
ing to a nominal gait profile on the algebraic curve. In order to
address variability in the user’s hip motion, we present a radial
projection-based algorithm in Section 4.2.

4.1 Variable Impedance Control Design using Param-
eter Dependent Lyapunov Functions

In this section, we assume that the hip joint evolves, with a
bounded rate of change, along the algebraic curve according to
qH(t) = q∗H(σ(t)), where q∗H(σ) is given by the polar representa-
tion in (19). Under this assumption, we would like to make the

tracking error in (21) practically stable [32]. Practical stability of
the error dynamics means that the error can be made arbitrarily
small via a proper choice of the state feedback gain Kc(σ).

We consider the impedance-based variable state feedback

Kc(σ) = [Kp(σ), Kd(σ)], (30)

where the variable stiffness Kp(σ) and the variable damping
Kd(σ) are some smooth functions of σ, which continuously vary
along the human-inspired algebraic curve.

Since the variable σ is an angular variable, the stiffness
function Kp(σ) and the damping function Kd(σ) need to be 2π-
periodic functions of σ. In other words, we need to have

Kp(σ+2π) = Kp(σ), Kd(σ+2π) = Kd(σ), (31)

for all values of σ.
Under (30), the control law given by (26) and (27) takes the

form

u(σ) = Kp(σ)e(σ)+Kd(σ)q̇K−ue(σ), (32)

where e(σ) is given by (21). The obtained control law u(σ)
in (32) is a variable impedance control law that does not depend
on a reference velocity, e.g., on q̇∗K(σ). Additionally, under the
proposed control law in (32), the closed-loop state matrix takes
the form

Acl(σ) =
[
0, 1;−ap(σ), −ad(σ)

]
, (33)

where

ap(σ) := Kp(σ)+
kkn

Jkn
, ad(σ) := Kd(σ)+

bkn

Jkn
.

Since the stiffness Kp(σ) and the damping Kd(σ) functions are
2π-periodic by design, it follows that the closed-loop state matrix
Acl(σ) satisfies the periodicity condition Acl(σ+ 2π) = Acl(σ),
for all values of the angular variable σ.

In order to study the stability of the LPV closed-loop dy-
namics of the knee joint motion, we use a well-established class
of Lyapunov functions, called the parameter-dependent Lya-
punov functions [33]. In particular, we consider the following
parameter-dependent Lyapunov candidate function

V (xδ,σ) := xT
δ

X(σ)xδ, (34)
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Figure 3: The values of |dq∗K(σ)/dσ| versus the percentage of stride.

where X(σ) is a symmetric and positive definite matrix, which is
parameterized by the polar angle σ. Furthermore, since σ is an
angular variable, the matrix X(σ) should be chosen to satisfy the
periodicity condition X(σ+2π) = X(σ), for all values of σ.

As it can be seen from (34), the parameter-dependent Lya-
punov function V (xδ,σ) is not only a function of the states of
the powered prosthesis but also a periodic function of the polar
angle variable σ, which determines where the knee joint should
be located along the human-inspired algebraic curve. In order
to proceed further, we take the derivative of V (xδ,σ) along the
trajectories of (28) and obtain

V̇ (xδ,σ) := x>
δ

{
X(σ)Acl(σ)+A>cl(σ)X(σ)+ Ẋ(σ)

}
xδ +

2x>
δ

X(σ)de(σ, σ̇). (35)

From Equation (20), it follows that |σ(t)| ≤ 2π, for all time
instants t. We also assume that the rate of change of the polar
angle satisfies

∣∣σ̇(t)∣∣≤ ρ, (36)

for all time instants t, where ρ is a positive constant. Under the
bounded rate of change condition in (36), the disturbance term
given by (25) satisfies

‖de(σ, σ̇)‖ ≤ ρ

∣∣∣dq∗K(σ)
dσ

∣∣∣, for all σ. (37)

The values of |dq∗K(σ)/dσ|, which will be used for designing the
variable impedance gains later, are depicted versus the percent-
age of stride in Figure 3.

When the rate of change of the variable σ is bounded but
an upper bound is not known a priori, the following proposition
provides a stability condition, based on a Lyapunov matrix in-
equality.

Proposition 1. Consider the closed-loop dynamics in (28)
and (33) and assume that the matrix X(σ) in (34) is equal to a

symmetric and positive definite constant matrix X. Furthermore,
assume that the rate of change of the variable σ is bounded by∣∣σ̇(t)∣∣ ≤ ρ for some unknown constant ρ. If the Lyapunov in-
equality

Q(σ) := XAcl(σ)+A>cl(σ)X < 0, (38)

is satisfied for all σ, then,
(i) the continuum of equilibria parameterized by σ in (22) is ex-
ponentially stable under σ̇ = 0; and,
(ii) when σ̇ 6= 0, the error xδ(t) is bounded according to

V (xδ(t),σ(t))≤V (xδ(0),σ(0))exp(−ζ(σ)t)+

(
dq∗K(σ)/dσ

)2

ζ(σ)
ρ

2,

(39)

for all time instants t > 0, where ζ(σ) := λmin(Q(σ))
λmax(X) −λmax(X).

Proof. We provide a sketch of the proof. From the inequality
in (38) and since the matrix X(σ) = X is constant, it follows that

V̇ (xδ,σ)≤−x>
δ

Qxδ +2x>
δ

Xde(σ, σ̇).

Therefore, since de(σ, σ̇) = 0 when σ̇ = 0, (i) follows. State-
ment (ii) follows from a direct application of the comparison
lemma [34] to the above inequality. �

Proposition 1 provides conditions that can be used for
designing the variable stiffness and damping gains along the
human-inspired algebraic curve. From standard results in the
nonlinear systems literature (see, e.g., Theorem 4.6 in [34]), the
Lyapunov matrix inequality in (38) is satisfied if and only if for
all σ the eigenvalues of the matrix Acl(σ) given by (33) are lo-
cated in the open left-half complex plane. This objective will be
achieved if and only if ap(σ)> 0 and ad(σ)> 0 for all values of
σ. As it will be discussed in Simulation Results section, attenua-
tion of the disturbance de(·) in (23), which exists due to continu-
ous movement of the operating equilibrium point along the alge-
braic curve during walking, will be achieved if both impedance
gains Kp(σ) and Kd(σ) change continuously with ‖de(·)‖ along
the algebraic curve.

In order to design the variable impedance gains, we also
need to express them in a periodic basis function. Motivated
by the fact that extensive numerical techniques for parameter-
dependent Lyapunov functions have been developed using poly-
nomials (see, e.g., [31, 33]), we propose using periodic Bézier
polynomials for parameterization of our variable stiffness and
damping gains. We remark that Bézier polynomials have been
extensively used for encoding the continuous periodic motion of
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underactuated mechanical systems as well as the stable walking
gaits of autonomous bipedal robots that are subject to impulsive
ground contact forces [35–37]. From the aforementioned discus-
sion, we propose using the Bézier polynomial parameterizations

Kp(σ) =
1

2π

Np

∑
i=0

kp,i

(
Np

i

)
σ

i(2π−σ)(Np−i),

Kd(σ) =
1

2π

Nd

∑
i=0

kd,i

(
Nd

i

)
σ

i(2π−σ)(Nd−i), (40)

for the variable impedance gains. In (40), Np, kp,i, and Nd, kd,i
are the degrees and coefficients of the Bézier polynomials, re-
spectively. Due to the periodicity conditions in (31), it follows
that the following equality constraints should be satisfied

kp,0 = kp,Np , kd,0 = kd,Nd . (41)

4.2 Extension of Control Design under Variability in
the User’s Hip Motion

Under the nominal hip joint motion, i.e., when qH(t) =
q∗H(σ(t)), the reference knee joint angle is given by qK(t) =
q∗K(σ(t)) such that the pair (q∗H(σ(t)),q

∗
K(σ(t))) belongs to the

human inspired algebraic curve, i.e., h?(q∗H(σ(t)),q
∗
K(σ(t))) = 0.

However, when the user’s hip motion undergoes variability and
is no longer given by the nominal function qH = q∗H(σ), deter-
mining the reference knee joint angle for the variable impedance
scheme will become non-trivial.

Under the hip motion variability, the pair p(t) :=
(qH(t),qK(t)) no longer belongs to the human-inspired algebraic
curve. However, if p(t) evolves in a neighborhood of Z(h?), it
is possible to project it onto the human-inspired algebraic curve
and obtain the reference point

(q∗H(t),q
∗
K(t)) := πZ(h?)(p(t)), (42)

where πZ(h?) : R2→ Z(h?) is a proper projection mapping, to be
designed, onto the human-inspired algebraic curve.

A proper projection mapping πZ(h?), which provides the
reference points on the human-inspired algebraic curve during
walking, should enjoy several properties: (i) for each complete
revolution of the pair p(t) = (qH(t),qK(t)) on a closed curve in
a neighborhood of the human-inspired algebraic curve, the pro-
jected point πZ(h?)(p(t)) should undergo a complete revolution
on the human-inspired algebraic curve Z(h?); (ii) each point on
the human-inspired algebraic curve should be mapped onto itself

Figure 4: The result of the proposed radial-based projection algorithm
for a deviated walking stride onto the human-inspired algebraic curve
and its comparison to the normal walking data. The blue dot represents
the centroid of the algebraic curve. Two example radial lines Lp1 and
Lp2 project the points p1 and p2 onto the algebraic curve, respectively.

via the projection mapping, i.e., πZ(h?)(p) = p for all p ∈ Z(h?);
(iii) the projection mapping computation should be fast enough
for control implementation purposes.

Using the geometrical structure that is afforded by the
human-inspired algebraic curve representation of the gait cycle,
we propose a radial projection mapping candidate. In particular,
given the point p = (qH,qK) in a neighborhood of the human-
inspired algebraic curve Z(h?), whose centroid is located at pc,
we define the projection mapping to be

πZ(h?)(p) := R
(

fp(τ)
)
, (43)

where R
(

fp(τ)
)

is the root with the smallest absolute value of
the one-dimensional function

fp(τ) := h?(p+ τ
p− pc

‖p− pc‖
). (44)

In (44), the one-dimensional function fp(·) is defined via the line

Lp :=
{

p+ τ
p− pc

‖p− pc‖
: τ ∈ R

}
, (45)

which passes through the point p and the centroid of the human-
inspired algebraic curve Z(h?). It is immediate to see that the
projection mapping πZ(h?)(·) in (43) and (44) satisfies properties
(i) and (ii). Figure 4 depicts the result of the proposed radial-
based projection algorithm for a deviated walking stride onto the
human-inspired algebraic curve.

The following proposition states that if the point p belongs
to a sufficiently small neighborhood of the algebraic curve, then
the radial projection mapping can be efficiently computed using
the classical bisection root finding algorithm [39].

Proposition 2. Consider the human-inspired algebraic curve
and its centroid. Consider the projection mapping πZ(h?)(·)
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(a) (b)

Figure 5: (a) 100 walking strides under hip-knee variability according to [38]; (b) Algebraic distances given by h?(·), evaluated on the walking strides.
In both figures, the cyan and green curves correspond to one standard deviation above and below the human walking data, respectively.

in (43) and (44). In a sufficiently small neighborhood of Z(h?),
the projection mapping πZ(h?)(·) is well-defined and can be com-
puted via the bisection root finding algorithm.

Proof. Due to the geometry of the level-sets of the IP h?(qH,qK),
the zero set of h?(·) is an isolated zero level set. In other words,
there exists an open neighborhood of the closed curve Z(h?) de-
noted by N such that if q ∈ N and h?(q) = 0, then q ∈ Z(h?).
Consider an arbitrary point p ∈ N and suppose that fp(0) 6= 0.
Without loss of generality, we assume that fp(0) > 0. In other
words, p belongs to the exterior of Z(h?). Since Z(h?) is the
only zero set of h?(·) in the neighborhood N and p ∈N , it fol-
lows that the line Lp in (45), which passes through p and the
centroid of the closed curve Z(h?), intersects the closed curve
Z(h?) at a unique point p∗0. Suppose that p∗0 = p+ τ∗0

p−pc
‖p−pc‖ .

It follows that fp(τ
∗
0) = 0. It is now possible to choose a point

p′ ∈ N on line Lp, associated with the real number τ− < 0, in
the interior of Z(h?) such that fp(τ

−)< 0.
Since fp(τ) is a smooth function of τ, we have fp(0) > 0,

fp(τ
−)< 0. Furthermore, τ∗0 is the only root of the function fp(τ)

in the interval [τ−,0]. From standard results in numerical analy-
sis (see, e.g., [39]), the proof will be concluded. �

5 SIMULATION RESULTS
We implemented the impedance-based gait control strategy

on an impedance model of the knee dynamics of a human sub-
ject. In particular, the impedance modeling of knee dynamics
was based on the gait data of a healthy 75 kg subject, as derived
from body-mass-normalized data from Winter [30]. Using a vari-
able hip joint motion time profile, generated by the method pro-
posed in [38], we investigated the effectiveness of our continuous
impedance-based scheme and the radial-based projection algo-
rithm in Section 4.2. In all of our results, we are working with
the algebraic curve shown in Figure 2.a, which is an improve-
ment over our preliminary work in [21] shown in Figure 2.b.
Algebraic distances under hip-knee variability: In order to
study the variations of the generated IP level sets under hip-
knee variability during human walking, we generated 100 walk-

ing strides using the methodology in [38]. These profiles are
depicted in Figure 5.a. The values of the IP h?(qH,qK) on the
generated walking data are depicted in Figure 5.b. As it can be
seen from Figure 5.b, the algebraic distances given by h?(·) on
the walking strides located at one standard deviation above and
below the normal walking data [30] are bounded by the maxi-
mum algebraic distance c0 = 4, which happens during the stance
to swing transition (around 60% of the walking stride). As it
can be seen from Figures 2.a and 5.a, this algebraic distance cor-
responds to a geometric distance of around 5◦ to the nominal
hip-knee configuration. Therefore, the generated IP is not overly
sensitive to normal variability in human walking data.
Design of variable impedance gains: In order to design the
variable stiffness and damping gains, we have used fourth and
third order periodic Bézier polynomials in (40), respectively.
Moreover, periodic variable stiffness gains will be achieved if
the equality constraints given by (41) are satisfied. Furthermore,
as implied by Proposition 1, higher values of stiffness to damp-
ing ratios, which will result in higher values of ζ(σ), are needed
in order to attenuate larger values of the disturbance ‖de(σ, σ̇)‖
along the human-inspired algebraic curve. In order to change the
proportional gain Kp(σ) continuously along with ‖de(·)‖ on the
algebraic curve, the coefficients of the stiffness Bézier polyno-
mial are obtained via constrained least-squares optimization to
| dq∗K(σ)

dσ
|, which is equal to ‖de(σ,σ̇)‖

|σ̇| . Motivated by the observa-
tion in [1, 6] that the damping gain, during walking, assumes its
lower (resp. larger) values when the proportional gain assumes
its larger (resp. lower) values, the coefficients of the damping
Bézier polynomial are obtained via constrained least-squares op-
timization to max

σ

dq∗K(σ)
dσ
−| dq∗K(σ)

dσ
|. In summary, we find the co-

efficients of the Bézier polynomials in (40) by solving the fol-
lowing two constrained optimization problems

minimize
kp,i

∥∥∥Kp−
∣∣ dq∗K

dσ

∣∣∥∥∥2

2

subject to kp,0 = kp,Np ,
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and

minimize
kd,i

∥∥∥Kd− (max
σ

dq∗K
dσ
−| dq∗K

dσ
|)
∥∥∥2

2

subject to kd,0 = kd,Nd ,

where ‖ ·‖2 denotes the L2-norm. Moreover, Np = 4 and Nd = 2.
Figure 6.a depicts the normalized variable impedance gains

by dividing them by ρ, which is the upper bound on the rate of
change of the polar angle (see (36)), versus the percentage of
normal walking stride. The stiffness to damping ratios in our
continuous impedance-based scheme are the highest during the
stance flexion/extension and swing extension phases of walking
and are the lowest during the preswing and swing flexion phases.
Interestingly, the stiffness to damping ratios in the conventional
switched impedance-based schemes, first proposed in [1,6], also
assume their highest and lowest values during the similar phases
of walking.
Implementation of the variable impedance-based scheme:

The block diagram of the overall scheme is depicted in Figure 7.
The projection mapping given by (43), (44), and (45) provides
the variable impedance-based controller with the reference sig-
nal q∗K and the polar angle σ. In turn, the variable impedance
controller, whose stiffness and damping gains are given by (40),
drives the error qK−q∗K(σ) towards zero, and by doing so, drives
the algebraic curve distances to zero.

We tested our variable impedance-based scheme for five
walking strides deviated from the Winter’s normal motion pro-
file under human hip joint variability. Figure 6.b depicts the knee
time-profiles and their comparison to the normal walking profile
(the black curve). Figure 6.c depicts the resulting traversed paths
in the hip-knee plane.

6 CONCLUDING REMARKS AND FUTURE RE-
SEARCH DIRECTIONS
In this article we employed algebraic curves to represent hu-

man walking gait data and achieve coordinated motion between
transfemoral amputee patients and powered prosthetic joints. For
an impedance model of the knee joint motion driven by the hip
angle signal, we proposed using a variable impedance scheme for
creating a continuum of equilibria along the human-inspired al-
gebraic curve. Our variable impedance-based control law, which
is designed using the parameter-dependent Lyapunov function
framework, realized the coordinated hip-knee motion with a fam-
ily of spring and damper behaviors that continuously change
along the human-inspired algebraic curve. Exploiting the ge-
ometrical structure of the level-sets of the human-inspired al-
gebraic curve, we proposed a computationally efficient radial
projection-based algorithm onto the algebraic curve in the hip-

knee plane. We employed the radial projection-based algorithm
to accommodate the variability in the human’s hip motion in our
variable impedance-based scheme. The presented material opens
up some potential research directions.

From a theoretical perspective, the 3L fitting algorithm or its
extensions might be employed for fitting trivariate (of three vari-
ables) implicit polynomials to hip-knee-ankle human walking
data. Moreover, the variable impedance-based scheme needs to
consider the nonlinear dynamics of a powered knee-ankle pros-
thesis and use a proper projection algorithm in order to take into
account the variability in human hip motion.

From a control system implementation perspective, the pro-
posed methodology has the potential to be employed for non-
rhythmic motions and thus overcome the limitations of existing
unified gait control methods for powered prostheses. As the pro-
posed radial projection algorithm can be implemented using a
bisection root finding numerical method, it has the potential to
be efficiently implemented on an embedded system in real time.
Finally, we can fit the algebraic curve, using the same 3L numer-
ical algorithm, to a global hip measurement for implementation
with an IMU.

ACKNOWLEDGMENT
This work was supported by the National Institute of Child

Health & Human Development of the NIH under Award Number
DP2HD080349 and R01HD094772. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the NIH. Robert D. Gregg, IV, Ph.D., holds
a Career Award at the Scientific Interface from the Burroughs
Wellcome Fund.

REFERENCES
[1] Sup, F., Bohara, A., and Goldfarb, M., 2008. “Design and

control of a powered transfemoral prosthesis”. Int. J. Robot.
Res., 27(2), pp. 263–273.

[2] Liu, M., Zhang, F., Datseris, P., and Huang, H. H.,
2014. “Improving finite state impedance control of active-
transfemoral prosthesis using dempster-shafer based state
transition rules”. J. Intell. Robot. Syst., 76(3-4), pp. 461–
474.

[3] Zhang, F., Liu, M., and Huang, H., 2015. “Investigation of
timing to switch control mode in powered knee prostheses
during task transitions”. PLoS ONE, 10(7), p. e0133965.

[4] Zhang, F., Liu, M., and Huang, H., 2015. “Effects of lo-
comotion mode recognition errors on volitional control of
powered above-knee prostheses”. IEEE Trans. Neural Syst.
Rehab. Eng., 23(1), pp. 64–72.

[5] Simon, A. M., Ingraham, K. A., Fey, N. P., Finucane,
S. B., Lipschutz, R. D., Young, A. J., and Hargrove, L. J.,
2014. “Configuring a powered knee and ankle prosthesis

11 Copyright c© by ASME



(a) (b) (c)

Figure 6: Implementation of the variable impedance-based scheme for five walking strides deviated from the Winter’s normal motion profile under
human hip joint variability. Figure 6.a depicts the normalized values of optimized Kp(σ) in N.m/deg and Kd(σ) in in N.m.s/deg during a walking stride.
Figure 6.b depicts the knee time-profiles and their comparison to the normal walking profile (the black curve). Figure 6.c depicts the resulting traversed
paths in the hip-knee plane.

Figure 7: The block diagram of the proposed variable impedance-based
scheme. The projection mapping given by (43), (44), and (45) provides
the variable impedance-based controller given by (32) and (40) with the
proper reference point on the algebraic curve.

for transfemoral amputees within five specific ambulation
modes”. PloS ONE, 9(6), p. e99387.

[6] Fite, K., Mitchell, J., Sup, F., and Goldfarb, M., 2007. “De-
sign and control of an electrically powered knee prosthe-
sis”. In Proc. 2007 IEEE 10th Int. Conf. Rehab. Robot.,
pp. 902–905.

[7] Huang, H., Crouch, D. L., Liu, M., Sawicki, G. S., and
Wang, D., 2016. “A cyber expert system for auto-tuning
powered prosthesis impedance control parameters”. Annal.
Biomed. Eng., 44(5), pp. 1613–1624.

[8] Wen, Y., Liu, M., Si, J., and Huang, H. H., 2016. “Adap-
tive control of powered transfemoral prostheses based on
adaptive dynamic programming”. In Proc. 2016 IEEE 38th
Annu. Int. Conf. Eng. Medicine Biol. Soc., pp. 5071–5074.

[9] Gregg, R. D., Lenzi, T., Hargrove, L. J., and Sensinger,
J. W., 2014. “Virtual constraint control of a powered
prosthetic leg: From simulation to experiments with trans-
femoral amputees”. IEEE Trans. Robot., 30(6), pp. 1455–
1471.

[10] Villarreal, D. J., Poonawala, H. A., and Gregg, R. D., 2017.
“A robust parameterization of human gait patterns across
phase-shifting perturbations”. IEEE Trans. Neural Syst. Re-
hab. Eng., 25(3), pp. 265–278.

[11] Holgate, M. A., Sugar, T. G., and Bohler, A. W., 2009. “A
novel control algorithm for wearable robotics using phase
plane invariants”. In Proc. 2009 IEEE Int. Conf. Robot.
Autom., pp. 3845–3850.

[12] Quintero, D., Villarreal, D. J., Lambert, D. J., Kapp, S., and
Gregg, R. D., 2018. “Continuous-phase control of a pow-
ered knee–ankle prosthesis: Amputee experiments across
speeds and inclines”. IEEE Trans. Robot., 34(3), pp. 686–
701.

[13] Quintero, D., Villarreal, D. J., and Gregg, R. D., 2016.
“Preliminary experiments with a unified controller for a
powered knee-ankle prosthetic leg across walking speeds”.
In Proc. 2016 IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
pp. 5427–5433.

[14] Shultz, A. H., and Goldfarb, M., 2018. “A unified con-
troller for walking on even and uneven terrain with a pow-
ered ankle prosthesis”. IEEE Trans. Neural Syst. Rehab.
Eng., 26(4), pp. 788–797.

[15] Quintero, D., Martin, A. E., and Gregg, R. D., 2018. “To-
ward unified control of a powered prosthetic leg: A sim-
ulation study”. IEEE Trans. Contr. Syst. Technol., 26(1),
pp. 305–312.

[16] Villarreal, D. J., Quintero, D., and Gregg, R. D., 2017.
“Piecewise and unified phase variables in the control of a
powered prosthetic leg”. In Proc. 2017 IEEE Int. Conf. Re-
hab. Robot., pp. 1425–1430.

[17] Martin, A. E., and Gregg, R. D., 2017. “Stable, robust hy-
brid zero dynamics control of powered lower-limb prosthe-
ses”. IEEE Trans. Automat. Contr., 62(8), pp. 3930–3942.

[18] Quintero, D., Lambert, D. J., Villarreal, D. J., and Gregg,
R. D., 2017. “Real-time continuous gait phase and speed
estimation from a single sensor”. In Proc. 2017 IEEE Conf.

12 Copyright c© by ASME



Contr. Technol. Applicat., pp. 847–852.
[19] Kumar, S., Mohammadi, A., Gans, N., and Gregg, R. D.,

2017. “Automatic tuning of virtual constraint-based control
algorithms for powered knee-ankle prostheses”. In Proc.
2017 IEEE Conf. Contr. Technol. Applicat., pp. 812–818.
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